
Title stata.com

declarations — Declarations and types

Syntax Description Remarks and examples Also see

Syntax
declaration1 fcnname(declaration2)
{

declaration3
. . .

}

such as

real matrix myfunction(real matrix X, real scalar i)
{

real scalar j, k

real vector v

. . .
}

declaration1 is one of

function

type
[
function

]
void

[
function

]
declaration2 is[

type
]

argname
[
,
[

type
]

argname
[
, . . .

]]
where argname is the name you wish to assign to the argument.

declaration3 are lines of the form of either of
type varname

[
, varname

[
, . . .

]]
external

[
type

]
varname

[
, varname

[
, . . .

]]
type is defined as one of

eltype orgtype such as real vector
eltype such as real
orgtype such as vector

1

http://stata.com
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

2 declarations — Declarations and types

eltype and orgtype are each one of

eltype orgtype
transmorphic matrix
numeric vector
real rowvector
complex colvector
string scalar
pointer

If eltype is not specified, transmorphic is assumed. If orgtype is not specified, matrix is assumed.

Description

The type and the use of declarations are explained. Also discussed is the calling convention (functions
are called by address, not by value, and so may change the caller’s arguments), and the use of external
globals.

Mata also has structures—the eltype is struct name—but these are not discussed here. For a
discussion of structures, see [M-2] struct.

Mata also has classes—the eltype is class name—but these are not discussed here. For a discussion
of classes, see [M-2] class.

Declarations are optional but, for careful work, their use is recommended.

Remarks and examples stata.com

Remarks are presented under the following headings:

The purpose of declarations
Types, element types, and organizational types
Implicit declarations
Element types
Organizational types
Function declarations
Argument declarations
The by-address calling convention
Variable declarations
Linking to external globals

The purpose of declarations

Declarations occur in three places: in front of function definitions, inside the parentheses defining
the function’s arguments, and at the top of the body of the function, defining private variables the
function will use. For instance, consider the function

http://www.stata.com/manuals13/m-2struct.pdf#m-2struct
http://www.stata.com/manuals13/m-2class.pdf#m-2class
http://stata.com

declarations — Declarations and types 3

real matrix swaprows(real matrix A, real scalar i1, real scalar i2)
{

real matrix B
real rowvector v

B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

This function returns a copy of matrix A with rows i1 and i2 swapped.

There are three sets of declarations in the above function. First, there is a declaration in front of the
function name:

real matrix swaprows(. . .)
{

. . .
}

That declaration states that this function will return a real matrix.

The second set of declarations occur inside the parentheses:

. . . swaprows(real matrix A, real scalar i1, real scalar i2)
{

. . .
}

Those declarations state that this function expects to receive three arguments, which we chose to call
A, i1, and i2, and which we expect to be a real matrix, a real scalar, and a real scalar, respectively.

The third set of declarations occur at the top of the body of the function:

. . . swaprows(. . .)
{

real matrix B

real rowvector v

. . .
}

Those declarations state that we will use variables B and v inside our function and that, as a matter
of fact, B will be a real matrix and v a real row vector.

We could have omitted all those declarations. Our function could have read

function swaprows(A, i1, i2)
{

B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

4 declarations — Declarations and types

and it would have worked just fine. So why include the declarations?

1. By including the outside declaration, we announced to other programs what to expect. They
can depend on swaprows() returning a real matrix because, when swaprows() is done,
Mata will verify that the function really is returning a real matrix and, if it is not, abort
execution.

Without the outside declaration, anything goes. Our function could return a real scalar in
one case, a complex row vector in another, and nothing at all in yet another case.

Including the outside declaration makes debugging easier.

2. By including the argument declaration, we announced to other programmers what they are
expected to pass to our function. We have made it easier to understand our function.

We have also told Mata what to expect and, if some other program attempts to use our
function incorrectly, Mata will stop execution.

Just as in (1), we have made debugging easier.

3. By including the inside declaration, we have told Mata what variables we will need and how
we will be using them. Mata can do two things with that information: first, it can make
sure that we are using the variables correctly (making debugging easier again), and second,
Mata can produce more efficient code (making our function run faster).

Interactively, we admit that we sometimes define functions without declarations. For more careful
work, however, we include them.

Types, element types, and organizational types

When you use Mata interactively, you just willy-nilly create new variables:
: n = 2
: A = (1,2 \ 3,4)
: z = (sqrt(-4+0i), sqrt(4))

When you create a variable, you may not think about the type, but Mata does. n above is, to Mata,
a real scalar. A is a real matrix. z is a complex row vector.

Mata thinks of the type of a variable as having two parts:

1. the type of the elements the variable contains (such as real or complex) and

2. how those elements are organized (such as a row vector or a matrix).

We call those two types the eltype—element type—and orgtype—organizational type. The eltypes and
orgtypes are

eltype orgtype
transmorphic matrix
numeric vector
real rowvector
complex colvector
string scalar
pointer

You may choose one of each and so describe all the types Mata understands.

declarations — Declarations and types 5

Implicit declarations

When you do not declare an object, Mata behaves as if you declared it to be transmorphic matrix:

1. transmorphic means that the matrix can be real, complex, string, or pointer.

2. matrix means that the organization is to be r × c, r ≥ 0 and c ≥ 0.

At one point in your function, a transmorphic matrix might be a real scalar (real being a
special case of transmorphic and scalar being a special case of a matrix when r = c = 1), and
at another point, it might be a string colvector (string being a special case of transmorphic,
and colvector being a special case of a matrix when c = 1).

Consider our swaprows() function without declarations,

function swaprows(A, i1, i2)
{

B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

The result of compiling this function is just as if the function read

transmorphic matrix swaprows(transmorphic matrix A,
transmorphic matrix i1,
transmorphic matrix i2)

{
transmorphic matrix B
transmorphic matrix v
B = A
v = B[i1, .]
B[i1, .] = B[i2, .]
B[i2, .] = v
return(B)

}

When we declare a variable, we put restrictions on it.

Element types

There are six eltypes, or element types:

1. transmorphic, which means real, complex, string, or pointer.

2. numeric, which means real or complex.

3. real, which means that the elements are real numbers, such as 1, 3, −50, and 3.14159.

4. complex, which means that each element is a pair of numbers, which are given the
interpretation a + bi. complex is a storage type; the number stored in a complex might
be real, such as 2 + 0i.

6 declarations — Declarations and types

5. string, which means the elements are strings of text. Each element may contain up to
2,147,483,647 characters and strings may (need not) contain binary 0; that is, strings may
be binary strings or text strings. Mata strings are similar to the strL type in Stata in that
they can be very long and may contain binary 0.

6. pointer means the elements are pointers to (addresses of) other Mata matrices, vectors,
scalars, or even functions; see [M-2] pointers.

Organizational types

There are five orgtypes, or organizational types:

1. matrix, which means r × c, r ≥ 0 and c ≥ 0.

2. vector, which means 1 × n or n × 1, n ≥ 0.

3. rowvector, which means 1 × n, n ≥ 0.

4. colvector, which means n × 1, n ≥ 0.

5. scalar, which means 1 × 1.

Sharp-eyed readers will note that vectors and matrices can have zero rows or columns! See [M-2] void
for more information.

Function declarations

Function declarations are the declarations that appear in front of the function name, such as

real matrix swaprows(. . .)
{

. . .
}

The syntax for what may appear there is

function

type
[
function

]
void

[
function

]
Something must appear in front of the name, and if you do not want to declare the type (which makes
the type transmorphic matrix), you just put the word function:

function swaprows(. . .)
{

. . .
}

You may also declare the type and include the word function if you wish,

real matrix function swaprows(. . .)
{

. . .
}

but most programmers omit the word function; it makes no difference.

http://www.stata.com/manuals13/m-2pointers.pdf#m-2pointers
http://www.stata.com/manuals13/m-2void.pdf#m-2void

declarations — Declarations and types 7

In addition to all the usual types, void is a type allowed only with functions—it states that the
function returns nothing:

void _swaprows(real matrix A, real scalar i1, real scalar i2)
{

real rowvector v

v = A[i1, .]
A[i1, .] = A[i2, .]
A[i2, .] = v

}

The function above returns nothing; it instead modifies the matrix it is passed. That might be useful
to save memory, especially if every use of the original swaprows() was going to be

A = swaprows(A, i1, i2)

In any case, we named this new function swaprows() (note the underscore), to flag the user that
there is something odd and deserving caution concerning the use of this function.

void, that is to say, returning nothing, is also considered a special case of a transmorphic matrix
because Mata secretly returns a 0 × 0 real matrix, which the caller just discards.

Argument declarations

Argument declarations are the declarations that appear inside the parentheses, such as

. . . swaprows(real matrix A, real scalar i1, real scalar i2)
{

. . .
}

The syntax for what may appear there is[
type

]
argname

[
,

[
type

]
argname

[
, . . .

]]
The names are required—they specify how we will refer to the argument—and the types are optional.
Omit the type and transmorphic matrix is assumed. Specify the type, and it will be checked
when your function is called. If the caller attempts to use your function incorrectly, Mata will stop
the execution and complain.

The by-address calling convention

Arguments are passed to functions by address, not by value. If you change the value of an argument,
you will change the caller’s argument. That is what made swaprows() (above) work. The caller
passed us A and we changed it. And that is why in the original version of swaprows(), the first line
read

B = A

we did our work on B, and returned B. We did not want to modify the caller’s original matrix.

8 declarations — Declarations and types

You do not ordinarily have to make copies of the caller’s arguments, but you do have to be careful
if you do not want to change the argument. That is why in all the official functions (with the single
exception of st view()—see [M-5] st view()), if a function changes the caller’s argument, the
function’s name starts with an underscore. The reverse logic does not hold: some functions start with
an underscore and do not change the caller’s argument. The underscore signifies caution, and you
need to read the function’s documentation to find out what it is you need to be cautious about.

Variable declarations

The variable declarations are the declarations that appear at the top of the body of a function:

. . . swaprows(. . .)
{

real matrix B

real rowvector v

. . .
}

These declarations are optional. If you omit them, Mata will observe that you are using B and v in
your code, and then Mata will compile your code just as if you had declared the variables to be
transmorphic matrix, meaning that the resulting compiled code might be a little more inefficient
than it could be, but that is all.

The variable declarations are optional as long as you have not mata set matastrict on; see
[M-3] mata set. Some programmers believe so strongly that variables really ought to be declared that
Mata provides a provision to issue an error when they forget.

In any case, these declarations—explicit or implicit—define the variables we will use. The variables
we use in our function are private—it does not matter if there are other variables named B and v
floating around somewhere. Private variables are created when a function is invoked and destroyed
when the function ends. The variables are private but, as explained above, if we pass our variables
to another function, that function may change their values. Most functions do not.

The syntax for declaring variables is

type varname
[
, varname

[
, . . .

]]
external

[
type

]
varname

[
, varname

[
, . . .

]]
real matrix B and real rowvector v match the first syntax.

Linking to external globals

The second syntax has to do with linking to global variables. When you use Mata interactively and
type

: n = 2

you create a variable named n. That variable is global. When you code inside a function

. . . myfunction(. . .)
{

external n

. . .
}

http://www.stata.com/manuals13/m-5st_view.pdf#m-5st_view()
http://www.stata.com/manuals13/m-3mataset.pdf#m-3mataset
http://www.stata.com/manuals13/u11.pdf#u11.3Namingconventions

declarations — Declarations and types 9

The n variable your function will use is the global variable named n. If your function were to examine
the value of n right now, it would discover that it contained 2.

If the variable does not already exist, the statement external n will create it. Pretend that we had
not previously defined n. If myfunction() were to examine the contents of n, it would discover
that n is a 0 × 0 matrix. That is because we coded

external n

and Mata behaved as if we had coded

external transmorphic matrix n

Let’s modify myfunction() to read:

. . . myfunction(. . .)
{

external real scalar n

. . .
}

Let’s consider the possibilities:

1. n does not exist. Here external real scalar n will create n—as a real scalar, of
course—and set its value to missing.

If n had been declared a rowvector, a 1 × 0 vector would have been created.

If n had been declared a colvector, a 0 × 1 vector would have been created.

If n had been declared a vector, a 0 × 1 vector would have been created. Mata could just
as well have created a 1 × 0 vector, but it creates a 0 × 1.

If n had been declared a matrix, a 0 × 0 matrix would have been created.

2. n exists, and it is a real scalar. Our function executes, using the global n.

3. n exists, and it is a real 1 × 1 rowvector, colvector, or matrix. The important thing
is that it is 1 × 1; our function executes, using the global n.

4. n exists, but it is complex or string or pointer, or it is real but not 1 × 1. Mata
issues an error message and aborts execution of our function.

Complicated systems of programs sometimes find it convenient to communicate via globals. Because
globals are globals, we recommend that you give your globals long names. A good approach is to
put the name of your system as a prefix:

. . . myfunction(. . .)
{

external real scalar mysystem_n

. . .
}

For another approach to globals, see [M-5] findexternal() and [M-5] valofexternal().

http://www.stata.com/manuals13/m-5findexternal.pdf#m-5findexternal()
http://www.stata.com/manuals13/m-5valofexternal.pdf#m-5valofexternal()

10 declarations — Declarations and types

Also see
[M-2] intro — Language definition

http://www.stata.com/manuals13/m-2intro.pdf#m-2intro

