## STATA GLOSSARY AND INDEX

RELEASE 13


A Stata Press Publication
StataCorp LP
College Station, Texas


Copyright (c) 1985-2013 StataCorp LP
All rights reserved
Version 13

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
Typeset in $\mathrm{T}_{\mathrm{E}} X$
ISBN-10: 1-59718-129-3
ISBN-13: 978-1-59718-129-7

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means-electronic, mechanical, photocopy, recording, or otherwise-without the prior written permission of StataCorp LP unless permitted subject to the terms and conditions of a license granted to you by StataCorp LP to use the software and documentation. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual "as is" without warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STETE Stata Press, Mata, IDTZ and NetCourse are registered trademarks of StataCorp LP.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LP.
Other brand and product names are registered trademarks or trademarks of their respective companies.
For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2013. Stata: Release 13. Statistical Software. College Station, TX: StataCorp LP.

## Contents

Combined subject table of contents ..... 1
Acronym glossary ..... 35
Glossary ..... 43
Vignette index ..... 125
Author index ..... 127
Subject index ..... 163

## Combined subject table of contents

This is the complete contents for all manuals. Every estimation command has a postestimation entry; however, not all postestimation entries are listed here.

## Getting started

## Data manipulation and management

Basic data commands
Creating and dropping variables
Functions and expressions
Dates and times
Loading, saving, importing, and exporting data
Combining data
Reshaping datasets

## Utilities

Basic utilities
Error messages
Stored results

## Graphics

Common graphs
Distributional graphs
Multivariate graphs
Quality control
Regression diagnostic plots
ROC analysis
Smoothing and densities

## Statistics

ANOVA and related
Basic statistics
Binary outcomes
Categorical outcomes
Censored and truncated regression models
Cluster analysis
Correspondence analysis
Count outcomes
Discriminant analysis
Do-it-yourself generalized method of moments
Do-it-yourself maximum likelihood estimation
Endogenous covariates
Epidemiology and related
Estimation related
Exact statistics
Factor analysis and principal components
Generalized linear models
Indicator and categorical variables
Linear regression and related
Logistic and probit regression
Longitudinal data/panel data

Labeling, display formats, and notes
Changing and renaming variables
Examining data
File manipulation
Miscellaneous data commands
Multiple imputation

Internet
Data types and memory
Advanced utilities

Survival-analysis graphs
Time-series graphs
More statistical graphs
Editing
Graph utilities
Graph schemes
Graph concepts

Multiple imputation
Multivariate analysis of variance and related techniques
Nonlinear regression
Nonparametric statistics
Ordinal outcomes
Other statistics
Pharmacokinetic statistics
Power and sample size
Quality control
ROC analysis
Rotation
Sample selection models
Simulation/resampling
Standard postestimation tests, tables, and other analyses
Structural equation modeling
Survey data
Survival analysis
Time series, multivariate
Time series, univariate

| Mixed models | Transforms and normality tests |
| :--- | :--- |
| Multidimensional scaling and biplots | Treatment effects |
| Multilevel mixed-effects models |  |
| Matrix commands | Other |
| Basics | Mata |
| Programming |  |
| Programming | Projects |
| Basics | Advanced programming commands |
| Program control | Special-interest programming commands |
| Parsing and program arguments | File formats |
| Console output | Mata |
| Commonly used programming commands |  |
| Debugging |  |

## Getting started

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Resources for learning and using Stata
[U] Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stata's help and search facilities
[R] help
Display help in Stata
[R] search .............................. Search Stata documentation and other resources

## Data manipulation and management

## Basic data commands


[D] data management . . . . . . . . . . . . . . . . . . . Introduction to data management commands
[D] data types ............................................... . . Quick reference for data types
[D] datetime .............................................. Date and time values and variables
[D] describe .......................................... . . Describe data in memory or in file
[D] edit ............................................... Browse or edit data with Data Editor
[D] format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set variables' output format
[D] inspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Display simple summary of data's attributes
[D] label ................................................................... Manipulate labels
[D] list ............................................................ . . . . List values of variables
[D] missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quick reference for missing values
[D] rename ...................................................................... Rename variable
[D] save ..................................................................... Save Stata dataset
[D] sort
Sort data
[D] use Load Stata dataset
[D] varmanage . . . . . . . . . . . . . . . . . . Manage variable labels, formats, and other properties

## Creating and dropping variables

| [D] | clear | Clear memory |
| :---: | :---: | :---: |
| [D] | compress | Compress data in memory |
| [D] | drop | Drop variables or observations |

[D] egen .............................................................. . . Extensions to generate
[D] functions ............................................................................... . . Functions
[D] generate ......................................... Create or change contents of variable
[R] orthog ................ . Orthogonalize variables and compute orthogonal polynomials

## Functions and expressions

| [U][D] | Chapter | Functions and expressions |
| :---: | :---: | :---: |
|  | egen | Extensions to generate |
| [D] | functions | ........ . Functions |

Dates and times
[U] Section 12.5.3 .................................................. . . Date and time formats
[U] Chapter 24 Working with dates and times
[D] bcal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Business calendar file manipulation
[D] datetime .......................................... Date and time values and variables
[D] datetime business calendars ......................................... . Business calendars
[D] datetime business calendars creation ..................... . Business calendars creation
[D] datetime display formats . . . . . . . . . . . . . . . . . . . . Display formats for dates and times
[D] datetime translation ..................... . String to numeric date translation functions

## Loading, saving, importing, and exporting data

[GS] Chapter 6 (GSM, GSU, GSW)
Using the Data Editor
[U] Chapter 21
Entering and importing data
[D] edit .............................................. . . Browse or edit data with Data Editor
[D] export ............................................ Overview of exporting data from Stata
[D] import ......................................... . Overview of importing data into Stata
[D] import delimited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Import delimited text data
[D] import excel ................................................ . Import and export Excel files
[D] import haver ............................ Import data from Haver Analytics databases
[D] import sasxport ................... Import and export datasets in SAS XPORT format
[D] infile (fixed format) . . . . . . . . . . . . . Read text data in fixed format with a dictionary
[D] infile (free format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read unformatted text data
[D] infix (fixed format) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read text data in fixed format
[D] input ........................................................... Enter data from keyboard
[D] odbc ................................. Load, write, or view data from ODBC sources
D] outfile
Export dataset in text format
[P] putexcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Export results to an Excel file
[D] save .................................................................... Save Stata dataset
[D] sysuse ................................................................... Use shipped dataset
[D] use ..................................................................... Load Stata dataset
[D] webuse .................................................. Use dataset from Stata website
[D] xmlsave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Export or import dataset in XML format

## Combining data

[U] Chapter 22
Combining datasets
[D] append
Append datasets
[MI] mi append
Append mi data
[D] cross . . . . . . . . . . . . . . . . . . . . . . . . . Form every pairwise combination of two datasets
[D] joinby . . . . . . . . . . . . . . . . . . . . . . . . . . . Form all pairwise combinations within groups
[D] merge ....................................................................... . . . . Merge datasets
[MI] mi merge ......................................................................... Merge mi data

## Reshaping datasets

[D] collapse ............................................ . . Make dataset of summary statistics
[D] contract . . . . . . . . . . . . . . . . . . . . . . . . . . . Make dataset of frequencies and percentages
[D] expand
. . . . . . . . . . . . . . . . . . Duplicate observations
[D] expandcl .............................................. . . . Duplicate clustered observations
[D] fillin ............................................................. . Rectangularize dataset
[D] obs ................................... . Increase the number of observations in a dataset

[MI] mi reshape
Reshape mi data
[TS] rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rolling-window and recursive estimation
[D] separate ....................................................... Create separate variables
[SEM] ssd ....................................... . . Making summary statistics data (sem only)
[D] stack ............................................................................ Stack data
[D] statsby . . . . . . . . . . . . . . . . . . . . . . . . Collect statistics for a command across a by list
[D] xpose ............................................ . Interchange observations and variables

## Labeling, display formats, and notes

[GS] Chapter 7 (GSM, GSU, GSW) .......................... Using the Variables Manager
[U] Section 12.5 ........................... . Formats: Controlling how data are displayed
[U] Section 12.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dataset, variable, and value labels
[D] format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set variables' output format
[D] label
Manipulate labels
[D] label language ............... Labels for variables and values in multiple languages
[D] labelbook ..................................................................... . Label utilities
[D] notes ................................................................. Place notes in data
[D] varmanage ..................... Manage variable labels, formats, and other properties

## Changing and renaming variables

[GS] Chapter 7 (GSM, GSU, GSW) .......................... Using the Variables Manager
[U] Chapter 25 ....................... Working with categorical data and factor variables
[D] clonevar
Clone existing variable
[D] destring ................ Convert string variables to numeric variables and vice versa
[D] encode ...................................... . . Encode string into numeric and vice versa
[D] generate ......................................... Create or change contents of variable
[D] mvencode .................. Change missing values to numeric values and vice versa
[D] order ........................................................ Reorder variables in dataset
[D] recode ...................................................... . Recode categorical variables
[D] rename ...................................................................... Rename variable
[D] rename group .................................................. Rename groups of variables
[D] split
Split string variables into parts
[D] varmanage . . . . . . . . . . . . . . . . . . Manage variable labels, formats, and other properties

## Examining data

[GS] Chapter 6 (GSM, GSU, GSW) ................................. . Using the Data Editor
[D] cf Compare two datasets
[D] codebook .......................................................... Describe data contents
[D] compare ............................................................ . . . Compare two variables
[D] count . . . . . . . . . . . . . . . . . . . . . . . . Count observations satisfying specified conditions
[D] describe ............................................ Describe data in memory or in file

| [D] | ds | List variables matching name patterns or other characteristics |
| :---: | :---: | :---: |
| [D] | duplicates | Report, tag, or drop duplicate observations |
| [D] | edit | Browse or edit data with Data Editor |
| [D] | gsort | Ascending and descending sort |
| [D] | inspect | Display simple summary of data's attributes |
| [D] | isid | . Check for unique identifiers |
| [D] | lookfor | Search for string in variable names and labels |
| [R] | lv | Letter-value displays |
| [R] | misstable | Tabulate missing values |
| [MI] | mi describe | Describe mi data |
| [MI] | mi misstable | Tabulate pattern of missing values |
| [D] | pctile | Create variable containing percentiles |
| [ST] | stdescribe | Describe survival-time data |
| [R] | summarize | Summary statistics |
| [SVY] | svy: tabulate oneway | . One-way tables for survey data |
| [SVY] | svy: tabulate twoway | Two-way tables for survey data |
| [P] | tabdisp | . . Display tables |
| [R] | table | Flexible table of summary statistics |
| [R] | tabstat | Compact table of summary statistics |
| [R] | tabulate oneway | One-way table of frequencies |
| [R] | tabulate twoway | Two-way table of frequencies |
| [R] | tabulate, summarize() | One- and two-way tables of summary statistics |
| [XT] | xtdescribe | . . . . . . . . . Describe pattern of xt data |

## File manipulation

[D] cd
Change directory
[D] cf Compare two datasets
[D] changeeol ................................... Convert end-of-line characters of text file
[D] checksum Calculate checksum of file
[D] copy ..................................................... . . . Copy file from disk or URL
[D] dir Display filenames
[D] erase
Erase a disk file
[D] filefilter Convert text or binary patterns in a file
[D] mkdir Create directory

[D] type Display contents of a file
[D] zipfile ....... Compress and uncompress files and directories in zip archive format

## Miscellaneous data commands

[D] corr2data
[D] drawnorm
[R] dydx
[D] icd9
[D] ipolate
[D] range
[D] sample
Create dataset with specified correlation structure

Multiple imputation

| [MI] | mi add | Add imputations from another mi dataset |
| :---: | :---: | :---: |
| [MI] | mi append | Append mi data |
| [MI] | mi convert | Change style of mi data |

Draw sample from multivariate normal distribution

| [MI] | mi copy | Copy mi flongsep data |
| :---: | :---: | :---: |
| [MI] | mi describe | Describe mi data |
| [MI] | mi erase | Erase mi datasets |
| [MI] | mi expand | Expand mi data |
| [MI] | mi export | Export mi data |
| [MI] | mi export ice | Export mi data to ice format |
| [MI] | mi export nhanes 1 | Export mi data to NHANES format |
| [MI] | mi extract | Extract original or imputed data from mi data |
| [MI] | mi import | Import data into mi |
| [MI] | mi import flong | Import flong-like data into mi |
| [MI] | mi import flongsep | Import flongsep-like data into mi |
| [MI] | mi import ice | . . Import ice-format data into mi |
| [MI] | mi import nhanes1 | Import NHANES-format data into mi |
| [MI] | mi import wide | Import wide-like data into mi |
| [MI] | mi merge | Merge mi data |
| [MI] | mi misstable | Tabulate pattern of missing values |
| [MI] | mi passive | Generate/replace and register passive variables |
| [MI] | mi ptrace | Load parameter-trace file into Stata |
| [MI] | mi rename | Rename variable |
| [MI] | mi replace0 | Replace original data |
| [MI] | mi reset | Reset imputed or passive variables |
| [MI] | mi reshape | Reshape mi data |
| [MI] | mi set | Declare multiple-imputation data |
| [MI] | mi stsplit | . . Stsplit and stjoin mi data |
| [MI] | mi update | Ensure that mi data are consistent |
| [MI] | mi varying | Identify variables that vary across imputations |
| [MI] | mi xeq | Execute command(s) on individual imputations |
| [MI] | mi XXXset | Declare mi data to be svy, st, ts, xt, etc. |
| [MI] | noupdate option | . . . . . . . The noupdate option |
| [MI] | styles | Dataset styles |
| [MI] | workflow | . . . Suggested workflow |

## Utilities

## Basic utilities

| [GS] | Chapter 13 (GSM, GSU, GSW) | Using the Do-file Editor-automating Stata |
| :---: | :---: | :---: |
| [U] | Chapter 4 | . . . . . . . Stata's help and search facilities |
| [U] | Chapter 15 | Saving and printing output-log files |
| [U] | Chapter 16 | Do-files |
| [R] | about | Display information about your Stata |
| [D] | by | Repeat Stata command on subsets of the data |
| [R] | cls | Clear Results window |
| [R] | copyright | Display copyright information |
| [R] | do | Execute commands from a file |
| [R] | doedit | Edit do-files and other text files |
| [R] | exit | Exit Stata |
| [R] | help | Display help in Stata |
| [R] | level | Set default confidence level |
| [R] | $\log$ | Echo copy of session to file |
| D] | obs | crease the number of observations in a dataset |

[R] \#review Review previous commands
[R] search Search Stata documentation and other resources
[R] translate Print and translate logs
[R] view View files and logs
[D] zipfile Compress and uncompress files and directories in zip archive format
Error messages
[U] Chapter 8 Error messages and return codes
[P] error Display generic error message and exit
[R] error messages
[P] rmsg
Error messages and return codes
Return messages

## Stored results

[U] Section 13.5 . . . . . . . . . . . . . . . . . . . . . . . . Accessing coefficients and standard errors
[U] Section 18.8 . . . . . . . . . . . . . . . . . . . . Accessing results calculated by other programs
[U] Section 18.9 ................. . Accessing results calculated by estimation commands
[U] Section 18.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storing results
[P] creturn ............................................................ Return c-class values
[P] ereturn ....................................................... Post the estimation results
[R] estimates ........................................ . . Save and manipulate estimation results
[R] estimates describe ........................................... Describe estimation results
[R] estimates for . . . . . . . . . . . . . . . . . . . . . Repeat postestimation command across models
[R] estimates notes ............................................ Add notes to estimation results
[R] estimates replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Redisplay estimation results
[R] estimates save ............................................. . Save and use estimation results
[R] estimates stats ................................................... . . Model-selection statistics
$[R]$ estimates store ........................................ . . Store and restore estimation results
[R] estimates table ............................................... . . Compare estimation results
[R] estimates title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set title for estimation results
[P] _return ............................................................... . . Preserve stored results
[P] return ..................................................................... . . Return stored results
[R] stored results ............................................................... Stored results

## Internet


[R] adoupdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Update user-written ado-files
[D] checksum ...................................................... Calculate checksum of file
[D] copy ...................................................... Copy file from disk or URL
[R] net ...................... Install and manage user-written additions from the Internet
[R] net search . . . . . . . . . . . . . . . . . . . . . . . . . . Search the Internet for installable packages
[R] netio ......................................................... . . . Control Internet connections
[R] news ......................................................................... Report Stata news
[R] sj ..................................... Stata Journal and STB installation instructions
$[R]$ ssc ......................................... . . Install and uninstall packages from SSC
[R] update ........................................................ . . Check for official updates
[D] use ...................................................................... . Load Stata dataset

## Data types and memory

[U] Chapter 6
Managing memory
[U] Section 12.2.2 Numeric storage types
[U] Section 12.4 Strings
[U] Section 13.11
Precision and problems therein
[U] Chapter 23
Working with strings
[D] compress Compress data in memory
[D] data types
Quick reference for data types
[R] matsize .......................... Set the maximum number of variables in a model
[D] memory
Memory management
[D] missing values ..................................... . . . Quick reference for missing values
[D] recast .................................................... . Change storage type of variable

## Advanced utilities

[D] assert
Verify truth of claim
[D] cd .................................................................... . . Change directory
[D] changeeol ................................... . Convert end-of-line characters of text file
[D] checksum ..................................................... Calculate checksum of file
[D] copy ...................................................... . . . Copy file from disk or URL
[P] _datasignature .................................. Determine whether data have changed
[D] datasignature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Determine whether data have changed
[R] db ......................................... . . . . . . . . . . . . . . . . . . . . . . . . . . Launch dialog
[P] dialog programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dialog programming
[D] dir ................................................................... Display filenames
[P] discard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drop automatically loaded programs
[D] erase ................................................................... Erase a disk file
[P] file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read and write ASCII text and binary files
[D] filefilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Convert text or binary patterns in a file
[D] hexdump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Display hexadecimal report on file
[D] mkdir
Create directory
[R] more ........................................................... . . The -more- message

[P] quietly ................................. Quietly and noisily perform Stata command
[D] rmdir ................................................................. Remove directory
[R] set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview of system parameters
[R] set cformat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Format settings for coefficient tables
[R] set_defaults . . . . . . . . . . . . . . . . . . . Reset system parameters to original Stata defaults
[R] set emptycells ......................... . Set what to do with empty cells in interactions
[R] set seed . . . . . . . . . . . . . . . . . . . . . . . . . . . Specify initial value of random-number seed
[R] set showbaselevels . . . . . . . . . . . . . . . . . . . . . . . . Display settings for coefficient tables
[D] shell .............................................. . . Temporarily invoke operating system
[P] signestimationsample ........ . Determine whether the estimation sample has changed
[P]
[P] sysdir
Stata Markup and Control Language
Query and set system directories
[D] type
[R] which
Display location and version for an ado-file

## Graphics

Common graphs
[G-1] graph intro
[G-2] graph
[G-2] graph bar
Introduction to graphics
[G-2] graph box
Bar
Box plots
[G-2] graph combine Combine multiple graphs
[G-2] graph copyCopy graph in memory
[G-2] graph describe Describe contents of graph in memory or on disk
[G-2] graph dir List names of graphs in memory and on disk
[G-2] graph display Display graph stored in memory
[G-2] graph dot Dot charts (summary statistics)
[G-2] graph drop Drop graphs from memory
[G-2] graph export Export current graph
[G-2] graph manipulation Graph manipulation commands
[G-2] graph matrix Matrix graphs
[G-2] graph other Other graphics commands
[G-2] graph piePie charts
[G-2] graph play Apply edits from a recording on current graph
[G-2] graph print Print a graph
[G-2] graph query List available schemes and styles
[G-2] graph rename Rename graph in memory
[G-2] graph save Save graph to disk
[G-2] graph set Set graphics options
[G-2] graph twoway Twoway graphs
[G-2] graph twoway area Twoway line plot with area shading
[G-2] graph twoway bar Twoway bar plots
[G-2] graph twoway connected Twoway connected plots
[G-2] graph twoway contour Twoway contour plot with area shading
[G-2] graph twoway contourline Twoway contour-line plot
[G-2] graph twoway dot Twoway dot plots
[G-2] graph twoway dropline Twoway dropped-line plots
[G-2] graph twoway fpfit Twoway fractional-polynomial prediction plots
[G-2] graph twoway fpfitci Twoway fractional-polynomial prediction plots with CIs
[G-2] graph twoway functionTwoway line plot of function[G-2] graph twoway histogramHistogram plots
[G-2] graph twoway kdensity Kernel density plots
[G-2] graph twoway lfit Twoway linear prediction plots
[G-2] graph twoway lifitci Twoway linear prediction plots with CIs
[G-2] graph twoway lineTwoway line plots
[G-2] graph twoway lowess Local linear smooth plots
[G-2] graph twoway lpoly Local polynomial smooth plots
[G-2] graph twoway lpolyci Local polynomial smooth plots with CIs
[G-2] graph twoway mband Twoway median-band plots
[G-2] graph twoway mspline Twoway median-spline plots
[G-2] graph twoway pcarrow Paired-coordinate plot with arrows
[G-2] graph twoway pcarrowi Twoway pcarrow with immediate arguments
[G-2] graph twoway pccapsym Paired-coordinate plot with spikes and marker symbols
[G-2] graph twoway pci Twoway paired-coordinate plot with immediate arguments[G-2] graph twoway pescatterPaired-coordinate plot with markers
[G-2] graph twoway pcspike Paired-coordinate plot with spikes
[G-2] graph twoway qfit Twoway quadratic prediction plots
[G-2] graph twoway qfitci Twoway quadratic prediction plots with CIs
[G-2] graph twoway rarea Range plot with area shading
[G-2] graph twoway rbarRange plot with bars
[G-2] graph twoway rcap Range plot with capped spikes
[G-2] graph twoway rcapsym Range plot with spikes capped with marker symbols
[G-2] graph twoway rconnected Range plot with connected lines
[G-2] graph twoway rline Range plot with lines
[G-2] graph twoway rscatter Range plot with markers
[G-2] graph twoway rspike ..... Range plot with spikes
[G-2] graph twoway scatter Twoway scatterplots
[G-2] graph twoway scatteri Scatter with immediate arguments
[G-2] graph twoway spike Twoway spike plots
[G-2] graph twoway tsline Twoway line plots
[G-2] graph use Display graph stored on disk
[R] histogram Histograms for continuous and categorical variables
[R] marginsplot Graph results from margins (profile plots, etc.)
[G-2] palette Display palettes of available selections

## Distributional graphs

[R] cumul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cumulative distribution
[R] diagnostic plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Distributional diagnostic plots
[R] ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ladder of powers
[R] spikeplot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spike plots and rootograms

## Multivariate graphs

| [MV] | biplot | Biplots |
| :---: | :---: | :---: |
| [MV] | ca postestimation | Postestimation tools for ca and camat |
| [MV] | ca postestimation plots | Postestimation plots for ca and camat |
| [MV] | cluster dendrogram | Dendrograms for hierarchical cluster analysis |
| [MV] | mca postestimation | Postestimation tools for mca |
| [MV] | mca postestimation plots | Postestimation plots for mca |
| [MV] | mds postestimation | Postestimation tools for mds, mdsmat, and mdslong |
| [MV] | mds postestimation plots | Postestimation plots for mds, mdsmat, and mdslong |
| [MV] | procrustes postestimation | Postestimation tools for procrustes |
| [MV] | scoreplot | Score and loading plots |
| [MV] | screeplot | . Scree plot |

## Quality control

[R] cusum . . . . . . . . . . . . . . . . . . . . . . . . . . . Cusum plots and tests for binary variables
[R] qc
Quality control charts
[R] serrbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graph standard error bar chart

## Regression diagnostic plots

[R] regress postestimation diagnostic plots . . . . . . . . . . . Postestimation plots for regress

## ROC analysis



## Smoothing and densities

| [R] | histogram | Histograms for continuous and categorical variables |
| :---: | :---: | :---: |
| [R] | kdensity | Univariate kernel density estimation |
| [R] | lowess | Lowess smoothing |
| [R] | lpoly | Kernel-weighted local polynomial smoothing |
| [R] | sunflower | Density-distribution sunflower plots |

## Survival-analysis graphs


[ST] stci ................ Confidence intervals for means and percentiles of survival time
[ST] stcox PH-assumption tests . . . . . . . . . . . . . . Tests of proportional-hazards assumption [ST] stcurve . . . Plot survivor, hazard, cumulative hazard, or cumulative incidence function [ST] strate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tabulate failure rates and rate ratios [ST] sts graph . . . . . . . . . . . . . . Graph the survivor, hazard, or cumulative hazard function

## Time-series graphs

[TS] corrgram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tabulate and graph autocorrelations
[TS] cumsp ................................................ . Cumulative spectral distribution
[TS] estat acplot ............ . Plot parametric autocorrelation and autocovariance functions
[TS] estat aroots . . . . . . . . . . . . . . . . . . . Check the stability condition of ARIMA estimates
[TS] fcast graph ......................................... . Graph forecasts after fcast compute
[TS] irf cgraph .... Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf graph ............... Graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ograph . . . . . . Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs

[TS] tsline
Plot time-series data
[TS] varstable ................. Check the stability condition of VAR or SVAR estimates
[TS] vecstable ........................... . Check the stability condition of VECM estimates
[TS] wntestb . . . . . . . . . . . . . . . . . . . . . . . Bartlett's periodogram-based test for white noise
[TS] xcorr .................................... . Cross-correlogram for bivariate time series

## More statistical graphs

| [R] | dotplot | Comparative scatterplots |
| :---: | :---: | :---: |
| [ST] | epitab | Tables for epidemiologists |
| [R] | fp postestimation | Postestimation tools for fp |
| [R] | grmeanby | Graph means and medians by categorical variables |
| [R] | pkexamine | Calculate pharmacokinetic measures |
| [R] | pksumm | Summarize pharmacokinetic data |
| [R] | stem | Stem-and-leaf displays |
| [XT] | xtline | Panel-data line plots |

## Editing

[G-1] graph editor
Graph Editor

## Graph utilities

[G-2] set graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Set whether graphs are displayed
[G-2] set printcolor ................. Set how colors are treated when graphs are printed
[G-2] set scheme .............................................................. Set default scheme

## Graph schemes

[G-4] schemes intro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to schemes
[G-4] scheme economist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheme description: economist
[G-4] scheme s1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheme description: s1 family
[G-4] scheme s2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheme description: s2 family
[G-4] scheme sj . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scheme description:
: sj

## Graph concepts

[G-4] concept: gph files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using gph files
[G-4] concept: lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using lines
[G-4] concept: repeated options . . . . . . . . . . . . . . . . . . . . . . Interpretation of repeated options
[G-4] text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Text in graphs

## Statistics

## ANOVA and related

[U] Chapter 26 .................................. . . Overview of Stata estimation commands
[R] anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of variance and covariance
$[R]$ contrast ....................... Contrasts and linear hypothesis tests after estimation
[R] icc ...................................................... . Intraclass correlation coefficients
[R] loneway . . . . . . . . . . . . . . . . . . Large one-way ANOVA, random effects, and reliability
[MV] manova ............................. . . Multivariate analysis of variance and covariance
[ME] meglm . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects generalized linear model
[ME] mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects linear regression
[R] oneway .................................................. . One-way analysis of variance
[R] pkcross ................................................. Analyze crossover experiments
[R] pkshape .................................. Reshape (pharmacokinetic) Latin-square data
[R] pwcompare
Pairwise comparisons
[R] regress
Linear regression
[XT] xtreg . . Fixed-, between-, and random-effects and population-averaged linear models

## Basic statistics

[R] anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysis of variance and covariance
[R] bitest ........................................................ Binomial probability test
[R] ci ......................... Confidence intervals for means, proportions, and counts
[R] correlate . . . . . . . . . . . . . . . . . . . Correlations (covariances) of variables or coefficients
[D] egen ........................................ . . . . . . . . . . . . . . . . . . Extensions to generate
[R] esize ............................................ . . . Effect size based on mean comparison

[R] mean ............................................................................ Estimate means
[R] misstable ...................................................... . . Tabulate missing values
[MV] mvtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multivariate tests
[R] oneway ................................................... . . . . One-way analysis of variance
[R] proportion ............................................................. . . Estimate proportions
[R] prtest ................................................................. . Tests of proportions
[R] pwmean ................................................ . . Pairwise comparisons of means
[R] ranksum ............................................... . . Equality tests on unmatched data

[R] regress
Linear regression
[R] sdtest Variance-comparison tests
[R] signrank Equality tests on matched data
[D] statsby Collect statistics for a command across a by list
[R] summarize Summary statistics
[R] table Flexible table of summary statistics
[R] tabstat Compact table of summary statistics
tabulate onewayOne-way table of frequencies
[R] tabulate twoway Two-way table of frequencies
[R] tabulate, summarize() One- and two-way tables of summary statistics
[R] total Estimate totals
[R] ttest $t$ tests (mean-comparison tests)

## Binary outcomes

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands [U] Section 26.7 . . . . . . . . . . . . . . . Binary-outcome qualitative dependent-variable models
[R] binreg ............... . Generalized linear models: Extensions to the binomial family
[R] biprobit ..................................................... Bivariate probit regression
[R] cloglog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complementary log-log regression
[R] exlogistic ...................................................... . . . Exact logistic regression
[R] glm ........................................................... . . . Generalized linear models
[R] glogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logit and probit regression for grouped data
[R] heckoprobit .............................. . . Ordered probit model with sample selection
[R] heckprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probit model with sample selection
[R] hetprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heteroskedastic probit model
[R] ivprobit ........................ . Probit model with continuous endogenous regressors
[R] logistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logistic regression, reporting odds ratios
[R] logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logistic regression, reporting coefficients
[ME] mecloglog . . . . . . . . . . . . . Multilevel mixed-effects complementary log-log regression
[ME] melogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects logistic regression
[ME] meprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects probit regression
[ME] meqrlogit . . . . . . . . . Multilevel mixed-effects logistic regression (QR decomposition)
[R] probit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probit regression
[R] rocfit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parametric ROC models
[R] rocreg . . . . . . . . . . . . . . . . . . . . . . . Receiver operating characteristic (ROC) regression
[R] scobit ........................................................ . Skewed logistic regression
[XT] xtcloglog . . . . . . . . . . . . . . Random-effects and population-averaged cloglog models
[XT] xtlogit ......... Fixed-effects, random-effects, and population-averaged logit models
[XT] xtprobit . . . . . . . . . . . . . . . . . Random-effects and population-averaged probit models

## Categorical outcomes

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.10 ............... . . Multiple-outcome qualitative dependent-variable models
[R] asclogit . . . . . . . . . Alternative-specific conditional logit (McFadden’s choice) model
[R] asmprobit . . . . . . . . . . . . . . . . . . . . . Alternative-specific multinomial probit regression
[R] clogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditional (fixed-effects) logistic regression
[R] mlogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multinomial (polytomous) logistic regression
[R] mprobit .................................................... . . Multinomial probit regression
[R] nlogit ............................................................... . . . Nested logit regression
[R] slogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stereotype logistic regression

## Censored and truncated regression models

| [R] | heckman | Heckman selection model |
| :---: | :---: | :---: |
| [R] | heckoprobit | Ordered probit model with sample selection |
| [R] | heckprobit | Probit model with sample selection |
| [R] | intreg | . . Interval regression |
| [R] | tnbreg | Truncated negative binomial regression |
| [R] | tobit | Tobit regression |
| [R] | tpoisson | Truncated Poisson regression |
| [R] | truncreg | Truncated regression |
| [XT] | xtintreg | Random-effects interval-data regression models |
| [XT] | xttobit | Random-effects tobit models |

## Cluster analysis


[MV] cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to cluster-analysis commands
[MV] cluster dendrogram .................... . Dendrograms for hierarchical cluster analysis
[MV] cluster generate ... Generate summary or grouping variables from a cluster analysis
[MV] cluster kmeans and kmedians . . . . . . . . . . . . . . Kmeans and kmedians cluster analysis
[MV] cluster linkage ............................................. . . Hierarchical cluster analysis
[MV] cluster notes ................................................ . . . Place notes in cluster analysis
[MV] cluster programming subroutines ....................... . . Add cluster-analysis routines
[MV] cluster programming utilities . . . . . . . . . . . . . . . Cluster-analysis programming utilities
[MV] cluster stop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cluster-analysis stopping rules
[MV] cluster utility ............................. . List, rename, use, and drop cluster analyses
[MV] clustermat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to clustermat commands
[MV] matrix dissimilarity . . . . . . . . . . . . . . . . . Compute similarity or dissimilarity measures
[MV] measure_option .................... . . Option for similarity and dissimilarity measures
[MV] multivariate ...................................... Introduction to multivariate commands

## Correspondence analysis



## Count outcomes

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.11
Count dependent-variable models
[U] Section 26.18.5 .................... . . Count dependent-variable models with panel data
[TE] etpoisson ...................... . . Poisson regression with endogenous treatment effects
[R] expoisson
Exact Poisson regression
[ME] menbreg . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects negative binomial regression
[ME] mepoisson . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects Poisson regression
[ME] meqrpoisson ...... Multilevel mixed-effects Poisson regression (QR decomposition)
[R] nbreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Negative binomial regression
[R] poisson ................................................................ . . Poisson regression
[R] tnbreg .......................................... . . Truncated negative binomial regression
[R] tpoisson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Truncated Poisson regression
[XT] xtnbreg Fixed-effects, random-effects, \& population-averaged negative binomial models [XT] xtpoisson . . . . Fixed-effects, random-effects, and population-averaged Poisson models
[R] zinb
Zero-inflated negative binomial regression
[R] zip
Zero-inflated Poisson regression

## Discriminant analysis

| [MV] | candisc | Canonical linear discriminant analysis |
| :---: | :---: | :---: |
| [MV] | discrim | Discriminant analysis |
| [MV] | discrim estat | Postestimation tools for discrim |
| [MV] | discrim knn | kth-nearest-neighbor discriminant analysis |
| [MV] | discrim lda | Linear discriminant analysis |
| [MV] | discrim logistic | Logistic discriminant analysis |
| [MV] | discrim qda | Quadratic discriminant analysis |
| [MV] | scoreplot | Score and loading plots |
| [MV] | screeplot | Scree plot |

## Do-it-yourself generalized method of moments

[U] Section 26.22
Generalized method of moments (GMM)
[R] gmm ....................................... . Generalized method of moments estimation
[P] matrix ................................................ . Introduction to matrix commands

## Do-it-yourself maximum likelihood estimation



## Endogenous covariates

[U] Chapter 20 .................................. . . . Estimation and postestimation commands
[U] Chapter 26 ................................... . . Overview of Stata estimation commands
[TE] etpoisson ....................... . Poisson regression with endogenous treatment effects
[TE] etregress ......................... Linear regression with endogenous treatment effects
[TS] forecast
Econometric model forecasting
[R] gmm ...................................... . . Generalized method of moments estimation
[R] ivpoisson .............................. . Poisson regression with endogenous regressors
[R] ivprobit ........................ Probit model with continuous endogenous regressors
$[R]$ ivregress . . . . . . . . . . . . . . . . . . . . . . Single-equation instrumental-variables regression
[R] ivtobit ......................... . Tobit model with continuous endogenous regressors
$[R]$ reg3 . . . . . . . . . . . . . . . . Three-stage estimation for systems of simultaneous equations
[XT] xtabond . . . . . . . . . . . . . . . . . . . . Arellano-Bond linear dynamic panel-data estimation
[XT] xtdpd ............................................. . Linear dynamic panel-data estimation
[XT] xtdpdsys . . . . . . Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation
[XT] xthtaylor .................. Hausman-Taylor estimator for error-components models
[XT] xtivreg . . . . . Instrumental variables and two-stage least squares for panel-data models
Epidemiology and related

| [R] | binreg | Generalized linear models: Extensions to the binomial family |
| :---: | :---: | :---: |
| [R] | brier | Brier score decomposition |
| [R] | clogit | Conditional (fixed-effects) logistic regression |
| [R] | dstdize | Direct and indirect standardization |
| [ST] | epitab | Tables for epidemiologists |
| [R] | exlogistic | Exact logistic regression |
| [D] | icd9 | ICD-9-CM diagnostic and procedure codes |
| [R] | kappa | . . . . . Interrater agreement |
| [R] | logistic | Logistic regression, reporting odds ratios |
| [R] | pk | Pharmacokinetic (biopharmaceutical) data |


| [R] | pkcollapse | Generate pharmacokinetic measurement dataset |
| :---: | :---: | :---: |
| [R] | pkcross | . Analyze crossover experiments |
| [R] | pkequiv | Perform bioequivalence tests |
| [R] | pkexamine | Calculate pharmacokinetic measures |
| [R] | pkshape | Reshape (pharmacokinetic) Latin-square data |
| [R] | pksumm | Summarize pharmacokinetic data |
| [R] | poisson | Poisson regression |
| [R] | roc | Receiver operating characteristic (ROC) analysis |
| [R] | roccomp | Tests of equality of ROC areas |
| [R] | rocfit | Parametric ROC models |
| [R] | rocreg | Receiver operating characteristic (ROC) regression |
| [R] | roctab | Nonparametric ROC analysis |
| [R] | symmetry | Symmetry and marginal homogeneity tests |
| [R] | tabulate twoway | Two-way table of frequencies |
| Estimation related |  |  |
| [R] | BIC note | Calculating and interpreting BIC |
| [R] | constraint | Define and list constraints |
| [R] | eform_option | Displaying exponentiated coefficients |
| [R] | estimation options | . Estimation options |
| [R] | fp | Fractional polynomial regression |
| [R] | maximize | Details of iterative maximization |
| [R] | mfp | Multivariable fractional polynomial models |
| [R] | mkspline | Linear and restricted cubic spline construction |
| [R] | stepwise | Stepwise estimation |
| [R] | vce_option | Variance estimators |
| [XT] | vce_options | Variance estimators |

## Exact statistics

[U] Section 26.12 .............................................................. . Exact estimators
[R] bitest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binomial probability test
[R] centile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Report centile and confidence interval
[R] ci ......................... . . Confidence intervals for means, proportions, and counts
[R] dstdize ............................................. . Direct and indirect standardization
[ST] epitab ....................................................... . . Tables for epidemiologists
[R] exlogistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exact logistic regression
[R] expoisson ...................................................... . Exact Poisson regression
[R] ksmirnov . . . . . . . . . . . . . . . . . . . . . Kolmogorov-Smirnov equality-of-distributions test
[R] loneway ..................... . Large one-way ANOVA, random effects, and reliability
[R] ranksum
Equality tests on unmatched data

[R] symmetry ................................. . . Symmetry and marginal homogeneity tests
[R] tabulate twoway ......................................... . . Two-way table of frequencies
[R] tetrachoric . . . . . . . . . . . . . . . . . . . . . . . . . . Tetrachoric correlations for binary variables

## Factor analysis and principal components

| [MV] | alpha | Compute interitem correlations (covariances) and Cronbach's alpha |
| :---: | :---: | :---: |
| [MV] | canon | Canonical correlations |
| [MV] | factor | Factor analysis |
| [MV] | pca | Principal component analysis |
| [MV] | rotate | Orthogonal and oblique rotations after factor and pca |


| [MV] | rotatemat | Orthogonal and oblique rotations of a Stata matrix |
| :---: | :---: | :---: |
| [MV] | scoreplot | . . . . Score and loading plots |
| [MV] | screeplot | Scree plot |
| [R] | tetrachoric | Tetrachoric correlations for binary variables |

## Generalized linear models

| [U] | Chapter 20 | on and postestimation commands |
| :---: | :---: | :---: |
| [U] | Section 26.6 | Generalized linear models |
| [R] | binreg | Generalized linear models: Extensions to the binomial family |
| [R] | glm | Generalized linear models |
| [XT] | xtgee | Fit population-averaged panel-data models by using GEE |

## Indicator and categorical variables

[U] Section 11.4.3
Factor variables
[U] Chapter 25 ........................ Working with categorical data and factor variables
[R] fvset .................................................. . Declare factor-variable settings

## Linear regression and related



| [R] | tnbreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Truncate |
| :---: | :---: |
| [R] | vwls .......................................... . Variance-weighted least squares |
| [XT] | xtabond ................... Arellano-Bond linear dynamic panel-data estimation |
| [XT] | xtdpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear dynamic panel-data estimation |
| [XT] | xtdpdsys ...... Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation |
| [XT] | xtgee . . . . . . . . . . . . . . . Fit population-averaged panel-data models by using GEE |
| [XT] | xtgls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fit panel-data models by using GLS |
| [XT] | xthtaylor . . . . . . . . . . . . . Hausman-Taylor estimator for error-components models |
| [XT] | xtivreg . . . . Instrumental variables and two-stage least squares for panel-data models |
| [XT] | xtpcse .................... . Linear regression with panel-corrected standard errors |
| [XT] | xtrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R Random-coefficients model |
| [XT] | xtreg . . Fixed-, between-, and random-effects and population-averaged linear models |
| [XT] | xtregar . . . . . . . . Fixed- and random-effects linear models with an $\operatorname{AR}(1)$ disturbance |

## Logistic and probit regression

[U] Chapter 20
Estimation and postestimation commands
[U] Chapter 26
Overview of Stata estimation commands
[R] asclogit . . . . . . . . . . Alternative-specific conditional logit (McFadden's choice) model
[R] asmprobit . . . . . . . . . . . . . . . . . . . . . Alternative-specific multinomial probit regression
[R] asroprobit . . . . . . . . . . . . . . . . . . . . Alternative-specific rank-ordered probit regression
[R] biprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bivariate probit regression
[R] clogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditional (fixed-effects) logistic regression
[R] cloglog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Complementary log-log regression
[R] exlogistic ......................................................... Exact logistic regression
[R] glogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logit and probit regression for grouped data
[R] heckoprobit .............................. . Ordered probit model with sample selection
[R] heckprobit heckprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Probit model with sample selection
[R] hetprobit
Heteroskedastic probit model
[R] ivprobit Probit model with continuous endogenous regressors
[R] logistic
Logistic regression, reporting odds ratios
[R] logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logistic regression, reporting coefficients
[ME] melogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects logistic regression
[ME] meologit . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered logistic regression
[ME] meoprobit . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered probit regression
[ME] meprobit .................................... . Multilevel mixed-effects probit regression
[ME] meqrlogit . . . . . . . . . Multilevel mixed-effects logistic regression (QR decomposition)
[R] mlogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multinomial (polytomous) logistic regression
[R] mprobit
Multinomial probit regression
[R] nlogit
Nested logit regression
[R] ologit
Ordered logistic regression
[R] oprobi
Ordered probit regression
[R] probi
Probit regression
[R] rologit
it . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rank-ordered logistic regression
[R] scobi
Skewed logistic regression
[R] slogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stereotype logistic regression
[XT] xtcloglog . . . . . . . . . . . . . . . Random-effects and population-averaged cloglog models
[XT] xtgee ..................... . Fit population-averaged panel-data models by using GEE
[XT] xtlogit . . . . . . . . Fixed-effects, random-effects, and population-averaged logit models
[XT] xtologit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered logistic models
[XT] xtoprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered probit models
[XT] xtprobit ...................... Random-effects and population-averaged probit models

## Longitudinal data/panel data

|  | Chapter 20 ................................... . . Estimation and postestimation commands |
| :---: | :---: |
| [U] | Section 26.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Panel-data models |
| [ME] | meologit . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered logistic regression |
| [ME] | meoprobit . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered probit regression |
| E] | mepoisson . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects Poisson regression |
| [ME] | meprobit . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects probit regression |
| [ME] | meqrpoisson ...... Multilevel mixed-effects Poisson regression (QR decomposition) |
| E] | mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects linear regression |
| [XT] | quadchk ......................... . . Check sensitivity of quadrature approximation |
| [XT] | Introduction to xt commands |
| [XT] | xtabond . . . . . . . . . . . . . . . . . Arellano-Bond linear dynamic panel-data estimation |
| [XT] | xtcloglog . . . . . . . . . . . . . . Random-effects and population-averaged cloglog models |
| [XT] | xtdata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Faster specification searches with xt data |
| [XT] | xtdescribe ............................................ . . ${ }^{\text {. }}$ Describe pattern of xt data |
| [XT] | xtdpd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear dynamic panel-data estimation |
| [XT] | xtdpdsys ...... Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation |
| [XT] | xtfrontier . . . . . . . . . . . . . . . . . . . . . . . . . Stochastic frontier models for panel data |
| [XT] | xtgee .................. . Fit population-averaged panel-data models by using GEE |
| [XT] | xtgls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fit panel-data models by using GLS |
| [XT] | xthtaylor . . . . . . . . . . . . . . Hausman-Taylor estimator for error-components models |
| [XT] | xtintreg . . . . . . . . . . . . . . . . . . . . . . Random-effects interval-data regression models |
| [XT] | xtivreg . . . . Instrumental variables and two-stage least squares for panel-data models |
| [XT] | xtline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Panel-data line plots |
| [XT] | xtlogit . . . . . . . Fixed-effects, random-effects, and population-averaged logit models |
| [XT] | xtnbreg Fixed-effects, random-effects, \& population-averaged negative binomial models |
| [XT] | xtologit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered logistic models |
| [XT] | xtoprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered probit models |
| [XT] | xtpcse ................... Linear regression with panel-corrected standard errors |
| [XT] | xtpoisson .... Fixed-effects, random-effects, and population-averaged Poisson models |
| [XT] | xtprobit . . . . . . . . . . . . . . . Random-effects and population-averaged probit models |
| [XT] | xtrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-coefficients model |
| [XT] | xtreg . . Fixed-, between-, and random-effects and population-averaged linear models |
| [XT] | xtregar ........ Fixed- and random-effects linear models with an AR(1) disturbance |
| [XT] | xtset ............................................. . . Declare data to be panel data |
| [XT] | xtsum ..................................................... ${ }^{\text {. }}$. Summarize xt data |
| [XT] | xttab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Tabulate xt data |
| [XT] | xttobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects tobit models |
| XT] | xtunitroot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Panel-data unit-root tests |

## Mixed models

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.19 .............................. . . . . . . . . . . . Multilevel mixed-effects models

[R] icc ..................................................... . . Intraclass correlation coefficients
[MV] manova .............................. Multivariate analysis of variance and covariance
[ME] me .................................... . Introduction to multilevel mixed-effects models
[ME] mecloglog . . . . . . . . . . . . Multilevel mixed-effects complementary log-log regression
[ME] meglm . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects generalized linear model
[ME] melogit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects logistic regression
[ME] menbreg . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects negative binomial regression

| [ME] | meologit . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered logistic regression |
| :---: | :---: |
| [ME] | meoprobit . . . . . . . . . . . . . . . . . . Multilevel mixed-effects ordered probit regression |
| [ME] | mepoisson . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects Poisson regression |
| [ME] | meprobit . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects probit regression |
| [ME] | meqrlogit . . . . . . . . Multilevel mixed-effects logistic regression (QR decomposition) |
| [ME] | meqrpoisson . . . . . Multilevel mixed-effects Poisson regression (QR decomposition) |
| [ME] | mixed . . . . . . . . . . . . . . . . . . . . . . . . . . . Multilevel mixed-effects linear regression |
| [XT] | xtcloglog . . . . . . . . . . . . . . Random-effects and population-averaged cloglog models |
| [XT] | xtintreg . . . . . . . . . . . . . . . . . . . . . . Random-effects interval-data regression models |
| [XT] | xtlogit . . . . . . . . Fixed-effects, random-effects, and population-averaged logit models |
| [XT] | xtologit . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered logistic models |
| [XT] | xtoprobit . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects ordered probit models |
| [XT] | xtprobit ................. . Random-effects and population-averaged probit models |
| [XT] | xtrc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-coefficients model |
| [XT] | xtreg .. Fixed-, between-, and random-effects and population-averaged linear models |
| [XT] | xttobit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Random-effects tobit models |

## Multidimensional scaling and biplots

| [MV] | biplot | Biplots |
| :---: | :---: | :---: |
| [MV] | mds | Multidimensional scaling for two-way data |
| [MV] | mdslong | Multidimensional scaling of proximity data in long format |
| [MV] | mdsmat | Multidimensional scaling of proximity data in a matrix |
| [MV] | measur | Option for similarity and dissimilarity measures |

## Multilevel mixed-effects models

| [U] | Section 26.19 | cts models |
| :---: | :---: | :---: |
| [ME] | me | Introduction to multilevel mixed-effects models |
| [ME] | mecloglog | Multilevel mixed-effects complementary log-log regression |
| [ME] | meglm | Multilevel mixed-effects generalized linear model |
| [ME] | melogit | Multilevel mixed-effects logistic regression |
| [ME] | menbreg | Multilevel mixed-effects negative binomial regression |
| [ME] | meologit | Multilevel mixed-effects ordered logistic regression |
| [ME] | meoprobit | Multilevel mixed-effects ordered probit regression |
| [ME] | mepoisson | Multilevel mixed-effects Poisson regression |
| [ME] | meprobit | Multilevel mixed-effects probit regression |
| [ME] | meqrlogit | Multilevel mixed-effects logistic regression (QR decomposition) |
| [ME] | meqrpoisson | Multilevel mixed-effects Poisson regression (QR decomposition) |
| [ME] | mixed | Multilevel mixed-effects linear regression |

## Multiple imputation

[U] Section 26.25
Multiple imputation
[MI] estimation . . . . . . . . . . . . . . . . . . . . . . . Estimation commands for use with mi estimate
[MI] intro substantive ......................... . . Introduction to multiple-imputation analysis
[MI] mi estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation using multiple imputations
[MI] mi estimate using .............. . Estimation using previously saved estimation results
[MI] mi estimate postestimation ..................... . Postestimation tools for mi estimate
[MI] mi impute
Impute missing values
[MI] mi impute chained .................. . Impute missing values using chained equations
[MI] mi impute intreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impute using interval regression
[MI] mi impute logit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Impute using logistic regression
[MI] mi impute mlogit . . . . . . . . . . . . . . . . . . . . Impute using multinomial logistic regression
[MI] mi impute monotone
[MI] mi impute mvn
[MI] mi impute nbreg
[MI] mi impute ologit
[MI] mi impute pmm
[MI] mi impute poisson
[MI] mi impute regress
[MI] mi impute truncreg
[MI] mi predict
[MI] mi test

Impute missing values in monotone data Impute using multivariate normal regression Impute using negative binomial regression

Impute using ordered logistic regression
Impute using predictive mean matching Impute using Poisson regression Impute using linear regression Impute using truncated regression Obtain multiple-imputation predictions Test hypotheses after mi estimate

Multivariate analysis of variance and related techniques

| [U] | Section 26.26 | Multivariate and cluster analysis |
| :---: | :---: | :---: |
| [MV] | canon | Canonical correlations |
| [MV] | hotelling | Hotelling's T-squared generalized means test |
| [MV] | manova | Multivariate analysis of variance and covariance |
| [MV] | mvreg | Multivariate regression |
| [MV] | mvtest covariances | Multivariate tests of covariances |
| [MV] | mvtest means | Multivariate tests of means |

## Nonlinear regression

[R] boxcox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Box-Cox regression models
[R] nl Nonlinear least-squares estimation
[R] nlsur . . . . . . . . . . . . . . . . . . . . . . . . Estimation of nonlinear systems of equations

## Nonparametric statistics

| [R] | bitest | Binomial probability test |
| :---: | :---: | :---: |
| [R] | bootstrap | Bootstrap sampling and estimation |
| [R] | bsample | Sampling with replacement |
| [R] | bstat | . Report bootstrap results |
| [R] | centile | Report centile and confidence interval |
| [R] | cusum | Cusum plots and tests for binary variables |
| [R] | kdensity | Univariate kernel density estimation |
| [R] | ksmirnov | Kolmogorov-Smirnov equality-of-distributions test |
| [R] | kwallis | . Kruskal-Wallis equality-of-populations rank test |
| [R] | lowess | Lowess smoothing |
| [R] | lpoly | Kernel-weighted local polynomial smoothing |
| [R] | nptrend | . Test for trend across ordered groups |
| [R] | prtest | . . . . . . . . . . . . . . . . . . . Tests of proportions |
| [R] | qreg | . Quantile regression |
| [R] | ranksum | . . Equality tests on unmatched data |
| [R] | roc | . Receiver operating characteristic (ROC) analysis |
| [R] | roccomp | . . Tests of equality of ROC areas |
| [R] | rocreg | . Receiver operating characteristic (ROC) regression |
| [R] | rocregplot | Plot marginal and covariate-specific ROC curves after rocreg |
| [R] | roctab | . Nonparametric ROC analysis |
| [R] | runtest | Test for random order |
| [R] | signrank | Equality tests on matched data |
| [R] | simulate | Monte Carlo simulations |
| [R] | smooth | Robust nonlinear smoother |
| [R] | spearman | Spearman's and Kendall's correlations |


| [R] | symmetry | Symmetry and marginal homogeneity tests |
| :---: | :---: | :---: |
| [R] | tabulate twoway | . . Two-way table of frequencies |

## Ordinal outcomes

| [U] | Chapter 20 | mation and postestimation commands |
| :---: | :---: | :---: |
| [R] | asroprobit | Alternative-specific rank-ordered probit regression |
| [R] | heckoprobit | Ordered probit model with sample selection |
| [ME] | meologit | Multilevel mixed-effects ordered logistic regression |
| [ME] | meoprobit | Multilevel mixed-effects ordered probit regression |
| [R] | ologit | Ordered logistic regression |
| [R] | oprobit | Ordered probit regression |
| [R] | rologit | Rank-ordered logistic regression |
| [XT] | xtologit | Random-effects ordered logistic models |
| [XT] | xtoprobit | Random-effects ordered probit models |

Other statistics

| [MV] | alpha | Compute interitem correlations (covariances) and Cronbach's alpha |
| :---: | :---: | :---: |
| [R] | ameans | ........... Arithmetic, geometric, and harmonic means |
| [R] | brier | Brier score decomposition |
| [R] | centile | Report centile and confidence interval |
| [R] | kappa | Interrater agreement |
| [MV] | mvtest correlations | Multivariate tests of correlations |
| [R] | pcorr | Partial and semipartial correlation coefficients |
| [D] | pctile | Create variable containing percentiles |
| [D] | range | Generate numerical range |

## Pharmacokinetic statistics

[U] Section 26.27
[R] pk .......................................... . . Pharmacokinetic (biopharmaceutical) data
[R] pkcollapse ............................... Generate pharmacokinetic measurement dataset
[R] pkcross Analyze crossover experiments
[R] pkequiv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perform bioequivalence tests
[R] pkexamine ........................................... . Calculate pharmacokinetic measures
[R] pkshape .................................. Reshape (pharmacokinetic) Latin-square data
[R] pksumm ............................................ Summarize pharmacokinetic data

## Power and sample size

[U] Section 26.29
Power and sample-size analysis
[PSS] GUI . . . . . . . . . . . . . . . . Graphical user interface for power and sample-size analysis
[PSS] power .......................... Power and sample-size analysis for hypothesis tests
[PSS] power onecorrelation . . . . . . . . . . . . . Power analysis for a one-sample correlation test
[PSS] power onemean ........................... . Power analysis for a one-sample mean test
[PSS] power oneproportion . ............. . Power analysis for a one-sample proportion test
[PSS] power onevariance .................... . Power analysis for a one-sample variance test
[PSS] power oneway ..................... . . Power analysis for one-way analysis of variance
[PSS] power pairedmeans . . ........... . Power analysis for a two-sample paired-means test
[PSS] power pairedproportions . . . . Power analysis for a two-sample paired-proportions test
[PSS] power repeated .......... Power analysis for repeated-measures analysis of variance
[PSS] power twocorrelations . . . . . . . . . . . Power analysis for a two-sample correlations test
[PSS] power twomeans ...................... . Power analysis for a two-sample means test
[PSS] power twoproportions ............ . Power analysis for a two-sample proportions test
[PSS] power twovariances Power analysis for a two-sample variances test
[PSS] power twoway Power analysis for two-way analysis of variance
[ST] stpower Sample size, power, and effect size for survival analysis
[ST] stpower cox Sample size, power, and effect size for the Cox proportional hazards model
[ST] stpower exponential Sample size and power for the exponential test
[ST] stpower logrank Sample size, power, and effect size for the log-rank test
[PSS] unbalanced designs Specifications for unbalanced designs
Quality control
[R] cusum Cusum plots and tests for binary variables
qcQuality control charts
[R] serrbar Graph standard error bar chart
ROC analysis
[U] Section 26.8 ROC analysis
[R] roc Receiver operating characteristic (ROC) analysis
[R] roccomp Tests of equality of ROC areas
[R] rocfit Parametric ROC models[R] rocfit postestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Postestimation tools for rocfit
[R] rocreg Receiver operating characteristic (ROC) regression
[R] rocreg postestimation Postestimation tools for rocreg
[R] rocregplot Plot marginal and covariate-specific ROC curves after rocreg
[R] roctab Nonparametric ROC analysis

## Rotation

| [MV] | procrustes | Procrustes transformation |
| :---: | :---: | :---: |
| [MV] | rotate | Orthogonal and oblique rotations after factor and pca |
| [MV] | rotatemat | Orthogonal and oblique rotations of a Stata matri |

## Sample selection models

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.16 . . . . . . . . . . . . . . . . . . . . . . . . Models with endogenous sample selection
[TE] etpoisson ....................... . . Poisson regression with endogenous treatment effects
[TE] etregress ......................... . Linear regression with endogenous treatment effects
[R] heckman ................................................... . Heckman selection model
[R] heckoprobit ............................ . . Ordered probit model with sample selection
[R] heckprobit Probit model with sample selection

## Simulation/resampling

| [R] | bootstrap | Bootstrap sampling and estimation |
| :---: | :---: | :---: |
| [R] | bsample | Sampling with replacement |
| [R] | jackknife | Jackknife estimation |
| [R] | permute | Monte Carlo permutation tests |
| [R] | simulate | Monte Carlo simulations |

## Standard postestimation tests, tables, and other analyses

| [R] | correlate ...................... Correlations (covariances) of variables or coefficients |
| :---: | :---: |
| [R] | estat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Postestimation statistics |
| [R] | estat ic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Display information criteria |
| [R] | estat summarize . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summarize estimation sample |
| [R] | estat vce ........................ . . . . . . . . . . . Display covariance matrix estimates |
| [R] | estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . Save and manipulate estimation results |
| [R] |  |
| [R] | estimates for . . . . . . . . . . . . . . . . . . . Repeat postestimation command across models |
| [R] | estimates notes ................................ . Add notes to estimation results |
| [R] | estimates replay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Redisplay estimation results |
| [R] | estimates save . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Save and use estimation results |
| [R] | estimates stats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model-selection statistics |
| [R] | estimates store .............................. Store and restore estimation results |
| [R] | estimates table ........................................ . Compare estimation results |
| [R] | estimates title ..................................... ${ }^{\text {. }}$ Set title for estimation results |
| [TS] | forecast ......................................... . Econometric model forecasting |
| [TS] | forecast adjust ................. Adjust a variable by add factoring, replacing, etc. |
| [TS] | forecast clear . . . . . . . . . . . . . . . . . . . . . . . . . . . Clear current model from memory |
| [TS] | forecast coefvector . . . . . . . . . . . . . . . . . . Specify an equation via a coefficient vector |
| [TS] | forecast create ..................................... Create a new forecast model |
| [TS] | forecast describe . . . . . . . . . . . . . . . . . . . . . . Describe features of the forecast model |
| [TS] | forecast drop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Drop forecast variables |
| [TS] | forecast estimates . . . . . . . . . . . . . . . . . . Add estimation results to a forecast model |
| [TS] | forecast exogenous . . . . . . . . . . . . . . . . . . . . . . . . . . . . Declare exogenous variables |
| [TS] | forecast identity . . . . . . . . . . . . . . . . . . . . . . . . Add an identity to a forecast model |
| [TS] | forecast list ................... . List forecast commands composing current model |
| [TS] | forecast query . . . . . . . . . . . . . . . . . Check whether a forecast model has been started |
| [TS] | forecast solve ................................ . Obtain static and dynamic forecasts |
| [R] | hausman ......................... . . . . . . . . . . . . . . . . . Hausman specification test |
| [R] | lincom ..................................... ${ }^{\text {. }}$ Linear combinations of estimators |
| [R] | linktest . . . . . . . . . . . . . . . . . . . . . Specification link test for single-equation models |
| [R] | lrtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Likelihood-ratio test after estimation |
| [R] | margins . . . . . . . . . . . . . Marginal means, predictive margins, and marginal effects |
| [R] | margins, contrast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contrasts of margins |
| [R] | margins, pwcompare . . . . . . . . . . . . . . . . . . . . . Pairwise comparisons of margins |
| [R] | marginsplot . . . . . . . . . . . . . . . . . . . . Graph results from margins (profile plots, etc.) |
| [MV] | mvtest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multivariate tests |
| [R] | nlcom ................................... . Nonlinear combinations of estimators |
| [R] | predict . . . . . . . . . . . . . . . . . . . Obtain predictions, residuals, etc., after estimation |
| [R] | predictnl ....... Obtain nonlinear predictions, standard errors, etc., after estimation |
| [R] | pwcompare ............................................... Pairwise comparisons |
| [R] | suest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Seemingly unrelated estimation |
| [R] | test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test linear hypotheses after estimation |
| [R] | testnl . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test nonlinear hypotheses after estimation |

## Structural equation modeling

| [U] | Section 26.4 | Structural equation modeling (SEM) |
| :---: | :---: | :---: |
| [SEM] | Builder | SEM Builder |
| [SEM] | Builder, generalized | SEM Builder for generalized models |
| [SEM] | estat eform | Display exponentiated coefficients |
| [SEM] | estat eqgof | Equation-level goodness-of-fit statistics |

estat eqtest
[SEM] estat framework
[SEM] estat ggof
[SEM] estat ginvariant
estat gof
[SEM] estat residuals
[SEM] estat scoretests
[SEM] estat stable
[SEM] estat stdize
[SEM] estat summarize
[SEM] estat teffects
[SEM] example 1
[SEM] example 2
[SEM] example 3
[SEM] example 4
[SEM] example 5
[SEM] example 6
[SEM] example 7
[SEM] example 8
[SEM]
[SEM]
[SEM]
[SEM]
[SEM]
[SEM
[SEM]
[SEM]
[SEM] example 17
example 17
[SEM] example 18
[SEM] example 19
[SEM] example 20
[SEM] example 21
[SEM] example 22
[SEM] example 23
[SEM] example 24
[SEM] example 25
[SEM] example 26
[SEM] example 27 g
[SEM] example 28 g
[SEM] example 29 g
[SEM] example 30 g
[SEM] example 31 g
[SEM] example 32 g
[SEM] example 33 g
[SEM] example 34 g
[SEM] example 35 g
[SEM] example 36 g
[SEM] example 37 g
[SEM] example 38 g
[SEM] example 39 g example 9 $\qquad$ example 10 example 11

Equation-level test that all coefficients are zero Display estimation results in modeling framework Group-level goodness-of-fit statistics
Tests for invariance of parameters across groups
Goodness-of-fit statistics
Modification indices
Display mean and covariance residuals
. . . . . . . . . . . . . . . . . . . . . . . Score tests
Check stability of nonrecursive system Test standardized parameters Report summary statistics for estimation sample omposition of effects into total, direct, and indirect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single-factor measurement model ...................... . . . Creating a dataset from published covariances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-factor measurement model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Goodness-of-fit statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Linear regression Nonrecursive structural model ........... Testing that coefficients are equal, and constraining them . . . . . . . . . . . . . . . . . . . . . Structural model with measurement component
$\qquad$ MIMIC model
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Equation-level Wald test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Predicted values Higher-order CFA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Correlated uniqueness model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Latent growth model . . . . . . . . . . . . . . . . . . . . Creating multiple-group summary statistics data . . . . . . . . . . . . . . . . . . . . . . . . Two-factor measurement model by group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Group-level goodness of fit . . . . . . . . . . . . . . . . . . . . . . . . . Testing parameter equality across groups . . . . . . . . . . . . . . . . . . . . Specifying parameter constraints across groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reliability Creating summary statistics data from raw data . Fitting a model with data missing at random . . . . . . . . . . . . . . . . . . . . Fitting a model with data missing at random . . . . . . . . . . . . . . . . . . . . One-parameter logistic IRT (Rasch) model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-parameter logistic IRT model . . . . . . Two-level measurement model (multilevel, generalized response) . . . . . . . . . . . . . Two-factor measurement model (generalized response) . . . . . . . . . . . . . . Full structural equation model (generalized response) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logistic regression . . . . . . . . . . . . . . . . . . . . . . . Combined models (generalized responses) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordered probit and ordered logit . . . . . . . . . . . . . . . . . . . . . . . . . . . MIMIC model (generalized response) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multinomial logistic regression . . . . . . . . . . . . Random-intercept and random-slope models (multilevel) . . . . . . . . . . . . . . Three-level model (multilevel, generalized response)
[SEM]
example 40 g
Crossed models (multilevel)
[SEM] example 41 g
[SEM] example 42 g example 43 g
[SEM]
example 44 g
example 45 g
example 46 g gsem gsem estimation options Generalized structural equation model estimation command gsem family-and-link options Options affecting estimation

Model description options Command syntax for path diagrams Postestimation tools for gsem gsem reporting options Options affecting reporting of results

Standard errors, the full story Generalized linear predictions, etc.

```
[SEM] test
Wald test of linear hypotheses
[SEM] testnl
Wald test of nonlinear hypotheses
```


## Survey data

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.24 ................................................................... . Survey data
[SVY] survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to survey commands
[SVY] bootstrap_options . . . . . . . . . . . . . . . . . More options for bootstrap variance estimation
[SVY] brr_options ............................... . More options for BRR variance estimation
[SVY] direct standardization ....... Direct standardization of means, proportions, and ratios
[SVY] estat ............................................ . . Postestimation statistics for survey data
[SVY] jackknife_options ..................... More options for jackknife variance estimation
[SVY] ml for svy ................... . . Maximum pseudolikelihood estimation for survey data
[SVY] poststratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Poststratification for survey data
[P] _robust Robust variance estimates
[SVY] sdr_options ............................... . . More options for SDR variance estimation
[SVY] subpopulation estimation ................... Subpopulation estimation for survey data
[SVY] svy
The survey prefix command
[SVY] svy bootstrap ................................................ . . Bootstrap for survey data
[SVY] svy brr ................................. . . Balanced repeated replication for survey data
[SVY] svy estimation ................................ . . Estimation commands for survey data
[SVY] svy jackknife ..................................... . . . . Jackknife estimation for survey data
[SVY] svy postestimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Postestimation tools for svy
[SVY] svy sdr ............................ . . Successive difference replication for survey data
[SVY] svy: tabulate oneway . . . . . . . . . . . . . . . . . . . . . . . . . . . One-way tables for survey data
[SVY] svy: tabulate twoway . . . . . . . . . . . . . . . . . . . . . . . . . . . Two-way tables for survey data
[SVY] svydescribe ..................................................... Describe survey data
[SVY] svymarkout ... Mark observations for exclusion on the basis of survey characteristics
[SVY] svyset ................................................ . . Declare survey design for dataset
[MI] mi XXXset ................................... . Declare mi data to be svy, st, ts, xt, etc.
[SVY] variance estimation .............................. Variance estimation for survey data

## Survival analysis

[U] Chapter 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
[U] Section 26.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Survival-time (failure-time) models
[U] Section 26.29 ............................................ . . Power and sample-size analysis
[ST] survival analysis Introduction to survival analysis \& epidemiological tables commands
$\qquad$
[ST] ctset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Declare data to be count-time data
[ST] cttost .................................. . Convert count-time data to survival-time data
[ST] discrete ................................................. Discrete-time survival analysis

[ST] snapspan ................................... Convert snapshot data to time-span data
[ST] st . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Survival-time data
[ST] st_is .................................. . . Survival analysis subroutines for programmers
[ST] stbase ............................................................... . Form baseline dataset
[ST] stci ................ Confidence intervals for means and percentiles of survival time
[ST] stcox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cox proportional hazards model
[ST] stcox PH-assumption tests . . . . . . . . . . . . . . . Tests of proportional-hazards assumption
[ST] stcrreg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Competing-risks regression
[ST] stcurve . . . Plot survivor, hazard, cumulative hazard, or cumulative incidence function

## stdescribe

Describe survival-time data
[R] stepwise
[ST]
stfill stgen stir Generate variables reflecting entire histories

## stpower

 Sample size, power, and effect size for survival analysis stpower cox Sample size, power, and effect size for the Cox proportional hazards model stpower exponential ................. Sample size and power for the exponential test stpower logrank ........... Sample size, power, and effect size for the log-rank test stptime ............................ Calculate person-time, incidence rates, and SMR strate ................................................ . . Tabulate failure rates and rate ratios streg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parametric survival models sts ..... Generate, graph, list, and test the survivor and cumulative hazard functions sts generate .............. Create variables containing survivor and related functions sts graph ................ . Graph the survivor, hazard, or cumulative hazard function sts list ................................. . List the survivor or cumulative hazard function sts test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test equality of survivor functions stset ............................................... . . . Declare data to be survival-time data mi XXXset ................................. Declare mi data to be svy, st, ts, xt, etc. stsplit ................................................. . Split and join time-span records mi stsplit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stsplit and stjoin mi data stsum ...................................................... . . Summarize survival-time data sttocc ............................... . . Convert survival-time data to case-control data sttoct .................................. . . Convert survival-time data to count-time data stvary .............................................. . . Report variables that vary over time
## Time series, multivariate

[U] Section 11.4.4
Time-series varlists
Section 13.9
Time-series operators
[U]
[U]
[TS]
Chapter 20
Section 26.17
time series
dfactor
 Introdu
estat aroots ..................... . . Check the stability condition of ARIMA estimates fcast compute .................... Compute dynamic forecasts after var, svar, or vec fcast graph ....................................... Graph forecasts after fcast compute forecast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Econometric model forecasting forecast adjust . . . . . . . . . . . . . . . . . Adjust a variable by add factoring, replacing, etc. forecast clear forecast coefvector
forecast create
forecast describe
forecast drop
fS forecast estimates
forecast exogenous
TS] forecast identity forecast list . . . . . . . . . . . . . . . . . List forecast commands composing current model
forecast query forecast solve irf . irf add ........................... Add results from an IRF file to the active IRF file Clear current model from memory Specify an equation via a coefficient vector

Create a new forecast model Describe features of the forecast model

Drop forecast variables Add estimation results to a forecast model

Declare exogenous variables Add an identity to a forecast model Check whether a forecast model has been started Obtain static and dynamic forecasts Create and analyze IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf cgraph .... Combined graphs of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf create . . . . . . . . . . . . . . . Obtain IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf ctable ...... Combined tables of IRFs, dynamic-multiplier functions, and FEVDs
[TS] irf describe .......................................................... . . . Describe an IRF file
irf drop
Drop IRF results from the active IRF file irf graph ............... Graphs of IRFs, dynamic-multiplier functions, and FEVDs
irf ograph
Overlaid graphs of IRFs, dynamic-multiplier functions, and FEVDs
Rename an IRF result in an IRF file
fet
Set the active IRF file
irf table .................. . Tables of IRFs, dynamic-multiplier functions, and FEVDs
 mgarch dcc .......... . Dynamic conditional correlation multivariate GARCH models mgarch dvech ......................... Diagonal vech multivariate GARCH models mgarch vcc ........... . Varying conditional correlation multivariate GARCH models rolling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Rolling-window and recursive estimation

State-space models
tsappend
Add observations to a time-series dataset
tsfill Fill in gaps in time variable

Plot time-series data tsreport . . . . . . . . . . . . . Report time-series aspects of a dataset or estimation sample tsrevar . . . . . . . . . . . . . . . . . . . . . . . . . . . Time-series operator programming command tsset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Declare data to be time-series data var intro . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to vector autoregressive models var svar ....................................... . . Structural vector autoregressive models var . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vector autoregressive models varbasic .............................. . . Fit a simple VAR and graph IRFs or FEVDs vargranger ................ Perform pairwise Granger causality tests after var or svar varlmar ............... Perform LM test for residual autocorrelation after var or svar varnorm . . . . . . . . . . . . . . Test for normally distributed disturbances after var or svar varsoc .................. Obtain lag-order selection statistics for VARs and VECMs varstable ................ Check the stability condition of VAR or SVAR estimates varwle ....................... Obtain Wald lag-exclusion statistics after var or svar vec intro . . . . . . . . . . . . . . . . . . . . . . . . . Introduction to vector error-correction models vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vector error-correction models veclmar ....................... . . Perform LM test for residual autocorrelation after vec vecnorm ....................... . Test for normally distributed disturbances after vec
vecrank
vecstable
xcorr Estimate the cointegrating rank of a VECM

Time series, univariate

Time-series varlists
Section 13.9
Chapter 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . Estimation and postestimation commands
Section 26.17 Models with time-series data
[TS] arch ..... Autoregressive conditional heteroskedasticity (ARCH) family of estimators [TS] arfima . . . . . . . . . . . . . . Autoregressive fractionally integrated moving-average models

Tabulate and graph autocorrelations

Time series, univariate
[TS] cumsp ................................................ . . . Cumulative spectral distribution
[TS] dfgls DF-GLS unit-root test Augmented Dickey-Fuller unit-root test

## forecast

 forecast adjust[TS] forecast clear
[TS] forecast coefvector
[TS] forecast create
[TS] forecast describe
[TS] forecast drop
[TS] forecast estimates
[TS] forecast exogenous
[TS] forecast list
[TS] forecast query
[TS] forecast solve
newey
pergram $\qquad$
pperronPhillips-Perron unit-root test[TS] prais .............................. . Prais-Winsten and Cochrane-Orcutt regression[TS] psdensity . . . . . . Parametric spectral density estimation after arima, arfima, and ucm Rolling-window and recursive estimation Add observations to a time-series datasetList f

[TS] forecast identity
tsfill
. .
$\qquad$tsfilter bkFilter a time-series, keeping only selected periodicities
tsfilter bwBaxter-King time-series filter
[TS]tsfilter cfButterworth time-series filter
[TS] tsfilter hp Hodrick-Prescott time-series filterChristiano-Fitzgerald time-series filter[TS] tslineReport time-series aspects of a dataset or estimation sampletsrevar
[TS tsset[TS]Time-series operator programming commandtssmoothSmooth and forecast univariate time-series data
[TS] tssmooth dexponential Double-exponential smoothing
[TS] tssmooth exponential Single-exponential smoothing
[TS] tssmooth hwinters Holt-Winters nonseasonal smoothing
[TS] tssmooth ma Moving-average filter
[TS] tssmooth nl Nonlinear filter
[TS] tssmooth shwinters Holt-Winters seasonal smoothingxcorrCross-correlogram for bivariate time series

## Transforms and normality tests

[R] boxcox
[R] fp
[R] ladder
[R] lnskew0

Box-Cox regression models
Fractional polynomial regression
Ladder of powers
Find zero-skewness log or Box-Cox transform

| [R] | mfp | Multivariable fractional polynomial models |
| :---: | :---: | :---: |
| [MV] | mvtest normality | . . Multivariate normality tests |
| [R] | sktest | Skewness and kurtosis test for normality |
| [R] | swilk | Shapiro-Wilk and Shapiro-Francia tests for normality |

## Treatment effects

| [U] | Section 26.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Treatment-effect models |
| :---: | :---: |
| [TE] | etpoisson ................... . Poisson regression with endogenous treatment effects |
| [TE] | etregress .................... Linear regression with endogenous treatment effects |
| [TE] | teffects . . . . . . . . . . . . . . . . . . . . Treatment-effects estimation for observational data |
| [TE] | teffects aipw . . . . . . . . . . . . . . . . . . . . . . . Augmented inverse-probability weighting |
| [TE] | teffects intro .............. . Introduction to treatment effects for observational data |
| [TE] | teffects intro advanced Advanced introduction to treatment effects for observational data |
| [TE] | teffects ipw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inverse-probability weighting |
| [TE] | teffects ipwra . . . . . . . . . . . . . . . Inverse-probability-weighted regression adjustment |
| [TE] | teffects multivalued . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multivalued treatment effects |
| [TE] | teffects nnmatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Nearest-neighbor matching |
| [TE] | teffects overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overlap plots |
| [TE] | teffects psmatch ...................................... . . Propensity-score matching |
| [TE] | teffects ra ................................................. . Regression adjustment |
| [TE] | treatment effects . . . . . . . . . . . . . . . . . . . Introduction to treatment-effects commands |

## Matrix commands

## Basics

| [U] | Chapter 14 | Matrix expressions |
| :---: | :---: | :---: |
| [P] | matlist | Display a matrix and control its format |
| [P] | matrix | Introduction to matrix commands |
| [P] | matrix define | Matrix definition, operators, and functions |
| [P] | matrix utility | List, rename, and drop matrices |

## Programming


[P] matrix accum ............................................. . Form cross-product matrices
[P] matrix rownames ............................................ . . Name rows and columns
[P] matrix score ........................................... . Score data from coefficient vectors
[R] ml ...................................................... . . . Maximum likelihood estimation
[M] Mata Reference Manual

## Other

[P] makecns
Constrained estimation
[P] matrix dissimilarity . . . . . . . . . . . . . . . . Compute similarity or dissimilarity measures
[P] matrix eigenvalues
[P] matrix get ..................................................... Access system matrices
[P] matrix mkmat .............................. . . Convert variables to matrix and vice versa
[P] matrix svd ................................................ Singular value decomposition
[P] matrix symeigen . . . . . . . . . . . . . Eigenvalues and eigenvectors of symmetric matrices

## Mata

[D] putmata ................................ . . Put Stata variables into Mata and vice versa
[M] Mata Reference Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[M] Mata Reference Manual

## Programming

## Basics

| [U] | Chapter 18 | Programming Stata |
| :---: | :---: | :---: |
| [U] | Section 18.3 | Macros |
| [U] | Section 18.11 | Ado-files |
| [P] | comments | Add comments to programs |
| [P] | fvexpand | Expand factor varlists |
| [P] | macro | Macro definition and manipulation |
| [P] | program | Define and manipulate programs |
| [P] | return | Return stored results |

## Program control

| [U] | Section 18.11.1 | Version |
| :---: | :---: | :---: |
| [P] | capture | Capture return code |
| [P] | continue | . Break out of loops |
| [P] | error | Display generic error message and exit |
| [P] | foreach | Loop over items |
| [P] | forvalues | Loop over consecutive values |
| [P] | if | if programming command |
| [P] | version | Version control |
| [P] | while | . ..... Looping |

## Parsing and program arguments

| [U] | Section 18.4 | Program arguments |
| :---: | :---: | :---: |
| [P] | confirm | Argument verification |
| [P] | gettoken | Low-level parsing |
| [P] | levelsof | Levels of variable |
| [P] | numlist | Parse numeric lists |
| [P] | syntax | Parse Stata syntax |
| [P] | tokenize | de strings into tokens |

## Console output

| [P] | dialog programming | Dialog programming |
| :---: | :---: | :---: |
| [P] | display | Display strings and values of scalar expressions |
| [P] | smcl | Stata Markup and Control Language |
| [P] | tabdisp | Display tables |

## Commonly used programming commands

| [P] | byable | Make programs byable |
| :---: | :---: | :---: |
| [P] | \#delimit | Change delimiter |
| [P] | exit | . . Exit from a program or do-file |
| [R] | fvrevar | Factor-variables operator programming command |
| [P] | mark | Mark observations for inclusion |
| [P] | matrix | Introduction to matrix commands |

[P] more ......................................................... Pause until key is pressed
[P] nopreserve option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . nopreserve option
[P] preserve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preserve and restore data
[P] quietly ................................... . Quietly and noisily perform Stata command
[P] scalar ...................................................................... Scalar variables
[P] smcl ............................................. . . Stata Markup and Control Language
[P] sortpreserve ........................................................ . Sort within programs
[P] timer . . . . . . . . . . . . . . . Time sections of code by recording and reporting time spent
[TS] tsrevar
Time-series operator programming command

## Debugging

[P] pause
Program debugging command
[P] timer ................ Time sections of code by recording and reporting time spent
[P] trace
Debug Stata programs

## Advanced programming commands

| [M-5] | _docx*() . . . . . . . . . . . . . . . . . . . . . . . . . . . Generate Office Open XML (.docx) file |
| :---: | :---: |
| [P] | automation .................................... . . . . . . . . . . . . . . . . . . Automation |
| [P] | break ................................................... ${ }^{\text {. }}$. ${ }^{\text {c. }}$ Suppress Break key |
| [P] | char . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics |
| [M-2] | class .................................... . . Object-oriented programming (classes) |
| [P] | class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class programming |
| [P] | class exit . . . . . . . . . . . . . . . . . . . . . . . Exit class-member program and return result |
| [P] | classutil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Class programming utility |
| [P] | estat programming . . . . . . . . . . . . . . . . Controlling estat after user-written commands |
| [P] | _estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manage estimation results |
| [P] | file . . . . . . . . . . . . . . . . . . . . . . . . . . . . Read and write ASCII text and binary files |
| [P] | findfile ...................................................... ${ }^{\text {. }}$. Find file in path |
| [P] | include ............................................. . . Include commands from file |
| [P] | java ............................................................... . ${ }^{\text {. }}$ Java plugins |
| [P] | javacall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Call a static Java method |
| [P] | macro ....................................... . Macro definition and manipulation |
| [P] | macro lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Manipulate lists |
| [R] | ml . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum likelihood estimation |
| [M-5] | moptimize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Model optimization |
| [M-5] | optimize( ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function optimization |
| [P] | plugin ........................................................... . . Load a plugin |
| [P] | postfile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Post results in Stata dataset |
| [P] | _predict . . Obtain predictions, residuals, etc., after estimation programming command |
| [P] | program properties . . . . . . . . . . . . . . . . . . . . . . Properties of user-defined programs |
| [P] | putexcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Export results to an Excel |
| [D] | putmata .......................... Put Stata variables into Mata and vice ver |
| [P] | _return . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Preserve stored result |
| [P] | _rmcoll ............................................. . . Remove collinear variables |
| [P] |  |
| [P] | serset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Create and manipulate sersets |
| [D] | snapshot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Save and restore data snapshots |
| [P] | unab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unabbreviate variable |
| [P] | unabcmd .......................................... . . . Unabbreviate command na |
| [P] | varabbrev ................................................ Control variable abbreviatio |

[P] viewsource View source code
[M-5] xl() Excel file I/O class
Special-interest programming commands
[R] bstatReport bootstrap results
[MV] cluster programming subroutines Add cluster-analysis routines
[MV] cluster programming utilities Cluster-analysis programming utilities
[R] fvrevar Factor-variables operator programming command
[P] matrix dissimilarity Compute similarity or dissimilarity measures
[MI] mi select Programmer's alternative to mi extract
[ST] st_is ................................. . Survival analysis subroutines for programmers
[SVY] svymarkout . . . Mark observations for exclusion on the basis of survey characteristics
[MI] technical Details for programmers
[TS] tsrevar Time-series operator programming command
Projects
[P] Project Manager Organize Stata files
File formats
[P] file formats .dta Description of .dta file format
Mata
[M] Mata Reference Manual
Interface features
[GS] Chapter 1 (GSM, GSU, GSW) Introducing Stata-sample session
[GS] Chapter 2 (GSM, GSU, GSW) The Stata user interface
[GS] Chapter 3 (GSM, GSU, GSW) Using the Viewer
[GS] Chapter 6 (GSM, GSU, GSW) Using the Data Editor
[GS] Chapter 7 (GSM, GSU, GSW) Using the Variables Manager
[GS] Chapter 13 (GSM, GSU, GSW) Using the Do-file Editor-automating Stata
[GS] Chapter 15 (GSM, GSU, GSW) Editing graphs
[P] dialog programming Dialog programming
[R] doedit Edit do-files and other text files
[D] edit Browse or edit data with Data Editor
[P] sleep Pause for a specified time
[P] smcl Stata Markup and Control Language
[D] varmanage Manage variable labels, formats, and other properties
[P] viewsourceView source code
[P] window fopen Display open/save dialog box
[P] window manage Manage window characteristics
[P] window menu Create menus
[P] window programming Programming menus and windows
[P] window push Copy command into Review window
[P] window stopbox Display message box

## Acronym glossary

2SIV

## ADF

AF
AFE
AFT
AIC
AIDS
AIPW
ANCOVA
ANOVA
APE
AR
AR(1)
ARCH
ARFIMA
ARIMA
ARMA
ARMAX
ASE
ASL
ATE
ATET
AUC

BC
BCa
BE
BFGS
BHHH
BIC
BLOB
BLUP
BRR
two-step instrumental variables
two-stage least squares
three-stage least squares
asymptotic distribution free
attributable fraction for the population
attributable fraction among the exposed
accelerated failure time
Akaike information criterion
almost ideal demand system
augmented inverse-probability weights
analysis of covariance
analysis of variance
average partial effects
autoregressive
first-order autoregressive
autoregressive conditional heteroskedasticity
autoregressive fractionally integrated moving average
autoregressive integrated moving average
autoregressive moving average
autoregressive moving-average exogenous
asymptotic standard error
achieved significance level
average treatment effect
average treatment effect on the treated
area under the time-versus-concentration curve
bias corrected
bias-corrected and accelerated
between effects
Broyden-Fletcher-Goldfarb-Shanno
Berndt-Hall-Hall-Hausman
Bayesian information criterion
binary large object
best linear unbiased prediction
balanced repeated replication

| CA | correspondence analysis |
| :--- | :--- |
| CCI | conservative confidence interval |
| CD | coefficient of determination |
| CDC | Centers for Disease Control and Prevention |
| CDF | cumulative distribution function |
| CES | constant elasticity of substitution |
| CFA | confirmatory factor analysis |
| CFI | comparative fit index |
| CI | conditional independence |
| CI | confidence interval |
| CIF | cumulative incidence function |
| CMI | conditional mean independence |
| CMLE | count time maximum likelihood estimates |
| ct | controlled clinical trial |
| CCT | cumulative sum |
| cUsum | coefficient of variation |
| c.v. | data augmentation |
| DA | design effect |
| DEFF | design effect (standard deviation metric) |
| DEFT | dynamic factor |
| DF | degree(s) of freedom |
| df / d.f. | distribution function |
| d.f. | dynamic factors with vector autoregressive errors |
| DFAR | Davidon-Fletcher-Powell |
| DFP | dynamic panel data |
| DPD | extended binary coded decimal interchange code |
| EBCDIC | exponential GARCH |
| EGARCH | estimated generalized least squares |
| EGLS | expected information matrix |
| EIM | enpectapsion maximization |
| EM | error sum of squares |
| EPS | ESS |


| FCS | fully conditional specification |
| :--- | :--- |
| FD | first-differenced estimator |
| FDA | Food and Drug Administration |
| FE | fixed effects |
| FEVD | forecast-error variance decomposition |
| FGLS | feasible generalized least squares |
| FGNLS | feasible generalized nonlinear least squares |
| FIML | full information maximum likelihood |
| FIVE estimator | full-information instrumental-variables efficient estimator |
| flong | full long |
| flongsep | full long and separate |
| FMI | fraction of missing information |
| FP | fractional polynomial |
| FPC | finite population correction |
|  | generalized autoregressive conditional heteroskedasticity |
| GARCH | generalized estimating equations |
| GEE | generalized extreme value |
| GEV | Geweke-Hajivassiliou-Keane |
| GHK | Gauss-Hermite quadrature |
| GHQ | generalized linear interactive modeling |
| GLIM | generalized linear latent and mixed models |
| GLLAMM | generalized linear models |
| GLM | generalized least squares |
| GLS | generalized method of moments |
| GMM | generalized structural equation modeling/model |
| GSEM | graphical user interface |
| GUI | heteroskedasticity- and autocorrelation-consistent |
| HAC | hazard ratio |
| HR | human readable form |
| HRF |  |

IC information criteria
ICD-9 International Classification of Diseases, Ninth Revision

IIA
i.i.d.

IPW
IPWRA
IQR
IR
IRF
IRLS
IRR
IV

JAR
JCA
JRE
LAPACK linear algebra package
LAV least absolute value
LDA linear discriminant analysis
LIML
LM
LOO
LOWESS
LR
LSB

MA
MAD
MANCOVA
MANOVA
MAR
MCA
MCAGHQ
MCAR
MCE
MCMC
MDES
MDS
ME
independence of irrelevant alternatives
independent and identically distributed
inverse-probability weighting
interquartile range
incidence rate
impulse-response function
iterated, reweighted least squares
incidence-rate ratio
instrumental variables

Java Archive file
joint correspondence analysis
Java Runtime Environment
limited-information maximum likelihood
Lagrange multiplier
leave one out
locally weighted scatterplot smoothing
likelihood ratio
least-significant byte
moving average
median absolute deviation
multivariate analysis of covariance
multivariate analysis of variance
missing at random
multiple correspondence analysis
missing completely at random
Monte Carlo error
Markov chain Monte Carlo
minimum detectable effect size
multidimensional scaling
multiple equation
inverse-probability-weighted regression adjustment
mode-curvature adaptive Gauss-Hermite quadrature

| MEFF | misspecification effect |
| :--- | :--- |
| MEFT | misspecification effect (standard deviation metric) |
| MFP | multivariable fractional polynomial |
| MI / mi | multiple imputation |
| midp | mid-p-value |
| MIMIC | multiple indicators and multiple causes |
| MINQUE | minimum norm quadratic unbiased estimation |
| MIVQUE | minimum variance quadratic unbiased estimation |
| ML | maximum likelihood |
| MLE | maximum likelihood estimate |
| MLMV | maximum likelihood with missing values |
| mlong | marginal long |
| MM | method of moments |
| MNAR | missing not at random |
| MNP | multinomial probit |
| MPL | modified profile likelihood |
| MS | mean square |
| MSB | most-significant byte |
| MSE | mean squared error |
| MSL | maximum simulated likelihood |
| MSS | model sum of squares |
| MUE | median unbiased estimates |
| MVAGHQ | mean-variance adaptive Gauss-Hermite quadrature |
| MVN | multivariate normal |
| MVREG | multivariate regression |
|  |  |
| NARCH | nonlinear ARCH |
| NHANES | National Health and Nutrition Examination Survey |
| NLS | nonlinear least squares |
| NPARCH | nonlinear power ARCH |
| NR | Newton-Raphson |
| ODBC | Open DataBase Connectivity |
| OIM | observed information matrix |
| OIRF | orthogonalized impulse-response function |
| OLE | Object Linking and Embedding (Microsoft product) |
| OLS | ordinary least squares |
| OPG | outer product of the gradient |
| OR | odds ratio |
|  |  |


| PA | population averaged |
| :--- | :--- |
| PARCH | power ARCH |
| principal component analysis |  |
| PCSE | panel-corrected standard error |
| p.d.f. | probability density function |
| PF | prevented fraction for the population |
| PFE | prevented fraction among the exposed |
| proportional hazards |  |
| pk | pharmacokinetic data |
| p.m.f. | probability mass function |
| PMM | predictive mean matching |
| PNG | Portable Network Graphics |
| POM | potential-outcome means |
| PSS | power and sample size |
| pSU | primary sampling unit |
|  | quadratic discriminant analysis |
| QDA | quasimaximum likelihood |
| QML | regression adjustment |
| Return code |  |

SAARCH simple asymmetric ARCH
SARIMA seasonal ARIMA
s.d. standard deviation

SE / s.e.
SEM
SF
SFAR
SIF
SIR
SJ
SMCL
SMR
SMSA
SOR
SQL
SRD
SRMR
SRR
SRS
SRSWR
SSC
SSCP
SSD
SSU
st
STB
STS
SUR
SURE
SUTVA
SVAR
SVD

TARCH
TDT
TIFF
TLI
TSS
standard error
structural equation modeling/model
static factor
static factors with vector autoregressive errors Stata internal form
standardized incidence ratio
Stata Journal
Stata Markup and Control Language
standardized mortality/morbidity ratio
standard metropolitan statistical area
standardized odds ratio
Structured Query Language
standardized rate difference standardized root mean squared residual standardized risk ratio simple random sample/sampling SRS with replacement
Statistical Software Components
sum of squares and cross products
summary statistics data
secondary sampling unit
survival time
Stata Technical Bulletin
structural time series
seemingly unrelated regression
seemingly unrelated regression estimation
stable unit treatment value assumption
structural vector autoregressive model
singular value decomposition
threshold ARCH
transmission/disequilibrium test
tagged image file format
Tucker-Lewis index
total sum of squares

| UCM | unobserved-components model |
| :--- | :--- |
| VAR | vector autoregressive model |
| VAR(1) | first-order vector autoregressive |
| VARMA | vector autoregressive moving average <br> VARMA(1,1) <br> first-order vector autoregressive moving average <br> VECM |
| variance-covariance estimate <br> vector error-correction model |  |
| VIF | variance inflation factor |
| WLC | worst linear combination <br> WLF |
| WLS | weighted least squares |
| WNLS | weighted nonlinear least squares |
| wrt | extensible Markup Language |
| XML | zero-inflated negative binomial <br> zero-inflated Poisson |
| ZINB | zero-truncated negative binomial <br> ZIP |
| zero-truncated Poisson |  |

## Glossary

$2 \times 2$ contingency table. A $2 \times 2$ contingency table is used to describe the association between a binary independent variable and a binary response variable of interest.
$\mathbf{1 0 0 \%}$ sample. See census.
accelerated failure-time model. A model in which everyone has, in a sense, the same survivor function, $S(\tau)$, and an individual's $\tau_{j}$ is a function of his or her characteristics and of time, such as $\tau_{j}=t * \exp \left(\beta_{0}+\beta_{1} x_{1 j}+\beta_{2} x_{2 j}\right)$.
acceptance region. In hypothesis testing, an acceptance region is a set of sample values for which the null hypothesis cannot be rejected or can be accepted. It is the complement of the rejection region.
accrual period or recruitment period or accrual. The accrual period (or recruitment period) is the period during which subjects are being enrolled (recruited) into a study. Also see follow-up period.
actual alpha, actual significance level. This is an attained or observed significance level.
add factor. An add factor is a quantity added to an endogenous variable in a forecast model. Add factors can be used to incorporate outside information into a model, and they can be used to produce forecasts under alternative scenarios.
ADF, method(adf). ADF stands for asymptotic distribution free and is a method used to obtain fitted parameters for standard linear SEMs. ADF is used by sem when option method (adf) is specified. Other available methods are ML, QML, and MLMV.
administrative censoring. Administrative censoring is the right-censoring that occurs when the study observation period ends. All subjects complete the course of the study and are known to have experienced either of two outcomes at the end of the study: survival or failure. This type of censoring should not be confused with withdrawal and loss to follow-up. Also see censored, censoring, left-censoring, and right-censoring.

AFT, accelerated failure time. See accelerated failure-time model.
agglomerative hierarchical clustering methods. Agglomerative hierarchical clustering methods are bottom-up methods for hierarchical clustering. Each observation begins in a separate group. The closest pair of groups is agglomerated or merged in each iteration until all of the data is in one cluster. This process creates a hierarchy of clusters. Contrast to divisive hierarchical clustering methods.

AIPW estimator. See augmented inverse-probability-weighted estimator.
allocation ratio. This ratio $n_{2} / n_{1}$ represents the number of subjects in the comparison, experimental group relative to the number of subjects in the reference, control group. Also see [PSS] unbalanced designs.
alpha. Alpha, $\alpha$, denotes the significance level.
alternative hypothesis. In hypothesis testing, the alternative hypothesis represents the counterpoint to which the null hypothesis is compared. When the parameter being tested is a scalar, the alternative hypothesis can be either one sided or two sided.
alternative value, alternative parameter. This value of the parameter of interest under the alternative hypothesis is fixed by the investigator in a power and sample-size analysis. For example, alternative mean value and alternative mean refer to a value of the mean parameter under the alternative hypothesis.
analysis of variance, ANOVA. This is a class of statistical models that studies differences between means from multiple populations by partitioning the variance of the continuous outcome into independent sources of variation due to effects of interest and random variation. The test statistic is then formed as a ratio of the expected variation due to the effects of interest to the expected random variation. Also see one-way ANOVA, two-way ANOVA, one-way repeated-measures ANOVA, and two-way repeated-measures ANOVA.
analysis time. Analysis time is like time, except that 0 has a special meaning: $t=0$ is the time of onset of risk, the time when failure first became possible.
Analysis time is usually not what is recorded in a dataset. A dataset of patients might record calendar time. Calendar time must then be mapped to analysis time.

The letter $t$ is reserved for time in analysis-time units. The term time is used for time measured in other units.

The origin is the time corresponding to $t=0$, which can vary subject to subject. Thus $t=$ time - origin.
anchoring, anchor variable. A variable is said to be the anchor of a latent variable if the path coefficient between the latent variable and the anchor variable is constrained to be 1 . sem and gsem use anchoring as a way of normalizing latent variables and thus identifying the model.
anti-image correlation matrix or anti-image covariance matrix. The image of a variable is defined as that part which is predictable by regressing each variable on all the other variables; hence, the anti-image is the part of the variable that cannot be predicted. The anti-image correlation matrix $\mathbf{A}$ is a matrix of the negatives of the partial correlations among variables. Partial correlations represent the degree to which the factors explain each other in the results. The diagonal of the anti-image correlation matrix is the Kaiser-Meyer-Olkin measure of sampling adequacy for the individual variables. Variables with small values should be eliminated from the analysis. The anti-image covariance matrix $\mathbf{C}$ contains the negatives of the partial covariances and has one minus the squared multiple correlations in the principal diagonal. Most of the off-diagonal elements should be small in both anti-image matrices in a good factor model. Both anti-image matrices can be calculated from the inverse of the correlation matrix $\mathbf{R}$ via

$$
\begin{aligned}
& \mathbf{A}=\{\operatorname{diag}(\mathbf{R})\}^{-1} \mathbf{R}\{\operatorname{diag}(\mathbf{R})\}^{-1} \\
& \mathbf{C}=\{\operatorname{diag}(\mathbf{R})\}^{-1 / 2} \mathbf{R}\{\operatorname{diag}(\mathbf{R})\}^{-1 / 2}
\end{aligned}
$$

Also see Kaiser-Meyer-Olkin measure of sampling adequacy.
arbitrary missing pattern. Any missing-value pattern. Some imputation methods are suitable only when the pattern of missing values is special, such as a monotone-missing pattern. An imputation method suitable for use with an arbitrary missing pattern may be used regardless of the pattern.
ARCH model. An autoregressive conditional heteroskedasticity (ARCH) model is a regression model in which the conditional variance is modeled as an autoregressive (AR) process. The $\operatorname{ARCH}(m)$ model is

$$
\begin{aligned}
y_{t} & =\mathbf{x}_{t} \boldsymbol{\beta}+\epsilon_{t} \\
E\left(\epsilon_{t}^{2} \mid \epsilon_{t-1}^{2}, \epsilon_{t-2}^{2}, \ldots\right) & =\alpha_{0}+\alpha_{1} \epsilon_{t-1}^{2}+\cdots+\alpha_{m} \epsilon_{t-m}^{2}
\end{aligned}
$$

where $\epsilon_{t}$ is a white-noise error term. The equation for $y_{t}$ represents the conditional mean of the process, and the equation for $E\left(\epsilon_{t}^{2} \mid \epsilon_{t-1}^{2}, \epsilon_{t-2}^{2}, \ldots\right)$ specifies the conditional variance as an autoregressive function of its past realizations. Although the conditional variance changes over time, the unconditional variance is time invariant because $y_{t}$ is a stationary process. Modeling the conditional variance as an AR process raises the implied unconditional variance, making this model particularly appealing to researchers modeling fat-tailed data, such as financial data.

Arellano-Bond estimator. The Arellano-Bond estimator is a generalized method of moments (GMM) estimator for linear dynamic panel-data models that uses lagged levels of the endogenous variables as well as first differences of the exogenous variables as instruments. The Arellano-Bond estimator removes the panel-specific heterogeneity by first-differencing the regression equation.

ARFIMA model. An autoregressive fractionally integrated moving-average (ARFIMA) model is a timeseries model suitable for use with long-memory processes. ARFIMA models generalize autoregressive integrated moving-average (ARIMA) models by allowing the differencing parameter to be a real number in $(-0.5,0.5)$ instead of requiring it to be an integer.
arguments. The values a function receives are called the function's arguments. For instance, in $\operatorname{lud}(A, L, U), A, L$, and $U$ are the arguments.
ARIMA model. An autoregressive integrated moving-average (ARIMA) model is a time-series model suitable for use with integrated processes. In an $\operatorname{Arima}(p, d, q)$ model, the data is differenced $d$ times to obtain a stationary series, and then an $\operatorname{ARMA}(p, q)$ model is fit to this differenced data. ARIMA models that include exogenous explanatory variables are known as ARMAX models.
ARMA model. An autoregressive moving-average (ARMA) model is a time-series model in which the current period's realization is the sum of an autoregressive (AR) process and a moving-average (MA) process. An ARMA $(p, q)$ model includes $p$ AR terms and $q$ MA terms. ARMA models with just a few lags are often able to fit data as well as pure AR or MA models with many more lags.
ARMAX model. An ARMAX model is a time-series model in which the current period's realization is an ARMA process plus a linear function of a set of exogenous variables. Equivalently, an ARMAX model is a linear regression model in which the error term is specified to follow an ARMA process.
array. An array is any indexed object that holds other objects as elements. Vectors are examples of 1 -dimensional arrays. Vector $\mathbf{v}$ is an array, and $\mathbf{v}[1]$ is its first element. Matrices are 2dimensional arrays. Matrix $\mathbf{X}$ is an array, and $\mathbf{X}[1,1]$ is its first element. In theory, one can have 3-dimensional, 4-dimensional, and higher arrays, although Mata does not directly provide them. See [M-2] subscripts for more information on arrays in Mata.
Arrays are usually indexed by sequential integers, but in associative arrays, the indices are strings that have no natural ordering. Associative arrays can be 1-dimensional, 2-dimensional, or higher. If $A$ were an associative array, then $A$ ["first"] might be one of its elements. See [M-5] asarray () for associative arrays in Mata.
at risk. A subject is at risk from the instant the first failure event becomes possible and usually stays that way until failure, but a subject can have periods of being at risk and not at risk.

ATE. See average treatment effect.
ATET. See average treatment effect on the treated.
attributable fraction. An attributable fraction is the reduction in the risk of a disease or other condition of interest when a particular risk factor is removed.
augmented inverse-probability-weighted estimator. An augmented inverse-probability-weighted (AIPW) estimator is an inverse-probability-weighted estimator that includes an augmentation term that corrects the estimator when the treatment model is misspecified. When the treatment is correctly specified, the augmentation term vanishes as the sample size becomes large. An AIPW estimator uses both an outcome model and a treatment model and is a doubly robust estimator.
augmented regression. Regression performed on the augmented data, the data with a few extra observations with small weights. The data are augmented in a way that prevents perfect prediction, which may arise during estimation of categorical data. See The issue of perfect prediction during imputation of categorical data under Remarks and examples of [MI] mi impute.
autocorrelation function. The autocorrelation function (ACF) expresses the correlation between periods $t$ and $t-k$ of a time series as function of the time $t$ and the lag $k$. For a stationary time series, the ACF does not depend on $t$ and is symmetric about $k=0$, meaning that the correlation between periods $t$ and $t-k$ is equal to the correlation between periods $t$ and $t+k$.
autoregressive process. An autoregressive process is a time-series model in which the current value of a variable is a linear function of its own past values and a white-noise error term. A first-order autoregressive process, denoted as an $\operatorname{AR}(1)$ process, is $y_{t}=\rho y_{t-1}+\epsilon_{t}$. $\operatorname{An} \operatorname{AR}(p)$ model contains $p$ lagged values of the dependent variable.

An autoregressive processes can be extended to panel data. An $\operatorname{AR}(1)$ process in this is $y_{i t}=$ $\rho y_{i, t-1}+\epsilon_{i t}$, where $i$ denotes panels, $t$ denotes time, and $\epsilon_{i t}$ is white noise. In some applications, the parameter $\rho$ is written as $\rho_{i}$ and is allowed to differ across panels.
average treatment effect. The average treatment effect is the average among all individuals in a population.
average treatment effect on the treated. The average treatment effect on the treated is the average among those individuals who actually get the treatment.
average-linkage clustering. Average-linkage clustering is a hierarchical clustering method that uses the average proximity of observations between groups as the proximity measure between the two groups.
balanced data. A longitudinal or panel dataset is said to be balanced if each panel has the same number of observations. See also weakly balanced and strongly balanced.
balanced design. A balanced design represents an experiment in which the numbers of treated and untreated subjects are equal. For many types of two-sample hypothesis tests, the power of the test is maximized with balanced designs.
balanced repeated replication. Balanced repeated replication (BRR) is a method of variance estimation for designs with two PSUs in every stratum. The BRR variance estimator tends to give more reasonable variance estimates for this design than does the linearized variance estimator, which can result in large values and undesirably wide confidence intervals. The BRR variance estimator is described in [SVY] variance estimation.
band-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified frequencies. Band-pass filters, such as those implemented in tsfilter bk and tsfilter cf, pass through stochastic cycles in the specified range of frequencies and block all other stochastic cycles.
baseline. In survival analysis, baseline is the state at which the covariates, usually denoted by the row vector $\mathbf{x}$, are zero. For example, if the only measured covariate is systolic blood pressure, the baseline survivor function would be the survivor function for someone with zero systolic blood pressure. This may seem ridiculous, but covariates are usually centered so that the mathematical definition of baseline (covariate is zero) translates into something meaningful (mean systolic blood pressure).
baseline model. A baseline model is a covariance model-a model of fitted means and covariances of observed variables without any other paths-with most of the covariances constrained to 0 . That is, a baseline model is a model of fitted means and variances but typically not all the covariances. Also see saturated model. Baseline models apply only to standard linear SEMs.

Bayes' theorem. Bayes' theorem states that the probability of an event, $A$, conditional on another event, $B$, is generally different from the probability of $B$ conditional on $A$, although the two are related. Bayes' theorem is that

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

where $P(A)$ is the marginal probability of $A$, and $P(A \mid B)$ is the conditional probability of $A$ given $B$, and likewise for $P(B)$ and $P(B \mid A)$.
Bentler's invariant pattern simplicity rotation. Bentler's (1977) rotation maximizes the invariant pattern simplicity. It is an oblique rotation that minimizes the criterion function

$$
c(\boldsymbol{\Lambda})=-\log \left[\left|\left(\boldsymbol{\Lambda}^{2}\right)^{\prime} \boldsymbol{\Lambda}^{2}\right|\right]+\log \left[\left|\operatorname{diag}\left\{\left(\boldsymbol{\Lambda}^{2}\right)^{\prime} \boldsymbol{\Lambda}^{2}\right\}\right|\right]
$$

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$. Also see oblique rotation.
Bentler-Weeks formulation. The Bentler and Weeks (1980) formulation of standard linear SEMs places the results in a series of matrices organized around how results are calculated. See [SEM] estat framework.
beta. Beta, $\beta$, denotes the probability of committing a type II error, namely, failing to reject the null hypothesis even though it is false.
between estimator. The between estimator is a panel-data estimator that obtains its estimates by running OLS on the panel-level means of the variables. This estimator uses only the between-panel variation in the data to identify the parameters, ignoring any within-panel variation. For it to be consistent, the between estimator requires that the panel-level means of the regressors be uncorrelated with the panel-specific heterogeneity terms.
between matrix and within matrix. The between and within matrices are SSCP matrices that measure the spread between groups and within groups, respectively. These matrices are used in multivariate analysis of variance and related hypothesis tests: Wilks' lambda, Roy's largest root, LawleyHotelling trace, and Pillai's trace.

Here we have $k$ independent random samples of size $n$. The between matrix $\mathbf{H}$ is given by

$$
\mathbf{H}=n \sum_{i=1}^{k}\left(\overline{\mathbf{y}}_{i \bullet}-\overline{\mathbf{y}}_{\bullet \bullet}\right)\left(\overline{\mathbf{y}}_{i \bullet}-\overline{\mathbf{y}}_{\bullet \bullet}\right)^{\prime}=\sum_{i=1}^{k} \frac{1}{n} \mathbf{y}_{i \bullet} \mathbf{y}_{i \bullet}^{\prime}-\frac{1}{k n} \mathbf{y}_{\bullet \bullet} \mathbf{y}_{\bullet \bullet}^{\prime}
$$

The within matrix $\mathbf{E}$ is defined as

$$
\mathbf{E}=\sum_{i=1}^{k} \sum_{j=1}^{n}\left(\mathbf{y}_{i j}-\overline{\mathbf{y}}_{i \bullet}\right)\left(\mathbf{y}_{i j}-\mathbf{y}_{i \bullet}\right)^{\prime}=\sum_{i=1}^{k} \sum_{j=1}^{n} \mathbf{y}_{i j} \mathbf{y}_{i j}^{\prime}-\sum_{i=1}^{k} \frac{1}{n} \mathbf{y}_{i \bullet} \mathbf{y}_{i \bullet}^{\prime}
$$

Also see SSCP matrix.
between-subjects design. This is an experiment that has only between-subjects factors. See [PSS] power oneway and [PSS] power twoway.
between-subjects factor. This is a factor for which each subject receives only one of the levels.
binary operator. A binary operator is an operator applied to two arguments. In 2-3, the minus sign is a binary operator, as opposed to the minus sign in -9 , which is a unary operator.
binomial test. A binomial test is a test for which the exact sampling distribution of the test statistic is binomial; see [R] bitest. Also see [PSS] power oneproportion.
biplot. A biplot is a scatterplot which represents both observations and variables simultaneously. There are many different biplots; variables in biplots are usually represented by arrows and observations are usually represented by points.
biquartimax rotation or biquartimin rotation. Biquartimax rotation and biquartimin rotation are synonyms. They put equal weight on the varimax and quartimax criteria, simplifying the columns and rows of the matrix. This is an oblique rotation equivalent to an oblimin rotation with $\gamma=0.5$. Also see varimax rotation, quartimax rotation, and oblimin rotation.
bisection method. This method finds a root $x$ of a function $f(x)$ such that $f(x)=0$ by repeatedly subdividing an interval on which $f(x)$ is defined until the change in successive root estimates is within the requested tolerance and function $f(\cdot)$ evaluated at the current estimate is sufficiently close to zero.

BLOB. BLOB is database jargon for binary large object. In Stata, BLOBs can be stored in strLs. Thus strLs can contain BLOBs such as Word documents, JPEG images, or anything else. See strL.
BLUPs. BLUPs are best linear unbiased predictions of either random effects or linear combinations of random effects. In linear models containing random effects, these effects are not estimated directly but instead are integrated out of the estimation. Once the fixed effects and variance components have been estimated, you can use these estimates to predict group-specific random effects. These predictions are called BLUPs because they are unbiased and have minimal mean squared errors among all linear functions of the response.
bootstrap. The bootstrap is a method of variance estimation. The bootstrap variance estimator for survey data is described in [SVY] variance estimation.
bootstrap, vce(bootstrap). The bootstrap is a replication method for obtaining variance estimates. Consider an estimation method $E$ for estimating $\theta$. Let $\widehat{\theta}$ be the result of applying $E$ to dataset $D$ containing $N$ observations. The bootstrap is a way of obtaining variance estimates for $\widehat{\theta}$ from repeated estimates $\widehat{\theta}_{1}, \widehat{\theta}_{2}, \ldots$, where each $\widehat{\theta}_{i}$ is the result of applying $E$ to a dataset of size $N$ drawn with replacement from $D$. See [SEM] sem option method() and [R] bootstrap.
vce (bootstrap) is allowed with sem but not gsem. You can obtain bootstrap results by prefixing the gsem command with bootstrap:, but remember to specify bootstrap's cluster() and idcluster () options if you are fitting a multilevel model. See [SEM] intro 9.
boundary kernel. A boundary kernel is a special kernel used to smooth hazard functions in the boundaries of the data range. Boundary kernels are applied when the epan2, biweight, or rectangle kernel() is specified with stcurve, hazard or sts graph, hazard.
boundary solution or Heywood solution. See Heywood case.
broad type. Two matrices are said to be of the same broad type if the elements in each are numeric, are string, or are pointers. Mata provides two numeric types, real and complex. The term broad type is used to mask the distinction within numeric and is often used when discussing operators or functions. One might say, "The comma operator can be used to join the rows of two matrices of the same broad type," and the implication of that is that one could join a real to a complex. The result would be complex. Also see type, eltype, and orgtype.

## BRR. See balanced repeated replication.

Builder. The Builder is Stata's graphical interface for building sem and gsem models. The Builder is also known as the SEM Builder. See [SEM] intro 2, [SEM] Builder, and [SEM] Builder, generalized.
burn-between period. The number of iterations between two draws of an MCMC sequence such that these draws may be regarded as independent.
burn-in period. The number of iterations it takes for an MCMC sequence to reach stationarity.

## CA. See correspondence analysis.

canonical correlation analysis. Canonical correlation analysis attempts to describe the relationships between two sets of variables by finding linear combinations of each so that the correlation between the linear combinations is maximized.
canonical discriminant analysis. Canonical linear discriminant analysis is LDA where describing how groups are separated is of primary interest. Also see linear discriminant analysis.
canonical link. Corresponding to each family of distributions in a generalized linear model is a canonical link function for which there is a sufficient statistic with the same dimension as the number of parameters in the linear predictor. The use of canonical link functions provides the GLM with desirable statistical properties, especially when the sample size is small.
canonical loadings. The canonical loadings are coefficients of canonical linear discriminant functions. Also see canonical discriminant analysis and loading.
canonical variate set. The canonical variate set is a linear combination or weighted sum of variables obtained from canonical correlation analysis. Two sets of variables are analyzed in canonical correlation analysis. The first canonical variate of the first variable set is the linear combination in standardized form that has maximal correlation with the first canonical variate from the second variable set. The subsequent canonical variates are uncorrelated to the previous and have maximal correlation under that constraint.
case-control studies. In case-control studies, cases meeting a fixed criterion are matched to noncases ex post to study differences in possible covariates. Relative sample sizes are usually fixed at $1: 1$ or 1:2 but sometimes vary once the survey is complete. In any case, sample sizes do not reflect the distribution in the underlying population.
casewise deletion. See listwise deletion.
cause-specific hazard. In a competing-risks analysis, the cause-specific hazard is the hazard function that generates the events of a given type. For example, if heart attack and stroke are competing events, then the cause-specific hazard for heart attacks describes the biological mechanism behind heart attacks independently of that for strokes. Cause-specific hazards can be modeled using Cox regression, treating the other events as censored.
c-conformability. Matrix, vector, or scalar $A$ is said to be c-conformable with matrix, vector, or scalar $B$ if they have the same number of rows and columns (they are $p$-conformable), or if they have the same number of rows and one is a vector, or if they have the same number of columns and one is a vector, or if one or the other is a scalar. c stands for colon; c-conformable matrices are suitable for being used with Mata's :op operators. $A$ and $B$ are c-conformable if and only if

| $A$ | $B$ |
| :---: | :---: |
| $r \times c$ | $r \times c$ |
| $r \times 1$ | $r \times c$ |
| $1 \times c$ | $r \times c$ |
| $1 \times 1$ | $r \times c$ |
| $r \times c$ | $r \times 1$ |
| $r \times c$ | $1 \times c$ |
| $r \times c$ | $1 \times 1$ |

The idea behind c-conformability is generalized elementwise operation. Consider $C=A: * B$. If $A$ and $B$ have the same number of rows and have the same number of columns, then $\left\|C_{i j}\right\|=\left\|A_{i j}{ }^{*} B_{i j}\right\|$.

Now say that $A$ is a column vector and $B$ is a matrix. Then $\left\|C_{i j}\right\|=\left\|A_{i} * B_{i j}\right\|$ : each element of $A$ is applied to the entire row of $B$. If $A$ is a row vector, each column of $A$ is applied to the entire column of $B$. If $A$ is a scalar, $A$ is applied to every element of $B$. And then all the rules repeat, with the roles of $A$ and $B$ interchanged. See [M-2] op_colon for a complete definition.
CCT. See controlled clinical trial.
cell means. These are means of the outcome of interest within cells formed by the cross-classification of the two factors. See [PSS] power twoway and [PSS] power repeated.
cell-means model. A cell-means model is an ANOVA model formulated in terms of cell means.
censored, censoring, left-censoring, and right-censoring. An observation is left-censored when the exact time of failure is not known; it is merely known that the failure occurred before $t_{l}$. Suppose that the event of interest is becoming employed. If a subject is already employed when first interviewed, his outcome is left-censored.
An observation is right-censored when the time of failure is not known; it is merely known that the failure occurred after $t_{r}$. If a patient survives until the end of a study, the patient's time of death is right-censored.
In common usage, censored without a modifier means right-censoring.
Also see truncation, left-truncation, and right-truncation.
census. When a census of the population is conducted, every individual in the population participates in the survey. Because of the time, cost, and other constraints, the data collected in a census are typically limited to items that can be quickly and easily determined, usually through a questionnaire.
centered data. Centered data has zero mean. You can center data $\mathbf{x}$ by taking $\mathbf{x}-\overline{\mathbf{x}}$.
centroid-linkage clustering. Centroid-linkage clustering is a hierarchical clustering method that computes the proximity between two groups as the proximity between the group means.
CFA, CFA models. CFA stands for confirmatory factor analysis. It is a way of analyzing measurement models. CFA models is a synonym for measurement models.
chained equations. See fully conditional specification.
chi-squared test, $\chi^{2}$ test. This test for which either an asymptotic sampling distribution or a sampling distribution of a test statistic is $\chi^{2}$. See [PSS] power onevariance and [PSS] power twoproportions.
Cholesky ordering. Cholesky ordering is a method used to orthogonalize the error term in a VAR or VECM to impose a recursive structure on the dynamic model, so that the resulting impulse-response functions can be given a causal interpretation. The method is so named because it uses the Cholesky decomposition of the error-covariance matrix.
CI. CI is an abbreviation for confidence interval.

CI assumption. See conditional-independence assumption.
CIF. See cumulative incidence function.
class programming. See object-oriented programming.
classical scaling. Classical scaling is a method of performing MDS via an eigen decomposition. This is contrasted to modern MDS, which is achieved via the minimization of a loss function. Also see multidimensional scaling and modern scaling.
classification. Classification is the act of allocating or classifying observations to groups as part of discriminant analysis. In some sources, classification is synonymous with cluster analysis.
classification function. Classification functions can be obtained after LDA or QDA. They are functions based on Mahalanobis distance for classifying observations to the groups. See discriminant function for an alternative. Also see linear discriminant analysis and quadratic discriminant analysis.
classification table. A classification table, also known as a confusion matrix, gives the count of observations from each group that are classified into each of the groups as part of a discriminant analysis. The element at $(i, j)$ gives the number of observations that belong to the $i$ th group but were classified into the $j$ th group. High counts are expected on the diagonal of the table where observations are correctly classified, and small values are expected off the diagonal. The columns of the matrix are categories of the predicted classification; the rows represent the actual group membership.
clinical trial. A clinical trials is an experiment testing a medical treatment or procedure on human subjects.
clinically meaningful difference, clinically meaningful effect, clinically significant difference. Clinically meaningful difference represents the magnitude of an effect of interest that is of clinical importance. What is meant by "clinically meaningful" may vary from study to study. In clinical trials, for example, if no prior knowledge is available about the performance of the considered clinical procedure, a standardized effect size (adjusted for standard deviation) between 0.25 and 0.5 may be considered of clinical importance.
cluster. A cluster is a collection of individuals that are sampled as a group. Although the cost in time and money can be greatly decreased, cluster sampling usually results in larger variance estimates when compared with designs in which individuals are sampled independently.
cluster analysis. Cluster analysis is a method for determining natural groupings or clusters of observations.
cluster tree. See dendrogram.
clustered, vce(cluster clustvar). Clustered is the name we use for the generalized Hu ber/White/sandwich estimator of the VCE, which is the robust technique generalized to relax the assumption that errors are independent across observations to be that they are independent across clusters of observations. Within cluster, errors may be correlated.

Clustered standard errors are reported when sem or gsem option vce (cluster clustvar) is specified. The other available techniques are OIM, OPG, robust, bootstrap, and jackknife. Also available for sem only is EIM.
clustering. See cluster analysis.
Cochrane-Orcutt estimator. This estimation is a linear regression estimator that can be used when the error term exhibits first-order autocorrelation. An initial estimate of the autocorrelation parameter $\rho$ is obtained from OLS residuals, and then OLS is performed on the transformed data $\widetilde{y}_{t}=y_{t}-\rho y_{t-1}$ and $\widetilde{\mathbf{x}}_{t}=\mathbf{x}_{t}-\rho \mathbf{x}_{t-1}$.
coefficient of determination. The coefficient of determination is the fraction (or percentage) of variation (variance) explained by an equation of a model. The coefficient of determination is thus like $R^{2}$ in linear regression.
cohort studies. In cohort studies, a group that is well defined is monitored over time to track the transition of noncases to cases. Cohort studies differ from incidence studies in that they can be retrospective as well as prospective.
cointegrating vector. A cointegrating vector specifies a stationary linear combination of nonstationary variables. Specifically, if each of the variables $x_{1}, x_{2}, \ldots, x_{k}$ is integrated of order one and there exists a set of parameters $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ such that $z_{t}=\beta_{1} x_{1}+\beta_{2} x_{2}+\cdots+\beta_{k} x_{k}$ is a stationary
process, the variables $x_{1}, x_{2}, \ldots, x_{k}$ are said to be cointegrated, and the vector $\boldsymbol{\beta}$ is known as a cointegrating vector.
colon operators. Colon operators are operators preceded by a colon, and the colon indicates that the operator is to be performed elementwise. $A: * B$ indicates element-by-element multiplication, whereas $A * B$ indicates matrix multiplication. Colons may be placed in front of any operator. Usually one thinks of elementwise as meaning $c_{i j}=a_{i j}<o p>b_{i j}$, but in Mata, elementwise is also generalized to include c-conformability. See [M-2] op_colon.
column stripes. See row and column stripes.
column-major order. Matrices are stored as vectors. Column-major order specifies that the vector form of a matrix is created by stacking the columns. For instance,

| $: \mathrm{A}$ |  |  |
| :--- | :--- | :--- |
|  | 1 | 2 |
|  | 1 | 2 |
| 1 | 1 | 4 |
| 2 | 2 | 5 |
| 3 | 3 | 6 |
|  |  |  |

is stored as

1 \begin{tabular}{llllll|}
\& 1 \& 2 \& 3 \& 4 \& 5 <br>
\hline

 

6 <br>
\hline
\end{tabular}

in column-major order. The LAPACK functions use column-major order. Mata uses row-major order. See row-major order.
colvector. See vector, colvector, and rowvector.
command language. Stata's sem and gsem command provide a way to specify SEMs. The alternative is to use the Builder to draw path diagrams; see [SEM] intro 2, [SEM] Builder, and [SEM] Builder, generalized.
common factors. Common factors are found by factor analysis. They linearly reconstruct the original variables. In factor analysis, reconstruction is defined in terms of prediction of the correlation matrix of the original variables.
communality. Communality is the proportion of a variable's variance explained by the common factors in factor analysis. It is also " $1-$ uniqueness". Also see uniqueness.
comparison value. See alternative value.
competing risks. Competing risks models are survival-data models in which the failures are generated by more than one underlying process. For example, death may be caused by either heart attack or stroke. There are various methods for dealing with competing risks. One direct way is to duplicate failures for one competing risk as censored observations for the other risk and stratify on the risk type. Another is to directly model the cumulative incidence of the event of interest in the presence of competing risks. The former method uses stcox and the latter, stcrreg.
complementary log-log regression. Complementary log-log regression is a term for generalized linear response functions that are family Bernoulli, link cloglog. It is used for binary outcome data. Complementary log-log regression is also known in Stata circles as cloglog regression or just cloglog. See generalized linear response functions.
complete and incomplete observations. An observation in the $m=0$ data is said to be complete if no imputed variable in the observation contains soft missing (.). Observations that are not complete are said to be incomplete.
complete data. Data that do not contain any missing values.
complete degrees of freedom. The degrees of freedom that would have been used for inference if the data were complete.
complete DF. See complete degrees of freedom.
complete-cases analysis. See listwise deletion.
completed data. See imputed data.
complete-data analysis. The analysis or estimation performed on the complete data, the data for which all values are observed. This term does not refer to analysis or estimation performed on the subset of complete observations. Do not confuse this with completed-data analysis.
completed-data analysis. The analysis or estimation performed on the made-to-be completed (imputed) data. This term does not refer to analysis or estimation performed on the subset of complete observations.
complete-linkage clustering. Complete-linkage clustering is a hierarchical clustering method that uses the farthest pair of observations between two groups to determine the proximity of the two groups.
complex. A matrix is said to be complex if its elements are complex numbers. Complex is one of two numeric types in Stata, the other being real. Complex is generally used to describe how a matrix is stored and not the kind of numbers that happen to be in it: complex matrix $Z$ might happen to contain real numbers. Also see type, eltype, and orgtype.
component scores. Component scores are calculated after PCA. Component scores are the coordinates of the original variables in the space of principal components.
compound symmetry. A covariance matrix has a compound-symmetry structure if all the variances are equal and all the covariances are equal. This is a special case of the sphericity assumption.

Comrey's tandem 1 and 2 rotations. Comrey (1967) describes two rotations, the first (tandem 1) to judge which "small" factors should be dropped, the second (tandem 2) for "polishing".

Tandem principle 1 minimizes the criterion

$$
c(\boldsymbol{\Lambda})=\left\langle\boldsymbol{\Lambda}^{2},\left(\boldsymbol{\Lambda} \mathbf{\Lambda}^{\prime}\right)^{2} \boldsymbol{\Lambda}^{2}\right\rangle
$$

Tandem principle 2 minimizes the criterion

$$
c(\boldsymbol{\Lambda})=\left\langle\boldsymbol{\Lambda}^{2},\left\{\mathbf{1 1}^{\prime}-\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)^{2}\right\} \boldsymbol{\Lambda}^{2}\right\rangle
$$

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$.
concordant pairs. In a $2 \times 2$ contingency table, a concordant pair is a pair of observations that are both either successes or failures. Also see discordant pairs and Introduction under Remarks and examples in [PSS] power pairedproportions.
condition number. The condition number associated with a numerical problem is a measure of that quantity's amenability to digital computation. A problem with a low condition number is said to be well conditioned, whereas a problem with a high condition number is said to be ill conditioned.

Sometimes reciprocals of condition numbers are reported and yet authors will still refer to them sloppily as condition numbers. Reciprocal condition numbers are often scaled between 0 and 1, with values near epsilon(1) indicating problems.
conditional fixed-effects model. In general, including panel-specific dummies to control for fixed effects in nonlinear models results in inconsistent estimates. For some nonlinear models, the fixedeffect term can be removed from the likelihood function by conditioning on a sufficient statistic. For example, the conditional fixed-effect logit model conditions on the number of positive outcomes within each panel.
conditional imputation. Imputation performed using a conditional sample, a restricted part of the sample. Missing values outside the conditional sample are replaced with a conditional constant, the constant value of the imputed variable in the nonmissing observations outside the conditional sample. See Conditional imputation under Remarks and examples of [MI] mi impute.
conditional mean. The conditional mean expresses the average of one variable as a function of some other variables. More formally, the mean of $y$ conditional on $\mathbf{x}$ is the mean of $y$ for given values of $\mathbf{x}$; in other words, it is $E(y \mid \mathbf{x})$.

A conditional mean is also known as a regression or as a conditional expectation.
conditional normality assumption. See normality assumption, joint and conditional.
conditional overdispersion. In a negative binomial mixed-effects model, conditional overdispersion is overdispersion conditional on random effects. Also see overdispersion.
conditional variance. Although the conditional variance is simply the variance of a conditional distribution, in time-series analysis the conditional variance is often modeled as an autoregressive process, giving rise to ARCH models.
conditional-independence assumption. The conditional-independence assumption requires that the common variables that affect treatment assignment and treatment-specific outcomes be observable. The dependence between treatment assignment and treatment-specific outcomes can be removed by conditioning on these observable variables.

This assumption is also known as a selection-on-observables assumption because its central tenet is the observability of the common variables that generate the dependence.
configuration. The configuration in MDS is a representation in a low-dimensional (usually 2 dimensional) space with distances in the low-dimensional space approximating the dissimilarities or disparities in high-dimensional space. Also see multidimensional scaling, dissimilarity, and disparity.
configuration plot. A configuration plot after MDS is a (usually 2 -dimensional) plot of labeled points showing the low-dimensional approximation to the dissimilarities or disparities in high-dimensional space. Also see multidimensional scaling, dissimilarity, and disparity.
conformability. Conformability refers to row-and-column matching between two or more matrices. For instance, to multiply $A * B, A$ must have the same number of columns as $B$ has rows. If that is not true, then the matrices are said to be nonconformable (for multiplication).

Three kinds of conformability are often mentioned in the Mata documentation: p-conformability, c-conformability, and $r$-conformability.
confounding. In the analysis of epidemiological tables, factor or interaction effects are said to be confounded when the effect of one factor is combined with that of another. For example, the effect of alcohol consumption on esophageal cancer may be confounded with the effects of age, smoking, or both. In the presence of confounding, it is often useful to stratify on the confounded factors that are not of primary interest, in the above example, age and smoking.
confusion matrix. A confusion matrix is a synonym for a classification table after discriminant analysis. See classification table.
conjugate. If $z=a+b \mathrm{i}$, the conjugate of $z$ is $\operatorname{conj}(z)=a-b \mathrm{i}$. The conjugate is obtained by reversing the sign of the imaginary part. The conjugate of a real number is the number itself.
conjugate transpose. See transpose.
constraints. See parameter constraints.
contrast or contrasts. In ANOVA, a contrast in $k$ population means is defined as a linear combination

$$
\delta=c_{1} \mu_{1}+c_{2} \mu_{2}+\cdots+c_{k} \mu_{k}
$$

where the coefficients satisfy

$$
\sum_{i=1}^{k} c_{i}=0
$$

In the multivariate setting (MANOVA), a contrast in $k$ population mean vectors is defined as

$$
\boldsymbol{\delta}=c_{1} \boldsymbol{\mu}_{1}+c_{2} \boldsymbol{\mu}_{2}+\cdots c_{k} \boldsymbol{\mu}_{k}
$$

where the coefficients again satisfy

$$
\sum_{i=1}^{k} c_{i}=0
$$

The univariate hypothesis $\delta=0$ may be tested with contrast (or test) after ANOVA. The multivariate hypothesis $\delta=0$ may be tested with manovatest after MANOVA.
control group. A control group comprises subjects that are randomly assigned to a group where they receive no treatment or receives a standard treatment. In hypothesis testing, this is usually a reference group. Also see experimental group.
controlled clinical trial. This is an experimental study in which treatments are assigned to two or more groups of subjects without the randomization.
correlated uniqueness model. A correlated uniqueness model is a kind of measurement model in which the errors of the measurements has a structured correlation. See [SEM] intro 5 .
correlation structure. A correlation structure is a set of assumptions imposed on the within-panel variance-covariance matrix of the errors in a panel-data model. See [XT] xtgee for examples of different correlation structures.
correlogram. A correlogram is a table or graph showing the sample autocorrelations or partial autocorrelations of a time series.
correspondence analysis. Correspondence analysis (CA) gives a geometric representation of the rows and columns of a two-way frequency table. The geometric representation is helpful in understanding the similarities between the categories of variables and associations between variables. CA is calculated by singular value decomposition. Also see singular value decomposition.
correspondence analysis projection. A correspondence analysis projection is a line plot of the row and column coordinates after CA. The goal of this graph is to show the ordering of row and column categories on each principal dimension of the analysis. Each principal dimension is represented by a vertical line; markers are plotted on the lines where the row and column categories project onto the dimensions. Also see correspondence analysis.
costs. Costs in discriminant analysis are the cost of misclassifying observations.
counterfactual. A counterfactual is an outcome a subject would have obtained had that subject received a different level of treatment. In the binary-treatment case, the counterfactual outcome for a person who received treatment is the outcome that person would have obtained had the person instead not received treatment; similarly, the counterfactual outcome for a person who did not receive treatment is the outcome that person would have obtained had the person received treatment.

Also see potential outcome.
count-time data. See ct data.
covariance stationarity. A process is covariance stationary if the mean of the process is finite and independent of $t$, the unconditional variance of the process is finite and independent of $t$, and the covariance between periods $t$ and $t-s$ is finite and depends on $t-s$ but not on $t$ or $s$ themselves. Covariance-stationary processes are also known as weakly stationary processes.
covariance structure. In a mixed-effects model, covariance structure refers to the variance-covariance structure of the random effects.
covariates. Covariates are the explanatory variables that appear in a model. For instance, if survival time were to be explained by age, sex, and treatment, then those variables would be the covariates. Also see time-varying covariates.
covarimin rotation. Covarimin rotation is an orthogonal rotation equivalent to varimax. Also see varimax rotation.

Crawford-Ferguson rotation. Crawford-Ferguson (1970) rotation is a general oblique rotation with several interesting special cases.
Special cases of the Crawford-Ferguson rotation include

| $\kappa$ | Special case |
| :--- | :--- |
| 0 | quartimax / quartimin |
| $1 / p$ | varimax / covarimin |
| $f /(2 p)$ | equamax |
| $(f-1) /(p+f-2)$ | parsimax |
| 1 | factor parsimony |
| $p=$ number of rows of $\mathbf{A}$. |  |
| $f=$ number of columns of $\mathbf{A}$. |  |

Where $\mathbf{A}$ is the matrix to be rotated, $\mathbf{T}$ is the rotation and $\boldsymbol{\Lambda}=\mathbf{A T}$. The Crawford-Ferguson rotation is achieved by minimizing the criterion

$$
c(\boldsymbol{\Lambda})=\frac{1-\kappa}{4}\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\left(\mathbf{1} \mathbf{1}^{\prime}-\mathbf{I}\right)\right\rangle+\frac{\kappa}{4}\left\langle\boldsymbol{\Lambda}^{2},\left(\mathbf{1 1}^{\prime}-\mathbf{I}\right) \boldsymbol{\Lambda}^{2}\right\rangle
$$

Also see oblique rotation.
critical region. See rejection region.
critical value. In hypothesis testing, a critical value is a boundary of the rejection region.
cross-correlation function. The cross-correlation function expresses the correlation between one series at time $t$ and another series at time $t-k$ as a function of the time $t$ and lag $k$. If both series are stationary, the function does not depend on $t$. The function is not symmetric about $k=0$ : $\rho_{12}(k) \neq \rho_{12}(-k)$.
cross-sectional study. This type of observational study measures various population characteristics at one point in time or over a short period of time. For example, a study of the prevalence of breast cancer in the population is a cross-sectional study.
crossed variables or stacked variables. In CA and MCA crossed categorical variables may be formed from the interactions of two or more existing categorical variables. Variables that contain these interactions are called crossed or stacked variables.
crossed-effects model. A crossed-effects model is a mixed-effects model in which the levels of random effects are not nested. A simple crossed-effects model for cross-sectional time-series data would contain a random effect to control for panel-specific variation and a second random effect to control for time-specific random variation. Rather than being nested within panel, in this model a random effect due to a given time is the same for all panels.
crossed-random effects. See crossed-effects model.
crossing variables or stacking variables. In CA and MCA, crossing or stacking variables are the existing categorical variables whose interactions make up a crossed or stacked variable.
cross-sectional or prevalence studies. Cross-sectional studies sample distributions of healthy and diseased subjects in the population at one point in time.
cross-sectional data. Cross-sectional data refers to data collected over a set of individuals, such as households, firms, or countries sampled from a population at a given point in time.
cross-sectional time-series data. Cross-sectional time-series data is another name for panel data. The term cross-sectional time-series data is sometimes reserved for datasets in which a relatively small number of panels were observed over many periods. See also panel data.
crude estimate. A crude estimate has not been adjusted for the effects of other variables. Disregarding a stratification variable, for example, yields a crude estimate.
ct data. ct stands for count time. ct data are an aggregate organized like a life table. Each observation records a time, the number known to fail at that time, the number censored, and the number of new entries. See [ST] ctset.
cumulative hazard. See hazard, cumulative hazard, and hazard ratio.
cumulative incidence estimator. In a competing-risks analysis, the cumulative incidence estimator estimates the cumulative incidence function (CIF). Assume for now that you have one event of interest (type 1) and one competing event (type 2). The cumulative incidence estimator for type 1 failures is then obtained by

$$
\widehat{\mathrm{CIF}}_{1}(t)=\sum_{j: t_{j} \leq t} \widehat{h}_{1}\left(t_{j}\right) \widehat{S}\left(t_{j-1}\right)
$$

with

$$
\widehat{S}(t)=\prod_{j: t_{j} \leq t}\left\{1-\widehat{h}_{1}\left(t_{j}\right)-\widehat{h}_{2}\left(t_{j}\right)\right\}
$$

The $t_{j}$ index the times at which events (of any type) occur, and $\widehat{h}_{1}\left(t_{j}\right)$ and $\widehat{h}_{2}\left(t_{j}\right)$ are the causespecific hazard contributions for type 1 and type 2 , respectively. $\widehat{S}(t)$ estimates the probability that you are event free at time $t$.
The above generalizes to multiple competing events in the obvious way.
cumulative incidence function. In a competing-risks analysis, the cumulative incidence function, or CIF, is the probability that you will observe the event of primary interest before a given time. Formally,

$$
\mathrm{CIF}(t)=P(T \leq t \text { and event type of interest })
$$

for time-to-failure, $T$.
cumulative subhazard. See subhazard, cumulative subhazard, and subhazard ratio.
curse of dimensionality. The curse of dimensionality is a term coined by Richard Bellman (1961) to describe the problem caused by the exponential increase in size associated with adding extra dimensions to a mathematical space. On the unit interval, 10 evenly spaced points suffice to sample with no more distance than 0.1 between them; however a unit square requires 100 points, and a unit cube requires 1000 points. Many multivariate statistical procedures suffer from the curse of dimensionality. Adding variables to an analysis without adding sufficient observations can lead to imprecision.
curved path. See path.
cyclical component. A cyclical component is a part of a time series that is a periodic function of time. Deterministic functions of time are deterministic cyclical components, and random functions of time are stochastic cyclical components. For example, fixed seasonal effects are deterministic cyclical components and random seasonal effects are stochastic seasonal components.
Random coefficients on time inside of periodic functions form an especially useful class of stochastic cyclical components; see [TS] ucm.
DA. See data augmentation.
data augmentation. An MCMC method used for the imputation of missing data.
data matrix. A dataset containing $n$ observations on $k$ variables in often stored in an $n \times k$ matrix. An observation refers to a row of that matrix; a variable refers to a column. When the rows are observations and the columns are variables, the matrix is called a data matrix.
declarations. Declarations state the eltype and orgtype of functions, arguments, and variables. In

```
real matrix myfunc(real vector A, complex scalar B)
{
        real scalar i
}
```

the real matrix is a function declaration, the real vector and complex scalar are argument declarations, and real scalar $i$ is a variable declaration. The real matrix states the function returns a real matrix. The real vector and complex scalar state the kind of arguments myfunc() expects and requires. The real scalar i helps Mata to produce more efficient compiled code.
Declarations are optional, so the above could just as well have read

```
function myfunc(A, B)
{
}
```

When you omit the function declaration, you must substitute the word function.
When you omit the other declarations, transmorphic matrix is assumed, which is fancy jargon for a matrix that can hold anything. The advantages of explicit declarations are that they reduce
the chances you make a mistake either in coding or in using the function, and they assist Mata in producing more efficient code. Working interactively, most people omit the declarations.
See [M-2] declarations for more information.
defective matrix. An $n \times n$ matrix is defective if it does not have $n$ linearly independent eigenvectors.
DEFF and DEFT. DEFF and DEFT are design effects. Design effects compare the sample-to-sample variability from a given survey dataset with a hypothetical SRS design with the same number of individuals sampled from the population.
DEFF is the ratio of two variance estimates. The design-based variance is in the numerator; the hypothetical SRS variance is in the denominator.

DEFT is the ratio of two standard-error estimates. The design-based standard error is in the numerator; the hypothetical SRS with-replacement standard error is in the denominator. If the given survey design is sampled with replacement, DEFT is the square root of DEFF.
degree-of-freedom adjustment. In estimates of variances and covariances, a finite-population degree-of-freedom adjustment is sometimes applied to make the estimates unbiased.

Let's write an estimated variance as $\widehat{\sigma}_{i i}$ and write the "standard" formula for the variance as $\widehat{\sigma}_{i i}=S_{i i} / N$. If $\widehat{\sigma}_{i i}$ is the variance of observable variable $x_{i}$, it can readily be proven that $S_{i i} / N$ is a biased estimate of the variances in samples of size $N$ and that $S_{i i} /(N-1)$ is an unbiased estimate. It is usual to calculate variances using $S_{i i} /(N-1)$, which is to say, the "standard" formula has a multiplicative degree-of-freedom adjustment of $N /(N-1)$ applied to it.
If $\widehat{\sigma}_{i i}$ is the variance of estimated parameter $\beta_{i}$, a similar finite-population degree-of-freedom adjustment can sometimes be derived that will make the estimate unbiased. For instance, if $\beta_{i}$ is a coefficient from a linear regression, an unbiased estimate of the variance of regression coefficient $\beta_{i}$ is $S_{i i} /(N-p-1)$, where $p$ is the total number of regression coefficients estimated excluding the intercept. In other cases, no such adjustment can be derived. Such estimators have no derivable finite-sample properties and one is left only with the assurances provided by its provable asymptotic properties. In such cases, the variance of coefficient $\beta_{i}$ is calculated as $S_{i i} / N$, which can be derived on theoretical grounds. SEM is an example of such an estimator.

SEM is a remarkably flexible estimator and can reproduce results that can sometimes be obtained by other estimators. SEM might produce asymptotically equivalent results, or it might produce identical results depending on the estimator. Linear regression is an example in which sem and gsem produce the same results as regress. The reported standard errors, however, will not look identical because the linear-regression estimates have the finite-population degree-of-freedom adjustment applied to them and the SEM estimates do not. To see the equivalence, you must undo the adjustment on the reported linear regression standard errors by multiplying them by $\sqrt{\{(N-p-1) / N\}}$.
delta. Delta, $\delta$, in the context of power and sample-size calculations, denotes the effect size.

## delta method. See linearization.

dendrogram or cluster tree. A dendrogram or cluster tree graphically presents information about how observations are grouped together at various levels of (dis)similarity in hierarchical cluster analysis. At the bottom of the dendrogram, each observation is considered its own cluster. Vertical lines extend up for each observation, and at various (dis)similarity values, these lines are connected to the lines from other observations with a horizontal line. The observations continue to combine until, at the top of the dendrogram, all observations are grouped together. Also see hierarchical clustering.
dereference. Dereferencing is an action performed on pointers. Pointers contain memory addresses, such as $0 x 2 \mathrm{a} 1228$. One assumes something of interest is stored at $0 x 2 \mathrm{a} 1228$, say, a real scalar
equal to 2 . When one accesses that 2 via the pointer by coding $* p$, one is said to be dereferencing the pointer. Unary $*$ is the dereferencing operator.
design effects. See DEFF and DEFT.
deterministic trend. A deterministic trend is a deterministic function of time that specifies the long-run tendency of a time series.
DFBETA. A DFBETA measures the change in the regressor's coefficient because of deletion of that subject. Also see partial DFBETA.
diagonal matrix. A matrix is diagonal if its off-diagonal elements are zero; $A$ is diagonal if $A[i, j]==0$ for $i!=j$. Usually, diagonal matrices are also square. Some definitions require that a diagonal matrix also be a square matrix.
diagonal of a matrix. The diagonal of a matrix is the set of elements $A[i, j]$.
difference operator. The difference operator $\Delta$ denotes the change in the value of a variable from period $t-1$ to period $t$. Formally, $\Delta y_{t}=y_{t}-y_{t-1}$, and $\Delta^{2} y_{t}=\Delta\left(y_{t}-y_{t-1}\right)=$ $\left(y_{t}-y_{t-1}\right)-\left(y_{t-1}-y_{t-2}\right)=y_{t}-2 y_{t-1}+y_{t-2}$.
dilation. A dilation stretches or shrinks distances in Procrustes rotation.
dimension. A dimension is a parameter or measurement required to define a characteristic of an object or observation. Dimensions are the variables in the dataset. Weight, height, age, blood pressure, and drug dose are examples of dimensions in health data. Number of employees, gross income, net income, tax, and year are examples of dimensions in data about companies.
direct, indirect, and total effects. Consider the following system of equations:

$$
\begin{aligned}
& y_{1}=b_{10}+b_{11} y_{2}+b_{12} x_{1}+b_{13} x_{3}+e_{1} \\
& y_{2}=b_{20}+b_{21} y_{3}+b_{22} x_{1}+b_{23} x_{4}+e_{2} \\
& y_{3}=b_{30}+\quad b_{32} x_{1}+b_{33} x_{5}+e_{3}
\end{aligned}
$$

The total effect of $x_{1}$ on $y_{1}$ is $b_{12}+b_{11} b_{22}+b_{11} b_{21} b_{32}$. It measures the full change in $y_{1}$ based on allowing $x_{1}$ to vary throughout the system.
The direct effect of $x_{1}$ on $y_{1}$ is $b_{12}$. It measures the change in $y_{1}$ caused by a change in $x_{1}$ holding other endogenous variables-namely, $y_{2}$ and $y_{3}$-constant.
The indirect effect of $x_{1}$ on $y_{1}$ is obtained by subtracting the total and direct effect and is thus $b_{11} b_{22}+b_{11} b_{21} b_{32}$.
direct standardization. Direct standardization is an estimation method that allows comparing rates that come from different frequency distributions.
Estimated rates (means, proportions, and ratios) are adjusted according to the frequency distribution from a standard population. The standard population is partitioned into categories called standard strata. The stratum frequencies for the standard population are called standard weights. The standardizing frequency distribution typically comes from census data, and the standard strata are most commonly identified by demographic information such as age, sex, and ethnicity.
directional test. See one-sided test.
discriminant analysis. Discriminant analysis is used to describe the differences between groups and to exploit those differences when allocating (classifying) observations of unknown group membership. Discriminant analysis is also called classification in many references.
discriminant function. Discriminant functions are formed from the eigenvectors from Fisher's approach to LDA. See linear discriminant analysis. See classification function for an alternative.
discriminating variables. Discriminating variables in a discriminant analysis are analyzed to determine differences between groups where group membership is known. These differences between groups are then exploited when classifying observations to the groups.
discordant pairs. In a $2 \times 2$ contingency table, discordant pairs are the success-failure or failuresuccess pairs of observations. Also see concordant pairs and Introduction under Remarks and examples in [PSS] power pairedproportions.
discordant proportion. This is a proportion of discordant pairs. Also see Introduction under Remarks and examples in [PSS] power pairedproportions.
disparity. Disparities are transformed dissimilarities, that is, dissimilarity values transformed by some function. The class of functions to transform dissimilarities to disparities may either be (1) a class of metric, or known functions such as linear functions or power functions that can be parameterized by real scalars or (2) a class of more general (nonmetric) functions, such as any monotonic function. Disparities are used in MDS. Also see dissimilarity, multidimensional scaling, metric scaling, and nonmetric scaling.
dissimilarity, dissimilarity matrix, and dissimilarity measure. Dissimilarity or a dissimilarity measure is a quantification of the difference between two things, such as observations or variables or groups of observations or a method for quantifying that difference. A dissimilarity matrix is a matrix containing dissimilarity measurements. Euclidean distance is one example of a dissimilarity measure. Contrast to similarity. Also see proximity and Euclidean distance.
disturbance term. The disturbance term encompasses any shocks that occur to the dependent variable that cannot be explained by the conditional (or deterministic) portion of the model.
divisive hierarchical clustering methods. Divisive hierarchical clustering methods are top-down methods for hierarchical clustering. All the data begins as a part of one large cluster; with each iteration, a cluster is broken into two to create two new clusters. At the first iteration there are two clusters, then three, and so on. Divisive methods are very computationally expensive. Contrast to agglomerative hierarchical clustering methods.
doubly robust estimator. A doubly robust estimator only needs one of two auxiliary models to be correctly specified to estimate a parameter of interest.
Doubly robust estimators for treatment effects are consistent when either the outcome model or the treatment model is correctly specified.
drift. Drift is the constant term in a unit-root process. In

$$
y_{t}=\alpha+y_{t-1}+\epsilon_{t}
$$

$\alpha$ is the drift when $\epsilon_{t}$ is a stationary, zero-mean process.
dropout. Dropout is the withdrawal of subjects before the end of a study and leads to incomplete or missing data.
dyadic operator. Synonym for binary operator.
dynamic forecast. A dynamic forecast uses forecast values wherever lagged values of the endogenous variables appear in the model, allowing one to forecast multiple periods into the future.
dynamic model. A dynamic model is one in which prior values of the dependent variable or disturbance term affect the current value of the dependent variable.
dynamic-multiplier function. A dynamic-multiplier function measures the effect of a shock to an exogenous variable on an endogenous variable. The $k$ th dynamic-multiplier function of variable $i$ on variable $j$ measures the effect on variable $j$ in period $t+k$ in response to a one-unit shock to variable $i$ in period $t$, holding everything else constant.

EB. See empirical Bayes.
EE estimator. See estimating-equation estimator.
effect size. The effect size is the size of the clinically significant difference between the treatments being compared, often expressed as the hazard ratio (or the log of the hazard ratio) in survival analysis.
effect-size curve. The effect-size curve is a graph of the estimated effect size or target parameter as a function of some other study parameter such as the sample size. The effect size or target parameter is plotted on the $y$ axis, and the sample size or other parameter is plotted on the $x$ axis.
effect-size determination. This pertains to the computation of an effect size or a target parameter given power, sample size, and other study parameters.
eigenvalues and eigenvectors. A scalar, $\lambda$, is said to be an eigenvalue of square matrix $\mathbf{A}: n \times n$ if there is a nonzero column vector $\mathbf{x}: n \times 1$ (called an eigenvector) such that

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{x} \tag{1}
\end{equation*}
$$

Equation (1) can also be written

$$
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{x}=0
$$

where $\mathbf{I}$ is the $n \times n$ identity matrix. A nontrivial solution to this system of $n$ linear homogeneous equations exists if and only if

$$
\begin{equation*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I})=0 \tag{2}
\end{equation*}
$$

This $n$ th-degree polynomial in $\lambda$ is called the characteristic polynomial or characteristic equation of $\mathbf{A}$, and the eigenvalues $\lambda$ are its roots, also known as the characteristic roots.
The eigenvector defined by (1) is also known as the right eigenvector, because matrix $\mathbf{A}$ is postmultiplied by eigenvector $\mathbf{x}$. See [M-5] eigensystem() and left eigenvectors.
EIM, vce(eim). EIM stands for expected information matrix, defined as the inverse of the negative of the expected value of the matrix of second derivatives, usually of the log-likelihood function. The EIM is an estimate of the VCE. EIM standard errors are reported when sem option vce (eim) is specified. EIM is available only with sem. The other available techniques are OIM, OPG, robust, clustered, bootstrap, and jackknife.
eltype. See type, eltype, and orgtype.
EM. See expectation-maximization algorithm.
empirical Bayes. In generalized linear mixed-effects models, empirical Bayes refers to the method of prediction of the random effects after the model parameters have been estimated. The empirical Bayes method uses Bayesian principles to obtain the posterior distribution of the random effects, but instead of assuming a prior distribution for the model parameters, the parameters are treated as given.
empirical Bayes mean. See posterior mean.
empirical Bayes mode. See posterior mode.
endogenous variable. An endogenous variable is a regressor that is correlated with the unobservable error term. Equivalently, an endogenous variable is one whose values are determined by the equilibrium or outcome of a structural model.
In the context of structural equation modeling and path diagrams, a variable, either observed or latent, is endogenous if any paths point to it.

Also see exogenous variable.
epsilon(1), etc.. epsilon(1) refers to the unit roundoff error associated with a computer, also informally called machine precision. It is the smallest amount by which a number may differ from 1. For IEEE double-precision variables, epsilon(1) is approximately $2.22045 \mathrm{e}-16$.
epsilon $(x)$ is the smallest amount by which a real number can differ from $x$, or an approximation thereof; see [M-5] epsilon().
equal-allocation design. See balanced design.
equamax rotation. Equamax rotation is an orthogonal rotation whose criterion is a weighted sum of the varimax and quartimax criteria. Equamax reflects a concern for simple structure within the rows and columns of the matrix. It is equivalent to oblimin with $\gamma=p / 2$, or to the Crawford-Ferguson family with $\kappa=f / 2 p$, where $p$ is the number of rows of the matrix to be rotated, and $f$ is the number of columns. Also see orthogonal rotation, varimax rotation, quartimax rotation, oblimin rotation, and Crawford-Ferguson rotation.
error, error variable. The error is random disturbance $e$ in a linear equation:

$$
y=b_{0}+b_{1} x_{1}+b_{2} x_{2}+\cdots+e
$$

An error variable is an unobserved exogenous variable in path diagrams corresponding to $e$. Mathematically, error variables are just another example of latent exogenous variables, but in sem and gsem, error variables are considered to be in a class by themselves. All (Gaussian) endogenous variables-observed and latent-have a corresponding error variable. Error variables automatically and inalterably have their path coefficients fixed to be 1 . Error variables have a fixed naming convention in the software. If a variable is the error for (observed or latent) endogenous variable y , then the residual variable's name is $\mathrm{e} . \mathrm{y}$.
In sem and gsem, error variables are uncorrelated with each other unless explicitly indicated otherwise. That indication is made in path diagrams by drawing a curved path between the error variables and is indicated in command notation by including cov (e.namel*e.name2) among the options specified on the sem command. In gsem, errors for family Gaussian, link log responses are not allowed to be correlated.
error-components model. The error-components model is another name for the random-effects model. See also random-effects model.
estimating-equation estimator. An estimating-equation (EE) estimator calculates parameters estimates by solving a system of equations. Each equation in this system is the sample average of a function that has mean zero.

These estimators are also known as $M$ estimators or $Z$ estimators in the statistics literature and as generalized method of moments (GMM) estimators in the econometrics literature.
estimation method. There are a variety of ways that one can solve for the parameters of an SEM . Different methods make different assumptions about the data-generation process, and so it is important that you choose a method appropriate for your model and data; see [SEM] intro 4.

Euclidean distance. The Euclidean distance between two observations is the distance one would measure with a ruler. The distance between vector $\mathbf{P}=\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ and $\mathbf{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{n}\right)$ is given by

$$
D(\mathbf{P}, \mathbf{Q})=\sqrt{\left(P_{1}-Q_{1}\right)^{2}+\left(P_{2}-Q_{2}\right)^{2}+\cdots+\left(P_{n}-Q_{n}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(P_{i}-Q_{i}\right)^{2}}
$$

event. An event is something that happens at an instant in time, such as being exposed to an environmental hazard, being diagnosed as myopic, or becoming employed.

The failure event is of special interest in survival analysis, but there are other equally important events, such as the exposure event, from which analysis time is defined.
In st data, events occur at the end of the recorded time span.
event of interest. In a competing-risks analysis, the event of interest is the event that is the focus of the analysis, that for which the cumulative incidence in the presence of competing risks is estimated.
exact test. An exact test is one for which the probability of observing the data under the null hypothesis is calculated directly, often by enumeration. Exact tests do not rely on any asymptotic approximations and are therefore widely used with small datasets. See [PSS] power oneproportion and [PSS] power twoproportions.
exogenous variable. An exogenous variable is a regressor that is not correlated with any of the unobservable error terms in the model. Equivalently, an exogenous variable is one whose values change independently of the other variables in a structural model.
In the context of structural equation modeling and path diagrams, a variable, either observed or latent, is exogenous if paths only originate from it, or, equivalently, no paths point to it.

Also see endogenous variable.
exp. exp is used in syntax diagrams to mean "any valid expression may appear here"; see [M-2] exp.
expectation-maximization algorithm. In the context of MI, an iterative procedure for obtaining maximum likelihood or posterior-mode estimates in the presence of missing data.
experimental group. An experimental group is a group of subjects that receives a treatment or procedure of interest defined in a controlled experiment. In hypothesis testing, this is usually a comparison group. Also see control group.
experimental study. In an experimental study, as opposed to an observational study, the assignment of subjects to treatments is controlled by investigators. For example, a study that compares a new treatment with a standard treatment by assigning each treatment to a group of subjects is an experimental study.
exponential smoothing. Exponential smoothing is a method of smoothing a time series in which the smoothed value at period $t$ is equal to a fraction $\alpha$ of the series value at time $t$ plus a fraction $1-\alpha$ of the previous period's smoothed value. The fraction $\alpha$ is known as the smoothing parameter.
exponential test. The exponential test is the parametric test comparing the hazard rates, $\lambda_{1}$ and $\lambda_{2}$, (or log hazards) from two independent exponential (constant only) regression models with the null hypothesis $H_{0}: \lambda_{2}-\lambda_{1}=0$ (or $H_{0}: \ln \left(\lambda_{2}\right)-\ln \left(\lambda_{1}\right)=\ln \left(\lambda_{2} / \lambda_{1}\right)=0$ ).
external variable. See global variable.
$\mathbf{f}$ test. An $f$ test is a test for which a sampling distribution of a test statistic is an $F$ distribution. See [PSS] power twovariances.
factor. A factor is an unobserved random variable that is thought to explain variability among observed random variables.
factor analysis. Factor analysis is a statistical technique used to explain variability among observed random variables in terms of fewer unobserved random variables called factors. The observed variables are then linear combinations of the factors plus error terms.

If the correlation matrix of the observed variables is $\mathbf{R}$, then $\mathbf{R}$ is decomposed by factor analysis as

$$
\mathbf{R}=\boldsymbol{\Lambda} \boldsymbol{\Phi} \boldsymbol{\Lambda}^{\prime}+\boldsymbol{\Psi}
$$

$\boldsymbol{\Lambda}$ is the loading matrix, and $\boldsymbol{\Psi}$ contains the specific variances, for example, the variance specific to the variable not explained by the factors. The default unrotated form assumes uncorrelated common factors, $\boldsymbol{\Phi}=\mathbf{I}$.
factor loading plot. A factor loading plot produces a scatter plot of the factor loadings after factor analysis.
factor loadings. Factor loadings are the regression coefficients which multiply the factors to produce the observed variables in the factor analysis.
factor parsimony. Factor parsimony is an oblique rotation, which maximizes the column simplicity of the matrix. It is equivalent to a Crawford-Ferguson rotation with $\kappa=1$. Also see oblique rotation and Crawford-Ferguson rotation.
factor scores. Factor scores are computed after factor analysis. Factor scores are the coordinates of the original variables, $\mathbf{x}$, in the space of the factors. The two types of scoring are regression scoring (Thomson 1951) and Bartlett $(1937,1938)$ scoring.
Using the symbols defined in factor analysis, the formula for regression scoring is

$$
\widehat{\mathbf{f}}=\Lambda^{\prime} \mathbf{R}^{-1} \mathbf{x}
$$

In the case of oblique rotation the formula becomes

$$
\widehat{\mathbf{f}}=\boldsymbol{\Phi} \boldsymbol{\Lambda}^{\prime} \mathbf{R}^{-1} \mathbf{x}
$$

The formula for Bartlett scoring is

$$
\widehat{\mathbf{f}}=\boldsymbol{\Gamma}^{-1} \boldsymbol{\Lambda}^{\prime} \boldsymbol{\Psi}^{-1} \mathbf{x}
$$

where

$$
\boldsymbol{\Gamma}=\boldsymbol{\Lambda}^{\prime} \boldsymbol{\Psi}^{-1} \boldsymbol{\Lambda}
$$

Also see factor analysis.
failure event. Survival analysis is really time-to-failure analysis, and the failure event is the event under analysis. The failure event can be death, heart attack, myopia, or finding employment. Many authors-including Stata-write as if the failure event can occur only once per subject, but when we do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata's survival analysis features can be used with repeated-failure data.
family distribution. See generalized linear response functions.
FCS. See fully conditional specification.
fictional data. Fictional data are data that have no basis in reality even though they might look real; they are data that are made up for use in examples.
finite population correction. Finite population correction (FPC) is an adjustment applied to the variance of a point estimator because of sampling without replacement, resulting in variance estimates that are smaller than the variance estimates from comparable with-replacement sampling designs.
first-, second-, and higher-level (latent) variables. Consider a multilevel model of patients within doctors within hospitals. First-level variables are variables that vary at the observational (patient) level. Second-level variables vary across doctors but are constant within doctors. Third-level variables vary across hospitals but are constant within hospitals. This jargon is used whether variables are latent or not.
first- and second-order latent variables. If a latent variable is measured by other latent variables only, the latent variable that does the measuring is called first-order latent variable, and the latent variable being measured is called the second-order latent variable.
Fisher-Irwin's exact test. See Fisher's exact test.
Fisher's exact test. Fisher's exact test is an exact small sample test of independence between rows and columns in a $2 \times 2$ contingency table. Conditional on the marginal totals, the test statistic has a hypergeometric distribution under the null hypothesis. See [PSS] power twoproportions and [R] tabulate twoway.
Fisher's z test. This is a $z$ test comparing one or two correlations. See [PSS] power onecorrelation and [PSS] power twocorrelations. Also see Fisher's $z$ transformation.
Fisher's z transformation. Fisher's $z$ transformation applies an inverse hyperbolic tangent transformation to the sample correlation coefficient. This transformation is useful for testing hypothesis concerning Pearson's correlation coefficient. The exact sampling distribution of the correlation coefficient is complicated, while the transformed statistic is approximately standard normal.
fixed effects. In the context of multilevel mixed-effects models, fixed effects represent effects that are constant for all groups at any level of nesting. In the ANOVA literature, fixed effects represent the levels of a factor for which the inference is restricted to only the specific levels observed in the study. See also fixed-effects model in [XT] Glossary.
fixed-effects model. The fixed-effects model is a model for panel data in which the panel-specific errors are treated as fixed parameters. These parameters are panel-specific intercepts and therefore allow the conditional mean of the dependent variable to vary across panels. The linear fixedeffects estimator is consistent, even if the regressors are correlated with the fixed effects. See also random-effects model.
flong data. See style.
flongsep data. See style.
FMI. See fraction of missing information.
follow-up period or follow-up. The (minimum) follow-up period is the period after the last subject entered the study until the end of the study. The follow-up defines the phase of a study during which subjects are under observation and no new subjects enter the study. If $T$ is the total duration of a study, and $R$ is the accrual period of the study, then follow-up period $f$ is equal to $T-R$. Also see accrual period.
follow-up study. See cohort study.
forecast-error variance decomposition. Forecast-error variance decompositions measure the fraction of the error in forecasting variable $i$ after $h$ periods that is attributable to the orthogonalized shocks to variable $j$.
forward operator. The forward operator $F$ denotes the value of a variable at time $t+1$. Formally, $F y_{t}=y_{t+1}$, and $F^{2} y_{t}=F y_{t+1}=y_{t+2}$.
FPC. See finite population correction.
fraction of missing information. The ratio of information lost due to the missing data to the total information that would be present if there were no missing data.

An equal FMI test is a test under the assumption that FMIs are equal across parameters.
An unrestricted FMI test is a test without the equal FMI assumption.
fractional polynomial. A polynomial that may include logarithms, noninteger powers, and repeated powers.
Each time a power repeats in a fractional polynomial of $x$, it is multiplied by another $\ln (x)$.
We write a fractional polynomial in $x$ as

$$
x^{\left(p_{1}, p_{2}, \ldots, p_{m}\right)^{\prime}} \boldsymbol{\beta}
$$

A fractional polynomial in $x$ with powers $(-1,0,0.5,3,3)$ and coefficients $\boldsymbol{\beta}$ has the following form:

$$
x^{(-1,0,0.5,3,3)^{\prime}} \boldsymbol{\beta}=\beta_{0}+\beta_{1} x^{-1}+\beta_{2} \ln (x)+\beta_{3} x^{.5}+\beta_{4} x^{3}+\beta_{5} x^{3} \ln (x)
$$

The notation $x^{(-2,3)}$, for example, means the variable $x^{-2}$ and the variable $x^{3}$.
frailty. In survival analysis, it is often assumed that subjects are alike-homogeneous-except for their observed differences. The probability that subject $j$ fails at time $t$ may be a function of $j$ 's covariates and random chance. Subjects $j$ and $k$, if they have equal covariate values, are equally likely to fail.
Frailty relaxes that assumption. The probability that subject $j$ fails at time $t$ becomes a function of $j$ 's covariates and $j$ 's unobserved frailty value, $\nu_{j}$. Frailty $\nu$ is assumed to be a random variable. Parametric survival models can be fit even in the presence of such heterogeneity.

Shared frailty refers to the case in which groups of subjects share the same frailty value. For instance, subjects 1 and 2 may share frailty value $\nu$ because they are genetically related. Both parametric and semiparametric models can be fit under the shared-frailty assumption.
frequency-domain analysis. Frequency-domain analysis is analysis of time-series data by considering its frequency properties. The spectral density and distribution functions are key components of frequency-domain analysis, so it is often called spectral analysis. In Stata, the cumsp and pergram commands are used to analyze the sample spectral distribution and density functions, respectively. psdensity estimates the spectral density or the spectral distribution function after estimating the parameters of a parametric model using arfima, arima, or ucm.
full joint and conditional normality assumption. See normality assumption, joint and conditional.
fully conditional specification. Consider imputation variables $X_{1}, X_{2}, \ldots, X_{p}$. Fully conditional specification of the prediction equation for $X_{j}$ includes all variables except $X_{j}$; that is, variables $\mathbf{X}_{-j}=\left(X_{1}, X_{2}, \ldots, X_{j-1}, X_{j+1}, \ldots, X_{p}\right)$.
function. The words program and function are used interchangeably. The programs that you write in Mata are in fact functions. Functions receive arguments and optionally return results.

Examples of functions that are included with Mata are sqrt(), ttail(), and substr(). Such functions are often referred to as the built-in functions or the library functions. Built-in functions refer to functions implemented in the C code that implements Mata, and library functions refer to functions written in the Mata programming language, but many users use the words interchangeably because how functions are implemented is of little importance. If you have a choice between using a built-in function and a library function, however, the built-in function will usually execute more quickly and the library function will be easier to use. Mostly, however, features are implemented one way or the other and you have no choice.
Also see underscore functions.
For a list of the functions that Mata provides, see [M-4] intro.
future history. Future history is information recorded after a subject is no longer at risk. The word history is often dropped, and the term becomes simply future. Perhaps the failure event is cardiac infarction, and you want to know whether the subject died soon in the future, in which case you might exclude the subject from analysis.
Also see past history.
gain (of a linear filter). The gain of a linear filter scales the spectral density of the unfiltered series into the spectral density of the filtered series for each frequency. Specifically, at each frequency, multiplying the spectral density of the unfiltered series by the square of the gain of a linear filter yields the spectral density of the filtered series. If the gain at a particular frequency is 1 , the filtered and unfiltered spectral densities are the same at that frequency and the corresponding stochastic cycles are passed through perfectly. If the gain at a particular frequency is 0 , the filter removes all the corresponding stochastic cycles from the unfiltered series.
gamma regression. Gamma regression is a term for generalized linear response functions that are family gamma, link log. It is used for continuous, nonnegative, positively skewed data. Gamma regression is also known as log-gamma regression. See generalized linear response functions.
gaps. Gaps refers to gaps in observation between entry time and exit time; see under observation.
GARCH model. A generalized autoregressive conditional heteroskedasticity (GARCH) model is a regression model in which the conditional variance is modeled as an ARMA process. The GARCH $(m, k)$ model is

$$
\begin{aligned}
y_{t} & =\mathbf{x}_{t} \boldsymbol{\beta}+\epsilon_{t} \\
\sigma_{t}^{2} & =\gamma_{0}+\gamma_{1} \epsilon_{t-1}^{2}+\cdots+\gamma_{m} \epsilon_{t-m}^{2}+\delta_{1} \sigma_{t-1}^{2}+\cdots+\delta_{k} \sigma_{t-k}^{2}
\end{aligned}
$$

where the equation for $y_{t}$ represents the conditional mean of the process and $\sigma_{t}$ represents the conditional variance. See [TS] arch or Hamilton (1994, chap. 21) for details on how the conditional variance equation can be viewed as an ARMA process. GARCH models are often used because the ARMA specification often allows the conditional variance to be modeled with fewer parameters than are required by a pure ARCH model. Many extensions to the basic GARCH model exist; see [TS] arch for those that are implemented in Stata. See also ARCH model.
Gauss-Hermite quadrature. In the context of generalized linear mixed models, Gauss-Hermite quadrature is a method of approximating the integral used in the calculation of the log likelihood. The quadrature locations and weights for individual clusters are fixed during the optimization process.
Gaussian regression. Gaussian regression is another term for linear regression. It is most often used when referring to generalized linear response functions. In that framework, Gaussian regression is family Gaussian, link identity. See generalized linear response functions.
generalized eigenvalues. A scalar, $\lambda$, is said to be a generalized eigenvalue of a pair of $n \times n$ square numeric matrices $\mathbf{A}, \mathbf{B}$ if there is a nonzero column vector $\mathbf{x}: n \times 1$ (called a generalized eigenvector) such that

$$
\begin{equation*}
\mathbf{A} \mathbf{x}=\lambda \mathbf{B} \mathbf{x} \tag{1}
\end{equation*}
$$

Equation (1) can also be written

$$
(\mathbf{A}-\lambda \mathbf{B}) \mathbf{x}=0
$$

A nontrivial solution to this system of $n$ linear homogeneous equations exists if and only if

$$
\begin{equation*}
\operatorname{det}(\mathbf{A}-\lambda \mathbf{B})=0 \tag{2}
\end{equation*}
$$

In practice, the generalized eigenvalue problem for the matrix pair $(\mathbf{A}, \mathbf{B})$ is usually formulated as finding a pair of scalars $(w, b)$ and a nonzero column vector $\mathbf{x}$ such that

$$
w \mathbf{A} \mathbf{x}=b \mathbf{B} \mathbf{x}
$$

The scalar $w / b$ is a generalized eigenvalue if $b$ is not zero.
Infinity is a generalized eigenvalue if $b$ is zero or numerically close to zero. This situation may arise if $\mathbf{B}$ is singular.

The Mata functions that compute generalized eigenvalues return them in two complex vectors, $\mathbf{w}$ and $\mathbf{b}$ of length $n$. If $\mathbf{b}[i]=0$, the $i$ th generalized eigenvalue is infinite, otherwise the $i$ th generalized eigenvalue is $\mathbf{w}[i] / \mathbf{b}[i]$.
generalized estimating equations (GEE). The method of generalized estimating equations is used to fit population-averaged panel-data models. GEE extends the GLM method by allowing the user to specify a variety of different within-panel correlation structures.
generalized least-squares estimator. A generalized least-squares (GLS) estimator is used to estimate the parameters of a regression function when the error term is heteroskedastic or autocorrelated. In the linear case, GLS is sometimes described as "OLS on transformed data" because the GLS estimator can be implemented by applying an appropriate transformation to the dataset and then using OLS.
generalized linear mixed-effects model. A generalized linear mixed-effect model is an extension of a generalized linear model allowing for the inclusion of random deviations (effects).
generalized linear model. The generalized linear model is an estimation framework in which the user specifies a distributional family for the dependent variable and a link function that relates the dependent variable to a linear combination of the regressors. The distribution must be a member of the exponential family of distributions. The generalized linear model encompasses many common models, including linear, probit, and Poisson regression.
generalized linear response functions. Generalized linear response functions include linear functions and include functions such as probit, logit, multinomial logit, ordered probit, ordered logit, Poisson, and more.

These generalized linear functions are described by a link function $g(\cdot)$ and statistical distribution $F$. The link function $g(\cdot)$ specifies how the response variable $y_{i}$ is related to a linear equation of the explanatory variables, $\mathbf{x}_{i} \boldsymbol{\beta}$, and the family $F$ specifies the distribution of $y_{i}$ :

$$
g\left\{E\left(y_{i}\right)\right\}=\mathbf{x}_{i} \boldsymbol{\beta}, \quad y_{i} \sim F
$$

If we specify that $g(\cdot)$ is the identity function and $F$ is the Gaussian (normal) distribution, then we have linear regression. If we specify that $g(\cdot)$ is the logit function and $F$ the Bernoulli distribution, then we have logit (logistic) regression.
In this generalized linear structure, the family may be Gaussian, gamma, Bernoulli, binomial, Poisson, negative binomial, ordinal, or multinomial. The link function may be the identity, log, logit, probit, or complementary log-log.
gsem fits models with generalized linear response functions.
generalized method of moments. Generalized method of moments (GMM) is a method used to obtain fitted parameters. In this documentation, GMM is referred to as ADF, which stands for asymptotic distribution free and is available for use with sem. Other available methods for use with sem are ML, QML, ADF, and MLMV.

The SEM moment conditions are cast in terms of second moments, not the first moments used in many other applications associated with GMM.
generalized SEM. Generalized SEM is a term we have coined to mean SEM optionally allowing generalized linear response functions or multilevel models. gsem fits generalized SEMs.
GHQ. See Gauss-Hermite quadrature.
GLM. See generalized linear model.
GLME model. See generalized linear mixed-effects model.
GLMM. Generalized linear mixed model. See generalized linear mixed-effects model.
global variable. Global variables, also known as external variables and as global external variables, refer to variables that are common across programs and which programs may access without the variable being passed as an argument.
The variables you create interactively are global variables. Even so, programs cannot access those variables without engaging in another step, and global variables can be created without your creating them interactively.

To access (and create if necessary) global external variables, you declare the variable in the body of your program:

```
function myfunction(...)
{
        external real scalar globalvar
}
```

See Linking to external globals in [M-2] declarations.
There are other ways of creating and accessing global variables, but the declaration method is recommended. The alternatives are crexternal(), findexternal(), and rmexternal() documented in [M-5] findexternal() and valofexternal () documented in [M-5] valofexternal().

GMM. See generalized method of moments.
goodness-of-fit statistic. A goodness-of-fit statistic is a value designed to measure how well the model reproduces some aspect of the data the model is intended to fit. SEM reproduces the firstand second-order moments of the data, with an emphasis on the second-order moments, and thus goodness-of-fit statistics appropriate for use after sem compare the predicted covariance matrix (and mean vector) with the matrix (and vector) observed in the data.

Granger causality. The variable $x$ is said to Granger-cause variable $y$ if, given the past values of $y$, past values of $x$ are useful for predicting $y$.

Greenhouse-Geisser correction. See nonsphericity correction.
gsem. gsem is the Stata command that fits generalized SEMs. Also see sem.
GUI. See Builder.
$\mathbf{H}_{\mathbf{0}}$. See null hypothesis.
$\mathbf{H}_{\mathbf{a}}$. See alternative hypothesis.

Hadamard matrix. A Hadamard matrix is a square matrix with $r$ rows and columns that has the property

$$
H_{r}^{\prime} H_{r}=r I_{r}
$$

where $I_{r}$ is the identity matrix of order $r$. Generating a Hadamard matrix with order $r=2^{p}$ is easily accomplished. Start with a Hadamard matrix of order $2\left(H_{2}\right)$, and build your $H_{r}$ by repeatedly applying Kronecker products with $\mathrm{H}_{2}$.
hard missing and soft missing. A hard missing value is a value of . a, . b, ..., . $\mathbf{z}$ in $m=0$ in an imputed variable. Hard missing values are not replaced in $m>0$.

A soft missing value is a value of . in $m=0$ in an imputed variable. If an imputed variable contains soft missing, then that value is eligible to be imputed, and perhaps is imputed, in $m>0$.
Although you can use the terms hard missing and soft missing for passive, regular, and unregistered variables, it has no special significance in terms of how the missing values are treated.
hashing, hash functions, and hash tables. Hashing refers to a technique for quickly finding information corresponding to an identifier. The identifier might be a name, a Social Security number, fingerprints, or anything else on which the information is said to be indexed. The hash function returns a many-to-one mapping of identifiers onto a dense subrange of the integers. Those integers, called hashes, are then used to index a hash table. The selected element of the hash table specifies a list containing identifiers and information. The list is then searched for the particular identifier desired. The advantage is that rather than searching a single large list, one need only search one of $K$ smaller lists. For this to be fast, the hash function must be quick to compute and produce roughly equal frequencies of hashes over the range of identifiers likely to be observed.
hazard, cumulative hazard, and hazard ratio. The hazard or hazard rate at time $t, h(t)$, is the instantaneous rate of failure at time $t$ conditional on survival until time $t$. Hazard rates can exceed 1. Say that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval and if the failure event could be repeated, the individual would be expected to experience three failures during the time span.
The cumulative hazard, $H(t)$, is the integral of the hazard function $h(t)$, from 0 (the onset of risk) to $t$. It is the total number of failures that would be expected to occur up until time $t$, if the failure event could be repeated. The relationship between the cumulative hazard function, $H(t)$, and the survivor function, $S(t)$, is

$$
\begin{aligned}
S(t) & =\exp \{-H(t)\} \\
H(t) & =-\ln \{S(t)\}
\end{aligned}
$$

The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates: $h(t \mid \mathbf{x}) / h\left(t \mid \mathbf{x}_{0}\right)$. The hazard ratio is often called the relative hazard, especially when $h\left(t \mid \mathbf{x}_{0}\right)$ is the baseline hazard function.
hazard contributions. Hazard contributions are the increments of the estimated cumulative hazard function obtained through either a nonparametric or semiparametric analysis. For these analysis types, the estimated cumulative hazard is a step function that increases every time a failure occurs. The hazard contribution for that time is the magnitude of that increase.

Because the time between failures usually varies from failure to failure, hazard contributions do not directly estimate the hazard. However, one can use the hazard contributions to formulate an estimate of the hazard function based on the method of smoothing.

Hermitian matrix. Matrix $A$ is Hermitian if it is equal to its conjugate transpose; $A=A^{\prime}$; see transpose. This means that each off-diagonal element $a_{i j}$ must equal the conjugate of $a_{j i}$, and that the diagonal elements must be real. The following matrix is Hermitian:

$$
\left[\begin{array}{cc}
2 & 4+5 i \\
4-5 i & 6
\end{array}\right]
$$

The definition $A=A^{\prime}$ is the same as the definition for a symmetric matrix, although usually the word symmetric is reserved for real matrices and Hermitian, for complex matrices. In this manual, we use the word symmetric for both; see symmetric matrices.
Hessenberg decomposition. The Hessenberg decomposition of a matrix, A, can be written as

$$
\mathbf{Q}^{\prime} \mathbf{A Q}=\mathbf{H}
$$

where $\mathbf{H}$ is in upper Hessenberg form and $\mathbf{Q}$ is orthogonal if $\mathbf{A}$ is real or unitary if $\mathbf{A}$ is complex. See [M-5] hessenbergd().

Hessenberg form. A matrix, $\mathbf{A}$, is in upper Hessenberg form if all entries below the first subdiagonal are zero: $A_{i j}=0$ for all $i>j+1$.
A matrix, $\mathbf{A}$, is in lower Hessenberg form if all entries above the first superdiagonal are zero: $A_{i j}=0$ for all $j>i+1$.
Heywood case or Heywood solution. A Heywood case can appear in factor analysis output; this indicates that a boundary solution, called a Heywood solution, was produced. The geometric assumptions underlying the likelihood-ratio test are violated, though the test may be useful if interpreted cautiously.
hierarchical clustering and hierarchical clustering methods. In hierarchical clustering, the data is placed into clusters via iterative steps. Contrast to partition clustering. Also see agglomerative hierarchical clustering methods and divisive hierarchical clustering methods.
hierarchical model. A hierarchical model is one in which successively more narrowly defined groups are nested within larger groups. For example, in a hierarchical model, patients may be nested within doctors who are in turn nested within the hospital at which they practice.
high-pass filter. Time-series filters are designed to pass or block stochastic cycles at specified frequencies. High-pass filters, such as those implemented in tsfilter bw and tsfilter hp, pass through stochastic cycles above the cutoff frequency and block all other stochastic cycles.

Holt-Winters smoothing. A set of methods for smoothing time-series data that assume that the value of a time series at time $t$ can be approximated as the sum of a mean term that drifts over time, as well as a time trend whose strength also drifts over time. Variations of the basic method allow for seasonal patterns in data, as well.

Hotelling's T-squared generalized means test. Hotelling's T-squared generalized means test is a multivariate test that reduces to a standard $t$ test if only one variable is specified. It tests whether one set of means is zero or if two sets of means are equal.
hypothesis. A hypothesis is a statement about a population parameter of interest.
hypothesis testing, hypothesis test. This method of inference evaluates the validity of a hypothesis based on a sample from the population. See Hypothesis testing under Remarks and examples in [PSS] intro.
hypothesized value. See null value.

ID variable. An ID variable identifies groups; equal values of an ID variable indicate that the observations are for the same group. For instance, a stratification ID variable would indicate the strata to which each observation belongs.

When an ID variable is referred to without modification, it means subjects, and usually this occurs in multiple-record st data. In multiple-record data, each physical observation in the dataset represents a time span, and the ID variable ties the separate observations together:

| idvar | $t 0$ | $t$ |
| :--- | :--- | :--- |
| 1 | 0 | 5 |
| 1 | 5 | 7 |

ID variables are usually numbered $1,2, \ldots$, but that is not required. An ID variable might be numbered $1,3,7,22, \ldots$, or $-5,-4, \ldots$, or even $1,1.1,1.2, \ldots$.
identification. Identification refers to the conceptual constraints on parameters of a model that are required for the model's remaining parameters to have a unique solution. A model is said to be unidentified if these constraints are not supplied. These constraints are of two types: substantive constraints and normalization constraints.

Normalization constraints deal with the problem that one scale works as well as another for each latent variable in the model. One can think, for instance, of propensity to write software as being measured on a scale of 0 to 1,1 to 100 , or any other scale. The normalization constraints are the constraints necessary to choose one particular scale. The normalization constraints are provided automatically by sem and gsem by anchoring with unit loadings.

Substantive constraints are the constraints you specify about your model so that it has substantive content. Usually, these constraints are zero constraints implied by the paths omitted, but they can include explicit parameter constraints as well. It is easy to write a model that is not identified for substantive reasons; See [SEM] intro 4.
idiosyncratic error term. In longitudinal or panel-data models, the idiosyncratic error term refers to the observation-specific zero-mean random-error term. It is analogous to the random-error term of cross-sectional regression analysis.
ignorable missing-data mechanism. The missing-data mechanism is said to be ignorable if missing data are missing at random and the parameters of the data model and the parameters of the missing-data mechanism are distinct; that is, the joint distribution of the model and the missingdata parameters can be factorized into two independent marginal distributions of model parameters and of missing-data parameters.
i.i.d. sampling assumption. See independent and identically distributed sampling assumption.
impulse-response function. An impulse-response function (IRF) measures the effect of a shock to an endogenous variable on itself or another endogenous variable. The $k$ th impulse-response function of variable $i$ on variable $j$ measures the effect on variable $j$ in period $t+k$ in response to a one-unit shock to variable $i$ in period $t$, holding everything else constant.
imputed, passive, and regular variables. An imputed variable is a variable that has missing values and for which you have or will have imputations.

A passive variable is a varying variable that is a function of imputed variables or of other passive variables. A passive variable will have missing values in $m=0$ and varying values for observations in $m>0$.

A regular variable is a variable that is neither imputed nor passive and that has the same values, whether missing or not, in all $m$.

Imputed, passive, and regular variables can be registered using the mi register command; see [MI] mi set. You are required to register imputed variables, and we recommend that you register passive variables. Regular variables can also be registered. See registered and unregistered variables.
imputed data. Data in which all missing values are imputed.
incidence and incidence rate. Incidence is the number of new failures (for example, number of new cases of a disease) that occur during a specified period in a population at risk (for example, of the disease).
Incidence rate is incidence divided by the sum of the length of time each individual was exposed to the risk.

Do not confuse incidence with prevalence. Prevalence is the fraction of a population that has the disease. Incidence refers to the rate at which people contract a disease, whereas prevalence is the total number actually sick at a given time.
incidence studies, longitudinal studies, and follow-up studies. Whichever word is used, these studies monitor a population for a time to track the transition of noncases into cases. Incidence studies are prospective. Also see cohort studies.

## incomplete observations. See complete and incomplete observations.

independent and identically distributed. A series of observations is independently and identically distributed (i.i.d.) if each observation is an independent realization from the same underlying distribution. In some contexts, the definition is relaxed to mean only that the observations are independent and have identical means and variances; see Davidson and MacKinnon (1993, 42).
independent and identically distributed sampling assumption. The independent and identically distributed (i.i.d.) sampling assumption specifies that each observation is unrelated to (independent of) all the other observations and that each observation is a draw from the same (identical) distribution.
indicator variables, indicators. The term "indicator variable" has two meanings. An indicator variable is a $0 / 1$ variable that contains whether something is true. The other usage is as a synonym for measurement variables.
indirect effects. See direct, indirect, and total effects.
individual-level treatment effect. An individual-level treatment effect is the difference in an individual's outcome that would occur because this individual is given one treatment instead of another. In other words, an individual-level treatment effect is the difference between two potential outcomes for an individual.
For example, the blood pressure an individual would obtain after taking a pill minus the blood pressure an individual would obtain had that person not taken the pill is the individual-level treatment effect of the pill on blood pressure.
ineligible missing value. An ineligible missing value is a missing value in a to-be-imputed variable that is due to inability to calculate a result rather than an underlying value being unobserved. For instance, assume that variable income had some missing values and so you wish to impute it. Because income is skewed, you decide to impute the $\log$ of income, and you begin by typing

- generate lnincome $=\log$ (income)

If income contained any zero values, the corresponding missing values in lnincome would be ineligible missing values. To ensure that values are subsequently imputed correctly, it is of vital importance that any ineligible missing values be recorded as hard missing. You would do that by typing

```
. replace lnincome = .a if lnincome==. & income!=.
```

As an aside, if after imputing lnincome using mi impute (see [MI] mi impute), you wanted to fill in income, income surprisingly would be a passive variable because lnincome is the imputed variable and income would be derived from it. You would type

```
. mi register passive income
. mi passive: replace income = cond(lnincome==.a, 0, exp(lnincome))
```

In general, you should avoid using transformations that produce ineligible missing values to avoid the loss of information contained in other variables in the corresponding observations. For example, in the above, for zero values of income we could have assigned the log of income, Inincome, to be the smallest value that can be stored as double, because the logarithm of zero is negative infinity:

```
. generate lnincome = cond(income==0, mindouble(), log(income))
```

This way, all observations for which income $=0$ will be used in the imputation model for lnincome.
inertia. In CA, the inertia is related to the definition in applied mathematics of "moment of inertia", which is the integral of the mass times the squared distance to the centroid. Inertia is defined as the total Pearson chi-squared for the two-way table divided by the total number of observations, or the sum of the squared singular values found in the singular value decomposition.

$$
\text { total inertia }=\frac{1}{n} \chi^{2}=\sum_{k} \lambda_{k}^{2}
$$

In MCA, the inertia is defined analogously. In the case of the indicator or Burt matrix approach, it is given by the formula

$$
\text { total inertia }=\left(\frac{q}{q-1}\right) \sum \phi_{t}^{2}-\frac{(J-q)}{q^{2}}
$$

where $q$ is the number of active variables, $J$ is the number of categories and $\phi_{t}$ is the $t$ th (unadjusted) eigenvalue of the eigen decomposition. In JCA the total inertia of the modified Burt matrix is defined as the sum of the inertias of the off-diagonal blocks. Also see correspondence analysis and multiple correspondence analysis.
initial values. See starting values.
instance and realization. Instance and realization are synonyms for variable, as in Mata variable. For instance, consider a real scalar variable $X$. One can equally well say that $X$ is an instance of a real scalar or a realization of a real scalar. Authors represent a variable this way when they wish to emphasize that $X$ is not representative of all real scalars but is just one of many real scalars. Instance is often used with structures and classes when the writer wishes to emphasize the difference between the values contained in the variable and the definition of the structure or the class. It is confusing to say that $V$ is a class $C$, even though it is commonly said, because the reader might confuse the definition of $C$ with the specific values contained in $V$. Thus careful authors say that $V$ is an instance of class $C$.
instrumental variables. Instrumental variables are exogenous variables that are correlated with one or more of the endogenous variables in a structural model. The term instrumental variable is often reserved for those exogenous variables that are not included as regressors in the model.
instrumental-variables (IV) estimator. An instrumental variables estimator uses instrumental variables to produce consistent parameter estimates in models that contain endogenous variables. IV estimators can also be used to control for measurement error.
integrated process. A nonstationary process is integrated of order $d$, written $\mathrm{I}(d)$, if the process must be differenced $d$ times to produce a stationary series. An $\mathrm{I}(1)$ process $y_{t}$ is one in which $\Delta y_{t}$ is stationary.
interaction effects. Interaction effects measure the dependence of the effects of one factor on the levels of the other factor. Mathematically, they can be defined as the differences among treatment means that are left after main effects are removed from these differences.
intercept. An intercept for the equation of endogenous variable $y$, observed or latent, is the path coefficient from _cons to $y$. _cons is Stata-speak for the built-in variable containing 1 in all observations. In SEM-speak, _cons is an observed exogenous variable.
interval data. Interval data are data in which the true value of the dependent variable is not observed. Instead, all that is known is that the value lies within a given interval.
intraclass correlation. In the context of mixed-effects models, intraclass correlation refers to the correlation for pairs of responses at each nested level of the model.
inverse-probability-weighted estimators. Inverse-probability-weighted (IPW) estimators use weighted averages of the observed outcome variable to estimate the potential-outcome means. The weights are the reciprocals of the treatment probabilities estimated by a treatment model.

## inverse-probability-weighted regression-adjustment estimators.

Inverse-probability-weighted regression-adjustment (IPWRA) estimators use the reciprocals of the estimated treatment probability as weights to estimate missing-data-corrected regression coefficients that are subsequently used to compute the potential-outcome means.
IPW estimators. See inverse-probability-weighted estimators.
IPWRA estimators. See inverse-probability-weighted regression-adjustment estimators.
istmt. An istmt is an interactive statement, a statement typed at Mata's colon prompt.
iterated principal-factor method. The iterated principal-factor method is a method for performing factor analysis in which the communalities $\widehat{h}_{i}^{2}$ are estimated iteratively from the loadings in $\widehat{\boldsymbol{\Lambda}}$ using

$$
\widehat{h}_{i}^{2}=\sum_{j=1}^{m} \widehat{\lambda}_{i j}^{2}
$$

Also see factor analysis and communality.
$\mathbf{J}(\mathbf{r}, \mathbf{c}$, value). J() is the function that returns an $r \times c$ matrix with all elements set to value; see [M-5] $\mathbf{J}()$. Also, J() is often used in the documentation to describe the various types of void matrices; see void matrix. Thus the documentation might say that such-and-such returns $J(0,0$, .) under certain conditions. That is another way of saying that such-and-such returns a $0 \times 0$ real matrix.
When $r$ or $c$ is 0 , there are no elements to be filled in with value, but even so, value is used to determine the type of the matrix. Thus $J(0,0,1 i)$ refers to a $0 \times 0$ complex matrix, $J(0,0$, "") refers to a $0 \times 0$ string matrix, and $J(0,0$, NULL) refers to a $0 \times 0$ pointer matrix.
In the documentation, J() is used for more than describing $0 \times 0$ matrices. Sometimes, the matrices being described are $r \times 0$ or are $0 \times c$. Say that a function example $(X)$ is supposed to return a column vector; perhaps it returns the last column of $X$. Now say that $X$ is $0 \times 0$. Function example() still should return a column vector, and so it returns a $0 \times 1$ matrix. This would be documented by noting that example() returns $\mathrm{J}(0,1,$.$) when X$ is $0 \times 0$.
jackknife. The jackknife is a data-dependent way to estimate the variance of a statistic, such as a mean, ratio, or regression coefficient. Unlike BRR, the jackknife can be applied to practically any survey design. The jackknife variance estimator is described in [SVY] variance estimation.
jackknife, vce(jackknife). The jackknife is a replication method for obtaining variance estimates. Consider an estimation method $E$ for estimating $\theta$. Let $\widehat{\theta}$ be the result of applying $E$ to dataset $D$ containing $N$ observations. The jackknife is a way of obtaining variance estimates for $\widehat{\theta}$ from repeated estimates $\widehat{\theta}_{1}, \widehat{\theta}_{2}, \ldots, \widehat{\theta}_{N}$, where each $\widehat{\theta}_{i}$ is the result of applying $E$ to $D$ with observation $i$ removed. See [SEM] sem option method() and [R] jackknife.
vce (jackknife) is allowed with sem but not gsem. You can obtain jackknife results by prefixing the gsem command with jackknife:, but remember to specify jackknife's cluster() and idcluster () options if you are fitting a multilevel model. See [SEM] intro 9.
jackknifed standard error. See Monte Carlo error.
JCA. An acronym for joint correspondence analysis; see multiple correspondence analysis.
joint correspondence analysis. See multiple correspondence analysis.
joint normality assumption. See normality assumption, joint and conditional.
Kaiser-Meyer-Olkin measure of sampling adequacy. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy takes values between 0 and 1 , with small values meaning that the variables have too little in common to warrant a factor analysis or PCA. Historically, the following labels have been given to values of KMO (Kaiser 1974):

| 0.00 to 0.49 | unacceptable |
| :--- | :--- |
| 0.50 to 0.59 | miserable |
| 0.60 to 0.69 | mediocre |
| 0.70 to 0.79 | middling |
| 0.80 to 0.89 | meritorious |
| 0.90 to 1.00 | marvelous |

Kalman filter. The Kalman filter is a recursive procedure for predicting the state vector in a state-space model.

Kaplan-Meier product-limit estimate. This is an estimate of the survivor function, which is the product of conditional survival to each time at which an event occurs. The simple form of the calculation, which requires tallying the number at risk and the number who die and at each time, makes accounting for censoring easy. The resulting estimate is a step function with jumps at the event times.
kmeans. Kmeans is a method for performing partition cluster analysis. The user specifies the number of clusters, $k$, to create using an iterative process. Each observation is assigned to the group whose mean is closest, and then based on that categorization, new group means are determined. These steps continue until no observations change groups. The algorithm begins with $k$ seed values, which act as the $k$ group means. There are many ways to specify the beginning seed values. Also see partition clustering.
kmedians. Kmedians is a variation of kmeans. The same process is performed, except that medians instead of means are computed to represent the group centers at each step. Also see kmeans and partition clustering.
KMO. See Kaiser-Meyer-Olkin measure of sampling adequacy.
KNN. See kth nearest neighbor.

Kruskal stress. The Kruskal stress measure (Kruskal 1964; Cox and Cox 2001, 63) used in MDS is given by

$$
\operatorname{Kruskal}(\widehat{\mathbf{D}}, \mathbf{E})=\left\{\frac{\sum\left(E_{i j}-\widehat{D}_{i j}\right)^{2}}{\sum E_{i j}^{2}}\right\}^{1 / 2}
$$

where $D_{i j}$ is the dissimilarity between objects $i$ and $j, 1 \leq i, j \leq n$, and $\widehat{D}_{i j}$ is the disparity, that is, the transformed dissimilarity, and $E_{i j}$ is the Euclidean distance between rows $i$ and $j$ of the matching configuration. Kruskal stress is an example of a loss function in modern MDS. After classical MDS, estat stress gives the Kruskal stress. Also see classical scaling, multidimensional scaling, and stress.
kth nearest neighbor. $k$ th-nearest-neighbor (KNN) discriminant analysis is a nonparametric discrimination method based on the $k$ nearest neighbors of each observation. Both continuous and binary data can be handled through the different similarity and dissimilarity measures. KNN analysis can distinguish irregular-shaped groups, including groups with multiple modes. Also see discriminant analysis and nonparametric methods.
lag operator. The lag operator $L$ denotes the value of a variable at time $t-1$. Formally, $L y_{t}=y_{t-1}$, and $L^{2} y_{t}=L y_{t-1}=y_{t-2}$.
Lagrange multiplier test. Synonym for score test.
LAPACK LAPACK stands for Linear Algebra PACKage and forms the basis for many of Mata's linear algebra capabilities; see [M-1] LAPACK.
Laplacian approximation. Laplacian approximation is a technique used to approximate definite integrals without resorting to quadrature methods. In the context of mixed-effects models, Laplacian approximation is as a rule faster than quadrature methods at the cost of producing biased parameter estimates of variance components.
latent growth model. A latent growth model is a kind of measurement model in which the observed values are collected over time and are allowed to follow a trend. See [SEM] intro 5.
latent variable. A variable is latent if it is not observed. A variable is latent if it is not in your dataset but you wish it were. You wish you had a variable recording the propensity to commit violent crime, or socioeconomic status, or happiness, or true ability, or even income accurately recorded. Latent variables are sometimes described as imagined variables.
In the software, latent variables are usually indicated by having at least their first letter capitalized. Also see first- and second-order latent variables, first-, second-, and higher-level (latent) variables, and observed variables.
Lawley-Hotelling trace. The Lawley-Hotelling trace is a test statistic for the hypothesis test $H_{0}$ : $\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{k}$ based on the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{s}$ of $\mathbf{E}^{-\mathbf{1}} \mathbf{H}$. It is defined as

$$
U^{(s)}=\operatorname{trace}\left(\mathbf{E}^{-1} \mathbf{H}\right)=\sum_{i=1}^{s} \lambda_{i}
$$

where $\mathbf{H}$ is the between matrix and $\mathbf{E}$ is the within matrix, see between matrix.
LDA. See linear discriminant analysis.
leave one out. In discriminant analysis, classification of an observation while leaving it out of the estimation sample is done to check the robustness of the analysis; thus the phrase "leave one out" (LOO). Also see discriminant analysis.
left eigenvectors. A vector $\mathbf{x}: n \times 1$ is said to be a left eigenvector of square matrix $\mathbf{A}: n \times n$ if there is a nonzero scalar, $\lambda$, such that

$$
\mathbf{x A}=\lambda \mathbf{x}
$$

left-censoring. See censored, censoring, left-censoring, and right-censoring.
left-truncation. See truncation, left-truncation, and right-truncation.
life table. Also known as a mortality table or actuarial table, a life table is a table that shows for each analysis time the fraction that survive to that time. In mortality tables, analysis time is often age.
likelihood displacement value. A likelihood displacement value is an influence measure of the effect of deleting a subject on the overall coefficient vector. Also see partial likelihood displacement value.
likelihood-ratio test. The likelihood-ratio (LR) test is one of the three classical testing procedures used to compare the fit of two models, one of which, the constrained model, is nested within the full (unconstrained) model. Under the null hypothesis, the constrained model fits the data as well as the full model. The LR test requires one to determine the maximal value of the log-likelihood function for both the constrained and the full models. See [PSS] power twoproportions and [R] lrtest.
linear discriminant analysis. Linear discriminant analysis (LDA) is a parametric form of discriminant analysis. In Fisher's (1936) approach to LDA, linear combinations of the discriminating variables provide maximal separation between the groups. The Mahalanobis (1936) formulation of LDA assumes that the observations come from multivariate normal distributions with equal covariance matrices. Also see discriminant analysis and parametric methods.
linear filter. A linear filter is a sequence of weights used to compute a weighted average of a time series at each time period. More formally, a linear filter $\alpha(L)$ is

$$
\alpha(L)=\alpha_{0}+\alpha_{1} L+\alpha_{2} L^{2}+\cdots=\sum_{\tau=0}^{\infty} \alpha_{\tau} L^{\tau}
$$

where $L$ is the lag operator. Applying the linear filter $\alpha(L)$ to the time series $x_{t}$ yields a sequence of weighted averages of $x_{t}$ :

$$
\alpha(L) x_{t}=\sum_{\tau=0}^{\infty} \alpha_{\tau} L^{\tau} x_{t-\tau}
$$

linear mixed model. See linear mixed-effects model.
linear mixed-effects model. A linear mixed-effects model is an extension of a linear model allowing for the inclusion of random deviations (effects).
linear regression. Linear regression is a kind of SEM in which there is a single equation. See [SEM] intro 5.
linearization. Linearization is short for Taylor linearization. Also known as the delta method or the Huber/White/robust sandwich variance estimator, linearization is a method for deriving an approximation to the variance of a point estimator, such as a ratio or regression coefficient. The linearized variance estimator is described in [SVY] variance estimation.
link function. See generalized linear response functions.
linkage. In cluster analysis, the linkage refers to the measure of proximity between groups or clusters.
listwise deletion, casewise deletion. Omitting from analysis observations containing missing values.

LMAX value. An LMAX value is an influence measure of the effect of deleting a subject on the overall coefficient vector and is based on an eigensystem analysis of efficient score residuals. Also see partial LMAX value.
LME model. See linear mixed-effects model.
loading. A loading is a coefficient or weight in a linear transformation. Loadings play an important role in many multivariate techniques, including factor analysis, PCA, MANOVA, LDA, and canonical correlations. In some settings, the loadings are of primary interest and are examined for interpretability. For many multivariate techniques, loadings are based on an eigenanalysis of a correlation or covariance matrix. Also see eigenvalues and eigenvector.
loading plot. A loading plot is a scatter plot of the loadings after LDA, factor analysis or PCA.
logistic discriminant analysis. Logistic discriminant analysis is a form of discriminant analysis based on the assumption that the likelihood ratios of the groups have an exponential form. Multinomial logistic regression provides the basis for logistic discriminant analysis. Because multinomial logistic regression can handle binary and continuous regressors, logistic discriminant analysis is also appropriate for binary and continuous discriminating variables. Also see discriminant analysis.
logit regression. Logit regression is a term for generalized linear response functions that are family Bernoulli, link logit. It is used for binary outcome data. Logit regression is also known as logistic regression and also simply as logit. See generalized linear response functions.
longitudinal data. Longitudinal data is another term for panel data. See also panel data.
long-memory process. A long-memory process is a stationary process whose autocorrelations decay at a slower rate than a short-memory process. ARFIMA models are typically used to represent long-memory processes, and ARMA models are typically used to represent short-memory processes.
LOO. See leave one out.
loss. Modern MDS is performed by minimizing a loss function, also called a loss criterion. The loss quantifies the difference between the disparities and the Euclidean distances.
Loss functions include Kruskal's stress and its square, both normalized with either disparities or distances, the strain criterion which is equivalent to classical metric scaling when the disparities equal the dissimilarities, and the Sammon (1969) mapping criterion which is the sum of the scaled, squared differences between the distances and the disparities, normalized by the sum of the disparities.

Also see multidimensional scaling, Kruskal stress, classical scaling, and disparity.
loss to follow-up. Subjects are lost to follow-up if they do not complete the course of the study for reasons unrelated to the event of interest. For example, loss to follow-up occurs if subjects move to a different area or decide to no longer participate in a study. Loss to follow-up should not be confused with administrative censoring. If subjects are lost to follow-up, the information about the outcome these subjects would have experienced at the end of the study, had they completed the study, is unavailable. Also see withdrawal, administrative censoring, and follow-up period or follow-up.
lower one-sided test, lower one-tailed test. A lower one-sided test is a one-sided test of a scalar parameter in which the alternative hypothesis is lower one sided, meaning that the alternative hypothesis states that the parameter is less than the value conjectured under the null hypothesis. Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.
Ival. lval stands for left-hand-side value and is defined as the property of being able to appear on the left-hand side of an equal-assignment operator. Matrices are lvals in Mata, and thus
is valid. Functions are not lvals; thus, you cannot code

```
substr(mystr,1,3) = "abc"
```

lvals would be easy to describe except that pointers can also be lvals. Few people ever use pointers. See [M-2] op_assignment for a complete definition.
$\mathbf{M}, \mathbf{m} . M$ is the number of imputations. $m$ refers to a particular imputation, $m=1,2, \ldots, M$. In $\mathrm{mi}, m=0$ is used to refer to the original data, the data containing the missing values. Thus mi data in effect contain $M+1$ datasets, corresponding to $m=0, m=1, \ldots$, and $m=M$.
machine precision. See epsilon(1), etc.
Mahalanobis distance. The Mahalanobis distance measure is a scale-invariant way of measuring distance. It takes into account the correlations of the dataset.
Mahalanobis transformation. The Mahalanobis transformation takes a Cholesky factorization of the inverse of the covariance matrix $\mathbf{S}^{-1}$ in the formula for Mahalanobis distance and uses it to transform the data. If we have the Cholesky factorization $\mathbf{S}^{-1}=\mathbf{L}^{\prime} \mathbf{L}$, then the Mahalanobis transformation of $\mathbf{x}$ is $\mathbf{z}=\mathbf{L x}$, and $\mathbf{z}^{\prime} \mathbf{z}=D_{M}^{2}(\mathbf{x})$.
main effects. These are average, additive effects that are associated with each level of each factor. For example, the main effect of level $j$ of a factor is the difference between the mean of all observations on the outcome of interest at level $j$ and the grand mean.

MANCOVA. MANCOVA is multivariate analysis of covariance. See multivariate analysis of variance.
manifest variables. Synonym for observed variables.
MANOVA. multivariate analysis of variance.
MAR. See missing at random.
marginal homogeneity. Marginal homogeneity refers to the equality of one or more row marginal proportions with the corresponding column proportions. Also see Introduction under Remarks and examples in [PSS] power pairedproportions.
marginal proportion. This represents a ratio of the number of observations in a row or column of a contingency table relative to the total number of observations. Also see Introduction under Remarks and examples in [PSS] power pairedproportions.

Markov chain Monte Carlo. A class of methods for simulating random draws from otherwise intractable multivariate distributions. The Markov chain has the desired distribution as its equilibrium distribution.
mass. In CA and MCA, the mass is the marginal probability. The sum of the mass over the active row or column categories equals 1 .
.mata file. By convention, we store the Mata source code for function function() in file function . mata; see [M-1] source.
matched case-control study. Also known as a retrospective study, a matched case-control study is a study in which persons with positive outcomes are each matched with one or more persons with negative outcomes but with similar characteristics.
matched study. In a matched study, an observation from one group is matched to an observation from another group with respect to one or more characteristics of interest. Also see paired data.
matching coefficient. The matching similarity coefficient is used to compare two binary variables. If $a$ is the number of observations that both have value 1 , and $d$ is the number of observations that both have value 0 , and $b, c$ are the number of $(1,0)$ and $(0,1)$ observations, respectively, then the matching coefficient is given by

$$
\frac{a+d}{a+b+c+d}
$$

Also see similarity measure.
matching configuration. In MDS, the matching configuration is the low dimensional configuration whose distances approximate the high-dimensional dissimilarities or disparities. Also see multidimensional scaling, dissimilarity, and disparity.
matching configuration plot. After MDS, this is a scatter plot of the matching configuration.
matching estimator. An estimator that compares differences between the outcomes of similar-that is, matched-individuals. Each individual that receives a treatment is matched to a similar individual that does not get the treatment, and the difference in their outcomes is used to estimate the individual-level treatment effect. Likewise, each individual that does not receive a treatment is matched to a similar individual that does get the treatment, and the difference in their outcomes is used to estimate the individual-level treatment effect.
matrix. The most general organization of data, containing $r$ rows and $c$ columns. Vectors, column vectors, row vectors, and scalars are special cases of matrices.
maximum likelihood factor method. The maximum likelihood factor method is a method for performing factor analysis that assumes multivariate normal observations. It maximizes the determinant of the partial correlation matrix; thus, this solution is also meaningful as a descriptive method for nonnormal data. Also see factor analysis.

MCA. See multiple correspondence analysis.
MCAGH. See mode-curvature adaptive Gauss-Hermite quadrature.
MCAR. See missing completely at random.
MCE. See Monte Carlo error.
MCMC. See Markov chain Monte Carlo.
McNemar's test. McNemar's test is a test used to compare two dependent binary populations. The null hypothesis is formulated in the context of a $2 \times 2$ contingency table as a hypothesis of marginal homogeneity. See [PSS] power pairedproportions and [ST] epitab.

MDES. See minimum detectable effect size.
MDS. See multidimensional scaling.
MDS configuration plot. See configuration plot.
mean contrasts. See contrasts.
mean-variance adaptive Gauss-Hermite quadrature. In the context of generalized linear mixed models, mean-variance adaptive Gauss-Hermite quadrature is a method of approximating the integral used in the calculation of the log likelihood. The quadrature locations and weights for individual clusters are updated during the optimization process by using the posterior mean and the posterior standard deviation.
measure. A measure is a quantity representing the proximity between objects or method for determining the proximity between objects. Also see proximity.
measure, measurement, $\mathbf{x}$ a measurement of $\mathbf{X}$, $\mathbf{x}$ measures $\mathbf{X}$. See measurement variables.
measurement models, measurement component. A measurement model is a particular kind of model that deals with the problem of translating observed values to values suitable for modeling. Measurement models are often combined with structural models and then the measurement model part is referred to as the measurement component. See [SEM] intro 5.
measurement variables, measure, measurement, $\mathbf{x}$ a measurement of $\mathbf{X}, \mathbf{x}$ measures $\mathbf{X}$. Observed variable $x$ is a measurement of latent variable $X$ if there is a path connecting $x \leftarrow X$. Measurement variables are modeled by measurement models. Measurement variables are also called indicator variables.
median-linkage clustering. Median-linkage clustering is a hierarchical clustering method that uses the distance between the medians of two groups to determine the similarity or dissimilarity of the two groups. Also see cluster analysis and agglomerative hierarchical clustering methods.

MEFF and MEFT. MEFF and MEFT are misspecification effects. Misspecification effects compare the variance estimate from a given survey dataset with the variance from a misspecified model. In Stata, the misspecified model is fit without weighting, clustering, or stratification.

MEFF is the ratio of two variance estimates. The design-based variance is in the numerator; the misspecified variance is in the denominator.

MEFT is the ratio of two standard-error estimates. The design-based standard error is in the numerator; the misspecified standard error is in the denominator. MEFT is the square root of MEFF.
method. Method is just an English word and should be read in context. Nonetheless, method is used here usually to refer to the method used to solve for the fitted parameters of an SEM. Those methods are ML, QML, MLMV, and ADF. Also see technique.
metric scaling. Metric scaling is a type of MDS, in which the dissimilarities are transformed to disparities via a class of known functions. This is contrasted to nonmetric scaling. Also see multidimensional scaling.
mi data. Any data that have been mi set (see [MI] mi set), whether directly by mi set or indirectly by mi import (see [MI] mi import). The mi data might have no imputations (have $M=0$ ) and no imputed variables, at least yet, or they might have $M>0$ and no imputed variables, or vice versa. An mi dataset might have $M>0$ and imputed variables, but the missing values have not yet been replaced with imputed values. Or mi data might have $M>0$ and imputed variables and the missing values of the imputed variables filled in with imputed values.

MIMIC. See multiple indicators and multiple causes.
minimum detectable effect size. The minimum detectable effect size is the smallest effect size that can be detected by hypothesis testing for a given power and sample size.
minimum detectable value. The minimum detectable value represents the smallest amount or concentration of a substance that can be reliably measured.
minimum entropy rotation. The minimum entropy rotation is an orthogonal rotation achieved by minimizing the deviation from uniformity (entropy). The minimum entropy criterion (Jennrich 2004) is

$$
c(\boldsymbol{\Lambda})=-\frac{1}{2}\left\langle\boldsymbol{\Lambda}^{2}, \log \boldsymbol{\Lambda}^{2}\right\rangle
$$

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$. Also see orthogonal rotation.
misclassification rate. The misclassification rate calculated after discriminant analysis is, in its simplest form, the fraction of observations incorrectly classified. See discriminant analysis.
missing at random. Missing data are said to be missing at random (MAR) if the probability that data are missing does not depend on unobserved data but may depend on observed data. Under MAR, the missing-data values do not contain any additional information given observed data about the missing-data mechanism. Thus the process that causes missing data can be ignored.
missing completely at random. Missing data are said to be missing completely at random (MCAR) if the probability that data are missing does not depend on observed or unobserved data. Under MCAR, the missing data values are a simple random sample of all data values, so any analysis that discards the missing values remains consistent, albeit perhaps inefficient.
missing not at random. Missing data are missing not at random (MNAR) if the probability that data are missing depends on unobserved data. Under MNAR, a missing-data mechanism (the process that causes missing data) must be modeled to obtain valid results.
misspecification effects. See MEFF and MEFT.
mixed design. A mixed design is an experiment that has at least one between-subjects factor and one within-subject factor. See [PSS] power repeated.
mixed model. See mixed-effects model.
mixed-effects model. A mixed-effects model contains both fixed and random effects. The fixed effects are estimated directly, whereas the random effects are summarized according to their (co)variances. Mixed-effects models are used primarily to perform estimation and inference on the regression coefficients in the presence of complicated within-subject correlation structures induced by multiple levels of grouping.

ML, method(ml). ML stands for maximum likelihood. It is a method to obtain fitted parameters. ML is the default method used by sem and gsem. Other available methods for sem are QML, MLMV, and ADF. Also available for gsem is QML.
.mlib library. The object code of functions can be collected and stored in a library. Most Mata functions, in fact, are located in the official libraries provided with Stata. You can create your own libraries. See [M-3] mata mlib.
MLMV, method(mlmv). MLMV stands for maximum likelihood with missing values. It is an ML method used to obtain fitted parameters in the presence of missing values. MLMV is the method used by sem when the method (mlmv) option is specified; method (mlmv) is not available with gsem. Other available methods for use with sem are ML, QML, and ADF. These methods omit from the calculation observations that contain missing values.
mlong data. See style.
MNAR. See missing not at random.
.mo file. The object code of a function can be stored in a .mo file, where it can be later reused. See [M-1] how and [M-3] mata mosave.
mode-curvature adaptive Gauss-Hermite quadrature. In the context of generalized linear mixed models, mode-curvature adaptive Gauss-Hermite quadrature is a method of approximating the integral used in the calculation of the log likelihood. The quadrature locations and weights for individual clusters are updated during the optimization process by using the posterior mode and the standard deviation of the normal density that approximates the $\log$ posterior at the mode.
modern scaling. Modern scaling is a form of MDS that is achieved via the minimization of a loss function that compares the disparities (transformed dissimilarities) in the higher-dimensional space and the distances in the lower-dimensional space. Contrast to classical scaling. Also see dissimilarity, disparity, multidimensional scaling, and loss.
modification indices. Modification indices are score tests for adding paths where none appear. The paths can be for either coefficients or covariances.
moments (of a distribution). The moments of a distribution are the expected values of powers of a random variable or centralized (demeaned) powers of a random variable. The first moments are
the expected or observed means, and the second moments are the expected or observed variances and covariances.
monadic operator. Synonym for unary operator.
monotone-missing pattern, monotone missingness. A special pattern of missing values in which if the variables are ordered from least to most missing, then all observations of a variable contain missing in the observations in which the prior variable contains missing.

Monte Carlo error. Within the multiple-imputation context, a Monte Carlo error is defined as the standard deviation of the multiple-imputation results across repeated runs of the same imputation procedure using the same data. The Monte Carlo error is useful for evaluating the statistical reproducibility of multiple-imputation results. See Example 6: Monte Carlo error estimates under Remarks and examples of [MI] mi estimate.
moving-average process. A moving-average process is a time-series process in which the current value of a variable is modeled as a weighted average of current and past realizations of a whitenoise process and, optionally, a time-invariant constant. By convention, the weight on the current realization of the white-noise process is equal to one, and the weights on the past realizations are known as the moving-average (MA) coefficients. A first-order moving-average process, denoted as an MA(1) process, is $y_{t}=\theta \epsilon_{t-1}+\epsilon_{t}$.
multiarm trial. A multiarm trial is a trial comparing survivor functions of more than two groups.
multidimensional scaling. Multidimensional scaling (MDS) is a dimension-reduction and visualization technique. Dissimilarities (for instance, Euclidean distances) between observations in a highdimensional space are represented in a lower-dimensional space which is typically two dimensions so that the Euclidean distance in the lower-dimensional space approximates in some sense the dissimilarities in the higher-dimensional space. Often the higher-dimensional dissimilarities are first transformed to disparities, and the disparities are then approximated by the distances in the lower-dimensional space. Also see dissimilarity, disparity, classical scaling, loss, modern scaling, metric scaling, and nonmetric scaling.
multilevel models. Multilevel models are models that include unobserved effects (latent variables) for different groups in the data. For instance, in a dataset of students, groups of students might share the same teacher. If the teacher's identity is recorded in the data, then one can introduce a latent variable that is constant within teacher and that varies across teachers. This is called a two-level model.

If teachers could in turn be grouped into schools, and school identities were recorded in the data, then one can introduce another latent variable that is constant within school and varies across schools. This is called a three-level (nested-effects) model.

In the above example, observations (students) are said to be nested within teacher nested within school. Sometimes there is no such subsequent nesting structure. Consider workers nested within occupation and industry. The same occupations appear in various industries and the same industries appear within various occupations. We can still introduce latent variables at the occupation and industry level. In such cases, the model is called a crossed-effects model.
The latent variables that we have discussed are also known as random effects. Any coefficients on observed variables in the model are known as the fixed portion of the model. Models that contain fixed and random portions are known as mixed-effects models.
multinomial logit regression. Multinomial logit regression is a term for generalized linear response functions that are family multinomial, link logit. It is used for categorical-outcome data when the outcomes cannot be ordered. Multinomial logit regression is also known as multinomial logistic regression and as mlogit in Stata circles. See generalized linear response functions.
multiple correlation. The multiple correlation is the correlation between endogenous variable $y$ and its linear prediction.
multiple correspondence analysis. Multiple correspondence analysis (MCA) and joint correspondence analysis (JCA) are methods for analyzing observations on categorical variables. MCA and JCA analyze a multiway table and are usually viewed as an extension of CA. Also see correspondence analysis.
multiple indicators and multiple causes. Multiple indicators and multiple causes is a kind of structural model in which observed causes determine a latent variable, which in turn determines multiple indicators. See [SEM] intro 4.
multiple-record st data. See st data.
multivalued treatment effect. A multivalued treatment refers to a treatment that has more than two values. For example, a person could have taken a 20 mg dose of a drug, a 40 mg dose of the drug, or not taken the drug at all.
multivariate analysis of covariance. See multivariate analysis of variance.
multivariate analysis of variance. Multivariate analysis of variance (MANOVA) is used to test hypotheses about means. Four multivariate statistics are commonly computed in manOva: Wilks' lambda, Pillai's trace, Lawley-Hotelling trace, and Roy's largest root. Also see Wilks' lambda, Pillai's trace, Lawley-Hotelling trace, and Roy's largest root.
multivariate GARCH models. Multivariate GARCH models are multivariate time-series models in which the conditional covariance matrix of the errors depends on its own past and its past shocks. The acute trade-off between parsimony and flexibility has given rise to a plethora of models; see [TS] mgarch.
multivariate regression. A multivariate regression is a linear regression model in which the regressand is vector valued. Equivalently, a mutivariate regression is a linear regression model in which multiple left-hand-side variables are regressed on the same set of explanatory variables simultaneously, allowing the disturbance terms to be contemporaneously correlated. Multivariate regression is a special case of seemingly unrelated regression in which all equations share the same set of explanatory variables.

MVAGH. See mean-variance adaptive Gauss-Hermite quadrature.
NaN. NaN stands for Not a Number and is a special computer floating-point code used for results that cannot be calculated. Mata (and Stata) do not use NaNs. When NaNs arise, they are converted into . (missing value).
nearest neighbor. See kth nearest neighbor.
nearest-neighbor matching. Nearest-neighbor matching uses the distance between observed variables to find similar individuals.
negative binomial regression. Negative binomial regression is a term for generalized linear response functions that are family negative binomial, link log. It is used for count data that are overdispersed relative to Poisson. Negative binomial regression is also known as nbreg in Stata circles. See generalized linear response functions.
negative binomial regression model. The negative binomial regression model is for applications in which the dependent variable represents the number of times an event occurs. The negative binomial regression model is an alternative to the Poisson model for use when the dependent variable is overdispersed, meaning that the variance of the dependent variable is greater than its mean.
negative effect size. In power and sample-size analysis, we obtain a negative effect size when the postulated value of the parameter under the alternative hypothesis is less than the hypothesized value of the parameter under the null hypothesis. Also see positive effect size.
nested random effects. In the context of mixed-effects models, nested random effects refer to the nested grouping factors for the random effects. For example, we may have data on students who are nested in classes that are nested in schools.
nested-effects models. See multilevel models.
Newey-West covariance matrix. The Newey-West covariance matrix is a member of the class of heteroskedasticity- and autocorrelation-consistent (HAC) covariance matrix estimators used with time-series data that produces covariance estimates that are robust to both arbitrary heteroskedasticity and autocorrelation up to a prespecified lag.
nominal alpha, nominal significance level. This is a desired or requested significance level.
noncentrality parameter. In power and sample-size analysis, a noncentrality parameter is the expected value of the test statistic under the alternative hypothesis.
nondirectional test. See two-sided test.
nonmetric scaling. Nonmetric scaling is a type of modern MDS in which the dissimilarities may be transformed to disparities via any monotonic function as opposed to a class of known functions. Contrast to metric scaling. Also see multidimensional scaling, dissimilarity, disparity, and modern scaling.
nonparametric methods. Nonparametric statistical methods, such as KNN discriminant analysis, do not assume the population fits any parameterized distribution.
nonrecursive (structural) model (system), recursive (structural) model (system). A structural model (system) is said to be nonrecursive if there are paths in both directions between one or more pairs of endogenous variables. A system is recursive if it is a system-it has endogenous variables that appear with paths from them-and it is not nonrecursive.
A nonrecursive model may be unstable. Consider, for instance,

$$
\begin{aligned}
& y_{1}=2 y_{2}+1 x_{1}+e_{1} \\
& y_{2}=3 y_{1}-2 x_{2}+e_{2}
\end{aligned}
$$

This model is unstable. To see this, without loss of generality, treat $x_{1}+e_{1}$ and $2 x_{2}+e_{2}$ as if they were both 0 . Consider $y_{1}=1$ and $y_{2}=1$. Those values result in new values $y_{1}=2$ and $y_{2}=3$, and those result in new values $y_{1}=6$ and $y_{2}=6$, and those result in new values, $\ldots$. Continue in this manner, and you reach infinity for both endogenous variables. In the jargon of the mathematics used to check for this property, the eigenvalues of the coefficient matrix lie outside the unit circle.

On the other hand, consider these values:

$$
\begin{aligned}
& y_{1}=0.5 y_{2}+1 x_{1}+e_{1} \\
& y_{2}=1.0 y_{1}-2 x_{2}+e_{2}
\end{aligned}
$$

These results are stable in that the resulting values converge to $y_{1}=0$ and $y_{2}=0$. In the jargon of the mathematics used to check for this property, the eigenvalues of the coefficients matrix lie inside the unit circle. Finally, consider the values

$$
\begin{aligned}
& y_{1}=0.5 y_{2}+1 x_{1}+e_{1} \\
& y_{2}=2.0 y_{1}-2 x_{2}+e_{2}
\end{aligned}
$$

Start with $y_{1}=1$ and $y_{2}=1$ and that yields new values $y_{1}=0.5$ and $y_{2}=2$ and that yields new values $y_{1}=1$ and $y_{2}=1$, and that yields $y_{1}=0.5$ and $y_{2}=2$, and it will oscillate forever. In the jargon of the mathematics used to check for this property, the eigenvalues of the coefficients matrix lie on the unit circle. These coefficients are also considered to be unstable.
nonsphericity correction. This is a correction used for the degrees of freedom of a regular $F$ test in a repeated-measures ANOVA to compensate for the lack of sphericity of the repeated-measures covariance matrix.
norm. A norm is a real-valued function $f(x)$ satisfying

$$
\begin{array}{ll}
f(0) & =0 \\
f(x) & >0 \\
f(c x) & =|c| f(x) \\
f(x+y) & \leq f(x)+f(y)
\end{array} \quad \text { for all } x \neq 0
$$

The word norm applied to a vector $x$ usually refers to its Euclidean norm, $p=2$ norm, or length: the square root of the sum of its squared elements. The are other norms, the popular ones being $p=$ 1 (the sum of the absolute values of its elements) and $p=$ infinity (the maximum element). Norms can also be generalized to deal with matrices. See [M-5] norm().
normality assumption, joint and conditional. The derivation of the standard, linear SEM estimator usually assumes the full joint normality of the observed and latent variables. However, full joint normality can replace the assumption of normality conditional on the values of the exogenous variables, and all that is lost is one goodness-of-fit test (the test reported by sem on the output) and the justification for use of optional method MLMV for dealing with missing values. This substitution of assumptions is important for researchers who cannot reasonably assume normality of the observed variables. This includes any researcher including, say, variables age and age-squared in his or her model.

Meanwhile, the generalized SEM makes only the conditional normality assumption.
Be aware that even though the full joint normality assumption is not required for the standard linear SEM, sem calculates the log-likelihood value under that assumption. This is irrelevant except that log-likelihood values reported by sem cannot be compared with log-likelihood values reported by gsem, which makes the lesser assumption.
See [SEM] intro 4.
normalization. Normalization presents information in a standard form for interpretation. In CA the row and column coordinates can be normalized in different ways depending on how one wishes to interpret the data. Normalization is also used in rotation, MDS, and MCA.
normalization constraints. See identification.
normalized residuals. See standardized residuals.
NULL. A special value for a pointer that means "points to nothing". If you list the contents of a pointer variable that contains NULL, the address will show as $0 x 0$. See pointer.
null hypothesis. In hypothesis testing, the null hypothesis typically represents the conjecture that one is attempting to disprove. Often the null hypothesis is that a treatment has no effect or that a statistic is equal across populations.
null value, null parameter. This value of the parameter of interest under the null hypothesis is fixed by the investigator in a power and sample-size analysis. For example, null mean value and null mean refer to the value of the mean parameter under the null hypothesis.
numeric. A matrix is said to be numeric if its elements are real or complex; see type, eltype, and orgtype.
object code. Object code refers to the binary code that Mata produces from the source code you type as input. See [M-1] how.
object-oriented programming. Object-oriented programming is a programming concept that treats programming elements as objects and concentrates on actions affecting those objects rather than merely on lists of instructions. Object-oriented programming uses classes to describe objects. Classes are much like structures with a primary difference being that classes can contain functions (known as methods) as well as variables. Unlike structures, however, classes may inherit variables and functions from other classes, which in theory makes object-oriented programs easier to extend and modify than non-object-oriented programs.
oblimax rotation. Oblimax rotation is a method for oblique rotation which maximizes the number of high and low loadings. When restricted to orthogonal rotation, oblimax is equivalent to quartimax rotation. Oblimax minimizes the oblimax criterion

$$
c(\boldsymbol{\Lambda})=-\log \left(\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\right\rangle\right)+2 \log (\langle\boldsymbol{\Lambda}, \boldsymbol{\Lambda}\rangle)
$$

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$. Also see oblique rotation, orthogonal rotation, and quartimax rotation.
oblimin rotation. Oblimin rotation is a general method for oblique rotation, achieved by minimizing the oblimin criterion

$$
c(\boldsymbol{\Lambda})=\frac{1}{4}\left\langle\boldsymbol{\Lambda}^{2},\left\{\mathbf{I}-(\gamma / p) \mathbf{1 1}^{\prime}\right\} \boldsymbol{\Lambda}^{2}\left(\mathbf{1 1}^{\prime}-\mathbf{I}\right)\right\rangle
$$

Oblimin has several interesting special cases:

| $\gamma$ | Special case |
| :--- | :--- |
| 0 | quartimax / quartimin |
| $1 / 2$ | biquartimax / biquartimin |
| 1 | varimax / covarimin |
| $p / 2$ | equamax |
| $p=$ number of rows of $\mathbf{A}$. |  |

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$ and $\mathbf{A}$. Also see oblique rotation.
oblique rotation or oblique transformation. An oblique rotation maintains the norms of the rows of the matrix but not their inner products. In geometric terms, this maintains the lengths of vectors, but not the angles between them. In contrast, in orthogonal rotation, both are preserved.
observational data. In observational data, treatment assignment is not controlled by those who collected the data; thus some common variables affect treatment assignment and treatment-specific outcomes.
observational study. In an observational study, as opposed to an experimental study, the assignment of subjects to treatments happens naturally and is thus beyond the control of investigators. Investigators can only observe subjects and measure their characteristics. For example, a study that evaluates the effect of exposure of children to household pesticides is an observational study.
observations and variables. A dataset containing $n$ observations on $k$ variables in often stored in an $n \times k$ matrix. An observation refers to a row of that matrix; a variable refers to a column.
observed level of significance. See $p$-value.
observed variables. A variable is observed if it is a variable in your dataset. In this documentation, we often refer to observed variables by using $\mathrm{x} 1, \mathrm{x} 2, \ldots, \mathrm{y} 1$, y 2 , and so on; in reality, observed variables have names such as mpg, weight, testscore, etc.
In the software, observed variables are usually indicated by having names that are all lowercase. Also see latent variable.
odds and odds ratio. The odds in favor of an event are $o=p /(1-p)$, where $p$ is the probability of the event. Thus if $p=0.2$, the odds are 0.25 , and if $p=0.8$, the odds are 4 .
The $\log$ of the odds is $\ln (o)=\operatorname{logit}(p)=\ln \{p /(1-p)\}$, and logistic-regression models, for instance, fit $\ln (o)$ as a linear function of the covariates.
The odds ratio is a ratio of two odds: $o_{1} / o_{0}$. The individual odds that appear in the ratio are usually for an experimental group and a control group, or two different demographic groups.
offset variable and exposure variable. An offset variable is a variable that is to appear on the right-hand side of a model with coefficient 1 :

$$
y_{j}=\operatorname{offset}_{j}+b_{0}+b_{1} x_{j}+\cdots
$$

In the above, $b_{0}$ and $b_{1}$ are to be estimated. The offset is not constant. Offset variables are often included to account for the amount of exposure. Consider a model where the number of events observed over a period is the length of the period multiplied by the number of events expected in a unit of time:

$$
n_{j}=T_{j} e\left(X_{j}\right)
$$

When we take logs, this becomes

$$
\log \left(n_{j}\right)=\log \left(T_{j}\right)+\log \left\{e\left(X_{j}\right)\right\}
$$

$\ln \left(T_{j}\right)$ is an offset variable in this model.
When the log of a variable is an offset variable, the variable is said to be an exposure variable. In the above, $T_{j}$ is an exposure variable.
OIM, vce(oim). OIM stands for observed information matrix, defined as the inverse of the negative of the matrix of second derivatives, usually of the log likelihood function. The OIM is an estimate of the VCE. OIM is the default VCE that sem and gsem report. The other available techniques are EIM, OPG, robust, clustered, bootstrap, and jackknife.
one-level model. A one-level model has no multilevel structure and no random effects. Linear regression is a one-level model.
one-sample test. A one-sample test compares a parameter of interest from one sample with a reference value. For example, a one-sample mean test compares a mean of the sample with a reference value.
one-sided test, one-tailed test. A one-sided test is a hypothesis test of a scalar parameter in which the alternative hypothesis is one sided, meaning that the alternative hypothesis states that the parameter is either less than or greater than the value conjectured under the null hypothesis but not both. Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.
one-step-ahead forecast. See static forecast.
one-way ANOVA, one-way analysis of variance. A one-way ANOVA model has a single factor. Also see [PSS] power oneway.
one-way repeated-measures ANOVA. A one-way repeated-measures ANOVA model has a single within-subject factor. Also see [PSS] power repeated.
operator. An operator is,+- , and the like. Most operators are binary (or dyadic), such as + in $A+B$ and $*$ in $C * D$. Binary operators also include logical operators such as \& and | ("and" and "or") in $E \& F$ and $G \mid H$. Other operators are unary (or monadic), such as ! (not) in ! $J$, or both unary and binary, such as - in $-K$ and in $L-M$. When we say "operator" without specifying which, we mean binary operator. Thus colon operators are in fact colon binary operators. See [M-2] exp.
OPG, vce(opg). OPG stands for outer product of the gradients, defined as the cross product of the observation-level first derivatives, usually of the log likelihood function. The OPG is an estimate of the VCE. The other available techniques are OIM, EIM, robust, clustered, bootstrap, and jackknife.
optimization. Mata compiles the code that you write. After compilation, Mata performs an optimization step, the purpose of which is to make the compiled code execute more quickly. You can turn off the optimization step-see [M-3] mata set-but doing so is not recommended.
ordered complementary log-log regression. Ordered complementary log-log regression is a term for generalized linear response functions that are family ordinal, link cloglog. It is used for ordinal-outcome data. Ordered complementary log-log regression is also known as ocloglog in Stata circles. See generalized linear response functions.
ordered logit regression. Ordered logit regression is a term for generalized linear response functions that are family ordinal, link logit. It is used for ordinal outcome data. Ordered logit regression is also known as ordered logistic regression, as just ordered logit, and as ologit in Stata circles. See generalized linear response functions.
ordered probit regression. Ordered probit regression is a term for generalized linear response functions that are family ordinal, link probit. It is used for ordinal-outcome data. Ordered probit regression is also known as just ordered probit and known as oprobit in Stata circles. See generalized linear response functions.
ordination. Ordination is the ordering of a set of data points with respect to one or more axes. MDS is a form of ordination.
orgtype. See type, eltype, and orgtype.
original data. Original data are the data as originally collected, with missing values in place. In mi data, the original data are stored in $m=0$. The original data can be extracted from mi data by using mi extract; see [MI] mi extract.
orthogonal matrix and unitary matrix. $A$ is orthogonal if $A$ is square and $A^{\prime} A==I$. The word orthogonal is usually reserved for real matrices; if the matrix is complex, it is said to be unitary (and then transpose means conjugate-transpose). We use the word orthogonal for both real and complex matrices.
If $A$ is orthogonal, then $\operatorname{det}(A)= \pm 1$.
orthogonal rotation or orthogonal transformation. Orthogonal rotation maintains both the norms of the rows of the matrix and also inner products of the rows of the matrix. In geometric terms, this maintains both the lengths of vectors and the angles between them. In contrast, oblique rotation maintains only the norms, that is, the lengths of vectors.
orthogonalized impulse-response function. An orthogonalized impulse-response function (OIRF) measures the effect of an orthogonalized shock to an endogenous variable on itself or another
endogenous variable. An orthogonalized shock is one that affects one variable at time $t$ but no other variables. See [TS] irf create for a discussion of the difference between IRFs and OIRFs.
outcome model. An outcome model is a model used to predict the outcome as a function of covariates and parameters.
overdispersion. In count-data models, overdispersion occurs when there is more variation in the data than would be expected if the process were Poisson.
overidentifying restrictions. The order condition for model identification requires that the number of exogenous variables excluded from the model be at least as great as the number of endogenous regressors. When the number of excluded exogenous variables exceeds the number of endogenous regressors, the model is overidentified, and the validity of the instruments can then be checked via a test of overidentifying restrictions.
overlap assumption. The overlap assumption requires that each individual have a positive probability of each possible treatment level.
paired data. Paired data consist of pairs of observations that share some characteristics of interest. For example, measurements on twins, pretest and posttest measurements, before and after measurements, repeated measurements on the same individual. Paired data are correlated and thus must be analyzed by using a paired test.
paired observations. See paired data.
paired test. A paired test is used to test whether the parameters of interest of two paired populations are equal. The test takes into account the dependence between measurements. For this reason, paired tests are usually more powerful than their two-sample counterparts. For example, a paired-means or paired-difference test is used to test whether the means of two paired (correlated) populations are equal.
panel data. Panel data are data in which the same units were observed over multiple periods. The units, called panels, are often firms, households, or patients who were observed at several points in time. In a typical panel dataset, the number of panels is large, and the number of observations per panel is relatively small.
panel-corrected standard errors (PCSEs). The term panel-corrected standard errors refers to a class of estimators for the variance-covariance matrix of the OLS estimator when there are relatively few panels with many observations per panel. PCSEs account for heteroskedasticity, autocorrelation, or cross-sectional correlation.
parameter constraints. Parameter constraints are restrictions placed on the parameters of the model. These constraints are typically in the form of 0 constraints and equality constraints. A 0 constraint is implied, for instance, when no path is drawn connecting $x$ with $y$. An equality constraint is specified when one path coefficient is forced to be equal to another or one covariance is forced to be equal to another.

Also see identification.
parameters, ancillary parameters. The parameters are the to-be-estimated coefficients of a model. These include all path coefficients, means, variances, and covariances. In mathematical notation, the theoretical parameters are often written as $\boldsymbol{\theta}=(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\alpha}$ is the vector of intercepts, $\boldsymbol{\beta}$ is the vector of path coefficients, $\boldsymbol{\mu}$ is the vector of means, and $\boldsymbol{\Sigma}$ is the matrix of variances and covariances. The resulting parameters estimates are written as $\widehat{\boldsymbol{\theta}}$.
Ancillary parameters are extra parameters beyond the ones just described that concern the distribution. These include the scale parameter of gamma regression, the dispersion parameter for negative binomial regression, and the cutpoints for ordered probit, logit, and cloglog regression, and the like. These parameters are also included in $\theta$.
parametric methods. Parametric statistical methods, such as LDA and QDA, assume the population fits a parameterized distribution. For example, for LDA we assume the groups are multivariate normal with equal covariance matrices.
parsimax rotation. Parsimax rotation is an orthogonal rotation that balances complexity between the rows and the columns. It is equivalent to the Crawford-Ferguson family with $\kappa=(f-1) /(p+f-2)$, where $p$ is the number of rows of the original matrix, and $f$ is the number of columns. See orthogonal rotation and Crawford-Ferguson rotation.
partial autocorrelation function. The partial autocorrelation function (PACF) expresses the correlation between periods $t$ and $t-k$ of a time series as a function of the time $t$ and lag $k$, after controlling for the effects of intervening lags. For a stationary time series, the PACF does not depend on $t$. The PACF is not symmetric about $k=0$ : the partial autocorrelation between $y_{t}$ and $y_{t-k}$ is not equal to the partial autocorrelation between $y_{t}$ and $y_{t+k}$.
partial DFBETA. A partial DFBETA measures the change in the regressor's coefficient because of deletion of that individual record. In single-record data, the partial DFBETA is equal to the DFBETA. Also see DFBETA.
partial likelihood displacement value. A partial likelihood displacement value is an influence measure of the effect of deleting an individual record on the coefficient vector. For single-record data, the partial likelihood displacement value is equal to the likelihood displacement value. Also see likelihood displacement value.
partial LMAX value. A partial LMAX value is an influence measure of the effect of deleting an individual record on the overall coefficient vector and is based on an eigensystem analysis of efficient score residuals. In single-record data, the partial LMAX value is equal to the LMAX value. Also see LMAX value.
partially specified target rotation. Partially specified target rotation minimizes the criterion

$$
c(\boldsymbol{\Lambda})=\|\mathbf{W} \otimes(\boldsymbol{\Lambda}-\mathbf{H})\|^{2}
$$

for a given target matrix $\mathbf{H}$ and a nonnegative weighting matrix $\mathbf{W}$ (usually zero-one valued). See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$.
partition clustering and partition cluster-analysis methods. Partition clustering methods break the observations into a distinct number of nonoverlapping groups. This is accomplished in one step, unlike hierarchical cluster-analysis methods, in which an iterative procedure is used. Consequently, this method is quicker and will allow larger datasets than the hierarchical clustering methods. Contrast to hierarchical clustering. Also see kmeans and kmedians.
passive variable. See imputed, passive, and regular variables.
past history. Past history is information recorded about a subject before the subject was both at risk and under observation. Consider a dataset that contains information on subjects from birth to death and an analysis in which subjects became at risk once diagnosed with a particular kind of cancer. The past history on the subject would then refer to records before the subjects were diagnosed.

The word history is often dropped, and the term becomes simply past. For instance, we might want to know whether a subject smoked in the past.
Also see future history.
path. A path, typically shown as an arrow drawn from one variable to another, states that the first variable determines the second variable, at least partially. If $x \rightarrow y$, or equivalently $y \leftarrow x$, then $y_{j}=\alpha+\cdots+\beta x_{j}+\cdots+e . y_{j}$, where $\beta$ is said to be the $x \rightarrow y$ path coefficient. The ellipses are included to account for paths to $y$ from other variables. $\alpha$ is said to be the intercept and is automatically added when the first path to $y$ is specified.

A curved path is a curved line connecting two variables, and it specifies that the two variables are allowed to be correlated. If there is no curved path between variables, the variables are usually assumed to be uncorrelated. We say usually because correlation is assumed among observed exogenous variables and, in the command language, assumed among latent exogenous variables, and if some of the correlations are not desired, they must be suppressed. Many authors refer to covariances rather than correlations. Strictly speaking, the curved path denotes a nonzero covariance. A correlation is often called a standardized covariance.

A curved path can connect a variable to itself and in that case, indicates a variance. In path diagrams in this manual, we typically do not show such variance paths even though variances are assumed.
path coefficient. The path coefficient is associated with a path; see path. Also see intercept.
path diagram. A path diagram is a graphical representation that shows the relationships among a set of variables using paths. See [SEM] intro 2 for a description of path diagrams.
path notation. Path notation is a syntax defined by the authors of Stata's sem and gsem commands for entering path diagrams in a command language. Models to be fit may be specified in path notation or they may be drawn using path diagrams into the Builder.
PCA. See principal component analysis.
p-conformability. Matrix, vector, or scalar $A$ is said to be p-conformable with matrix, vector, or scalar $B$ if $\operatorname{rows}(A)==\operatorname{rows}(B)$ and $\operatorname{cols}(A)==\operatorname{cols}(B)$. $p$ stands for plus; p-conformability is one of the properties necessary to be able to add matrices together. p-conformability, however, does not imply that the matrices are of the same type. Thus ( $1,2,3$ ) is p-conformable with $(4,5,6)$ and with ("this", "that", "what") but not with (4\5\6).
Pearson's correlation. Pearson's correlation $\rho$, also known as the product-moment correlation, measures the degree of association between two variables. Pearson's correlation equals the variables' covariance divided by their respective standard deviations, and ranges between -1 and 1 . Zero indicates no correlation between the two variables.
penalized log-likelihood function. This is a log-likelihood function that contains an added term, usually referred to as a roughness penalty, that reduces its value when the model overfits the data. In Cox models with frailty, such functions are used to prevent the variance of the frailty from growing too large, which would allow the individual frailty values to perfectly fit the data.
periodogram. A periodogram is a graph of the spectral density function of a time series as a function of frequency. The pergram command first standardizes the amplitude of the density by the sample variance of the time series, and then plots the logarithm of that standardized density. Peaks in the periodogram represent cyclical behavior in the data.
permutation matrix and permutation vector. A permutation matrix is an $n \times n$ matrix that is a row (or column) permutation of the identity matrix. If $P$ is a permutation matrix, then $P * A$ permutes the rows of $A$ and $A * P$ permutes the columns of $A$. Permutation matrices also have the property that $P^{-1}=P^{\prime}$.

A permutation vector is a $1 \times n$ or $n \times 1$ vector that contains a permutation of the integers 1 , $2, \ldots, n$. Permutation vectors can be used with subscripting to reorder the rows or columns of a matrix. Permutation vectors are a memory-conserving way of recording permutation matrices; see [M-1] permutation.
phase function. The phase function of a linear filter specifies how the filter changes the relative importance of the random components at different frequencies in the frequency domain.

Pillai's trace. Pillai's trace is a test statistic for the hypothesis test $H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{k}$ based on the eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ of $\mathbf{E}^{-1} \mathbf{H}$. It is defined as

$$
V^{(s)}=\operatorname{trace}\left[(\mathbf{E}+\mathbf{H})^{-1} \mathbf{H}\right]=\sum_{i=1}^{s} \frac{\lambda_{i}}{1+\lambda_{i}}
$$

where $\mathbf{H}$ is the between matrix and $\mathbf{E}$ is the within matrix. See between matrix.
point estimate. A point estimate is another name for a statistic, such as a mean or regression coefficient.
pointer. A matrix is said to be a pointer matrix if its elements are pointers.
A pointer is the address of a variable. Say that variable $X$ contains a matrix. Another variable $p$ might contain $137,799,016$ and, if $137,799,016$ were the address at which $X$ were stored, then $p$ would be said to point to $X$. Addresses are seldom written in base 10 , and so rather than saying $p$ contains $137,799,016$, we would be more likely to say that $p$ contains $0 \times 836 a 568$, which is the way we write numbers in base 16 . Regardless of how we write addresses, however, $p$ contains a number and that number corresponds to the address of another variable.
In our program, if we refer to $p$, we are referring to $p$ 's contents, the number $0 x 836 \mathrm{a} 568$. The monadic operator * is defined as "refer to the address" or "dereference": $* p$ means $X$. We could code $\mathrm{Y}=* \mathrm{p}$ or $\mathrm{Y}=\mathrm{X}$, and either way, we would obtain the same result. In our program, we could refer to $X[i, j]$ or (*p) $[i, j]$, and either way, we would obtain the $i, j$ element of $X$.
The monadic operator \& is how we put addresses into $p$. To load $p$ with the address of $X$, we code $p=\& X$.

The special address 0 (zero, written in hexadecimal as 0x0), also known as NULL, is how we record that a pointer variable points to nothing. A pointer variable contains NULL or it contains a valid address of another variable.

See [M-2] pointers for a complete description of pointers and their use.
Poisson regression model. The Poisson regression model is used when the dependent variable represents the number of times an event occurs. In the Poisson model, the variance of the dependent variable is equal to the conditional mean.

POMs. See potential-outcome means.
pooled estimator. A pooled estimator ignores the longitudinal or panel aspect of a dataset and treats the observations as if they were cross-sectional.
population-averaged model. A population-averaged model is used for panel data in which the parameters measure the effects of the regressors on the outcome for the average individual in the population. The panel-specific errors are treated as uncorrelated random variables drawn from a population with zero mean and constant variance, and the parameters measure the effects of the regressors on the dependent variable after integrating over the distribution of the random effects.
portmanteau statistic. The portmanteau, or $Q$, statistic is used to test for white noise and is calculated using the first $m$ autocorrelations of the series, where $m$ is chosen by the user. Under the null hypothesis that the series is a white-noise process, the portmanteau statistic has a $\chi^{2}$ distribution with $m$ degrees of freedom.
positive effect size. In power and sample-size analysis, we obtain a positive effect size when the postulated value of the parameter under the alternative hypothesis is greater than the hypothesized value of the parameter under the null hypothesis. Also see negative effect size.
posterior mean. In generalized linear mixed-effects models, posterior mean refer to the predictions of random effects based on the mean of the posterior distribution.
posterior mode. In generalized linear mixed-effects models, posterior mode refer to the predictions of random effects based on the mode of the posterior distribution.
posterior probabilities. After discriminant analysis, the posterior probabilities are the probabilities of a given observation being assigned to each of the groups based on the prior probabilities, the training data, and the particular discriminant model. Contrast to prior probabilities.
poststratification. Poststratification is a method for adjusting sampling weights, usually to account for underrepresented groups in the population. This usually results in decreased bias because of nonresponse and underrepresented groups in the population. Poststratification also tends to result in smaller variance estimates.
The population is partitioned into categories, called poststrata. The sampling weights are adjusted so that the sum of the weights within each poststratum is equal to the respective poststratum size. The poststratum size is the number of individuals in the population that are in the poststratum. The frequency distribution of the poststrata typically comes from census data, and the poststrata are most commonly identified by demographic information such as age, sex, and ethnicity.
postulated value. See alternative value.
potential outcome. The potential outcome is the outcome an individual would obtain if given a specific treatment.

For example, an individual has one potential blood pressure after taking a pill and another potential blood pressure had that person not taken the pill.
potential-outcome means. The potential-outcome means refers to the means of the potential outcomes for a specific treatment level.

The mean blood pressure if everyone takes a pill and the mean blood pressure if no one takes a pill are two examples.
The average treatment effect is the difference between potential-outcome mean for the treated and the potential-outcome mean for the not treated.
power. The power of a test is the probability of correctly rejecting the null hypothesis when it is false. It is often denoted as $1-\beta$ in statistical literature, where $\beta$ is the type II error probability. Commonly used values for power are $80 \%$ and $90 \%$. Also see type I error and type II error. power and sample-size analysis. Power and sample-size analysis investigates the optimal allocation of study resources to increase the likelihood of the successful achievement of a study objective. See [PSS] intro.
power curve. A power curve is a graph of the estimated power as a function of some other study parameter such as the sample size. The power is plotted on the $y$ axis, and the sample size or other parameter is plotted on the $x$ axis. See [PSS] power, graph.
power determination. This pertains to the computation of a power given sample size, effect size, and other study parameters.
power function. The power functions is a function of the population parameter $\theta$, defined as the probability that the observed sample belongs to the rejection region of a test for given $\theta$. See Hypothesis testing under Remarks and examples in [PSS] intro.
power graph. See power curve.
pragma. "(Pragmatic information) A standardised form of comment which has meaning to a compiler. It may use a special syntax or a specific form within the normal comment syntax. A pragma usually conveys non-essential information, often intended to help the compiler to optimise the program." See The Free On-line Dictionary of Computing, http://www.foldoc.org/, Editor Denis Howe. For Mata, see [M-2] pragma.

Prais-Winsten estimator. A Prais-Winsten estimator is a linear regression estimator that is used when the error term exhibits first-order autocorrelation; see also Cochrane-Orcutt estimator. Here
the first observation in the dataset is transformed as $\widetilde{y}_{1}=\sqrt{1-\rho^{2}} y_{1}$ and $\widetilde{\mathbf{x}}_{1}=\sqrt{1-\rho^{2}} \mathbf{x}_{1}$, so that the first observation is not lost. The Prais-Winsten estimator is a generalized least-squares estimator.
predetermined variable. A predetermined variable is a regressor in which its contemporaneous and future values are not correlated with the unobservable error term but past values are correlated with the error term.
predictive margins. Predictive margins provide a way of exploring the response surface of a fitted model in any response metric of interest-means, linear predictions, probabilities, marginal effects, risk differences, and so on. Predictive margins are estimates of responses (or outcomes) for the groups represented by the levels of a factor variable, controlling for the differing covariate distributions across the groups. They are the survey-data and nonlinear response analogue to what are often called estimated marginal means or least-squares means for linear models.
Because these margins are population-weighted averages over the estimation sample or subsamples, and because they take account of the sampling distribution of the covariates, they can be used to make inferences about treatment effects for the population.
prevented fraction. A prevented fraction is the reduction in the risk of a disease or other condition of interest caused by including a protective risk factor or public-health intervention.
prewhiten. To prewhiten is to apply a transformation to a time series so that it becomes white noise.
primary sampling unit. Primary sampling unit (PSU) is a cluster that was sampled in the first sampling stage; see cluster.
priming values. Priming values are the initial, preestimation values used to begin a recursive process.
principal component analysis. Principal component analysis (PCA) is a statistical technique used for data reduction. The leading eigenvectors from the eigen decomposition of the correlation or the covariance matrix of the variables describe a series of uncorrelated linear combinations of the variables that contain most of the variance. In addition to data reduction, the eigenvectors from a PCA are often inspected to learn more about the underlying structure of the data.
principal factor method. The principal factor method is a method for factor analysis in which the factor loadings, sometimes called factor patterns, are computed using the squared multiple correlations as estimates of the communality. Also see factor analysis and communality.
prior probabilities Prior probabilities in discriminant analysis are the probabilities of an observation belonging to a group before the discriminant analysis is performed. Prior probabilities are often based on the prevalence of the groups in the population as a whole. Contrast to posterior probabilities.
probability of a type I error. This is the probability of committing a type I error of incorrectly rejecting the null hypothesis. Also see significance level.
probability of a type II error. This is the probability of committing a type II error of incorrectly accepting the null hypothesis. Common values for the probability of a type II error are 0.1 and 0.2 or, equivalently, $10 \%$ and $20 \%$. Also see beta and power.
probability weight. Probability weight is another term for sampling weight.
Procrustes rotation. A Procrustes rotation is an orthogonal or oblique transformation, that is, a restricted Procrustes transformation without translation or dilation (uniform scaling).

Procrustes transformation. The goal of Procrustes transformation is to transform the source matrix $\mathbf{X}$ to be as close as possible to the target $\mathbf{Y}$. The permitted transformations are any combination of dilation (uniform scaling), rotation and reflection (that is, orthogonal or oblique transformations), and translation. Closeness is measured by residual sum of squares. In some cases, unrestricted Procrustes transformation is desired; this allows the data to be transformed not just by orthogonal or
oblique rotations, but by all conformable regular matrices A. Unrestricted Procrustes transformation is equivalent to a multivariate regression.
The name comes from Procrustes of Greek mythology; Procrustes invited guests to try his iron bed. If the guest was too tall for the bed, Procrustes would amputate the guest's feet, and if the guest was too short, he would stretch the guest out on a rack.

Also see orthogonal rotation, oblique rotation, dilation, and multivariate regression.
production function. A production function describes the maximum amount of a good that can be produced, given specified levels of the inputs.
promax power rotation. Promax power rotation is an oblique rotation. It does not fit in the minimizing-a-criterion framework that is at the core of most other rotations. The promax method (Hendrickson and White 1964) was proposed before computing power became widely available. The promax rotation consists of three steps:

1. Perform an orthogonal rotation.
2. Raise the elements of the rotated matrix to some power, preserving the sign of the elements. Typically the power is in the range $2 \leq$ power $\leq 4$. This operation is meant to distinguish clearly between small and large values.
3. The matrix from step two is used as the target for an oblique Procrustean rotation from the original matrix.
propensity score. The propensity score is the probability that an individual receives a treatment.
propensity-score matching. Propensity-score matching uses the distance between estimated propensity scores to find similar individuals.
proportional hazards model. This is a model in which, between individuals, the ratio of the instantaneous failure rates (the hazards) is constant over time.
prospective study. In a prospective study, the population or cohort is classified according to specific risk factors, such that the outcome of interest, typically various manifestations of a disease, can be observed over time and tied in to the initial classification. Also see retrospective study.

Also known as a prospective longitudinal study, a prospective study is a study based on observations over the same subjects for a given period.
proximity, proximity matrix, and proximity measure. Proximity or a proximity measure means the nearness or farness of two things, such as observations or variables or groups of observations or a method for quantifying the nearness or farness between two things. A proximity is measured by a similarity or dissimilarity. A proximity matrix is a matrix of proximities. Also see similarity and dissimilarity.
pseudolikelihood. A pseudolikelihood is a weighted likelihood that is used for point estimation. Pseudolikelihoods are not true likelihoods because they do not represent the distribution function for the sample data from a survey. The sampling distribution is instead determined by the survey design.

PSS analysis. See power and sample-size analysis.
PSS Control Panel. The PSS Control Panel is a point-and-click graphical user interface for power and sample-size analysis. See [PSS] GUI.
PSU. See primary sampling unit.
p-value. $P$-value is a probability of obtaining a test statistic as extreme or more extreme as the one observed in a sample assuming the null hypothesis is true.

Poisson regression. Poisson regression is a term for generalized linear response functions that are family Poisson, link log. It is used for count data. See generalized linear response functions.
probit regression. Probit regression is a term for generalized linear response functions that are family Bernoulli, link probit. It is used for binary outcome data. Probit regression is also known simply as probit. See generalized linear response functions.
QDA. See quadratic discriminant analysis.
QML, method(ml) vce(robust). QML stands for quasimaximum likelihood. It is a method used to obtain fitted parameters, and a technique used to obtain the corresponding VCE. QML is used by sem and gsem when options method ( ml ) and vce (robust) are specified. Other available methods are ML, MLMV, and ADF. Other available techniques are OIM, EIM, OPG, clustered, bootstrap, and jackknife.

QR decomposition. QR decomposition is an orthogonal-triangular decomposition of an augmented data matrix that speeds up the calculation of the $\log$ likelihood; see Methods and formulas in [ME] mixed for more details.
quadratic discriminant analysis. Quadratic discriminant analysis (QDA) is a parametric form of discriminant analysis and is a generalization of LDA. Like LDA, QDA assumes that the observations come from a multivariate normal distribution, but unlike LDA, the groups are not assumed to have equal covariance matrices. Also see discriminant analysis, linear discriminant analysis, and parametric methods.
quadrature. Quadrature is generic method for performing numerical integration. gsem uses quadrature in any model including latent variables (excluding error variables). sem, being limited to linear models, does not need to perform quadrature.
quartimax rotation. Quartimax rotation maximizes the variance of the squared loadings within the rows of the matrix. It is an orthogonal rotation that is equivalent to minimizing the criterion

$$
c(\boldsymbol{\Lambda})=\sum_{i} \sum_{r} \lambda_{i r}^{4}=-\frac{1}{4}\left\langle\boldsymbol{\Lambda}^{2}, \boldsymbol{\Lambda}^{2}\right\rangle
$$

See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$.
quartimin rotation. Quartimin rotation is an oblique rotation that is equivalent to quartimax rotation when quartimin is restricted to orthogonal rotations. Quartimin is equivalent to oblimin rotation with $\gamma=0$. Also see quartimax rotation, oblique rotation, orthogonal rotation, and oblimin rotation.
random coefficient. In the context of mixed-effects models, a random coefficient is a counterpart to a slope in the fixed-effects equation. You can think of a random coefficient as a randomly varying slope at a specific level of nesting.
random effects. In the context of mixed-effects models, random effects represent effects that may vary from group to group at any level of nesting. In the ANOVA literature, random effects represent the levels of a factor for which the inference can be generalized to the underlying population represented by the levels observed in the study. See also random-effects model in [XT] Glossary.
random intercept. In the context of mixed-effects models, a random intercept is a counterpart to the intercept in the fixed-effects equation. You can think of a random intercept as a randomly varying intercept at a specific level of nesting.
random walk. A random walk is a time-series process in which the current period's realization is equal to the previous period's realization plus a white-noise error term: $y_{t}=y_{t-1}+\epsilon_{t}$. A random walk with drift also contains a nonzero time-invariant constant: $y_{t}=\delta+y_{t-1}+\epsilon_{t}$. The constant term $\delta$ is known as the drift parameter. An important property of random-walk processes is that the best predictor of the value at time $t+1$ is the value at time $t$ plus the value of the drift parameter.
random-coefficients model. A random-coefficients model is a panel-data model in which groupspecific heterogeneity is introduced by assuming that each group has its own parameter vector, which is drawn from a population common to all panels.
random-effects model. A random-effects model for panel data treats the panel-specific errors as uncorrelated random variables drawn from a population with zero mean and constant variance. The regressors must be uncorrelated with the random effects for the estimates to be consistent. See also fixed-effects model.
randomized controlled trial. In this experimental study, treatments are randomly assigned to two or more groups of subjects.
rank. Terms in common use are rank, row rank, and column rank. The row rank of a matrix $A$ : $m \times$ $n$ is the number of rows of $A$ that are linearly independent. The column rank is defined similarly, as the number of columns that are linearly independent. The terms row rank and column rank, however, are used merely for emphasis; the ranks are equal and the result is simply called the rank of A .

For a square matrix $A$ (where $m==n$ ), the matrix is invertible if and only if $\operatorname{rank}(A)==n$. One often hears that $A$ is of full rank in this case and rank deficient in the other. See [M-5] rank().
r-conformability. A set of two or more matrices, vectors, or scalars $A, B, \ldots$, are said to be r-conformable if each is c-conformable with a matrix of $\max$ (rows $(A)$, rows $(B), \ldots$ ) rows and $\max (\operatorname{cols}(A), \operatorname{cols}(B), \ldots)$ columns.
r-conformability is a more relaxed form of c-conformability in that, if two matrices are cconformable, they are r-conformable, but not vice versa. For instance, $A: 1 \times 3$ and $B: 3 \times 1$ are r -conformable but not c-conformable. Also, c-conformability is defined with respect to a pair of matrices only; r-conformability can be applied to a set of matrices.
r -conformability is often required of the arguments for functions that would otherwise naturally be expected to require scalars. See $R$-conformability in [M-5] normal() for an example. RCT. See randomized controlled trial.
real. A matrix is said to be a real matrix if its elements are all reals and it is stored in a real matrix. Real is one of the two numeric types in Mata, the other being complex. Also see type, eltype, and orgtype.
recursive regression analysis. A recursive regression analysis involves performing a regression at time $t$ by using all available observations from some starting time $t_{0}$ through time $t$, performing another regression at time $t+1$ by using all observations from time $t_{0}$ through time $t+1$, and so on. Unlike a rolling regression analysis, the first period used for all regressions is held fixed.
reference value. See null value.
reflection. A reflection is an orientation reversing orthogonal transformation, that is, a transformation that involves negating coordinates in one or more dimensions. A reflection is a Procrustes transformation.
registered and unregistered variables. Variables in mi data can be registered as imputed, passive, or regular by using the mi register command; see [MI] mi set.

You are required to register imputed variables.
You should register passive variables; if your data are style wide, you are required to register them. The mi passive command (see [MI] mi passive) makes creating passive variables easy, and it automatically registers them for you.

Whether you register regular variables is up to you. Registering them is safer in all styles except wide, where it does not matter. By definition, regular variables should be the same across $m$. In
the long styles, you can unintentionally create variables that vary. If the variable is registered, mi will detect and fix your mistakes.

Super-varying variables, which rarely occur and can be stored only in flong and flongsep data, should never be registered.

The registration status of variables is listed by the mi describe command; see [MI] mi describe.
regressand. The regressand is the variable that is being explained or predicted in a regression model.
Synonyms include dependent variable, left-hand-side variable, and endogenous variable.
regression. A regression is a model in which an endogenous variable is written as a function of other variables, parameters to be estimated, and a random disturbance.
regression-adjustment estimators. Regression-adjustment estimators use means of predicted outcomes for each treatment level to estimate each potential-outcome mean.
regressor. Regressors are variables in a regression model used to predict the regressand. Synonyms include independent variable, right-hand-side variable, explanatory variable, predictor variable, and exogenous variable.
regular variable. See imputed, passive, and regular variables.
rejection region. In hypothesis testing, a rejection region is a set of sample values for which the null hypothesis can be rejected.
relative efficiency. Ratio of variance of a parameter given estimation with finite $M$ to the variance if $M$ were infinite.
relative risk. See risk ratio.
relative variance increase. The increase in variance of a parameter estimate due to nonresponse.
reliability. Reliability is the proportion of the variance of a variable not due to measurement error. A variable without measure error has reliability 1.
REML. See restricted maximum likelihood.
repeated measures. Repeated measures data have repeated measurements for the subjects over some dimension, such as time-for example test scores at the start, midway, and end of the class. The repeated observations are typically not independent. Repeated-measures ANOVA is one approach for analyzing repeated measures data, and MANOVA is another. Also see sphericity.
replicate-weight variable. A replicate-weight variable contains sampling weight values that were adjusted for resampling the data; see [SVY] variance estimation for more details.
resampling. Resampling refers to the process of sampling from the dataset. In the delete-one jackknife, the dataset is resampled by dropping one PSU and producing a replicate of the point estimates. In the BRR method, the dataset is resampled by dropping combinations of one PSU from each stratum. The resulting replicates of the point estimates are used to estimate their variances and covariances.
restricted maximum likelihood. Restricted maximum likelihood is a method of fitting linear mixedeffects models that involves transforming out the fixed effects to focus solely on variance-component estimation.
residual. In this manual, we reserve the word "residual" for the difference between the observed and fitted moments of an SEM model. We use the word error for the disturbance associated with a (Gaussian) linear equation; see error. Also see standardized residuals.
retrospective study. In a retrospective study, a group with a disease of interest is compared with a group without the disease, and information is gathered in a retrospective way about the exposure in
each group to various risk factors that might be associated with the disease. Also see prospective study.
right-censoring. See censored, censoring, left-censoring, and right-censoring.
right-truncation. See truncation, left-truncation, and right-truncation.
risk difference. A risk difference is defined as the probability of an event occurring when a risk factor is increased by one unit minus the probability of the event occurring without the increase in the risk factor.
When the risk factor is binary, the risk difference is the probability of the outcome when the risk factor is present minus the probability when the risk factor is not present.
When one compares two populations, a risk difference is defined as a difference between the probabilities of an event in the two groups. It is typically a difference between the probability in the comparison group or experimental group and the probability in the reference group or control group.
risk factor. This is a variable associated with an increased or decreased risk of failure.
risk pool. At a particular point in time, this is the subjects at risk of failure.
risk ratio. In a $\log$-linear model, this is the ratio of probability of survival associated with a one-unit increase in a risk factor relative to that calculated without such an increase, that is, $R(x+1) / R(x)$. Given the exponential form of the model, $R(x+1) / R(x)$ is constant and is given by the exponentiated coefficient.
robust standard errors. Robust standard errors, also known as Huber/White or Taylor linearization standard errors, are based on the sandwich estimator of variance. Robust standard errors can be interpreted as representing the sample-to-sample variability of the parameter estimates, even when the model is misspecified. See also semirobust standard errors.
robust, vce(robust). Robust is the name we use here for the Huber/White/sandwich estimator of the VCE. This technique requires fewer assumptions than most other techniques. In particular, it merely assumes that the errors are independently distributed across observations and thus allows the errors to be heteroskedastic. Robust standard errors are reported when the sem (gsem) option vce(robust) is specified. The other available techniques are OIM, EIM, OPG, clustered, bootstrap, and jackknife.
rolling regression analysis. A rolling, or moving window, regression analysis involves performing regressions for each period by using the most recent $m$ periods' data, where $m$ is known as the window size. At time $t$ the regression is fit using observations for times $t-19$ through time $t$; at time $t+1$ the regression is fit using the observations for time $t-18$ through $t+1$; and so on.
rotation. A rotation is an orientation preserving orthogonal transformation. A rotation is a Procrustes transformation.
row and column stripes. Stripes refer to the labels associated with the rows and columns of a Stata matrix; see Stata matrix.
row-major order. Matrices are stored as vectors. Row-major order specifies that the vector form of a matrix is created by stacking the rows. For instance,

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 1 | 2 | 3 |
| 4 | 5 | 6 |

is stored as

1 |  | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | 1 | 2 | 3 | 4 | 5 |

in row-major order. Mata uses row-major order. The LAPACK functions use column-major order. See column-major order.
rowvector. See vector, colvector, and rowvector.
Roy's largest root. Roy's largest root test is a test statistic for the hypothesis test $H_{0}: \boldsymbol{\mu}_{1}=\cdots=\boldsymbol{\mu}_{k}$ based on the largest eigenvalue of $\mathbf{E}^{-1} \mathbf{H}$. It is defined as

$$
\theta=\frac{\lambda_{1}}{1+\lambda_{1}}
$$

Here $\mathbf{H}$ is the between matrix, and $\mathbf{E}$ is the within matrix. See between matrix.
RVI. See relative variance increase.
Sammon mapping criterion. The Sammon (1969) mapping criterion is a loss criterion used with MDS; it is the sum of the scaled, squared differences between the distances and the disparities, normalized by the sum of the disparities. Also see multidimensional scaling, modern scaling, and loss.
sample. A sample is the collection of individuals in the population that were chosen as part of the survey. Sample is also used to refer to the data, typically in the form of answered questions, collected from the sampled individuals.
sample size. This is the number of subjects in a sample. See [PSS] intro to learn more about the relationship between sample size and the power of a test.
sample-size curve. A sample-size curve is a graph of the estimated sample size as a function of some other study parameter such as power. The sample size is plotted on the $y$ axis, and the power or other parameter is plotted on the $x$ axis.
sample-size determination. This pertains to the computation of a sample size given power, effect size, and other study parameters.
sampling stage. Complex survey data are typically collected using multiple stages of clustered sampling. In the first stage, the PSUs are independently selected within each stratum. In the second stage, smaller sampling units are selected within the PSUs. In later stages, smaller and smaller sampling units are selected within the clusters from the previous stage.
sampling unit. A sampling unit is an individual or collection of individuals from the population that can be selected in a specific stage of a given survey design. Examples of sampling units include city blocks, high schools, hospitals, and houses.
sampling weight. Given a survey design, the sampling weight for an individual is the reciprocal of the probability of being sampled. The probability for being sampled is derived from stratification and clustering in the survey design. A sampling weight is typically considered to be the number of individuals in the population represented by the sampled individual.
sampling with and without replacement. Sampling units may be chosen more than once in designs that use sampling with replacement. Sampling units may be chosen at most once in designs that use sampling without replacement. Variance estimates from with-replacement designs tend to be larger than those from corresponding without-replacement designs.

Satterthwaite's $\mathbf{t}$ test. Satterthwaite's $t$ test is a modification of the two-sample $t$ test to account for unequal variances in the two populations. See Methods and formulas in [PSS] power twomeans for details.
saturated model. A saturated model is a full covariance model-a model of fitted means and covariances of observed variables without any restrictions on the values. Also see baseline model. Saturated models apply only to standard linear SEMs.
scalar. A special case of a matrix with one row and one column. A scalar may be substituted anywhere a matrix, vector, column vector, or row vector is required, but not vice versa.
Schur decomposition. The Schur decomposition of a matrix, A, can be written as

$$
\mathbf{Q}^{\prime} \mathbf{A Q}=\mathbf{T}
$$

where $\mathbf{T}$ is in Schur form and $\mathbf{Q}$, the matrix of Schur vectors, is orthogonal if $\mathbf{A}$ is real or unitary if $\mathbf{A}$ is complex. See [M-5] schurd( ).
Schur form. There are two Schur forms: real Schur form and complex Schur form.
A real matrix is in Schur form if it is block upper triangular with $1 \times 1$ and $2 \times 2$ diagonal blocks. Each $2 \times 2$ diagonal block has equal diagonal elements and opposite sign off-diagonal elements. The real eigenvalues are on the diagonal and complex eigenvalues can be obtained from the $2 \times 24$ diagonal blocks.
A complex square matrix is in Schur form if it is upper triangular with the eigenvalues on the diagonal.
score. A score for an observation after factor analysis, PCA, or LDA is derived from a column of the loading matrix and is obtained as the linear combination of that observation's data by using the coefficients found in the loading.
score plot. A score plot produces scatterplots of the score variables after factor analysis, PCA, or LDA.
score test, Lagrange multiplier test. A score test is a test based on first derivatives of a likelihood function. Score tests are especially convenient for testing whether constraints on parameters should be relaxed or parameters should be added to a model. Also see Wald test.
scores. Scores has two unrelated meanings. First, scores are the observation-by-observation firstderivatives of the (quasi) log-likelihood function. When we use the word "scores", this is what we mean. Second, in the factor-analysis literature, scores (usually in the context of factor scores) refers to the expected value of a latent variable conditional on all the observed variables. We refer to this simply as the predicted value of the latent variable.
scree plot. A scree plot is a plot of eigenvalues or singular values ordered from greatest to least after an eigen decomposition or singular value decomposition. Scree plots help determine the number of factors or components in an eigen analysis. Scree is the accumulation of loose stones or rocky debris lying on a slope or at the base of a hill or cliff; this plot is called a scree plot because it looks like a scree slope. The goal is to determine the point where the mountain gives way to the fallen rock.
SDR. See successive difference replication.
seasonal difference operator. The period- $s$ seasonal difference operator $\Delta_{s}$ denotes the difference in the value of a variable at time $t$ and time $t-s$. Formally, $\Delta_{s} y_{t}=y_{t}-y_{t-s}$, and $\Delta_{s}^{2} y_{t}=$ $\Delta_{s}\left(y_{t}-y_{t-s}\right)=\left(y_{t}-y_{t-s}\right)-\left(y_{t-s}-y_{t-2 s}\right)=y_{t}-2 y_{t-s}+y_{t-2 s}$.
secondary sampling unit. Secondary sampling unit (SSU) is a cluster that was sampled from within a PSU in the second sampling stage. SSU is also used as a generic term unit to indicate any sampling unit that is not from the first sampling stage.

## second-level latent variable. See first-, second-, and higher-order latent variables.

second-order latent variable. See first- and second-order latent variables.
seemingly unrelated regression. Seemingly unrelated regression is a kind of structural model in which each member of a set of observed endogenous variables is a function of a set of observed exogenous variables and a unique random disturbance term. The disturbances are correlated and the sets of exogenous variables may overlap. If the sets of exogenous variables are identical, this is referred to as multivariate regression.
selection-on-observables. See conditional-independence assumption.
SEM. SEM stands for structural equation modeling and for structural equation model. We use SEM in capital letters when writing about theoretical or conceptual issues as opposed to issues of the particular implementation of SEM in Stata with the sem or gsem commands.
sem. sem is the Stata command that fits standard linear SEMs. Also see gsem.
semiparametric model. This is a model that is not fully parameterized. The Cox proportional hazards model is such a model:

$$
h(t)=h_{0}(t) \exp \left(\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)
$$

In the Cox model, $h_{o}(t)$ is left unparameterized and not even estimated. Meanwhile, the relative effects of covariates are parameterized as $\exp \left(\beta_{1} x_{1}+\cdots+\beta_{k} x_{k}\right)$.
semirobust standard errors. Semirobust standard errors are closely related to robust standard errors and can be interpreted as representing the sample-to-sample variability of the parameter estimates, even when the model is misspecified, as long as the mean structure of the model is specified correctly. See also robust standard errors.
sensitivity analysis. Sensitivity analysis investigates the effect of varying study parameters on power, sample size, and other components of a study. The true values of study parameters are usually unknown, and power and sample-size analysis uses best guesses for these values. It is therefore important to evaluate the sensitivity of the computed power or sample size in response to changes in study parameters. See [PSS] power, table and [PSS] power, graph for details.
sequential limit theory. The sequential limit theory is a method of determining asymptotic properties of a panel-data statistic in which one index, say, $N$, the number of panels, is held fixed, while $T$, the number of time periods, goes to infinity, providing an intermediate limit. Then one obtains a final limit by studying the behavior of this intermediate limit as the other index ( $N$ here) goes to infinity.
serial correlation. Serial correlation refers to regression errors that are correlated over time. If a regression model does not contained lagged dependent variables as regressors, the OLS estimates are consistent in the presence of mild serial correlation, but the covariance matrix is incorrect. When the model includes lagged dependent variables and the residuals are serially correlated, the OLS estimates are biased and inconsistent. See, for example, Davidson and MacKinnon (1993, chap. 10) for more information.
serial correlation tests. Because OLS estimates are at least inefficient and potentially biased in the presence of serial correlation, econometricians have developed many tests to detect it. Popular ones include the Durbin-Watson $(1950,1951,1971)$ test, the Breusch-Pagan (1980) test, and Durbin's (1970) alternative test. See [R] regress postestimation time series.
shape parameter. A shape parameter governs the shape of a probability distribution. One example is the parameter $p$ of the Weibull model.

Shepard diagram. A Shepard diagram after MDS is a 2 -dimensional plot of high-dimensional dissimilarities or disparities versus the resulting low-dimensional distances. Also see multidimensional scaling.
sign test. A sign test is used to test the null hypothesis that the median of a distribution is equal to some reference value. A sign test is carried out as a test of binomial proportion with a reference value of 0.5 . See [PSS] power oneproportion and [R] bitest.
significance level. In hypothesis testing, the significance level $\alpha$ is an upper bound for a probability of a type I error. See [PSS] intro to learn more about the relationship between significance level and the power of a test.
similarity, similarity matrix, and similarity measure. A similarity or a similarity measure is a quantification of how alike two things are, such as observations or variables or groups of observations, or a method for quantifying that alikeness. A similarity matrix is a matrix containing similarity measurements. The matching coefficient is one example of a similarity measure. Contrast to dissimilarity. Also see proximity and matching coefficient.
simple random sample. In a simple random sample (SRS), individuals are independently sampledeach with the same probability of being chosen.
single-linkage clustering. Single-linkage clustering is a hierarchical clustering method that computes the proximity between two groups as the proximity between the closest pair of observations between the two groups.
single-record st data. See st data.
singleton-group data. A singleton is a frailty group that contains only 1 observation. A dataset containing only singletons is known as singleton-group data.
singular value decomposition. A singular value decomposition (SVD) is a factorization of a rectangular matrix. It says that if $\mathbf{M}$ is an $m \times n$ matrix, there exists a factorization of the form

$$
\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{*}
$$

where $\mathbf{U}$ is an $m \times m$ unitary matrix, $\boldsymbol{\Sigma}$ is an $m \times n$ matrix with nonnegative numbers on the diagonal and zeros off the diagonal, and $\mathbf{V}^{*}$ is the conjugate transpose of $\mathbf{V}$, an $n \times n$ unitary matrix. If $\mathbf{M}$ is a real matrix, then so is $\mathbf{V}$, and $\mathbf{V}^{*}=\mathbf{V}^{\prime}$.
size of test. See significance level.
smooth treatment-effects estimator. A smooth treatment-effects estimator is a smooth function of the data so that standard methods approximate the distribution of the estimator. The RA, IPW, AIPW, and IPWRA estimators are all smooth treatment-effects estimators while the nearest-neighbor matching estimator and the propensity-score matching estimator are not.
smoothing. Smoothing a time series refers to the process of extracting an overall trend in the data. The motivation behind smoothing is the belief that a time series exhibits a trend component as well as an irregular component and that the analyst is interested only in the trend component. Some smoothers also account for seasonal or other cyclical patterns.
SMR. See standardized mortality (morbidity) ratio.
snapshot data. Snapshot data are those in which each record contains the values of a set of variables for a subject at an instant in time. The name arises because each observation is like a snapshot of the subject.
In snapshot datasets, one usually has a group of observations (snapshots) for each subject.
Snapshot data must be converted to st data before they can be analyzed. This requires making assumptions about what happened between the snapshots. See [ST] snapspan.
source code. Source code refers to the human-readable code that you type into Mata to define a function. Source code is compiled into object code, which is binary. See [M-1] how.
spectral analysis. See frequency-domain analysis.
spectral density function. The spectral density function is the derivative of the spectral distribution function. Intuitively, the spectral density function $f(\omega)$ indicates the amount of variance in a time series that is attributable to sinusoidal components with frequency $\omega$. See also spectral distribution function. The spectral density function is sometimes called the spectrum.
spectral distribution function. The (normalized) spectral distribution function $F(\omega)$ of a process describes the proportion of variance that can be explained by sinusoids with frequencies in the range $(0, \omega)$, where $0 \leq \omega \leq \pi$. The spectral distribution and density functions used in frequencydomain analysis are closely related to the autocorrelation function used in time-domain analysis; see Chatfield (2004, chap. 6) and Wei (2006, chap. 12).
spectrum. See spectral density function.
spell data. Spell data are survival data in which each record represents a fixed period, consisting of a begin time, an end time, possibly a censoring/failure indicator, and other measurements (covariates) taken during that specific period.
sphericity. Sphericity is the state or condition of being a sphere. In repeated measures ANOVA, sphericity concerns the equality of variance in the difference between successive levels of the repeated measure. The multivariate alternative to ANOVA, called MANOVA, does not require the assumption of sphericity. Also see repeated measures.
square matrix. A matrix is square if it has the same number of rows and columns. A $3 \times 3$ matrix is square; a $3 \times 4$ matrix is not.

SRS. See simple random sample.
SSCP matrix. SSCP is an acronym for the sums of squares and cross products. Also see between matrix.

SSD, ssd. See summary statistics data.
SSU. See secondary sampling unit.
st data. st stands for survival time. In survival-time data, each observation represents a span of survival, recorded in variables $t 0$ and $t$. For instance, if in an observation $t 0$ were 3 and $t$ were 5 , the span would be $(t 0, t]$, meaning from just after $t 0$ up to and including $t$.
Sometimes variable $t 0$ is not recorded; $t 0$ is then assumed to be 0 . In such a dataset, an observation that had $t=5$ would record the span $(0,5]$.
Each observation also includes a variable $d$, called the failure variable, which contains 0 or nonzero (typically, 1). The failure variable records what happened at the end of the span: 0 , the subject was still alive (had not yet failed) or 1 , the subject died (failed).
Sometimes variable $d$ is not recorded; $d$ is then assumed to be 1 . In such a dataset, all time-span observations would be assumed to end in failure.

Finally, each observation in an st dataset can record the entire history of a subject or each can record a part of the history. In the latter case, groups of observations record the full history. One observation might record the period $(0,5]$ and the next, $(5,8]$. In such cases, there is a variable ID that records the subject for which the observation records a time span. Such data are called multiple-record st data. When each observation records the entire history of a subject, the data are called single-record st data. In the single-record case, the ID variable is optional.

See [ST] stset.
stacked variables. See crossed variables.
stacking variables. See crossing variables.
standard linear SEM. An SEM without multilevel effects in which all response variables are given by a linear equation. Standard linear SEM is what most people mean when they refer to just SEM. Standard linear SEMs are fit by sem, although they can also be fit by gsem; see generalized SEM.
standard strata. See direct standardization.
standard weights. See direct standardization.
standardized coefficient. In a linear equation $y=\ldots b x+\ldots$, the standardized coefficient $\beta$ is $\left(\widehat{\sigma}_{y} / \widehat{\sigma}_{x}\right) b$. Standardized coefficients are scaled to units of standard deviation change in $y$ for a standard deviation change in $x$.
standardized covariance. A standardized covariance between $y$ and $x$ is equal to the correlation of $y$ and $x$, which is to say, it is equal to $\sigma_{x y} / \sigma_{x} \sigma_{y}$. The covariance is equal to the correlation when variables are standardized to have variance 1 .
standardized data. Standardized data has a mean of zero and a standard deviation of one. You can standardize data $\mathbf{x}$ by taking $(\mathbf{x}-\overline{\mathbf{x}}) / \sigma$, where $\sigma$ is the standard deviation of the data.
standardized mortality (morbidity) ratio. Standardized mortality (morbidity) ratio (SMR) is the observed number of deaths divided by the expected number of deaths. It is calculated using indirect standardization: you take the population of the group of interest-say, by age, sex, and other factors-and calculate the expected number of deaths in each cell (expected being defined as the number of deaths that would have been observed if those in the cell had the same mortality as some other population). You then take the ratio to compare the observed with the expected number of deaths. For instance,

|  | $(1)$ <br> Population <br> of group | Deaths per 100,000 <br> in general pop. | $(1) \times(2)$ <br> Expected \# <br> of deaths | $(4)$ <br> Observed <br> deaths |
| :--- | :---: | :---: | :---: | :---: |
| $25-34$ | 95,965 | 105.2 | 100.9 | 92 |
| $34-44$ | 78,280 | 203.6 | 159.4 | 180 |
| $44-54$ | 52,393 | 428.9 | 224.7 | 242 |
| $55-64$ | 28,914 | 964.6 | 278.9 | 312 |
| Total | $\quad 763.9$ |  |  |  |
| $\mathrm{SMR}=826 / 763.9=1.08$ |  |  |  |  |

standardized residuals, normalized residuals. Standardized residuals are residuals adjusted so that they follow a standard normal distribution. The difficulty is that the adjustment is not always possible. Normalized residuals are residuals adjusted according to a different formula that roughly follow a standard normal distribution. Normalized residuals can always be calculated.
starting values. The estimation methods provided by sem and gsem are iterative. The starting values are values for each of the parameters to be estimated that are used to initialize the estimation process. The sem software provides starting values automatically, but in some cases, these are not good enough and you must (1) diagnose the problem and (2) provide better starting values. See [SEM] intro 12.

Stata matrix. Stata itself, separate from Mata, has matrix capabilities. Stata matrices are separate from those of Mata, although Stata matrices can be gotten from and put into Mata matrices; see [M-5] st_matrix( ). Stata matrices are described in [P] matrix and [U] 14 Matrix expressions.

Stata matrices are exclusively numeric and contain real elements only. Stata matrices also differ from Mata matrices in that, in addition to the matrix itself, a Stata matrix has text labels on the rows and columns. These labels are called row stripes and column stripes. One can think of rows and columns as having names. The purpose of these names is discussed in [U] 14.2 Row and column names. Mata matrices have no such labels. Thus three steps are required to get or to put all the information recorded in a Stata matrix: 1) getting or putting the matrix itself; 2) getting or putting the row stripe from or into a string matrix; and 3) getting or putting the column stripe from or into a string matrix. These steps are discussed in [M-5] st_matrix( ).
state-space model. A state-space model describes the relationship between an observed time series and an unobservable state vector that represents the "state" of the world. The measurement equation expresses the observed series as a function of the state vector, and the transition equation describes how the unobserved state vector evolves over time. By defining the parameters of the measurement and transition equations appropriately, one can write a wide variety of time-series models in the state-space form.
static forecast. A static forecast uses actual values wherever lagged values of the endogenous variables appear in the model. As a result, static forecasts perform at least as well as dynamic forecasts, but static forecasts cannot produce forecasts into the future if lags of the endogenous variables appear in the model.

Because actual values will be missing beyond the last historical time period in the dataset, static forecasts can only forecast one period into the future (assuming only first lags appear in the model); for that reason, they are often called one-step-ahead forecasts.
steady-state equilibrium. The steady-state equilibrium is the predicted value of a variable in a dynamic model, ignoring the effects of past shocks, or, equivalently, the value of a variable, assuming that the effects of past shocks have fully died out and no longer affect the variable of interest.
stochastic equation. A stochastic equation, in contrast to an identity, is an equation in a forecast model that includes a random component, most often in the form of an additive error term. Stochastic equations include parameters that must be estimated from historical data.
stochastic trend. A stochastic trend is a nonstationary random process. Unit-root process and random coefficients on time are two common stochastic trends. See [TS] ucm for examples and discussions of more commonly applied stochastic trends.
stopping rules. Stopping rules for hierarchical cluster analysis are used to determine the number of clusters. A stopping-rule value (also called an index) is computed for each cluster solution, that is, at each level of the hierarchy in hierarchical cluster analysis. Also see hierarchical clustering.

## str1, str2, .., str2045. See strL.

stratification. The population is partitioned into well-defined groups of individuals, called strata. In the first sampling stage, PSUs are independently sampled from within each stratum. In later sampling stages, SSUs are independently sampled from within each stratum for that stage.

Survey designs that use stratification typically result in smaller variance estimates than do similar designs that do not use stratification. Stratification is most effective in decreasing variability when sampling units are more similar within the strata than between them.
stratified model. A stratified survival model constrains regression coefficients to be equal across levels of the stratification variable, while allowing other features of the model to vary across strata.
stratified test. A stratified test is performed separately for each stratum. The stratum-specific results are then combined into an overall test statistic.
stress. See Kruskal stress and loss.
strict stationarity. A process is strictly stationary if the joint distribution of $y_{1}, \ldots, y_{k}$ is the same as the joint distribution of $y_{1+\tau}, \ldots, y_{k+\tau}$ for all $k$ and $\tau$. Intuitively, shifting the origin of the series by $\tau$ units has no effect on the joint distributions.
string. A matrix is said to be a string matrix if its elements are strings (text); see type, eltype, and orgtype. In Mata, a string may be text or binary and may be up to $2,147,483,647$ characters (bytes) long.
$\operatorname{strL} . \operatorname{strL}$ is a storage type for string variables. The full list of string storage types is str1, str2, ..., str2045, and strL.
str1, str2, ..., str2045 are fixed-length storage types. If variable mystr is str8, then 8 bytes are allocated in each observation to store mystr's value. If you have 2,000 observations, then 16,000 bytes in total are allocated.

Distinguish between storage length and string length. If myvar is str8, that does not mean the strings are 8 characters long in every observation. The maximum length of strings is 8 characters. Individual observations may have strings of length $0,1, \ldots, 8$. Even so, every string requires 8 bytes of storage.

You need not concern yourself with the storage length because string variables are automatically promoted. If myvar is str8, and you changed the contents of myvar in the third observation to "Longer than 8 ", then myvar would automatically become str13.
If you changed the contents of myvar in the third observation to a string longer than 2,045 characters, myvar would become strL.
strL variables are not necessarily longer than 2,045 characters; they can be longer or shorter than 2,045 characters. The real difference is that strL variables are stored as varying length. Pretend that myothervar is a strL and its third observation contains "this". The total memory consumed by the observation would be $64+4+1=69$ bytes. There would be 64 bytes of tracking information, 4 bytes for the contents (there are 4 characters), and 1 more byte to terminate the string. If the fifth observation contained a $2,000,000$-character string, then $64+2,000,000+1=2,000,069$ bytes would be used to store it.

Another difference between $\operatorname{str} 1$, str2, ..., str2045, and strLs is that the str\# storage types can store only ASCII strings. strL can store ASCII or binary strings. Thus a strL variable could contain, for instance, the contents of a Word document or a JPEG image or anything else.
strL is pronounce sturl.
strongly balanced. A longitudinal or panel dataset is said to be strongly balanced if each panel has the same number of observations, and the observations for different panels were all made at the same times.
structural equation model. Different authors use the term "structural equation model" in different ways, but all would agree that an SEM sometimes carries the connotation of being a structural model with a measurement component, that is, combined with a measurement model.
structural model. A structural model is one that describes the relationship among a set of variables, based on underlying theoretical considerations. In particular, the parameters of a structural model are posited to quantify an actual causal relationship among the variables rather than a mere description of the variables' correlations.
Structural models often have multiple equations and dependencies between endogenous variables, although that is not a requirement.

Structural models can be viewed in a structural equation modeling (SEM) framework and can thus be fitted by sem and gsem, though these commands are not limited to fitting just structural models. See [SEM] intro 5 and structural equation model.

Structural models are also used in econometric forecasting applications. See [TS] forecast for information about forecasting from structural models based on time-series data.
structure (programming version). A structure is an eltype, indicating a set of variables tied together under one name. struct mystruct might be

```
struct mystruct {
    real scalar n1, n2
    real matrix X
```

\}

If variable a was declared a struct mystruct scalar, then the scalar a would contain three pieces: two real scalars and one real matrix. The pieces would be referred to as a.n1, a.n2, and $\mathrm{a} . \mathrm{X}$. If variable b were also declared a struct mystruct scalar, it too would contain three pieces, b.n1, b.n2, and b.X. The advantage of structures is that they can be referred to as a whole. You can code $\mathrm{a} . \mathrm{n} 1=\mathrm{b} . \mathrm{n} 1$ to copy one piece, or you can code $\mathrm{a}=\mathrm{b}$ if you wanted to copy all three pieces. In all ways, a and $b$ are variables. You may pass a to a subroutine, for instance, which amounts to passing all three values.
Structures variables are usually scalar, but they are not limited to being so. If A were a struct mystruct matrix, then each element of A would contain three pieces, and one could refer, for instance, to $\mathrm{A}[2,3] . \mathrm{n} 1, \mathrm{~A}[2,3] . \mathrm{n} 2$, and $\mathrm{A}[2,3] . \mathrm{X}$, and even to $\mathrm{A}[2,3] . \mathrm{X}[3,2]$.

See [M-2] struct.
structure (statistics version). Structure, as in factor structure, is the correlations between the variables and the common factors after factor analysis. Structure matrices are available after factor analysis and LDA. Also see factor analysis and linear discriminant analysis.
structured (correlation or covariance). See unstructured and structured (correlation or covariance).
style. Style refers to the format in which the mi data are stored. There are four styles: flongsep, flong, mlong, and wide. You can ignore styles, except for making an original selection, because all mi commands work regardless of style. You will be able to work more efficiently, however, if you understand the details of the style you are using; see [MI] styles. Some tasks are easier in one style than another. You can switch between styles by using the mi convert command; see [MI] mi convert.

The flongsep style is best avoided unless your data are too big to fit into one of the other styles. In flongsep style, a separate . dta set is created for $m=0$, for $m=1, \ldots$, and for $m=M$. Flongsep is best avoided because mi commands work more slowly with it.

In all the other styles, the $M+1$ datasets are stored in one .dta file. The other styles are both more convenient and more efficient.
The most easily described of these . dta styles is flong; however, flong is also best avoided because mlong style is every bit as convenient as flong, and mlong is memorywise more efficient. In flong, each observation in the original data is repeated $M$ times in the .dta dataset, once for $m=1$, again for $m=2$, and so on. Variable mi_m records $m$ and takes on values $0,1,2, \ldots, M$. Within each value of $m$, variable mi_id takes on values $1,2, \ldots, N$ and thus connects imputed with original observations.

The mlong style is recommended. It is efficient and easy to use. Mlong is much like flong except that complete observations are not repeated.

Equally recommended is the wide style. In wide, each imputed and passive variable has an additional $M$ variables associated with it, one for the variable's value in $m=1$, another for its value in $m=2$, and so on. If an imputed or passive variable is named $v n$, then the values of $v n$ in $m=1$ are stored in variable $\_1 \_v n$; the values for $m=2$, in $\_2 \_v n$; and so on.
What makes mlong and wide so convenient? In mlong, there is a one-to-one correspondence of your idea of a variable and Stata's idea of a variable-variable $v n$ refers to $v n$ for all values of $m$. In wide, there is a one-to-one correspondence of your idea of an observation and Stata's idea-physical observation 5 is observation 5 in all datasets.

Choose the style that matches the problem at hand. If you want to create new variables or modify existing ones, choose mlong. If you want to drop observations or create new ones, choose wide. You can switch styles with the mi convert command; see [MI] mi convert.

For instance, if you want to create new variable ageXexp equal to age*exp and your data are mlong, you can just type generate ageXexp = age*exp, and that will work even if age and exp are imputed, passive, or a mix. Theoretically, the right way to do that is to type mi passive: generate agexExp = age*exp, but concerning variables, if your data are mlong, you can work the usual Stata way.

If you want to drop observation 20 or drop if $s e x==2$, if your data are wide, you can just type drop in 20 or drop if sex==2. Here the "right" way to do the problem is to type the drop command and then remember to type mi update so that mi can perform whatever machinations are required to carry out the change throughout $m>0$; however, in the wide form, there are no machinations required.
subhazard, cumulative subhazard, and subhazard ratio. In a competing-risks analysis, the hazard of the subdistribution (or subhazard for short) for the event of interest (type 1) is defined formally as
$\bar{h}_{1}(t)=\lim _{\delta \rightarrow 0}\left\{\frac{P(t<T \leq t+\delta \text { and event type } 1) \mid T>t \text { or }(T \leq t \text { and not event type } 1)}{\delta}\right\}$

Less formally, think of this hazard as that which generates failure events of interest while keeping subjects who experience competing events "at risk" so that they can be adequately counted as not having any chance of failing.
The cumulative subhazard $\bar{H}_{1}(t)$ is the integral of the subhazard function $\bar{h}_{1}(t)$, from 0 (the onset of risk) to $t$. The cumulative subhazard plays a very important role in competing-risks analysis. The cumulative incidence function (CIF) is a direct function of the cumulative subhazard:

$$
\operatorname{CIF}_{1}(t)=1-\exp \left\{-\bar{H}_{1}(t)\right\}
$$

The subhazard ratio is the ratio of the subhazard function evaluated at two different values of the covariates: $\bar{h}_{1}(t \mid \mathbf{x}) / \bar{h}_{1}\left(t \mid \mathbf{x}_{0}\right)$. The subhazard ratio is often called the relative subhazard, especially when $\bar{h}_{1}\left(t \mid \mathbf{x}_{0}\right)$ is the baseline subhazard function.
subpopulation estimation. Subpopulation estimation focuses on computing point and variance estimates for part of the population. The variance estimates measure the sample-to-sample variability, assuming that the same survey design is used to select individuals for observation from the population. This approach results in a different variance than measuring the sample-to-sample variability by restricting the samples to individuals within the subpopulation; see [SVY] subpopulation estimation.
subscripts. Subscripts are how you refer to an element or even a submatrix of a matrix.
Mata provides two kinds of subscripts, known as list subscripts and range subscripts.
In list subscripts, $A[2,3]$ refers to the $(2,3)$ element of $A . A[(2 \backslash 3),(4,6)]$ refers to the submatrix made up of the second and third rows, fourth and sixth columns, of $A$.
In range subscripts, $A[|2,3|]$ also refers to the $(2,3)$ element of $A . A[|2,3 \backslash 4,6|]$ refers to the submatrix beginning at the $(2,3)$ element and ending at the $(4,6)$ element.

See [M-2] subscripts for more information.
substantive constraints. See identification.
successive difference replication. Successive difference replication (SDR) is a method of variance typically applied to systematic samples, where the observed sampling units are somehow ordered. The SDR variance estimator is described in [SVY] variance estimation.
summary statistics data. Data are sometimes available only in summary statistics form, as (1) means and covariances, (2) means, standard deviations or variances, and correlations, (3) covariances, (4) standard deviations or variances and correlations, or (5) correlations. SEM can be used to fit models using such data in place of the underlying raw data. The ssd command creates datasets containing summary statistics.
super-varying variables. See varying and super-varying variables.
supplementary rows or columns or supplementary variables. Supplementary rows or columns can be included in CA, and supplementary variables can be included in MCA. They do not affect the CA or MCA solution, but they are included in plots and tables with statistics of the corresponding row or column points. Also see correspondence analysis and multiple correspondence analysis.
survey data. Survey data consist of information about individuals that were sampled from a population according to a survey design. Survey data distinguishes itself from other forms of data by the complex nature under which individuals are selected from the population.
In survey data analysis, the sample is used to draw inferences about the population. Furthermore, the variance estimates measure the sample-to-sample variability that results from the survey design applied to the fixed population. This approach differs from standard statistical analysis, in which the sample is used to draw inferences about a physical process and the variance measures the sample-to-sample variability that results from independently collecting the same number of observations from the same process.
survey design. A survey design describes how to sample individuals from the population. Survey designs typically include stratification and cluster sampling at one or more stages.
survival-time data. See st data.
survivor function. Also known as the survivorship function and the survival function, the survivor function, $S(t)$, is 1 ) the probability of surviving beyond time $t$, or equivalently, 2 ) the probability that there is no failure event prior to $t, 3$ ) the proportion of the population surviving to time $t$, or equivalently, 4) the reverse cumulative distribution function of $T$, the time to the failure event: $S(t)=\operatorname{Pr}(T>t)$. Also see hazard.
SVAR. A structural vector autoregressive (SVAR) model is a type of VAR in which short- or long-run constraints are placed on the resulting impulse-response functions. The constraints are usually motivated by economic theory and therefore allow causal interpretations of the IRFs to be made.
SVD. See singular value decomposition.
symmetric matrices. Matrix $A$ is symmetric if $A=A^{\prime}$. The word symmetric is usually reserved for real matrices, and in that case, a symmetric matrix is a square matrix with $a_{i j}==a_{j i}$.

Matrix $A$ is said to be Hermitian if $A=A^{\prime}$, where the transpose operator is understood to mean the conjugate-transpose operator; see Hermitian matrix. In Mata, the ' operator is the conjugatetranspose operator, and thus, in this manual, we will use the word symmetric both to refer to real, symmetric matrices and to refer to complex, Hermitian matrices.

Sometimes, you will see us follow the word symmetric with a parenthesized Hermitian, as in, "the resulting matrix is symmetric (Hermitian)". That is done only for emphasis.
The inverse of a symmetric (Hermitian) matrix is symmetric (Hermitian).
symmetriconly. Symmetriconly is a word we have coined to refer to a square matrix whose corresponding off-diagonal elements are equal to each other, whether the matrix is real or complex. Symmetriconly matrices have no mathematical significance, but sometimes, in data-processing and memory-management routines, it is useful to be able to distinguish such matrices.
symmetry. In a $2 \times 2$ contingency table, symmetry refers to the equality of the off-diagonal elements. For a $2 \times 2$ table, a test of marginal homogeneity reduces to a test of symmetry.
$\mathbf{t}$ test. A $t$ test is a test for which the sampling distribution of the test statistic is a Student's $t$ distribution.

A one-sample $t$ test is used to test whether the mean of a population is equal to a specified value when the variance must also be estimated. The test statistic follows Student's $t$ distribution with $N-1$ degrees of freedom, where $N$ is the sample size.

A two-sample $t$ test is used to test whether the means of two populations are equal when the variances of the populations must also be estimated. When the two populations' variances are unequal, a modification to the standard two-sample $t$ test is used; see Satterthwaite's $t$ test.
target parameter. In power and sample-size analysis, the target parameter is the parameter of interest or the parameter in the study about which hypothesis tests are conducted.
target rotation. Target rotation minimizes the criterion

$$
c(\boldsymbol{\Lambda})=\frac{1}{2}\|\boldsymbol{\Lambda}-\mathbf{H}\|^{2}
$$

for a given target matrix $\mathbf{H}$.
See Crawford-Ferguson rotation for a definition of $\boldsymbol{\Lambda}$.
taxonomy. Taxonomy is the study of the general principles of scientific classification. It also denotes classification, especially the classification of plants and animals according to their natural relationships. Cluster analysis is a tool used in creating a taxonomy and is synonymous with numerical taxonomy. Also see cluster analysis.
Taylor linearization. See linearization.
technique. Technique is just an English word and should be read in context. Nonetheless, technique is usually used here to refer to the technique used to calculate the estimated VCE. Those techniques are OIM, EIM, OPG, robust, clustered, bootstrap, and jackknife.

Technique is also used to refer to the available techniques used with ml, Stata's optimizer and likelihood maximizer, to find the solution.
test statistic. In hypothesis testing, a test statistic is a function of the sample that does not depend on any unknown parameters.
tetrachoric correlation. A tetrachoric correlation estimates the correlation coefficients of binary variables by assuming a latent bivariate normal distribution for each pair of variables, with a threshold model for manifest variables.
thrashing. Subjects are said to thrash when they are censored and immediately reenter with different covariates.
three-level model. A three-level mixed-effects model has one level of observations and two levels of grouping. Suppose that you have a dataset consisting of patients overseen by doctors at hospitals, and each doctor practices at one hospital. Then a three-level model would contain a set of random effects to control for hospital-specific variation, a second set of random effects to control for doctor-specific random variation within a hospital, and a random-error term to control for patients' random variation.
ties. After discriminant analysis, ties in classification occur when two or more posterior probabilities are equal for an observation. They are most common with KNN discriminant analysis.
time-domain analysis. Time-domain analysis is analysis of data viewed as a sequence of observations observed over time. The autocorrelation function, linear regression, ARCH models, and ARIMA models are common tools used in time-domain analysis.
time-series-operated variable. Time-series-operated variables are a Stata concept. The term refers to op.varname combinations such as L.gnp to mean the lagged value of variable gnp. Mata's [M-5] st_data() function works with time-series-operated variables just as it works with other variables, but many other Stata-interface functions do not allow op.varname combinations. In those cases, you must use [M-5] st_tsrevar( ).
time-varying covariates. Time-varying covariates appear in a survival model whose values vary over time. The values of the covariates vary, not the effect. For instance, in a proportional hazards model, the log hazard at time $t$ might be $b \times$ age $_{t}+c \times$ treatment $_{t}$. Variable age might be time varying, meaning that as the subject ages, the value of age changes, which correspondingly causes the hazard to change. The effect $b$, however, remains constant.
Time-varying variables are either continuously varying or discretely varying.
In the continuously varying case, the value of the variable $x$ at time $t$ is $x_{t}=x_{o}+f(t)$, where $f()$ is some function and often is the identity function, so that $x_{t}=x_{o}+t$.

In the discretely varying case, the value of $x$ changes at certain times and often in no particular pattern:

| idvar | $t 0$ | $t$ | $b p$ |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 5 | 150 |
| 1 | 5 | 7 | 130 |
| 1 | 7 | 9 | 135 |

In the above data, the value of $b p$ is 150 over the period $(0,5]$, then 130 over $(5,7]$, and 135 over (7,9].
total effects. See direct, indirect, and total effects.
total inertia or total principal inertia. The total (principal) inertia in CA and MCA is the sum of the principal inertias. In CA, total inertia is the Pearson $\chi^{2} / n$. In CA, the principal inertias are the singular values; in MCA the principal inertias are the eigenvalues. Also see correspondence analysis and multiple correspondence analysis.
traceback log. When a function fails-either because of a programming error or because it was used incorrectly-it produces a traceback log:

```
: myfunction(2,3)
            solve(): 3200 conformability error
            mysub(): - function returned error
            myfunction(): - function returned error
            <istmt>: - function returned error
r(3200);
```

The log says that solve() detected the problem-arguments are not conformable-and that solve() was called by mysub() was called by myfunction() was called by what you typed at the keyboard. See [M-2] errors for more information.
transmorphic. Transmorphic is an eltype. A scalar, vector, or matrix can be transmorphic, which indicates that its elements may be real, complex, string, pointer, or even a structure. The elements are all the same type; you are just not saying which they are. Variables that are not declared are assumed to be transmorphic, or a variable can be explicitly declared to be transmorphic. Transmorphic is just fancy jargon for saying that the elements of the scalar, vector, or matrix can be anything and that, from one instant to the next, the scalar, vector, or matrix might change from holding elements of one type to elements of another.
See [M-2] declarations.
transpose. The transpose operator is written different ways in different books, including ', superscript *, superscript $T$, and superscript $H$. Here we use the ${ }^{\prime}$ notation: $A^{\prime}$ means the transpose of $A, A$ with its rows and columns interchanged.
In complex analysis, the transpose operator, however it is written, is usually defined to mean the conjugate transpose; that is, one interchanges the rows and columns of the matrix and then one takes the conjugate of each element, or one does it in the opposite order-it makes no difference. Conjugation simply means reversing the sign of the imaginary part of a complex number: the conjugate of $1+2 i$ is $1-2 i$. The conjugate of a real is the number itself; the conjugate of 2 is 2 .
In Mata, ${ }^{\prime}$ is defined to mean conjugate transpose. Since the conjugate of a real is the number itself, $A^{\prime}$ is regular transposition when $A$ is real. Similarly, we have defined ' so that it performs regular transposition for string and pointer matrices. For complex matrices, however, ' also performs conjugation.
If you have a complex matrix and simply want to transpose it without taking the conjugate of its elements, see [M-5] transposeonly(). Or code $\operatorname{conj}\left(A^{\prime}\right)$. The extra conj() will undo the undesired conjugation performed by the transpose operator.
Usually, however, you want transposition and conjugation to go hand in hand. Most mathematical formulas, generalized to complex values, work that way.
treatment model. A treatment model is a model used to predict treatment-assignment probabilities as a function of covariates and parameters.
trend. The trend specifies the long-run behavior in a time series. The trend can be deterministic or stochastic. Many economic, biological, health, and social time series have long-run tendencies to increase or decrease. Before the 1980s, most time-series analysis specified the long-run tendencies as deterministic functions of time. Since the 1980s, the stochastic trends implied by unit-root processes have become a standard part of the toolkit.
triangular matrix. A triangular matrix is a matrix with all elements equal to zero above the diagonal or all elements equal to zero below the diagonal.
A matrix $A$ is lower triangular if all elements are zero above the diagonal, that is, if $A[i, j]==0$, $j>i$.

A matrix $A$ is upper triangular if all elements are zero below the diagonal, that is, if $A[i, j]==0$, $j<i$.

A diagonal matrix is both lower and upper triangular. That is worth mentioning because any function suitable for use with triangular matrices is suitable for use with diagonal matrices.

A triangular matrix is usually square.
The inverse of a triangular matrix is a triangular matrix. The determinant of a triangular matrix is the product of the diagonal elements. The eigenvalues of a triangular matrix are the diagonal elements.
truncation, left-truncation, and right-truncation. In survival analysis, truncation occurs when subjects are observed only if their failure times fall within a certain observational period of a study. Censoring, on the other hand, occurs when subjects are observed for the whole duration of a study, but the exact times of their failures are not known; it is known only that their failures occurred within a certain time span.

Left-truncation occurs when subjects come under observation only if their failure times exceed some time $t_{l}$. It is only because they did not fail before $t_{l}$ that we even knew about their existence. Left-truncation differs from left-censoring in that, in the censored case, we know that the subject failed before time $t_{l}$, but we just do not know exactly when.
Imagine a study of patient survival after surgery, where patients cannot enter the sample until they have had a post-surgical test. The patients' survival times will be left-truncated. This is a "delayed entry" problem, one common type of left-truncation.

Right-truncation occurs when subjects come under observation only if their failure times do not exceed some time $t_{r}$. Right-truncated data typically occur in registries. For example, a cancer registry includes only subjects who developed a cancer by a certain time, and thus survival data from this registry will be right-truncated.
two-independent-samples test. See two-sample test.
two-level model. A two-level mixed-effects model has one level of observations and one level of grouping. Suppose that you have a panel dataset consisting of patients at hospitals; a two-level model would contain a set of random effects at the hospital level (the second level) to control for hospital-specific random variation and a random-error term at the observation level (the first level) to control for within-hospital variation.
two-sample paired test. See paired test.
two-sample test. A two-sample test is used to test whether the parameters of interest of the two independent populations are equal. For example, two-sample means test, two-sample variances, two-sample proportions test, two-sample correlations test.
two-sided test, two-tailed test. A two-sided test is a hypothesis test of a parameter in which the alternative hypothesis is the complement of the null hypothesis. In the context of a test of a scalar parameter, the alternative hypothesis states that the parameter is less than or greater than the value conjectured under the null hypothesis.
two-way ANOVA, two-way analysis of variance. A two-way ANOVA model contains two factors. Also see [PSS] power twoway.
two-way repeated-measures ANOVA, two-factor ANOVA. This is a repeated-measures ANOVA model with one within-subject factor and one between-subjects factor. The model can be additive (contain only main effects of the factors) or can contain main effects and an interaction between the two factors. Also see [PSS] power repeated.
type, eltype, and orgtype. The type of a matrix (or vector or scalar) is formally defined as the matrix's eltype and orgtype, listed one after the other-such as real vector-but it can also mean just one or the other-such as the eltype real or the orgtype vector.
eltype refers to the type of the elements. The eltypes are

| real | numbers such as $1,2,3.4$ |
| ---: | :--- |
| complex | numbers such as $1+2 \mathrm{i}, 3+0 \mathrm{i}$ |
| string | strings such as "bill" |
| pointer | pointers such as \&varname |
| struct | structures |
| numeric | meaning real or complex |
| transmorphic | meaning any of the above |

orgtype refers to the organizational type. orgtype specifies how the elements are organized. The orgtypes are

| matrix | two-dimensional arrays |
| ---: | :--- |
| vector | one-dimensional arrays |
| colvector | one-dimensional column arrays |
| rowvector | one-dimensional row arrays |
| scalar | single items |

The fully specified type is the element and organization types combined, as in real vector.
type I error or false-positive result. The type I error of a test is the error of rejecting the null hypothesis when it is true. The probability of committing a type I error, significance level of a test, is often denoted as $\alpha$ in statistical literature. One traditionally used value for $\alpha$ is $5 \%$. Also see type II error and power.
type I study. A type I study is a study in which all subjects fail (or experience an event) by the end of the study; that is, no censoring of subjects occurs.
type II error or false-negative result. The type II error of a test is the error of not rejecting the null hypothesis when it is false. The probability of committing a type II error is often denoted as $\beta$ in statistical literature. Commonly used values for $\beta$ are $20 \%$ or $10 \%$. Also see type I error and power.
type II study. A type II study is a study in which there are subjects who do not fail (or do not experience an event) by the end of the study. These subjects are known to be censored.
type I error probability. See probability of a type I error.
type II error probability. See probability of a type II error.
unary operator. A unary operator is an operator applied to one argument. In -2 , the minus sign is a unary operator. In $!(a==b \mid a==c)$, ! is a unary operator.
unbalanced data. A longitudinal or panel dataset is said to be unbalanced if each panel does not have the same number of observations. See also weakly balanced and strongly balanced.
unbalanced design. An unbalanced design indicates an experiment in which the numbers of treated and untreated subjects differ. Also see [PSS] unbalanced designs.
unconfoundedness. See conditional-independence assumption.
under observation. A subject is under observation when failure events, should they occur, would be observed (and so recorded in the dataset). Being under observation does not mean that a subject is necessarily at risk. Subjects usually come under observation before they are at risk. The statistical concern is with periods when subjects are at risk but not under observation, even when the subject is (later) known not to have failed during the hiatus.

In such cases, since failure events would not have been observed, the subject necessarily had to survive the observational hiatus, and that leads to bias in statistical results unless the hiatus is accounted for properly.

Entry time and exit time record when a subject first and last comes under observation, between which there may be observational gaps, but usually there are not. There is only one entry time and one exit time for each subject. Often, entry time corresponds to analysis time $t=0$, or before, and exit time corresponds to the time of failure.

Delayed entry means that the entry time occurred after $t=0$.
underscore functions. Functions whose names start with an underscore are called underscore functions, and when an underscore function exists, usually a function without the underscore prefix also exists. In those cases, the function is usually implemented in terms of the underscore function, and the underscore function is harder to use but is faster or provides greater control. Usually, the difference is in the handling of errors.

For instance, function fopen() opens a file. If the file does not exist, execution of your program is aborted. Function _fopen () does the same thing, but if the file cannot be opened, it returns a special value indicating failure, and it is the responsibility of your program to check the indicator and to take the appropriate action. This can be useful when the file might not exist, and if it does not, you wish to take a different action. Usually, however, if the file does not exist, you will wish to abort, and use of fopen() will allow you to write less code.
unequal-allocation design. See unbalanced design.
uniqueness. In factor analysis, the uniqueness is the percentage of a variable's variance that is not explained by the common factors. It is also " 1 - communality". Also see communality.
unitary matrix. See orthogonal matrix.
unit-root process. A unit-root process is one that is integrated of order one, meaning that the process is nonstationary but that first-differencing the process produces a stationary series. The simplest example of a unit-root process is the random walk. See Hamilton (1994, chap. 15) for a discussion of when general ARMA processes may contain a unit root.
unit-root tests. Whether a process has a unit root has both important statistical and economic ramifications, so a variety of tests have been developed to test for them. Among the earliest tests proposed is the one by Dickey and Fuller (1979), though most researchers now use an improved variant called the augmented Dickey-Fuller test instead of the original version. Other common unit-root tests implemented in Stata include the DF-GLS test of Elliott, Rothenberg, and Stock (1996) and the Phillips-Perron (1988) test. See [TS] dfuller, [TS] dfgls, and [TS] pperron. Variants of unit-root tests suitable for panel data have also been developed; see [XT] xtunitroot.
unregistered variables. See registered and unregistered variables.
unrestricted transformation. An unrestricted transformation is a Procrustes transformation that allows the data to be transformed, not just by orthogonal and oblique rotations, but by all conformable regular matrices. This is equivalent to a multivariate regression. Also see Procrustes transformation and multivariate regression.
unstandardized coefficient. A coefficient that is not standardized. If mpg $=-0.006 \times$ weight + 39.44028 , then -0.006 is an unstandardized coefficient and, as a matter of fact, is measured in mpg-per-pound units.
unstructured and structured (correlation or covariance). A set of variables, typically error variables, is said to have an unstructured correlation or covariance if the covariance matrix has no particular
pattern imposed by theory. If a pattern is imposed, the correlation or covariance is said to be structured.
upper one-sided test, upper one-tailed test. An upper one-sided test is a one-sided test of a scalar parameter in which the alternative hypothesis is upper one sided, meaning that the alternative hypothesis states that the parameter is greater than the value conjectured under the null hypothesis. Also see One-sided test versus two-sided test under Remarks and examples in [PSS] intro.
VAR. A vector autoregressive (VAR) model is a multivariate regression technique in which each dependent variable is regressed on lags of itself and on lags of all the other dependent variables in the model. Occasionally, exogenous variables are also included in the model.
variable. In a program, the entities that store values $(a, b, c, \ldots, x, y, z)$ are called variables. Variables are given names of 1 to 32 characters long. To be terribly formal about it: a variable is a container; it contains a matrix, vector, or scalar and is referred to by its variable name or by another variable containing a pointer to it.
Also, variable is sometimes used to refer to columns of data matrices; see data matrix.
variance components. In a mixed-effects model, the variance components refer to the variances and covariances of the various random effects.
variance-covariance matrix of the estimator. The estimator is the formula used to solve for the fitted parameters, sometimes called the fitted coefficients. The VCE is the estimated variance-covariance matrix of the parameters. The diagonal elements of the VCE are the variances of the parameters or equivalent, the square root of those elements are the reported standard errors of the parameters.
variance estimation. Variance estimation refers to the collection of methods used to measure the amount of sample-to-sample variation of point estimates; see [SVY] variance estimation.
varimax rotation. Varimax rotation maximizes the variance of the squared loadings within the columns of the matrix. It is an orthogonal rotation equivalent to oblimin with $\gamma=1$ or to the CrawfordFerguson family with $\kappa=1 / p$, where $p$ is the number of rows of the matrix to be rotated. Also see orthogonal rotation, oblimin rotation, and Crawford-Ferguson rotation.
varying and super-varying variables. A variable is said to be varying if its values in the incomplete observations differ across $m$. Imputed and passive variables are varying. Regular variables are nonvarying. Unregistered variables can be either.
Imputed variables are supposed to vary because their incomplete values are filled in with different imputed values, although an imputed variable can be temporarily nonvarying if you have not imputed its values yet. Similarly, passive variables should vary because they are or will be filled in based on values of varying imputed variables.
VCE. See variance-covariance matrix of the estimator.
VECM. A vector error-correction model (VECM) is a type of VAR that is used with variables that are cointegrated. Although first-differencing variables that are integrated of order one makes them stationary, fitting a VAR to such first-differenced variables results in misspecification error if the variables are cointegrated. See The multivariate VECM specification in [TS] vec intro for more on this point.
vector, colvector, and rowvector. A special case of a matrix with either one row or one column. A vector may be substituted anywhere a matrix is required. A matrix, however, may not be substituted for a vector.

A colvector is a vector with one column.
A rowvector is a vector with one row.
A vector is either a rowvector or colvector, without saying which.
view. A view is a special type of matrix that appears to be an ordinary matrix, but in fact the values in the matrix are the values of certain or all variables and observations in the Stata dataset that is currently in memory. Its values are not just equal to the dataset's values; they are the dataset's values: if an element of the matrix is changed, the corresponding variable and observation in the Stata dataset also changes. Views are obtained by st_view () and are efficient; see [M-5] st_view().
void function. A function is said to be void if it returns nothing. For instance, the function [M-5] printf() is a void function; it prints results, but it does not return anything in the sense that, say, [M-5] sqrt() does. It would not make any sense to code $\mathrm{x}=$ printf("hi there"), but coding $\mathrm{x}=$ sqrt (2) is perfectly logical.
void matrix. A matrix is said to be void if it is $0 \times 0, r \times 0$, or $0 \times c$; see [M-2] void.
Wald test. A Wald test is a statistical test based on the estimated variance-covariance matrix of the parameters. Wald tests are especially convenient for testing possible constraints to be placed on the estimated parameters of a model. Also see score test.

Ward's linkage clustering. Ward's-linkage clustering is a hierarchical clustering method that joins the two groups resulting in the minimum increase in the error sum of squares.
weakly balanced. A longitudinal or panel dataset is said to be weakly balanced if each panel has the same number of observations but the observations for different panels were not all made at the same times.
weighted least squares. Weighted least squares (WLS) is a method used to obtain fitted parameters. In this documentation, WLS is referred to as ADF, which stands for asymptotic distribution free. Other available methods are ML, QML, and MLMV. ADF is, in fact, a specific kind of the more generic WLS.
weighted-average linkage clustering. Weighted-average linkage clustering is a hierarchical clustering method that uses the weighted average similarity or dissimilarity of the two groups as the measure between the two groups.
white noise. A variable $u_{t}$ represents a white-noise process if the mean of $u_{t}$ is zero, the variance of $u_{t}$ is $\sigma^{2}$, and the covariance between $u_{t}$ and $u_{s}$ is zero for all $s \neq t$.
wide data. See style.
Wilks' lambda. Wilks' lambda is a test statistic for the hypothesis test $H_{0}: \boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{k}$ based on the eigenvalues $\lambda_{1}, \ldots, \lambda_{s}$ of $\mathbf{E}^{-1} \mathbf{H}$. It is defined as

$$
\Lambda=\frac{|\mathbf{E}|}{|\mathbf{E}+\mathbf{H}|}=\prod_{i=1}^{s} \frac{1}{1+\lambda_{i}}
$$

where $\mathbf{H}$ is the between matrix and $\mathbf{E}$ is the within matrix. See between matrix.
Wishart distribution. The Wishart distribution is a family of probability distributions for nonnegativedefinite matrix-valued random variables ("random matrices"). These distributions are of great importance in the estimation of covariance matrices in multivariate statistics.
withdrawal. Withdrawal is the process under which subjects withdraw from a study for reasons unrelated to the event of interest. For example, withdrawal occurs if subjects move to a different area or decide to no longer participate in a study. Withdrawal should not be confused with administrative censoring. If subjects withdraw from the study, the information about the outcome those subjects would have experienced at the end of the study, had they completed the study, is unavailable. Also see loss to follow-up and administrative censoring.
within estimator. The within estimator is a panel-data estimator that removes the panel-specific heterogeneity by subtracting the panel-level means from each variable and then performing ordinary least squares on the demeaned data. The within estimator is used in fitting the linear fixed-effects model.
within matrix. See between matrix.
within-subject design. This is an experiment that has at least one within-subject factor. See [PSS] power repeated.
within-subject factor. This is a factor for which each subject receives several or all the levels.
WLF. See worst linear function.
WLS. See weighted least squares.
worst linear function. A linear combination of all parameters being estimated by an iterative procedure that is thought to converge slowly.
Yule-Walker equations. The Yule-Walker equations are a set of difference equations that describe the relationship among the autocovariances and autocorrelations of an autoregressive moving-average (ARMA) process.
$\mathbf{z}$ test. A $z$ test is a test for which a potentially asymptotic sampling distribution of the test statistic is a normal distribution. For example, a one-sample $z$ test of means is used to test whether the mean of a population is equal to a specified value when the variance is assumed to be known. The distribution of its test statistic is normal. See [PSS] power onemean, [PSS] power twomeans, and [PSS] power pairedmeans.

## References

Bartlett, M. S. 1937. The statistical conception of mental factors. British Journal of Psychology 28: 97-104.
——. 1938. Methods of estimating mental factors. Nature, London 141: 609-610.
Bellman, R. E. 1961. Adaptive Control Processes. Princeton, NJ: Princeton University Press.
Bentler, P. M. 1977. Factor simplicity index and transformations. Psychometrika 42: 277-295.
Bentler, P. M., and D. G. Weeks. 1980. Linear structural equations with latent variables. Psychometrika 45: 289-308.
Breusch, T. S., and A. R. Pagan. 1980. The Lagrange multiplier test and its applications to model specification in econometrics. Review of Economic Studies 47: 239-253.
Chatfield, C. 2004. The Analysis of Time Series: An Introduction. 6th ed. Boca Raton, FL: Chapman \& Hall/CRC. Comrey, A. L. 1967. Tandem criteria for analytic rotation in factor analysis. Psychometrika 32: 277-295.

Cox, T. F., and M. A. A. Cox. 2001. Multidimensional Scaling. 2nd ed. Boca Raton, FL: Chapman \& Hall/CRC.
Crawford, C. B., and G. A. Ferguson. 1970. A general rotation criterion and its use in orthogonal rotation. Psychometrika 35: 321-332.

Davidson, R., and J. G. MacKinnon. 1993. Estimation and Inference in Econometrics. New York: Oxford University Press.

Dickey, D. A., and W. A. Fuller. 1979. Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association 74: 427-431.
Durbin, J. 1970. Testing for serial correlation in least-squares regressions when some of the regressors are lagged dependent variables. Econometrica 38: 410-421.

Durbin, J., and G. S. Watson. 1950. Testing for serial correlation in least squares regression. I. Biometrika 37: 409-428.
_-. 1951. Testing for serial correlation in least squares regression. II. Biometrika 38: 159-177.
_-. 1971. Testing for serial correlation in least squares regression. III. Biometrika 58: 1-19.

Elliott, G. R., T. J. Rothenberg, and J. H. Stock. 1996. Efficient tests for an autoregressive unit root. Econometrica 64: 813-836.

Fisher, R. A. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7: 179-188.
Hamilton, J. D. 1994. Time Series Analysis. Princeton: Princeton University Press.
Hendrickson, A. E., and P. O. White. 1964. Promax: A quick method for rotation to oblique simple structure. British Journal of Statistical Psychology 17: 65-70.

Jennrich, R. I. 2004. Rotation to simple loadings using component loss functions: The orthogonal case. Psychometrika 69: 257-273.

Kaiser, H. F. 1974. An index of factor simplicity. Psychometrika 39: 31-36.
Kruskal, J. B. 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1-27.
Mahalanobis, P. C. 1936. On the generalized distance in statistics. National Institute of Science of India 12: 49-55.
Phillips, P. C. B., and P. Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335-346.
Sammon, J. W., Jr. 1969. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18: 401-409.

Thomson, G. H. 1951. The Factorial Analysis of Human Ability. London: University of London Press.
Wei, W. W. S. 2006. Time Series Analysis: Univariate and Multivariate Methods. 2nd ed. Boston: Pearson.

## Vignette index

Aalen, O. O. (1947- ), [ST] sts
Akaike, H. (1927-2009), [R] estat ic
Arellano, M. (1957- ), [XT] xtabond

Bartlett, M. S. (1910-2002), [TS] wntestb
Berkson, J. (1899-1982), [R] logit
Bliss, C. I. (1899-1979), [R] probit
Bond, S. R. (1963- ), [XT] xtabond
Bonferroni, C. E. (1892-1960), [R] correlate
Box, G. E. P. (1919-2013), [TS] arima
Breusch, T. S. (1949- ), [R] regress postestimation time series
Brier, G. W. (1913-1998), [R] brier

Cholesky, A.-L. (1875-1918), [M-5] cholesky()
Cleveland, W. S. (1943- ), [R] lowess
Cochran, W. G. (1909-1980), [SVY] survey
Cochrane, D. (1917-1983), [TS] prais
Cohen, J. (1923-1998), [R] kappa
Cornfield, J. (1912-1979), [ST] epitab
Cox, D. R. (1924- ), [ST] stcox
Cox, G. M. (1900-1978), [R] anova
Cronbach, L. J. (1916-2001), [MV] alpha

David, F. N. (1909-1993), [R] correlate
Dickey, D. A. (1945- ), [TS] dfuller
Durbin, J. (1923-2012), [R] regress postestimation time series
Dunnett, C. W. (1921-2007), [D] functions

Efron, B. (1938- ), [R] bootstrap
Engle, R. F. (1942- ), [TS] arch

Fisher, R. A. (1890-1962), [R] anova
Fourier, J. B. J. (1768-1830), [R] cumul
Fuller, W. A. (1931- ), [TS] dfuller

Gabriel, K. R. (1929-2003), [MV] biplot
Galton, F. (1822-1911), [R] regress
Gauss, J. C. F. (1777-1855), [R] regress
Gnanadesikan, R. (1932- ), [R] diagnostic plots
Godfrey, L. G. (1946- ), [R] regress postestimation time series
Gompertz, B. (1779-1865), [ST] streg
Gosset, W. S. (1876-1937), [R] ttest
Granger, C. W. J. (1934-2009), [TS] vargranger
Greenwood, M. (1880-1949), [ST] sts

Hadamard, J. S. (1865-1963), [D] functions
Haenszel, W. M. (1910-1998), [ST] strate
Halton, J. H. (1931- ), [M-5] halton()
Hammersley, J. M. (1920-2004), [M-5] halton()
Hartley, H. O. (1912-1980), [MI] mi impute
Harvey, A. C. (1947- ), [TS] ucm

Hausman, J. A. (1946- ), [R] hausman Hays, W. L. (1926-1995), [R] esize
Heckman, J. J. (1944- ), [R] heckman
Henderson, C. R. (1911-1989), [ME] mixed
Hermite, C. (1822-1901), [M-5] issymmetric()
Hesse, L. O. (1811-1874), [M-5] moptimize( )
Hessenberg, K. A. (1904-1959), [M-5] hessenbergd()
Hilbert, D. (1862-1943), [M-5] Hilbert()
Hotelling, H. (1895-1973), [MV] hotelling
Householder, A. S. (1904-1993), [M-5] qrd()
Huber, P. J. (1934- ), [U] 20 Estimation and postestimation commands

Jaccard, P. (1868-1944), [MV] measure_option
Jacobi, C. G. J. (1804-1851), [M-5] deriv( )
Jeffreys, H. (1891-1989), [R] ci
Jenkins, G. M. (1933-1982), [TS] arima
Johansen, S. (1939- ), [TS] vecrank

Kaiser, H. F. (1927-1992), [MV] rotate
Kaplan, E. L. (1920-2006), [ST] sts
Kendall, M. G. (1907-1983), [R] spearman
Kerlinger, F. N. (1910-1991), [R] esize
Kish, L. (1910-2000), [SVY] survey
Kolmogorov, A. N. (1903-1987), [R] ksmirnov
Kronecker, L. (1823-1891), [M-2] op_kronecker
Kruskal, J. B. (1928-2010), [MV] mds
Kruskal, W. H. (1919-2005), [R] kwallis

Lane-Claypon, J. E. (1877-1967), [ST] epitab
Laplace, P.-S. (1749-1827), [R] regress
Legendre, A.-M. (1752-1833), [R] regress
Lexis, W. (1837-1914), [ST] stsplit
Lorenz, M. O. (1876-1959), [R] inequality

Mahalanobis, P. C. (1893-1972), [MV] hotelling
Mann, H. B. (1905-2000), [R] ranksum
Mantel, N. (1919-2002), [ST] strate
Marquardt, D. W. (1929-1997), [M-5] moptimize()
martingale, [ST] stcox postestimation
McFadden, D. L. (1937- ), [R] asclogit
McNemar, Q. (1900-1986), [ST] epitab
Meier, P. (1924-2011), [ST] sts
Moore, E. H. (1862-1932), [M-5] pinv()
Murrill, W. A. (1867-1957), [MV] discrim knn

Nelder, J. A. (1924-2010), [R] glm
Nelson, W. B. (1936- ), [ST] sts
Newey, W. K. (1954- ), [TS] newey
Newton, I. (1643-1727), [M-5] optimize( )
Neyman, J. (1894-1981), [R] ci
Nightingale, F. (1820-1910), [G-2] graph pie

Pearson, K. (1857-1936), [R] correlate
Penrose, R. (1931- ), [M-5] pinv()
Perron, P. (1959- ), [TS] pperron
Phillips, P. C. B. (1948- ), [TS] pperron
Playfair, W. (1759-1823), [G-2] graph pie
Poisson, S.-D. (1781-1840), [R] poisson
Prais, S. J. (1928-2014), [TS] prais

Raphson, J. (1648-1715), [M-5] optimize()
Rubin, D. B. (1943- ), [MI] intro substantive

Scheffé, H. (1907-1977), [R] oneway
Schur, I. (1875-1941), [M-5] schurd()
Schwarz, G. E. (1933-2007), [R] estat ic
Scott, E. L. (1917-1988), [R] intro
scree, [MV] screeplot
Shapiro, S. S. (1930- ), [R] swilk
Shepard, R. N. (1929- ), [MV] mds postestimation
Shewhart, W. A. (1891-1967), [R] qc
Šidák, Z. (1933-1999), [R] correlate
Simpson, T. (1710-1761), [M-5] optimize()
singular value decompositions, [M-5] svd()
Smirnov, N. V. (1900-1966), [R] ksmirnov
Sneath, P. H. A. (1923-2011), [MV] measure_option
Snow, J. (1813-1858), [ST] epitab
Sokal, R. R. (1926-2012), [MV] measure_option
Spearman, C. E. (1863-1945), [R] spearman

Theil, H. (1924-2000), [R] reg3
Thiele, T. N. (1838-1910), [R] summarize
Tobin, J. (1918-2002), [R] tobit
Toeplitz, O. (1881-1940), [M-5] Toeplitz()
Tukey, J. W. (1915-2000), [R] jackknife

Vandermonde, A.-T. (1735-1796),
[M-5] Vandermonde()

Wald, A. (1902-1950), [TS] varwle
Wallis, W. A. (1912-1998), [R] kwallis
Ward, J. H., Jr. (1926-2011), [MV] cluster linkage
Watson, G. S. (1921-1998), [R] regress postestimation time series
Wedderburn, R. W. M. (1947-1975), [R] glm
Weibull, E. H. W. (1887-1979), [ST] streg
West, K. D. (1953- ), [TS] newey
White, H. L., Jr. (1950-2012), [U] 20 Estimation and postestimation commands
Whitney, D. R. (1915-2007), [R] ranksum
Wilcoxon, F. (1892-1965), [R] signrank
Wilk, M. B. (1922-2013), [R] diagnostic plots
Wilks, S. S. (1906-1964), [MV] manova
Wilson, E. B. (1879-1964), [R] ci
Winsten, C. B. (1923-2005), [TS] prais
Woolf, B. (1902-1983), [ST] epitab

Zellner, A. (1927-2010), [R] sureg

## Author index

## A

Aalen, O. O., [ST] stcrreg postestimation, [ST] sts
Abadie, A., [TE] teffects intro advanced, [TE] teffects multivalued, [TE] teffects nnmatch, [TE] teffects psmatch
Abayomi, K. A., [MI] intro substantive, [MI] mi impute
Abraham, B., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Abraira-García, L., [ST] epitab
Abramowitz, M., [D] functions, [ME] meqrlogit, [ME] meqrpoisson, $[R]$ contrast, $[R]$ orthog
Abrams, K. R., [R] meta, [ST] streg
Abramson, J. H., [R] kappa, [ST] epitab
Abramson, Z. H., [R] kappa, [ST] epitab
Abrevaya, J., [R] boxcox postestimation
Achen, C. H., [R] scobit
Achenback, T. M., [MV] mvtest
Acock, A. C., [MV] alpha, [R] anova, [R] correlate, $[R]$ nestreg, $[R]$ oneway, $[R]$ prtest, $[R]$ ranksum, $[R]$ ttest, [SEM] intro 4, [SEM] intro 5, [SEM] intro 6, [SEM] intro 11, [SEM] example 1, [SEM] example 3, [SEM] example 7, [SEM] example 9, [SEM] example 18, [SEM] example 20
Adkins, L. C., $[\mathrm{R}]$ heckman, $[\mathrm{R}]$ regress, $[\mathrm{R}]$ regress postestimation, [TS] arch
Afifi, A. A., [MV] canon, [MV] discrim, [MV] factor, [MV] pca, [R] anova, [R] stepwise, [U] 20.25 References
Agresti, A., [ME] me, [ME] meologit, [ME] meoprobit, [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, $[R]$ ci, $[R]$ expoisson, $[R]$ tabulate twoway, [ST] epitab
Ahn, S. K., [TS] vec intro
Ahrens, J. H., [D] functions
Aielli, G. P., [TS] mgarch, [TS] mgarch dcc
Aigner, D. J., [R] frontier, [XT] xtfrontier
Aiken, L. S., $[R]$ pcorr
Aisbett, C. W., [ST] stcox, [ST] streg
Aitchison, J., [R] ologit, [R] oprobit
Aitken, A. C., [R] reg3
Aitkin, M. A., [MV] mvtest correlations
Aivazian, S. A., [R] ksmirnov
Akaike, H., [MV] factor postestimation, [R] BIC note, [R] estat ic, [R] glm, [SEM] estat gof, [SEM] methods and formulas for sem, [ST] streg, [TS] varsoc
Albert, A., [MI] mi impute, [MV] discrim, [MV] discrim logistic
Albert, P. S., [XT] xtgee
Aldenderfer, M. S., [MV] cluster
Alderman, M. H., [PSS] intro, [PSS] power repeated

Aldrich, J. H., [R] logit, [R] probit
Alexandersson, A., [R] regress
Alf, E., Jr., [R] rocfit, [R] rocreg
Alfaro, R., [MI] intro
Algina, J., [R] esize
Alldredge, J. R., [R] pk, [R] pkcross
Allen, M. J., [MV] alpha
ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group, [PSS] intro, [PSS] power repeated
Allison, M. J., [MV] manova
Allison, P. D., [MI] intro substantive, [MI] mi impute, $[\mathrm{R}]$ rologit, $[\mathrm{R}]$ testnl, $[\mathrm{ST}]$ discrete, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtreg
Almås, I., [R] inequality
Alonzo, T. A., $[R]$ rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot
Altman, D. G., [R] anova, [R] fp, [R] kappa, $[R]$ kwallis, $[R]$ meta, $[R]$ mfp, $[R]$ nptrend, [R] oneway
Alvarez, J., [XT] xtabond
Alwin, D. F., [SEM] example 9
Ambler, G., $[R] \mathbf{f p},[R] \mathbf{f p}$ postestimation, $[R] \mathbf{m f p}$, $[R]$ regress
Amemiya, T., [R] glogit, [R] intreg, [R] ivprobit, [R] nlogit, [R] tobit, [TS] varsoc, [XT] xthtaylor, [XT] xtivreg
Amisano, G., [TS] irf create, [TS] var intro, [TS] var svar, [TS] vargranger, [TS] varwle
An, S., [TS] arfima
Anderberg, M. R., [MV] cluster, [MV] measure_option
Andersen, E. B., [R] clogit
Andersen, P. K., [R] glm, [ST] stcox, [ST] sterreg
Anderson, B. D. O., [TS] sspace
Anderson, E., [M-1] LAPACK, [M-5] lapack( ), [MV] clustermat, [MV] discrim estat, [MV] discrim lda, [MV] discrim lda postestimation, [MV] mvtest, [MV] mvtest normality, $[\mathrm{P}]$ matrix eigenvalues
Anderson, J. A., [MI] mi impute, [R] ologit, [R] slogit
Anderson, M. L., [ST] stcrreg
Anderson, R. E., [R] rologit
Anderson, R. L., [R] anova
Anderson, S., [R] pkequiv
Anderson, T. W., [MI] intro substantive, [MV] discrim, [MV] manova, [MV] pca, [PSS] intro, [PSS] power onecorrelation, [PSS] power twocorrelations, [R] ivregress postestimation, [TS] vec, [TS] vecrank, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtivreg
Andersson, T. M.-L., [ST] stcox
Andrews, D. F., [D] egen, [MV] discrim lda postestimation, [MV] discrim qda, [MV] discrim qda postestimation, [MV] manova, [R] rreg
Andrews, D. W. K., [R] ivregress

Andrews, M. J., [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [XT] xtreg
Andrich, D., [SEM] example 28g
Ängquist, L., [R] bootstrap, $[R]$ permute
Ängquist, L., [G-2] graph combine
Angrist, J. D., [R] ivregress, [R] ivregress postestimation, $[R]$ qreg, $[R]$ regress, [TE] teffects intro advanced,
[U] 20.25 References
Anscombe, F. J., [R] binreg postestimation, $[\mathrm{R}]$ glm, $[R]$ glm postestimation
Ansley, C. F., [TS] arima
Arbuthnott, J., $[R]$ signrank
Archer, K. J., [R] estat gof, [R] logistic, [R] logit, [SVY] estat
Arellano, M., [R] areg postestimation, [R] gmm, [XT] xtabond, [XT] xtcloglog, [XT] xtdpd, [XT] xtdpd postestimation, [XT] xtdpdsys, [XT] xtdpdsys postestimation, [XT] xtivreg, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg
Arminger, G., [R] suest
Armitage, P., [PSS] intro, [PSS] power twomeans, [PSS] power pairedmeans, [R] ameans, $[R]$ expoisson, $[R]$ pkcross, $[R]$ sdtest
Armstrong, R. D., [R] qreg
Arnold, B. C., [MI] intro substantive, [MI] mi impute chained
Arnold, S. F., [MV] manova
Arora, S. S., [XT] xtivreg, [XT] xtreg
Arseven, E., [MV] discrim Ida
Arthur, M., [R] symmetry
Atella, V., [R] frontier, [XT] xtfrontier
Aten, B., [XT] xtunitroot
Atkinson, A. C., [D] functions, $[\mathrm{R}]$ boxcox, $[\mathrm{R}] \mathrm{nl}$
Azen, S. P., [R] anova, [U] 20.25 References
Aznar, A., [TS] vecrank

## B

Babiker, A. G., [ST] epitab, [ST] stpower, [ST] stpower cox, [ST] sts test
Babin, B. J., [R] rologit
Babu, A. J. G., [D] functions
Bai, Z., [M-1] LAPACK, [M-5] lapack( ), [P] matrix eigenvalues
Baillie, R. T., [TS] arfima
Baker, R. J., [R] glm
Baker, R. M., [R] ivregress postestimation
Bakker, A., [R] mean
Balaam, L. N., [R] pkcross
Balakrishnan, N., [D] functions
Baldus, W. P., [ST] stcrreg
Balestra, P., [XT] xtivreg

Baltagi, B. H., [ME] mixed, [R] hausman, [XT] xt, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xthtaylor, [XT] xthtaylor postestimation,
[XT] xtivreg, [XT] xtpoisson, [XT] xtprobit,
$[\mathrm{XT}]$ xtreg, $[\mathrm{XT}]$ xtreg postestimation,
[XT] xtregar, [XT] xtunitroot
Bamber, D., $[R]$ rocfit, $[R]$ rocregplot, $[R]$ roctab
Bancroft, T. A., $[\mathrm{R}]$ stepwise
Banerjee, A., [XT] xtunitroot
Bang, H., [TE] teffects intro advanced
Barbin, É., [M-5] cholesky ()
Barnard, G. A., [R] spearman, [R] ttest
Barnard, J., [MI] intro substantive, [MI] mi estimate, [MI] mi estimate using, [MI] mi predict, [MI] mi test
Barnett, A. G., [R] glm
Barnow, B. S., [TE] etregress
Baron, R. M., [SEM] example 42g
Barrett, J. H., [PSS] intro
Barrison, I. G., [R] binreg
Barthel, F. M.-S., [PSS] intro, [ST] stcox PHassumption tests, [ST] stpower, [ST] stpower cox
Bartlett, M. S., [I] Glossary, [MV] factor, [MV] factor postestimation, [MV] Glossary, [R] oneway, [TS] wntestb
Barton, C. N., [PSS] power repeated
Bartus, T., [R] margins
Basford, K. E., [G-2] graph matrix, [ME] me, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson
Basilevsky, A. T., [MV] factor, [MV] pca
Basmann, R. L., [R] ivregress, [R] ivregress postestimation
Basu, A., [R] glm
Bates, D. M., [ME] me, [ME] meglm, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [ME] mixed postestimation
Batistatou, E., [PSS] power
Battese, G. E., [XT] xtfrontier
Bauldry, S., [R] ivregress, [SEM] intro 5
Baum, C. F., [D] cross, [D] fillin, [D] joinby, [D] reshape, [D] separate, [D] stack, [D] xpose, [M-1] intro, [MV] mvtest, [MV] mvtest normality, $[P]$ intro, $[P]$ levelsof, $[R]$ gmm, $[R]$ heckman, $[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ ivregress, $[R]$ ivregress postestimation, $[R]$ margins, $[R]$ net, $[R]$ net search, $[R]$ regress postestimation, $[R]$ regress postestimation time series, $[\mathrm{R}]$ ssc, [TS] time series, [TS] arch, [TS] arima, [TS] dfgls, [TS] rolling, [TS] tsfilter, [TS] tsset, [TS] var, [TS] wntestq, [U] 11.7 References, [U] 16.5 References, [U] 18.14 References, [U] 20.25 References, [XT] xtgls, [XT] xtreg, [XT] xtunitroot
Bauwens, L., [TS] mgarch
Baxter, M., [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter cf

Bayart, D., [R] qc
Beale, E. M. L., [R] stepwise, [R] test
Beall, G., [MV] mvtest, [MV] mvtest covariances
Beaton, A. E., [R] rreg
Beck, N. L., [XT] xtgls, [XT] xtpese
Becker, R. A., [G-2] graph matrix
Becker, S. O., [TE] teffects intro advanced
Becketti, S., [P] pause, [R] fp, [R] fp postestimation, $[R]$ regress, $[R]$ runtest, $[R]$ spearman, [TS] time series, [TS] arch, [TS] arima, [TS] corrgram, [TS] dfuller, [TS] irf, [TS] prais, [TS] tssmooth, [TS] var intro, [TS] var svar, [TS] vec intro, [TS] vec
Beerstecher, E., [MV] manova
Beggs, S., [R] rologit
Belanger, A. J., [R] sktest
Bellman, R. E., [I] Glossary, [MV] Glossary
Bellocco, R., [R] glm, [R] logit, [ST] epitab, [XT] xtgee
Belotti, F., [R] frontier, [XT] xtfrontier
Belsley, D. A., [R] regress postestimation, $[R]$ regress postestimation diagnostic plots, [U] 18.14 References
Beltrami, E., [M-5] svd( )
Bendel, R. B., [R] stepwise
Benedetti, J. K., [R] tetrachoric
Beniger, J. R., [G-2] graph bar, [G-2] graph pie, [G-2] graph twoway histogram, [R] cumul
Bentham, G., [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [SEM] example 39g
Bentler, P. M., [I] Glossary, [MV] rotate, [MV] rotatemat, [MV] Glossary, [SEM] estat eqgof, [SEM] estat framework, [SEM] estat gof, [SEM] estat stable, [SEM] example 3, [SEM] methods and formulas for sem
Bera, A. K., [R] sktest, [TS] arch, [TS] varnorm, [TS] vecnorm, [XT] xtreg, [XT] xtreg postestimation, [XT] xtregar
Beran, J., [TS] arfima, [TS] arfima postestimation
Beran, R. J., [R] regress postestimation time series
Berger, R. L., [PSS] intro
Berglund, P. A., [SVY] survey, [SVY] subpopulation estimation
Berk, K. N., [R] stepwise
Berk, R. A., [R] rreg
Berkes, I., [TS] mgarch
Berkson, J., [R] logit, [R] probit
Bern, P. H., [R] nestreg
Bernaards, C. A., [MV] rotatemat
Bernasco, W., [R] tetrachoric
Berndt, E. K., [M-5] optimize( ), [R] glm, [TS] arch, [TS] arima
Berndt, E. R., [R] truncreg
Bernstein, I. H., [MV] alpha
Berry, G., [PSS] intro, [PSS] power twomeans, [PSS] power pairedmeans, [R] ameans, $[R]$ expoisson, [R] sdtest
Berry, K. J., [R] ranksum

Best, D. J., [D] functions
Bewley, R., [R] reg3
Beyer, W. H., [R] qc
Beyersman, J., [ST] stcrreg
Bhargava, A., [XT] xtregar
Bianchi, G., [TS] tsfilter, [TS] tsfilter bw
Bibby, J. M., [MI] mi impute mvn, [MV] discrim,
[MV] discrim lda, [MV] factor, [MV] manova, [MV] matrix dissimilarity, [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat, [MV] mvtest, [MV] mvtest means, [MV] mvtest normality, [MV] pca, [MV] procrustes, [P] matrix dissimilarity
Bickeböller, H., [R] symmetry
Bickel, P. J., [D] egen, [R] rreg
Binder, D. A., [MI] intro substantive, [P] _robust, [SVY] svy estimation, [SVY] variance estimation, [U] 20.25 References
Birdsall, T. G., [R] Iroc
Bischof, C., [M-1] LAPACK, [M-5] lapack( ), $[\mathrm{P}]$ matrix eigenvalues
Bishop, D. T., [PSS] intro
Black, F., [TS] arch
Black, H. R., [PSS] intro, [PSS] power repeated
Black, W. C., [R] rologit
Blackburne, E. F., III, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
Blackford, S., [M-1] LAPACK, [M-5] lapack( ), $[P]$ matrix eigenvalues
Blackwell, J. L., III, [R] areg, [XT] xtgls, [XT] xtpcse, [XT] xtreg
Bland, M., [R] ranksum, [R] sdtest, [R] signrank, [R] spearman
Blashfield, R. K., [MV] cluster
Blasius, J., [MV] ca, [MV] mca
Blasnik, M., [D] clonevar, [D] split, [D] statsby
Bleda, M.-J., [MV] alpha
Blevins, J. R., [R] hetprobit
Bliese, P. D., [R] icc
Bliss, C. I., [R] probit
Bloch, D. A., [R] brier
Bloomfield, P., [R] qreg, [TS] arfima
Blundell, R., [R] gmm, [R] ivprobit, [TE] teffects intro advanced, [TE] teffects multivalued, [XT] xtdpd, [XT] xtdpdsys
BMDP, [R] symmetry
Bofinger, E., [R] qreg
Boggess, M. M., [ST] stcrreg, [ST] stcrreg postestimation
Boice, J. D., Jr., [R] bitest, [ST] epitab
Boland, P. J., [R] ttest
Bolduc, D., [R] asmprobit
Bollen, K. A., [MV] factor postestimation, [R] regress postestimation, [SEM] intro 4, [SEM] intro 5, [SEM] estat residuals, [SEM] estat teffects, [SEM] example 10, [SEM] example 15, [SEM] methods and formulas for sem, [SEM] predict after sem, [SEM] sem reporting options

Bollerslev, T., [TS] arch, [TS] arima, [TS] mgarch, [TS] mgarch ccc, [TS] mgarch dvech
Bond, S., [R] gmm, [XT] xtabond, [XT] xtdpd, [XT] xtdpd postestimation, [XT] xtdpdsys, [XT] xtdpdsys postestimation, [XT] xtivreg
Bond, T. G., [SEM] example 28g
Bonferroni, C. E., [R] correlate
Boos, D. D., [TE] teffects aipw
Borenstein, M., [R] meta
Borg, I., [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat
Borgan, Ø., [ST] stcrreg
Bornhorst, F., [XT] xtunitroot
Borowczyk, J., [M-5] cholesky( )
Boshuizen, H. C., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, [MI] mi impute monotone
Boswell, T. M., [ST] streg postestimation
Boswijk, H. P., [TS] vec
Bottai, M., [R] qreg, [ST] epitab, [ST] streg, [XT] xtreg
Bound, J., [R] ivregress postestimation
Bover, O., [XT] xtdpd, [XT] xtdpdsys
Bowerman, B. L., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Bowker, A. H., [R] symmetry
Box, G. E. P., [MV] manova, [MV] mvtest covariances, $[\mathrm{R}]$ anova, $[\mathrm{R}]$ boxcox, [R] Inskew0, [TS] arfima, [TS] arima, [TS] corrgram, [TS] cumsp, [TS] dfuller, [TS] estat acplot, [TS] pergram, [TS] pperron, [TS] psdensity, [TS] wntestq, [TS] xcorr
Box, J. F., [R] anova
Box-Steffensmeier, J. M., [ST] stcox, [ST] streg
Boyd, N. F., [R] kappa
Boyle, J. M., [P] matrix symeigen
Boyle, P., [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [SEM] example 39g
Brackstone, G. J., [R] diagnostic plots, [R] swilk
Bradley, R. A., [R] signrank
Brady, A. R., [PSS] intro, [R] logistic, [R] spikeplot
Brady, T., [D] edit
Brand, J. P. L., [MI] intro substantive, [MI] mi impute chained
Brannon, B. R., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Brant, R., [R] ologit
Brave, S., [TE] etregress
Bray, R. J., [MV] clustermat
Bray, T. A., [D] functions
Breitung, J., [XT] xtunitroot
Brent, R. P., [MV] mdsmat, [MV] mvtest means

Breslow, N. E., [ME] me, [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson, [R] clogit, $[R]$ dstdize, $[R]$ symmetry, [ST] epitab, [ST] stcox, [ST] stcox PH-assumption tests, [ST] sts, [ST] sts test
Breusch, T. S., [I] Glossary, [MV] mvreg, [R] regress postestimation, $[R]$ regress postestimation time series, [R] sureg, [TS] Glossary, [XT] xtreg postestimation
Brier, G. W., [R] brier
Brillinger, D. R., [R] jackknife
Brockwell, P. J., [TS] corrgram, [TS] sspace
Brody, H., [ST] epitab
Brook, R. H., [R] brier
Brown, B. W., [ST] sts graph
Brown, C. C., [ST] epitab
Brown, D. R., [PSS] intro, [PSS] power repeated, $[R]$ anova, $[R]$ contrast, $[R]$ loneway, $[R]$ oneway, $[R]$ pwcompare
Brown, G. K., [TE] etregress, [TE] teffects intro advanced
Brown, J. D., [MV] manova
Brown, L. D., [R] ci
Brown, M. B., [R] sdtest, [R] tetrachoric
Brown, S. E., $[R]$ symmetry
Brown, T. A., [SEM] intro 4
Brown, W., [R] icc
Browne, M. W., [MV] procrustes, [SEM] estat gof, [SEM] methods and formulas for sem
Broyden, C. G., [TS] forecast solve
Bru, B., [R] poisson
Bruno, G. S. F., [TS] forecast, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtreg
Bryk, A. S., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrpoisson, [ME] mixed
Brzezinski, M., [R] swilk
Brzinsky-Fay, C., [G-2] graph twoway rbar
Buchholz, A., [ST] stcrreg
Buchner, D. M., [R] ladder
Buis, M. L., [D] functions, [G-3] by_option, [R] constraint, [R] eform_option, [R] logistic, [R] logit, [R] margins
Buja, A., [U] 20.25 References
Bunch, D. S., [R] asmprobit
Buot, M.-L. G., [MV] mvtest means
Burden, R. L., [M-5] solvenl( )
Burke, W. J., [R] tobit
Burkhauser, R. V., [MI] intro substantive
Burnam, M. A., [R] lincom, $[R]$ mlogit, $[R]$ mprobit, $[R]$ mprobit postestimation, $[R]$ predictnl, [R] slogit
Burns, A. F., [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter bw, [TS] tsfilter cf, [TS] tsfilter hp, [TS] ucm
Burr, I. W., [R] qc
Buskens, V., [R] tabstat

Busso, M., [TE] teffects overlap
Butterworth, S., [TS] tsfilter, [TS] tsfilter bw

## C

Cai, T., $[\mathrm{R}]$ rocreg
Cai, T. T., [R] ci
Cailliez, F., [MV] mdsmat
Cain, G. G., [TE] etregress
Caines, P. E., [TS] sspace
Caliendo, M., [TE] teffects intro advanced
Califf, R. M., [ST] stcox postestimation
Caliński, T., [MV] cluster, [MV] cluster stop
Cameron, A. C., [ME] meglm, [ME] mixed,
$[R]$ asclogit, $[R]$ asmprobit, $[R]$ bootstrap,
$[R]$ gmm, $[R]$ heckman, $[R]$ heckoprobit,
$[R]$ intreg, $[R]$ ivpoisson, $[R]$ ivregress,
$[R]$ ivregress postestimation, $[R]$ logit,
$[R]$ mprobit, $[R]$ nbreg, $[R]$ ologit, $[R]$ oprobit,
$[R]$ poisson, $[R]$ probit, $[R]$ qreg, $[R]$ regress,
$[R]$ regress postestimation, $[R]$ simulate,
$[R]$ sureg, $[R]$ tnbreg, $[R]$ tobit, $[R]$ tpoisson,
$[R]$ zinb postestimation, $[R]$ zip postestimation,
[TE] etregress, [TE] teffects intro advanced,
[TE] teffects aipw, [TE] teffects ra,
[TS] forecast estimates, [XT] xt, [XT] xtnbreg, [XT] xtpoisson
Campbell, D. T., [SEM] example 17
Campbell, M. J., [PSS] intro, [R] ci, [R] kappa,
$[R]$ poisson, $[R]$ tabulate twoway, $[S T]$ stpower,
[ST] stpower cox, [ST] stpower logrank
Canette, I., [ME] meglm, [ME] mixed, [R] nl, [R] nlsur
Cappellari, L., [D] corr2data, [D] egen, [R] asmprobit
Cardell, S., [R] rologit
Caria, M. P., [XT] xtgee
Carle, A. C., [ME] mixed
Carlile, T., [R] kappa
Carlin, J. B., [MI] intro substantive, [MI] intro, [MI] mi estimate, [MI] mi impute, [MI] mi impute mvn, [MI] mi impute regress,
[R] ameans, [ST] epitab
Carnes, B. A., [ST] streg
Carpenter, J. R., [ME] me, [ME] meglm, [ME] melogit, [ME] meqrlogit, [MI] intro substantive, [MI] intro, [MI] mi impute, [R] bootstrap, [R] bstat
Carroll, J. B., [MV] rotatemat
Carroll, R. J., [ME] me, [ME] meglm, [ME] mixed,
[R] boxcox, [R] rreg, $[R]$ sdtest
Carson, R. T., $[\mathrm{R}]$ tnbreg, $[\mathrm{R}]$ tpoisson
Carter, S. L., [ME] me, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
[R] frontier, [R] lrtest, [R] nbreg, [ST] stcox,
[ST] streg, [XT] xt
Casagrande, J. T., [PSS] intro, [PSS] power twoproportions

Casella, G., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] mixed, [PSS] intro
Castillo, E., [MI] intro substantive, [MI] mi impute chained
Cattaneo, M. D., [TE] teffects intro, [TE] teffects intro advanced, $[\mathrm{TE}]$ teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects multivalued, [TE] teffects nnmatch, [TE] teffects psmatch, [TE] teffects ra
Cattell, R. B., [MV] factor postestimation, [MV] pca postestimation, [MV] procrustes, [MV] screeplot
Caudill, S. B., [R] frontier, [XT] xtfrontier
Caulcutt, R., [R] qc
Cefalu, M. S., [ST] stcox postestimation, [ST] stcurve, [ST] sts graph
Center for Human Resource Research, [SEM] example 38g, [SEM] example 46g, [XT] $\mathbf{x t}$
Chabert, J.-L., [M-5] cholesky( )
Chadwick, J., [R] poisson
Chaimani, A., [R] meta
Chakraborti, S., [R] ksmirnov
Chamberlain, G., [R] clogit, [R] gmm, [R] qreg
Chambers, J. M., [G-2] graph box, [G-2] graph matrix, [G-3] by_option, $[\mathrm{R}]$ diagnostic plots, $[R]$ grmeanby, $[R]$ lowess, $[U]$ 1.4 References
Chang, I. M., [R] margins
Chang, Y., [TS] sspace
Chang, Y.-J., [XT] xtivreg, [XT] xtreg
Chao, E. C., [ME] me, [ME] meqrlogit,
[ME] meqrlogit postestimation,
[ME] meqrpoisson, [ME] meqrpoisson postestimation
Charlett, A., $[\mathrm{R}] \mathbf{f p}$
Chatfield, C., [I] Glossary, [TS] arima, [TS] corrgram, [TS] pergram, [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth ma, [TS] tssmooth shwinters, [TS] Glossary
Chatfield, M., [R] anova
Chatterjee, $S .,[R]$ poisson, $[R]$ regress, $[R]$ regress postestimation, $[\mathrm{R}]$ regress postestimation diagnostic plots
Chen, X., [PSS] power oneproportion, [PSS] power twoproportions, [R] logistic, [R] logistic postestimation, [R] logit
Chernick, M. R., [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions
Cheung, Y.-W., [TS] dfgls
Chiang, C. L., [ST] Itable
Chiburis, R., [R] heckman, [R] heckoprobit, $[R]$ heckprobit, $[R]$ oprobit
Choi, B. C. K., [R] rocfit, [R] rocreg postestimation, $[R]$ rocregplot, $[R]$ roctab
Choi, I., [XT] xtunitroot

Choi, M.-D., [M-5] Hilbert( )
Choi, S. C., [MV] discrim knn
Cholesky, A.-L., [M-5] cholesky( )
Chou, R. Y., [TS] arch
Chow, G. C., [R] contrast
Chow, S.-C., [PSS] intro, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, $[R]$ pk, $[R]$ pkcross, $[R]$ pkequiv, [R] pkexamine, [R] pkshape, [ST] stpower, [ST] stpower exponential
Christakis, N., [R] rologit
Christensen, W. F., [MV] biplot, [MV] ca, [MV] candisc, [MV] canon, [MV] canon postestimation, [MV] cluster, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim Ida, [MV] discrim lda postestimation, [MV] discrim logistic, [MV] discrim qda, [MV] discrim qda postestimation, [MV] factor, [MV] manova, [MV] mca, [MV] mvtest, [MV] mvtest correlations, [MV] mvtest covariances, [MV] mvtest means, [MV] mvtest normality, [MV] pca, [MV] screeplot
Christiano, L. J., [TS] irf create, [TS] tsfilter, [TS] tsfilter cf, [TS] var svar
Chu, C.-S. J., [XT] xtunitroot
Chu-Chun-Lin, S., [TS] sspace
Clark, V. A., [MV] canon, [MV] discrim, [MV] factor, [MV] pca, [R] stepwise, [ST] Itable
Clarke, M. R. B., [MV] factor
Clarke, R. D., [R] poisson
Clarke-Pearson, D. L., [R] roccomp, [R] rocreg, [R] roctab
Clarkson, D. B., [R] tabulate twoway
Clayton, D. G., [D] egen, [ME] me, [ME] meglm, [ME] mepoisson, [ME] meqrpoisson, [R] cloglog, [R] cumul, [ST] epitab, [ST] stptime, [ST] strate, [ST] stsplit, [ST] sttoce
Cleland, J., [ME] me, [ME] meglm, [ME] melogit, [ME] meprobit, [ME] meqrlogit
Clerc-Urmès, I., [ST] sts
Clerget-Darpoux, F., [R] symmetry
Cleveland, W. S., [G-1] graph intro, [G-2] graph box, [G-2] graph dot, [G-2] graph matrix, [G-2] graph twoway lowess, [G-3] by_option, $[R]$ diagnostic plots, $[R]$ lowess, $[R]$ lpoly, [R] sunflower, [U] 1.4 References
Cleves, M. A., [MI] mi estimate, [R] binreg, $[R]$ dstdize, $[R]$ logistic, $[R]$ logit, $[R]$ roccomp, $[R]$ rocfit, $[R]$ rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot, $[R]$ roctab, $[R]$ sdtest, $[R]$ symmetry, [ST] survival analysis, [ST] st, [ST] stcox, [ST] stcrreg, [ST] stcrreg postestimation, [ST] stcurve, [ST] stdescribe, [ST] stpower, [ST] stpower exponential, [ST] stpower logrank, [ST] streg, [ST] sts, [ST] stset, [ST] stsplit, [ST] stvary

Cliff, N., [MV] canon postestimation
Clogg, C. C., [R] suest
Clopper, C. J., [R] ci
Cobb, G. W., [R] anova
Cochran, W. G., [P] levelsof, [PSS] intro, [R] ameans, $[R]$ anova, $[R]$ correlate, $[R]$ dstdize,
$[R]$ mean, $[R]$ oneway, $[R]$ poisson, $[R]$ probit,
$[R]$ proportion, $[R]$ ranksum, $[R]$ ratio,
$[R]$ signrank, [R] total, [SVY] survey,
[SVY] estat, [SVY] subpopulation estimation,
[SVY] svyset, [SVY] variance estimation
Cochrane, D., [TS] prais
Coelli, T. J., [R] frontier, [XT] xtfrontier
Coffey, C., [MI] intro substantive
Cohen, J., [PSS] intro, [PSS] power oneway, [PSS] power twoway, $[\mathrm{R}]$ esize, $[\mathrm{R}]$ kappa, [R] pcorr
Cohen, P., $[\mathrm{R}]$ pcorr
Coleman, J. S., [R] poisson
Collett, D., [R] clogit, [R] logistic, [R] logistic postestimation, [ST] stci, [ST] stcox postestimation, [ST] stcrreg postestimation, [ST] stpower, [ST] stpower logrank, [ST] streg postestimation, [ST] sts test, [ST] stsplit
Collins, E., [SVY] survey, [SVY] svy estimation
Comrey, A. L., [I] Glossary, [MV] rotate, [MV] rotatemat, [MV] Glossary
Comte, F., [TS] mgarch
Cone-Wesson, B., [R] rocreg, $[\mathrm{R}]$ rocreg postestimation, $[R]$ rocregplot
Cong, R., [R] tobit, [R] tobit postestimation, $[R]$ truncreg, [TE] etregress
Connor, R. J., [PSS] intro, [PSS] power pairedproportions
Conover, W. J., $[R]$ centile, $[R]$ ksmirnov, $[R]$ kwallis, $[R]$ nptrend, $[R]$ sdtest, $[R]$ spearman,
$[R]$ tabulate twoway
Conroy, R. M., [R] intreg, $[R]$ ranksum
Consonni, D., $[\mathrm{R}]$ dstdize
Conway, M. R., [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit
Cook, A., [R] ci
Cook, I. T., [U] 1.4 References
Cook, N. R., [R] rocreg
Cook, R. D., [P] _predict, [R] boxcox, [R] regress postestimation
Cooper, M. C., [MV] cluster, [MV] cluster programming subroutines, [MV] cluster stop
Cornfield, J., [ST] epitab
Corten, R., [MV] mds
Coster, D., $[\mathrm{R}]$ contrast
Coull, B. A., [R] ci
Cousens, S. N., [TE] teffects intro advanced
Coviello, V., [ST] stcrreg, [ST] stcrreg postestimation, [ST] sttocc
Cox, C., [SEM] example 2
Cox, C. S., [SVY] survey, [SVY] svy estimation

Cox, D. R., [R] boxcox, [R] exlogistic, [R] expoisson, [R] Inskew0, [ST] Itable, [ST] stcox,
[ST] stcox PH-assumption tests, [ST] stcrreg, [ST] stpower, [ST] stpower cox, [ST] streg,
[ST] streg postestimation, [ST] sts
Cox, G. M., $[\mathrm{P}]$ levelsof, $[\mathrm{R}]$ anova
Cox, M. A. A., [I] Glossary, [MV] biplot, [MV] ca, [MV] mds, [MV] mds postestimation, [MV] mdsmat, [MV] procrustes, [MV] Glossary
Cox, N. J., [D] by, [D] clonevar, [D] codebook,
[D] contract, [D] count, [D] datetime,
[D] describe, [D] destring, [D] drop, [D] ds,
[D] duplicates, [D] egen, [D] expand,
[D] fillin, [D] format, [D] functions,
[D] lookfor, [D] missing values, [D] rename,
[D] reshape, [D] sample, [D] separate,
[D] split, [D] statsby, [G-1] graph intro,
[G-2] graph bar, [G-2] graph box, [G-2] graph
dot, [G-2] graph twoway dot, [G-2] graph
twoway function, [G-2] graph twoway histogram, [G-2] graph twoway kdensity, [G-2] graph twoway lowess, [G-2] graph twoway lpoly, [G-2] graph twoway pcarrow, [G-2] graph twoway pcspike, [G-2] graph twoway scatter, [G-3] added_line_options, [G-3] added_text_options,
[G-3] aspect_option, [G-3] axis_label_options,
[G-3] axis_scale_options, [G-3] by_option,
[G-3] title_options, [G-4] linestyle,
[MV] mvtest, [MV] mvtest normality,
$[\mathrm{P}]$ forvalues, $[\mathrm{P}]$ levelsof, $[\mathrm{P}]$ matrix define,
$[P]$ unab, $[R]$ ci, $[R]$ cumul, $[R]$ diagnostic plots, $[R]$ histogram, $[R]$ inequality, $[R]$ kappa,
$[R]$ kdensity, $[R]$ ladder, $[R]$ lowess,
$[R]$ lpoly, $[R]$ net, $[R]$ net search, $[R]$ regress postestimation, $[R]$ regress postestimation diagnostic plots, $[R]$ search, $[R]$ serrbar, $[R]$ sktest, $[R]$ smooth, $[R]$ spikeplot, $[R]$ ssc,
$[R]$ stem, $[R]$ summarize, $[R]$ sunflower,
$[R]$ tabulate oneway, $[R]$ tabulate twoway,
[TS] tsline, [TS] tsset, [TS] tssmooth hwinters,
[TS] tssmooth shwinters, [U] 11.7 References,
[U] $\mathbf{1 2 . 1 0}$ References, [U] 13.12 References,
[U] 17.10 Reference, [U] 23.5 Reference,
[U] 24.8 References, [XT] xtdescribe
Cox, T. F., [I] Glossary, [MV] biplot, [MV] ca,
[MV] mds, [MV] mds postestimation,
[MV] mdsmat, [MV] procrustes, [MV] Glossary
Cozad, J. B., [MV] discrim Ida
Cragg, J. G., [R] ivregress postestimation
Cramer, E. M., [MV] procrustes
Cramér, H., [R] tabulate twoway
Cramer, J. S., [R] logit
Crawford, C. B., [I] Glossary, [MV] rotate,
[MV] rotatemat, [MV] Glossary
Critchley, F., [MV] mdsmat
Cronbach, L. J., [MV] alpha, [R] icc
Croux, C., $[\mathrm{R}]$ rreg
Crow, K., [D] import excel, [P] putexcel
Crowder, M. J., [ST] stcrreg, [ST] streg
Crowe, P. R., [G-2] graph box

Crowley, J., [ST] stcox, [ST] stcrreg, [ST] stset Crowther, M. J., [R] meta, [ST] stpower, [ST] streg
Cudeck, R., [SEM] estat gof, [SEM] methods and formulas for sem
Cui, J., [R] symmetry, [ST] stcox, [ST] streg, [XT] xtgee
Cumming, G., $[R]$ esize, $[R]$ regress postestimation Cummings, $P .,[R]$ binreg, $[R]$ glm, $[R]$ margins, [ST] epitab, [XT] xtpoisson
Curtis, J. T., [MV] clustermat
Curts-García, J., [R] smooth
Cushman, W. C., [PSS] intro, [PSS] power repeated
Cutler, J. A., [PSS] intro, [PSS] power repeated
Cutler, S. J., [ST] Itable
Cuzick, J., $[\mathrm{R}]$ kappa, $[\mathrm{R}]$ nptrend
Czekanowski, J., [MV] measure_option

## D

D'Agostino, R. B., [MV] mvtest normality, [R] sktest
D'Agostino, R. B., Jr., [R] sktest
Daidone, S., $[\mathrm{R}]$ frontier, [XT] xtfrontier
Daniel, C., $[R]$ diagnostic plots, $[R]$ oneway
Daniel, R., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}]$ mi impute monotone
Daniel, R. M., [TE] teffects intro advanced
Danuso, F., [R] nl
Dardanoni, V., [MI] intro substantive
Das, S., [XT] xtunitroot
DasGupta, A., $[\mathrm{R}]$ ci
Davey Smith, G., $[\mathrm{R}]$ meta
David, F. N., $[\mathrm{R}]$ correlate
David, H. A., [D] egen, $[R]$ spearman, $[R]$ summarize
David, J. S., [TS] arima
Davidon, W. C., [M-5] optimize()
Davidson, R., [I] Glossary, [R] boxcox, $[\mathrm{R}]$ cnsreg, $[R]$ gmm, $[R]$ intreg, $[R]$ ivregress, $[R]$ ivregress postestimation, $[R]$ mlogit, $[R]$ nl, $[R]$ nlsur, $[R]$ reg3, $[R]$ regress, $[R]$ regress postestimation time series, $[R]$ tobit, $[R]$ truncreg, $[T S]$ arch, [TS] arima, [TS] prais, [TS] sspace, [TS] varlmar, [TS] Glossary, [XT] xtgls, [XT] xtpcse
Davis, B. R., [PSS] intro, [PSS] power repeated
Davis, G., [TS] arima
Davis, R. A., [TS] corrgram, [TS] sspace
Davison, A. C., $[\mathrm{R}]$ bootstrap
Day, N. E., $[R]$ clogit, $[R]$ dstdize, $[R]$ symmetry, [ST] epitab
Day, W. H. E., [MV] cluster
De Backer, M., [ME] meqrlogit postestimation
De Boeck, P., [ME] me
De Hoyos, R. E., [XT] xtreg
de Irala-Estévez, J., $[\mathrm{R}]$ logistic
De Jong, P., [TS] dfactor, [TS] sspace, [TS] sspace postestimation, [TS] ucm
De Keyser, P., [ME] meqrlogit postestimation
de Leeuw, J., [MV] ca postestimation
De Luca, G., [MI] intro substantive, [R] biprobit, $[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ oprobit, [R] probit
De Stavola, B. L., [ST] stcox, [ST] stset, [TE] teffects intro advanced
De Vroey, C., [ME] meqrlogit postestimation
de Wolf, I., [R] rologit
Dearden, L., [TE] teffects intro advanced, [TE] teffects multivalued

Deaton, A. S., [R] nlsur, [U] 20.25 References
Deb, P., [R] nbreg
Debarsy, N., [R] Ipoly
DeGroot, M. H., [TS] arima
Dehon, C., [R] correlate
Deistler, M., [TS] sspace
del Rio, A., [TS] tsfilter hp
DeLong, $D$. M., $[R]$ roccomp, $[R]$ rocreg, $[R]$ roctab
DeLong, E. R., $[R]$ roccomp, $[R]$ rocreg, $[R]$ roctab
DeMaris, A., [R] regress postestimation
Demidenko, E., [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] mixed
Demmel, J., [M-1] LAPACK, [M-5] lapack( ), $[P]$ matrix eigenvalues
Demnati, A., [SVY] direct standardization, [SVY] poststratification, [SVY] variance estimation
Dempster, A. P., [ME] me, [ME] mixed, [MI] intro substantive, $[\mathrm{MI}]$ mi impute mvn
Denis, D., [G-2] graph twoway scatter
Desbordes, R., [R] ivregress
Desmarais, B. A., [R] zinb, [R] zip
Desu, M. M., [ST] stpower, [ST] stpower exponential
Deville, J.-C., [SVY] direct standardization, [SVY] poststratification, [SVY] variance estimation
Devroye, L., [D] functions
Dewey, M. E., [R] correlate
Dice, L. R., [MV] measure_option
Dickens, R., [TS] prais
Dickey, D. A., [I] Glossary, [TS] dfgls, [TS] dfuller, [TS] pperron, [TS] Glossary
Dickson, E. R., [ST] sterreg
Dicle, M. F., [D] import
Didelez, V., [R] ivregress
Diebold, F. X., [TS] arch
Dieter, U., [D] functions
Digby, P. G. N., [R] tetrachoric
Diggle, P. J., [ME] me, [ME] meglm, [ME] mixed, [TS] arima, [TS] wntestq
Dijksterhuis, G. B., [MV] procrustes
DiNardo, J., [TE] teffects overlap, [XT] xtre
Ding, Z., [TS] arch
Dinno, A., [MV] factor, [MV] pca

Dixon, W. J., [PSS] intro, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power onevariance, [PSS] power twovariances, [R] ttest
Djulbegovic, B., [R] meta
Dobbin, K., [ST] stpower
Dobson, A. J., [R] glm
Dodd, L. E., [R] rocreg
Dohoo, I., [R] regress, [ST] epitab
Doll, R., [R] poisson, [ST] epitab
Donald, A., [R] meta
Donald, S. G., [R] ivregress postestimation
Dongarra, J. J., [M-1] LAPACK, [M-5] lapack( ), $[P]$ matrix eigenvalues, $[P]$ matrix symeigen
Donner, A., [R] loneway
Donoho, D. L., [R] Ipoly
Doornik, J. A., [MV] mvtest, [MV] mvtest normality, [TS] arfima, [TS] vec
Dore, C. J., $[\mathrm{R}] \mathbf{f p}$
Dorfman, D. D., [R] rocfit, $[R]$ rocreg
Doris, A., $[R]$ gmm, $[R]$ inequality
Draper, N., $[R]$ eivreg, $[R]$ oneway, $[R]$ regress, $[\mathrm{R}]$ stepwise
Driver, H. E., [MV] measure_option
Drukker, D. M., [ME] me, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
$[R]$ asmprobit, $[R]$ boxcox, $[R]$ frontier,
$[R]$ Irtest, $[R]$ nbreg, $[R]$ tobit, $[S T]$ stcox,
[ST] streg, [TE] etregress, [TE] teffects intro advanced, $[\mathrm{TE}]$ teffects aipw, $[\mathrm{TE}]$ teffects multivalued, [TE] teffects nnmatch, [TS] arfima postestimation, [TS] sspace, [TS] vec, [XT] xt, [XT] xtregar
Du Croz, J., [M-1] LAPACK, [M-5] lapack( ), $[P]$ matrix eigenvalues
Duan, N., [R] boxcox postestimation, [R] heckman, [TS] forecast estimates
Dubes, R. C., [MV] cluster
Duda, R. O., [MV] cluster, [MV] cluster stop
Duncan, A. J., [R] qc
Duncan, O. D., [SEM] example 7
Dunlop, D. D., [PSS] intro, [PSS] power onemean
Dunn, G., [MV] discrim, [MV] discrim qda postestimation, [MV] mca, $[\mathrm{R}]$ kappa, [TE] teffects multivalued
Dunnett, C. W., [D] functions, [R] mprobit, [R] pwcompare
Dunnington, G. W., $[R]$ regress
Dupont, W. D., [R] logistic, [R] mkspline, [R] sunflower, [ST] epitab, [ST] stcox, [ST] stir, [ST] sts
Durbin, J., [I] Glossary, [R] ivregress postestimation, $[R]$ regress postestimation time series, [TS] prais, [TS] ucm, [TS] Glossary
Duren, P., [R] regress
Durlauf, S. N., [TS] vec intro, [TS] vec, [TS] vecrank
Duval, R. D., [R] bootstrap, $[R]$ jackknife, $[R]$ rocreg, $[R]$ rocregplot

Dwyer, J. H., [XT] xtreg
Dyck, A., [D] datetime

## E

Eaves, R. C., [SEM] example 2
Eberhardt, M., [XT] xtre
Ecob, R., [MI] mi estimate
Eddings, W. D., [MI] mi impute
Edelsbrunner, H., [MV] cluster
Ederer, F., [ST] Itable
Edgington, E. S., [R] runtest
Edwards, A. L., $[\mathrm{R}]$ anova
Edwards, A. W. F., [R] tetrachoric
Edwards, J. H., [R] tetrachoric
Efron, B., [R] bootstrap, [R] qreg
Efroymson, M. A., [R] stepwise
Egger, M., [R] meta
Eichenbaum, M., [TS] irf create, [TS] var svar
Eisenhart, C., [R] correlate, [R] runtest
Elliott, G. R., [I] Glossary, [TS] dfgls, [TS] Glossary
Ellis, C. D., [R] poisson
Ellis, P. D., $[\mathrm{R}]$ esize, $[\mathrm{R}]$ regress postestimation
Eltinge, J. L., [R] test, [SVY] survey, [SVY] estat, [SVY] svy postestimation, [SVY] svydescribe, [SVY] variance estimation
Embretson, S. E., [SEM] example 28g, [SEM] example 29g
Emerson, J. D., [R] lv, [R] stem
Emsley, R., [TE] teffects multivalued
Enas, G. G., [MV] discrim knn
Ender, P. B., [MV] canon, [R] marginsplot
Enders, W., [TS] arch, [TS] arima, [TS] arima postestimation, [TS] corrgram
Engel, A., [R] boxcox, [R] marginsplot, [SVY] survey, [SVY] estat, [SVY] subpopulation estimation, [SVY] svy, [SVY] svy brr, [SVY] svy estimation, [SVY] svy jackknife, [SVY] svy postestimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway, [SVY] svydescribe
Engle, R. F., [R] regress postestimation time series, [TS] arch, [TS] arima, [TS] dfactor, [TS] mgarch, [TS] mgarch dcc, [TS] mgarch dvech, [TS] mgarch vec, [TS] vec intro, [TS] vec, [TS] vecrank
Erdreich, L. S., $[R]$ roccomp, $[R]$ rocfit, $[R]$ roctab
Esman, R. M., [D] egen
Eubank, R. L., [R] Ipoly
Evans, C. L., [TS] irf create, [TS] var svar
Evans, M. A., $[\mathrm{R}] \mathbf{p k},[\mathrm{R}]$ pkcross
Everitt, B. S., [MV] cluster, [MV] cluster stop, [MV] discrim, [MV] discrim qda postestimation, [MV] mca, [MV] pca, [MV] screeplot, [R] gllamm, [R] glm, [U] 1.4 References
Ewens, W. J., [R] symmetry
Ezekiel, M., [R] regress postestimation diagnostic plots
Ezzati-Rice, T. M., [MI] intro substantive

## F

Fagerland, M. F., [ST] epitab
Fagerland, M. W., [R] estat gof, [R] mlogit postestimation
Fair, R. C., [TS] forecast solve
Faires, J. D., [M-5] solvenl( )
Falcaro, M., [MV] cluster dendrogram
Fan, J., [R] lpoly
Fan, Y.-A., [R] tabulate twoway
Fang, K.-T., [R] asmprobit
Farbmacher, H., [R] tpoisson
Fay, R. E., [SVY] survey, [SVY] svy sdr, [SVY] variance estimation
Feinleib, M., [XT] xtreg
Feiveson, A. H., [PSS] intro, [R] nlcom, [R] ranksum, [ST] stpower
Feldman, J. J., [SVY] survey, [SVY] svy estimation
Feldt, L. S., [PSS] power repeated, [R] anova
Feller, W., [TS] wntestb
Feltbower, R., [ST] epitab
Feng, S., [MI] intro substantive
Ferguson, G. A., [I] Glossary, [MV] rotate, [MV] rotatemat, [MV] Glossary
Ferri, H. A., [R] kappa
Festinger, L., [R] ranksum
Fibrinogen Studies Collaboration, [ST] stcox postestimation
Fidell, L. S., [MV] discrim, [MV] discrim Ida
Field, C. A., [R] bootstrap
Fieller, E. C., [R] pkequiv
Fienberg, S. E., $[R]$ kwallis, $[R]$ tabulate twoway
Filon, L. N. G., [R] correlate
Filoso, V., [R] regress
Finch, S., [R] esize
Findley, D. F., [R] estat ic
Findley, T. W., [R] ladder
Fine, J. P., [ST] stcrreg
Finlay, K., [R] ivprobit, [R] ivregress, [R] ivtobit
Finney, D. J., [R] probit, [R] tabulate twoway
Fiocco, M., [ST] stcrreg, [ST] stcrreg postestimation
Fiorentini, G., [TS] mgarch
Fiorio, C. V., [R] kdensity
Fischer, G. H., [SEM] example 28g
Fiser, D. H., [R] estat gof, [R] Iroc
Fishell, E., [R] kappa
Fisher, L. D., [MV] factor, [MV] pca, [PSS] intro, [PSS] power twomeans, [PSS] power oneway, [PSS] power twoway, [R] anova, [R] dstdize, [R] oneway
Fisher, M. R., [XT] xtcloglog, [XT] xtgee, [XT] xtintreg, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Fisher, N. I., [R] regress postestimation time series
Fisher, R. A., [I] Glossary, [MV] clustermat, [MV] discrim, [MV] discrim estat, [MV] discrim Ida, [MV] Glossary, [P] levelsof, [PSS] intro, [PSS] power twoproportions,

Fisher, R. A., continued
[PSS] power onecorrelation, [PSS] power twocorrelations, $[R]$ anova, $[R]$ anova, $[R]$ esize, $[R]$ ranksum, $[R]$ signrank, $[R]$ tabulate twoway, [ST] streg
Fiske, D. W., [SEM] example 17
Fitzgerald, T. J., [TS] tsfilter, [TS] tsfilter cf
Fitzmaurice, G. M., [ME] mixed
Fix, E., [MV] discrim knn
Flannery, B. P., [D] functions, [G-2] graph twoway contour, $[\mathrm{M}-5]$ solvenl( ), $[\mathrm{P}]$ matrix symeigen, $[R]$ dydx, $[R]$ vwls, [TS] arch, [TS] arima
Flay, B. R., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Fleiss, J. L., [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [R] dstdize, [R] icc, [R] kappa, [ST] epitab
Fleming, T. R., [ST] stcox, [ST] sts test
Fletcher, K., [R] rocreg, [R] rocreg postestimation, $[R]$ rocregplot
Fletcher, R., [M-5] optimize( )
Flynn, Z. L., [R] gmm
Folsom, R. C., [R] rocreg, [R] rocreg postestimation, $[R]$ rocregplot
Ford, C. E., [PSS] intro, [PSS] power repeated
Ford, J. M., [R] frontier, [XT] xtfrontier
Forsythe, A. B., $[\mathrm{R}]$ sdtest
Forthofer, R. N., [R] dstdize
Foster, A., [R] regress
Fouladi, R. T., [R] esize
Foulkes, M. A., [ST] stpower, [ST] stpower cox, [ST] stpower exponential
Fourier, J. B. J., $[\mathrm{R}]$ cumul
Fox, C. M., [SEM] example 28g
Fox, J., [R] kdensity, [R] lv
Fox, W. C., [R] Iroc
Francia, R. S., [R] swilk
Francis, C., [PSS] intro, [PSS] power repeated
Frank, M. W., [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
Frankel, M. R., [P] _robust, [SVY] variance estimation, [U] 20.25 References
Franklin, C. H., [D] cross
Franzese, R. J., Jr., [XT] xtpcse
Franzini, L., [XT] xtregar
Frechette, G. R., [XT] xtprobit
Freedman, L. S., [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank
Freeman, D. H., Jr., [SVY] svy: tabulate twoway
Freeman, E. H., [SEM] estat stable
Freeman, J. L., [ST] epitab, [SVY] svy: tabulate twoway
Freese, J., [R] asroprobit, [R] clogit, [R] cloglog, [R] logistic, [R] logit, [R] mlogit, [R] mprobit, $[R]$ nbreg, [ $R$ ] ologit, [ $R$ ] oprobit, $[R]$ poisson, $[R]$ probit, $[R]$ regress, $[R]$ regress postestimation, $[R]$ tnbreg, $[R]$ tpoisson, [R] zinb, [R] zip, [U] 20.25 References
Friedman, J. H., [MV] discrim knn

Friedman, M., [TS] arima
Friendly, M., [G-2] graph twoway scatter
Frölich, M., [R] qreg, [TE] teffects multivalued
Frome, E. L., [R] qreg
Frydenberg, M., [R] dstdize, [R] roccomp, [R] roctab Fu, V. K., [R] ologit
Fuller, W. A., [I] Glossary, [MV] factor, [P] _robust, $[R]$ regress, $[R]$ spearman, [SVY] svy: tabulate twoway, [SVY] variance estimation, [TS] dfgls, [TS] dfuller, [TS] pperron, [TS] psdensity, [TS] tsfilter, [TS] tsfilter bk, [TS] ucm, [TS] Glossary, [U] 20.25 References
Funkhouser, H. G., [G-2] graph pie
Furberg, C. D., [PSS] intro, [PSS] power repeated
Futuyma, D. J., [MV] measure_option
Fyler, D. C., [ST] epitab
Fyles, A., [ST] stcrreg, [ST] stcrreg postestimation

## G

Gabriel, K. R., [MV] biplot
Gail, M. H., [P] _robust, [R] rocreg, $[\mathrm{R}]$ rocreg postestimation, [ST] stcrreg, [ST] stpower, [ST] stpower exponential, [ST] strate, [U] 20.25 References
Galanti, M. R., [XT] xtgee
Galati, J. C., [MI] intro substantive, [MI] intro, [MI] mi estimate
Galecki, A. T., [ME] mixed, [ME] mixed postestimation
Gall, J.-R. L., [R] estat gof, $[\mathrm{R}]$ logistic
Gallant, A. R., $[\mathrm{R}]$ ivregress, $[\mathrm{R}] \mathbf{n l}$
Gallup, J. L., [M-5] _docx*( ), [P] putexcel, $[R]$ estimates table
Galton, F., [R] correlate, $[R]$ cumul, $[R]$ regress, $[R]$ summarize
Gan, F. F., [R] diagnostic plots
Gange, S. J., [XT] xtcloglog, [XT] xtgee, [XT] xtintreg, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Gani, J., [TS] wntestb
Garbow, B. S., [P] matrix symeigen
Gardiner, J. S., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Gardner, E. S., Jr., [TS] tssmooth dexponential, [TS] tssmooth hwinters
Garrett, J. M., [R] logistic, [R] logistic postestimation, $[R]$ regress postestimation, [ST] stcox $\mathbf{P H}-$ assumption tests
Garsd, A., [R] exlogistic
Gart, J. J., [ST] epitab
Gasser, T., [R] lpoly
Gastwirth, J. L., [R] sdtest
Gates, R., [R] asmprobit
Gauss, J. C. F., [R] regress
Gauvreau, K., [PSS] intro, [R] dstdize, [R] logistic, [ST] ltable, [ST] sts

Gavin, M. D., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit Gehan, E. A., [ST] sts test
Geisser, S., [PSS] power repeated, [R] anova
Gel, Y. R., [R] sdtest
Gelbach, J., [R] ivprobit, [R] ivtobit
Gelfand, A. E., [MI] mi impute chained
Gelman, A., [ME] me, [MI] intro substantive, [MI] mi impute, [MI] mi impute mvn, [MI] mi impute regress
Gelman, R., [R] margins
Geman, D., [MI] mi impute chained
Geman, S., [MI] mi impute chained
Genest, C., [R] diagnostic plots, [R] swilk
Gentle, J. E., [D] functions, [R] anova, [R] nl
Genton, M. G., [R] sktest
Genz, A., [R] asmprobit
George, S. L., [ST] stpower, [ST] stpower exponential
Gerkins, V. R., [R] symmetry
Gerow, K. G., [SVY] survey
Geskus, R. B., [ST] stcrreg, [ST] stcrreg postestimation
Geweke, J., [R] asmprobit, [TS] dfactor
Giannini, C., [TS] irf create, [TS] var intro, [TS] var svar, [TS] vargranger, [TS] varwle
Gibbons, J. D., [R] ksmirnov, [R] spearman
Gibbons, R. D., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit
Gichangi, A., [ST] stcrreg
Giesen, D., [R] tetrachoric
Gifi, A., [MV] mds
Gijbels, I., [R] lpoly
Gilbert, G. K., [MV] measure_option
Giles, D. E. A., [TS] prais
Gill, R. D., [ST] stcrreg
Gillham, N. W., [R] regress
Gillispie, C. C., $[\mathrm{R}]$ regress
Gini, R., [R] vwls, [ST] epitab
Ginther, O. J., [ME] mixed
Girshick, M. A., [MV] pca
Glass, G. V., [R] esize
Glass, R. I., [ST] epitab
Gleason, J. R., [D] cf, [D] describe, [D] functions, [D] generate, [D] infile (fixed format),
[D] label, [D] notes, [D] order, [R] anova,
$[R]$ bootstrap, $[R]$ ci, $[R]$ correlate,
$[R]$ loneway, $[R]$ summarize, $[R]$ ttest, [ST] epitab
Gleason, L. R., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Gleick, J., [M-5] optimize( )
Gleser, G., [MV] alpha
Glidden, D. V., [R] logistic, [ST] stcox, [TE] teffects intro advanced
Gloeckler, L. A., [ST] discrete
Glosten, L. R., [TS] arch

Glowacz, K. M., [ME] me, [ME] meglm,
[ME] meologit, [ME] meoprobit, [XT] xtologit,
[XT] xtoprobit
Gnanadesikan, R., [MV] manova, [R] cumul, $[R]$ diagnostic plots
Godambe, V. P., [SVY] variance estimation
Godfrey, L. G., [R] regress postestimation time series
Goeden, G. B., [R] kdensity
Goerg, S. J., [R] ksmirnov
Golbe, D. L., [D] label language, [D] merge, [U] 22.1 References
Goldberger, A. S., [R] intreg, [R] mlexp, [R] tobit, [TE] etregress
Goldblatt, A., [ST] epitab
Golden, C. D., [SVY] survey, [SVY] svy estimation
Goldfarb, D., [M-5] optimize( )
Goldman, N., [ME] me
Goldstein, H., [ME] me, [ME] meglm, [ME] melogit, [ME] mepoisson, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed
Goldstein, R., [D] ds, [D] egen, [R] brier,
$[R]$ correlate, $[R]$ inequality, $[R] n l,[R]$ ologit,
$[R]$ oprobit, $[R]$ ranksum, $[R]$ regress postestimation, $[\mathrm{XT}]$ xtreg
Golub, G. H., [M-5] svd( ), [R] orthog, [R] tetrachoric, [TS] arfima, [TS] arfima postestimation
Gómez, V., [TS] tsfilter, [TS] tsfilter hp
Gompertz, B., [ST] streg
Gönen, M., [ST] stcox postestimation
Gonzalez, J. F., Jr., [SVY] estat, [SVY] subpopulation estimation, [SVY] svy bootstrap, [SVY] svy estimation
Gonzalo, J., [TS] vec intro, [TS] vecrank
Good, P. I., [G-1] graph intro, [R] permute, $[R]$ symmetry, $[R]$ tabulate twoway
Goodall, C., [R] lowess, [R] rreg
Goodman, L. A., [R] tabulate twoway
Gooley, T. A., [ST] stcrreg
Gordon, A. D., [MV] biplot, [MV] cluster, [MV] cluster stop, [MV] measure_option
Gordon, D. J., [PSS] intro, [PSS] power repeated
Gordon, M. G., [R] binreg
Gorga, M. P., $[\mathrm{R}]$ rocreg, $[\mathrm{R}]$ rocreg postestimation, $[R]$ rocregplot
Gorman, J. W., [R] stepwise
Gorst-Rasmussen, A., [MV] pca
Gorsuch, R. L., [MV] factor, [MV] rotate, [MV] rotatemat
Gosset [Student, pseud.], W. S., [R] ttest
Gosset, W. S., [R] ttest
Gould, W. W., [D] datasignature, [D] datetime,
[D] destring, [D] drawnorm, [D] ds, [D] egen,
[D] format, [D] functions, [D] icd9, [D] infile
(fixed format), [D] merge, [D] putmata,
[D] reshape, [D] sample, [M-1] how,
[M-1] interactive, [M-2] exp, [M-2] goto,
[M-2] pointers, [M-2] struct, [M-2] subscripts,
[M-2] syntax, [M-4] io, [M-4] stata,
[M-5] deriv( ), [M-5] eigensystem( ),

Gould, W. W., continued
[M-5] geigensystem( ), [M-5] inbase( ),
[M-5] moptimize( ), [M-5] runiform( ),
[M-5] st_addvar(), [M-5] st_global(), [M-5] st_local(), [M-5] st_view( ), [MI] mi estimate, $[\mathrm{P}]$ intro, $[\mathrm{P}]$ _datasignature, $[\mathrm{P}]$ matrix eigenvalues, $[\mathrm{P}]$ matrix mkmat, $[\mathrm{P}]$ postfile, $[\mathrm{P}]$ _robust, $[\mathrm{R}]$ bootstrap, $[R]$ bsample, $[R]$ dydx, $[R]$ frontier, $[R]$ gmm, $[R]$ grmeanby, $[R]$ jackknife, $[R]$ kappa,
$[R]$ logistic, $[R]$ margins, $[R]$ maximize, $[R]$ mkspline, $[R]$ ml, $[R]$ mlexp, $[R]$ net search, $[R]$ nlcom, $[R]$ ologit, $[R]$ oprobit, $[R]$ poisson, $[R]$ predictnl, $[R]$ qreg, $[R]$ regress, $[R]$ rreg, $[R]$ simulate, $[R]$ sktest, $[R]$ smooth, $[R]$ swilk, $[R]$ testnl, $[S T]$ survival analysis, [ST] stcox, [ST] stcrreg, [ST] stcrreg postestimation, [ST] stdescribe, [ST] stpower, [ST] stpower exponential, [ST] stpower logrank, [ST] streg, [ST] stset, [ST] stsplit, [ST] stvary, [SVY] survey, [SVY] ml for svy, [U] 13.12 References, [U] 18.14 References, [U] 22.1 References, [U] 26.31 References, [XT] xtfrontier
Gourieroux, C. S., $[\mathrm{R}]$ hausman, $[\mathrm{R}]$ suest, $[\mathrm{R}]$ test, [TS] arima, [TS] mgarch cce, [TS] mgarch dce, [TS] mgarch vec
Gower, J. C., [MV] biplot, [MV] ca, [MV] mca, [MV] measure_option, [MV] procrustes
Gradshteyn, I. S., [TS] arfima
Graham, J. W., [MI] intro substantive, [MI] mi impute
Grambsch, P. M., [ST] stcox, [ST] stcox PH-
assumption tests, $[\mathrm{ST}]$ stcox postestimation, [ST] stcrreg
Granger, C. W. J., [TS] arch, [TS] arfima,
[TS] vargranger, [TS] vec intro, [TS] vec, [TS] vecrank
Graubard, B. I., [ME] mixed, $[\mathrm{R}]$ margins, $[\mathrm{R}]$ ml, [R] test, [SVY] survey, [SVY] direct standardization, [SVY] estat, [SVY] svy, [SVY] svy estimation, [SVY] svy postestimation, [SVY] svy: tabulate twoway, [SVY] variance estimation
Gray, R. J., [ST] stcrreg
Graybill, F. A., [PSS] intro, [PSS] power
onecorrelation, [PSS] power twocorrelations, $[\mathrm{R}]$ centile
Green, B. F., [MV] discrim Ida, [MV] procrustes
Green, D. M., [R] Iroc
Green, P. E., [MV] cluster
Greenacre, M. J., [MV] ca, [MV] mca, [MV] mca postestimation, [SEM] example 35g,
[SEM] example 36 g
Greenbaum, A., [M-1] LAPACK, [M-5] lapack( ), $[\mathrm{P}]$ matrix eigenvalues
Greene, W. H., $[\mathrm{P}]$ matrix accum, $[\mathrm{R}]$ asclogit, $[R]$ asmprobit, $[R]$ biprobit, $[R]$ clogit,
$[\mathrm{R}]$ cnsreg, $[\mathrm{R}]$ frontier, $[\mathrm{R}]$ gmm,
$[R]$ heckman, $[R]$ heckoprobit, $[R]$ heckprobit,
$[R]$ hetprobit, $[R]$ ivregress, $[R]$ logit, $[R]$ lrtest,
$[R]$ margins, $[R]$ mkspline, $[R]$ mlexp,

Greene, W. H., continued
$[R]$ mlogit, $[R]$ nlogit, $[R]$ nlsur, $[R]$ pcorr,
$[R]$ probit, $[R]$ reg3, $[R]$ regress, $[R]$ regress postestimation time series, $[R]$ sureg, $[R]$ testnl, $[R]$ truncreg, $[R]$ zinb, $[R]$ zip, $[T E]$ etpoisson, [TE] etregress, [TS] arch, [TS] arima, [TS] corrgram, [TS] var, [XT] xt, [XT] xtgls, [XT] xthtaylor postestimation, [XT] xtpcse, [XT] xtpoisson, [XT] xtre, [XT] xtreg
Greenfield, S., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit,
$[R]$ mprobit, $[R]$ mprobit postestimation,
$[R]$ predictnl, $[R]$ slogit, [SEM] example 37 g
Greenhouse, J. B., [ST] epitab
Greenhouse, S. W., [PSS] power repeated, [R] anova, [ST] epitab
Greenland, S., $[\mathrm{R}]$ ci, $[\mathrm{R}]$ glogit, $[\mathrm{R}]$ mkspline,
$[R]$ ologit, $[R]$ poisson, $[S T]$ epitab
Greenwood, M., [ST] Itable, [ST] sts
Greenwood, P., [MI] intro substantive
Gregoire, A., [R] kappa
Grieve, R., [R] bootstrap, [R] bstat
Griffith, J. L., [R] brier
Griffith, R., [R] gmm
Griffiths, W. E., $[R]$ cnsreg, $[R]$ estat ic, $[R]$ glogit,
$[R]$ ivregress, $[R]$ ivregress postestimation,
$[R]$ logit, $[R]$ probit, $[R]$ regress, $[R]$ regress postestimation, $[\mathrm{R}]$ test, [TS] arch, [TS] prais, [XT] xtgls, [XT] xtpcse, [XT] xtre, [XT] xtreg
Griliches, Z., [ME] me, [XT] xtgls, [XT] xtnbreg, [XT] xtpese, [XT] xtpoisson, [XT] xtrc
Grimm, R. H., [PSS] intro, [PSS] power repeated Grimmett, G., [M-5] halton()
Grissom, R. J., $[R]$ esize, $[R]$ regress postestimation
Grizzle, J. E., [R] vwls
Groenen, P. J. F., [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat
Grogger, J. T., $[\mathrm{R}]$ tnbreg, $[\mathrm{R}]$ tpoisson
Gronau, R., [R] heckman, [SEM] example 45g
Groothuis-Oudshoorn, C. G. M., [MI] intro substantive, [MI] mi impute chained
Gropper, D. M., [R] frontier, [XT] xtfrontier
Gross, A. J., [ST] Itable
Grunfeld, Y., [XT] xtgls, [XT] xtpese, [XT] xtrc
Grzebyk, M., [ST] sts
Guan, W., [R] bootstrap
Guenther, W. C., [PSS] intro
Guerry, A.-M., [G-2] graph twoway histogram
Guilkey, D. K., [XT] xtprobit
Guillemot, M., [M-5] cholesky()
Guimarães, P., [XT] xtnbreg
Guo, G., [ME] mecloglog, [ME] melogit, [ME] meprobit
Gutierrez, R. G., [ME] me, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson, [MI] mi estimate, $[R]$ frontier, $[R]$ lpoly, $[R]$ lrtest, [R] nbreg, [ST] survival analysis, [ST] stcox,
[ST] stcrreg, [ST] stcrreg postestimation,

Gutierrez, R. G., continued
[ST] stdescribe, [ST] stpower, [ST] stpower exponential, [ST] stpower logrank, [ST] streg,
[ST] streg postestimation, [ST] stset,
[ST] stsplit, [ST] stvary, [XT] xt

## H

Haaland, J.-A., [G-1] graph intro
Haan, P., [R] asmprobit, [R] mlogit, [R] mprobit
Haas, K., [M-5] moptimize( )
Hadamard, J. S., [D] functions
Hadi, A. S., [R] poisson, $[R]$ regress, $[R]$ regress postestimation, $[\mathrm{R}]$ regress postestimation diagnostic plots
Hadorn, D. C., [R] brier
Hadri, K., [XT] xtunitroot
Haenszel, W., [ST] epitab, [ST] strate, [ST] sts test
Hahn, G. J., [M-5] moptimize( )
Hahn, J., [R] ivregress postestimation
Hair, J. F., Jr., [R] rologit
Hajian-Tilaki, K. O., [R] rocreg
Hajivassiliou, V. A., [R] asmprobit
Hakkio, C. S., [D] egen
Hald, A., $[\mathrm{R}]$ qreg, $[\mathrm{R}]$ regress, $[\mathrm{R}]$ signrank, $[R]$ summarize
Haldane, J. B. S., [R] ranksum, [ST] epitab
Hall, A. D., [R] frontier
Hall, A. R., $[\mathrm{R}]$ gmm, $[\mathrm{R}]$ gmm postestimation, $[R]$ ivpoisson, $[R]$ ivpoisson postestimation, $[R]$ ivregress, $[R]$ ivregress postestimation
Hall, B. H., [M-5] optimize( ), [ME] me, [R] glm, [TS] arch, [TS] arima, [XT] xtnbreg, [XT] xtpoisson
Hall, N. S., [R] anova
Hall, P., [R] bootstrap, $[R]$ qreg, $[R]$ regress postestimation time series
Hall, R. E., [M-5] optimize( ), [R] glm, [TS] arch, [TS] arima
Hall, W. J., [MV] biplot, [R] roccomp, [R] rocfit, $[R]$ roctab
Haller, A. O., [SEM] example 7
Halley, E., [ST] Itable
Hallock, K., [R] qreg
Halton, J. H., [M-5] halton()
Halvorsen, K. T., $[\mathrm{R}]$ tabulate twoway
Hamann, U., [MV] measure_option
Hambleton, R. K., [SEM] example 28g, [SEM] example 29g
Hamer, R. M., [MV] mds, [MV] mdslong, [MV] mdsmat
Hamerle, A., [R] clogit
Hamilton, J. D., [I] Glossary, [P] matrix eigenvalues, [R] gmm, [TS] time series, [TS] arch, [TS] arfima, [TS] arima, [TS] corrgram, [TS] dfuller, [TS] estat aroots, [TS] fcast compute, [TS] forecast solve, [TS] irf, [TS] irf create, [TS] pergram, [TS] pperron,

Hamilton, J. D., continued
[TS] psdensity, [TS] sspace, [TS] sspace postestimation, [TS] tsfilter, [TS] ucm, [TS] var intro, [TS] var, [TS] var svar, [TS] vargranger, [TS] varnorm, [TS] varsoc, [TS] varstable, [TS] varwle, [TS] vec intro, [TS] vec, [TS] vecnorm, [TS] vecrank, [TS] vecstable, [TS] xcorr, [TS] Glossary
Hamilton, L. C., [D] xpose, [G-1] graph intro, [MV] factor, [MV] screeplot, [R] bootstrap, $[R]$ diagnostic plots, $[R]$ estat vce, $[R]$ ladder, $[R]$ lv, $[R]$ mlogit, $[R]$ regress, $[R]$ regress postestimation, $[\mathrm{R}]$ regress postestimation diagnostic plots, $[R]$ rreg, $[R]$ simulate, $[R]$ summarize, $[R]$ ttest
Hammarling, S., [M-1] LAPACK, [M-5] lapack( ), $[\mathrm{P}]$ matrix eigenvalues
Hammersley, J. M., [M-5] halton( )
Hampel, F. R., [D] egen, [R] rreg, [U] 20.25 References
Hancock, G. R., [SEM] estat gof, [SEM] methods and formulas for sem
Hand, D. J., [MV] biplot, [MV] ca, [MV] discrim, [MV] mca
Handscomb, D. C., [M-5] halton( )
Hankey, B., [ST] strate
Hanley, J. A., [R] roccomp, [R] rocfit, [R] rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot, [R] roctab
Hannachi, A., [MV] pca
Hannan, E. J., [TS] sspace
Hansen, H., [MV] mvtest, [MV] mvtest normality
Hansen, L. P., [R] gmm, [R] ivregress, [R] ivregress postestimation, $[\mathrm{XT}]$ xtabond, $[\mathrm{XT}]$ xtdpd, [XT] xtdpdsys
Hansen, W. B., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Hao, L., [R] qreg
Harabasz, J., [MV] cluster, [MV] cluster stop
Harbord, R. M., [ME] melogit, [ME] meoprobit, [ME] meqrlogit, [ $R$ ] roccomp, $[R]$ roctab
Harden, J. J., [R] zinb, [R] zip
Hardin, J. W., [D] statsby, [G-1] graph intro, [ME] meglm postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [R] binreg, [R] biprobit, $[R]$ estat ic, $[R]$ glm, $[R]$ glm postestimation, $[R]$ lroc, $[R]$ poisson, $[R]$ ranksum, $[R]$ regress postestimation, $[R]$ signrank, $[T S]$ newey, [TS] prais, [XT] xtgee, [XT] xtpoisson
Harel, O., [MI] mi estimate
Haritou, A., [R] suest
Harkness, J., [R] ivprobit, [R] ivtobit
Harley, J. B., [ST] stpower cox
Harman, H. H., [MV] factor, [MV] factor postestimation, [MV] rotate, [MV] rotatemat
Harrell, F. E., Jr., [R] mkspline, [R] ologit, [ST] stcox postestimation
Harrington, D. P., [ST] stcox, [ST] sts test Harris, E. K., [MV] discrim, [MV] discrim logistic

Harris, R. D. F., [XT] xtunitroot
Harris, R. J., [MV] canon postestimation
Harris, R. L., [R] qc
Harris, T., [R] poisson, [R] qreg, [R] ranksum, [R] signrank
Harrison, D. A., [D] list, [G-2] graph twoway histogram, [PSS] intro, [R] histogram, $[R]$ tabulate oneway, $[R]$ tabulate twoway
Harrison, J. A., [R] dstdize
Harrison, J. M., [ST] stcrreg
Hart, P. E., [MV] cluster, [MV] cluster stop
Hartigan, J. A., [G-2] graph matrix
Hartley, H. O., [MI] intro substantive, [MI] mi impute
Hartmann, D. P., [R] icc
Harvey, A. C., [R] hetprobit, [TS] arch, [TS] arima,
[TS] prais, [TS] psdensity, [TS] sspace,
[TS] sspace postestimation, [TS] tsfilter,
[TS] tsfilter hp, [TS] tssmooth hwinters,
[TS] ucm, [TS] var svar
Harville, D. A., [ME] meglm, [ME] mixed
Hassell, J. F., [ST] sts
Hassler, U., [TS] irf create
Hastie, T. J., [MV] discrim knn, [R] grmeanby, [R] slogit
Hastorf, A. H., [ST] epitab
Hauck, W. W., [R] pkequiv, [XT] xtcloglog,
[XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit
Haughton, J. H., [R] inequality
Hauser, M. A., [TS] arfima
Hausman, J. A., [M-5] optimize( ), [ME] me, [R] glm, $[R]$ hausman, $[R]$ ivregress postestimation, [R] nlogit, [R] rologit, [R] suest, [SEM] estat residuals, [SEM] methods and formulas for sem, [TS] arch, [TS] arima, [XT] xthtaylor, [XT] xtnbreg, [XT] xtpoisson, [XT] xtreg postestimation
Havnes, T., [R] inequality
Hawkins, C. M., [PSS] intro, [PSS] power repeated
Hayashi, F., [R] gmm, [R] ivpoisson, [R] ivregress, $[R]$ ivregress postestimation
Hayes, R. J., [R] permute
Hays, R. D., [R] lincom, [R] mlogit, [R] mprobit, $[R]$ mprobit postestimation, $[R]$ predictnl, [R] slogit
Hays, W. L., [R] esize, [R] regress postestimation
He, X., [ST] stcox PH-assumption tests
Heagerty, P. J., [ME] me, [ME] meglm, [ME] mixed, [MV] factor, [MV] pca, [PSS] intro, [PSS] power twomeans, [PSS] power oneway, [PSS] power twoway, $[R]$ anova, $[R]$ dstdize, [R] oneway
Heckman, J., [R] biprobit, [R] heckman, [R] heckman postestimation, [R] heckoprobit, [R] heckprobit, [SEM] example 45g, [TE] etregress,
[TE] teffects intro advanced

Hedeker, D., [ME] me, [ME] mecloglog, [ME] meglm,
[ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit
Hédelin, G., [ST] sts
Hedges, L. V., [R] esize, [R] meta
Hedley, D., [ST] stcrreg, [ST] stcrreg postestimation
Heeringa, S. G., [SVY] survey, [SVY] subpopulation estimation
Heinecke, K., [P] matrix mkmat
Heinonen, O. P., [ST] epitab
Heiss, F., [R] nlogit
Heitjan, D. F., [MI] intro substantive, [MI] mi impute
Heller, G., [ST] stcox postestimation
Hemming, K., [PSS] intro
Hempel, S., [ST] epitab
Henderson, B. E., [R] symmetry
Henderson, C. R., [ME] me, [ME] mixed
Hendrickson, A. E., [I] Glossary, [MV] rotate, [MV] rotatemat, [MV] Glossary
Hendrickx, J., [R] mlogit, [R] xi
Hennevogl, W., [ME] me
Henry-Amar, M., [ST] Itable
Hensher, D. A., [R] nlogit
Henze, N., [MV] mvtest, [MV] mvtest normality
Hermite, C., [M-5] issymmetric( )
Herr, J. L., [TE] teffects intro advanced, [TE] teffects nnmatch
Herrin, J., [U] 18.14 References
Herriot, J. G., [M-5] spline3( )
Hertz, S., [ST] stsplit
Herzberg, A. M., [MV] discrim lda postestimation, [MV] discrim qda, [MV] discrim qda postestimation, [MV] manova
Hess, K. R., [ST] stcox PH-assumption tests, [ST] sts graph
Hesse, L. O., [M-5] moptimize( )
Hessenberg, K. A., [M-5] hessenbergd( )
Heston, A., [XT] xtunitroot
Heyde, C. C., [U] 1.4 References
Hickam, D. H., [R] brier
Higbee, K. T., [D] clonevar, [D] ds
Higgins, J. E., [R] anova
Higgins, J. P. T., [R] meta
Higgins, M. L., [TS] arch
Hilbe, J. M., [D] functions, [ME] meglm postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [MV] discrim lda, [MV] manova, [MV] measure_option, $[\mathrm{R}]$ cloglog, $[\mathrm{R}]$ estat ic, $[R]$ glm, $[R]$ glm postestimation, $[R]$ logistic, $[R]$ logit, $[R]$ lroc, $[R]$ nbreg, $[R]$ poisson,
$[R]$ probit, $[R]$ simulate, $[R]$ tnbreg, $[R]$ tpoisson, [XT] xtgee, [XT] xtpoisson
Hilbert, D., [M-5] Hilbert( )
Hildreth, C., [TS] prais
Hilferty, M. M., [MV] mvtest normality
Hilgard, E. R., [ST] epitab

Hill, A. B., [R] poisson, [ST] epitab
Hill, J., [ME] me
Hill, R. C., [R] ensreg, [R] estat ic, [R] glogit,
$[R]$ heckman, $[R]$ ivregress, $[R]$ ivregress postestimation, $[\mathrm{R}]$ logit, $[\mathrm{R}]$ probit, $[R]$ regress, $[R]$ regress postestimation, $[R]$ test, [TS] arch, [TS] prais, [XT] xtgls, [XT] xtpcse, [XT] xtrc, [XT] xtreg
Hill, R. P., [ST] stcrreg, [ST] stcrreg postestimation
Hill, W. G., [ST] epitab
Hills, M., [D] egen, [R] cloglog, [R] cumul,
[ST] epitab, [ST] stcox, [ST] stptime,
[ST] strate, [ST] stset, [ST] stsplit, [ST] sttoce
Hinchliffe, S. R., [R] meta, [ST] stcox, [ST] stcrreg
Hinkley, D. V., [R] bootstrap
Hipel, K. W., [TS] arima, [TS] ucm
Hirano, K., [TE] teffects intro advanced
Hirji, K. F., [R] exlogistic, [R] expoisson
Hlouskova, J., [XT] xtunitroot
Hoaglin, D. C., [R] diagnostic plots, [R] lv, [R] regress postestimation, $[\mathrm{R}]$ regress postestimation diagnostic plots, $[R]$ smooth, $[R]$ stem
Hocevar, D., [SEM] example 19
Hochberg, Y., [R] oneway
Hocking, R. R., [ME] meglm, [ME] mixed, [MI] intro substantive, $[R]$ stepwise
Hodges, J. L., [MV] discrim knn
Hodrick, R. J., [TS] tsfilter, [TS] tsfilter hp
Hoechle, D., [XT] xtgls, [XT] xtpcse, [XT] xtreg, [XT] xtregar
Hoel, P. G., [R] bitest, [R] ttest
Hoffmann, J. P., [R] glm
Hofman, A. F., [ST] stcrreg
Hogben, L. T., [ST] sts
Holan, S. H., [TS] arima
Hole, A. R., [R] asmprobit, [R] clogit, [R] mlogit, [R] mprobit
Holland, A. D., [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects multivalued
Holland, P. W., [TE] teffects intro advanced
Holloway, L., [R] brier
Holm, S., [R] test
Holmes, D. J., [ME] mixed
Holmes, S., [R] bootstrap
Holmgren, J., [ST] epitab
Holt, C. C., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Holt, D., [SVY] survey, [SVY] estat
Holtz-Eakin, D., [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
Honoré, B. E., [XT] xttobit
Hood, W. C., [R] ivregress
Hooker, P. F., [ST] streg
Hooper, R., [PSS] intro
Horst, P., [MV] factor postestimation, [MV] rotate, [MV] rotatemat

Horton, N. J., [ME] meglm, [ME] mixed, [MI] intro substantive, [XT] xtgee
Horváth, L., [TS] mgarch
Horvitz, D. G., [TE] teffects intro advanced
Hosking, J. R. M., [TS] arfima
Hosmer, D. W., Jr., [PSS] intro, [R] clogit, [R] clogit postestimation, $[R]$ estat classification, $[R]$ estat gof, $[R]$ glm, $[R]$ glogit, $[R]$ lincom, $[R]$ logistic, [R] logistic postestimation, [R] logit, [R] logit postestimation, $[R]$ lroc, $[R]$ Irtest, $[R]$ Isens, $[R]$ mlogit, $[R]$ mlogit postestimation, $[R]$ predictnl, $[R]$ stepwise, [SEM] example 33 g , [SEM] example 34g, [ST] stcox, [ST] stpower, [ST] stpower cox, [ST] streg, [XT] xtgee
Hossain, K. M., [ST] epitab
Hotelling, H., [MV] canon, [MV] hotelling, [MV] manova, [MV] pca, [R] roccomp, $[R]$ rocfit, $[R]$ roctab
Hougaard, P., [ST] streg
Householder, A. S., [M-5] qrd( ), [MV] mds, [MV] mdslong, [MV] mdsmat
Howell, D. C., [PSS] intro, [PSS] power pairedmeans
Hozo, I., [R] meta
Hoşten, S., [MV] mvtest means
Hsiao, C., [XT] xt, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtivreg, [XT] xtregar
Hsieh, F. Y., [ST] stpower, [ST] stpower cox, [ST] stpower logrank
Hu, M., [ST] stcox, [ST] stset
Huang, C., [R] sunflower
Huang, D. S., [R] nlsur, [R] sureg
Hubálek, Z., [MV] measure_option
Huber, C., [R] esize, [R] regress postestimation, [SEM] Builder, [SEM] Builder, generalized
Huber, P. J., [D] egen, [P] _robust, [R] qreg, [R] rreg, [R] suest, [U] 20.25 References
Huberty, C. J., [MV] candisc, [MV] discrim, [MV] discrim estat, [MV] discrim Ida, [MV] discrim lda postestimation, [MV] discrim qda
Hubrich, K., [TS] vec intro, [TS] vecrank
Hughes, J. B., [MV] manova
Hunter, D. R., [R] qreg
Huq, M. I., [ST] epitab
Huq, N. M., [ME] me, [ME] meglm, [ME] melogit, [ME] meprobit, [ME] meqrlogit
Hurd, M., [R] intreg, [R] tobit
Hurley, J. R., [MV] procrustes
Hurst, H. E., [TS] arfima
Hutto, C., [R] exlogistic
Huynh, H., [PSS] power repeated, [R] anova

## I

Iglewicz, B., [R] lv
Ikebe, Y., $[\mathrm{P}]$ matrix symeigen
Ilardi, G., [R] frontier, [XT] xtfrontier
Im, K. S., [XT] xtunitroot

Imbens, G. W., [TE] teffects intro advanced, [TE] teffects multivalued, [TE] teffects nnmatch, [TE] teffects psmatch
Irwin, J. O., [PSS] intro, [PSS] power twoproportions Isaacs, D., [R] fp
Ishiguro, M., [R] BIC note
ISSP, [MV] ca, [MV] mca, [MV] mca postestimation

## J

Jaccard, P., [MV] measure_option
Jackman, R. W., [R] regress postestimation
Jackson, J. E., [MV] pca, [MV] pca postestimation
Jacobi, C. G. J., [M-5] deriv( )
Jacobs, K. B., [R] symmetry
Jacobs, M., [D] duplicates
Jacoby, W. G., [MV] biplot
Jaeger, A., [TS] tsfilter, [TS] tsfilter hp
Jaeger, D. A., [R] ivregress postestimation
Jagannathan, R., [TS] arch
Jain, A. K., [MV] cluster
James, B. R., $[\mathrm{R}]$ rocreg, $[\mathrm{R}]$ rocreg postestimation
James, G. S., [MV] mvtest, [MV] mvtest means
James, I. M., [M-2] op_kronecker, [M-5] deriv( ), [M-5] issymmetric( ), [M-5] pinv()
James, K. L., $[\mathrm{R}]$ rocreg, $[\mathrm{R}]$ rocreg postestimation
Janes, H., $[R]$ rocfit, $[R]$ rocreg, $[R]$ rocreg postestimation, $[\mathrm{R}]$ rocregplot
Jang, D. S., [SVY] variance estimation
Jann, B., [P] mark, $[\mathrm{R}]$ estimates store, $[\mathrm{R}]$ ksmirnov, $[R]$ stored results, $[R]$ tabulate twoway,
[SVY] svy: tabulate twoway
Jarque, C. M., [R] sktest, [TS] varnorm, [TS] vecnorm
Jeantheau, T., [TS] mgarch
Jeanty, P. W., [D] destring, [D] functions, [D] import excel, [D] reshape
Jeffreys, H., [R] ci, [R] spearman
Jenkins, B., [M-5] hash1( )
Jenkins, G. M., [TS] arfima, [TS] arima, [TS] corrgram, [TS] cumsp, [TS] dfuller, [TS] estat acplot, [TS] pergram, [TS] pperron, [TS] psdensity, [TS] xcorr
Jenkins, S. P., [D] corr2data, [D] egen, [D] rename, [MI] intro substantive, $[\mathrm{R}]$ asmprobit, $[\mathrm{R}]$ do, [R] inequality, [ST] discrete, [ST] stcox
Jennrich, R. I., [I] Glossary, [MV] mvtest, [MV] mvtest correlations, [MV] rotate, [MV] rotatemat, [MV] Glossary
Jensen, A. R., [MV] rotate
Jensen, D. R., [MV] mvtest, [MV] mvtest means
Jerez, M., [TS] sspace
Jewell, N. P., [ST] epitab
Jick, H., [ST] epitab
Joe, H., [ME] melogit, [ME] meoprobit,
[ME] mepoisson, [ME] meqrlogit,
[ME] meqrpoisson, [R] tabulate twoway
Johansen, S., [TS] irf create, [TS] varlmar, [TS] vec intro, [TS] vec, [TS] veclmar, [TS] vecnorm, [TS] vecrank, [TS] vecstable

Johnson, C. A., [ME] me, [ME] meglm,
[ME] meologit, [ME] meoprobit, [XT] xtologit,
[XT] xtoprobit
Johnson, D. E., [MV] manova, [R] anova, [R] contrast, [R] pwcompare
Johnson, L. A., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Johnson, M. E., [R] sdtest
Johnson, M. M., [R] sdtest
Johnson, N. L., [D] functions, [R] ksmirnov, [R] nbreg, [R] poisson, [U] 1.4 References
Johnson, R. A., [MV] canon, [MV] discrim,
[MV] discrim estat, [MV] discrim lda,
[MV] discrim lda postestimation, [MV] mvtest,
[MV] mvtest correlations, [MV] mvtest covariances, [MV] mvtest means
Johnson, S., [ST] epitab
Johnson, W., [MI] intro substantive, [SVY] survey
Johnston, J., [XT] xtrc
Johnston, J. E., [R] ranksum
Jolliffe, D., $[R]$ inequality, $[R]$ qreg, $[R]$ regress
Jolliffe, I. T., [MV] biplot, [MV] pca, [R] brier
Jones, A., [R] heckman, [R] logit, [R] probit
Jones, B. S., [ST] stcox, [ST] streg
Jones, D. R., [R] meta
Jones, M. C., [R] kdensity, [R] lpoly
Jones, P. S., [M-5] Vandermonde( )
Jordan, C., [M-5] svd( )
Jöreskog, K. G., [MV] factor postestimation, [SEM] estat residuals
Jorgensen, R. A., [ST] stcrreg
Jorner, U., [G-1] graph intro
Joyeux, R., [TS] arfima
Judge, G. G., [R] estat ic, [R] glogit, [R] ivregress,
$[R]$ ivregress postestimation, $[R]$ logit,
$[R]$ probit, $[R]$ regress postestimation, $[R]$ test,
[TS] arch, [TS] prais, [XT] xtgls, [XT] xtpese,
[XT] xtrc, [XT] xtreg
Judkins, D. R., [SVY] svy brr, [SVY] svyset, [SVY] variance estimation
Judson, D. H., [R] poisson, [R] tabulate twoway, $[R]$ tpoisson
Judson, R. A., [TS] forecast
Julious, S. A., [PSS] intro
Jung, B. C., [ME] mixed
Juul, S., $[R]$ dstdize, $[R]$ roccomp, $[R]$ roctab

## K

Kachitvichyanukul, V., [D] functions
Kadane, J. B., [ME] me, [ME] meqrlogit, [ME] meqrpoisson
Kahn, H. A., [PSS] intro, [R] dstdize, [ST] epitab, [ST] Itable, [ST] stcox
Kaiser, H. F., [I] Glossary, [MV] factor postestimation, [MV] pca postestimation, [MV] rotate, [MV] rotatemat, [MV] Glossary

Kaiser, J., [R] ksmirnov, [R] permute, [R] signrank
Kalbfleisch, J. D., [ST] Itable, [ST] stcox, [ST] stcox PH-assumption tests, [ST] stcox postestimation, [ST] streg, [ST] sts, [ST] sts test, [ST] stset, [XT] xtcloglog, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit
Kalman, R. E., [TS] arima
Kalmijn, M., [R] tetrachoric
Kang, J. D. Y., [TE] teffects intro advanced
Kantor, D., [D] cf, [D] functions
Kaplan, E. L., [ST] stcrreg, [ST] stcrreg postestimation, [ST] sts
Karim, M. R., [ME] meglm
Katz, J. N., [XT] xtgls, [XT] xtpcse
Kaufman, J., [D] ds
Kaufman, L., [MV] cluster, [MV] clustermat, [MV] matrix dissimilarity, [MV] measure_option, [P] matrix dissimilarity
Keane, M. P., [R] asmprobit
Keeler, E. B., [R] brier
Keiding, N., [ST] stcrreg, [ST] stsplit
Kelley, K., [R] esize, $[R]$ regress postestimation
Kemp, A. W., [D] functions, [R] nbreg, [R] poisson
Kemp, C. D., [D] functions
Kempthorne, P. J., $[\mathrm{R}]$ regress postestimation
Kendall, D. G., [MV] mds
Kendall, M. G., [MV] measure_option, [R] centile, $[R]$ spearman, $[R]$ tabulate twoway
Kennedy, W. J., Jr., [P] _robust, [R] anova, [R] nl, $[R]$ regress, $[R]$ stepwise, [SVY] svy: tabulate twoway
Kenny, D. A., [SEM] intro 4, [SEM] example 42g
Kent, J. T., [MI] mi impute mvn, [MV] discrim, [MV] discrim lda, [MV] factor, [MV] manova, [MV] matrix dissimilarity, [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat, [MV] mvtest, [MV] mvtest means, [MV] mvtest normality, [MV] pca, [MV] procrustes, [P] matrix dissimilarity, [P] _robust, [U] 20.25 References
Kenward, M. G., [MI] intro substantive, [MI] mi impute
Kerlinger, F. N., [R] esize, [R] regress postestimation
Keselman, H. J., [R] esize
Kettenring, J. R., [R] diagnostic plots
Keynes, J. M., [R] ameans
Khan, M. R., [ST] epitab
Khan, S., [R] hetprobit
Khandker, S. R., [R] inequality
Khanti-Akom, S., [XT] xthtaylor
Khare, M., [MI] intro substantive
Kiernan, M., [R] kappa
Kieser, M., [PSS] intro
Kilian, L., [TS] forecast solve
Kim, I.-M., [TS] vec intro, [TS] vec, [TS] vecrank
Kim, J. J., $[\mathrm{R}]$ esize, $[\mathrm{R}]$ regress postestimation
Kim, J. O., [MV] factor
Kimber, A. C., [ST] streg

Kimbrough, J. W., [MV] discrim knn
Kinderman, A. J., [D] functions
King, M. L., [TS] prais
King, R. G., [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter cf, [TS] tsfilter hp, [TS] vecrank
Kirk, R. E., $[\mathrm{R}]$ esize, $[\mathrm{R}]$ regress postestimation
Kirkwood, B. R., [R] dstdize, [R] summarize
Kish, L., [P] _robust, [R] loneway, [SVY] survey, [SVY] estat, [SVY] variance estimation, [U] 20.25 References
Kitagawa, G., [R] BIC note
Kiviet, J. F., [XT] xtabond
Klar, J., [R] estat gof
Klecka, W. R., [MV] discrim, [MV] discrim lda
Kleiber, C., [R] inequality
Klein, J. P., [ST] stci, [ST] stcox, [ST] stcox postestimation, [ST] stcrreg, [ST] stpower, [ST] stpower cox, [ST] streg, [ST] sts, [ST] sts graph, [ST] sts test
Klein, L. R., [ R ] reg3, $[\mathrm{R}]$ reg3 postestimation, $[R]$ regress postestimation time series, [TS] forecast, [TS] forecast adjust, [TS] forecast describe, [TS] forecast estimates, [TS] forecast list, [TS] forecast solve
Klein, M., [R] binreg, [R] clogit, [R] logistic, $[R]$ Irtest, $[R]$ mlogit, $[R]$ ologit, $[X T]$ xtgee
Kleinbaum, D. G., [R] binreg, [R] clogit, [R] logistic, [R] lrtest, [R] mlogit, [R] ologit, [ST] epitab, [XT] xtgee
Kleiner, B., [G-2] graph box, [G-2] graph matrix, [G-3] by_option, [R] diagnostic plots, [R] lowess, [U] 1.4 References
Kleinman, K. P., [MI] intro substantive
Klema, V. C., $[P]$ matrix symeigen
Kline, R. B., $[\mathrm{R}]$ esize, $[\mathrm{R}]$ regress postestimation, [SEM] intro 4, [SEM] example 3, [SEM] example 4, [SEM] example 5
Kmenta, J., [R] eivreg, [R] ivregress, [R] regress, [TS] arch, [TS] prais, [TS] rolling, [XT] xtpese
Knook, D. L., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, [MI] mi impute monotone
Knuth, D. E., [D] functions
Koch, G. G., [R] anova, [R] kappa, $[\mathrm{R}]$ vwls, [SVY] svy: tabulate twoway
Koehler, A. B., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Koehler, K. J., [R] diagnostic plots
Koenker, R., [R] qreg, [R] regress postestimation
Kohler, U., [D] egen, [D] input, [G-2] graph twoway rbar, [MV] biplot, [R] estat classification, $[R]$ kdensity, $[R]$ regress, $[R]$ regress postestimation, $[R]$ regress postestimation diagnostic plots
Kohn, R. J., [TS] arima
Kokoszka, P., [TS] irf create

Kolenikov, S., [MV] factor, [SVY] svy bootstrap, [SVY] variance estimation
Kolev, G. I., [P] scalar, [U] 11.7 References
Kolmogorov, A. N., [R] ksmirnov
Kontopantelis, E., [R] meta
Koopman, S. J., [R] regress postestimation time series, [TS] ucm
Koopmans, T. C., [R] ivregress
Korin, B. P., [MV] mvtest
Korn, E. L., [ME] mixed, [R] margins, [R] ml, [R] test, [SVY] survey, [SVY] direct standardization, [SVY] estat, [SVY] svy, [SVY] svy estimation, [SVY] svy postestimation, [SVY] svy: tabulate twoway, [SVY] variance estimation
Kotz, S., [D] functions, [R] inequality, [R] ksmirnov, [ $R$ ] nbreg, $[R]$ nlogit, $[R]$ poisson, [U] 1.4 References
Krakauer, H., [ST] Itable
Krall, J. M., [ST] stpower cox
Kramer, C. Y., [MV] mvtest, [MV] mvtest means
Krauss, N., [SVY] estat, [SVY] subpopulation estimation, [SVY] svy bootstrap, [SVY] svy estimation
Kreidberg, M. B., [ST] epitab
Kreuter, F., [R] estat classification, [R] kdensity, $[R]$ regress, $[R]$ regress postestimation, $[R]$ regress postestimation diagnostic plots, [SVY] survey
Krishnaiah, P. R., [MV] mvtest
Krishnamoorthy, K., [MV] mvtest, [MV] mvtest means, [PSS] intro, [PSS] power oneproportion
Kroeber, A. L., [MV] measure_option
Kronecker, L., [M-2] op_kronecker
Kroner, K. F., [TS] arch
Krull, J. L., [SEM] example 42g
Krus, D. J., [MV] canon postestimation
Krushelnytskyy, B., [R] inequality, [R] qreg
Kruskal, J. B., [I] Glossary, [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat, [MV] Glossary
Kruskal, W. H., [R] kwallis, [R] ranksum, $[R]$ spearman, $[R]$ tabulate twoway
Kshirsagar, A. M., [MV] discrim lda, [MV] pca
Kuehl, R. O., [ME] me, [R] anova, [R] contrast, $[R]$ icc, $[R]$ oneway
Kuh, E., [R] regress postestimation, [R] regress postestimation diagnostic plots, [U] 18.14 References
Kulczynski, S., [MV] measure_option
Kumbhakar, S. C., [R] frontier, [R] frontier postestimation, [XT] xtfrontier
Kung, D. S., [R] qreg
Künsch, H. R., [U] 20.25 References
Kunz, C. U., [PSS] intro
Kupper, L. L., [ST] epitab
Kutner, M. H., [PSS] power oneway, [R] pkcross, $[R]$ pkequiv, $[R]$ pkshape, $[R]$ regress postestimation

Kwiatkowski, D., [XT] xtunitroot

## L

Lachenbruch, P. A., [MV] discrim, [MV] discrim estat, [MV] discrim Ida, [R] diagnostic plots
Lachin, J. M., [PSS] intro, [PSS] power pairedproportions, [PSS] power onecorrelation, [ST] stpower, [ST] stpower cox, [ST] stpower exponential
Lacy, M. G., [R] permute
Lafontaine, F., [R] boxcox
Lahiri, K., [R] tobit, [XT] xtgls
Lai, K. S., [TS] dfgls
Lai, S., [R] exlogistic
Laird, N. M., [ME] me, [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [MI] intro substantive, [MI] mi impute mvn, [R] expoisson
Lakatos, E., [ST] stpower, [ST] stpower exponential, [ST] stpower logrank
Lal, R., [D] functions
Lambert, D., [R] zip
Lambert, P. C., [R] poisson, [ST] stcox, [ST] stcrreg, [ST] stpower, [ST] stptime, [ST] streg
LaMotte, L. R., [ME] me, [ME] meglm, [ME] mixed
Lan, K. K. G., [ST] stpower, [ST] stpower exponential, [ST] stpower logrank
Lance, G. N., [MV] cluster
Landau, S., [MV] cluster, [MV] cluster stop
Landesman Ramey, S., [PSS] power repeated
Landis, J. R., [R] kappa
Lane, M. A., [SVY] survey, [SVY] svy estimation
Lane, P. W., [R] margins, [TE] teffects intro advanced
Lane-Claypon, J. E., [ST] epitab
Langan, D., [R] meta
Lange, K., [R] qreg
Lange, S. M., [ST] stcrreg
Langford, I. H., [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [SEM] example 39g
Langholz, B., [ST] sttocc
Laplace, P.-S., [R] regress
LaRosa, J., [PSS] intro, [PSS] power repeated
Larrimore, J., [MI] intro substantive
Larsen, W. A., [R] regress postestimation diagnostic plots
Lash, T. L., [R] ci, [R] glogit, [R] poisson, [ST] epitab
Latouche, A., [ST] sterreg
Laurent, S., [TS] mgarch
Lauritsen, J. M., [D] labelbook, [D] list
Lauritzen, S. L., [R] summarize
LaVange, L. M., [PSS] power repeated
Lavori, P. W., [ST] stpower, [ST] stpower cox
Lawless, J. F., [ST] Itable, [ST] stpower
Lawley, D. N., [MV] canon, [MV] factor, [MV] factor postestimation, [MV] manova, [MV] mvtest, [MV] mvtest correlations, [MV] pca

Lawlor, D. A., [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed
Layard, R., [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtivreg
Ledermann, W., [M-5] schurd( )
Ledolter, J., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Lee, E. S., [R] dstdize
Lee, E. T., [R] roccomp, $[\mathrm{R}]$ rocfit, $[\mathrm{R}]$ roctab, [ST] streg
Lee, J. C., [MV] mvtest
Lee, J. W., [ME] me
Lee, K. J., [MI] intro substantive, [MI] mi impute
Lee, K. L., [ST] stcox postestimation
Lee, L. F., [XT] xtreg
Lee, P., [ST] streg
Lee, T.-C., [R] estat ic, [R] glogit, [R] ivregress, $[R]$ ivregress postestimation, [R] logit, $[R]$ probit, $[R]$ regress postestimation, $[R]$ test, [TS] arch, [TS] prais, [XT] xtgls, [XT] xtpese, [XT] xtre, [XT] xtreg
Lee, W. C., [R] roctab
Leese, M., [MV] cluster, [MV] cluster stop
Legendre, A.-M., [R] regress
Lehmann, E. L., [R] oneway
Lei-Gomez, Q., [TE] teffects intro advanced
Leisenring, W., [ST] stcrreg
Lemeshow, S. A., [PSS] intro, [R] clogit, [R] clogit postestimation, [R] estat classification, $[R]$ estat gof, [R] glm, [R] glogit, [R] lincom, [R] logistic, [R] logistic postestimation, [R] logit, [R] logit postestimation, $[R]$ Iroc, $[R]$ Irtest, $[R]$ Isens, [ $R$ ] mlogit, $[R]$ predictnl, $[R]$ stepwise, [SEM] example 33 g , [SEM] example $\mathbf{3 4 g}$, [ST] stcox, [ST] stpower, [ST] stpower cox, [ST] streg, [SVY] survey, [SVY] estat, [SVY] poststratification, [XT] xtgee
Lenth, R. V., [PSS] intro
Leonard, M., [XT] xtgee
Lepkowski, J. M., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute ologit, [MI] mi impute poisson, [MI] mi impute truncreg
Leroy, A. M., [R] qreg, [R] regress postestimation, [R] rreg
Lesaffre, E., [ME] me, [ME] meqrlogit postestimation, [MV] discrim logistic
LeSage, G., [ST] stcrreg
Leser, C. E. V., [TS] tsfilter, [TS] tsfilter hp
Leuven, E., [TE] teffects intro advanced
Levendis, J., [D] import
Levene, H., [R] sdtest
Levin, A., [XT] xtunitroot

Levin, B., [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [R] dstdize, [R] kappa, [ST] epitab
Levin, W., [ST] stcrreg, [ST] stcrreg postestimation
Levinsohn, J. A., [R] frontier
Levy, D. E., [R] sunflower
Levy, M., [MI] intro substantive, [MI] mi impute
Levy, P. S., [SVY] survey, [SVY] poststratification
Lewis, D., [MI] mi estimate
Lewis, H. G., [R] heckman, [SEM] example 45g
Lewis, I. G., [R] binreg
Lewis, J. D., $[R] \mathbf{f p}$
Lexis, W. H., [ST] stsplit
Leyland, A. H., [ME] mepoisson, [ME] meqrlogit,
[ME] meqrpoisson
Li, C., [MI] intro substantive, [SEM] intro 4
Li, G., [R] rreg
Li, K.-H., [MI] intro substantive, [MI] mi estimate, [MI] mi impute mvn, [MI] mi test
Li, N., [MI] intro substantive
Li, Q., [XT] xtivreg, [XT] xtreg postestimation, [XT] xtregar
Li, W., [PSS] power oneway, [R] pkcross, $[R]$ pkequiv, [R] pkshape
Liang, K.-Y., [ME] me, [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [XT] xtcloglog, [XT] xtgee,
[XT] xtlogit, [XT] xtnbreg, [XT] xtologit,
[XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit
Libois, F., [R] fp, [XT] xtreg
Lieberman, O., [TS] mgarch
Likert, R. A., [MV] alpha
Lilien, D. M., [TS] arch
Lilienfeld, D. E., [ST] epitab
Lim, G. C., $[R]$ cnsreg, $[R]$ regress, $[R]$ regress postestimation, [TS] arch
Lin, C.-F., [XT] xtunitroot
Lin, D. Y., [P] _robust, [ST] stcox, [ST] stcrreg, [SVY] svy estimation, [U] 20.25 References
Lin, X., [ME] me, [ME] meglm, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson
Lincoff, G. H., [MV] discrim knn
Linde-Zwirble, W., [D] functions
Lindelow, M., [SVY] svy estimation, [SVY] svyset
Lindley, D. V., [R] ci
Lindor, K. D., [ST] stcrreg
Lindsey, C., [R] boxcox, [R] lowess, [R] regress postestimation, $[\mathrm{R}]$ regress postestimation diagnostic plots, $[R]$ stepwise
Lindstrom, M. J., [XT] xtcloglog, [XT] xtgee, [XT] xtintreg, [XT] xtlogit, [XT] xtologit,
[XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Ling, S., [TS] mgarch
Lingoes, J. C., [MV] mds, [MV] mdslong, [MV] mdsmat
Linhart, J. M., [D] ds, [D] format, [M-5] mindouble( ), [R] Ipoly, [ST] sts, [U] 13.12 References

Lipset, S. M., [R] histogram
Lipsitz, S. R., [MI] intro substantive
Littell, R. C., [ME] me
Little, R. J. A., [MI] intro substantive, [MI] mi impute mvn, [MI] mi impute pmm
Liu, C. Y., [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions
Liu, J.-P., [R] pk, [R] pkcross, [R] pkequiv, [ $R$ ] pkexamine, $[R]$ pkshape, $[S T]$ stpower
Liu, Q., [ME] me, [ME] meqrlogit, [ME] meqrpoisson
Liu, T.-P., [SVY] svy bootstrap, [SVY] variance estimation
Ljung, G. M., [TS] wntestq
Lo, S.-H., [ST] sts
Lo Magno, G. L., [M-5] _docx*()
Locke, C. S., [R] pkequiv
Lockwood, J. R., [R] areg, [XT] xtreg
Loftsgaarden, D. O., [MV] discrim knn
Lokshin, M., [R] biprobit, [R] heckman,
$[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ oprobit
Long, J. S., [D] codebook, [D] label, [D] notes, $[R]$ asroprobit, $[R]$ clogit, $[R]$ cloglog, $[R]$ intreg, $[R]$ logistic, $[R]$ logit, $[R]$ mlogit, [R] mprobit, [ $R$ ] nbreg, [ $R$ ] ologit, [ $R$ ] oprobit, $[R]$ poisson, $[R]$ probit, $[R]$ regress, $[R]$ regress postestimation, $[R]$ testnl, $[R]$ tnbreg,
$[R]$ tobit, $[R]$ tpoisson, $[R]$ zinb, $[R]$ zip,
[U] 12.10 References, [U] 16.5 References, [U] 20.25 References
Longest, K. C., [R] tabulate twoway, [U] 12.10 References
Longley, J. D., [R] kappa
Longton, G. M., $[R]$ rocfit, $[R]$ rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot
López-Feldman, A., [R] inequality
López-Vizcaíno, M. E., [ST] epitab
Lorenz, M. O., [R] inequality
Louis, T. A., [R] tabulate twoway
Lovell, C. A. K., [R] frontier, [R] frontier postestimation, [XT] xtfrontier
Lovie, A. D., [R] spearman
Lovie, P., [R] spearman
Lu, J. Y., [TS] prais
Lucas, H. L., [R] pkcross
Luce, R. D., [R] rologit
Luckman, B., [MV] screeplot
Ludwig, J., [ST] stcrreg
Lukácsy, K., [D] functions
Lumley, T. S., [MV] factor, [MV] pca, [PSS] intro, [PSS] power twomeans, [PSS] power oneway, [PSS] power twoway, $[R]$ anova, $[R]$ dstdize, [R] oneway
Lund, R., [TS] arima
Luniak, M. M., [MV] biplot
Lunn, M., [ST] stcrreg
Lunt, M., [R] ologit, [R] slogit, [TE] teffects multivalued
Lurie, M. B., [MV] manova

Lütkepohl, H., [M-5] Dmatrix( ), [M-5] Kmatrix( ),
[M-5] Lmatrix ( ), [R] estat ic, [R] glogit,
$[R]$ ivregress, $[R]$ ivregress postestimation,
$[R]$ logit, $[R]$ probit, $[R]$ regress postestimation,
[R] test, [TS] time series, [TS] arch,
[TS] dfactor, [TS] fcast compute, [TS] irf,
[TS] irf create, [TS] mgarch dvech, [TS] prais,
[TS] sspace, [TS] sspace postestimation,
[TS] var intro, [TS] var, [TS] var svar,
[TS] varbasic, [TS] vargranger, [TS] varnorm,
[TS] varsoc, [TS] varstable, [TS] varwle,
[TS] vec intro, [TS] vecnorm, [TS] vecrank,
[TS] vecstable, [XT] xtgls, [XT] xtpcse,
[XT] xtrc, [XT] xtreg

## M

Ma, G., [R] roccomp, $[R]$ rocfit, $[R]$ roctab
Macdonald-Wallis, C. M., [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed
Machin, D., [PSS] intro, [R] ci, [R] kappa,
$[R]$ tabulate twoway, $[S T]$ stpower,
[ST] stpower cox, [ST] stpower logrank
Mack, T. M., [R] symmetry
MacKinnon, D. P., [SEM] example 42g
MacKinnon, J. G., [I] Glossary, [P] _robust,
$[R]$ boxcox, $[R]$ ensreg, $[R]$ gmm, $[R]$ intreg,
$[R]$ ivregress, $[R]$ ivregress postestimation,
$[R]$ mlogit, $[R]$ nl, $[R]$ nlsur, $[R]$ reg3,
$[R]$ regress, $[R]$ regress postestimation time
series, $[R]$ tobit, $[R]$ truncreg, $[T S]$ arch,
[TS] arima, [TS] dfuller, [TS] pperron,
[TS] prais, [TS] sspace, [TS] varlmar,
[TS] Glossary, [U] 20.25 References, [XT] xtgls, [XT] xtpcse
MacLaren, M. D., [D] functions
MacMahon, B., [ST] epitab
MacRae, K. D., [R] binreg
MaCurdy, T. E., [XT] xthtaylor
Madans, J. H., [SVY] survey, [SVY] svy estimation
Madansky, A., $[\mathrm{R}]$ runtest
Maddala, G. S., [R] nlogit, [R] tobit, [TE] etregress, [TS] vec intro, [TS] vec, [TS] vecrank,
[XT] xtgls, [XT] xtunitroot
Madigan, D., [ST] sts
Magnus, J. R., [TS] var svar
Magnusson, L. M., $[R]$ gmm, $[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivtobit
Mahalanobis, P. C., [I] Glossary, [MV] discrim Ida, [MV] hotelling, [MV] Glossary
Mair, C. S., [ME] menbreg, [ME] mepoisson,
[ME] meqrpoisson, [SEM] example 39g
Makles, A., [MV] cluster kmeans and kmedians
Mallows, C. L., $[\mathrm{R}]$ regress postestimation diagnostic plots
Manchul, L., [ST] stcrreg, [ST] stcrreg postestimation
Mandelbrot, B. B., [TS] arch
Mander, A. P., [R] anova, [R] symmetry, [ST] stsplit
Mangel, M., [TS] varwle
Manly, B. F. J., [MV] discrim qda postestimation

Mann, H. B., [R] kwallis, [R] ranksum
Manning, W. G., [R] heckman
Manski, C. F., [R] gmm
Mansuy, R., [ST] stcox postestimation
Mantel, H., [SVY] svy bootstrap, [SVY] variance estimation
Mantel, N., [R] stepwise, [ST] epitab, [ST] strate, [ST] sts test
Maravall, A., [TS] tsfilter hp
Marcellino, M., [XT] xtunitroot
Marchenko, Y. V., [ME] me, [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [MI] intro substantive, $[\mathrm{MI}]$ mi estimate, $[\mathrm{MI}]$ mi impute, $[R]$ anova, $[R]$ loneway, $[R]$ oneway, $[R]$ sktest, [ST] survival analysis, [ST] stcox, [ST] stcrreg,
[ST] stcrreg postestimation, [ST] stdescribe, [ST] stpower, [ST] stpower exponential, [ST] stpower logrank, [ST] streg, [ST] stset, [ST] stsplit, [ST] stvary
Marden, J. I., [R] rologit
Mardia, K. V., [MI] mi impute mvn, [MV] discrim, [MV] discrim lda, [MV] factor, [MV] manova, [MV] matrix dissimilarity, [MV] mds, [MV] mds postestimation, [MV] mdslong, [MV] mdsmat, [MV] mvtest, [MV] mvtest means, [MV] mvtest normality, [MV] pca, [MV] procrustes, [P] matrix dissimilarity
Mark, D. B., [ST] stcox postestimation
Markel, H., [ST] epitab
Markowski, C. A., [R] sdtest
Markowski, E. P., [R] sdtest
Marks, H. M., [ST] sts
Marquardt, D. W., [M-5] moptimize( ), [M-5] optimize( )
Marr, J. W., [ST] stsplit
Marsaglia, G., [D] functions
Marschak, J., [R] ivregress
Marsh, H. W., [SEM] example 19
Marsh, J., [PSS] intro
Martin, W., [R] regress, [ST] epitab
Martínez, M. A., [R] logistic
Marubini, E., [ST] stcrreg, [ST] stpower, [ST] stpower logrank, [ST] sts test
Mascher, K., [R] rocreg, $[\mathrm{R}]$ rocreg postestimation, $[\mathrm{R}]$ rocregplot
Massey, F. J., Jr., [PSS] intro, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power onevariance, [PSS] power twovariances, [R] ttest
Massey, J.
T., [R] boxcox, [R] marginsplot, [SVY] survey, [SVY] estat, [SVY] subpopulation estimation, [SVY] svy, [SVY] svy brr, [SVY] svy estimation, [SVY] svy jackknife, [SVY] svy postestimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway, [SVY] svydescribe
Master, I. M., [R] exlogistic

Mastrucci, M. T., [R] exlogistic
Mathews, P., [PSS] power twovariances
Matthews, J. N. S., [PSS] intro, [PSS] power twomeans, [PSS] power pairedmeans, $[R]$ ameans, $[R]$ expoisson, $[R]$ sdtest
Mátyás, L., [R] gmm
Maurer,
K., [R] boxcox, [R] marginsplot, [SVY] survey, [SVY] estat, [SVY] subpopulation estimation, [SVY] svy, [SVY] svy brr, [SVY] svy estimation, [SVY] svy jackknife, [SVY] svy postestimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway, [SVY] svydescribe
Maxwell, A. E., [MV] factor, [MV] factor postestimation, [R] symmetry
May, S., [MV] canon, [MV] discrim, [MV] factor, [MV] pca, [R] stepwise, [ST] stcox, [ST] stpower, [ST] stpower cox, [ST] streg
Mazliak, L., [ST] stcox postestimation
Mazýa, V. G., [D] functions
McAleer, M., [TS] mgarch, [U] 20.25 References
McCabe, S. E., [SVY] estat
McCaffrey, D. F., [R] areg, [XT] xtreg
McCarthy, P. J., [SVY] survey, [SVY] svy bootstrap, [SVY] svy brr, [SVY] variance estimation
McCleary, S. J., [R] regress postestimation diagnostic plots
McClish, D. K., $[\mathrm{R}]$ rocreg
McCrary, J., [TE] teffects overlap
McCullagh, P., [ME] meglm postestimation, [ME] meqrlogit postestimation,
[ME] meqrpoisson postestimation, $[R]$ binreg,
$[R]$ binreg postestimation, $[R]$ glm, $[R]$ glm postestimation, $[R]$ ologit, $[R]$ rologit, [XT] vee_options, [XT] xtgee, [XT] xtpoisson
McCulloch, C. E., [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [R] logistic, [ST] stcox,
[TE] teffects intro advanced
McCullough, B. D., [TS] corrgram
McDonald, A., [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [SEM] example 39 g
McDonald, J. A., [R] sunflower
McDonald, J. F., $[R]$ tobit, $[R]$ tobit postestimation
McDowell, A., [R] boxcox,
[R] marginsplot, [SVY] survey, [SVY] estat, [SVY] subpopulation estimation,
[SVY] svy, [SVY] svy brr, [SVY] svy estimation, [SVY] svy jackknife, [SVY] svy postestimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway, [SVY] svydescribe
McDowell, A. W., [R] sureg, [TS] arima
McFadden, D., [TE] teffects aipw
McFadden, D. L., [R] asclogit, [R] asmprobit, $[R]$ clogit, $[R]$ hausman, $[R]$ maximize, $[R]$ nlogit, $[R]$ suest
McGilchrist, C. A., [ST] stcox, [ST] streg

McGill, R., [R] sunflower
McGinnis, R. E., [R] symmetry
McGraw, K. O., [R] icc
McGuire, T. J., [R] dstdize
McKelvey, R. D., [R] ologit
McKenney, A., [M-1] LAPACK, [M-5] lapack( ), $[\mathrm{P}]$ matrix eigenvalues
McLachlan, G. J., [ME] me, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim lda
McLeod, A. I., [TS] arima, [TS] ucm
McNeil, B. J., [R] roccomp, [R] rocfit, [R] rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot, [R] roctab
McNeil, D., [R] poisson, [ST] stcrreg
McNemar, Q., [PSS] intro, [ST] epitab
Mead, R., [M-5] optimize( )
Meeusen, W., [R] frontier, [XT] xtfrontier
Mehta, C. R., [R] exlogistic, [R] exlogistic postestimation, $[R]$ expoisson, $[R]$ tabulate twoway
Mehta, P. D., [SEM] example 30 g
Meier, P., [ST] stcrreg, [ST] stcrreg postestimation, [ST] sts
Meijering, E., [D] ipolate
Meiselman, D., [TS] arima
Melly, B., [R] qreg, [TE] teffects multivalued
Mendenhall, W., III, [SVY] survey
Meng, X.-L., [MI] intro substantive, [MI] mi estimate, [MI] mi impute, [MI] mi test
Mensing, R. W., [R] anova postestimation
Mergoupis, T., [TE] etregress, [TE] teffects intro advanced
Merryman, S., [XT] xtunitroot
Metz, C. E., [R] Iroc
Meulders, M., [MI] intro substantive, [MI] mi impute
Meyer, B. D., [ST] discrete
Miao, W., [R] sdtest
Michel-Pajus, A., [M-5] cholesky( )
Michels, K. M., [PSS] intro, [PSS] power repeated, $[R]$ anova, $[R]$ contrast, $[R]$ loneway, $[R]$ oneway, $[R]$ pwcompare
Michener, C. D., [MV] measure_option
Mickey, M. R., [MV] discrim estat
Midthune, D., [SVY] estat, [SVY] svy estimation
Mielke, P. W., Jr., [R] brier, [R] ranksum
Miettinen, O. S., [ST] epitab
Mihaly, K., [R] areg, [XT] xtreg
Miladinovic, B., [R] meta
Milan, L., [MV] ca, [MV] factor, [MV] mca, [MV] pca
Miller, A. B., [R] kappa
Miller, H. W., [SVY] survey, [SVY] svy estimation
Miller, J. I., [TS] sspace
Miller, R. G., Jr., [D] functions, [R] diagnostic plots, $[R]$ oneway, $[R]$ pwcompare

Milligan, G. W., [MV] cluster, [MV] cluster programming subroutines, [MV] cluster stop
Milliken, G. A., [ME] me, [MV] manova, [R] anova, $[R]$ contrast, $[R]$ margins, $[R]$ pwcompare
Milosevic, M., [ST] stcrreg, [ST] stcrreg postestimation
Miranda, A., [R] gllamm, [R] heckoprobit, $[R]$ heckprobit, $[R]$ ivprobit, $[R]$ ivtobit, $[R]$ logistic, $[R]$ logit, $[R]$ nbreg, $[R]$ ologit, $[R]$ oprobit, $[R]$ poisson, $[R]$ probit
Mitchell, C., [R] exlogistic
Mitchell, M. N., [D] data management, [D] by, [D] egen, [D] reshape, [G-1] graph intro, $[R]$ anova, $[R]$ anova postestimation, $[R]$ contrast, $[R]$ logistic, $[R]$ logistic postestimation, $[R]$ logit, $[R]$ margins, $[R]$ marginsplot, $[R]$ pwcompare, $[R]$ regress, [U] 11.7 References, [U] 12.10 References, [U] 13.12 References, [U] 20.25 References, [U] 22.1 References
Mitchell, W. C., [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter bw, [TS] tsfilter cf, [TS] tsfilter hp, [TS] ucm
Miura, H., [U] 14.11 Reference
Modica, S., [MI] intro substantive
Moeschberger, M. L., [ST] stci, [ST] stcox, [ST] stcox postestimation, [ST] sterreg, [ST] stpower, [ST] stpower cox, [ST] streg, [ST] sts, [ST] sts graph, [ST] sts test
Moffitt, R. A., $[R]$ tobit, [R] tobit postestimation
Mogstad, M., [R] inequality
Molenaar, I. W., [SEM] example 28g
Molenberghs, G., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] mixed, [XT] xtreg postestimation
Moler, C. B., $[\mathrm{P}]$ matrix symeigen
Monahan, J. F., [D] functions
Monfort, A., [R] hausman, [R] suest, [R] test, [TS] arima, [TS] mgarch cce, [TS] mgarch dce, [TS] mgarch vce
Monshouwer, K., [MV] mvtest
Monson, R. R., [R] bitest, [ST] epitab, [ST] epitab
Montgomery, D. C., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Montoya, $D .,[R]$ rocreg, $[R]$ rocreg postestimation, $[\mathrm{R}]$ rocregplot
Mood, A. M., [R] centile
Moon, H. R., [XT] xtunitroot
Mooney, C. Z., [R] bootstrap, [R] jackknife, $[R]$ rocreg, $[R]$ rocregplot
Moore, E. H., [M-5] pinv( )
Moore, J. B., [TS] sspace
Moore, R. J., [D] functions
Moran, J. L., [R] dstdize
Morgenstern, H., [ST] epitab, [ST] epitab

Mori, M., [ST] stcrreg
Morris, C., $[\mathrm{R}]$ bootstrap
Morris, J. N., [ST] stsplit
Morris, N. F., [R] binreg
Morrison, D. F., [MV] clustermat, [MV] discrim Ida, [MV] discrim logistic, [MV] discrim logistic postestimation, [MV] manova
Morrow, A., [ST] epitab
Mortimore, P., [MI] mi estimate
Mosier, C. I., [MV] procrustes
Moskowitz, M., [R] kappa
Mosteller, C. F., $[R]$ jackknife, $[R]$ regress, $[R]$ regress postestimation diagnostic plots, $[R]$ rreg
Moulton, L. H., [R] permute
Muellbauer, J., [R] nlsur
Mueller, C. W., [MV] factor
Mueller, R. O., [MV] discrim Ida, [SEM] estat gof, [SEM] methods and formulas for sem
Muirhead, R. J., [MV] pca
Mulaik, S. A., [MV] factor, [MV] rotate
Mullahy, J., $[R]$ gmm, $[R]$ ivpoisson, $[R]$ zinb, $[R]$ zip
Müller, H.-G., [R] lpoly, [ST] sts graph
Muller, K. E., [PSS] power oneway, [PSS] power repeated
Mundlak, Y., [XT] xtivreg, [XT] xtregar
Munnell, A. H., [ME] mixed
Muro, J., [R] heckoprobit, [R] heckprobit
Murphy, A. H., [R] brier
Murphy, J. L., [XT] xtprobit
Murphy, R. S., [SVY] survey, [SVY] svy estimation
Murray, R. M., [ME] mecloglog, [ME] melogit,
[ME] meprobit, [ME] meqrlogit
Murray-Lyon, I. M., [R] binreg
Murrill, W. A., [MV] discrim knn
Murtaugh, P. A., [ST] stcrreg
Mussolino, M. E., [SVY] survey, [SVY] svy estimation
Muthén, B., [SEM] example 9
Muñoz, J., $[R]$ exlogistic
Myland, J. C., [D] functions

## N

Nachtsheim, C. J., [PSS] power oneway, [R] pkcross, $[R]$ pkequiv, $[R]$ pkshape, $[R]$ regress postestimation
Nadarajah, S., $[R]$ nlogit
Nadaraya, E. A., [R] lpoly
Nagel, R. W., [MV] discrim Ida
Nagler, J., [R] scobit
Naiman, D. Q., [R] qreg
Nannicini, T., [TE] etregress
Nardi, G., [ST] epitab
Narendranathan, W., [XT] xtregar
Narula, S. C., [R] qreg
Nash, J. C., [G-2] graph box
Nash, J. D., [D] infile (fixed format), [D] merge
Navarro-Lozano, S., [TE] teffects intro advanced

Naylor, J. C., [ME] meqrlogit, [ME] meqrpoisson, [XT] xtcloglog, [XT] xtintreg, [XT] xtlogit,
[XT] xtologit, [XT] xtoprobit, [XT] xtpoisson,
[XT] xtprobit, [XT] xttobit
Neale, M. C., [SEM] example 30g
Nee, J. C. M., [R] kappa
Neely, S. T., $[R]$ rocreg, $[R]$ rocreg postestimation, [R] rocregplot
Neff, R. K., [ST] epitab
Neimann, H., [MV] mdsmat
Nel, D. G., [MV] mvtest, [MV] mvtest means
Nelder, J. A., [M-5] optimize(), [ME] meglm postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, $[R]$ binreg, $[R]$ binreg postestimation, $[R]$ glm, $[R]$ glm postestimation, $[R]$ margins, $[R]$ ologit, [TE] teffects intro advanced, [XT] vce_options, [XT] xtgee, [XT] xtpoisson
Nelson, C. R., $[\mathrm{R}]$ ivregress postestimation
Nelson, D. B., [TS] arch, [TS] arima, [TS] mgarch
Nelson, E. C., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit,
$[\mathrm{R}]$ mprobit, $[\mathrm{R}]$ mprobit postestimation,
$[R]$ predictnl, $[R]$ slogit, [SEM] example 37 g
Nelson, F. D., $[\mathrm{R}]$ logit, $[\mathrm{R}]$ probit
Nelson, W., [ST] sterreg postestimation, [ST] sts
Nelson, W. C., [MV] mvtest correlations
Neter, J., [PSS] power oneway, [R] pkcross,
$[R]$ pkequiv, $[R]$ pkshape, $[R]$ regress postestimation
Neudecker, H., [TS] var svar
Neuhaus, J. M., [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [XT] xtcloglog, [XT] xtintreg,
[XT] xtlogit, [XT] xtologit, [XT] xtoprobit,
[XT] xtprobit
Nevels, K., [MV] procrustes
Newbold, P., [TS] arima, [TS] vec intro
Newey, W. K., $[R]$ glm, $[R]$ gmm, $[R]$ ivpoisson, $[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivtobit, [TE] teffects aipw, [TS] newey, [TS] pperron, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtunitroot
Newman, S. C., [R] poisson, [ST] epitab, [ST] stcox, [ST] sts
Newson, R. B., [D] contract, [D] generate, [D] statsby, [PSS] intro, $[R]$ centile, $[R]$ glm, $[R]$ glm postestimation, $[R]$ inequality, $[R]$ kwallis, $[R]$ logistic postestimation, $[R]$ logit postestimation, $[R]$ margins, $[R]$ mkspline, $[R]$ ranksum, $[R]$ signrank, $[R]$ spearman, [R] tabulate twoway, [ST] stcox postestimation
Newton, H. J., [R] kdensity, [TS] arima, [TS] corrgram, [TS] cumsp, [TS] dfuller, [TS] pergram, [TS] wntestb, [TS] xcorr, [XT] xtgee
Newton, I., [M-5] optimize()

Newton, M. A., [XT] xtcloglog, [XT] xtgee,
[XT] xtintreg, [XT] xtlogit, [XT] xtologit,
[XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Neyman, J., [R] ci
Ng, E. S.-W., [ME] me, [ME] meglm, [ME] melogit, [ME] meqrlogit, $[R]$ bootstrap, $[R]$ bstat
$\mathrm{Ng}, \mathrm{S} .$, [TS] dfgls
Nicewander, W. A., $[\mathrm{R}]$ correlate
Nichols, A., [ME] meglm, [ME] mixed, [R] ivregress, $[R]$ reg3, [TE] etregress, [TE] teffects intro advanced, [XT] xtrc, [XT] xtreg
Nickell, S. J., $[\mathrm{R}]$ gmm, [TS] forecast, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xtivreg, [XT] xtunitroot
Nielsen, B., [TS] varsoc, [TS] vec intro
Nightingale, F, [G-2] graph pie
Nolan, D., $[\mathrm{R}]$ diagnostic plots
Nordlund, D. J., [MV] discrim Ida
Norton, S. J., $[R]$ rocreg, $[R]$ rocreg postestimation, $[\mathrm{R}]$ rocregplot
Nunnally, J. C., [MV] alpha

## 0

O'Brien, R. G., [PSS] power oneway
$O^{\prime}$ Connell, P. G. J., [XT] xtunitroot
O'Connell, R. T., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
O'Donnell, C. J., [XT] xtfrontier
O'Donnell, O., [SVY] svy estimation, [SVY] svyset
O'Fallon, W. M., [R] logit
O'Neill, D., $[R]$ gmm, $[R]$ inequality
Oakes, D., [ST] Itable, [ST] stcox, [ST] stcox PHassumption tests, [ST] stpower, [ST] streg, [ST] sts
Obstfeld, M., [XT] xtunitroot
Ochiai, A., [MV] measure_option
Odum, E. P., [MV] clustermat
Oehlert, G. W., [R] nlcom, [R] rocreg postestimation, [R] rocregplot
Oh, K.-Y., [XT] xtunitroot
Oldham, K. B., [D] functions
Olivier, D., [R] expoisson
Olkin, I., [MV] hotelling, [R] kwallis, [TS] wntestb
Olsen, M. K., [MI] intro substantive
Olshansky, S. J., [ST] streg
Olson, J. M., [R] symmetry
Omar, R. Z., [ME] me
Ooms, M., [TS] arfima
Oparil, S., [PSS] intro, [PSS] power repeated
Orcutt, G. H., [TS] prais
Ord, J. K., $[R]$ centile, $[R]$ mean, $[R]$ proportion, $[R]$ qreg, $[R]$ ratio, $[R]$ summarize, $[R]$ total
Orsini, N., $[R]$ glm, $[R]$ logit, $[R]$ mkspline, $[R]$ qreg, [ST] epitab, [ST] streg, [XT] xtreg

Osterwald-Lenum, M. G., [TS] vecrank Ostle, B., $[\mathrm{R}]$ anova postestimation
Ott, R. L., [SVY] survey
Over, M., [R] regress, [XT] xtivreg
Owen, A. L., [TS] forecast

## P

Pacheco, J. M., [R] dstdize
Pagan, A. R., [I] Glossary, [MV] mvreg, [R] frontier, $[R]$ regress postestimation, $[R]$ sureg,
[TS] Glossary, [XT] xtreg postestimation
Pagano, M., [PSS] intro, $[R]$ dstdize, $[R]$ logistic, $[R]$ margins, $[R]$ tabulate twoway, $[S T]$ Itable, [ST] sts
Paik, M. C., [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [R] dstdize, [R] kappa, [ST] epitab
Palma, W., [TS] arfima, [TS] arfima postestimation, [TS] estat acplot
Palmer, T. M., [ME] meqrlogit, [ME] meqrpoisson, $[\mathrm{ME}]$ mixed, $[R]$ ivregress
Palta, M., [XT] xtcloglog, [XT] xtgee, [XT] xtintreg, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Pampel, F. C., [R] logistic, [R] logit, [R] probit
Paneth, N., [ST] epitab
Panis, C., $[\mathrm{R}]$ mkspline
Pantazis, N., [ME] meglm, [ME] mixed
Park, H. J., [P] _robust, [R] regress,
[SVY] svy: tabulate twoway
Park, J. Y., $[R]$ boxcox, $[R]$ margins, $[R]$ nlcom, $[R]$ predictnl, $[R]$ rocreg postestimation, $[R]$ rocregplot, $[\mathrm{R}]$ testnl, [TS] sspace, [TS] vec intro, [TS] vec, [TS] vecrank
Parks, W. P., [R] exlogistic
Parmar, M. K. B., [PSS] intro, [ST] stcox, [ST] stpower, [ST] stpower cox, [ST] streg
Parner, E. T., $[\mathrm{R}]$ glm, $[\mathrm{ST}]$ stcox
Parzen, E., $[R]$ estat ic, $[R]$ kdensity
Pasquini, J., $[R]$ vwls, $[S T]$ epitab
Patel, N. R., $[\mathrm{R}]$ exlogistic, $[\mathrm{R}]$ exlogistic postestimation, $[R]$ expoisson, $[R]$ tabulate twoway
Paterson, L., [ME] meqrlogit
Patterson, H. D., [R] pkcross
Patterson, K., [XT] xtunitroot
Paul, C., [R] logistic
Paulsen, J., [TS] varsoc, [TS] vec intro
Pawitan, Y., [TE] teffects ra
Pearce, M. S., [R] logistic, [ST] epitab
Pearson, E. S., $[\mathrm{R}]$ ci, $[\mathrm{R}]$ ttest
Pearson, K., [G-2] graph twoway histogram, [MV] mds, [MV] measure_option, [MV] pca, $[R]$ correlate, $[R]$ correlate, $[R]$ esize,
$[\mathrm{R}]$ tabulate twoway
Peen, C., [MV] procrustes

Pendergast, J. F., [XT] xtcloglog, [XT] xtgee,
[XT] xtintreg, [XT] xtlogit, [XT] xtologit,
[XT] xtoprobit, [XT] xtprobit, [XT] xttobit
Penfield, R. D., [R] esize
Peng, J., [PSS] intro, [PSS] power oneproportion
Penrose, R., [M-5] pinv()
Pepe, M. S., $[R]$ roc, $[R]$ roccomp, $[R]$ rocfit,
$[R]$ rocreg, $[R]$ rocreg postestimation,
$[\mathrm{R}]$ rocregplot, $[\mathrm{R}]$ roctab, $[\mathrm{ST}]$ sterreg
Peracchi, F., $[\mathrm{MI}]$ intro substantive, $[\mathrm{R}]$ regress, $[R]$ regress postestimation
Pérez-Hernández, M. A., $[\mathrm{R}]$ kdensity
Pérez-Hoyos, S., [R] Irtest
Pérez-Santiago, M. I., [ST] epitab
Perkins, A. M., [R] ranksum
Perotti, V., [R] heckoprobit, [R] heckprobit, [R] oprobit
Perrin, E., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit, $[\mathrm{R}]$ mprobit, $[\mathrm{R}]$ mprobit postestimation, $[R]$ predictnl, $[R]$ slogit, [SEM] example 37 g
Perron, P., [I] Glossary, [TS] dfgls, [TS] pperron, [TS] Glossary
Perry, H. M., [PSS] intro, [PSS] power repeated
Persson, R., [G-1] graph intro
Pesaran, M. H., [XT] xtunitroot
Pesarin, F., $[R]$ tabulate twoway
Peterson, B., $[R]$ ologit
Peterson, W. W., [R] Iroc
Petitclerc, M., $[\mathrm{R}]$ kappa
Petkova, E., $[\mathrm{R}]$ suest
Peto, J., [ST] sts test
Peto, R., [ST] stcox, [ST] streg, [ST] sts test
Petrin, A. K., [R] frontier
Pfeffer, R. I., [R] symmetry
Pfeffermann, D., [ME] mixed
Phillips, P. C. B., [I] Glossary, [R] boxcox, $[R]$ margins, $[R]$ nlcom, $[R]$ predictnl,
$[\mathrm{R}]$ regress postestimation time series,
$[R]$ rocreg postestimation, $[R]$ rocregplot,
[R] testnl, [TS] pperron, [TS] vargranger,
[TS] vec intro, [TS] vec, [TS] vecrank,
[TS] Glossary, [XT] xtunitroot
Piantadosi, S., [P] _robust, [U] 20.25 References
Pickles, A., [ME] me, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
[MV] cluster dendrogram, [R] gllamm, [R] glm, [SEM] Acknowledgments, [SEM] intro 2, [SEM] example 29g, [SEM] methods and formulas for gsem, [TE] teffects multivalued, [XT] xtgee, [XT] xtreg
Pierce, D. A., [ME] me, [ME] meqrlogit, [ME] meqrpoisson, [TS] wntestq
Pierson, R. A., [ME] mixed
Pike, M. C., [PSS] intro, [PSS] power twoproportions, [R] symmetry, [ST] Itable, [ST] streg
Pillai, K. C. S., [MV] canon, [MV] manova
Pindyck, R. S., [R] biprobit, [R] heckprobit

Pinheiro, J. C., [ME] me, [ME] meglm,
[ME] meqrlogit, [ME] meqrlogit postestimation,
[ME] meqrpoisson, [ME] meqrpoisson
postestimation, $[\mathrm{ME}]$ mixed, $[\mathrm{ME}]$ mixed postestimation
Pintilie, M., [ST] stcrreg, [ST] stcrreg postestimation
Pisati, M., [TS] time series
Pischke, J.-S., $[R]$ ivregress, $[R]$ ivregress postestimation, $[R]$ qreg, $[R]$ regress,
[TE] teffects intro advanced,
[U] 20.25 References
Pitarakis, J.-Y., [TS] vecrank
Pitblado, J. S., [M-5] deriv( ), [M-5] moptimize (), $[\mathrm{P}]$ intro, $[\mathrm{P}]$ _robust, $[\mathrm{R}]$ frontier, $[\mathrm{R}]$ gmm, $[R]$ lpoly, $[R]$ maximize, $[R]$ ml, $[R]$ mlexp, [ST] sts, [SVY] survey, [SVY] ml for svy, [XT] xtfrontier
Plackett, R. L., $[R]$ ameans, $[R]$ regress, $[R]$ rologit, $[R]$ summarize, $[R]$ ttest
Playfair, W. H., [G-2] graph bar, [G-2] graph pie
Plosser, C. I., [TS] vecrank
Plummer, W. D., Jr., [R] sunflower, [ST] epitab
Poi, B. P., [M-5] deriv( ), [M-5] moptimize( ),
$[P]$ intro, $[P]$ _robust, $[R]$ bootstrap,
$[R]$ bstat, $[R]$ frontier, $[R]$ gmm, $[R]$ ivregress,
$[R]$ ivregress postestimation, $[R]$ maximize,
$[R]$ ml, $[R]$ mlexp, $[R]$ nl, $[R]$ nlsur,
$[\mathrm{R}]$ reg3, [SVY] survey, [SVY] ml for svy, [XT] xtfrontier, [XT] xtrc
Poirier, D. J., [R] biprobit
Poisson, S. D., [R] poisson
Pollock, D. S. G., [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter bw, [TS] tsfilter cf, [TS] tsfilter hp
Pollock, P. H., III, [R] histogram
Ponce de Leon, A., $[\mathrm{R}]$ roccomp, $[\mathrm{R}]$ roctab
Porter, T. M., $[\mathrm{R}]$ correlate
Portes, A., [SEM] example 7
Posten, H. O., [D] functions
Powell, M. J. D., [M-5] optimize (), [TS] forecast solve
Powers, D. A., $[R]$ logistic postestimation, $[R]$ logit,
$[R]$ logit postestimation, $[R]$ probit
Prais, S. J., [TS] prais
Preacher, K. J., $[R]$ esize, $[R]$ regress postestimation, [SEM] example 42g
Preece, D. A., $[\mathrm{R}]$ ttest
Pregibon, D., $[\mathrm{R}]$ glm, $[\mathrm{R}]$ linktest, $[R]$ logistic, $[R]$ logistic postestimation, $[R]$ logit, $[R]$ logit postestimation
Prentice, R. L., $[\mathrm{ST}]$ discrete, $[\mathrm{ST}]$ Itable, $[\mathrm{ST}]$ stcox, [ST] stcox PH-assumption tests, [ST] stcox postestimation, $[\mathrm{ST}]$ streg, $[\mathrm{ST}]$ sts, $[\mathrm{ST}]$ sts test, [ST] stset, [XT] xtgee
Prescott, E. C., [TS] tsfilter, [TS] tsfilter hp
Press, W. H., [D] functions, [G-2] graph twoway contour, $[\mathrm{M}-5]$ solvenl( ), $[\mathrm{P}]$ matrix symeigen, $[R]$ dydx, $[R]$ vwls, [TS] arch, [TS] arima
Pressel, S., [PSS] intro, [PSS] power repeated
Priestley, M. B., [TS] psdensity, [TS] tsfilter, [TS] ucm
Proschan, M., [PSS] intro, [PSS] power repeated

Prosser, R., [ME] mixed
Pryor, D. B., [ST] stcox postestimation
Punj, G. N., [R] rologit
Putter, H., [ST] stcrreg, [ST] stcrreg postestimation
Pérez-Amaral, T., [U] 20.25 References

## Q

Qaqish, B., [XT] xtgee
Quesenberry, C. P., [MV] discrim knn
Quintó, L., [M-5] _docx*( ), [P] putexcel

## R

Rabe-Hesketh, S., [ME] me, [ME] mecloglog, [ME] meglm, [ME] meglm postestimation, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrlogit postestimation,
[ME] meqrpoisson, [ME] meqrpoisson postestimation, [ME] mixed, [ME] mixed postestimation, [MV] pca, [MV] screeplot, $[R]$ gllamm, $[R]$ glm, $[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ ivprobit, $[R]$ ivtobit, $[R]$ logistic, [ $R$ ] logit, [ $R$ ] nbreg, [ $R$ ] ologit, $[R]$ oprobit, [ $R$ ] poisson, [ $R$ ] probit, [SEM] Acknowledgments, [SEM] intro 2, [SEM] intro 4, [SEM] example 28g, [SEM] example 29 g , [SEM] example 30 g , [SEM] example 39g, [SEM] example 40 g , [SEM] example 41g, [SEM] example 45g, [SEM] example 46g, [SEM] methods and formulas for gsem, [SEM] predict after gsem, [XT] xtcloglog, [XT] xtgee, [XT] xtintreg, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg, [XT] xttobit
Rachman, S., [ST] epitab
Raciborski, R., [MV] cluster, [R] poisson, [R] tpoisson
Radmacher, R. D., [ST] stpower
Raftery, A. E., [R] BIC note, [R] estat ic, [R] glm, [SEM] estat gof
Raghunathan, T. E., [MI] intro substantive, [MI] mi estimate, $[\mathrm{MI}]$ mi impute, $[\mathrm{MI}]$ mi impute chained, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute ologit, [MI] mi impute poisson, [MI] mi impute truncreg, [MI] mi test
Ramalheira, C., [R] ameans, [ST] Itable
Ramey, C. T., [PSS] power repeated
Ramsahai, R. R., [R] ivregress
Ramsey, J. B., [R] regress postestimation
Rao, C. R., [ME] me, [ME] mixed, [MV] factor, [MV] hotelling, [MV] manova
Rao, D. S. P., [XT] xtfrontier
Rao, J. N. K., [SVY] direct standardization, [SVY] poststratification, [SVY] svy bootstrap, [SVY] svy: tabulate twoway, [SVY] variance estimation

Rao, T. R., [MV] measure_option
Raphson, J., [M-5] optimize( )
Rasbash, J., [ME] me, [ME] meglm, [ME] melogit,
[ME] meqrlogit, [ME] mixed
Rasch, G., [SEM] example 28g
Ratcliffe, S. J., [XT] xtgee
Ratkowsky, D. A., [R] nl, [R] pk, [R] pkcross
Raudenbush, S. W., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrpoisson, [ME] mixed
Ravn, M. O., [TS] tsfilter, [TS] tsfilter hp
Raykov, T., [SEM] estat eqgof, [SEM] example 3, [SEM] methods and formulas for sem
Rebelo, S. T., [TS] tsfilter, [TS] tsfilter hp
Redelmeier, D. A., [R] brier
Reeves, D., [R] meta
Reichenheim, M. E., [R] kappa, [R] roccomp, [R] roctab
Reid, C., [M-5] Hilbert( ), [R] ci
Reid, N. M., [ST] stcox
Reilly, M., [R] logistic, [ST] epitab
Reinfurt, K. H., [MV] mvtest correlations
Reinsch, C., $[\mathrm{P}]$ matrix symeigen
Reinsch, C. H., [M-5] spline3( )
Reinsel, G. C., [TS] arfima, [TS] arima,
[TS] corrgram, [TS] cumsp, [TS] dfuller,
[TS] estat acplot, [TS] pergram, [TS] pperron,
[TS] psdensity, [TS] vec intro, [TS] xcorr
Reise, S. P., [SEM] example 28g, [SEM] example 29g
Reiter, J. P., [MI] intro substantive, [MI] intro, [MI] mi estimate, [MI] mi estimate using, [MI] mi test
Relles, D. A., [R] rreg
Rencher, A. C., [MV] biplot, [MV] ca, [MV] candisc, [MV] canon, [MV] canon postestimation, [MV] cluster, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim lda, [MV] discrim lda postestimation, [MV] discrim logistic, [MV] discrim qda, [MV] discrim qda postestimation, [MV] factor, [MV] manova, [MV] mca, [MV] mvtest, [MV] mvtest correlations, [MV] mvtest covariances, [MV] mvtest means, [MV] mvtest normality, [MV] pca, [MV] screeplot, [R] anova postestimation
Research Triangle Institute, [SVY] svy: tabulate twoway
Revankar, N. S., [R] frontier, [XT] xtfrontier
Richards, D. S. P., [MV] mvtest means
Richardson, W., $[\mathrm{R}]$ ttest
Richter, J. R., [ST] stpower
Ridder, G., [TE] teffects intro advanced
Riffenburgh, R. H., [R] ksmirnov, [R] kwallis
Riley, A. R., [D] filefilter, [D] list, [R] net search
Ringquist, E. J., [R] meta
Rip, M., [ST] epitab
Rising, W. R., [D] functions, [U] 12.10 References

Rivers, D., [R] ivprobit
Robbins, N. B., [G-2] graph dot
Roberson, P. K., $[\mathrm{R}]$ estat gof, $[\mathrm{R}]$ Iroc
Roberts, C., [PSS] power
Roberts, S., [PSS] power
Robins, J. M., [ST] epitab, [TE] teffects intro advanced
Robins, R. P., [TS] arch
Robinson, A., [M-5] Toeplitz()
Robyn, D. L., [G-2] graph bar, [G-2] graph pie, [G-2] graph twoway histogram, [R] cumul
Rodgers, J. L., $[\mathrm{R}]$ correlate
Rodríguez, G., [ME] me, $[\mathrm{R}]$ nbreg, $[\mathrm{R}]$ poisson
Rogers, D. J., [MV] measure_option
Rogers, W. H., $[\mathrm{D}]$ egen, $[\mathrm{P}]$ _robust, $[\mathrm{R}]$ brier, $[R]$ glm, $[R]$ heckman, $[R]$ lincom, $[R]$ mlogit, $[R]$ mprobit, $[R]$ mprobit postestimation, $[R]$ nbreg, $[R]$ poisson, $[R]$ predictnl, $[R]$ qreg, $[R]$ regress, $[R]$ rocreg, $[R]$ rreg, $[R]$ sktest, $[R]$ slogit, $[R]$ suest, [ST] stcox PHassumption tests, $[\mathrm{ST}]$ stcox postestimation, [U] 20.25 References
Rogoff, K., [XT] xtunitroot
Rohlf, F. J., [MV] cluster, [MV] measure_option
Rombouts, J. V. K., [TS] mgarch
Romney, A. K., [MV] ca
Ronchetti, E. M., [D] egen
Ronning, G., [R] clogit
Roodman, D., [D] collapse, [XT] xtdpd, [XT] xtdpdsys
Room, T., [TS] arima
Rosati, R. A., [ST] stcox postestimation
Rose, D. W., [MV] discrim knn
Rose, J. M., [R] nlogit
Rosen, H. S., [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
Rosenbaum, P. R., [TE] teffects intro advanced
Rosenthal, R., $[\mathrm{R}]$ contrast
Rosnow, R. L., [R] contrast
Ross, G. J. S., $[R]$ nl
Rossi, P. E., $[\mathrm{R}]$ sureg
Rossi, S. S., [ST] stcrreg
Rothenberg, T. J., [I] Glossary, [TS] dfgls, [TS] sspace, [TS] var svar, [TS] vec, [TS] Glossary
Rothkopf, E. Z., [MV] mdslong
Rothman, K. J., $[R]$ ci, $[R]$ dstdize, $[R]$ glogit, [R] poisson, [ST] epitab
Rothstein, H. R., [R] meta
Rothwell, S. T., [SVY] survey, [SVY] svy estimation
Rotnitzky, A., [TE] teffects intro advanced
Rousseeuw, P. J., [D] egen, [MV] cluster, [MV] clustermat, [MV] matrix dissimilarity, [MV] measure _option, [P] matrix dissimilarity, $[R]$ qreg, $[R]$ regress postestimation, $[R]$ rreg
Rovine, M. J., $[\mathrm{R}]$ correlate
Roy, S. N., [MV] canon, [MV] manova
Royall, R. M., [P] _robust, [U] 20.25 References

Royston, P., [D] generate, [D] list, [D] sort, [G-2] graph twoway lowess, [G-2] graph twoway scatter, [MI] intro substantive, [MI] intro, [MI] mi estimate, [MI] mi estimate using, [MI] mi export, [MI] mi export ice, $[\mathrm{MI}] \mathrm{mi}$ import, $[\mathrm{MI}] \mathrm{mi}$ import ice, [MI] mi impute, [MI] mi impute chained, [MI] mi impute intreg, [MI] mi impute monotone, [MI] mi impute nbreg, [MI] mi predict, [PSS] intro, [R] bootstrap, $[R]$ centile, $[R]$ cusum, $[R]$ diagnostic plots, $[R]$ dotplot, $[R]$ dydx, $[R]$ estat ic, $[R] f p,[R] f p$ postestimation, $[R]$ glm, $[R]$ glm, $[R]$ kdensity, $[R]$ Inskew0, $[R]$ lowess, $[R]$ marginsplot, $[R] \mathbf{m f p},[R] \mathbf{m l},[R]$ nl, $[R]$ regress, $[R]$ sktest, $[\mathrm{R}]$ smooth, $[\mathrm{R}]$ swilk, $[\mathrm{ST}]$ epitab, $[\mathrm{ST}]$ stcox, [ST] stcox PH-assumption tests, [ST] stpower, [ST] stpower cox, [ST] streg
Rubin, D. B., [ME] me, [ME] mixed, [MI] intro substantive, [MI] mi estimate, [MI] mi estimate using, [MI] mi impute, [MI] mi impute chained, [MI] mi impute logit, [MI] mi impute monotone, [MI] mi impute mvn, [MI] mi impute pmm, [MI] mi impute regress, [MI] mi predict, $[\mathrm{MI}]$ mi test, $[\mathrm{R}]$ contrast, $[\mathrm{TE}]$ teffects intro advanced
Rubin, H., $[\mathrm{R}]$ ivregress postestimation
Rubinfeld, D. L., $[R]$ biprobit, $[R]$ heckprobit
Rubinstein, L. V., [ST] stpower, [ST] stpower exponential
Rudebusch, G. D., [R] ivregress postestimation
Runkle, D. E., [TS] arch
Ruppert, D., [ME] me, [ME] meglm, [ME] mixed, $[R]$ boxcox, $[R]$ rreg
Rush, M., [D] egen
Russell, P. F., [MV] measure_option
Rutherford, E., [R] poisson
Rutherford, M. J., [R] poisson, [ST] stptime
Ruud, P. A., $[R]$ gmm, $[R]$ rologit, $[R]$ suest
Ryan, P., [D] egen, [D] pctile, [U] 11.7 References
Ryan, T. P., [R] qc
Ryzhik, I. M., [TS] arfima

## S

Saikkonen, P., [TS] vec intro, [TS] vecrank
Sajaia, Z., [R] biprobit, [R] heckprobit
Sakamoto, Y., [R] BIC note
Salas Pauliac, C. H., [D] egen
Salgado-Ugarte, I. H., [R] kdensity, [R] lowess, [R] smooth
Salim, A., [R] logistic, [ST] epitab
Salvador, M., [TS] vecrank
Samaniego, F. J., [TS] varwle
Sammon, J. W., Jr., [I] Glossary, [MV] mds, [MV] mdslong, [MV] mdsmat, [MV] Glossary
Sammons, P., [MI] mi estimate
Sampson, A. R., [MV] hotelling
Samuels, S. J., [U] 24.8 References
Sánchez, G., [TS] arima

Sanders, F., [R] brier
Sándor, L., [TE] teffects intro advanced
Santner, T. J., [ST] stpower, [ST] stpower exponential
Santos Silva, J. M. C., [R] gmm, [R] ivpoisson
Sarabia, J. M., [MI] intro substantive, [MI] mi impute chained
Sarafidis, V., [XT] xtreg
Sargan, J. D., [R] ivregress postestimation, [TS] prais
Sargent, T. J., [TS] dfactor
Särndal, C.-E., [SVY] variance estimation
Sasieni, P., [ST] stcox
Sasieni, P. D., [D] list, [D] memory, [R] dotplot, $[R]$ glm, $[R]$ lowess, $[R]$ nptrend, $[R]$ poisson, [R] smooth
Sass, T. R., [R] areg, [XT] xtreg
Satterthwaite, F. E., [R] esize, [R] ttest, [SVY] variance estimation
Sauerbrei, W., $[R]$ bootstrap, $[R]$ estat ic, $[R] \mathbf{f p}$, $[\mathrm{R}] \mathbf{m f p}$
Saunders, C. L., [PSS] intro
Savage, I. R., [ST] sts test
Savin, N. E., [R] regress postestimation time series
Saw, S. L. C., [R] qc
Sawa, T., [R] estat ic
Saxl, I., [R] correlate
Schaalje, G. B., [R] anova postestimation
Schabenberger, O., [ME] me
Schafer, J. L., [MI] intro substantive, [MI] mi estimate, $[\mathrm{MI}]$ mi impute, $[\mathrm{MI}]$ mi impute monotone, [MI] mi impute mvn, [MI] mi impute truncreg, [TE] teffects intro advanced
Schaffer, C. M., [MV] cluster
Schaffer, M. E., [R] ivregress, [R] ivregress postestimation
Schank, T., [ME] meglm, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [XT] xtreg
Scheaffer, R. L., [SVY] survey
Schechter, C. B., [D] encode
Scheffé, H., [R] anova, [R] oneway
Schenker, N., [MI] intro substantive, [MI] mi impute, [MI] mi impute pmm, [MI] mi impute regress
Scheys, I., [ME] meqrlogit postestimation
Schlesselman, J. J., [R] boxcox, [ST] epitab
Schlossmacher, E. J., [R] qreg
Schmeiser, B. W., [D] functions
Schmidt, C. H., [R] brier
Schmidt, E., [M-5] svd( )
Schmidt, P., [R] frontier, [R] regress postestimation, [XT] xtfrontier, [XT] xtunitroot
Schmidt, T. J., [D] egen, [TS] tsfilter
Schneider, D. C., [D] import haver
Schneider, H., [R] sdtest
Schneider, W., [TS] sspace
Schnell, D., [P] _robust, [R] regress, [SVY] svy: tabulate twoway

Schoenfeld, D. A., [ST] stcox, [ST] stcox
postestimation, [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank, [ST] streg
Schonlau, M., [R] glm, [R] logistic, [R] logit,
$[R]$ poisson, $[R]$ regress
Schork, M. A., [PSS] intro
Schuirmann, D. J., [R] pkequiv
Schumacher, M., [ST] stcrreg
Schumm, L. P., [D] sort
Schunck, R., [ME] mixed, [XT] xtreg
Schur, I., [M-5] schurd( )
Schwartzman, S., [ST] stcox postestimation
Schwarz, G., [MV] factor postestimation,
[R] BIC note, [R] estat ic, [SEM] estat gof, [SEM] methods and formulas for sem
Schwert, G. W., [TS] dfgls
Scott, A. J., [SVY] estat, [SVY] svy: tabulate twoway
Scott, C., [SVY] estat, [SVY] subpopulation estimation, [SVY] svy bootstrap, [SVY] svy estimation
Scott, D. A., [ST] stcox, [ST] stcrreg
Scott, D. W., [R] kdensity
Scott, E. L., [R] intro
Scott, G. B., [R] exlogistic
Scotto, M. G., [R] diagnostic plots, [ST] streg
Searle, S. R., [ME] me, [ME] mecloglog, [ME] meglm,
[ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed, [R] contrast, $[R]$ margins, $[R]$ pwcompare, $[R]$ pwmean
Sears, R. R., [ST] epitab
Seber, G. A. F., [MV] biplot, [MV] manova, [MV] mvtest, [MV] mvtest means, [MV] mvtest normality
Seed, P. T., [R] ci, [R] correlate, [R] roccomp, $[R]$ roctab, $[R]$ sdtest, $[R]$ spearman
Seidler, J., [R] correlate
Self, S. G., [ME] me, [ME] melogit, [ME] meoprobit, [ME] mepoisson, [ME] meqrlogit, [ME] meqrpoisson
Selvin, S., [R] poisson, [ST] epitab, [ST] Itable, [ST] stcox
Sempos, C. T., [PSS] intro, [R] dstdize, [ST] epitab, [ST] ltable, [ST] stcox
Semykina, A., [R] inequality, $[\mathrm{R}]$ qreg
Seneta, E., [R] correlate, [U] 1.4 References
Senn, S. J., [R] glm, [R] ttest
Sentana, E., [TS] mgarch
Serachitopol, D. M., [ST] sts graph
Serfling, R. J., [TS] irf create
Shafer, G., [ST] stcox postestimation
Shah, B. V., [SVY] direct standardization, [SVY] poststratification, [SVY] variance estimation
Shanno, D. F., [M-5] optimize( )

Shao, J., [PSS] intro, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [ST] stpower, [ST] stpower exponential, [SVY] survey, [SVY] svy jackknife, [SVY] variance estimation
Shapiro, S., [ST] epitab
Shapiro, S. S., $[\mathrm{R}]$ swilk
Shaposhnikova, T. O., [D] functions
Shavelson, R. J., [MV] alpha
Shea, J. S., [R] ivregress postestimation
Sheather, S. J., [R] boxcox, [R] lowess, [R] lpoly, $[R]$ qreg, $[R]$ regress postestimation, $[R]$ regress postestimation diagnostic plots, $[R]$ stepwise
Sheehan, N. A., [R] ivregress
Sheldon, T. A., [R] meta
Shepard, R. N., [MV] mds postestimation plots
Shewhart, W. A., [R] qc
Shiboski, S. C., [R] logistic, [ST] stcox, [TE] teffects intro advanced
Shiller, R. J., [R] tobit
Shimizu, M., [R] kdensity, [R] lowess
Shin, Y., [XT] xtunitroot
Shrout, P. E., [R] icc, [R] kappa
Shults, J., [XT] xtgee
Shumway, R. H., [TS] arima
Sianesi, B., [TE] teffects intro advanced, [TE] teffects multivalued
Sibson, R., [MV] cluster
Šidák, Z., $[R]$ correlate, $[R]$ oneway
Silvennoinen, A., [TS] mgarch, [TS] mgarch cce
Silverman, B. W., [R] kdensity, [R] qreg, [TE] teffects overlap
Silvey, S. D., [R] ologit, [R] oprobit
Simon, R., [ST] stpower
Simonoff, J. S., [R] kdensity, [R] tnbreg, [R] tpoisson
Simor, I. S., [R] kappa
Simpson, T., [M-5] optimize( )
Sims, C. A., [TS] dfactor, [TS] irf create, [TS] var svar, [TS] vec intro, [TS] vec, [TS] vecrank
Singleton, K. J., [R] gmm
Sininger, Y., [R] rocreg, [R] rocreg postestimation, $[R]$ rocregplot
Sitgreaves, R., [R] icc
Sjölander, P. C., [R] glm, [R] logit
Skinner, C. J., [ME] mixed, [SVY] survey, [SVY] estat, [SVY] svy estimation, [SVY] variance estimation
Skovlund, E., [ST] stpower, [ST] stpower cox
Skrondal, A., [ME] me, [ME] mecloglog, [ME] meglm, [ME] meglm postestimation, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] meqrlogit, [ME] meqrlogit postestimation, [ME] meqrpoisson, [ME] meqrpoisson postestimation, [ME] mixed, [ME] mixed postestimation, $[\mathrm{R}]$ gllamm, $[\mathrm{R}]$ glm, [SEM] Acknowledgments, [SEM] intro 2,

Skrondal, A., continued
[SEM] intro 4, [SEM] example 28g,
[SEM] example 29 g , [SEM] example 30 g ,
[SEM] example 39g, [SEM] example 40 g ,
[SEM] example 41g, [SEM] example 45 g ,
[SEM] example 46g, [SEM] methods and formulas for gsem, [SEM] predict after gsem,
[U] 1.4 References, [XT] xtcloglog, [XT] xtgee,
[XT] xtintreg, [XT] xtlogit, [XT] xtologit,
[XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xttobit
Slaymaker, E., [P] file
Slone, D., [ST] epitab
Smans, M., [ME] menbreg, [ME] mepoisson,
[ME] meqrpoisson, [SEM] example 39g
Smeeton, N. C., [R] ranksum, [R] signrank
Smirnov, N. V., [R] ksmirnov
Smith, A. F. M., [ME] meqrlogit, [ME] meqrpoisson, [MI] mi impute chained, [XT] xtcloglog,
[XT] xtintreg, [XT] xtlogit, [XT] xtologit,
[XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xttobit
Smith, B. T., [P] matrix symeigen
Smith, C. A. B., [MV] discrim estat, [MV] discrim qda, $[\mathrm{R}]$ ranksum
Smith, H., [MV] manova, [R] eivreg, [R] oneway, $[R]$ regress, $[R]$ stepwise
Smith, J. M., [R] fp
Smith, M. L., [R] esize
Smith, P. G., [PSS] intro, [PSS] power twoproportions
Smith, R. J., [R] ivprobit
Smith, R. L., [ST] streg
Smith, T. M. F., [SVY] survey
Smithson, M., $[\mathrm{R}]$ esize, $[\mathrm{R}]$ regress postestimation
Smith-Vikos, T., [MV] discrim knn
Smullyan, R. M., [MV] mds
Smythe, B., [ST] sts
Sneath, P. H. A., [MV] measure_option
Snedecor, G. W., [PSS] intro, [R] ameans, [R] anova, $[R]$ correlate, $[R]$ oneway, $[R]$ ranksum, [R] signrank
Snell, E. J., [R] exlogistic, [R] expoisson, [ST] stcox, [ST] stcox PH-assumption tests, [ST] streg postestimation
Snow, J., [ST] epitab
Snowden, C. B., [SVY] svy bootstrap, [SVY] variance estimation
Sobel, M. E., [SEM] estat teffects
Sobol, D. F., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Sokal, R. R., [MV] measure_option
Solenberger, P., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute ologit, [MI] mi impute poisson, [MI] mi impute truncreg
Song, F., [R] meta
Song, S. H., [ME] mixed

Soon, T. W., $[\mathrm{R}]$ qc
Sörbom, D., [MV] factor postestimation, [SEM] estat ginvariant, [SEM] estat mindices, [SEM] estat residuals, [SEM] estat scoretests
Sorensen, D., [M-1] LAPACK, [M-5] lapack( ), $[\mathrm{P}]$ matrix eigenvalues
Sørensen, T. J., [MV] measure_option
Sorrentino, R., [TS] tsfilter, [TS] tsfilter bw
Sosa-Escudero, W., [XT] xtreg, [XT] xtreg postestimation, [XT] xtregar
Sotoca, S., [TS] sspace
Sowell, F., [TS] arfima
Spanier, J., [D] functions
Sparks, A. T., [SEM] example 41g
Späth, H., [MV] cluster
Spearman, C. E., $[M V]$ factor, $[R]$ icc, $[R]$ spearman
Speed, F. M., [R] margins
Speed, T., $[R]$ diagnostic plots
Spence, I., [G-2] graph pie
Sperling, R. I., [TS] arch, [TS] arima, [TS] dfgls, [TS] wntestq
Spiegel, D. C., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Spiegelhalter, D. J., $[\mathrm{R}]$ brier
Spieldman, R. S., [R] symmetry
Spiessens, B., [ME] me, [ME] meqrlogit
postestimation
Spitzer, J. J., [R] boxcox
Sprent, P., [R] ranksum, $[\mathrm{R}]$ signrank
Sribney, W. M., $[P]$ matrix mkmat, $[R]$ orthog,
$[R]$ ranksum, $[R]$ signrank, $[R]$ stepwise,
$[\mathrm{R}]$ test, [SVY] estat, [SVY] svy postestimation,
[SVY] svy: tabulate twoway, [SVY] svydescribe
Staelin, R., [R] rologit
Stahel, W. A., [D] egen
Stahl, D., [MV] cluster, [MV] cluster stop
Staiger, D. O., [R] ivregress postestimation
Starmer, C. F., [R] vwls
Startz, R., $[R]$ ivregress postestimation
Stefanski, L. A., [TE] teffects aipw
Stegun, I. A., [D] functions, [ME] meqrlogit, [ME] meqrpoisson, $[R]$ contrast, $[R]$ orthog
Steichen, T. J., [D] duplicates, [R] kappa,
$[R]$ kdensity, $[R]$ sunflower
Steiger, J. H., [R] esize
Steiger, W., $[\mathrm{R}]$ qreg
Stein, C., $[R]$ bootstrap
Stephenson, D. B., [MV] pca, [R] brier
Stepniewska, K. A., $[\mathrm{R}]$ nptrend
Stern, H. S., [MI] intro substantive, [MI] mi impute mvn, [MI] mi impute regress
Sterne, J. A. C., $[\mathrm{MI}]$ intro, $[\mathrm{R}]$ dstdize, $[\mathrm{R}]$ meta, [R] summarize, [ST] stcox
Stevens, E. H., [MV] mvtest
Stevenson, R. E., $[\mathrm{R}]$ frontier
Stewart, G. W., [M-5] svd( ), [P] matrix svd
Stewart, J., [ST] Itable

Stewart, M. B., $[R]$ intreg, $[R]$ oprobit, $[R]$ tobit, [XT] xtprobit
Stigler, S. M., $[R]$ ameans, $[R]$ ci, $[R]$ correlate, $[R]$ kwallis, $[R]$ qreg, $[R]$ regress,
$[R]$ summarize
Stillman, S., $[R]$ ivregress, $[R]$ ivregress postestimation
Stine, R., [R] bootstrap
Stock, J. H., [I] Glossary, [R] areg postestimation, $[R]$ ivregress, $[R]$ ivregress postestimation, [TS] time series, [TS] arch, [TS] dfactor, [TS] dfgls, [TS] irf create, [TS] rolling, [TS] sspace, [TS] var intro, [TS] var, [TS] var svar, [TS] vec intro, [TS] vec, [TS] vecrank, [TS] Glossary, [XT] xtcloglog, [XT] xthtaylor, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg
Stoll, B. J., [ST] epitab
Stoll, L., [MI] mi estimate
Stolley, P. D., [ST] epitab
Storer, B. E., [ST] stcrreg
Stork, D. G., [MV] cluster, [MV] cluster stop
Stoto, M. A., $[\mathrm{R}]$ Iv
Stover, L., $[R]$ rocreg, $[R]$ rocreg postestimation,
[R] rocregplot
Stram, D. O., [ME] me
Street, J. O., $[R]$ rreg
Stroup, W. W., [ME] me
Stryhn, H., $[\mathrm{R}]$ regress, $[\mathrm{ST}]$ epitab
Stuart, A., $[R]$ centile, $[R]$ mean, $[R]$ proportion, $[R]$ qreg, $[R]$ ratio, $[R]$ summarize,
$[R]$ symmetry, $[R]$ total, $[$ SVY $]$ survey
Student, see Gosset, W. S.
Stuetzle, W., $[\mathrm{R}]$ sunflower
Sturdivant, R. X., [PSS] intro, [R] clogit, [R] clogit postestimation, $[R]$ estat classification, $[R]$ estat gof, $[R]$ glm, $[R]$ glogit, $[R]$ lincom, $[R]$ logistic, $[R]$ logistic postestimation, $[R]$ logit, $[R]$ logit postestimation, $[R]$ lroc, $[R]$ lrtest, $[R]$ Isens, $[R]$ mlogit, $[R]$ predictnl, $[R]$ stepwise, [SEM] example 33g, [SEM] example 34g, [XT] xtgee
Støvring, H., [M-2] pointers
Suárez, C., $[R]$ heckoprobit, $[R]$ heckprobit
Sued, M., [TE] teffects intro advanced
Suen, H. K., $[R]$ icc
Sullivan, G., [P] _robust, $[\mathrm{R}]$ regress,
[SVY] svy: tabulate twoway
Summers, G. F., [SEM] example 9
Summers, R., [XT] xtunitroot
Sun, W., [MI] intro substantive
Sussman, S., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Sutton, A. J., $[R]$ meta
Svennerholm, A. M., [ST] epitab
Swagel, P. L., [U] 21.6 Reference
Swamy, P. A. V. B., [XT] xtivreg, [XT] xtre, [XT] xtreg
Swed, F. S., [R] runtest
Sweeting, T. J., [ST] streg

Sweetman, O., [R] gmm, [R] inequality
Swensson, B., [SVY] variance estimation
Swets, J. A., [R] Iroc
Sylvester, J. J., [M-5] svd( )
Szroeter, J., [R] regress postestimation

## T

Tabachnick, B. G., [MV] discrim, [MV] discrim lda
Taka, M. T., [R] pkcross
Tamhane, A. C., [D] functions, [PSS] intro, [PSS] power onemean, $[\mathrm{R}]$ oneway
Tan, S. B., [PSS] intro, [ST] stpower, [ST] stpower logrank
Tan, S. H., [PSS] intro, [ST] stpower, [ST] stpower logrank
Tan, W. Y., [P] _robust, [U] 20.25 References
Tan, Z., [TE] teffects intro advanced, [TE] teffects aipw
Tanimoto, T. T., [MV] measure_option
Taniuchi, T., [R] kdensity
Tanner, M. A., [MI] intro substantive, [MI] mi impute mvn
Tanner, W. P., Jr., [R] Iroc
Tanur, J. M., [R] kwallis
Tapia, R. A., [R] kdensity
Tarlov, A. R., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit, [R] mprobit, [R] mprobit postestimation, [R] predictnl, [R] slogit, [SEM] example 37 g
Tarone, R. E., [ST] epitab, [ST] sts test
Taub, A. J., [XT] xtreg
Tauchmann, H., [R] frontier
Taylor, C., [R] gllamm, [R] glm, [XT] xtgee, [XT] xtreg
Taylor, J. M. G., [MI] intro substantive, [MI] mi impute, [MI] mi impute pmm, [MI] mi impute regress
Taylor, W. E., [XT] xthtaylor
ten Berge, J. M. F., [MV] procrustes
ter Bogt, T., [MV] mvtest
Teräsvirta, T., [TS] mgarch, [TS] mgarch ccc
Terza, J. V., [TE] etpoisson
Teukolsky, S. A., [D] functions, [G-2] graph twoway contour, $[\mathrm{M}-5]$ solvenl( ), $[\mathrm{P}]$ matrix symeigen, [R] dydx, [R] vwls, [TS] arch, [TS] arima
Thall, P. F., [ME] mepoisson, [ME] meqrpoisson
Theil, H., [R] ivregress, $[\mathrm{R}]$ reg3, $[\mathrm{TS}]$ prais
Therneau, T. M., [ST] stcox, [ST] stcox PH-assumption tests, [ST] stcox postestimation, [ST] stcrreg
Thiele, T. N., [R] summarize
Thomas, D. C., [ST] sttoce
Thomas, D. G., [ST] epitab
Thomas, D. R., [SVY] svy: tabulate twoway
Thompson, B., [MV] canon postestimation, [R] esize, $[R]$ regress postestimation
Thompson, D. J., [TE] teffects intro advanced Thompson, J. C., [R] diagnostic plots

Thompson, J. R., [R] kdensity, [R] poisson, [ST] stptime
Thompson, M. L., [R] rocreg
Thompson, S. G., [ME] me
Thompson, S. K., [SVY] survey
Thompson, W. A., Jr., [ME] me, [ME] mixed
Thomson, G. H., [I] Glossary, [MV] factor postestimation, [MV] Glossary
Thorndike, F., [R] poisson
Thurstone, L. L., [MV] rotate, [R] rologit
Tibshirani, R. J., [MV] discrim knn, [R] bootstrap, [R] qreg
Tidmarsh, C. E., [R] fp
Tierney, L., [ME] me, [ME] meqrlogit, [ME] meqrpoisson
Tilford, J. M., [R] estat gof, [R] lroc
Tilling, K., [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [ST] stcox
Timm, N. H., [MV] manova
Ting Lee, M.-L., [ST] stcox PH-assumption tests
Tippett, L. H. C., [ST] streg
Tobías, A., [MV] alpha, [R] lrtest, [R] poisson, $[R]$ roccomp, $[R]$ roctab, $[R]$ sdtest, $[S T]$ streg
Tobin, J., [R] tobit
Toeplitz, O., [M-5] Toeplitz( )
Toman, R. J., [R] stepwise
Tong, H., $[\mathrm{R}]$ estat ic
Toplis, P. J., [R] binreg
Torgerson, W. S., [MV] mds, [MV] mdslong, [MV] mdsmat
Tosetto, A., [R] logistic, [R] logit
Toulopoulou, T., [ME] mecloglog, [ME] melogit, [ME] meprobit, [ME] meqrlogit
Touloumi, G., [ME] meglm, [ME] mixed
Train, G. F., [SVY] survey, [SVY] svy sdr, [SVY] variance estimation
Train, K. E., [R] asmprobit
Trapido, E., [R] exlogistic
Trefethen, L. N., [M-5] svd()
Treiman, D. J., [R] eivreg, [R] mlogit
Trewn, J., [MV] mds
Trichopoulos, D., [ST] epitab
Trimbur, T. M., [TS] psdensity, [TS] tsfilter, [TS] tsfilter hp, [TS] ucm
Trivedi, P. K., [ME] meglm, [ME] mixed, [R] asclogit,
$[R]$ asmprobit, $[R]$ bootstrap, $[R]$ gmm,
$[R]$ heckman, $[R]$ heckoprobit, $[R]$ intreg,
$[R]$ ivpoisson, $[R]$ ivregress, $[R]$ ivregress postestimation, $[\mathrm{R}]$ logit, $[\mathrm{R}]$ mprobit, $[R]$ nbreg, $[R]$ ologit, [ $R$ ] oprobit, [ $R$ ] poisson, $[R]$ probit, $[R]$ qreg, $[R]$ regress, $[R]$ regress postestimation, $[R]$ simulate, $[R]$ sureg, $[R]$ tnbreg, $[R]$ tobit, $[R]$ tpoisson, $[R]$ zinb postestimation, $[R]$ zip postestimation, [TE] etregress, [TE] teffects intro advanced,
[TE] teffects aipw, [TE] teffects ra,
[TS] forecast estimates, $[\mathrm{XT}] \mathbf{x t},[\mathrm{XT}]$ xtnbreg, [XT] xtpoisson
Tsay, R. S., [TS] varsoc, [TS] vec intro

Tse, Y. K., [TS] mgarch, [TS] mgarch vcc
Tsiatis, A. A., [R] exlogistic, [ST] stcrreg, [TE] teffects intro advanced, [TE] teffects aipw
Tsui, A. K. C., [TS] mgarch, [TS] mgarch vec
Tu, D., [SVY] survey, [SVY] svy jackknife, [SVY] variance estimation
Tufte, E. R., [G-2] graph bar, [G-2] graph pie, [R] stem
Tukey, J. W., [D] egen, [G-2] graph box, [G-2] graph matrix, $[P]$ if, $[R]$ jackknife, $[R]$ ladder, $[R]$ linktest, $[R] \operatorname{lv},[R]$ regress, $[R]$ regress postestimation diagnostic plots, $[R]$ rreg, $[R]$ smooth, $[R]$ spikeplot, $[R]$ stem, $[S V Y]$ svy jackknife
Tukey, P. A., [G-2] graph box, [G-2] graph matrix, [G-3] by_option, [R] diagnostic plots, [R] lowess, [U] 1.4 References
Turner, R. M., [ME] me
Tutz, G., [ME] me
Twisk, J. W. R., [XT] xtgee, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtreg
Tyler, D. E., [MV] pca
Tyler, J. H., $[\mathrm{R}]$ regress
Tzavalis, E., [XT] xtunitroot

## U

Uebersax, J. S., [R] tetrachoric
Uhlendorff, A., $[R]$ asmprobit, $[R]$ mlogit, $[\mathrm{R}]$ mprobit
Uhlig, H., [TS] tsfilter, [TS] tsfilter hp
Ulene, A. L., [ME] me, [ME] meglm, [ME] meologit,
[ME] meoprobit, [XT] xtologit, [XT] xtoprobit
University Group Diabetes Program, $[\mathrm{R}]$ glogit, [ST] epitab
Upton, G. J. G., [U] 1.4 References
Upward, R., [ME] meglm, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [XT] xtreg
Ureta, M., [XT] xtreg
Uthoff, V. A., [ST] stpower cox
Utts, J. M., $[\mathrm{R}]$ ci

## V

Vach, W., [ST] stcrreg
Væth, M., [ST] stpower, [ST] stpower cox
Vail, S. C., [ME] mepoisson, [ME] meqrpoisson
Valliant, R., [SVY] survey
Valman, H. B., [R] fp
Valsecchi, M. G., [ST] stcrreg, [ST] stpower, [ST] stpower logrank, [ST] sts test
van Belle, G., [MV] factor, [MV] pca, [PSS] intro, [PSS] power twomeans, [PSS] power oneway, $[P S S]$ power twoway, $[\mathrm{R}]$ anova, $[\mathrm{R}]$ dstdize, [R] oneway
van Buuren, S., [MI] intro substantive, [MI] mi impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}] \mathrm{mi}$ impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute ologit, [MI] mi impute poisson
Van de Ven, W. P. M. M., [R] biprobit, $[\mathrm{R}]$ heckoprobit, $[\mathrm{R}]$ heckprobit
van den Broeck, J., [R] frontier, [XT] xtfrontier van der Ende, J., [MV] mvtest
Van der Heijden, P. G. M., [MV] ca postestimation van der Laan, M. J., [TE] teffects intro advanced
van der Linden, W. J., [SEM] example 28g, [SEM] example 29g
Van der Merwe, C. A., [MV] mvtest, [MV] mvtest means
Van der Reyden, D., $[R]$ ranksum
van der Vaart, A. W., [TE] teffects aipw
van Doorslaer, E., [SVY] svy estimation, [SVY] svyset
van Dorsselaer, S., [MV] mvtest
Van Hoewyk, J., [MI] intro substantive, [MI] mi impute, [MI] mi impute chained, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute ologit, [MI] mi impute poisson, [MI] mi impute truncreg
Van Kerm, P., [MV] ca, [P] postfile, [R] inequality, $[R]$ kdensity
Van Loan, C. F., $[\mathrm{R}]$ orthog, $[\mathrm{R}]$ tetrachoric, [TS] arfima, [TS] arfima postestimation
Van Mechelen, I., [MI] intro substantive, [MI] mi impute
Van Pragg, B. M. S., [R] biprobit, [R] heckoprobit, $[\mathrm{R}]$ heckprobit
Vandermonde, A.-T., [M-5] Vandermonde()
Varadharajan-Krishnakumar, J., [XT] xtivreg
Vella, F., [ME] me
Velleman, P. F., $[\mathrm{R}]$ regress postestimation, $[\mathrm{R}]$ smooth
Venables, W., [R] esize
Verardi, V., [R] correlate, [R] fp, [R] ivregress, $[R]$ lpoly, $[R]$ rreg, $[X T]$ xtreg
Verbeek, M., [ME] me
Verbeke, G., [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] mixed, [MI] intro substantive, $[\mathrm{MI}]$ mi impute, $[\mathrm{XT}]$ xtreg postestimation
Verdurmen, J., [MV] mvtest
Vetterling, W. T., [D] functions, [G-2] graph twoway contour, $[\mathrm{M}-5]$ solvenl(), $[\mathrm{P}]$ matrix symeigen, $[R]$ dydx, $[R]$ vwls, [TS] arch, [TS] arima
Vidmar, S., [R] ameans, [ST] epitab
Vigfusson, R. J., [TS] forecast solve
Vinten-Johansen, P., [ST] epitab
Vittinghoff, E., [R] logistic, [ST] stcox, [TE] teffects intro advanced
Vohr, B. R., $[R]$ rocreg, $[R]$ rocreg postestimation, [ $R$ ] rocregplot
Vollebergh, W. A. M., [MV] mvtest
von Bortkiewicz, L., [R] poisson
von Eye, A., [R] correlate
Von Storch, H., [R] brier
Vondráček, J., [R] correlate
Vuong, Q. H., [R] ivprobit, [R] zinb, [R] zip

## W

Wacholder, S., [R] binreg
Wagner, H. M., [R] qreg
Wagner, M., [XT] xtunitroot
Wagner, T., [MV] mvtest
Wagstaff, A., [SVY] svy estimation, [SVY] svyset
Wagstaff, D. A., [MI] mi estimate
Wainer, H., [G-2] graph pie
Wald, A., [TS] varwle
Walker, A. J., [D] functions, [M-5] runiform( )
Walker, A. M., [ST] epitab
Walker, S., [ST] sts test
Wallgren, A., [G-1] graph intro
Wallgren, B., [G-1] graph intro
Wallis, W. A., [R] kwallis
Walstrum, T., [TE] etregress
Walters, S. J., $[R]$ ci, $[R]$ kappa, $[R]$ tabulate twoway
Wand, M. P., [ME] me, [ME] meglm, [ME] mixed, $[\mathrm{R}]$ kdensity
Wang, D., [D] duplicates, [R] ci, [R] dstdize, [R] prtest
Wang, H., [PSS] intro, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [ST] stpower, [ST] stpower exponential
Wang, J.-L., [ST] sts graph
Wang, J. W., [ST] streg
Wang, Q., [R] ivregress, [TS] arima, [TS] newey
Wang, Y., [R] asmprobit
Wang, Z., [R] logistic postestimation, [R] Irtest, [R] stepwise, [ST] epitab
Ward, J. H., Jr., [MV] cluster, [MV] cluster linkage
Ware, J. E., Jr., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit, $[R]$ mprobit, $[R]$ mprobit postestimation,
[R] predictnl, [R] slogit, [SEM] example 37 g
Ware, J. H., [ME] me, [ME] meglm, [ME] melogit,
[ME] meoprobit, [ME] mepoisson,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [ST] sts test
Warren, K., [ST] epitab
Waterson, E. J., [R] binreg
Watson, G. S., [I] Glossary, [R] Ipoly, [R] regress postestimation time series, [TS] prais, [TS] Glossary
Watson, M. W., [R] areg postestimation, [R] ivregress, [TS] time series, [TS] arch, [TS] dfactor, [TS] dfgls, [TS] irf create, [TS] rolling, [TS] sspace, [TS] var intro, [TS] var, [TS] var svar, [TS] vec intro, [TS] vec, [TS] vecrank, [XT] xtcloglog, [XT] xtlogit, [XT] xtologit,

Watson, M. W., continued
[XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg
Weber, S., [R] correlate
Webster, A. D., [R] fp
Wedderburn, R. W. M., [R] glm, [XT] xtgee
Weeks, D. G., [I] Glossary, [SEM] estat framework
Weesie, J., [D] generate, [D] joinby, [D] label,
[D] label language, [D] labelbook, [D] list,
[D] merge, [D] mvencode, [D] order,
[D] recode, [D] rename, [D] reshape,
[D] sample, [MV] alpha, [MV] ca postestimation, [MV] pca, [P] matrix define, $[R]$ constraint, $[R]$ hausman, $[R]$ ladder, $[R]$ reg3, $[R]$ regress, $[R]$ regress postestimation, $[R]$ rologit, $[R]$ simulate, $[R]$ suest, $[R]$ sureg, $[R]$ tabstat, $[R]$ tabulate twoway, $[R]$ test, $[R]$ tetrachoric,
[SEM] Acknowledgments, [ST] stsplit, [U] 20.25 References
Wei, L. J., [P] _robust, [ST] stcox, [ST] stcrreg, [SVY] svy estimation, [U] 20.25 References
Wei, W. W. S., [I] Glossary, [TS] psdensity, [TS] tsfilter, [TS] ucm, [TS] Glossary
Weibull, W., [ST] streg
Weisberg, H. F., [R] summarize
Weisberg, S., [R] boxcox, $[R]$ regress, $[R]$ regress postestimation
Weiss, J., [MV] mdsmat
Weiss, M., [D] ds, [D] functions, [G-3] by_option, [R] estimates table, [U] 13.12 References
Weisstein, E. W., [R] rocreg postestimation
Welch, B. L., [R] esize, [R] ttest
Welch, K. B., [ME] mixed, [ME] mixed postestimation
Weller, S. C., [MV] ca
Wellington, J. F., [R] qreg
Wells, K. B., $[R]$ lincom, $[R]$ mlogit, $[R]$ mprobit, $[R]$ mprobit postestimation, $[R]$ predictnl, [R] slogit
Welsch, R. E., [R] regress postestimation,
$[R]$ regress postestimation diagnostic plots, [U] 18.14 References
Welsh, A. H., [R] bootstrap
Welsh, D., [M-5] halton( )
Wernow, J. B., [D] destring
West, B. T., [ME] mixed, [ME] mixed postestimation, [SVY] survey, [SVY] estat, [SVY] subpopulation estimation
West, K. D., [R] glm, [R] gmm, [R] ivregress, [TS] newey, [TS] pperron, [XT] xtunitroot
West, S., [ST] epitab
West, S. G., [R] pcorr
Westfall, R. S., [M-5] optimize( )
Westlake, W. J., [R] pkequiv
Weyl, H. K. H., [M-5] svd()
Wheaton, B., [SEM] example 9
Whelton, P. K., [PSS] intro, [PSS] power repeated
White, H., [U] 20.21 Obtaining robust variance estimates

White, H. L., Jr., [P] _robust, [R] regress, [R] regress postestimation, $[R]$ rocreg, $[R]$ suest, [TS] newey, [TS] prais, [U] 20.25 References, [XT] xtivreg
White, I. R., [MI] intro substantive, [MI] intro,
[MI] mi estimate, [MI] mi estimate using,
[MI] mi impute, [MI] mi impute chained,
[MI] mi impute monotone, [MI] mi predict,
$[R]$ meta, $[R]$ simulate, $[S T]$ sts test
White, K. J., $[R]$ boxcox, $[R]$ regress postestimation time series
White, P. O., [I] Glossary, [MV] rotate,
[MV] rotatemat, [MV] Glossary
Whitehead, A., [XT] xtunitroot
Whitehouse, E., [R] inequality
Whitemore, G. A., [ST] stcox PH-assumption tests
Whitfield, J. W., $[\mathrm{R}]$ ranksum
Whiting, P., [ME] melogit, [ME] meoprobit, [ME] meqrlogit, $[R]$ roccomp, $[R]$ roctab
Whitney, D. R., [R] kwallis, $[\mathrm{R}]$ ranksum
Whitney-Saltiel, D. A., [ME] me, [ME] meglm, [ME] meologit, [ME] meoprobit, [XT] xtologit, [XT] xtoprobit
Whittaker, J. C., [D] functions, [MV] ca, [MV] factor, [MV] mca, [MV] pca
Wichern, D. W., [MV] canon, [MV] discrim, [MV] discrim estat, [MV] discrim Ida, [MV] discrim Ida postestimation, [MV] mvtest, [MV] mvtest correlations, [MV] mvtest covariances, [MV] mvtest means
Wichura, M. J., [D] functions, [D] functions
Wickramaratne, P. J., [PSS] intro
Widen, J. E., [R] rocreg, [R] rocreg postestimation, $[R]$ rocregplot
Wieand, S., [R] rocreg, [R] rocreg postestimation
Wiesner, R. H., [ST] stcrreg
Wiggins, V. L., [G-3] axis_choice_options, [ME] mixed, [R] regress postestimation, $[R]$ regress postestimation time series, [SEM] sem, [TS] arch, [TS] arima, [TS] sspace
Wilcox, D. W., [R] ivregress postestimation
Wilcox, R. R., [D] egen
Wilcoxon, F., [R] kwallis, [R] ranksum, [R] signrank, [ST] sts test
Wilde, J., [R] gmm
Wilk, M. B., $[\mathrm{R}]$ cumul, $[\mathrm{R}]$ diagnostic plots, $[\mathrm{R}]$ swilk
Wilkinson, J. H., [P] matrix symeigen
Wilkinson, L., [ST] sts
Wilks, D. S., [R] brier
Wilks, S. S., [MV] canon, [MV] hotelling, [MV] manova
Williams, B., [SVY] survey
Williams, B. K., [MV] discrim Ida
Williams, G. W., [PSS] intro
Williams, R., [R] glm, [R] margins, [R] marginsplot, $[R]$ ologit, $[R]$ oprobit, $[R]$ pcorr, $[R]$ stepwise, [U] 20.25 References
Williams, T. O., Jr., [SEM] example 2
Williams, W. T., [MV] cluster

Wilson, E. B., [MV] mvtest normality, [R] ci Wilson, M., [ME] me, [MV] rotate
Wilson, S. R., [R] bootstrap
Windmeijer, F., [R] gmm, [R] ivpoisson, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
Winer, B. J., [PSS] intro, [PSS] power repeated,
$[R]$ anova, $[R]$ contrast, $[R]$ loneway,
$[R]$ oneway, $[R]$ pwcompare
Winkelmann, R., [ME] menbreg
Winsten, C. B., [TS] prais
Winter, N. J. G., [G-2] graph twoway scatter,
[P] levelsof, [SVY] survey
Winters, P. R., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Wish, M., [MV] mds, [MV] mdslong, [MV] mdsmat
Wittes, J., [ST] stpower
Wolfe, F., [D] ds, [R] correlate, [R] spearman
Wolfe, R., [R] ologit, [R] oprobit, [R] tabulate twoway
Wolfinger, R. D., [ME] me
Wolfowitz, J., [TS] varwle
Wolfram, S., [ME] meglm postestimation,
[ME] meqrlogit postestimation, [ST] streg
Wolfson, C., [R] kappa
Wolk, A., [ST] epitab
Wolpin, K. I., [R] asmprobit
Wolter, K. M., [SVY] survey, [SVY] svy brr, [SVY] variance estimation
Wong, S. P., [R] icc
Wong, W. H., [MI] intro substantive, [MI] mi impute mvn
Wood, A. M., [MI] intro substantive, [MI] mi estimate, [MI] mi estimate using, [MI] mi impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}] \mathrm{mi}$ predict
Wood, F. S., [R] diagnostic plots
Woodard, D. E., [MV] manova, [R] contrast
Wooldridge, J. M., $[R]$ areg postestimation, $[R]$ gmm,
$[R]$ heckoprobit, $[R]$ intreg, $[R]$ ivpoisson,
$[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivregress postestimation, $[R]$ ivtobit, $[R]$ margins, $[R]$ margins, contrast, $[R]$ qreg, $[R]$ regress,
$[R]$ regress postestimation, $[R]$ regress postestimation time series, $[R]$ tobit, [SEM] estat ginvariant, [SEM] estat mindices, [SEM] estat scoretests, [SEM] methods and formulas for sem, [TE] etregress, [TE] teffects intro advanced, $[\mathrm{TE}]$ teffects aipw, $[\mathrm{TE}]$ teffects multivalued, [TE] teffects ra, [TS] arch, [TS] mgarch, [TS] mgarch dvech, [TS] prais, [XT] xt, [XT] xtcloglog, [XT] xtivreg,
[XT] xtlogit, [XT] xtologit, [XT] xtoprobit,
[XT] xtpoisson, [XT] xtprobit, [XT] xtreg
Woolf, B., [ST] epitab
Working, H., [R] roccomp, [R] rocfit, [R] roctab
Wretman, J., [SVY] variance estimation
Wright, D. B., [SEM] example 41g

Wright, J. H., [R] ivregress, [R] ivregress postestimation, [XT] xthtaylor
Wright, J. T., [R] binreg
Wright, J. T., Jr, [PSS] intro, [PSS] power repeated
Wright, P. G., [R] ivregress
Wu, C. F. J., [R] qreg, [SVY] svy bootstrap, [SVY] variance estimation
Wu, D.-M., [R] ivregress postestimation
Wu, N., [R] ivregress, [TS] arima, [TS] newey
Wu, P. X., [XT] xtregar
Wu, S., [XT] xtunitroot

## X

Xiao, T., [ST] stcox PH-assumption tests
Xie, Y., [R] logit, [R] probit
Xu, J., [R] cloglog, [R] logistic, [R] logit, [R] mlogit, [R] ologit, [R] oprobit, [R] probit

## Y

Yang, K., [MV] mds
Yang, M., [ME] me
Yang, Z., [R] poisson
Yar, M., [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters
Yates, F., [P] levelsof
Yates, J. F., [R] brier
Yee, T. W., [R] slogit
Yellott, J. I., Jr., [R] rologit
Yen, S., [ST] epitab
Yen, W. M., [MV] alpha
Yeo, D., [SVY] svy bootstrap, [SVY] variance estimation
Yogo, M., [R] ivregress, [R] ivregress postestimation, [XT] xthtaylor
Yoshioka, H., [R] logistic postestimation, [R] logit postestimation
Young, F. W., [MV] mds, [MV] mdslong, [MV] mdsmat
Young, G., [MV] mds, [MV] mdslong, [MV] mdsmat
Ypma, T. J., [M-5] optimize( )
Yu, J., [MV] mvtest, [MV] mvtest means
Yue, K., [SVY] svy bootstrap, [SVY] variance estimation
Yule, G. U., [MV] measure_option
Yun, M.-S., [R] logistic postestimation, $[\mathrm{R}]$ logit postestimation
Yung, W., [SVY] svy bootstrap, [SVY] variance estimation

Zavoina, W., [R] ologit
Zeger, S. L., [ME] me, [ME] meglm, [ME] mixed, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit,
[XT] xtnbreg, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit
Zeh, J., [D] egen
Zelen, M., [R] ttest
Zellner, A., [R] frontier, $[R]$ nlsur, $[R]$ reg3, $[R]$ sureg, [TS] prais, [XT] xtfrontier
Zelterman, D., $[\mathrm{R}]$ tabulate twoway
Zhang, Z., [SEM] example 42g
Zhao, H., [ME] mecloglog, [ME] melogit, [ME] meprobit
Zhao, L. P., [TE] teffects intro advanced, [XT] xtgee Zheng, X., [R] gllamm
Zimmerman, F., [R] regress
Zirkler, B., [MV] mvtest, [MV] mvtest normality
Zubin, J., [MV] measure_option
Zubkoff, M., [MV] alpha, [MV] factor, [MV] factor postestimation, $[R]$ lincom, $[R]$ mlogit,
$[R]$ mprobit, $[R]$ mprobit postestimation,
[R] predictnl, [R] slogit, [SEM] example 37 g
Zucchini, W., [R] rocreg
Zwiers, F. W., [R] brier
Zyphur, M. J., [SEM] example 42g

## Z

Zabell, S. L., [R] kwallis
Zakoian, J. M., [TS] arch
Zamora, M., [R] heckoprobit, $[R]$ heckprobit
Zappasodi, P., [MV] manova

## Subject index

## Symbols

! (not), see logical operators
$!=$ (not equal), see relational operators
$\alpha$, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
$\beta$, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
$\delta$, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
\& (and), see logical operators

* abbreviation character, see abbreviations
*, clear subcommand, [D] clear
* comment indicator, $[\mathrm{P}]$ comments
- abbreviation character, see abbreviations
-> operator, [M-2] struct
., class, [P] class
/* */ comment delimiter, [M-2] comments, $[\mathrm{P}]$ comments
// comment indicator, [M-2] comments, [P] comments
/// comment indicator, [P] comments
; delimiter, [P] \#delimit
$<$ (less than), see relational operators
<= (less than or equal), see relational operators
== (equality), see relational operators
$>$ (greater than), see relational operators
$>=$ (greater than or equal), see relational operators
? abbreviation characters, see abbreviations
| (or), see logical operators
~ (not), see logical operators
~ abbreviation character, see abbreviations
$\sim$ (not equal), see relational operators
$100 \%$ sample, [SVY] Glossary


## A

.a, .b, ..., .z, see missing values
Aalen-Nelson cumulative hazard, see Nelson-Aalen cumulative hazard
Abadie-Imbens robust standard errors, see robust, Abadie-Imbens standard errors
abbrev () function, [D] functions, [M-5] abbrev()
abbreviations, [U] 11.1.1 varlist, [U] 11.2 Abbreviation rules, [U] 11.4 varlists
unabbreviating command names, $[P]$ unabemd
unabbreviating variable list, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ unab
abond, estat subcommand, [XT] xtabond postestimation, [XT] xtdpd postestimation, [XT] xtdpdsys postestimation
aborting command execution, [U] 9 The Break key, [U] 10 Keyboard use
about command, $[\mathrm{R}]$ about
abs () function, [D] functions, [M-5] abs()
absolute value dissimilarity measure,
[MV] measure_option
absolute value function, see abs () function
absorption in regression, [R] areg
ac command, [TS] corrgram
accelerated failure-time model, [ST] streg, [ST] Glossary
acceptance region, [PSS] intro, [PSS] Glossary
Access, Microsoft, reading data from, [D] odbc, [U] 21.4 Transfer programs
accrual period, [ST] stpower exponential, [ST] stpower logrank, [ST] Glossary
accum, matrix subcommand, $[\mathrm{P}]$ matrix accum
$\operatorname{acos}()$ function, [D] functions, $[M-5] \sin ()$
$\operatorname{acosh}()$ function, [D] functions, [M-5] $\sin ()$
acplot, estat subcommand, [TS] estat acplot
acprplot command, $[R]$ regress postestimation diagnostic plots
actual
alpha, [PSS] Glossary, also see significance level, actual
power, see power, actual
sample size, see sample size, actual
significance level, see significance level, actual actuarial tables, see life tables
adaptopt () option, see gsem option adaptopts() add,
irf subcommand, [TS] irf add
mi subcommand, [MI] mi add
return subcommand, $[\mathrm{P}]$ return
add factor, [TS] Glossary
added lines, $y=x$, [G-2] graph twoway function
addedlinestyle, [G-4] addedlinestyle
added-variable plots, [G-2] graph other, [R] regress postestimation diagnostic plots
addgroup, ssd subcommand, [SEM] ssd
adding
fits, see fits, adding
lines, see lines, adding
text, see text, adding
addition across
observations, [D] egen
variables, [D] egen
addition operator, see arithmetic operators
addplot () option, [G-3] addplot_option
ADF, see asymptotic distribution free
adf, see sem option method()
adjoint matrix, [M-2] op_transpose, [M-5] conj( )
adjugate matrix, [M-2] op_transpose, [M-5] conj()
adjust, forecast subcommand, [TS] forecast adjust adjusted

Kaplan-Meier survivor function, [ST] sts
margins, $[R]$ margins, $[R]$ marginsplot
means, $[R]$ contrast, [ $R$ ] margins, [ $R$ ] marginsplot
partial residual plot, $[\mathrm{R}]$ regress postestimation
diagnostic plots
administrative censoring, [ST] Glossary
ado
command, $[R]$ net
describe command, [R] net
dir command, $[R]$ net
uninstall command, $[R]$ net
. ado file, [U] 11.6 Filenaming conventions
ado, clear subcommand, [D] clear
ado, view subcommand, [R] view
ado_d, view subcommand, $[R]$ view
ado-files, $[\mathrm{M}-1]$ ado, $[\mathrm{P}]$ sysdir, $[\mathrm{P}]$ version,
[U] 3.5 The Stata Journal, [U] 17 Ado-files,
[U] 18.11 Ado-files
adding comments to, $[\mathrm{P}]$ comments
debugging, $[\mathrm{P}]$ trace
downloading, see files, downloading
editing, $[R]$ doedit
installing, [R] net, [R] sj, [R] ssc, [U] 17.6 How do I install an addition?
location of, [R] which, [U] 17.5 Where does Stata look for ado-files?
long lines, [P] \#delimit, [U] 18.11.2 Comments and long lines in ado-files
official, $[\mathrm{R}]$ update, $[\mathrm{U}] 28$ Using the Internet to keep up to date
searching for, [R] search, [R] ssc
updating user-written, [R] adoupdate
ado-path, [M-5] adosubdir( )
adopath, $[\mathrm{P}]$ sysdir, [U] 17.5 Where does Stata look for ado-files?

+ command, [P] sysdir
++ command, [P] sysdir
- command, [P] sysdir
adosize, set subcommand, [P] sysdir, [R] set, [U] 18.11 Ado-files
adosubdir macro extended function, $[\mathrm{P}]$ macro
adosubdir() function, [M-5] adosubdir()
adoupdate command, $[\mathrm{R}]$ adoupdate
AFT, see accelerated failure-time model
agglomerative hierarchical clustering methods, [MV] cluster, [MV] clustermat, [MV] cluster linkage, [MV] Glossary
aggregate
functions, [D] egen
statistics, dataset of, [D] collapse
agreement, interrater, [R] kappa
AIC, see Akaike information criterion
AIPW, see augmented inverse-probability weighting aipw, teffects subcommand, [TE] teffects aipw Akaike information criterion, $[\mathrm{R}]$ BIC note, $[\mathrm{R}]$ estat, $[R]$ estat ic, $[R]$ estimates stats, $[R]$ glm, [R] lrtest, [SEM] estat gof, [SEM] example 4, [SEM] methods and formulas for sem, [ST] streg
algebraic expressions, functions, and operators,
[P] matrix define, [U] 13 Functions and expressions
alignment of text, [G-3] textbox_options
alignmentstyle, [G-4] alignmentstyle
_all, [U] 11.1.1 varlist
all macro extended function, $[\mathrm{P}]$ macro
all () function, [M-5] all()
all, clear subcommand, [D] clear
all, update subcommand, $[\mathrm{R}]$ update
allmissing option, see sem option allmissing
allocation ratio, [PSS] intro, [PSS] power twomeans,
[PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] unbalanced designs, [PSS] Glossary
allof () function, [M-5] all()
alpha, see $\alpha$
alpha coefficient, Cronbach's, [MV] alpha
alpha command, [MV] alpha
alphabetizing
observations, [D] gsort, [D] sort
variable names, [D] order
variables, [D] sort
alphanumeric variables, see string variables, parsing, see string variables
alternative
correlation, [PSS] intro, [PSS] power, [PSS] power onecorrelation
hypothesis, see null hypothesis and alternative hypothesis
mean, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] unbalanced designs
mean difference, [PSS] intro, [PSS] power, [PSS] power pairedmeans
parameter, see alternative value
proportion, [PSS] intro, [PSS] power, [PSS] power oneproportion
scenarios, [TS] forecast, [TS] forecast adjust, [TS] forecast clear, [TS] forecast coefvector,
[TS] forecast create, [TS] forecast describe,
[TS] forecast drop, [TS] forecast estimates,
[TS] forecast exogenous, [TS] forecast identity, [TS] forecast list, [TS] forecast query, [TS] forecast solve
space, [PSS] intro
alternative, continued
standard deviation, [PSS] intro, [PSS] power, [PSS] power onevariance
value, [PSS] Glossary, also see postulated value variance, [PSS] intro, [PSS] power, [PSS] power onevariance
alternative-specific
conditional logit (McFadden's choice) model, [R] asclogit
multinomial probit regression, $[\mathrm{R}]$ asmprobit
rank-ordered probit regression, [R] asroprobit
alternatives, estat subcommand, $[R]$ asclogit postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation, [R] nlogit postestimation
ameans command, [R] ameans
analysis of covariance, $[R]$ anova
analysis of variance, [PSS] power, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary, [R] anova, $[R]$ contrast, $[R]$ icc, $[R]$ loneway, $[R]$ oneway
Kruskal-Wallis, [R] kwallis
plots, [R] marginsplot
repeated measures, $[\mathrm{PSS}]$ power repeated, $[\mathrm{R}]$ anova
analysis step, [MI] intro substantive, [MI] mi estimate, also see estimation
analysis time, [ST] Glossary
analysis-of-variance test of normality, $[\mathrm{R}]$ swilk
analytic weight, [U] $\mathbf{1 1 . 1 . 6}$ weight,
[U] 20.23.2 Analytic weights
anchoring, see constraints, normalization
ANCOVA, see analysis of covariance
and operator, [U] 13.2.4 Logical operators
Anderberg coefficient similarity measure, [MV] measure_option
angle of text, [G-4] anglestyle
anglestyle, [G-4] anglestyle
angular similarity measure, [MV] measure _option
ANOVA, see analysis of variance
anova command, $[R]$ anova, $[R]$ anova postestimation
anova, estat subcommand, [MV] discrim lda postestimation
Anscombe residual, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation
anti, estat subcommand, [MV] factor postestimation, [MV] pca postestimation
anti-image
correlation matrix, [MV] factor postestimation, [MV] pca postestimation, [MV] Glossary
covariance matrix, [MV] factor postestimation, [MV] pca postestimation, [MV] Glossary
any () function, [M-5] all()
anycount (), egen function, [D] egen
anymatch(), egen function, [D] egen
anyof() function, [M-5] all()
anyvalue(), egen function, [D] egen
A-PARCH, see asymmetric power autoregressive conditional heteroskedasticity
append command, [D] append, [U] 22 Combining datasets
_append variable, [D] append
append, mi subcommand, $[\mathrm{MI}]$ mi append
appending data, [D] append, [MI] mi append, [U] 22 Combining datasets
appending rows and columns to matrix, $[\mathrm{P}]$ matrix define
apply recording, [G-2] graph play
approximating Euclidean distances, [MV] mds postestimation
AR, see autoregressive
arbitrary pattern of missing values, [MI] mi impute chained, [MI] mi impute mvn, [MI] Glossary, also see pattern of missingness
arccosine, arcsine, and arctangent functions, [D] functions
ARCH, see autoregressive conditional heteroskedasticity arch command, [TS] arch, [TS] arch postestimation
ARCH effects, testing for, $[\mathrm{R}]$ regress postestimation time series
archlm, estat subcommand, $[R]$ regress postestimation time series
area under the curve, $[R]$ Iroc, also see pharmacokinetic data, also see receiver operating characteristic analysis
area, graph twoway subcommand, [G-2] graph twoway area
areas, [G-4] colorstyle, also see fill, areas, dimming and brightening, also see fill, color, setting
areastyle, [G-4] areastyle
areg command, $[R]$ areg, $[R]$ areg postestimation
Arellano-Bond, [XT] xtdpd, [XT] xtdpdsys
estimator, $[\mathrm{XT}]$ xtabond, [XT] Glossary
Arellano-Bover estimator, [XT] xtdpd, [XT] xtdpdsys
ARFIMA, see autoregressive fractionally integrated moving-average model
arfima command, [TS] arfima, [TS] arfima postestimation
$\arg ()$ function, $[\mathrm{M}-5] \sin ()$
args command, $[\mathrm{P}]$ syntax
$\operatorname{args}()$ function, [M-5] args()
arguments,
program, [M-2] declarations, [M-6] Glossary
values returned in, [M-1] returnedargs
varying number, [M-2] optargs, [M-5] args( )
ARIMA, see autoregressive integrated moving-average model
arima command, [TS] arima, [TS] arima postestimation
arithmetic operators, [M-2] op_arith, [M-2] op_colon, $[\mathrm{P}]$ matrix define, $[\mathrm{U}]$ 13.2.1 Arithmetic operators
ARMA, see autoregressive moving average

ARMAX, see autoregressive moving average with exogenous inputs
aroots, estat subcommand, [TS] estat aroots array, [M-6] Glossary
arrays, class, $[\mathrm{P}]$ class
.Arrdropall built-in class modifier, [P] class
.Arrdropel built-in class modifier, [P] class
.arrindexof built-in class function, $[\mathrm{P}]$ class
.arrnels built-in class function, [P] class arrows, [G-2] graph twoway pcarrow
.Arrpop built-in class modifier, $[\mathrm{P}]$ class .Arrpush built-in class modifier, $[\mathrm{P}]$ class as error, display directive, $[\mathrm{P}]$ display as input, display directive, $[\mathrm{P}]$ display as result, display directive, $[\mathrm{P}]$ display as text, display directive, $[\mathrm{P}]$ display as txt, display directive, [P] display asarray() function, [M-5] asarray() asarray_contains() function, [M-5] asarray() asarray_contents() function, [M-5] asarray() asarray_create() function, [M-5] asarray() asarray_elements() function, [M-5] asarray() asarray_first() function, [M-5] asarray() asarray_key () function, [M-5] asarray() asarray_keys() function, [M-5] asarray() asarray_next() function, [M-5] asarray() asarray_notfound() function, [M-5] asarray() asarray_remove() function, [M-5] asarray () ascategory() option, [G-2] graph bar, [G-2] graph box, [G-2] graph dot
ASCII codes, [M-5] ascii()
ASCII text files, writing and reading, $[\mathrm{P}]$ file
ascii() function, [M-5] ascii()
asclogit command, $[R]$ asclogit, $[R]$ asclogit postestimation
asin() function, [D] functions, [M-5] $\sin ()$
$\operatorname{asinh}()$ function, [D] functions, [M-5] $\sin ()$
asis print color mapping, [G-2] set printcolor
_asis, display directive, $[\mathrm{P}]$ display
asmprobit command, $[R]$ asmprobit, $[R]$ asmprobit postestimation
aspect ratio, [G-3] aspect_option
changing, [G-2] graph display
controlling, [G-2] graph combine
asroprobit command, $[R]$ asroprobit, $[R]$ asroprobit postestimation
assert command, [D] assert
assert () function, [M-5] assert()
asserteq() function, [M-5] assert()
assignment operator, [M-2] op_assignment
assignment, class, $[\mathrm{P}]$ class
association test, $[R]$ correlate, $[R]$ spearman,
$[R]$ tabulate twoway, $[R]$ tetrachoric,
[ST] epitab, [SVY] svy: tabulate twoway
association, measures of, $[R]$ tabulate twoway
associative arrays, [M-5] asarray ()
asymmetric power autoregressive conditional heteroskedasticity, [TS] arch
asymmetry, see skewness
asymptotic distribution free, [SEM] intro 4, [SEM] methods and formulas for sem, [SEM] Glossary
asyvars option, [G-2] graph bar, [G-2] graph box, [G-2] graph dot
at risk, [ST] Glossary
$\operatorname{atan}()$ function, [D] functions, $[\mathrm{M}-5] \sin ()$
atan2() function, [D] functions, [M-5] $\sin ()$
atanh() function, [D] functions, [M-5] $\sin ()$
ATE, see average treatment effect
ATE and ATET, comparing, [TE] teffects intro advanced, also see average treatment effect on treated, also see average treatment effect
ATET, see average treatment effect on treated at-risk table, [ST] sts graph
attributable fraction, [ST] epitab, [ST] Glossary
attributable proportion, [ST] epitab
AUC, also see area under the curve
augmented
component-plus-residual plot, $[R]$ regress postestimation diagnostic plots
inverse-probability weighting, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] Glossary
partial residual plot, $[\mathrm{R}]$ regress postestimation diagnostic plots
regression, see imputation, perfect prediction
Author Support Program, [U] 3.8.2 For authors
auto.dta, [U] 1.2.2 Example datasets
autocode() function, [D] functions,
[U] 25.1.2 Converting continuous variables to categorical variables
autocorrelation, $[\mathrm{R}]$ regress postestimation time series, [TS] arch, [TS] arfima, [TS] arima, [TS] corrgram, [TS] dfactor, [TS] estat acplot, [TS] newey, [TS] prais, [TS] psdensity, [TS] sspace, [TS] ucm, [TS] var, [TS] varlmar, [TS] Glossary, also see HAC variance estimate
dynamic model, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
residual, [XT] xtgee, [XT] xtgls, [XT] xtpese, [XT] xtregar
test, [XT] xtabond, [XT] xtabond postestimation, [XT] xtdpd postestimation, [XT] xtdpdsys, [XT] xtdpdsys postestimation
autocovariance, [TS] arfima, [TS] arima,
[TS] corrgram, [TS] estat acplot, [TS] psdensity automatic print color mapping, [G-2] set printcolor Automation, $[\mathrm{P}]$ automation
autoregressive, [TS] arch, [TS] arfima, [TS] arima, [TS] dfactor, [TS] sspace, [TS] ucm
conditional heteroskedasticity effects, [TS] arch model, [TS] arch, [TS] arch postestimation,
[TS] Glossary, also see multivariate GARCH test, $[\mathrm{R}]$ regress postestimation time series
autoregressive, continued
fractionally integrated moving-average model,
[TS] arfima, [TS] arfima postestimation,
[TS] estat acplot, [TS] psdensity, [TS] Glossary
integrated moving-average model, [TS] arima,
[TS] arima postestimation, [TS] estat acplot,
[TS] estat aroots, [TS] psdensity, [TS] Glossary
model, [TS] dfactor, [TS] estat acplot,
[TS] psdensity, [TS] sspace, [TS] ucm
moving average, [TS] arch, [TS] arfima,
[TS] arima, [TS] sspace, [TS] ucm,
[TS] Glossary
moving average with exogenous inputs, [TS] arfima,
[TS] arima, [TS] dfactor, [TS] sspace,
[TS] ucm, [TS] Glossary
process, [TS] Glossary, [XT] xtabond, [XT] xtdpd,
[XT] xtdpdsys, [XT] Glossary
autotabgraphs, set subcommand, $[R]$ set
available area, [G-3] region_options
available-case analysis, [MI] intro substantive
average
marginal effects, $[R]$ margins, $[R]$ marginsplot partial effects (APEs), $[R]$ margins, $[R]$ marginsplot predictions, [R] margins, [R] marginsplot RVI, [MI] mi estimate, [MI] Glossary treatment effect, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects multivalued, [TE] teffects nnmatch, [TE] teffects psmatch, [TE] teffects ra,
[TE] Glossary
treatment effect on treated, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects ipw,
[TE] teffects ipwra, [TE] teffects multivalued,
[TE] teffects nnmatch, [TE] teffects psmatch,
[TE] teffects ra, [TE] Glossary
averagelinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
average-linkage clustering, [MV] cluster,
[MV] clustermat, [MV] cluster linkage,
[MV] Glossary
averages, see means
avplot and avplots commands, $[\mathrm{R}]$ regress
postestimation diagnostic plots
[aweight $=\exp$ ] modifier, [U] 11.1.6 weight,
[U] 20.23.2 Analytic weights
axes
multiple scales, [G-3] axis_choice_options
setting offset between and plot region,
[G-3] region_options
suppressing, [G-3] axis_scale_options
axis
labeling, [G-3] axis_label_options,
[G-3] axis_options
line, look of, [G-3] axis_scale_options,
[G-3] cat_axis_label_options,
[G-3] cat_axis_line_options
log, [G-3] axis_scale_options
axis, continued
overall look, [G-4] axisstyle
range, [G-3] axis_scale_options
reversed, [G-3] axis_scale_options
scale, [G-3] axis_options,
[G-3] axis_scale_options
selection of, [G-3] axis_choice_options
suppressing, [G-3] axis_scale_options
ticking, [G-3] axis_label_options
titling, [G-3] axis_options,
[G-3] axis_title_options
suppressing, [G-3] axis_title_options
axisstyle, [G-4] axisstyle

## B

_b [], [U] 13.5 Accessing coefficients and standard errors
$b()$ function, $[D]$ functions
b1title() option, [G-3] title_options
b2title() option, [G-3] title_options
backed up message, $[\mathrm{R}]$ maximize
background color, [G-4] schemes intro
setting, [G-3] region_options
balanced
data, [XT] Glossary
design, [PSS] intro, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
repeated replication, [SVY] brr_options, [SVY] svy brr, [SVY] variance estimation, [SVY] Glossary
repeated replication standard errors, [SVY] svy brr, [SVY] variance estimation
band-pass filters, [TS] tsfilter bk, [TS] tsfilter cf, [TS] Glossary
bar
graph subcommand, [G-2] graph bar
graph twoway subcommand, [G-2] graph twoway bar
bar charts, [G-2] graph bar
barbsize option, [G-2] graph twoway pcarrow
barlook options, [G-3] barlook_options
bars
labeling, [G-3] blabel_option
look of, [G-3] barlook_options
Bartlett scoring, [MV] factor postestimation
Bartlett's
bands, [TS] corrgram
periodogram test, [TS] wntestb
test for equal variances, $[R]$ oneway
base conversion, [M-5] inbase( )
BASE directory, [P] sysdir, [U] 17.5 Where does Stata look for ado-files?
base plottypes, [G-3] advanced_options
base, fvset subcommand, [R] fvset
baseline, [ST] Glossary
baseline comparisons, [SEM] estat gof,
[SEM] example 4
baseline dataset, [ST] stbase
baseline hazard and survivor functions, [ST] stcox,
[ST] stcox PH-assumption tests, [ST] stcrreg
baseline model, [SEM] estat gof, [SEM] example 4,
[SEM] methods and formulas for sem,
[SEM] Glossary
baseline suboption, [G-4] alignmentstyle
baseopts option, see sem option baseopts ()
basis, orthonormal, $[\mathrm{P}]$ matrix svd
Battese-Coelli parameterization, [XT] xtfrontier
Baxter-King filter, [TS] tsfilter, [TS] tsfilter bk
Bayes' theorem, [MV] Glossary
Bayesian concepts, [MI] intro substantive
Bayesian information criterion, [R] BIC note, [R] estat, $[R]$ estat ic, $[R]$ estimates stats, $[R]$ glm, [R] Irtest, [SEM] estat gof, [SEM] example 4, [SEM] methods and formulas for sem
bcal
check command, [D] bcal
create command, [D] bcal
describe command, [D] bcal
dir command, [D] bcal
load command, [D] bcal
bcskew0 command, [R] Inskew0
Bentler-Raykov squared multiple-correlation coefficient, [SEM] estat eqgof
Bentler-Weeks matrices, [SEM] intro 7, [SEM] estat
framework, [SEM] example 11, [SEM] Glossary
Bentler's invariant pattern simplicity rotation,
[MV] rotate, [MV] rotatemat, [MV] Glossary
Berndt-Hall-Hall-Hausman algorithm,
[M-5] moptimize( ), [M-5] optimize( ), [R] ml
beta, see $\beta$
coefficients, $[\mathrm{R}]$ regress
density,
central, [D] functions
noncentral, [D] functions
distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions
inverse cumulative noncentral, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions
function
complement to incomplete, [D] functions
incomplete, [D] functions, [M-5] normal( )
betaden() function, [D] functions, [M-5] normal( )
between estimators, [XT] xtivreg, [XT] xtreg,
[XT] Glossary
between matrix, [MV] Glossary
between-cell means and variances, $[\mathrm{XT}]$ xtdescribe,
between-group variance, [PSS] power oneway
between-imputation variability, [MI] mi estimate, [MI] mi predict
between-subjects
design, [PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, [PSS] Glossary
factor, [PSS] power repeated, [PSS] Glossary
variance, [PSS] power repeated
BFGS algorithm, see Broyden-Fletcher-GoldfarbShanno algorithm
bgodfrey, estat subcommand, [R] regress postestimation time series
BHHH algorithm, see Berndt-Hall-Hall-Hausman algorithm
bias corrected and accelerated, $[\mathrm{R}]$ bootstrap postestimation, [R] bstat
BIC, see Bayesian information criterion
Bickenböller test statistic, [R] symmetry
bin() option, [G-2] graph twoway histogram
binary files, writing and reading, $[\mathrm{P}]$ file
binary I/O, [M-5] bufio( )
binary operator, [M-6] Glossary
binary outcome model, [PSS] intro, [PSS] GUI,
[PSS] power, [PSS] power oneproportion,
[PSS] power twoproportions, [PSS] power pairedproportions, [SEM] intro 5,
[SEM] example 27 g , [SEM] example 28g,
[SEM] example 29g, [SEM] example 30g,
[SEM] example 31g, [SEM] example 32g,
[SEM] example 33g, [SEM] example 34 g , also see outcomes, binary
binary variable imputation, see imputation, binary
binomial
distribution,
confidence intervals, $[\mathrm{R}]$ ci
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
reverse cumulative, [D] functions
family regression, $[\mathrm{R}]$ binreg
probability mass function, [D] functions
probability test, [R] bitest
test, [PSS] power oneproportion, [PSS] Glossary
binomial() function, [D] functions, [M-5] normal()
binomialp() function, [D] functions, [M-5] normal()
binomialtail() function, [D] functions,
[M-5] normal( )
binormal() function, [D] functions, [M-5] normal()
binreg command, [R] binreg, [R] binreg
postestimation
bioequivalence test, $[\mathrm{R}] \mathbf{p k},[\mathrm{R}]$ pkequiv
biopharmaceutical data, see pharmacokinetic data
biplot, [MV] biplot, [MV] ca postestimation plots, [MV] Glossary
biplot command, [MV] biplot
biprobit command, [R] biprobit, [R] biprobit postestimation
biquartimax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
biquartimin rotation, $[\mathrm{MV}]$ rotate, $[\mathrm{MV}]$ rotatemat, [MV] Glossary
bisection method, see iteration, bisection method bitest and bitesti commands, [R] bitest bitmap, [G-3] png_options, [G-3] tif_options bivariate normal function, [D] functions
bivariate probit regression, [R] biprobit, [SVY] svy estimation
biweight kernel function, $[R]$ kdensity, [R] lpoly, [R] qreg, [TE] teffects overlap
biweight regression estimates, $[\mathrm{R}]$ rreg
biyearly() function, [U] 25 Working with categorical data and factor variables
bk, tsfilter subcommand, [TS] tsfilter bk
blanks, removing from strings, [D] functions
block diagonal covariance, [MV] mvtest covariances
block diagonal matrix, [M-5] blockdiag( )
block exogeneity, [TS] vargranger
blockdiag() function, [M-5] blockdiag()
blog, see Stata Blog
blogit command, $[R]$ glogit, [R] glogit postestimation
Blundell-Bond estimator, [XT] xtdpd, [XT] xtdpdsys
BLUPs, [ME] me, [ME] mixed, [ME] mixed postestimation, [ME] Glossary
bofd() function, [D] datetime business calendars, [D] functions, [M-5] date( )
bold font, [G-4] text
Bonferroni's multiple-comparison adjustment, see multiple comparisons, Bonferroni's method
bootstrap, [SEM] Glossary
estimation, [SVY] bootstrap_options, [SVY] svy bootstrap, [SVY] variance estimation, [SVY] Glossary
sampling and estimation, $[\mathrm{P}]$ postfile, $[\mathrm{R}]$ bootstrap, $[R]$ bsample, $[R]$ bstat, $[R]$ qreg, $[R]$ rocreg, $[R]$ simulate
standard errors, [R] vee_option, [SVY] svy bootstrap, [SVY] variance estimation, [XT] vce_options
bootstrap prefix command, $[\mathrm{R}]$ bootstrap, $[R]$ bootstrap postestimation
bootstrap, estat subcommand, [R] bootstrap postestimation
bootstrap_options, [SVY] bootstrap_options
border around plot region, suppressing,
[G-3] region_options
borders
misplacement of, [G-3] added_text_options
suppressing, [G-4] linestyle
suppressing around plot region, [G-3] region_options
Boston College archive, see Statistical Software Components archive
bottom suboption, [G-4] alignmentstyle
boundary kernel, [ST] Glossary
boundary solution, [MV] Glossary

Box-Cox
power transformations, $[\mathrm{R}]$ Inskew0
regression, $[\mathrm{R}]$ boxcox
Box $M$ test, [MV] mvtest covariances
box plots, [G-2] graph box
box, graph subcommand, [G-2] graph box
boxcox command, [R] boxcox, [R] boxcox postestimation
Box's conservative epsilon, $[R]$ anova
bprobit command, [R] glogit, [R] glogit postestimation
break, [M-2] break
break command, [P] break
Break key, [U] 9 The Break key, [U] 16.1.4 Error handling in do-files
interception, $[\mathrm{P}]$ break, $[\mathrm{P}]$ capture
processing, [M-5] setbreakintr()
breakkey () function, [M-5] setbreakintr()
breakkeyreset () function, [M-5] setbreakintr()
Breitung test, [XT] xtunitroot
breitung, xtunitroot subcommand, [XT] xtunitroot
Breusch-Godfrey test, [R] regress postestimation time series
Breusch-Pagan Lagrange multiplier test, [XT] xtreg postestimation
Breusch-Pagan test, [MV] mvreg, [R] sureg
Breusch-Pagan/Cook-Weisberg test for heteroskedasticity, $[\mathrm{R}]$ regress postestimation
brier command, [R] brier
Brier score decomposition, [R] brier
broad type, [M-6] Glossary
browse command, [D] edit
browse, view subcommand, $[R]$ view
Broyden-Fletcher-Goldfarb-Shanno algorithm,
[M-5] moptimize( ), [M-5] optimize( ), [R] ml
Broyden-Powell method, [M-5] solvenl()
BRR, see balanced repeated replication
brr_options, [SVY] brr_options
bsample command, $[\mathrm{R}]$ bsample
bsqreg command, $[R]$ qreg, $[R]$ qreg postestimation
bstat command, [R] bstat
bstyle() option, [G-3] barlook_options
bufbfmtisnum() function, [M-5] bufio()
bufbfmtlen() function, [M-5] bufio()
bufbyteorder() function, [M-5] bufio()
buffered I/O, [M-5] bufio( )
bufget () function, [M-5] bufio()
bufio() function, [M-5] bufio()
bufmissingvalue() function, [M-5] bufio()
bufput () function, [M-5] bufio()
build, ssd subcommand, [SEM] ssd
Builder (GUI), [SEM] Glossary
building a graph, [G-1] graph intro
built-in variables, [U] 11.3 Naming conventions,
[U] 13.4 System variables (_variables)
built-in, class, $[\mathrm{P}]$ class
bullet symbol, [G-4] text
burn-between period, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}]$ mi impute mvn, [MI] Glossary burn-in period, $[\mathrm{MI}]$ mi impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}]$ mi impute mvn, [MI] Glossary business calendars, [D] bcal, [D] datetime business calendars, [D] datetime business calendars creation, $[\mathrm{M}-5]$ date( ), [TS] intro, [U] 24.7 Business dates and calendars business dates, see business calendars Butterworth filter, [TS] tsfilter, [TS] tsfilter bw bw, tsfilter subcommand, [TS] tsfilter bw by varlist : prefix, [D] by, [P] byable, [U] 11.5 by varlist: construct, [U] 13.7 Explicit subscripting, [U] 27.2 The by construct
_by () function, [P] byable
by () option, [G-2] graph bar, [G-3] by_option
by (), use of legends with, [G-3] by_option, [G-3] clegend_option, [G-3] legend_options byable(), [P] byable by-graphs, look of, [G-4] bystyle
by-groups, [D] by, [D] statsby, [P] byable, [U] 11.5 by varlist: construct
_byindex() function, [P] byable _bylastcall() function, [P] byable _byn1() function, [P] byable _byn2() function, [P] byable bysort varlist: prefix, [D] by bystyle, [G-4] bystyle byte, [D] data types byte (storage type), [U] 12.2.2 Numeric storage types byteorder() function, [D] functions, [M-5] byteorder()

## C

C() function, [M-5] C()
c() function, [M-5] c()
c() pseudofunction, [D] functions
c (adopath) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ sysdir
c (adosize) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ sysdir
c (ALPHA) c-class value, $[\mathrm{P}]$ creturn
c (alpha) c-class value, $[\mathrm{P}]$ creturn
c (autotabgraphs) c-class value, $[\mathrm{P}]$ creturn
$c$ (bit) c-class value, $[\mathrm{P}]$ creturn
c (born_date) c-class value, $[\mathrm{P}]$ creturn
c (byteorder) c-class value, $[\mathrm{P}]$ creturn
c (cformat) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{R}]$ set cformat
$c$ (changed) c-class value, $[\mathrm{P}]$ creturn
$c$ (charset) c-class value, $[\mathrm{P}]$ creturn
c (checksum) c-class value, $[\mathrm{D}]$ checksum, $[\mathrm{P}]$ creturn
c (cmdlen) c-class value, $[\mathrm{P}]$ creturn
c (coeftabresults) c-class value, $[\mathrm{P}]$ creturn
$c$ (console) c-class value, $[\mathrm{P}]$ creturn
c (copycolor) c-class value, $[\mathrm{P}]$ creturn $c$ (current_date) c-class value, $[\mathrm{P}]$ creturn
c (current_time) c-class value, $[\mathrm{P}]$ creturn
c (dirsep) c-class value, [P] creturn
c (dockable) c-class value, $[\mathrm{P}]$ creturn
c (dockingguides) c-class value, $[\mathrm{P}]$ creturn c (doublebuffer) c-class value, $[\mathrm{P}]$ creturn
$c(d p)$ c-class value, $[\mathrm{D}]$ format, $[\mathrm{P}]$ creturn
c (emptycells) c-class value, $[\mathrm{P}]$ creturn
c (eolchar) c-class value, $[\mathrm{P}]$ creturn
c (epsdouble) c-class value, $[\mathrm{P}]$ creturn
$\mathrm{c}($ epsfloat) c-class value, [P] creturn
c (eqlen) c-class value, $[\mathrm{P}]$ creturn
$c$ (fastscroll) c-class value, $[P]$ creturn
c (filedate) c-class value, $[\mathrm{P}]$ creturn
$\mathrm{c}(\mathrm{filename})$ c-class value, $[\mathrm{P}]$ creturn
$c$ (flavor) c-class value, $[\mathrm{P}]$ creturn
$c$ (fvlabel) c-class value, $[\mathrm{P}]$ creturn
$c$ (fvwrap) c-class value, $[\mathrm{P}]$ creturn
c (fvwrapon) c-class value, [P] creturn
c (graphics) c-class value, $[\mathrm{P}]$ creturn
c (haverdir) c-class value, $[\mathrm{P}]$ creturn
c (hostname) c-class value, $[\mathrm{P}]$ creturn
c (httpproxy) c-class value, $[\mathrm{P}]$ creturn
c (httpproxyauth) c-class value, $[\mathrm{P}]$ creturn
c (httpproxyhost) c-class value, $[\mathrm{P}]$ creturn
c (httpproxyport) c-class value, $[\mathrm{P}]$ creturn
c (httpproxypw) c-class value, $[\mathrm{P}]$ creturn
c (httpproxyuser) c-class value, $[\mathrm{P}]$ creturn
$c$ (include_bitmap) c-class value, $[\mathrm{P}]$ creturn
$\mathrm{c}(\mathrm{k})$ c-class value, $[\mathrm{P}]$ creturn
c(level) c-class value, $[\mathrm{P}]$ creturn
c (linegap) c-class value, $[\mathrm{P}]$ creturn
c (linesize) c-class value, $[\mathrm{P}]$ creturn
c (locksplitters) c-class value, $[\mathrm{P}]$ creturn
c (logtype) c-class value, $[\mathrm{P}]$ creturn
c (lstretch) c-class value, [P] creturn
c (machine_type) c-class value, $[\mathrm{P}]$ creturn
c (macrolen) c-class value, $[\mathrm{P}]$ creturn
c (matacache) c-class value, $[\mathrm{P}]$ creturn
c (matafavor) c-class value, $[\mathrm{P}]$ creturn
c (matalibs) c-class value, $[\mathrm{P}]$ creturn
c (matalnum) c-class value, $[\mathrm{P}]$ creturn
c (matamofirst) c-class value, $[\mathrm{P}]$ creturn
c (mataoptimize) c-class value, $[\mathrm{P}]$ creturn
$c$ (matastrict) c-class value, $[\mathrm{P}]$ creturn
c (matsize) c-class value, $[\mathrm{P}]$ creturn
c (maxbyte) c-class value, $[\mathrm{P}]$ creturn
c (max_cmdlen) c-class value, $[\mathrm{P}]$ creturn
c (maxdb) c-class value, $[\mathrm{P}]$ creturn
c (maxdouble) c-class value, $[\mathrm{P}]$ creturn
c (maxfloat) c-class value, $[\mathrm{P}]$ creturn
$c$ (maxint) c-class value, $[\mathrm{P}]$ creturn
c (maxiter) c-class value, $[\mathrm{P}]$ creturn
$c$ (max_k_theory) c-class value, [P] creturn
c (maxlong) c-class value, $[\mathrm{P}]$ creturn
c (max_macrolen) c-class value, $[\mathrm{P}]$ creturn
c (max_matsize) c-class value, $[\mathrm{P}]$ creturn
c (max_memory) c-class value, [D] memory, [P] creturn
c(max_N_theory) c-class value, $[\mathrm{P}]$ creturn
$c$ (maxstrlvarlen) c-class value, $[\mathrm{P}]$ creturn
c (maxstrvarlen) c-class value, $[\mathrm{P}]$ creturn
$c$ (maxvar) c-class value, $[\mathrm{D}]$ memory, $[\mathrm{P}]$ creturn
c (maxvlabellen) c-class value, $[\mathrm{P}]$ creturn
c (max_width_theory) c-class value, [P] creturn
c (memory) c-class value, $[\mathrm{P}]$ creturn
c (minbyte) c-class value, $[\mathrm{P}]$ creturn
c (mindouble) c-class value, $[\mathrm{P}]$ creturn
c (minfloat) c-class value, $[\mathrm{P}]$ creturn
c (minint) c-class value, $[\mathrm{P}]$ creturn
c (minlong) c-class value, $[\mathrm{P}]$ creturn
c (min_matsize) c-class value, $[\mathrm{P}]$ creturn
$c$ (min_memory) c-class value, [D] memory,
$[\mathrm{P}]$ creturn
$c$ (mode) c-class value, $[P]$ creturn
$c$ (Mons) c-class value, $[P]$ creturn
$c$ (Months) c-class value, $[\mathrm{P}]$ creturn
$c$ (more) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ more
c (MP) c-class value, $[P]$ creturn
$c(N)$ c-class value, $[P]$ creturn
c (namelen) c-class value, $[\mathrm{P}]$ creturn
$c$ (niceness) c-class value, $[\mathrm{D}]$ memory, $[\mathrm{P}]$ creturn
$c$ (noisily) c-class value, $[P]$ creturn
$c$ (notifyuser) c-class value, $[\mathrm{P}]$ creturn
$c$ (odbcmgr) c-class value, $[\mathrm{P}]$ creturn
$c$ (os) c-class value, $[P]$ creturn
$c$ (osdtl) c-class value, $[\mathrm{P}]$ creturn
$c$ (pagesize) c-class value, $[\mathrm{P}]$ creturn
$c$ (pformat) c-class value, $[P]$ creturn, $[\mathrm{R}]$ set cformat
$c$ (pi) c-class value, $[\mathrm{P}]$ creturn
$c$ (pinnable) c-class value, $[P]$ creturn
$c$ (playsnd) c-class value, $[\mathrm{P}]$ creturn
c (printcolor) c-class value, $[\mathrm{P}]$ creturn
c (processors) c-class value, $[\mathrm{P}]$ creturn
$c$ (processors_lic) c-class value, $[\mathrm{P}]$ creturn
c (processors_mach) c-class value, $[\mathrm{P}]$ creturn
$c$ (processors_max) c-class value, $[\mathrm{P}]$ creturn
$c$ (pwd) c-class value, $[P]$ creturn
$\mathrm{c}(\mathrm{rc}) \mathrm{c}$-class value, $[\mathrm{P}]$ capture, $[\mathrm{P}]$ creturn
$c$ (reventries) c-class value, $[P]$ creturn
$c$ (revkeyboard) c-class value, $[\mathrm{P}]$ creturn
c (rmsg) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ rmsg
c (rmsg_time) c-class value, $[\mathrm{P}]$ creturn
$c$ (scheme) c-class value, $[\mathrm{P}]$ creturn
c (scrollbufsize) c-class value, $[\mathrm{P}]$ creturn
$c$ (SE) c-class value, $[\mathrm{P}]$ creturn
$c$ (searchdefault) c-class value, $[\mathrm{P}]$ creturn
$c$ (seed) c-class value, $[P]$ creturn, $[R]$ set emptycells,
[R] set seed
c (segmentsize) c-class value, [D] memory,
[P] creturn
$c$ (sformat) c-class value, $[P]$ creturn, $[R]$ set cformat $c$ (showbaselevels) c-class value, $[P]$ creturn, $[R]$ set showbaselevels
$c$ (showemptycells) c-class value, $[P]$ creturn, $[R]$ set showbaselevels
$c$ (showomitted) c-class value, $[P]$ creturn, $[R]$ set showbaselevels
c (smallestdouble) c-class value, $[\mathrm{P}]$ creturn
c (smoothfonts) c-class value, $[\mathrm{P}]$ creturn
c (stata_version) c-class value, $[\mathrm{P}]$ creturn
c (sysdir_base) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ sysdir
c (sysdir_oldplace) c-class value, $[\mathrm{P}]$ creturn,
[P] sysdir
c(sysdir_personal) c-class value, [P] creturn, [P] sysdir
c (sysdir_plus) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ sysdir
$c$ (sysdir_site) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ sysdir
c (sysdir_stata) c-class value, $[\mathrm{P}]$ creturn,
[P] sysdir
c (timeout1) c-class value, $[\mathrm{P}]$ creturn
$c$ (timeout2) c-class value, $[\mathrm{P}]$ creturn
c (tmpdir) c-class value, $[\mathrm{P}]$ creturn
c (trace) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace
$c$ (tracedepth) c-class value, $[P]$ creturn, $[P]$ trace
$c$ (traceexpand) c-class value, $[P]$ creturn, $[P]$ trace
$c$ (tracehilite) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace
$c$ (traceindent) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace
$c$ (tracenumber) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace
$c$ (tracesep) c-class value, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace
$c$ (type) c-class value, $[\mathrm{D}]$ generate, $[\mathrm{P}]$ creturn
c (update_interval) c-class value, $[\mathrm{P}]$ creturn
c (update_prompt) c-class value, $[\mathrm{P}]$ creturn
$c$ (update_query) c-class value, $[\mathrm{P}]$ creturn
$c$ (username) c-class value, $[\mathrm{P}]$ creturn
$c$ (varabbrev) c-class value, $[\mathrm{P}]$ creturn
$c$ (varkeyboard) c-class value, $[\mathrm{P}]$ creturn
$c$ (version) c-class value, $[P]$ creturn, $[P]$ version
$c$ (version_rng) c-class value, $[\mathrm{P}]$ creturn
$c$ (Wdays) c-class value, $[P]$ creturn
$c$ (Weekdays) c-class value, $[\mathrm{P}]$ creturn
c (width) c-class value, $[\mathrm{P}]$ creturn
C charts, [G-2] graph other
CA, see correspondence analysis
ca command, [MV] ca, [MV] ca postestimation, [MV] ca postestimation plots
cabiplot command, [MV] ca postestimation plots calculator, [R] display
calendars, [D] bcal, [D] datetime business calendars,
[D] datetime business calendars creation, [TS] intro
Caliński and Harabasz index stopping rules, [MV] cluster stop
_caller() pseudofunction, [D] functions callersversion() function, [M-5] callersversion( ) camat command, [MV] ca, [MV] ca postestimation, [MV] ca postestimation plots Canberra dissimilarity measure, [MV] measure_option candisc command, [MV] candisc, [MV] discrim estat, [MV] discrim qda postestimation canon command, [MV] canon, [MV] canon postestimation
canonical
correlation analysis, [MV] Glossary
correlations, [MV] canon, [MV] canon postestimation
canonical, continued
discriminant analysis, [MV] candisc, [MV] Glossary
link, [ME] meglm, [ME] Glossary, [XT] Glossary
loadings, [MV] canon, [MV] canon postestimation,
[MV] Glossary
variate set, [MV] canon, [MV] canon
postestimation, [MV] Glossary
canontest, estat subcommand, [MV] discrim lda postestimation
capped spikes, [G-3] rcap_options
caprojection command, [MV] ca postestimation plots
caption() option, [G-3] title_options
capture command, $[\mathrm{P}]$ capture
carryover effects, [R] pk, [R] pkcross, [R] pkshape
case-cohort data, [ST] sttoce
case-control data, [R] clogit, [R] logistic, [R] rocreg,
[R] symmetry, [ST] epitab, [ST] sttocc
case-control study, [PSS] intro, [PSS] power,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary, [ST] Glossary
casement displays, [G-3] by_option
casewise deletion, [D] egen, [P] mark, see listwise deletion
cat command, [D] type
cat () function, [M-5] cat()
categorical, also see factor variables
axis, look of
labels, [G-3] cat_axis_label_options
line, [G-3] cat_axis_line_options
contrasts after anova, $[\mathrm{R}]$ contrast
covariates, $[\mathrm{R}]$ anova
data, [D] egen, [D] recode, [MV] ca, [MV] manova, [MV] mca, [ST] epitab, [SVY] svy estimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
data, agreement, measures for, $[R]$ kappa
graphs, [R] grmeanby, [R] spikeplot
outcomes, see outcomes, categorical, also see outcomes, binary, also see outcomes, ordinal
regression, also see outcomes subentry absorbing one categorical variable, $[\mathrm{R}]$ areg
tabulations, $[R]$ table, $[R]$ tabstat, $[R]$ tabulate oneway, $[R]$ tabulate twoway, $[R]$ tabulate, summarize()
variable creation, $[\mathrm{R}]$ tabulate oneway, $[\mathrm{R}]$ xi
variable imputation, see imputation, categorical
variables, [U] 25.1.2 Converting continuous variables to categorical variables
cause-specific hazard, [ST] Glossary
cc command, [ST] epitab
ccc, mgarch subcommand, [TS] mgarch cce
cchart command, [R] qc
cci command, [ST] epitab
c-class command, [P] creturn
c-conformability, [M-2] op_colon, [M-6] Glossary
CCT, see controlled clinical trial study
CD, see coefficient of determination
cd command, [D] cd
cd, net subcommand, $[R]$ net
Cdhms () function, [D] datetime, [D] functions, [M-5] date()
cdir, classutil subcommand, $[\mathrm{P}]$ classutil
ceil () function, [D] functions, [M-5] trunc()
ceiling function, [D] functions
cell means, [PSS] Glossary
cell-means model, [PSS] Glossary
censored, [ST] Glossary
censored observations, [MI] mi impute intreg, [MI] mi XXXset, $[R]$ heckman, $[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ intreg, $[R]$ ivtobit, $[R]$ tobit, [ST] st, also see truncated observations
censored-normal regression, see interval regression
censoring, see imputation, interval-censored data census, [SVY] Glossary
data, [SVY] survey, [SVY] direct standardization,
[SVY] variance estimation
center suboption, [G-4] justificationstyle
centered data, [MV] Glossary
centile command, [R] centile
centiles, see percentiles, displaying, see percentiles
central tendency, measures of, see means, see medians
centroidlinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
centroid-linkage clustering, [MV] cluster,
[MV] clustermat, [MV] cluster linkage, [MV] Glossary
certainty
strata, [SVY] estat
units, [SVY] variance estimation
certifying data, [D] assert, [D] checksum,
[D] count, [D] datasignature, [D] inspect,
$[\mathrm{P}]$ _datasignature, $[\mathrm{P}]$ signestimationsample
certifying mi data are consistent, [MI] mi update cf command, [D] cf
cf, tsfilter subcommand, [TS] tsfilter cf
CFA, see confirmatory factor analysis
CFI, see comparative fit index
cformat, set subcommand, [R] set, [R] set cformat cgraph, irf subcommand, [TS] irf cgraph
chained equations, see imputation, multivariate, chained equations
changeeol command, [D] changeeol
changing
data, see editing data
directories, [D] cd
char
command, [U] 12.8 Characteristics
define command, [P] char
list command, [P] char
char, continued
macro extended function, $[\mathrm{P}]$ macro
rename command, $[\mathrm{P}]$ char
char() function, [D] functions, [M-5] ascii()
_char(\#), display directive, [P] display
character
data, see string variables
variables, [D] infile (free format)
characteristic roots, [M-5] eigensystem()
characteristics, [P] char, [U] 12.8 Characteristics,
[U] 18.3.6 Extended macro functions,
[U] 18.3.13 Referring to characteristics
charset, set subcommand, $[\mathrm{P}]$ smcl, $[\mathrm{R}]$ set
chdir command, [D] cd
_chdir() function, [M-5] chdir()
chdir() function, [M-5] chdir()
check,
bcal subcommand, [D] bcal
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
ml subcommand, $[\mathrm{R}] \mathrm{ml}$
checkestimationsample command,
[P] signestimationsample
checking data, [D] assert
checkpoint, [D] snapshot
checksum command, [D] checksum
checksum, set subcommand, $[D]$ checksum, $[R]$ set
checksums of data, [D] checksum, [D] datasignature,
$[\mathrm{P}]$ _datasignature, $[\mathrm{P}]$ signestimationsample
chi2() function, [D] functions, [M-5] normal()
chi2den() function, [D] functions, [M-5] normal()
chi2tail() function, [D] functions, [M-5] normal()
chi-squared
density, [D] functions
distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, $[\mathrm{D}]$ functions
inverse cumulative noncentral, [D] functions
inverse reverse cumulative, [D] functions
inverse reverse cumulative noncentral,
[D] functions
noncentral, [D] functions
reverse cumulative, $[\mathrm{D}]$ functions
reverse cumulative noncentral, [D] functions
hypothesis test, $[R]$ hausman, $[R]$ lrtest, $[R]$ sdtest,
$[R]$ tabulate twoway, $[R]$ test, $[R]$ testnl
noncentrality parameter, $[\mathrm{D}]$ functions
probability plot, [G-2] graph other, $[\mathrm{R}]$ diagnostic plots
quantile plot, [G-2] graph other, $[\mathrm{R}]$ diagnostic plots
test, [PSS] Glossary, [SEM] methods and formulas for sem
test for marginal homogeneity, $[\mathrm{R}]$ symmetry
test of independence, $[\mathrm{R}]$ tabulate twoway,
[ST] epitab, [SVY] svy: tabulate twoway

Chms () function, [D] datetime, [D] functions, [M-5] date()
choice models, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] meologit, [ME] meoprobit, $[M E]$ meprobit, $[M E]$ meqrlogit, $[R]$ asclogit, $[R]$ asmprobit, $[R]$ asroprobit, $[R]$ clogit,
$[R]$ cloglog, $[R]$ exlogistic, $[R]$ glm,
$[R]$ glogit, $[R]$ heckoprobit, $[R]$ heckprobit,
$[R]$ hetprobit, $[R]$ ivprobit, $[R]$ logistic,
$[R]$ logit, $[R]$ mlogit, $[R]$ mprobit, $[R]$ nlogit,
$[R]$ ologit, $[R]$ oprobit, $[R]$ probit, $[R]$ rologit,
[R] scobit, $[R]$ slogit, $[R]$ suest, [XT] xtgee,
[XT] xtlogit, [XT] xtologit, [XT] xtoprobit,
[XT] xtprobit
Cholesky decomposition, [M-5] cholesky( ), $[\mathrm{P}]$ matrix define
Cholesky ordering, [TS] Glossary
_cholesky() function, [M-5] cholesky()
cholesky () function, [D] functions, [M-5] cholesky(),
$[\mathrm{P}]$ matrix define
_cholinv() function, [M-5] cholinv()
cholinv() function, [M-5] cholinv()
_cholsolve() function, [M-5] cholsolve()
cholsolve() function, [M-5] cholsolve()
chop() function, [D] functions
Chow test, $[\mathrm{R}]$ anova, $[\mathrm{R}]$ contrast, $[\mathrm{R}]$ lrtest
Christiano-Fitzgerald filter, [TS] tsfilter, [TS] tsfilter cf
CI, see confidence interval
ci and cii commands, $[\mathrm{R}]$ ci
CI assumption, see conditional-independence assumption
CIF, see cumulative incidence function
class
definition, $[\mathrm{P}]$ class
instance, $[\mathrm{P}]$ class
programming, [M-6] Glossary, [P] class
programming utilities, $[\mathrm{P}]$ classutil
class, [M-2] class
class exit command, $[\mathrm{P}]$ class exit
classes, [M-2] class
classfunctions, estat subcommand, [MV] discrim Ida postestimation
classical scaling, [MV] Glossary
classification, see cluster analysis, see discriminant analysis
data, see receiver operating characteristic analysis
function, [MV] discrim, [MV] discrim Ida, [MV] discrim Ida postestimation, [MV] discrim qda, [MV] discrim qda postestimation, [MV] Glossary
interrater agreement, $[\mathrm{R}]$ kappa
table, [MV] candisc, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim knn postestimation, [MV] discrim Ida, [MV] discrim Ida postestimation, [MV] discrim logistic, [MV] discrim logistic postestimation, [MV] discrim qda, [MV] discrim qda postestimation, $[\mathrm{MV}]$ Glossary, $[\mathrm{R}]$ estat classification
classification, estat subcommand, [R] estat classification
.classmv built-in class function, [P] class
.classname built-in class function, [P] class
classtable, estat subcommand, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
classutil
cdir command, $[\mathrm{P}]$ classutil
describe command, [P] classutil
dir command, [P] classutil
drop command, [P] classutil
which command, $[\mathrm{P}]$ classutil
classwide variable, $[\mathrm{P}]$ class
clean,
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
clear

* command, [D] clear
ado command, [D] clear
all command, [D] clear
command, [D] clear
mata command, [D] clear
matrix command, [D] clear
option, [U] 11.2 Abbreviation rules
programs command, [D] clear
results command, [D] clear
clear,
datasignature subcommand, [D] datasignature ereturn subcommand, $[P]$ ereturn, $[P]$ return _estimates subcommand, [P] _estimates estimates subcommand, [R] estimates store forecast subcommand, [TS] forecast clear fvset subcommand, [R] fvset mata subcommand, [M-3] mata clear ml subcommand, [R] ml
postutil subcommand, $[\mathrm{P}]$ postfile
putexcel subcommand, [P] putexcel
return subcommand, $[\mathrm{P}]$ return
serset subcommand, $[P]$ serset
sreturn subcommand, $[\mathrm{P}]$ program, $[\mathrm{P}]$ return
timer subcommand, [P] timer
clearing estimation results, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates, $[R]$ estimates store
clearing memory, [D] clear
clegend () option, [G-3] clegend_option, [G-3] legend_options
clinical trial, [PSS] intro, [PSS] Glossary, [ST] stpower
clinically
meaningful difference, [PSS] intro, [PSS] Glossary, also see $\delta$
meaningful effect, see clinically meaningful difference
significance difference, see clinically meaningful difference
clip() function, [D] functions
clock position, [G-4] clockposstyle
clock time, [TS] tsset
Clock() function, [D] datetime, [D] datetime
translation, [D] functions, [M-5] date( )
clock() function, [D] datetime, [D] datetime
translation, [D] functions, [M-5] date( )
clogit command, [R] bootstrap, [R] clogit, [R] clogit postestimation, $[R]$ exlogistic, $[R]$ rologit
cloglog command, $[\mathrm{R}]$ cloglog, $[\mathrm{R}]$ cloglog postestimation
cloglog option, see gsem option cloglog
cloglog() function, [D] functions, [M-5] logit()
clonevar command, [D] clonevar
close,
cmdlog subcommand, $[R] \log$
file subcommand, [P] file
$\log$ subcommand, $[R] \log$
cls command, [R] cls
clstyle() option, [G-3] connect_options
cluster, [SVY] survey, [SVY] svy estimation, [SVY] svyset, [SVY] variance estimation, [SVY] Glossary
cluster, [MV] cluster, see gsem option vce(), see sem option vce()
averagelinkage command, [MV] cluster linkage
centroidlinkage command, [MV] cluster linkage
completelinkage command, [MV] cluster linkage
delete command, [MV] cluster programming utilities
dendrogram command, [MV] cluster dendrogram
dir command, [MV] cluster utility
drop command, [MV] cluster utility
generate command, [MV] cluster generate
kmeans command, [MV] cluster kmeans and kmedians
kmedians command, [MV] cluster kmeans and kmedians
list command, [MV] cluster utility
measures command, [MV] cluster programming utilities
medianlinkage command, [MV] cluster linkage
notes command, [MV] cluster notes
parsedistance command, [MV] cluster programming utilities
query command, [MV] cluster programming utilities
rename command, [MV] cluster utility
renamevar command, [MV] cluster utility
set command, [MV] cluster programming utilities
singlelinkage command, [MV] cluster linkage
stop command, [MV] cluster stop
use command, [MV] cluster utility
wardslinkage command, [MV] cluster linkage
waveragelinkage command, [MV] cluster linkage
cluster analysis, [MV] cluster, [MV] cluster dendrogram, [MV] cluster generate, [MV] cluster kmeans and kmedians, [MV] cluster linkage, [MV] cluster stop, [MV] cluster utility, [MV] Glossary, [U] 26.26 Multivariate and cluster analysis dendrograms, $[\mathrm{MV}]$ cluster dendrogram dropping, [MV] cluster utility hierarchical, [MV] cluster, [MV] clustermat, [MV] cluster linkage
kmeans, [MV] cluster kmeans and kmedians kmedians, [MV] cluster kmeans and kmedians listing, [MV] cluster utility notes, [MV] cluster notes programming, [MV] cluster programming subroutines, [MV] cluster programming utilities
renaming, [MV] cluster utility
stopping rules, [MV] cluster, [MV] cluster stop
tree, [MV] cluster dendrogram, [MV] Glossary
using, [MV] cluster utility
cluster estimator of variance, [P] _robust,
[R] vce_option, [XT] vce_options
alternative-specific
conditional logit model, $[\mathrm{R}]$ asclogit
multinomial probit regression, $[\mathrm{R}]$ asmprobit
rank-ordered probit regression, $[\mathrm{R}]$ asroprobit
competing-risks regression, $[\mathrm{ST}]$ stcrreg
complementary log-log regression, $[\mathrm{R}]$ cloglog
Cox proportional hazards model, [ST] stcox
logit, [XT] xtlogit
negative binomial, $[\mathrm{XT}]$ xtnbreg
Poisson, [XT] xtpoisson
probit, [XT] xtprobit
fixed-effects models,
linear, [XT] xtreg
Poisson, [XT] xtpoisson
generalized linear models, $[\mathrm{R}]$ glm
for binomial family, $[R]$ binreg
generalized method of moments, $[\mathrm{R}]$ gmm,
$[R]$ ivpoisson
heckman selection model, $[R]$ heckman
instrumental-variables regression, $[\mathrm{R}]$ ivregress
interval regression, $[\mathrm{R}]$ intreg
linear dynamic panel-data models, [XT] xtabond,
[XT] xtdpd, [XT] xtdpdsys
linear regression, $[R]$ regress
constrained, $[R]$ ensreg
truncated, $[\mathrm{R}]$ truncreg
with dummy-variable set, $[\mathrm{R}]$ areg
logistic regression, $[R]$ logistic, $[R]$ logit, also see
logit regression subentry
conditional, [R] clogit
multinomial, $[\mathrm{R}]$ mlogit
ordered, $[R]$ ologit
rank-ordered, $[\mathrm{R}]$ rologit
skewed, $[R]$ scobit
stereotype, $[R]$ slogit
cluster estimator of variance, continued
logit regression, $[\mathrm{R}]$ logit, also see logistic regression subentry
for grouped data, $[R]$ glogit
nested, [R] nlogit
maximum likelihood estimation, [R] ml, [R] mlexp
multilevel mixed-effects models, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit, [ME] mixed
multinomial
logistic regression, [R] mlogit
probit regression, $[R]$ mprobit
negative binomial regression
truncated, $[R]$ nbreg
zero-inflated, $[R]$ zinb
nonlinear
least-squares estimation, $[R] \mathbf{n l}$
systems of equations, $[\mathrm{R}]$ nlsur
parametric survival models, [ST] streg
Poisson regression, $[R]$ poisson
truncated, $[R]$ tpoisson
with endogenous regressors, $[R]$ ivpoisson zero-inflated, [R] zip
population-averaged models, [XT] xtgee complementary log-log, [XT] xtcloglog
Prais-Winsten and Cochrane-Orcutt regression, [TS] prais
probit regression, $[R]$ probit bivariate, $[R]$ biprobit
for grouped data, $[R]$ glogit
heteroskedastic, $[R]$ hetprobit
multinomial, [R] mprobit
ordered, [R] oprobit
ordered heckman selection model,
[R] heckoprobit
with endogenous regressors, $[R]$ ivprobit
with sample selection, $[R]$ heckprobit
random-effects models
complementary log-log, [XT] xtcloglog
linear, [XT] xtreg
logistic, [XT] xtlogit, [XT] xtologit
Poisson, [XT] xtpoisson
probit, [XT] xtoprobit, [XT] xtprobit
structural equation modeling, [SEM] intro 8,
[SEM] sem option method( )
summary statistics,
mean, $[R]$ mean
proportion, $[R]$ proportion
ratio, $[R]$ ratio
total, $[R]$ total
tobit model, $[R]$ tobit
with endogenous regressors, $[R]$ ivtobit
treatment-effects model, [TE] etpoisson,
[TE] etregress
cluster estimator of variance, continued truncated
negative binomial regression, $[\mathrm{R}]$ tnbreg
Poisson regression, [R] tpoisson
regression, $[\mathrm{R}]$ truncreg
with endogenous regressors,
instrumental-variables regression, [R] ivregress
Poisson regression, $[R]$ ivpoisson
probit model, [R] ivprobit
tobit model, $[\mathrm{R}]$ ivtobit
zero-inflated
negative binomial regression, $[R]$ zinb
Poisson regression, $[\mathrm{R}]$ zip
cluster sampling, [P] _robust, [ST] stcox, [ST] streg,
$[R]$ bootstrap, $[R]$ bsample, $[R]$ jackknife
clustered, [SEM] Glossary
clustering, see cluster analysis
clustermat, [MV] clustermat
averagelinkage command, [MV] cluster linkage
centroidlinkage command, [MV] cluster linkage
completelinkage command, [MV] cluster linkage
medianlinkage command, [MV] cluster linkage
singlelinkage command, [MV] cluster linkage
stop command, [MV] cluster stop
wardslinkage command, [MV] cluster linkage
waveragelinkage command, [MV] cluster linkage
clusters, duplicating, [D] expandel
cmdlog
close command, [R] log
command, [R] log, [U] 15 Saving and printing output-log files
off command, [R] log
on command, [R] log
using command, [R] log
Cmdyhms () function, [D] datetime, [D] functions, [M-5] date()
CMI assumption, see conditional mean independence assumption
cmissing() option, [G-3] cline_options, [G-3] connect_options
cnsreg command, $[\mathrm{R}]$ cnsreg, $[\mathrm{R}]$ cnsreg postestimation
Cochrane-Orcutt regression, [TS] prais, [TS] Glossary
code, timing, [P] timer
codebook command, [D] codebook
_coef [], [U] 13.5 Accessing coefficients and standard errors
coefficient alpha, [MV] alpha
coefficient of determination, [SEM] estat eqgof, [SEM] estat ggof, [SEM] estat gof, [SEM] example 4, [SEM] example 21, [SEM] methods and formulas for sem, [SEM] Glossary
coefficient of variation, $[\mathrm{R}]$ tabstat, [SVY] estat
coefficients (from estimation),
accessing, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix get,
[U] 13.5 Accessing coefficients and standard errors
cataloging, [R] estimates
estimated linear combinations, see linear combinations of estimators
linear combinations of, see linear combinations of estimators
nonlinear combinations of, see nonlinear combinations of estimators
testing equality of, $[\mathrm{R}]$ test, $[\mathrm{R}]$ testnl
coeflegend option, see gsem option coeflegend, see sem option coeflegend
coeftabresults, set subcommand, [R] set
coefvector, forecast subcommand, [TS] forecast coefvector

Cofc() function, [D] datetime, [D] functions, [M-5] date( )
$\operatorname{cofC}()$ function, [D] datetime, [D] functions, [M-5] date( )
Cofd() function, [D] datetime, [D] functions, [M-5] date( )
cofd() function, [D] datetime, [D] functions, [M-5] date()
cohort study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary, [ST] epitab, [ST] ltable, [ST] stcox, [ST] stptime, [ST] strate, [ST] sttocc, [ST] Glossary
cointegration, [TS] fcast compute, [TS] fcast graph, [TS] vec intro, [TS] vec, [TS] veclmar,
[TS] vecnorm, [TS] vecrank, [TS] vecstable, [TS] Glossary
coleq macro extended function, $[\mathrm{P}]$ macro coleq, matrix subcommand, [P] matrix rownames colfullnames macro extended function, [P] macro collapse command, [D] collapse
_collate() function, [M-5] sort()
collect statistics, [D] statsby
collinear option, see gsem option collinear
collinear variables, removing, [P] _rmcoll
collinearity,
display of omitted variables, $[R]$ set showbaselevels
handling by regress, $[R]$ regress
retaining collinear variables, $[\mathrm{R}]$ estimation options, [R] orthog
variance inflation factors, $[R]$ regress postestimation
colmax () function, [M-5] minmax ()
colmaxabs () function, [M-5] minmax( )
colmin() function, [M-5] minmax ()
colminmax () function, [M-5] minmax ()
colmissing() function, [M-5] missing()
colnames macro extended function, $[\mathrm{P}]$ macro
colnames, matrix subcommand, $[\mathrm{P}]$ matrix rownames
colnonmissing() function, [M-5] missing() colnumb () function, [D] functions, [P] matrix define colon operators, [M-2] op_colon, [M-6] Glossary color, [G-2] palette, [G-4] colorstyle
background, [G-4] schemes intro
dimming and brightening, [G-2] graph twoway histogram, [G-2] graph twoway kdensity, [G-4] colorstyle
foreground, [G-4] schemes intro
intensity adjustment, [G-2] graph twoway histogram, [G-2] graph twoway kdensity, [G-4] colorstyle
of bars, [G-3] barlook_options
of connecting lines, [G-3] connect_options
of markers, [G-3] marker_options
of pie slices, [G-2] graph pie
of text, [G-3] textbox_options
setting background and fill, [G-3] region_options color () option, [G-2] graph twoway histogram, [G-2] graph twoway kdensity
color, palette subcommand, [G-2] palette
colors, specifying in programs, $[\mathrm{P}]$ display
colorstyle, [G-4] colorstyle
cols() function, [M-5] rows()
colscalefactors() function, [M-5] _equilre( )
colshape() function, [M-5] rowshape()
colsof() function, [D] functions, [P] matrix define colsum() function, [M-5] sum()
_column(\#), display directive, [P] display
column of matrix, selecting, [M-5] select( )
column stripes, [M-6] Glossary
column-join operator, [M-2] op_join
column-major order, [M-6] Glossary
columns in graphs, [PSS] Glossary
columns of matrix,
appending to, $[P]$ matrix define
names of, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix define, [U] 14.2 Row and column names, $[P]$ matrix rownames
operators on, $[\mathrm{P}]$ matrix define
colvector, [M-2] declarations, [M-6] Glossary
comb() function, [D] functions, [M-5] comb()
combination step, [MI] intro substantive, [MI] mi estimate, [MI] mi estimate using, [MI] mi predict
combinatorial function, [M-5] comb()
combinatorials, calculating, [D] functions
combine, graph subcommand, [G-2] graph combine
combining data, $[\mathrm{MI}]$ mi add, $[\mathrm{MI}]$ mi append,
[MI] mi merge
combining datasets, [D] append, [D] cross, [D] joinby, [D] merge, [U] 22 Combining datasets
combining graphs, [G-2] graph combine
command
arguments, $[\mathrm{P}]$ gettoken, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ tokenize,
[U] 18.4 Program arguments
language, [SEM] Glossary
line, launching dialog box from, $[\mathrm{R}] \mathbf{d b}$
parsing, $[P]$ gettoken, $[P]$ syntax, $[P]$ tokenize,
[U] 18.4 Program arguments
timings, [U] 8 Error messages and return codes
commands,
abbreviating, [U] 11.2 Abbreviation rules
aborting, $[\mathrm{P}]$ continue, $[\mathrm{U}] 9$ The Break key,
[U] 10 Keyboard use
editing and repeating, [U] 10 Keyboard use
immediate, [U] 19 Immediate commands
repeating automatically, $[\mathrm{D}]$ by, $[\mathrm{P}]$ byable,
$[\mathrm{P}]$ continue, $[\mathrm{P}]$ foreach, $[\mathrm{P}]$ forvalues,
$[\mathrm{P}]$ while
reviewing, [R] \#review
unabbreviating names of, $[\mathrm{P}]$ unabemd
commas, reading data separated by, [D] import delimited, [D] infile (fixed format), [D] infile (free format)
comments, [M-2] comments
comments in programs, do-files, etc.,
[U] 16.1.2 Comments and blank lines in dofiles, [U] 18.11.2 Comments and long lines in ado-files
comments with data, [D] notes
comments, adding to programs, $[\mathrm{P}]$ comments
common factors, [MV] Glossary
common, estat subcommand, [MV] factor postestimation
communality, [MV] factor, [MV] factor postestimation, [MV] Glossary
commutation matrix, [M-5] Kmatrix ()
comparative fit index, [SEM] estat gof, [SEM] methods and formulas for sem
comparative scatterplot, $[\mathrm{R}]$ dotplot
compare command, [D] compare
compare, estat subcommand, [MV] procrustes postestimation
comparing two
files, [D] cf, [D] checksum
variables, [D] compare
comparison
group, see experimental group
test between nested models, $[\mathrm{R}]$ nestreg
value, [PSS] Glossary
compassdirstyle, [G-4] compassdirstyle
compatibility of Stata programs across releases, [ P$]$ version
competing risks, [ST] stcrreg, [ST] Glossary
complementary log-log regression, [ME] mecloglog, [R] cloglog, [R] glm, [SEM] Glossary, [SVY] svy estimation, [XT] xtcloglog, [XT] xtgee
complete data, [MI] Glossary
complete degrees of freedom for coefficients, $[\mathrm{MI}] \mathbf{m i}$ estimate, [MI] Glossary
complete observations, [MI] Glossary
complete-cases analysis, [MI] Glossary
complete-data analysis, [MI] Glossary
completed data, [MI] Glossary
completed-data analysis, [MI] intro substantive,
[MI] mi estimate, [MI] Glossary
completelinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
complete-linkage clustering, [MV] cluster, [MV] clustermat, [MV] cluster linkage, [MV] Glossary
completely determined outcomes, [R] logit
complex, [M-2] declarations, [M-6] Glossary
component
analysis, [MV] factor, [MV] pca, [MV] rotate, [MV] rotatemat
loading plot, [MV] scoreplot
plot, [MV] scoreplot
scores, [MV] Glossary
component-plus-residual plot, [G-2] graph other, $[R]$ regress postestimation diagnostic plots
components of PSS analysis
clinically meaningful difference, see clinically meaningful difference
effect size, see $\delta$
power, see power
sample size, see sample size
significance level, see significance level
statistical method, see test
study design, see study design
compound double quotes, [P] macro
compound symmetric
correlation matrix, [MV] mvtest correlations
covariance matrix, [MV] mvtest covariances
compound symmetry, [PSS] Glossary
compress command, [D] compress
compress files, [D] zipfile
compute, fcast subcommand, [TS] fcast compute
Comrey's tandem 1 and 2 rotations, [MV] rotate, [MV] rotatemat, [MV] Glossary
concat (), egen function, [D] egen
concatenating strings, [U] 13.2.2 String operators
concordance measures, [ST] stcox postestimation
concordance, estat subcommand, [ST] stcox postestimation
concordant pairs, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
cond () function, [D] functions, [M-5] cond()
condition number, [M-5] cond( ), [M-6] Glossary
condition statement, $[\mathrm{P}]$ if
conditional
fixed-effects model, [XT] Glossary
(fixed-effects) logistic regression, [SVY] svy estimation
imputation, see imputation, conditional
conditional, continued
logistic regression, $[\mathrm{R}]$ asclogit, $[\mathrm{R}]$ clogit, $[\mathrm{R}]$ rologit, $[\mathrm{R}]$ slogit, $[\mathrm{XT}]$ xtlogit, [XT] xtologit
marginal effects, $[R]$ margins, $[R]$ marginsplot margins, [R] margins, [R] marginsplot
mean, [TE] Glossary
mean independence assumption, [TE] teffects intro advanced
normality, see normality, conditional
operator, [M-2] op_conditional
overdispersion, [ME] menbreg, [ME] Glossary variance, [TS] arch, [TS] Glossary
conditional-independence assumption, [TE] teffects intro, [TE] teffects intro advanced, [TE] Glossary
confidence interval, [SEM] Glossary, [SVY] variance estimation, [U] 20.7 Specifying the width of confidence intervals
for bioequivalence, $[R]$ pkequiv
for bootstrap statistics, [R] bootstrap postestimation, $[R]$ rocreg, $[R]$ rocreg postestimation
for combinations of coefficients, linear, $[R]$ lincom
nonlinear, $[R]$ nlcom
for contrasts, $[R]$ contrast
for counts, $[R]$ ci
for cumulative hazard function, [ST] sts list
for false-positive rates, $[\mathrm{R}]$ rocregplot
for hazard ratios, $[\mathrm{ST}]$ stcox, $[\mathrm{ST}]$ streg
for incidence-rate ratios, $[R]$ expoisson, $[R]$ glm, $[R]$ nbreg, $[R]$ poisson, $[R]$ tnbreg, $[R]$ tpoisson,
$[R]$ zinb, $[R]$ zip, $[S T]$ stir, $[T E]$ etpoisson,
[XT] xtgee, [XT] xtnbreg, [XT] xtpoisson
for intragroup correlations, $[R]$ loneway
for margins, $[R]$ margins
for means, $[R]$ ci, $[R]$ ameans, $[R]$ esize, $[R]$ mean, $[\mathrm{R}]$ ttest
for means and percentiles of survival time, [ST] stci
for medians and percentiles, $[R]$ centile
for odds and risk ratios, [ST] epitab
for odds ratios, $[R]$ exlogistic, $[R]$ glm, $[R]$ glogit, $[R]$ logistic, $[R]$ logit, $[R]$ ologit, $[R]$ scobit,
[XT] xtcloglog, [XT] xtgee, [XT] xtlogit,
[XT] xtologit
for proportions, $[R] \mathbf{c i},[R]$ proportion
for ratios, $[R]$ ratio
for relative-risk ratios, $[\mathrm{R}]$ mlogit
for ROC area, $[R]$ roccomp, $[R]$ rocfit, $[R]$ rocreg, [R] roctab
for ROC values, $[R]$ rocregplot
for standardized mortality ratios, $[\mathrm{R}]$ dstdize,
[ST] stptime, [ST] strate
for subhazard ratios, [ST] stcrreg
for survival rates, [ST] Itable
for survivor function, [ST] sts list
confidence interval, continued
for tabulated proportions, [SVY] svy: tabulate twoway
for totals, [R] total
linear combinations, [SVY] svy postestimation
set default, [R] level
confidence levels, $[\mathrm{R}]$ level
config, estat subcommand, [MV] mds
postestimation
configuration, [MV] Glossary
configuration plot, [MV] mds postestimation plots, [MV] Glossary
confirm
existence command, $[\mathrm{P}]$ confirm
file command, [P] confirm
format command, $[\mathrm{P}]$ confirm
matrix command, $[\mathrm{P}]$ confirm
names command, $[\mathrm{P}]$ confirm
number command, $[\mathrm{P}]$ confirm
scalar command, [P] confirm
variable command, [P] confirm
confirm, datasignature subcommand,
[D] datasignature
confirmatory factor analysis, [MV] intro,
[SEM] intro 5, [SEM] example 15,
[SEM] example 30g, [SEM] Glossary
conformability, [M-2] void, [M-6] Glossary, also see c-conformability, also see p-conformability, also see r -conformability
confounding, [ST] Glossary
confusion matrix, [MV] Glossary
_conj() function, [M-5] conj()
conj() function, [M-5] conj()
conjoint analysis, $[\mathrm{R}]$ rologit
conjugate, [M-5] conj( ), [M-6] Glossary
conjugate transpose, [M-2] op_transpose, [M-5] conj(), [M-6] Glossary
connect() option, [G-3] cline_options,
[G-3] connect_options, [G-4] connectstyle
connected, graph twoway subcommand, [G-2] graph
twoway connected
connectstyle, [G-4] connectstyle
conren, set subcommand, $[R]$ set
console,
controlling scrolling of output, $[\mathrm{P}]$ more, $[\mathrm{R}]$ more
obtaining input from, $[\mathrm{P}]$ display
constant conditional-correlation model, [TS] mgarch, [TS] mgarch cce
constrained estimation, $[R]$ constraint, $[R]$ estimation options
alternative-specific
conditional logistic model, $[\mathrm{R}]$ asclogit
multinomial probit regression, $[R]$ asmprobit
rank-ordered probit regression, $[\mathrm{R}]$ asroprobit
ARCH, [TS] arch
ARFIMA, [TS] arfima
ARIMA and ARMAX, [TS] arima
competing risks, $[\mathrm{ST}]$ stcrreg
constrained estimation, continued
complementary log-log regression, $[\mathrm{R}]$ cloglog
dynamic factor model, [TS] dfactor
fixed-effects models
logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson
GARCH model, [TS] mgarch ccc, [TS] mgarch dce, [TS] mgarch dvech, [TS] mgarch vce
generalized linear models, $[\mathrm{R}]$ glm
for binomial family, $[\mathrm{R}]$ binreg
generalized negative binomial regression, $[\mathrm{R}]$ nbreg
heckman selection model, $[\mathrm{R}]$ heckman,
$[R]$ heckoprobit
interval regression, $[R]$ intreg
linear regression, $[\mathrm{R}]$ cnsreg
seemingly unrelated, $[R]$ sureg
stochastic frontier, $[R]$ frontier
three-stage least squares, $[\mathrm{R}]$ reg3
truncated, $[\mathrm{R}]$ truncreg
logistic regression, $[\mathrm{R}]$ logistic, $[\mathrm{R}]$ logit, also see
logit regression subentry
conditional, $[\mathrm{R}]$ clogit
multinomial, $[\mathrm{R}]$ mlogit
ordered, $[R]$ ologit
skewed, $[R]$ scobit
stereotype, $[R]$ slogit
logit regression, $[\mathrm{R}]$ logit, also see logistic regression subentry
for grouped data, $[R]$ glogit nested, $[R]$ nlogit
maximum likelihood estimation, $[\mathrm{R}] \mathrm{ml}$
multilevel mixed-effects, $[\mathrm{ME}]$ mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit
multinomial
logistic regression, $[\mathrm{R}]$ mlogit
probit regression, $[R]$ mprobit
negative binomial regression, $[\mathrm{R}]$ nbreg
truncated, $[\mathrm{R}]$ tnbreg
zero-inflated, $[R]$ zinb
parametric survival models, [ST] streg
Poisson regression, $[\mathrm{R}]$ poisson
truncated, $[R]$ tpoisson
zero-inflated, $[R]$ zip
probit regression, $[\mathrm{R}]$ probit
bivariate, $[R]$ biprobit
for grouped data, $[\mathrm{R}]$ glogit
heteroskedastic, $[\mathrm{R}]$ hetprobit
multinomial, $[R]$ mprobit
ordered, [R] oprobit
with endogenous regressors, $[R]$ ivprobit
with sample selection, $[\mathrm{R}]$ heckprobit
programming, $[\mathrm{P}]$ makecns
constrained estimation, continued
random-effects models
complementary log-log, [XT] xtcloglog
interval-data regression, $[\mathrm{XT}]$ xtintreg
logit, [XT] xtlogit, [XT] xtologit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson
probit, [XT] xtoprobit, [XT] xtprobit
tobit, [XT] xttobit
state-space model, [TS] sspace
stochastic frontier models for panel data,
[XT] xtfrontier
structural vector autoregressive models, [TS] var svar
tobit model with endogenous regressors, $[\mathrm{R}]$ ivtobit
treatment-effects model, [TE] etpoisson,
[TE] etregress
truncated
negative binomial regression, $[\mathrm{R}]$ tnbreg
Poisson regression, [R] tpoisson
regression, $[\mathrm{R}]$ truncreg
unobserved-components model, [TS] ucm
vector autoregressive models, [TS] var
vector error-correction models, [TS] vec
with endogenous regressors
probit regression, $[R]$ ivprobit
tobit model, $[\mathrm{R}]$ ivtobit
zero-inflated
negative binomial regression, $[R]$ zinb
Poisson regression, $[\mathrm{R}]$ zip
constrained linear regression, [SVY] svy estimation
constraint
command, $[\mathrm{R}]$ constraint
define command, $[R]$ constraint
dir command, $[R]$ constraint
drop command, $[R]$ constraint
free command, [R] constraint
get command, $[R]$ constraint
list command, $[R]$ constraint
macro extended function, $[\mathrm{P}]$ macro
constraint matrix, creating and displaying, $[\mathrm{P}]$ makecns
constraints, [SEM] sem and gsem option constraints( ),
[SEM] Glossary
across groups, [SEM] intro 6
normalization, [SEM] intro 4, [SEM] gsem, [SEM] sem, [SEM] Glossary
relaxing, [SEM] intro 6, [SEM] sem and gsem path notation, [SEM] sem path notation extensions
specifying, [SEM] intro 4, [SEM] intro 6,
[SEM] sem and gsem option constraints( ),
[SEM] sem and gsem option covstructure( ),
[SEM] sem and gsem path notation, [SEM] sem
path notation extensions
constraints() option, see gsem option
constraints(), see sem option
constraints()
constructor, [M-2] class
containers, [M-5] asarray( )
contents of data, [D] codebook, [D] describe, [D] ds, [D] labelbook
context, class, [P] class
contingency table, [MV] ca, [PSS] intro,
[PSS] power, [PSS] power pairedproportions,
[PSS] Glossary, [R] roctab, [R] symmetry,
$[R]$ table, $[\mathrm{R}]$ tabulate twoway, $[\mathrm{ST}]$ epitab,
[SVY] svy: tabulate twoway
continue command, $[P]$ continue
_continue, display directive, $[\mathrm{P}]$ display
continuous outcome, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
continuous variable imputation, see imputation, continuous
contour plot, [G-2] graph twoway contour,
[G-3] clegend_option
contour, graph twoway subcommand, [G-2] graph twoway contour
contour-line plot, [G-2] graph twoway contourline
contourline, graph twoway subcommand,
[G-2] graph twoway contourline
contract command, [D] contract
contrast command, $[\mathrm{R}]$ anova postestimation, $[R]$ contrast, $[R]$ contrast postestimation, [R] margins, contrast, [SEM] intro 7, [SVY] svy postestimation, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects
contrasts, [MV] intro, [MV] manova postestimation, [MV] Glossary, [PSS] Glossary, [R] contrast, $[R]$ margins, contrast, [R] marginsplot, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects
graphing, [U] 20.19 Graphing margins, marginal effects, and contrasts
control charts, $[\mathrm{R}] \mathrm{qc}$
control group, [PSS] Glossary
correlation, see correlations, control-group
mean, see means, control-group
proportion, see proportions, control-group
sample size, see sample size, control-group
standard deviation, see standard deviations, controlgroup
variance, see variances, control-group
controlled clinical trial study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
convergence, [SEM] intro 12, [SEM] sem, [SEM] sem and gsem option from( )
convergence criteria, [R] maximize
convergence of MCMC, see Markov chain Monte Carlo, convergence
conversion, file, [D] changeeol, [D] filefilter
convert, mi subcommand, [MI] mi convert
converting between styles, [MI] mi convert
convolve() function, [M-5] fft()
Cook-Weisberg test for heteroskedasticity, [R] regress postestimation
Cook's $D$, [ R$]$ glm postestimation, $[\mathrm{R}]$ regress postestimation
coordinates, estat subcommand, [MV] ca postestimation, [MV] mca postestimation
copy and paste, [D] edit
. copy built-in class function, [P] class
copy command, [D] copy
copy graph, [G-2] graph copy
copy macro extended function, $[\mathrm{P}]$ macro
copy, graph subcommand, [G-2] graph copy
copy, label subcommand, [D] label
copy, mi subcommand, [MI] mi copy, [MI] styles
copy, ssc subcommand, [R] ssc
copycolor, set subcommand, [G-2] set printcolor, [R] set
copying variables, [D] clonevar, [D] edit
copyright
Apache, $[R]$ copyright apache
boost, [R] copyright boost
freetype, $[R]$ copyright freetype
icu, [R] copyright icu
JagPDF, [R] copyright jagpdf
lapack, $[R]$ copyright lapack
libpng, [R] copyright libpng
MiG Layout, [R] copyright miglayout
scintilla, $[R]$ copyright scintilla
symbol, [G-4] text
ttf2pt1, [R] copyright ttf2pt1
zlib, [R] copyright zlib
copyright command, [R] copyright
Cornfield confidence intervals, [ST] epitab
Corr () function, [M-5] fft()
_corr() function, [M-5] corr()
corr () function, [D] functions, [M-5] corr( ), [P] matrix define
corr2data command, [D] corr2data
correcting data, see editing data
correlate command, [R] correlate
correlated error, see robust, Huber/White/sandwich estimator of variance, also see autocorrelation
correlated uniqueness model, [SEM] intro 5, [SEM] example 17, [SEM] Glossary
correlation, [M-5] corr( ), [M-5] fft( ), [M-5] mean( ), [R] correlate
between paired observations, [PSS] power onemean, [PSS] power pairedmeans, [PSS] power pairedproportions
correlation, continued
binary variables, $[\mathrm{R}]$ tetrachoric
canonical, [MV] canon
compound symmetric, [MV] mvtest correlations
continuous variables, $[\mathrm{R}]$ correlate
data generation, [D] corr2data, [D] drawnorm
factoring of, [MV] factor
interitem, [MV] alpha
intraclass, $[\mathrm{R}]$ icc
intracluster, [R] loneway
Kendall's rank, [R] spearman
matrices, $[\mathrm{MV}]$ mvtest correlations, $[\mathrm{P}]$ matrix define, $[R]$ correlate, $[R]$ estat, $[R]$ estat vce
matrix, anti-image, [MV] factor postestimation, [MV] pca postestimation
model, [SEM] intro 5, [SEM] Glossary
pairwise, $[R]$ correlate
partial and semipartial, [R] pcorr
principal components of, [MV] pca
serial, [R] runtest
similarity measure, [MV] measure_option
Spearman's rank, [R] spearman
structure, $[R]$ asmprobit, $[R]$ asroprobit, $[R]$ reg3, [XT] xtcloglog, [XT] xtgee, [XT] xtgls, [XT] xtlogit, [XT] xtnbreg, [XT] xtpcse, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg, [XT] Glossary
testing equality, [MV] mvtest correlations
tests of, [SEM] estat stdize, [SEM] example 16
tetrachoric, $[\mathrm{R}]$ tetrachoric
correlation() function, [M-5] mean()
correlation, estat subcommand, [R] asmprobit postestimation, [R] asroprobit postestimation
correlations, [PSS] intro, [PSS] power, [PSS] power onecorrelation, [PSS] power twocorrelations
control-group, [PSS] intro, [PSS] power, [PSS] power twocorrelations
experimental-group, [PSS] intro, [PSS] power, [PSS] power twocorrelations
independent, see correlations, two-sample
one-sample, [PSS] intro, [PSS] power, [PSS] power onecorrelation
two-sample, [PSS] intro, [PSS] power, [PSS] power twocorrelations
correlations,
estat subcommand, [MV] canon postestimation, [MV] discrim Ida postestimation, [MV] discrim qda postestimation, [MV] mds postestimation
mvtest subcommand, [MV] mvtest correlations
correlogram, [G-2] graph other, [TS] corrgram, [TS] Glossary
correspondence analysis, [MV] ca, [MV] mca, [MV] Glossary
correspondence analysis projection, [MV] ca postestimation plots, [MV] Glossary
corrgram command, [TS] corrgram
$\cos ()$ function, $[D]$ functions, $[M-5] \sin ()$
$\cosh ()$ function, [D] functions, $[M-5] \sin ()$
cosine function, [D] functions
cosine kernel function, $[\mathrm{R}]$ kdensity, $[\mathrm{R}]$ lpoly, [ R ] qreg, [TE] teffects overlap
cost frontier model, $[\mathrm{R}]$ frontier, $[\mathrm{XT}]$ xtfrontier costs, [MV] Glossary
count command, [D] count
count data,
confidence intervals for counts, $[R]$ ci
estimation, $[R]$ expoisson, $[R]$ glm, $[R]$ gmm,
$[R]$ ivpoisson, $[R]$ nbreg, $[R]$ poisson,
$[R]$ tnbreg, $[R]$ tpoisson, $[R]$ zinb, $[R]$ zip,
[U] 26.11 Count dependent-variable models
graphs, $[R]$ histogram, $[R]$ kdensity, $[R]$ spikeplot
imputation, see imputation, count data
interrater agreement, [R] kappa
summary statistics of, [R] table, [R] tabstat,
$[R]$ tabulate oneway, $[R]$ tabulate twoway,
[R] tabulate, summarize()
symmetry and marginal homogeneity tests, [R] symmetry
count model, [SEM] intro 5, [SEM] example 34g, [SEM] example 39g
count outcome model, see outcomes, count
count(), egen function, [D] egen
count, ml subcommand, [R] ml
counterfactual, [TE] Glossary, also see potential outcome
counts, making dataset of, [D] collapse
count-time data, [ST] ct, [ST] ctset, [ST] cttost, [ST] sttoct, [ST] Glossary, [SVY] svy estimation
courses about Stata, [U] 3.7.2 NetCourses
covariance, [SEM] intro 4, [SEM] Glossary
analysis of, $[R]$ anova
assumptions, [SEM] gsem, [SEM] sem
matrix of estimators, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix get,
$[R]$ estat, $[R]$ estat vce, $[R]$ estimates store
of variables or coefficients, $[R]$ correlate
principal components of, [MV] pca
stationarity, [TS] Glossary
structure, [ME] me, [ME] Glossary
covariance matrix,
anti-image, [MV] factor postestimation, [MV] pca postestimation
block diagonal, [MV] mvtest covariances
spherical, [MV] mvtest covariances
testing equality, [MV] mvtest covariances
covariance, estat subcommand, [MV] discrim lda postestimation, [MV] discrim qda postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation
covariance() option, see gsem option covariance(), see sem option covariance()
covariances, mvtest subcommand, [MV] mvtest covariances
covariances, creating dataset from, see summary statistics data
covariate class, [D] duplicates
covariate patterns, [R] logistic postestimation, $[\mathrm{R}]$ logit postestimation, [R] probit postestimation
covariates, [ST] Glossary
covarimin rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
COVRATIO, [R] regress postestimation
covstructure() option, see gsem option covstructure(), see sem option covstructure()
cox, stpower subcommand, [ST] stpower cox
Cox proportional hazards model, [ST] stcox, [SVY] svy estimation
power, [ST] stpower cox
sample size, [ST] stpower cox
test of assumption, [ST] stcox, [ST] stcox PHassumption tests, [ST] stcox postestimation, [ST] stsplit
Wald test, power, [ST] stpower cox
Cox-Snell residual, [ST] stcox postestimation, [ST] streg postestimation
cprplot command, $[\mathrm{R}]$ regress postestimation diagnostic plots
Cramér's $V$, $[\mathrm{R}]$ tabulate twoway
Crawford-Ferguson rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
create,
bcal subcommand, [D] bcal
forecast subcommand, [TS] forecast create
irf subcommand, [TS] irf create
serset subcommand, $[P]$ serset
create_cspline, serset subcommand, [P] serset
create_xmedians, serset subcommand, $[P]$ serset
creturn list command, [P] creturn
crexternal() function, [M-5] findexternal()
critical
region, see rejection region
value, [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power onevariance, [PSS] Glossary
Cronbach's alpha, [MV] alpha
cross command, [D] cross
cross product, [M-5] cross( ), [M-5] crossdev( ),
[M-5] quadcross( )
cross() function, [M-5] cross()
cross-correlation function, [TS] xcorr, [TS] Glossary
cross-correlogram, [G-2] graph other, [TS] xcorr
crossdev() function, [M-5] crossdev()
crossed variables, [MV] Glossary
crossed-effects model, [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [ME] Glossary,
[SEM] example 40g, [SEM] Glossary
crossing variables, [MV] Glossary
crossover designs, [R] pk, [R] pkcross, [R] pkshape
cross-product matrices, $[\mathrm{P}]$ matrix accum
cross-sectional
data, [XT] Glossary
time-series data, [XT] Glossary
cross-sectional study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary, [ST] Glossary
cross-tabulations, see tables
crude estimate, [ST] epitab, [ST] Glossary
cs command, [ST] epitab
csi command, [ST] epitab
.csv filename suffix, [D] import delimited
ct command, [ST] ctset
ct data, [ST] Glossary, also see count-time data
ctable, irf subcommand, [TS] irf ctable
ctset command, [ST] ctset
cttost command, [ST] cttost
cubic natural splines, [M-5] spline3()
cumsp command, [TS] cumsp
cumul command, $[\mathrm{R}]$ cumul
cumulative distribution functions, [D] functions
cumulative distribution, empirical, $[\mathrm{R}]$ cumul
cumulative hazard function, $[\mathrm{ST}]$ stcurve, $[\mathrm{ST}]$ sts, [ST] sts generate, [ST] sts graph, [ST] sts list, [ST] Glossary
cumulative hazard ratio, see hazard ratio
cumulative incidence
data, $[\mathrm{R}]$ poisson, [ST] epitab
estimator, [ST] stcrreg, [ST] Glossary
function, [ST] stcrreg, [ST] stcurve, [ST] Glossary
cumulative spectral distribution, empirical, [TS] cumsp, [TS] psdensity
cumulative subhazard function, [ST] sterreg, [ST] stcurve, [ST] Glossary
current data, $[\mathrm{P}]$ creturn
curse of dimensionality, [MV] Glossary
curved path, [SEM] Glossary
custom prediction equations, [MI] mi impute chained, [MI] mi impute monotone
cusum command, $[\mathrm{R}]$ cusum
cusum plots, [G-2] graph other
cusum test, $[\mathrm{R}]$ cusum
cut (), egen function, [D] egen
cutil, see classutil
cv, estat subcommand, [SVY] estat
cvpermute() function, [M-5] cvpermute()
cvpermutesetup () function, [M-5] cvpermute( )
cyclical component, [TS] tsfilter, [TS] ucm,
[TS] Glossary
data,
appending, see appending data
autocorrelated, see autocorrelation
case-cohort, see case-cohort data
case-control, see case-control data
categorical, see categorical data, agreement,
measures for, see categorical data
certifying, see certifying data
characteristics of, see characteristics
checksums of, see checksums of data
combining, see combining datasets
contents of, see contents of data
count-time, see count-time data
cumulative incidence data, see cumulative incidence data
current, see current data
discrete survival, see discrete survival data
displaying, see displaying data
documenting, see documenting data
editing, see editing data
entering, see importing data, see inputting data interactively
experimental, see experimental data
exporting, see exporting data
extended missing values, see missing values
flong, see flong
flongsep, see flongsep
generating, see generating data
importing, see importing data
inputting, see importing data, see inputting data interactively, see reading data from disk
labeling, see labeling data
large, dealing with, see memory
listing, see listing data
loading, see importing data, see inputting data interactively, see using data
matched case-control, see matched case-control data
missing values, see missing values
mlong, see mlong
multiple-failure st, see multiple-failure st data
multiple-record st, see multiple-record st data
nested case-control, see nested case-control data
observational, see observational data
preserving, see preserving data
range of, see range of data
ranking, see ranking data
reading, see importing data, see loading data, see reading data from disk
recoding, see recoding data
rectangularizing, see rectangularize dataset
reordering, see reordering data
reorganizing, see reorganizing data
restoring, see restoring data
sampling, see sampling
saving, see exporting data, see saving data
single-failure st, see survival analysis
single-record st, see survival analysis

DA, see data augmentation dashed lines, [G-4] linepatternstyle
data, continued
stacking, see stacking data
strings, see string variables
summarizing, see summarizing data
survey, see survey data
survival-time, see survival analysis
time-series, see time-series analysis
time-span, see time-span data
transposing, see transposing data
verifying, see certifying data
wide, see wide
data augmentation, [MI] mi impute, [MI] mi impute mvn, [MI] Glossary
Data Browser, see Data Editor
Data Editor, [D] edit
copy and paste, [D] edit
data entry, see importing data, see inputting data interactively, see reading data from disk
data label macro extended function, [P] macro
data management, [MI] mi add, [MI] mi append, [MI] mi expand, [MI] mi extract, [MI] mi merge, [MI] mi rename, [MI] mi replace0, [MI] mi reset, [MI] mi reshape
data manipulation, $[\mathrm{R}]$ fvrevar, $[\mathrm{R}]$ fvset, [TS] tsappend, [TS] tsfill, [TS] tsreport,
[TS] tsrevar, [TS] tsset, [XT] xtset
data matrix, [M-5] st_data( ), [M-5] st_view( ), [M-6] Glossary
data reduction, [MV] ca, [MV] canon, [MV] factor, [MV] mds, [MV] pca
data signature, $[\mathrm{D}]$ datasignature, $[\mathrm{P}]$ _datasignature, $[P]$ signestimationsample
data transfer, see exporting data, see importing data
data types, [D] data types, [U] 12 Data
data, label subcommand, [D] label
database, reading data from, [D] odbc
database, reading data from other software,
[U] 21.4 Transfer programs
data-have-changed flag, [M-5] st_updata()
dataset,
adding notes to, [D] notes
comparing, [D] cf, [D] checksum
creating, [D] corr2data, [D] drawnorm
loading, see importing data, see inputting data
interactively, see using data
rectangularize, [D] fillin
saving, see exporting data, see saving data
dataset labels, [D] label, [D] label language, [D] notes
determining, [D] codebook, [D] describe
managing, [D] varmanage
datasets, example, [U] 1.2.2 Example datasets
datasignature
clear command, [D] datasignature
command, [D] datasignature, [SEM] example 25, [SEM] ssd
confirm command, [D] datasignature
report command, [D] datasignature
set command, [D] datasignature
_datasignature command, [P] _datasignature date
and time stamp, [D] describe
functions, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
date,
displaying, [U] 12.5.3 Date and time formats, [U] 24.3 Displaying dates and times
formats, [U] 12.5.3 Date and time formats,
[U] 24.3 Displaying dates and times
functions, [U] 24.5 Extracting components of dates and times
inputting, [U] 24.2 Inputting dates and times
variables, [U] 24 Working with dates and times date() function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
datelist, [U] 11.1.9 datelist
dates,
business, see business calendars
Excel, [D] datetime
OpenOffice, [D] datetime
$\mathrm{R},[\mathrm{D}]$ datetime
SAS, [D] datetime
SPSS, [D] datetime
dates and times, [D] datetime, [D] datetime business calendars, [D] datetime business calendars creation, [D] datetime display formats, $[\mathrm{D}]$ datetime translation, $[\mathrm{M}-5] \mathbf{c}()$, [M-5] date( ), [P] creturn
datetime, $[\mathrm{D}]$ datetime, $[\mathrm{D}]$ datetime business calendars, [ D ] datetime business calendars creation, [D] datetime display formats, [D] datetime translation
Davidon-Fletcher-Powell algorithm, [M-5] moptimize( ), [M-5] optimize( ), [R] ml
day () function, [D] datetime, [D] functions, [M-5] date( ), [U] 24.5 Extracting components of dates and times
db command, $[\mathrm{R}] \mathbf{d b}$
dBASE, reading data from, [U] 21.4 Transfer programs
dcc, mgarch subcommand, [TS] mgarch dec
.dct file, [U] 11.6 Filenaming conventions
.dct filename suffix, [D] import, [D] infile (fixed format), [D] infix (fixed format), [D] outfile
debugging, $[\mathrm{P}]$ discard, $[\mathrm{P}]$ pause, $[\mathrm{P}]$ trace
decimal symbol, setting, [D] format
declarations, [M-2] declarations, [M-6] Glossary
.Declare built-in class modifier, [P] class
declare, class, [P] class
decode command, [D] encode
decomposition, [M-5] cholesky( ), [M-5] fullsvd( ), [M-5] ghessenbergd( ), [M-5] gschurd( ), [M-5] hessenbergd( ), [M-5] lud( ), [M-5] qrd( ), [M-5] schurd( ), [M-5] svd( )
deconvolve() function, [M-5] fft()
decrement operator, [M-2] op_increment
default settings of system parameters, $[R]$ query, [R] set_defaults
defective matrix, [M-6] Glossary
DEFF, see design effects
define,
char subcommand, $[\mathrm{P}]$ char
constraint subcommand, $[\mathrm{R}]$ constraint
label subcommand, [D] label
matrix subcommand, $[\mathrm{P}]$ matrix define
program subcommand, $[\mathrm{P}]$ program, $[\mathrm{P}]$ program properties
scalar subcommand, $[\mathrm{P}]$ scalar
transmap subcommand, $[\mathrm{R}]$ translate
DEFT, see design effects
degree-of-freedom adjustment, [SEM] Glossary
degrees of freedom, [MI] mi estimate, [MI] mi predict
for coefficients, complete, see complete degrees of freedom for coefficients, also see estimation, degrees of freedom for coefficients
degree-to-radian conversion, [D] functions
delete, [M-5] unlink()
delete, cluster subcommand, [MV] cluster programming utilities
deleting
casewise, [D] egen
files, [D] erase
variables or observations, [D] drop
\#delimit command, [M-2] semicolons, [P] \#delimit
delimited,
export subcommand, [D] import delimited
import subcommand, [D] import delimited
delimiter
for comments, $[\mathrm{P}]$ comments
for lines, [P] \#delimit
delta, see $\delta$
beta influence statistic, [R] clogit postestimation, $[R]$ logistic postestimation, $[R]$ logit postestimation
chi-squared influence statistic, $[\mathrm{R}]$ clogit postestimation, $[R]$ logistic postestimation, $[\mathrm{R}]$ logit postestimation
deviance influence statistic, $[R]$ clogit postestimation, $[R]$ logistic postestimation, $[R]$ logit postestimation
method, $[R]$ margins, $[R]$ nlcom, $[R]$ predictnl, $[R]$ testnl, [SEM] estat residuals, [SEM] estat teffects, [SVY] variance estimation, [SVY] Glossary
dendrogram, [G-2] graph other, [MV] cluster, [MV] cluster dendrogram, [MV] Glossary
dendrogram, cluster subcommand, [MV] cluster dendrogram
density
estimation, kernel, [R] kdensity
functions, [M-5] normal( )
smoothing, [G-2] graph other
density option, [G-2] graph twoway histogram density-distribution sunflower plot, $[\mathrm{R}]$ sunflower dereference, [M-6] Glossary
dereferencing, [M-2] ftof, [M-2] pointers
_deriv() function, [M-5] deriv( )
deriv() function, [M-5] deriv()
derivative of incomplete gamma function, [D] functions
derivatives, [M-5] deriv()
numeric, $[\mathrm{R}]$ dydx, $[\mathrm{R}]$ testnl
derived plottypes, [G-3] advanced_options
deriv_init() functions, [M-5] deriv()
deriv_init_*() functions, [M-5] deriv()
deriv_query() function, [M-5] deriv()
deriv_result_*() functions, [M-5] deriv()
describe,
ado subcommand, $[R]$ net
classutil subcommand, $[\mathrm{P}]$ classutil
bcal subcommand, [D] bcal
estimates subcommand, $[R]$ estimates describe
forecast subcommand, [TS] forecast describe
graph subcommand, [G-2] graph describe
irf subcommand, [TS] irf describe
mata subcommand, [M-3] mata describe
mi subcommand, [MI] mi describe
net subcommand, $[R]$ net
putexcel subcommand, $[\mathrm{P}]$ putexcel
ssc subcommand, [R] ssc
ssd subcommand, [SEM] ssd
describe command, [D] describe, [U] 12.6 Dataset, variable, and value labels
describing graph, [G-2] graph describe
describing mi data, [MI] mi describe
descriptive statistics,
CIs for means, proportions, and counts, $[\mathrm{R}]$ ci
correlations, $[\mathrm{R}]$ correlate, $[\mathrm{R}]$ pcorr,
[R] tetrachoric
creating dataset containing, [D] collapse
creating variables containing, [D] egen
displaying, [D] codebook, [D] pctile, [R] grmeanby,
$[R]$ lv, $[R]$ summarize, $[\mathrm{XT}]$ xtsum, $[\mathrm{XT}]$ xttab
estimation, $[R]$ mean, $[R]$ proportion, $[R]$ ratio, $[R]$ total
means, $[R]$ ameans, $[R]$ summarize
percentiles, $[R]$ centile
pharmacokinetic data, make dataset of, $[\mathrm{R}]$ pkcollapse summarize, $[R]$ pksumm
tables, $[R]$ table, $[R]$ tabstat, $[R]$ tabulate oneway, $[R]$ tabulate twoway, $[R]$ tabulate, summarize()
design effects, [R] loneway, [SVY] estat, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway, [SVY] Glossary
design matrix, [M-5] designmatrix (), [M-5] I( )
design, fvset subcommand, $[\mathrm{R}]$ fvset
designmatrix() function, [M-5] designmatrix()
destring command, [D] destring
destroy() function, [M-2] class
destructor, [M-2] class
destructors, class, $[\mathrm{P}]$ class
$\operatorname{det}()$ function, [D] functions, [M-5] $\operatorname{det}(),[P]$ matrix define
determinant of matrix, $[\mathrm{M}-5] \operatorname{det}(),[\mathrm{P}]$ matrix define deterministic trend, [TS] Glossary
dettriangular() function, [M-5] det() deviance residual, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [R] binreg postestimation, $[R] \mathbf{f p}$ postestimation, $[R] \mathbf{g l m}$ postestimation, $[R]$ logistic postestimation, [R] logit postestimation, [R] probit postestimation, [ST] stcox postestimation, [ST] streg postestimation
deviation cross product, [M-5] crossdev( ), [M-5] quadcross( )
dexponential, tssmooth subcommand, [TS] tssmooth dexponential
dfactor command, [TS] dfactor, [TS] dfactor postestimation
DFBETA, [R] regress postestimation, [ST] stcox postestimation, [ST] stcrreg postestimation, [ST] Glossary
dfbeta command, $[\mathrm{R}]$ regress postestimation
dfgls command, [TS] dfgls
DFITS, [R] regress postestimation
DFP algorithm, [R] ml
dfuller command, [TS] dfuller
dgammapda() function, [D] functions, [M-5] normal()
dgammapdada() function, [D] functions, [M-5] normal( )
dgammapdadx() function, [D] functions, [M-5] normal( )
dgammapdx () function, [D] functions, [M-5] normal()
dgammapdxdx() function, [D] functions, [M-5] normal( )
dhms () function, [D] datetime, [D] functions, [M-5] date()
_diag() function, [M-5] _diag()
$\operatorname{diag}()$ function, [D] functions, [M-5] $\operatorname{diag}()$, $[\mathrm{P}]$ matrix define
diag0cnt () function, [D] functions, [M-5] diag0cnt( ), $[\mathrm{P}]$ matrix define
diagnostic codes, [D] icd9
diagnostic plots, [G-2] graph other, $[\mathrm{R}]$ diagnostic plots, $[R]$ logistic postestimation, $[R]$ regress postestimation diagnostic plots
diagnostics, regression, see regression diagnostics
diagonal, [M-5] diagonal( ), [M-6] Glossary
diagonal matrix, [M-5] _diag( ), [M-5] diag( ), [M-5] diagonal( ), [M-5] isdiagonal( ), [M-6] Glossary
diagonal vech model, [TS] mgarch, [TS] mgarch dvech diagonal () function, [M-5] diagonal()
diagonals of matrices, $[\mathrm{P}]$ matrix define
dialog
box, $[\mathrm{R}] \mathrm{db},[\mathrm{P}]$ dialog programming, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen, $[\mathrm{P}]$ window manage, $[\mathrm{P}]$ window menu, $[\mathrm{P}]$ window push, $[\mathrm{P}]$ window stopbox
programming, $[\mathrm{P}]$ dialog programming, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen, $[\mathrm{P}]$ window manage, $[\mathrm{P}]$ window menu, $[\mathrm{P}]$ window push, $[\mathrm{P}]$ window stopbox
Dice coefficient similarity measure, [MV] measure_option
dichotomous outcome model, see outcomes, binary, see outcomes, binary
Dickey-Fuller test, [TS] dfgls, [TS] dfuller
dictionaries, [D] export, [D] import, [D] infile (fixed format), [D] infix (fixed format), [D] outfile, [M-5] asarray ( )
$\operatorname{diff}()$, egen function, [D] egen
difference of estimated coefficients, see linear combinations of estimators
difference operator, [TS] Glossary, [U] 11.4.4 Timeseries varlists
differences of two means test, [SVY] svy postestimation
differentiation, [M-5] deriv( )
difficult option, [R] maximize
digamma() function, [D] functions, [M-5] factorial()
digitally signing data, see datasignature command
digits, controlling the number displayed, [D] format,
[U] 12.5 Formats: Controlling how data are displayed
dilation, [MV] procrustes, [MV] Glossary
dimension, [MV] Glossary
dir,
ado subcommand, $[R]$ net
bcal subcommand, [D] bcal
classutil subcommand, [P] classutil
cluster subcommand, [MV] cluster utility
constraint subcommand, $[\mathrm{R}]$ constraint
_estimates subcommand, $[P]$ _estimates
estimates subcommand, [R] estimates store
graph subcommand, [G-2] graph dir
label subcommand, [D] label
macro subcommand, $[P]$ macro
matrix subcommand, $[\mathrm{P}]$ matrix utility
postutil subcommand, $[\mathrm{P}]$ postfile
program subcommand, [P] program
_return subcommand, [P] _return
scalar subcommand, $[\mathrm{P}]$ scalar
serset subcommand, $[P]$ serset
sysuse subcommand, [D] sysuse
dir command, [D] dir
dir macro extended function, $[\mathrm{P}]$ macro
$\operatorname{dir}()$ function, [M-5] $\operatorname{dir}()$
direct standardization, $[\mathrm{R}]$ dstdize, $[\mathrm{R}]$ mean, $[R]$ proportion, [ $R$ ] ratio, [SVY] direct standardization, [SVY] Glossary
direction of an effect,
lower, [PSS] intro, [PSS] power, [PSS] Glossary
upper, [PSS] intro, [PSS] power, [PSS] Glossary
directional test, see one-sided test
directories, [M-5] chdir( ), [M-5] dir( ),
[M-5] direxists( ), [P] creturn,
[U] 11.6 Filenaming conventions,
[U] 18.3.11 Constructing Windows filenames by using macros
changing, [D] cd
creating, [D] mkdir
listing, [D] dir
location of ado-files, [U] 17.5 Where does Stata
look for ado-files?
removing, [D] rmdir
directory, class, $[\mathrm{P}]$ classutil
direxists() function, [M-5] direxists()
direxternal() function, [M-5] direxternal( )
discard command, $[\mathrm{P}]$ discard,
[U] 18.11.3 Debugging ado-files
discard, relationship to graph drop, [G-2] graph drop
discordant
pairs, [PSS] power, [PSS] power
pairedproportions, [PSS] Glossary
proportion, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
discrete option, [G-2] graph twoway histogram discrete survival data, [ST] discrete
discrim
knn command, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim knn postestimation
lda command, [MV] discrim, [MV] discrim estat, [MV] discrim Ida, [MV] discrim Ida postestimation
logistic command, [MV] discrim, [MV] discrim estat, [MV] discrim logistic, [MV] discrim logistic postestimation
qda command, [MV] discrim, [MV] discrim estat, [MV] discrim qda, [MV] discrim qda postestimation
discriminant analysis, [MV] candisc, [MV] discrim, [MV] discrim knn, [MV] discrim lda, [MV] discrim logistic, [MV] discrim qda, [MV] Glossary
loading plot, [MV] scoreplot
score plot, [MV] scoreplot
discriminant function, [MV] discrim, [MV] discrim Ida, [MV] discrim Ida postestimation, [MV] Glossary
discriminating variables, [MV] Glossary
disparity, [MV] Glossary
dispersion, measures of, [D] pctile, [XT] xtsum, see standard deviations, displaying, see variance, displaying, see percentiles, displaying, see range of data
display
as error, [M-5] displayas( ), [M-5] errprintf( )
as text, as result, etc., [M-5] displayas( )
formats, [D] describe, [D] format, [P] macro,
[U] 12.5 Formats: Controlling how data are
displayed, [U] 24.3 Displaying dates and times
graph, [G-2] graph display
settings, [R] set showbaselevels
width and length, [R] log
display,
ereturn subcommand, [P] ereturn
graph subcommand, [G-2] graph display
ml subcommand, $[\mathrm{R}] \mathrm{ml}$
display command, $[\mathrm{P}]$ display, $[\mathrm{P}]$ macro,
[U] 19.1.2 A list of the immediate commands
as a calculator, $[\mathrm{R}]$ display
display macro extended function, $[\mathrm{P}]$ display
display() function, [M-5] display()
displayas() function, [M-5] displayas()
displayflush() function, [M-5] displayflush()
displaying, also see printing, logs (output)
contents, [D] describe
data, [D] edit, [D] list
files, [D] type
long strings, see string variables, long
macros, $[\mathrm{P}]$ macro
matrix, $[\mathrm{P}]$ matrix utility
named graphs, [G-2] graph display, [G-2] graph use
output, $[\mathrm{P}]$ display, $[\mathrm{P}]$ quietly, $[\mathrm{P}]$ smcl, [P] tabdisp
previously typed lines, [R] \#review
scalar expressions, $[P]$ display, $[P]$ scalar
stored results, $[\mathrm{R}]$ stored results
dissimilarity, [MV] Glossary
matrix, [MV] matrix dissimilarity, [MV] Glossary, $[\mathrm{P}]$ matrix dissimilarity
measures,
[MV] cluster, [MV] cluster programming utilities, [MV] matrix dissimilarity, [MV] mds, [MV] measure_option, [P] matrix dissimilarity absolute value, [MV] measure_option Bray and Curtis, [MV] clustermat Canberra, [MV] measure_option Euclidean, [MV] measure_option Gower, [MV] measure _option maximum value, [MV] measure_option Minkowski, [MV] measure_option
dissimilarity, matrix subcommand, [MV] matrix dissimilarity, $[\mathrm{P}]$ matrix dissimilarity
distance matrices, [MV] matrix dissimilarity, [P] matrix dissimilarity
distances, see dissimilarity measures
distances, estat subcommand, [MV] ca postestimation
distribution functions, [M-5] normal( )
distributional diagnostic plots, [G-2] graph other
distributions,
examining, [D] pctile, [R] ameans, [R] centile,
$[R]$ kdensity, $[R]$ mean, $[R]$ pksumm,
$[R]$ summarize, $[R]$ total
income, $[R]$ inequality
plots, $[R]$ cumul, $[R]$ cusum, $[R]$ diagnostic plots,
[R] dotplot, [R] histogram, [R] kdensity,
$[R]$ ladder, $[R]$ lv, $[R]$ spikeplot, $[R]$ stem
standard population, $[R]$ dstdize
testing equality of, $[R]$ ksmirnov, $[R]$ kwallis,
$[R]$ ranksum, $[R]$ signrank
testing for normality, [MV] mvtest normality,
[R] sktest, [R] swilk
transformations
to achieve normality, [R] boxcox, [R] ladder
to achieve zero skewness, $[\mathrm{R}]$ Inskew0
disturbance term, [XT] Glossary
division operator, see arithmetic operators
divisive hierarchical clustering methods, [MV] cluster,
[MV] Glossary
DLL, [P] plugin
Dmatrix() function, [M-5] Dmatrix( )
do command, [R] do, [U] 16 Do-files
.do file, [U] 11.6 Filenaming conventions
do . . . while, [M-2] do, [M-2] continue, [M-2] break
dockable, set subcommand, [R] set
dockingguides, set subcommand, [R] set
documentation, [U] 1 Read this-it will help
keyword search on, $[\mathrm{R}]$ search, [U] 4 Stata's help and search facilities
documenting data, [D] codebook, [D] labelbook, [D] notes
_docx*() functions, [M-5] _docx*()
doedit command, [R] doedit
dofb() function, [D] datetime business calendars,
[D] functions, [M-5] date( )
dofC() function, [D] datetime, [D] functions, [M-5] date( )
dofc() function, [D] datetime, [D] functions, [M-5] date()
dofh() function, [D] datetime, [D] functions, [M-5] date()
do-files, $[\mathrm{P}]$ break, $[\mathrm{P}]$ include, $[\mathrm{P}]$ version, $[\mathrm{R}]$ do, [U] 16 Do-files, [U] 18.2 Relationship between a program and a do-file
adding comments to, $[\mathrm{P}]$ comments
editing, [R] doedit
long lines, [P] \#delimit, [U] 18.11.2 Comments and long lines in ado-files
dofm() function, [D] datetime, [D] functions, [M-5] date()
dofq() function, [D] datetime, [D] functions, [M-5] date()
dofw() function, [D] datetime, [D] functions, [M-5] date()
dofy() function, [D] datetime, [D] functions, [M-5] date()
domain sampling, [MV] alpha

Doornik-Hansen normality test, [MV] mvtest normality
dose-response models, [R] binreg, [R] glm, [R] logistic dot,
graph subcommand, [G-2] graph dot
graph twoway subcommand, [G-2] graph twoway dot
dot plots, [G-2] graph dot, [G-2] graph twoway dot, [G-3] area_options, [G-3] line_options
dotplot command, [R] dotplot
dotted lines, [G-4] linepatternstyle
double, [D] data types
double (storage type), [U] 12.2.2 Numeric storage types
double quotes, $[\mathrm{P}]$ macro
doublebuffer, set subcommand, [R] set
double-exponential smoothing, [TS] tssmooth dexponential
double-precision floating point number, [U] 12.2.2 Numeric storage types
doubly robust estimator, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipwra, [TE] Glossary
dow () function, [D] datetime, [D] functions, [M-5] date( ), [U] 24.5 Extracting components of dates and times
doy () function, [D] datetime, [D] functions, [M-5] date()
dp, set subcommand, [D] format, [R] set
drawnorm command, [D] drawnorm
drift, [TS] Glossary
drop,
classutil subcommand, [P] classutil
cluster subcommand, [MV] cluster utility
constraint subcommand, $[\mathrm{R}]$ constraint
duplicates subcommand, [D] duplicates
_estimates subcommand, [P] _estimates
estimates subcommand, [R] estimates store
forecast subcommand, [TS] forecast drop
graph subcommand, [G-2] graph drop
irf subcommand, [TS] irf drop
label subcommand, [D] label
macro subcommand, [P] macro
mata subcommand, [M-3] mata drop
matrix subcommand, $[\mathrm{P}]$ matrix utility
notes subcommand, [D] notes
program subcommand, [P] program
_return subcommand, [P] _return
scalar subcommand, [P] scalar
serset subcommand, $[P]$ serset
drop command, [D] drop
dropline, graph twoway subcommand, [G-2] graph twoway dropline
dropout, [PSS] intro, [PSS] Glossary
dropping graphs, [G-2] graph drop
dropping programs, $[\mathrm{P}]$ discard
dropping variables and observations, [D] drop
ds command, [D] ds
dsign() function, [M-5] dsign(), [M-5] sign( )
dstdize command, [R] dstdize
.dta file, [U] 11.6 Filenaming conventions
.dta file extension, technical description, $[\mathrm{P}]$ file formats .dta
.dtasig file, [U] 11.6 Filenaming conventions dual scaling, [MV] ca
Duda and Hart index stopping rules, [MV] cluster stop dummy variables, see indicator variables, see indicators Duncan's multiple-comparison adjustment, see multiple comparisons, Duncan's method
dunnettprob() function, [D] functions, [M-5] normal( )
Dunnett's multiple comparison adjustment, see multiple comparisons, Dunnett's method
Dunnett's multiple range distribution,
cumulative, [D] functions
inverse cumulative, [D] functions
_dup (\#), display directive, [P] display
duplicate observations,
dropping, [D] duplicates
identifying, [D] duplicates
duplicates
drop command, [D] duplicates
examples command, [D] duplicates
list command, [D] duplicates
report command, [D] duplicates
tag command, [D] duplicates
duplicating
clustered observations, [D] expandel
observations, [D] expand
duplication matrix, [M-5] Dmatrix( )
duration analysis, see survival analysis
Durbin-Watson statistic, [R] regress postestimation time series, [TS] prais
durbinalt, estat subcommand, [R] regress postestimation time series
Durbin's alternative test, [R] regress postestimation time series
dvech, mgarch subcommand, [TS] mgarch dvech
dwatson, estat subcommand, [R] regress postestimation time series
dyadic operator, [M-2] syntax, [M-6] Glossary
dydx command, [R] dydx
dynamic conditional-correlation model, [TS] mgarch, [TS] mgarch dce
dynamic factor model, [TS] dfactor, [TS] dfactor postestimation, also see state-space model
dynamic forecast, [TS] arch, [TS] arfima, [TS] fcast compute, [TS] fcast graph, [TS] forecast, [TS] forecast adjust, [TS] forecast clear, [TS] forecast coefvector, [TS] forecast create, [TS] forecast describe, [TS] forecast drop, [TS] forecast estimates, [TS] forecast exogenous, [TS] forecast identity, [TS] forecast list, [TS] forecast query, [TS] forecast solve, [TS] mgarch, [TS] Glossary, [U] 20.20 Dynamic forecasts and simulations
dynamic model, [XT] Glossary
dynamic panel-data regression, [XT] xtabond,
[XT] xtdpd, [XT] xtdpdsys
dynamic regression model, [TS] arfima, [TS] arima, [TS] var
dynamic structural simultaneous equations, [TS] var svar
dynamic-multiplier function, [TS] irf, [TS] irf cgraph, [TS] irf create, [TS] irf ctable, [TS] irf ograph, [TS] irf table, [TS] var intro, [TS] Glossary .dynamicmv built-in class function, [P] class

## E

e() function, [D] functions, [M-5] e()
$e()$ stored results, $[P]$ ereturn, $[P]$ _estimates,
$[P]$ return, $[R]$ stored results,
[U] 18.8 Accessing results calculated by other programs, [U] 18.9 Accessing results calculated by estimation commands, [U] 18.10.2 Storing results in e()
$e$ (functions) macro extended function, $[P]$ macro
$e$ (macros) macro extended function, $[P]$ macro
$e$ (matrices) macro extended function, $[\mathrm{P}]$ macro
$e$ (sample) function, [D] functions, $[P]$ ereturn,
[P] return
e(sample), resetting, [R] estimates save
e(scalars) macro extended function, $[\mathrm{P}]$ macro
EB, see empirical Bayes
EBCDIC files, [D] filefilter, [D] infile (fixed format), [U] 21.2.9 If you have EBCDIC data
e-class command, $[P]$ program, $[P]$ return, $[R]$ stored results, $[\mathrm{U}]$ 18.8 Accessing results calculated by other programs
economist scheme, [G-3] axis_options, [G-4] scheme economist
edit command, [D] edit
edit, graphs, [G-1] graph editor
editing
ado-files and do-files, $[R]$ doedit
commands, [U] 10 Keyboard use
data, [D] edit, [D] generate, [D] merge, [D] recode
files while in Stata, [R] doedit
output, [U] 15 Saving and printing output-log files
_editmissing() function, [M-5] editmissing()
editmissing() function, [M-5] editmissing()
_edittoint() function, [M-5] edittoint()
edittoint() function, [M-5] edittoint()
_edittointtol() function, [M-5] edittoint()
edittointtol() function, [M-5] edittoint()
_edittozero() function, [M-5] edittozero()
edittozero() function, [M-5] edittozero()
_edittozerotol() function, [M-5] edittozero()
edittozerotol() function, [M-5] edittozero()
_editvalue() function, [M-5] editvalue()
editvalue() function, [M-5] editvalue()
EE estimator, see estimating-equation estimator
effect, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs
detection of, see minimum detectable effect size minimum detectable, see minimum detectable effect size
treatment, see treatment effect
effect size, [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank, [ST] Glossary, see $\delta$
effects,
direct, [SEM] estat teffects, [SEM] example 7, [SEM] example 42g, [SEM] methods and formulas for sem, [SEM] Glossary
indirect, [SEM] estat teffects, [SEM] example 7, [SEM] example 42g, [SEM] methods and formulas for sem, [SEM] Glossary
total, [SEM] estat teffects, [SEM] example 7, [SEM] example 42g, [SEM] methods and formulas for sem, [SEM] Glossary
effects, estat subcommand, [SVY] estat effect-size
curve, [PSS] intro, [PSS] power, graph, [PSS] Glossary
determination, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
efficiency, query subcommand, [R] query eform, estat subcommand, [SEM] estat eform eform_option, [R] eform_option
EGARCH, see exponential generalized autoregressive conditional heteroskedasticity
egen command, [D] egen, [MI] mi passive, [MI] mi xeq
EGLS, see estimated generalized least squares
_eigen_la() function, [M-5] eigensystem()
_eigensystem() function, [M-5] eigensystem()
eigensystem() function, [M-5] eigensystem()
_eigensystemselect*() functions,
[M-5] eigensystemselect()
eigensystemselect*() functions,
[M-5] eigensystemselect()
eigenvalue stability condition, [TS] estat aroots, [TS] varstable, [TS] vecstable
eigenvalue stability index, [SEM] estat stable eigenvalues, [M-5] eigensystem( ), [M-6] Glossary, [MV] factor, [MV] factor postestimation, [MV] pca, [MV] rotate, [MV] rotatemat, [MV] screeplot, [MV] Glossary, [P] matrix eigenvalues, $[\mathrm{P}]$ matrix svd, $[\mathrm{P}]$ matrix symeigen
_eigenvalues () function, [M-5] eigensystem() eigenvalues () function, [M-5] eigensystem() eigenvalues, matrix subcommand, $[\mathrm{P}]$ matrix eigenvalues
eigenvectors, [M-5] eigensystem( ), [M-6] Glossary, [MV] factor, [MV] factor postestimation, [MV] pca, [MV] rotate, [MV] rotatemat, [MV] scoreplot, [MV] Glossary, [P] matrix svd, $[\mathrm{P}]$ matrix symeigen
EIM, see expected information matrix
eim, see sem option vce()
eivreg command, $[R]$ eivreg, $[R]$ eivreg postestimation
el() function, [D] functions, $[P]$ matrix define elimination matrix, [M-5] Lmatrix( )
ellipsis, [G-4] text
else command, $[P]$ if
eltype, [M-2] declarations, [M-6] Glossary
eltype() function, [M-5] eltype()
EM, see expectation-maximization algorithm
empirical Bayes, [ME] mecloglog postestimation, [ME] meglm, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] meologit postestimation, [ME] meoprobit postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] Glossary
means, see posterior mean
modes, see posterior mode
predictions, [SEM] intro 7, [SEM] methods and formulas for gsem, [SEM] predict after gsem empirical cumulative distribution function, $[R]$ cumul emptycells, set subcommand, $[R]$ set, $[R]$ set emptycells
Encapsulated PostScript, [G-2] graph export, [G-3] eps_options, [G-4] text
encode command, [D] encode, [U] 23.2 Categorical string variables
end command, [M-3] end
ending a Stata session, $[P]$ exit, $[R]$ exit
endless loop, see loop, endless
end-of-line characters, [D] changeeol
endogeneity test, [R] ivregress postestimation
endogenous
covariates, $[R]$ gmm, $[R]$ ivpoisson, $[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivtobit, $[R]$ reg3, $[X T]$ xtdpd, [XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg
treatment, [TE] etpoisson, [TE] etregress
treatment-effects model, [SEM] example 46g
endogenous, continued
variable, [SEM] intro 4, [SEM] Glossary, [SVY] svy estimation, [TS] Glossary, [XT] Glossary
endogenous, estat subcommand, [R] ivregress postestimation
ends (), egen function, [D] egen
Engle's LM test, [R] regress postestimation time series
Enhanced Metafile, [G-2] graph export
ensuring mi data are consistent, [MI] mi update
entering data, see importing data, see inputting data interactively, see reading data from disk
environment macro extended function, $[\mathrm{P}]$ macro
environment variables (Unix), [P] macro
eolchar, set subcommand, $[R]$ set
Epanechnikov kernel function, [G-2] graph twoway kdensity, [G-2] graph twoway lpoly,
$[R]$ kdensity, [R] lpoly, [R] qreg, [TE] teffects overlap
epidemiological tables, [ST] epitab
epidemiology, [ST] epitab, [ST] strate
epidemiology and related,
Brier score decomposition, [R] brier
interrater agreement, $[\mathrm{R}]$ kappa
meta-analysis, $[\mathrm{R}]$ meta
pharmacokinetic data, see pharmacokinetic data
ROC analysis, see receiver operating characteristic analysis
standardization, [R] dstdize
symmetry and marginal homogeneity tests, [R] symmetry
tables, $[R]$ tabulate twoway
epsdouble() function, [D] functions
epsfloat() function, [D] functions
epsilon() function, [M-5] epsilon( ), [M-6] Glossary
eqgof, estat subcommand, [SEM] estat eqgof
eqtest, estat subcommand, [SEM] estat eqtest
equal FMI test, [MI] mi estimate, [MI] mi test, [MI] Glossary
equal-allocation design, see balanced design
equality of means tests, [MV] hotelling, [MV] manova, [MV] mvtest means
equality operator, [U] 13.2.3 Relational operators
equality test of
binomial proportions, [R] bitest
coefficients, $[\mathrm{R}]$ pwcompare, $[\mathrm{R}]$ sureg, $[\mathrm{R}]$ test, [R] testnl, [SVY] svy postestimation
distributions, [R] ksmirnov, [R] kwallis, $[R]$ ranksum, $[R]$ signrank
margins, $[R]$ margins, $[R]$ pwcompare
means, $[R]$ contrast, $[R]$ esize, $[R]$ pwmean,
$[R]$ ttest, [SVY] svy postestimation
medians, $[\mathrm{R}]$ ranksum
proportions, $[\mathrm{R}]$ bitest, [R] prtest
ROC areas, $[R]$ roccomp, $[R]$ rocreg
survivor functions, [ST] sts test
variances, $[R]$ sdtest
equamax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
equation names of matrix, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix rownames, $[\mathrm{U}] 14.2$ Row and column names
_equilc() function, [M-5] _equilre()
equilibration, [M-5] _equilrc()
_equilr() function, [M-5] _equilrc()
_equilrc() function, [M-5] _equilrc()
equivalence test, $[\mathrm{R}] \mathbf{p k},[\mathrm{R}]$ pkequiv
erase, [M-5] unlink()
erase command, [D] erase
erase, mi subcommand, [MI] mi erase, [MI] styles
erase, snapshot subcommand, [D] snapshot
erasing files, [D] erase
erasing graph files, [G-2] graph drop
ereturn
clear command, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
display command, [P] ereturn
list command, $[P]$ ereturn, $[P]$ return, $[R]$ stored results
local command, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
matrix command, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
post command, $[P]$ ereturn, $[P]$ makeens, [P] return
repost command, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
scalar command, $[P]$ ereturn, $[P]$ return
error, [SEM] Glossary
checking, [D] assert
codes, [M-2] errors
handling, $[\mathrm{P}]$ capture, $[\mathrm{P}]$ confirm, $[\mathrm{P}]$ error, [U] 16.1.4 Error handling in do-files
messages and return codes, $[\mathrm{P}]$ error, $[\mathrm{P}]$ rmsg,
$[R]$ error messages, $[U]$ 4.8.5 Return codes,
[U] 8 Error messages and return codes, also see error handling searching, [R] search
variable, [SEM] intro 4, [SEM] Glossary
error command, [P] error
_error() function, [M-5] error()
error() function, [M-5] error()
error, reshape subcommand, [D] reshape
error-bar charts, $[R]$ serrbar
error-components model, [XT] xthtaylor, [XT] Glossary
errorrate, estat subcommand, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim lda postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
errors-in-variables regression, $[\mathrm{R}]$ eivreg errprintf () function, [M-5] errprintf() esample, estimates subcommand, [R] estimates save esize and esizei commands, [R] esize
esize, estat subcommand, [R] regress postestimation
estat, $[\mathrm{P}]$ estat programming
abond command, $[\mathrm{XT}]$ xtabond postestimation,
[XT] xtdpd postestimation, [XT] xtdpdsys postestimation
acplot command, [TS] estat acplot
alternatives command, [R] asclogit postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation, [R] nlogit postestimation
anova command, [MV] discrim lda postestimation anti command, [MV] factor postestimation, [MV] pca postestimation
archlm command, $[R]$ regress postestimation time series
aroots command, [TS] estat aroots
bgodfrey command, $[R]$ regress postestimation time series
bootstrap command, [R] bootstrap postestimation
canontest command, [MV] discrim lda postestimation
classfunctions command, [MV] discrim lda postestimation
classification command, [R] estat classification
classtable command, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
common command, [MV] factor postestimation
compare command, [MV] procrustes postestimation
concordance command, [ST] stcox postestimation
config command, [MV] mds postestimation
coordinates command, [MV] ca postestimation, [MV] mca postestimation
correlation command, [R] asmprobit postestimation, $[R]$ asroprobit postestimation
correlations command, [MV] canon postestimation, [MV] discrim lda postestimation, [MV] discrim qda postestimation, [MV] mds postestimation
covariance command, [MV] discrim lda postestimation, [MV] discrim qda postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation
cv command, [SVY] estat
distances command, [MV] ca postestimation
durbinalt command, $[\mathrm{R}]$ regress postestimation time series
dwatson command, $[R]$ regress postestimation time series
effects command, [SVY] estat
eform command, [SEM] intro 7, [SEM] estat eform, [SEM] example 33g, [SEM] example 34 g
endogenous command, $[R]$ ivregress postestimation
eqgof command, [SEM] intro 7, [SEM] estat eqgof, [SEM] example 3
estat, continued
eqtest command, [SEM] intro 7, [SEM] estat eqtest, [SEM] example 13
errorrate command, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
esize command, $[R]$ regress postestimation
factors command, [MV] factor postestimation
facweights command, [R] asmprobit postestimation, [R] asroprobit postestimation
firststage command, [R] ivregress postestimation
framework command, [SEM] intro 7, [SEM] estat framework, [SEM] example 11
ggof command, [SEM] intro 7, [SEM] estat ggof, [SEM] example 21
ginvariant command, [SEM] intro 7, [SEM] estat ginvariant, [SEM] example 22
gof command, $[R]$ estat gof, $[R]$ poisson postestimation, [SEM] estat gof, [SEM] example 4, [SVY] estat
grdistances command, [MV] discrim lda postestimation, [MV] discrim qda postestimation
grmeans command, [MV] discrim Ida postestimation
group command, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] meologit postestimation, [ME] meoprobit postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [ME] mixed postestimation
grsummarize command, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
hettest command, $[R]$ regress postestimation
ic command, $[R]$ estat, $[R]$ estat ic
icc command, [ME] melogit postestimation,
[ME] meprobit postestimation, [ME] meqrlogit
postestimation, [ME] mixed postestimation
imtest command, $[R]$ regress postestimation
inertia command, [MV] ca postestimation
kmo command, [MV] factor postestimation,
[MV] pca postestimation
lceffects command, [SVY] estat
list command, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
loadings command, [MV] ca postestimation, [MV] canon postestimation, [MV] discrim Ida, [MV] discrim Ida postestimation, [MV] pca postestimation
estat, continued
manova command, [MV] discrim Ida postestimation
$m f x$ command, $[R]$ asclogit postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation
mindices command, [SEM] intro 7, [SEM] estat mindices, [SEM] example 5, [SEM] example 9
mvreg command, [MV] procrustes postestimation
nproc command, $[R]$ rocreg postestimation
overid command, $[R]$ gmm postestimation,
$[R]$ ivpoisson postestimation, $[R]$ ivregress postestimation
ovtest command, $[\mathrm{R}]$ regress postestimation pairwise command, [MV] mds postestimation period command, [TS] ucm postestimation phtest command, [ST] stcox $\mathbf{P H}$-assumption tests
predict command, [R] exlogistic postestimation
profiles command, [MV] ca postestimation quantiles command, [MV] mds postestimation
recovariance command, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [ME] mixed postestimation
residuals command, [MV] factor postestimation, [MV] pca postestimation, [SEM] intro 7, [SEM] estat residuals, [SEM] example 10
rotate command, [MV] canon postestimation
rotatecompare command, [MV] canon postestimation, [MV] factor postestimation, [MV] pca postestimation
sargan command, [XT] xtabond postestimation, [XT] xtdpd postestimation, [XT] xtdpdsys postestimation
scoretests command, [SEM] intro 7, [SEM] estat scoretests, [SEM] example 8
sd command, [SVY] estat
se command, $[R]$ exlogistic postestimation, $[R]$ expoisson postestimation
size command, [SVY] estat
smc command, [MV] factor postestimation, [MV] pca postestimation
stable command, [SEM] intro 7, [SEM] estat stable, [SEM] example 7
stdize: prefix command, [SEM] estat stdize, [SEM] example 16
strata command, [SVY] estat
stress command, [MV] mds postestimation
structure command, [MV] discrim lda postestimation, [MV] factor postestimation subinertia command, [MV] mca postestimation
estat, continued
summarize command, [MV] ca postestimation, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation, [MV] factor postestimation, [MV] mca postestimation, [MV] mds postestimation, [MV] pca postestimation, [MV] procrustes postestimation, [R] estat,
[R] estat summarize, [SEM] estat summarize
svyset command, [SVY] estat
szroeter command, [R] regress postestimation
table command, [MV] ca postestimation
teffects command, [SEM] estat teffects,
[SEM] example 7, [SEM] example 42g
vce command, [R] estat, [R] estat vce, [SVY] estat
vif command, $[R]$ regress postestimation
wcorrelation command, [ME] mixed
postestimation, [XT] xtgee postestimation
estimate linear combinations of coefficients, see linear combinations of estimators
estimate, mi subcommand, [MI] mi estimate, [MI] mi estimate using
estimated generalized least squares, $[\mathrm{XT}]$ xtgls,
[XT] xtivreg, [XT] xtreg
_estimates
clear command, [P] _estimates
dir command, $[\mathrm{P}]$ _estimates
drop command, $[\mathrm{P}]$ _estimates
hold command, $[\mathrm{P}]$ _estimates
unhold command, [P] _estimates
estimates
clear command, $[R]$ estimates store
command, [R] suest, [SVY] svy postestimation introduction, $[R]$ estimates
describe command, $[R]$ estimates describe
dir command, $[R]$ estimates store
drop command, $[R]$ estimates store
esample command, [R] estimates save
for command, $[R]$ estimates for
notes command, $[R]$ estimates notes
query command, $[R]$ estimates store
replay command, $[R]$ estimates replay
restore command, $[R]$ estimates store
save command, $[R]$ estimates save
stats command, $[R]$ estimates stats
store command, $[R]$ estimates store
table command, $[R]$ estimates table
title command, [R] estimates title
use command, $[R]$ estimates save
estimates, forecast subcommand, [TS] forecast estimates
estimating-equation estimator, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects ra, [TE] Glossary
estimation
allowed estimation commands, [MI] estimation commands, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates, [U] 18.9 Accessing results calculated by estimation commands, [U] 26 Overview of Stata estimation commands
allowing constraints in, [P] makeens eliminating stored information from, $[\mathrm{P}]$ discard obtaining predictions after, $[\mathrm{P}]$ _predict obtaining robust estimates, $[\mathrm{P}]$ _robust saving results from, $[\mathrm{P}]$ _estimates
degrees of freedom for coefficients, [MI] mi estimate
method, [SEM] Glossary
options, [R] estimation options, [SEM] gsem estimation options, [SEM] sem estimation options
posting VCE, [MI] mi estimate
predictions after, see predictions, obtaining after estimation
results,
clearing, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates,
$[R]$ estimates store
listing, [P] ereturn, [P] _estimates
saving, $[\mathrm{P}]$ _estimates
storing, $[\mathrm{P}]$ ereturn
storing and restoring, $[R]$ estimates store tables of, $[R]$ estimates table
sample, summarizing, $[R]$ estat, $[R]$ estat summarize
test after, [MI] mi estimate, [MI] mi test
estimators,
covariance matrix of, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix get, $[R]$ correlate, $[R]$ estat, $[R]$ estat vce, [U] 20.9 Obtaining the variance-covariance matrix
linear combinations, [U] 20.13 Obtaining linear combinations of coefficients
linear combinations of, $[\mathrm{R}]$ lincom
nonlinear combinations of, $[\mathrm{R}]$ nlcom
etiologic fraction, [ST] epitab
etpoisson command, [TE] etpoisson, [TE] etpoisson postestimation
etregress command, [TE] etregress, [TE] etregress postestimation
Euclidean dissimilarity measure, [MV] measure_option
Euclidean distance, [MV] Glossary
event, [ST] Glossary
event history analysis, see survival analysis
event of interest, [ST] Glossary
_Ex, [SEM] sem and gsem option covstructure( )
exact binomial test, see binomial test
exact statistics, [U] 26.12 Exact estimators
binary confidence intervals, $[\mathrm{R}]$ ci, [R] exlogistic, $[\mathrm{R}]$ roctab
centiles, [R] centile
indirect standardization, $[R]$ dstdize
exact statistics, continued
one-way anova, $[R]$ loneway
regression, $[R]$ exlogistic, $[R]$ expoisson test,
binomial probability, [R] bitest
equality of distributions, [R] ksmirnov
equality of medians, $[R]$ ranksum
Fisher's, $[R]$ tabulate twoway
symmetry and marginal homogeneity, [R] symmetry
tetrachoric correlations, $[\mathrm{R}]$ tetrachoric
exact test, [PSS] Glossary
example datasets, [U] 1.2.2 Example datasets
examples, duplicates subcommand, [D] duplicates
excel,
export subcommand, [D] import excel
import subcommand, [D] import excel
Excel, [U] 21 Entering and importing data
dates, [D] datetime
Microsoft, reading data from, [D] import excel, [D] odbc, [D] xmlsave, also see spreadsheets, transferring
Microsoft, write results to, $[\mathrm{P}]$ putexcel
excess fraction, [ST] epitab
exec (), odbc subcommand, [D] odbc
existence, confirm subcommand, $[\mathrm{P}]$ confirm
exit class program, $[\mathrm{P}]$ class exit
exit command, $[P]$ capture, $[P]$ exit, $[R]$ exit,
[U] 16.1.4 Error handling in do-files
exit Mata, [M-3] end
exiting Stata, see exit command
exit() function, [M-5] exit()
exit, class subcommand, $[P]$ class exit
exlogistic command, $[R]$ exlogistic, [R] exlogistic postestimation
exogeneity test, see endogeneity test
exogenous, forecast subcommand, [TS] forecast exogenous
exogenous variable, [SEM] intro 4, [SEM] Glossary, [TS] Glossary, [XT] Glossary
$\exp ,[\mathrm{M}-2] \exp ,[\mathrm{M}-6]$ Glossary
$=\exp ,[\mathrm{U}] 11$ Language syntax
$\exp ()$ function, $[D]$ functions, $[\mathrm{M}-5] \exp ()$
exp_list, [SVY] svy bootstrap, [SVY] svy brr,
[SVY] svy jackknife, [SVY] svy sdr,
[TS] rolling
expand command, [D] expand
expand factor varlists, $[\mathrm{P}]$ fvexpand
expand for mi data, [MI] mi expand
expand, mi subcommand, [MI] mi expand
expandcl command, [D] expandel
expectation-maximization algorithm, [MI] mi impute mvn, [MI] Glossary
parameter trace files, [MI] mi ptrace
expected information matrix, [SEM] Glossary
experimental data, $[\mathrm{MV}]$ manova, $[\mathrm{R}]$ anova, $[R]$ contrast, $[R]$ correlate, $[R]$ kwallis, $[R]$ logit, $[R]$ mean, $[R]$ regress, $[R]$ summarize,
$[R]$ tabulate oneway, $[R]$ tabulate twoway,
$[\mathrm{R}]$ ttest, $[\mathrm{ST}]$ epitab, $[\mathrm{U}] 12$ Data,
[U] 20 Estimation and postestimation commands, [U] 26.4 Structural equation modeling (SEM), [U] 26.19 Multilevel mixedeffects models, [U] 26.20 Survival-time (failuretime) models
experimental group, [PSS] Glossary
correlation, see correlations, experimental-group
mean, see means, experimental-group
proportion, see proportions, experimental-group
sample size, see sample size, experimental-group
standard deviation, see standard deviations, experimental-group
variance, see variances, experimental-group
experimental study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
exploded logit model, $[\mathrm{R}]$ rologit
expoisson command, $[R]$ expoisson, $[R]$ expoisson postestimation
exponential distribution, [ST] streg
exponential function, [D] functions
exponential generalized autoregressive conditional heteroskedasticity, [TS] arch
exponential notation, [U] 12.2 Numbers
exponential smoothing, [TS] tssmooth, [TS] tssmooth exponential, [TS] Glossary
exponential, stpower subcommand, [ST] stpower exponential
exponential, tssmooth subcommand, [TS] tssmooth exponential
exponential survival
power, [ST] stpower exponential
regression, [ST] streg
sample size, $[\mathrm{ST}]$ stpower exponential
exponential test, [ST] Glossary
power, [ST] stpower exponential
sample size, [ST] stpower exponential
exponentiated coefficients, $[\mathrm{R}]$ eform_option, [SEM] estat eform
exponentiation, $[\mathrm{M}-5] \exp (),[\mathrm{M}-5]$ matexpsym() export
delimited command, [D] import delimited
excel command, [D] import excel
sasxport command, [D] import sasxport
export, graph subcommand, [G-2] graph export
export, mi subcommand, [MI] mi export, [MI] mi export ice, $[\mathrm{MI}]$ mi export nhanes1
exporting data, [D] export, [D] import delimited,
[D] import excel, [D] import sasxport,
[D] odbc, [D] outfile, [D] xmlsave,
[M-5] _docx*(), [M-5] xl(), [MI] mi export,
[MI] mi export ice, [MI] mi export nhanes1,
[U] 21.4 Transfer programs
exporting graphs, [G-2] graph export, [G-2] graph set, [G-3] eps_options, [G-3] png_options, [G-3] ps_options, [G-3] tif_options, [G-4] text
exporting results, $[\mathrm{P}]$ putexcel
exposure () option, see gsem option exposure ()
exposure variable, $[\mathrm{ST}]$ Glossary
expressions, $[\mathrm{M}-2] \exp ,[\mathrm{P}]$ matrix define,
[U] 13 Functions and expressions
extended macro functions, $[\mathrm{P}]$ char, $[\mathrm{P}]$ display, $[P]$ macro, $[P]$ macro lists, $[P]$ serset
external, [M-2] declarations
externals, [M-2] declarations, [M-5] direxternal(), [M-5] findexternal(), [M-5] valofexternal(), [M-6] Glossary
extract diagonal, [M-5] diagonal(), [M-5] diag()
extract, mi subcommand, [MI] mi extract, [MI] mi replace0
extracting $m=\#$ data from mi data, [MI] mi extract, [MI] mi select
extracting original data from mi data, [MI] mi extract extrapolation, [D] ipolate

## F

F
density,
central, [D] functions
noncentral, [D] functions
distribution,
cumulative, [D] functions
cumulative noncentral, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
inverse reverse cumulative noncentral,
[D] functions
reverse cumulative, [D] functions
reverse cumulative noncentral, [D] functions
noncentrality parameter, [D] functions
test, [PSS] Glossary
F() function, [D] functions, [M-5] normal()
Facebook, see Stata on Facebook
factor, [MV] Glossary, [PSS] Glossary
analysis, [MV] alpha, [MV] canon, [MV] factor, [MV] factor postestimation, [MV] Glossary also see confirmatory factor analysis
loading plot, [MV] scoreplot, [MV] Glossary
loadings, [MV] Glossary
model, [TS] dfactor
parsimony rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
score plot, [MV] scoreplot
factor, continued
scores, [MV] factor postestimation, [MV] Glossary, [SEM] intro 7, [SEM] example 14, [SEM] methods and formulas for sem, [SEM] predict after sem
variables, $[\mathrm{P}]$ fvexpand, $[\mathrm{P}]$ matrix rownames, $[\mathrm{P}]$ _rmcoll, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ unab, [PSS] Glossary [R] fvrevar, [R] fvset, [U] 11.4.3 Factor variables, [U] 13.8 Indicator values for levels of factor variables, [U] 14.2.2 Two-part names, [U] 20.11 Accessing estimated coefficients, [U] 25 Working with categorical data and factor variables
factor command, [MV] factor, [MV] factor postestimation
factorial, [U] 11.4.3 Factor variables design, $[M V]$ manova, $[R]$ anova function, [D] functions
factorial() function, [M-5] factorial()
factormat command, [MV] factor, [MV] factor postestimation
factors, estat subcommand, [MV] factor postestimation
factor-variable notation, [SEM] intro 3
factor-variable settings, [R] fvset
facweights, estat subcommand, $[R]$ asmprobit postestimation, $[\mathrm{R}]$ asroprobit postestimation
failure event, $[\mathrm{ST}]$ Glossary
failure-success proportion, [PSS] power pairedproportions, [PSS] Glossary
failure tables, [ST] Itable
failure time, see survival analysis
failure-time model, see survival analysis
false-negative result, see type II error
false-positive rate, $[\mathrm{R}]$ estat classification, $[\mathrm{R}]$ roc, $[R]$ rocreg, $[R]$ rocreg postestimation, $[\mathrm{R}]$ rocregplot
false-positive result, see type I error
family
Bernoulli, [SEM] methods and formulas for gsem binomial, [SEM] methods and formulas for gsem distribution, [SEM] Glossary gamma, [SEM] methods and formulas for gsem Gaussian, [SEM] methods and formulas for gsem multinomial, [SEM] methods and formulas for gsem
negative binomial, [SEM] methods and formulas for gsem
ordinal, [SEM] methods and formulas for gsem
Poisson, [SEM] methods and formulas for gsem
family() option, see gsem option family()
FAQs, [U] 3.2.1 The Stata website (www.stata.com)
search, $[R]$ search, $[U]$ 4.8.4 FAQ searches
fastscroll, set subcommand, [R] set
favorspeed() function, [M-5] favorspeed()
fbufget() function, [M-5] bufio()
fbufput() function, [M-5] bufio()
fcast compute command, [TS] fcast compute
fcast graph command, [TS] fcast graph
_fclose() function, [M-5] fopen()
fclose() function, [M-5] fopen()
FCS, see fully conditional specification
Fden() function, [D] functions, [M-5] normal() feasible generalized least squares, $[\mathrm{R}]$ reg3, $[\mathrm{R}]$ sureg, [SEM] intro 4, [TS] dfgls, [TS] prais, [TS] var, [XT] xtgls, [XT] xtivreg, [XT] xtreg
feasible generalized nonlinear least squares, $[\mathrm{R}]$ nlsur
feedback loops, [SEM] estat stable, [SEM] estat teffects
fences, $[\mathrm{R}]$ lv
ferrortext () function, [M-5] ferrortext()
FEVD, see forecast-error variance decomposition
_fft() function, [M-5] fft()
fft() function, $[\mathrm{M}-5] \mathrm{fft}()$
_fget() function, [M-5] fopen()
fget () function, [M-5] fopen()
_fgetmatrix() function, [M-5] fopen()
fgetmatrix() function, [M-5] fopen()
_fgetnl() function, [M-5] fopen()
fgetnl() function, [M-5] fopen()
FGLS, see feasible generalized least squares
FGNLS, see feasible generalized nonlinear least squares fictional data, [SEM] Glossary
file
conversion, [D] changeeol, [D] filefilter
modification, [D] changeeol, [D] filefilter
translation, [D] changeeol, [D] filefilter
file
close command, [P] file
open command, [P] file
query command, [P] file
read command, [P] file
seek command, [P] file
sersetread command, $[\mathrm{P}]$ serset
sersetwrite command, $[P]$ serset
set command, [P] file
write command, $[\mathrm{P}]$ file
file format, Stata, $[\mathrm{P}]$ file formats .dta
file processing, [M-4] io, [M-5] bufio(), [M-5] cat(),
[M-5] _docx*(), [M-5] ferrortext(),
[M-5] fileexists(), [M-5] findfile( ),
[M-5] fopen(), [M-5] unlink(), [M-5] xl()
file, confirm subcommand, $[P]$ confirm
file, find in path, $[\mathrm{P}]$ findfile
fileexists() function, [D] functions, [M-5] fileexists()
filefilter command, [D] filefilter
filename manipulation, [M-5] adosubdir(),
[M-5] pathjoin()
filenames, displaying, [D] dir
fileread() function, [D] functions
filereaderror() function, [D] functions
files,
checksum of, [D] checksum
comparison, [D] cf
files, continued
compressing, [D] zipfile
copying and appending, $[\mathrm{D}]$ copy
display contents of, [D] type
downloading, [D] checksum, [D] copy,
$[R]$ adoupdate, $[R]$ net, $[R]$ sj, $[R]$ ssc,
$[\mathrm{R}]$ update, $[\mathrm{U}] 28$ Using the Internet to keep
up to date
erasing, [D] erase
exporting, see exporting data
extensions, [U] 11.6 Filenaming conventions
importing, see importing data
loading, [D] use
names, [U] 11.6 Filenaming conventions,
[U] 18.3.11 Constructing Windows filenames by using macros
opening, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen
reading ASCII text or binary, [P] file
saving, $[\mathrm{D}]$ save, $[\mathrm{P}]$ window programming,
$[\mathrm{P}]$ window fopen
temporary, $[\mathrm{P}]$ macro, $[\mathrm{P}]$ preserve, $[\mathrm{P}]$ scalar
uncompressing, [D] zipfile
writing ASCII text or binary, $[\mathrm{P}]$ file
filewrite() function, [D] functions fill
areas, dimming and brightening, [G-2] graph
twoway histogram, [G-2] graph twoway
kdensity, [G-4] colorstyle
color, setting, [G-3] region_options
fill(), egen function, [D] egen
fillin command, [D] fillin
filling in values, [ST] stfill
_fillmissing() function, [M-5] _fillmissing()
filters, [TS] tsfilter, also see smoothers
Baxter-King, [TS] tsfilter bk
Butterworth, [TS] tsfilter bw
Christiano-Fitzgerald, [TS] tsfilter cf
Hodrick-Prescott, [TS] tsfilter hp
final, [M-2] class
findexternal() function, [M-5] findexternal()
findfile command, $[P]$ findfile
findfile() function, [M-5] findfile()
finding file in path, $[\mathrm{P}]$ findfile
finding variables, [D] lookfor
finite population correction, [PSS] power, [PSS] power onemean, [PSS] power pairedmeans, [PSS] Glossary, [SVY] survey, [SVY] svy estimation, [SVY] svyset, [SVY] variance estimation, [SVY] Glossary
first-differenced estimator, [XT] xtabond, $[\mathrm{XT}]$ xtdpd, [XT] xtdpdsys, [XT] xtivreg
first-order latent variables, [SEM] Glossary
firststage, estat subcommand, $[R]$ ivregress postestimation
Fisher-Irwin's exact test, [PSS] power twoproportions, [PSS] Glossary
fisher, xtunitroot subcommand, [XT] xtunitroot

Fisher's
exact test, [PSS] power twoproportions,
[PSS] Glossary, [R] tabulate twoway, [ST] epitab
$z$ test, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary
$z$ transformation, [PSS] power onecorrelation,
[PSS] power twocorrelations, [PSS] Glossary
Fisher-type test, [XT] xtunitroot
fits, adding, [G-2] graph twoway fpfit, [G-2] graph twoway fpfitci, [G-2] graph twoway lift, [G-2] graph twoway lfitci, [G-2] graph twoway qfit, [G-2] graph twoway qfitci
fixed effects, [PSS] Glossary
fixed-effects model, $[M E]$ Glossary, $[R]$ anova, $[R]$ areg, $[R]$ asclogit, $[R]$ clogit, $[X T]$ xtabond,
[XT] xtdpd, $[\mathrm{XT}]$ xtdpdsys, $[\mathrm{XT}]$ xtivreg,
[XT] xtlogit, [XT] xtnbreg, [XT] xtoprobit,
[XT] xtpoisson, [XT] xtreg, [XT] xtregar, [XT] Glossary
multilevel mixed-effects models, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed
F-keys, [U] 10 Keyboard use
flexible functional form, $[R]$ boxcox, $[R] f p,[R]$ mfp flist command, [D] list
float, [D] data types, [U] 13.11 Precision and problems therein
float (storage type), [U] 12.2.2 Numeric storage types
float() function, [D] functions, [M-5] floatround(),
[U] 13.11 Precision and problems therein
floatround() function, [M-5] floatround()
floatwindows, set subcommand, [R] set
flong
data style, [MI] styles, [MI] Glossary
technical description, [MI] technical
flongsep
data style, [MI] mi xeq, [MI] styles, [MI] Glossary
estimating memory requirements, [MI] mi convert
style, [MI] mi copy, [MI] mi erase
technical description, $[\mathrm{MI}]$ technical
floor() function, [D] functions, [M-5] trunc()
_flopin() function, [M-5] lapack()
_flopout() function, [M-5] lapack()
FMI, see fraction missing information
\%fmts, [D] format, [U] 12.5 Formats: Controlling how data are displayed
fmtwidth() function, [D] functions, [M-5] fmtwidth()
folders, see directories
follow-up period, [ST] Glossary
follow-up studies, see incidence studies
follow-up study, see cohort study
fonts, in graphs, [G-4] text
footnote, ml subcommand, $[\mathrm{R}] \mathrm{ml}$
_fopen() function, [M-5] fopen()
fopen() function, [M-5] fopen()
fopen, window subcommand, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen
for, [M-2] for, [M-2] continue, [M-2] break, [M-2] semicolons
for, estimates subcommand, [R] estimates for
forcecorrelations option, see sem option
forcecorrelations
forcenoanchor option, see gsem option
forcenoanchor, see sem option
forcenoanchor
forcexconditional option, see sem option
forcexconditional
foreach command, [P] foreach
forecast, [TS] forecast
adjust command, [TS] forecast adjust
clear command, [TS] forecast clear
coefvector command, [TS] forecast coefvector
create command, [TS] forecast create describe command, [TS] forecast describe drop command, [TS] forecast drop estimates command, [TS] forecast estimates exogenous command, [TS] forecast exogenous identity command, [TS] forecast identity list command, [TS] forecast list query command, [TS] forecast query solve command, [TS] forecast solve
forecast, [G-2] graph other
ARCH model, [TS] arch postestimation ARFIMA model, [TS] arfima postestimation ARIMA model, [TS] arima postestimation dynamic-factor model, [TS] dfactor postestimation econometric model, [TS] forecast, [TS] forecast adjust, [TS] forecast clear, [TS] forecast coefvector, [TS] forecast create, [TS] forecast describe, [TS] forecast drop, [TS] forecast estimates, [TS] forecast exogenous,
[TS] forecast identity, [TS] forecast list,
[TS] forecast query, [TS] forecast solve,
[U] 20.20 Dynamic forecasts and simulations
MGARCH model, see multivariate GARCH postestimation
standard error of, $[R]$ regress postestimation state-space model, [TS] sspace postestimation
structural vector autoregressive model, [TS] var svar postestimation
unobserved-components model, [TS] ucm postestimation
vector autoregressive model, [TS] var postestimation
vector error-correction model, [TS] vec postestimation
forecast-error variance decomposition, [G-2] graph other, [TS] irf, [TS] irf create, [TS] irf ograph, [TS] irf table, [TS] var intro, [TS] varbasic, [TS] vec intro, [TS] Glossary
forecasting, [TS] arch, [TS] arfima, [TS] arima,
[TS] fcast compute, [TS] fcast graph,
[TS] irf create, [TS] mgarch, [TS] tsappend,
[TS] tssmooth, [TS] tssmooth dexponential,
[TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth ma, [TS] tssmooth shwinters, [TS] ucm, [TS] var intro, [TS] var, [TS] vec intro, [TS] vec
foreground color, [G-4] schemes intro
format command, [D] format
format macro extended function, $[P]$ macro
format settings, $[R]$ set cformat
format width, [M-5] fmtwidth()
format, confirm subcommand, $[P]$ confirm
formats, [D] datetime, [D] describe, [D] format,
[D] varmanage, [U] 12.5 Formats: Controlling
how data are displayed, [U] 20.8 Formatting
the coefficient table, [U] 24.3 Displaying dates and times
formatted data, reading, see importing data
formatting contents of macros, $[\mathrm{P}]$ macro
formatting statistical output, [D] format
FORTRAN, [M-2] goto, [M-5] dsign()
forum, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum
forvalues command, [P] forvalues
forward operator, [TS] Glossary
fourfold tables, [ST] epitab
Fourier transform, [M-5] fft()
FoxPro, reading data from, [U] 21.4 Transfer programs
fp generate command, [R] fp
fp plot command, $[\mathrm{R}] \mathbf{f p}$ postestimation
fp predict command, [R] fp postestimation
fp prefix command, $[R] \mathbf{f p},[R] \mathbf{f p}$ postestimation
FPC, see finite population correction
fpfit, graph twoway subcommand, [G-2] graph twoway fpfit
fpfitci, graph twoway subcommand, [G-2] graph twoway fpfitci
_fput() function, [M-5] fopen()
fput() function, [M-5] fopen()
_fputmatrix() function, [M-5] fopen()
fputmatrix() function, [M-5] fopen()
fraction defective, [R] qc
fraction missing information, [MI] mi estimate, [MI] mi predict, [MI] mi test, [MI] Glossary
fraction option, [G-2] graph twoway histogram
fractional polynomial regression, $[\mathrm{R}] \mathbf{f p}$
multivariable, $[\mathrm{R}] \mathbf{m f p}$
fractional sample size, see sample size, fractional
fractionally integrated autoregressive moving-average model, [TS] estat acplot, [TS] psdensity
frailty, see shared frailty
frailty model, [ST] stcox, [ST] stcurve, [ST] streg
framework, estat subcommand, [SEM] estat framework
_fread() function, [M-5] fopen()
fread() function, [M-5] fopen( )
freduse command, [TS] arfima postestimation
free, constraint subcommand, $[R]$ constraint frequencies,
creating dataset of, [D] collapse, [D] contract
graphical representation, $[\mathrm{R}]$ histogram,
[R] kdensity
table of, $[R]$ table, $[R]$ tabstat, $[R]$ tabulate oneway, $[R]$ tabulate twoway, $[R]$ tabulate, summarize(), [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
frequency option, [G-2] graph twoway histogram frequency table, $[\mathrm{XT}]$ xttab
frequency weight, [U] 11.1.6 weight,
[U] 20.23.1 Frequency weights
[frequency=exp] modifier, [U] 11.1.6 weight,
[U] 20.23.1 Frequency weights
frequency-domain analysis, [TS] cumsp, [TS] pergram,
[TS] psdensity, [TS] Glossary
frequentist concepts, [MI] intro substantive
freturncode() function, [M-5] ferrortext()
from,
net subcommand, $[R]$ net
update subcommand, [R] update
from() option, $[\mathrm{R}]$ maximize, see gsem option from(), see sem option from()
frombase() function, [M-5] inbase()
frontier command, $[\mathrm{R}]$ frontier, $[\mathrm{R}]$ frontier postestimation
frontier model, see stochastic frontier model
fsave, window subcommand, $[P]$ window programming
_fseek() function, [M-5] fopen()
fseek() function, [M-5] fopen()
fstatus() function, [M-5] fopen()
Ftail() function, [D] functions, [M-5] normal()
_ftell() function, [M-5] fopen()
ftell() function, [M-5] fopen()
ftfreqs() function, [M-5] fft()
ftpad() function, [M-5] fft()
ftperiodogram() function, [M-5] fft()
ftretime() function, [M-5] fft()
_ftruncate() function, [M-5] fopen()
ftruncate() function, [M-5] fopen()
ftunwrap() function, [M-5] fft()
ftwrap() function, [M-5] fft()
full factorial, [U] 11.4.3 Factor variables
fullsdiag() function, [M-5] fullsvd()
_fullsvd() function, [M-5] fullsvd()
fullsvd() function, [M-5] fullsvd()
fully conditional specification, [MI] mi impute, [MI] mi impute chained, [MI] Glossary
function, graph twoway subcommand, [G-2] graph twoway function
functions, [D] functions, [M-2] declarations, [M-4] intro, [M-5] intro, [M-6] Glossary, [U] 13.3 Functions
aggregate, [D] egen
arguments, [M-1] returnedargs, also see arguments
functions, continued
cluster generate, adding, [MV] cluster programming subroutines
combinations of estimators, $[R]$ lincom, $[R]$ nlcom combinatorial, [D] functions
creating dataset of, [D] collapse, [D] obs
cumulative distribution, [R] cumul
date, $[\mathrm{U}] 24.5$ Extracting components of dates and times
date and time, [D] functions
derivatives and integrals of, $[R] \mathbf{d y d x}$
estimable, $[R]$ margins
evaluator program, $[R]$ gmm, $[R]$ nl, $[R]$ nlsur
extended macro, $[P]$ char, $[P]$ display, $[P]$ macro,
$[P]$ macro lists, $[P]$ serset
fractional polynomial, $[R] \mathbf{f p},[\mathrm{R}] \mathbf{m f p}$
graphing, [D] range, [G-2] graph twoway function
index, $[R]$ logistic postestimation, $[R]$ logit postestimation, $[R]$ probit postestimation
kernel, [R] kdensity, [R] lpoly
link, [R] glm
mathematical, [D] functions
matrix, [D] functions, [P] matrix define,
[U] 14.8 Matrix functions
maximizing likelihood, $[\mathrm{R}]$ maximize, $[\mathrm{R}] \mathrm{ml}$
naming convention, [M-1] naming
obtaining help for, $[R]$ help
orthogonalization, $[R]$ orthog
parameters, [R] nlcom
piecewise cubic and piecewise linear, $[R]$ mkspline
prediction, $[R]$ predict, $[R]$ predictnl
production and cost, $[\mathrm{R}]$ frontier
passing to functions, [M-2] ftof
programming, [D] functions
random number, [D] generate
statistical, [D] functions
string, [D] functions
time-series, [D] functions
underscore, [M-6] Glossary
variance, $[\mathrm{R}]$ glm
future history, [ST] stset, [ST] Glossary
fvexpand command, $[P]$ fvexpand
fvlabel, set subcommand, [R] set, [R] set showbaselevels
fvrevar command, [R] fvrevar
fvset
base command, $[\mathrm{R}]$ fvset
clear command, [R] fvset
command for mi data, [MI] mi XXXset
design command, $[R]$ fvset
report command, $[R]$ fvset
fvset, mi subcommand, [MI] mi XXXset
fvstandard option, see gsem option fvstandard
fvunab command, $[P]$ unab
fvwrap() option, see sem option fvwrap()
fvwrap, set subcommand, $[R]$ set, $[R]$ set
showbaselevels
fvwrapon() option, see sem option fvwrapon()
fvwrapon, set subcommand, [R] set, [R] set showbaselevels
[fweight=exp] modifier, [U] 11.1.6 weight,
[U] 20.23.1 Frequency weights
_fwrite() function, [M-5] fopen()
fwrite() function, [M-5] fopen()
fxsize() option, [G-2] graph combine
fysize() option, [G-2] graph combine

## G

g2 inverse of matrix, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix svd gain, [TS] tsfilter, [TS] tsfilter bk, [TS] tsfilter bw,
[TS] tsfilter cf, [TS] tsfilter hp, [TS] Glossary gamma
density function, [D] functions incomplete, [D] functions
distribution
cumulative, [D] functions
inverse cumulative, [D] functions inverse reverse cumulative, [D] functions reverse cumulative, [D] functions
regression, [SEM] intro 5, [SEM] Glossary
gamma option, see gsem option gamma
gamma() function, [M-5] factorial()
gammaden() function, [D] functions, [M-5] normal()
gammap() function, [D] functions, [M-5] normal( )
gammaptail() function, [D] functions,
[M-5] normal()
gap() option, [G-2] graph twoway histogram
gaps, [ST] stbase, [ST] stdescribe, [ST] stgen, [ST] stset, [ST] Glossary
GARCH, see generalized autoregressive conditional heteroskedasticity
Gauss-Hermite quadrature, see quadrature, GaussHermite
Gauss-Seidel method, [M-5] solvenl( )
Gauss, reading data from, [U] 21.4 Transfer programs
Gaussian kernel function, [G-2] graph twoway kdensity, [G-2] graph twoway lpoly, $[R]$ kdensity, [R] lpoly, [R] qreg, [TE] teffects overlap
Gaussian regression, [SEM] Glossary
GEE, see generalized estimating equations
_geigen_la() function, [M-5] geigensystem()
_geigenselect*_la() functions,
[M-5] geigensystem( )
geigensystem() function, [M-5] geigensystem()
_geigensystem_la() function, [M-5] geigensystem()
geigensystemselect*() functions,
[M-5] geigensystem( )
generalized
autoregressive conditional heteroskedasticity, [TS] arch, [TS] Glossary
eigensystem, [M-5] geigensystem()
eigenvalues, [M-6] Glossary
estimating equations, [XT] xtgee, [XT] Glossary
generalized, continued
gamma survival regression, [ST] streg
Hessenberg decomposition, [M-5] ghessenbergd( )
inverse, [M-5] invsym( ), [M-5] pinv( ),
[M-5] qrinv( )
inverse of matrix, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix svd
least squares,
estimated, see estimated generalized least squares
feasible, see feasible generalized least squares
least-squares estimator, [TS] prais, [TS] Glossary
linear latent and mixed models, [R] gllamm
linear mixed model, [ME] me, [ME] Glossary
linear mixed-effects model, [ME] me, [ME] meglm, [ME] Glossary
linear models, [R] binreg, [R] glm, [SVY] svy estimation, [U] 26.6 Generalized linear models, [U] 26.18.3 Generalized linear models with panel data, [XT] xtgee, [XT] Glossary
linear response functions, [SEM] Glossary
method of moments, $[\mathrm{P}]$ matrix accum,
[SEM] Glossary, [U] 26.22 Generalized method of moments (GMM), [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, see gmm command negative binomial regression, [R] nbreg, [SVY] svy estimation
response variables, [SEM] intro 2, [SEM] intro 5, [SEM] gsem family-and-link options
responses, combined, [SEM] example $\mathbf{3 4 g}$
Schur decomposition, [M-5] gschurd( )
SEM, [SEM] Glossary
generate,
cluster subcommand, [MV] cluster generate
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
sts subcommand, [ST] sts generate
generate command, [D] generate, [MI] mi passive, [MI] mi xeq
generate functions, adding, [MV] cluster programming subroutines
generating data, [D] egen, [D] generate
generating variables, [ST] stgen, [ST] sts generate get,
constraint subcommand, $[\mathrm{R}]$ constraint
net subcommand, [R] net
get () function, [D] functions, [P] matrix define, [P] matrix get
getmata command, [D] putmata
getting started, [U] 1 Read this-it will help
Getting Started with Stata manuals, [U] 1.1 Getting Started with Stata
keyword search of, [U] 4 Stata's help and search facilities
gettoken command, $[\mathrm{P}]$ gettoken
Geweke-Hajivassiliou-Keane multivariate normal simulator, [M-5] ghk( ), [M-5] ghkfast()
ggof, estat subcommand, [SEM] estat ggof
ghalton() function, [M-5] halton()
_ghessenbergd() function, [M-5] ghessenbergd()
ghessenbergd() function, [M-5] ghessenbergd( ) _ghessenbergd_la() function, [M-5] ghessenbergd() ghk() function, [M-5] ghk()
ghkfast() function, [M-5] ghkfast()
ghkfast_i() function, [M-5] ghkfast()
ghkfast_init() function, [M-5] ghkfast()
ghkfast_init_*() function, [M-5] ghkfast()
ghkfast_query_*() function, [M-5] ghkfast()
ghk_init() function, [M-5] ghk()
ghk_init_*() function, [M-5] ghk()
ghk_query_npts() function, [M-5] ghk()
GHQ, see quadrature, Gauss-Hermite
ginvariant, estat subcommand, [SEM] estat ginvariant
ginvariant() option, see sem option ginvariant()
GJR, see threshold autoregressive conditional heteroskedasticity
gladder command, [R] ladder
GLLAMM, see generalized linear latent and mixed models
gllamm command, [R] gllamm
GLM, see generalized linear models
glm command, $[R]$ glm, $[R]$ glm postestimation
GLME, see generalized linear mixed-effects model
GLMM, see generalized linear mixed model
global command, [P] macro, [U] 18.3.2 Global macros, [U] 18.3.10 Advanced global macro manipulation
global variable, [M-2] declarations, [M-5] direxternal( ), [M-5] findexternal( ), [M-5] valofexternal( ), [M-6] Glossary
Global, class prefix operator, $[\mathrm{P}]$ class glogit command, [R] glogit, [R] glogit postestimation glsaccum, matrix subcommand, [P] matrix accum GMM, see generalized method of moments gmm command, $[R]$ gmm, $[R]$ gmm postestimation
gnbreg command, $[R]$ nbreg, $[R]$ nbreg postestimation
gof, estat subcommand, $[R]$ estat gof, $[R]$ poisson postestimation, [SEM] estat gof, [SVY] estat
Gompertz survival regression, [ST] streg
Gönen and Heller's $K$, [ST] stcox postestimation
Goodman and Kruskal's gamma, [R] tabulate twoway
goodness of fit, $[R]$ brier, $[R]$ diagnostic plots,
$[R]$ estat gof, $[R]$ ksmirnov, $[R]$ linktest,
$[R]$ logistic postestimation, $[R]$ lrtest,
$[R]$ poisson postestimation, $[R]$ regress postestimation, [SEM] intro 7, [SEM] estat eqgof, [SEM] estat ggof, [SEM] estat gof, [SEM] example 3, [SEM] example 4, [SEM] Glossary, [SVY] estat, also see deviance residual, also see normal distribution and normality, test for
goto, [M-2] goto
Gower coefficient similarity measure, [MV] measure_option
.gph file, [U] 11.6 Filenaming conventions
gph files, [G-2] graph manipulation, [G-4] concept: gph files
describing contents, [G-2] graph describe
gprobit command, [R] glogit, [R] glogit postestimation
gradient option, [R] maximize
grammar, [M-2] syntax
Granger causality, [TS] vargranger, [TS] Glossary
graph
bar command, [G-2] graph bar
box command, [G-2] graph box
combine command, [G-2] graph combine
command, [G-2] graph
copy command, [G-2] graph copy
describe, [G-2] graph describe
dir command, [G-2] graph dir
display command, [G-2] graph display
dot command, [G-2] graph dot,
[G-3] area_options, [G-3] line_options
drop command, [G-2] graph drop
export command, [G-2] graph export
hbar command, [G-2] graph bar
hbox command, [G-2] graph box
matrix command, [G-2] graph matrix
pie command, [G-2] graph pie
play command, [G-2] graph play
print command, [G-2] graph print,
[G-3] pr_options
query command, [G-2] graph query
rename command, [G-2] graph rename
save command, [G-2] graph save
set command, [G-2] graph set
set print command, [G-2] graph set
twoway area command, [G-2] graph twoway area
twoway bar command, [G-2] graph twoway bar
twoway command, [G-2] graph twoway
twoway connected command, [G-2] graph twoway connected
twoway contour command, [G-2] graph twoway contour
twoway contourline command, [G-2] graph twoway contourline
twoway dot command, [G-2] graph twoway dot
twoway dropline command, [G-2] graph twoway dropline
twoway fpfit command, [G-2] graph twoway fpfit
twoway fpfitci command, [G-2] graph twoway fpfitci
twoway function command, [G-2] graph twoway function
twoway histogram command, [G-2] graph twoway histogram
twoway kdensity command, [G-2] graph twoway kdensity
twoway lfit command, [G-2] graph twoway lfit
twoway lfitci command, [G-2] graph twoway lfitci
graph, continued
twoway line command, [G-2] graph twoway line
twoway lowess command, [G-2] graph twoway lowess
twoway lpoly command, [G-2] graph twoway lpoly
twoway lpolyci command, [G-2] graph twoway lpolyci
twoway mband command, [G-2] graph twoway mband
twoway mspline command, [G-2] graph twoway mspline
twoway pcarrow command, [G-2] graph twoway pcarrow
twoway pcarrowi command, [G-2] graph twoway pcarrowi
twoway pcbarrow command, [G-2] graph twoway pcarrow
twoway pccapsym command, [G-2] graph twoway pccapsym
twoway pci command, [G-2] graph twoway pci
twoway pcscatter command, [G-2] graph twoway pcscatter
twoway pcspike command, [G-2] graph twoway pcspike
twoway qfit command, [G-2] graph twoway qfit
twoway qfitci command, [G-2] graph twoway qfitci
twoway rarea command, [G-2] graph twoway rarea
twoway rbar command, [G-2] graph twoway rbar
twoway rcap command, [G-2] graph twoway reap
twoway rcapsym command, [G-2] graph twoway rcapsym
twoway rconnected command, [G-2] graph twoway rconnected
twoway rline command, [G-2] graph twoway rline
twoway rscatter command, [G-2] graph twoway rscatter
twoway rspike command, [G-2] graph twoway rspike
twoway scatter command, [G-2] graph twoway scatter
twoway scatteri command, [G-2] graph twoway scatteri
twoway spike command, [G-2] graph twoway spike
twoway tsline command, [G-2] graph twoway tsline
twoway tsrline command, [G-2] graph twoway tsline
use command, [G-2] graph use
graph,
fcast subcommand, [TS] fcast graph
irf subcommand, [TS] irf graph
ml subcommand, [R] ml
sts subcommand, [ST] sts graph
graph,
adjusted Kaplan-Meier survivor curves, [ST] sts
baseline hazard and survivor, [ST] stcox, [ST] sts
cumulative hazard function, $[\mathrm{ST}]$ stcurve, [ST] sts graph
hazard function, [ST] Itable, [ST] stcurve, [ST] sts graph
Kaplan-Meier survivor curves, [ST] stcox PHassumption tests, [ST] sts, [ST] sts graph $\log$-log curve, [ST] stcox PH-assumption tests survivor function, [ST] stcurve, [ST] sts graph
Graph Editor, [G-1] graph editor
graph region, [G-3] region_options
graph text, [G-4] text
graphical user interface, $[\mathrm{P}]$ dialog programming, [PSS] intro, [PSS] GUI, [PSS] power, [SEM] Builder, [SEM] Builder, generalized, [SEM] Glossary
examples of, [U] 2 A brief description of Stata graphics,
query subcommand, [G-2] set graphics, [G-2] set printcolor, $[\mathrm{G}-2]$ set scheme, $[\mathrm{R}]$ query
set subcommand, [G-2] set graphics, [R] set
graphregion() option, [G-3] region_options
graphs,
added-variable plot, $[\mathrm{R}]$ regress postestimation diagnostic plots
adjusted partial residual plot, $[\mathrm{R}]$ regress postestimation diagnostic plots
augmented component-plus-residual plot, $[\mathrm{R}]$ regress postestimation diagnostic plots
augmented partial residual plot, $[R]$ regress postestimation diagnostic plots
autocorrelations, [TS] corrgram
binary variable cumulative sum, $[\mathrm{R}]$ cusum biplot, [MV] biplot, [MV] ca postestimation plots
CA dimension projection, [MV] ca postestimation plots
cluster tree, see graphs, dendrogram
component-plus-residual, $[R]$ regress postestimation diagnostic plots
contrasts, see subentry margins
correlogram, [TS] corrgram
cross-correlogram, [TS] xcorr
cross-sectional time-series data, [XT] xtdata, [XT] xtline
cumulative distribution, $[\mathrm{R}]$ cumul cumulative spectral density, [TS] cumsp
dendrogram, [MV] clustermat, [MV] cluster dendrogram, [MV] cluster generate, [MV] cluster linkage, [MV] cluster stop density, $[R]$ kdensity, [TE] teffects overlap density-distribution sunflower, $[\mathrm{R}]$ sunflower derivatives, $[R]$ dydx, $[R]$ testnl describing contents, [G-2] graph describe diagnostic, $[R]$ diagnostic plots
dotplot, $[R]$ dotplot
graphs, continued
eigenvalue
after discrim lda, [MV] discrim Ida postestimation, [MV] screeplot after factor, [MV] factor postestimation, [MV] screeplot
after manova, [MV] screeplot
after mca, [MV] screeplot
after mds, [MV] screeplot
after pca, [MV] pea postestimation, [MV] screeplot
error-bar charts, [R] serrbar
forecasts, [TS] fcast graph
fractional polynomial, $[\mathrm{R}] \mathrm{fp}$ postestimation
functions, [D] obs, [D] range
histograms, $[R]$ histogram, $[R]$ kdensity
impulse-response functions, [TS] irf, [TS] irf
cgraph, [TS] irf graph, [TS] irf ograph
integrals, $[R]$ dydx
interaction plots, $[\mathrm{R}]$ marginsplot
ladder-of-power histograms, [R] ladder
letter-value display, $[R]$ lv
leverage-versus-(squared)-residual, [R] regress
postestimation diagnostic plots
loading
after candisc, [MV] candisc, [MV] scoreplot
after discrim lda, [MV] discrim Ida,
[MV] discrim Ida postestimation,
[MV] scoreplot
after factor, [MV] factor postestimation, [MV] scoreplot
after pca, [MV] pca postestimation,
[MV] scoreplot
logistic diagnostic, $[R]$ logistic postestimation, $[\mathrm{R}]$ Isens
lowess smoothing, $[\mathrm{R}]$ lowess
margins, [U] 20.19 Graphing margins, marginal
effects, and contrasts
margins plots, $[\mathrm{R}]$ marginsplot
MDS configuration, [MV] mds postestimation plots
means and medians, $[\mathrm{R}]$ grmeanby
normal probability, $[\mathrm{R}]$ diagnostic plots
overall look of, [G-4] schemes intro
parameterized curves, [D] range
parametric autocorrelation, [TS] estat acplot
parametric autocovariance, [TS] estat acplot
partial correlogram, [TS] corrgram
partial residual, $[R]$ regress postestimation
diagnostic plots
partial-regression leverage, $[R]$ regress
postestimation diagnostic plots
periodogram, [TS] pergram
power and sample size, [PSS] intro, [PSS] GUI,
[PSS] power, graph
procrustes overlay, [MV] procrustes postestimation
profile plots, $[\mathrm{R}]$ marginsplot
quality control, $[R]$ qc
graphs, continued
quantile, $[R]$ diagnostic plots
quantile-normal, $[R]$ diagnostic plots
quantile-quantile, $[\mathrm{R}]$ diagnostic plots
regression diagnostic, $[R]$ regress postestimation diagnostic plots
residual versus fitted, $[R]$ regress postestimation diagnostic plots
residual versus predictor, $[\mathrm{R}]$ regress postestimation diagnostic plots
ROC curve, $[R]$ Iroc, $[R]$ roccomp, $[R]$ rocfit postestimation, $[R]$ rocregplot, $[R]$ roctab
rootograms, $[\mathrm{R}]$ spikeplot
saving, [G-3] saving_option
score
after candisc, [MV] candisc, [MV] scoreplot after discrim lda, [MV] discrim Ida,
[MV] discrim Ida postestimation, [MV] scoreplot
after factor, [MV] factor postestimation, [MV] scoreplot
after pca, [MV] scoreplot
scree
after canon, [MV] screeplot
after ca, [MV] screeplot
after discrim lda, [MV] discrim Ida
postestimation, [MV] screeplot
after factor, $[\mathrm{MV}]$ factor postestimation,
[MV] screeplot
after manova, [MV] screeplot
after mca, [MV] screeplot
after mds, [MV] screeplot
after pca, [MV] pca postestimation, [MV] screeplot
Shepard diagram, [MV] mds postestimation plots
smoothing, $[R]$ kdensity, $[R]$ lowess, $[R]$ lpoly
spike plot, $[R]$ spikeplot
stem-and-leaf, $[\mathrm{R}]$ stem
sunflower, $[\mathrm{R}]$ sunflower
suppressing, [G-3] nodraw_option
symmetry, $[\mathrm{R}]$ diagnostic plots
time-versus-concentration curve, $[\mathrm{R}] \mathbf{p k}$,
[R] pkexamine
treatment-effects overlap, [TE] teffects overlap
white-noise test, [TS] wntestb
grdistances, estat subcommand, [MV] discrim Ida postestimation, [MV] discrim qda postestimation
greater than (or equal) operator, [U] 13.2.3 Relational operators
.grec file, [U] 11.6 Filenaming conventions
Greek letters, [G-4] text
Greenhouse-Geisser epsilon, $[\mathrm{R}]$ anova
Greenhouse-Geisser correction, [PSS] power repeated, [PSS] Glossary
Greenwood confidence intervals, [ST] sts
grid
definition, [G-4] gridstyle
lines, [G-3] axis_label_options without ticks, [G-4] tickstyle
gridstyle, [G-4] gridstyle
grmeanby command, [R] grmeanby
grmeans, estat subcommand, [MV] discrim lda postestimation
group invariance test, [SEM] methods and formulas for sem
group() option, see sem option group()
group(), egen function, [D] egen
group, estat subcommand, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] meologit postestimation, [ME] meoprobit postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [ME] mixed postestimation
group-data regression, [R] glogit, [R] intreg grouping variables, generating, [MV] cluster generate groups, graphs by, [G-3] by_option groupvar, [U] 11.4 varlists
grsummarize, estat subcommand, [MV] discrim estat, [MV] discrim knn postestimation, [MV] discrim Ida postestimation, [MV] discrim logistic postestimation, [MV] discrim qda postestimation
gs1 print color mapping, [G-2] set printcolor gs2 print color mapping, [G-2] set printcolor gs3 print color mapping, [G-2] set printcolor _gschurd() function, [M-5] gschurd() gschurd() function, [M-5] gschurd() _gschurdgroupby() function, [M-5] gschurd() gschurdgroupby () function, [M-5] gschurd( ) _gschurdgroupby_la() function, [M-5] gschurd() _gschurd_la() function, [M-5] gschurd() gsem command, [SEM] Builder, generalized, [SEM] example 1, [SEM] example 27 g , [SEM] example 28g, [SEM] example 29g, [SEM] example 30g, [SEM] example 31g, [SEM] example 32g, [SEM] example 33g, [SEM] example 34g, [SEM] example 35g, [SEM] example 36g, [SEM] example 37g, [SEM] example 38g, [SEM] example 39g, [SEM] example 40 g , [SEM] example 41 g , [SEM] example 42g, [SEM] example 43g, [SEM] example 44g, [SEM] example 45g, [SEM] example 46g, [SEM] gsem, [SEM] gsem family-and-link options, [SEM] gsem model description options, [SEM] gsem path notation extensions, [SEM] gsem postestimation, [SEM] methods and formulas for gsem, [SEM] sem and gsem path notation
gsem option
adaptopts (), [SEM] gsem estimation options cloglog, [SEM] gsem family-and-link options
gsem option, continued
coeflegend, [SEM] example 29g, [SEM] gsem reporting options
collinear, [SEM] gsem model description options
constraints (), [SEM] gsem model description options, [SEM] sem and gsem option constraints()
covariance(), [SEM] gsem model description options
covstructure(), [SEM] gsem model description options, [SEM] sem and gsem option covstructure()
exposure(), [SEM] gsem family-and-link options
family (), [SEM] gsem family-and-link options, [SEM] gsem model description options, [SEM] gsem path notation extensions
forcenoanchor, [SEM] gsem model description options
from (), [SEM] intro 12, [SEM] gsem estimation options, [SEM] gsem model description options, [SEM] sem and gsem option from( )
fvstandard, [SEM] intro 3, [SEM] gsem model description options
gamma, [SEM] gsem family-and-link options
intmethod (), [SEM] intro 12, [SEM] gsem estimation options
intpoints(), [SEM] gsem estimation options
latent (), [SEM] sem and gsem syntax options
level(), [SEM] gsem reporting options
link (), [SEM] gsem family-and-link options, [SEM] gsem model description options, [SEM] gsem path notation extensions
listwise, [SEM] gsem estimation options
logit, [SEM] gsem family-and-link options maximize_options, [SEM] intro 12, [SEM] gsem estimation options
means (), [SEM] gsem model description options
method (), [SEM] intro 8, [SEM] intro 9, [SEM] gsem estimation options
mlogit, [SEM] gsem family-and-link options
nbreg, [SEM] gsem family-and-link options
noanchor, [SEM] gsem model description options
noasis, [SEM] gsem model description options
nocapslatent, [SEM] sem and gsem syntax options
nocnsreport, [SEM] gsem reporting options
noconstant, [SEM] gsem model description options
noestimate, [SEM] gsem estimation options noheader, [SEM] gsem reporting options
notable, [SEM] gsem reporting options
ocloglog, [SEM] gsem family-and-link options
offset (), [SEM] gsem family-and-link options
ologit, [SEM] gsem family-and-link options
oprobit, [SEM] gsem family-and-link options
poisson, [SEM] gsem family-and-link options
probit, [SEM] gsem family-and-link options
gsem option, continued
regress, [SEM] gsem family-and-link options
reliability (), [SEM] intro 12, [SEM] gsem model description options, [SEM] sem and gsem option reliability( )
startgrid(), [SEM] intro 12, [SEM] gsem estimation options
startvalues (), [SEM] intro 12, [SEM] gsem estimation options
variance(), [SEM] gsem model description options
vce(), [SEM] intro 8, [SEM] intro 9, [SEM] gsem estimation options
gsem postestimation commands, [SEM] intro 7
gsort command, [D] gsort
GUI, see graphical user interface, examples of, see graphical user interface

## H

HAC variance estimate, $[R]$ binreg, $[R]$ glm, $[R]$ gmm, $[R]$ ivregress, $[R]$ nl
Hadamard matrix, [SVY] svy brr, [SVY] Glossary hadamard () function, [D] functions, [P] matrix define
Hadri Lagrange multiplier stationarity test, [XT] xtunitroot
hadri, xtunitroot subcommand, [XT] xtunitroot
half option, [G-2] graph matrix
halfyear() function, [D] datetime, [D] functions, [M-5] date()
halfyearly() function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
Halton set, [M-5] halton( )
_halton() function, [M-5] halton()
halton() function, [M-5] halton()
Hamann coefficient similarity measure, [MV] measure_option
Hammersley set, [M-5] halton( )
Hansen's $J$ statistic, [R] gmm, [R] gmm postestimation, $[R]$ ivpoisson, $[R]$ ivpoisson postestimation, $[\mathrm{R}]$ ivregress
hard missing value, [MI] mi impute, [MI] Glossary
harmonic mean, [R] ameans
Harrell's $C$, [ST] stcox postestimation
Harris-Tzavalis test, [XT] xtunitroot
has_eprop() function, [D] functions
hash functions, [M-5] hash1( ), [M-6] Glossary
hash tables, [M-5] asarray( ), [M-6] Glossary
hash1 () function, [M-5] hash1( )
hashing, [M-6] Glossary
hasmissing() function, [M-5] missing()
hat matrix, see projection matrix, diagonal elements of
hausman command, [R] hausman
Hausman specification test, $[\mathrm{R}]$ hausman, $[\mathrm{XT}]$ xtreg postestimation
Hausman-Taylor estimator, [XT] xthtaylor
Haver Analytics databases, reading data from, [D] import haver
haver import subcommand, [D] import haver
haverdir, set subcommand, [D] import haver, [R] set
hazard, [TE] etregress
hazard contributions, [ST] Glossary
hazard function, [G-2] graph other, [ST] sts, [ST] sts generate, [ST] sts list, [ST] Glossary
graph of, [ST] Itable, [ST] stcurve, [ST] sts graph hazard ratio, [R] eform_option, [R] lincom, [ST] Glossary
minimal detectable difference, [ST] stpower
minimal effect size, [ST] stpower
hazard tables, [ST] Itable
hbar, graph subcommand, [G-2] graph bar
hbox, graph subcommand, [G-2] graph box
headlabel option, [G-2] graph twoway pccapsym,
[G-2] graph twoway pescatter
health ratio, $[\mathrm{R}]$ binreg
heckman command, $[R]$ heckman, $[R]$ heckman postestimation
Heckman selection model, $[R]$ heckman,
$[R]$ heckoprobit, $[R]$ heckprobit, [SEM] example 45g, [SVY] svy estimation
heckoprobit command, [R] heckoprobit,
$[R]$ heckoprobit postestimation
heckprobit command, $[R]$ heckprobit,
$[R]$ heckprobit postestimation
height () textbox option, [G-3] added_text_options
Helmert contrasts, [R] contrast
help, [M-1] help
help command, [M-3] mata help, [R] help, [U] 4 Stata's help and search facilities, [U] 7 -more- conditions
writing your own, [U] 18.11.6 Writing system help help-I don't know what to do, [U] 3 Resources for learning and using Stata
help, mata subcommand, [M-3] mata help
help, view subcommand, [R] view
help_d, view subcommand, [R] view
Henze-Zirkler normality test, [MV] mvtest normality
Hermitian
adjoin, [M-2] op_transpose, [M-5] conj()
matrices, [M-5] issymmetric( ),
[M-5] makesymmetric( ), [M-6] Glossary
transpose, [M-2] op_transpose, [M-5] conj( )
Hessenberg
decomposition, [M-5] hessenbergd( ),
[M-6] Glossary
form, [M-6] Glossary
hessenbergd() function, [M-5] hessenbergd( )
hessenbergd() function, [M-5] hessenbergd()
_hessenbergd_la() function, [M-5] hessenbergd()
hessian option, $[\mathrm{R}]$ maximize
heterogeneity test, [ST] epitab
heteroskedastic errors, see linear regression with heteroskedastic errors
heteroskedastic probit regression, $[\mathrm{R}]$ hetprobit, [SVY] svy estimation
heteroskedasticity, [XT] xtgls, also see HAC variance estimate

ARCH model, see autoregressive conditional heteroskedasticity model
conditional, $[\mathrm{R}]$ regress postestimation time series
GARCH model, see generalized autoregressive conditional heteroskedasticity
Newey-West estimator, see Newey-West regression
robust variances, see robust, Huber/White/sandwich estimator of variance
test, $[R]$ hetprobit, $[\mathrm{R}]$ regress postestimation,
$[R]$ regress postestimation time series, [R] sdtest
hetprobit command, [R] hetprobit, [R] hetprobit postestimation
hettest, estat subcommand, [R] regress postestimation
hexadecimal report, [D] hexdump
hexdump command, [D] hexdump
Heywood
case, [MV] Glossary
solution, [MV] Glossary
hh() function, [D] datetime, [D] functions, [M-5] date()
hhC() function, [D] datetime, [D] functions, [M-5] date()
hidden stored results, [M-5] st_global( ), [M-5] st_matrix( ), [M-5] st_numscalar( )
hierarchical
cluster analysis, [MV] cluster, [MV] clustermat, [MV] cluster linkage
clustering, [MV] Glossary
model, [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed, [ME] Glossary, [U] 26.19 Multilevel mixedeffects models
regression, $[R]$ nestreg, $[R]$ stepwise
samples, $[R]$ anova, $[R]$ gllamm, $[R]$ loneway, [R] areg
higher-order models, see confirmatory factor analysis
high-low charts, [G-2] graph twoway rbar, [G-2] graph twoway rcap, [G-2] graph twoway rspike
high-pass filter, [TS] tsfilter bw, [TS] tsfilter hp, [TS] Glossary
Hilbert () function, [M-5] Hilbert()
Hildreth-Lu regression, [TS] prais
HILO, [M-5] byteorder( )
histogram command, [R] histogram
histogram, graph twoway subcommand, [G-2] graph twoway histogram
histograms, [G-2] graph twoway histogram, $[\mathrm{R}]$ histogram
dotplots, [R] dotplot
kernel density estimator, [R] kdensity
ladder-of-powers, [R] ladder
histograms, continued
of categorical variables, $[\mathrm{R}]$ histogram
rootograms, $[R]$ spikeplot
stem-and-leaf, [R] stem
historical stored results, [M-5] st_global( ), [M-5] st_matrix( ), [M-5] st_numscalar( )
histories, [G-2] graph bar, [G-2] graph box,
[G-2] graph matrix, [G-2] graph pie, [G-2] graph twoway histogram, [G-3] by_option
hms () function, [D] datetime, [D] functions, [M-5] date( )
Hodrick-Prescott filter, [TS] tsfilter, [TS] tsfilter hp hofd() function, [D] datetime, [D] functions, [M-5] date( )
hold,
_estimates subcommand, [P] _estimates
_return subcommand, [P] _return
Holm's multiple-comparison adjustment, see multiple comparisons, Holm's method
Holt-Winters smoothing, [TS] tssmooth, [TS] tssmooth dexponential, [TS] tssmooth exponential, [TS] tssmooth hwinters, [TS] tssmooth shwinters, [TS] Glossary
homogeneity of variances, $[\mathrm{R}]$ oneway, $[\mathrm{R}]$ sdtest
homogeneity test, [ST] epitab
homoskedasticity tests, $[\mathrm{R}]$ regress postestimation
Horst normalization, see Kaiser normalization
Hosmer-Lemeshow
delta chi-squared influence statistic, see delta chisquared influence statistic
delta deviance influence statistic, see delta deviance influence statistic
goodness-of-fit test, [R] estat gof, [SVY] estat
hot, ssc subcommand, $[R]$ ssc
hotelling command, [MV] hotelling
Hotelling's
generalized $T$-squared statistic, [MV] manova
$T$-squared, [MV] hotelling, [MV] mvtest means, [MV] Glossary
hours() function, [D] datetime, [D] functions, [M-5] date()
hp, tsfilter subcommand, [TS] tsfilter hp
hqrd() function, [M-5] qrd()
hqrd() function, [M-5] qrd()
hqrdmultq() function, [M-5] qrd()
hqrdmultq1t() function, [M-5] qrd()
_hqrdp() function, [M-5] qrd()
hqrdp() function, [M-5] qrd()
_hqrdp_la() function, [M-5] qrd()
hqrdq() function, [M-5] qrd()
hqrdq1 () function, [M-5] qrd()
hqrdr () function, [M-5] qrd()
hqrdr1() function, [M-5] qrd()
HRF, see human readable form
ht, xtunitroot subcommand, [XT] xtunitroot
http://www.stata.com, [U] 3.2.1 The Stata website (www.stata.com)
httpproxy, set subcommand, [R] netio, [R] set httpproxyauth, set subcommand, $[R]$ netio, $[R]$ set httpproxyhost, set subcommand, $[R]$ netio, $[R]$ set httpproxyport, set subcommand, $[R]$ netio, $[R]$ set httpproxypw, set subcommand, $[R]$ netio, $[R]$ set httpproxyuser, set subcommand, [R] netio, $[R]$ set Huber weighting, [R] rreg
Huber/White/sandwich estimator of variance, see robust, Huber/White/sandwich estimator of variance
human readable form, $[\mathrm{D}]$ datetime, [ D ] datetime display formats, [D] datetime translation
Huynh-Feldt epsilon, [R] anova
hwinters, tssmooth subcommand, [TS] tssmooth hwinters
hyperbolic functions, [D] functions, [M-5] $\sin ()$
hypergeometric,
cumulative distribution, [D] functions
probability mass function, [D] functions
hypergeometric() function, [D] functions, [M-5] normal( )
hypergeometricp() function, [D] functions, [M-5] normal( )
hypertext help, [R] help, [U] 4 Stata's help and search facilities, [U] 18.11.6 Writing system help
hypothesis, [PSS] Glossary, also see null hypothesis and alternative hypothesis
test, [PSS] intro, [PSS] Glossary, [SEM] test, [SEM] testnl, also see null hypothesis and alternative hypothesis
hypothesized value, [PSS] power, [PSS] Glossary

## I

I () function, [D] functions, [M-5] I( ), [P] matrix define
i.i.d. assumption, see independent and identically distributed sampling assumption
ibeta() function, [D] functions, [M-5] normal( ) ibetatail() function, [D] functions, [M-5] normal()
ic, estat subcommand, [R] estat, [R] estat ic icc command, $[R]$ icc
icc, estat subcommand, [ME] melogit postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] mixed postestimation
icd9
check command, [D] icd9
clean command, [D] icd9
generate command, [D] icd9
lookup command, [D] icd9
query command, [D] icd9
search command, [D] icd9
icd9p
check command, [D] icd9
clean command, [D] icd9
generate command, [D] icd9
lookup command, [D] icd9
icd9p, continued
query command, [D] icd9
search command, [D] icd9
ICE, see imputation, multivariate, chained equations ice command, [MI] mi export ice, [MI] mi import ice ID variable, [ST] Glossary
identification, see model identification
identifier, class, $[\mathrm{P}]$ class
identifier, unique, [D] isid
identity matrix, $[\mathrm{M}-5] \mathrm{I}(),[\mathrm{P}]$ matrix define
identity, forecast subcommand, [TS] forecast identity
idiosyncratic error term, $[\mathrm{XT}]$ Glossary
if, [M-2] if
if exp, [P] syntax, [U] 11 Language syntax
if programming command, $[\mathrm{P}]$ if
ignorable missing-data mechanism, [MI] intro substantive, [MI] Glossary
IIA, see independence of irrelevant alternatives
Im-Pesaran-Shin test, [XT] xtunitroot
$\operatorname{Im}()$ function, [M-5] $\operatorname{Re}()$
imaginary part, [M-5] $\operatorname{Re}()$
immediate commands, [P] display, [R] bitest, $[R]$ ci, $[R]$ esize, $[R]$ prtest, $[R]$ sdtest, $[R]$ symmetry, $[R]$ tabulate twoway, $[R]$ ttest, [U] 18.4.5 Parsing immediate commands, [U] 19 Immediate commands implied context, class, [P] class
import
delimited command, [D] import delimited
excel command, [D] import excel
haver command, [D] import haver
sasxport command, [D] import sasxport
import, mi subcommand, [MI] mi import, [MI] mi import flong, [MI] mi import flongsep, [MI] mi import ice, [MI] mi import nhanes1, [MI] mi import wide
importance weight, [U] 11.1.6 weight, [U] 20.23.4 Importance weights
importing data, [D] import, [D] import delimited, [D] import excel, [D] import haver, [D] import sasxport, [D] infile (fixed format), [D] infile (free format), [D] infix (fixed format), [D] odbc, [D] xmlsave, [MI] mi import, [MI] mi import flong, [MI] mi import flongsep, [MI] mi import ice, [MI] mi import nhanes1, [MI] mi import wide, $[\mathrm{U}] 21$ Entering and importing data, [U] 21.4 Transfer programs, also see combining datasets, also see inputting data interactively impulse-response functions, [G-2] graph other, [TS] irf, [TS] irf add, [TS] irf cgraph, [TS] irf create, [TS] irf ctable, [TS] irf describe, [TS] irf drop, [TS] irf graph, [TS] irf ograph, [TS] irf rename, [TS] irf set, [TS] irf table, [TS] var intro, [TS] varbasic, [TS] vec intro, [TS] Glossary
imputation,
binary, [MI] mi impute logit
by groups, [MI] mi impute
categorical, [MI] mi impute mlogit, [MI] mi impute ologit
chained equations, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, [MI] mi impute truncreg
conditional, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}]$ mi impute intreg, $[\mathrm{MI}]$ mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, [MI] mi impute truncreg, [MI] Glossary
continuous, [MI] mi impute pmm, [MI] mi impute regress
with a limited range, [MI] mi impute intreg,
[MI] mi impute truncreg
count data, $[\mathrm{MI}]$ mi impute nbreg, $[\mathrm{MI}]$ mi impute poisson
diagnostics, [MI] mi impute
interval regression, [MI] mi impute intreg interval-censored data, [MI] mi impute intreg
linear regression, [MI] mi impute regress
logistic regression, [MI] mi impute logit
modeling, [MI] mi impute
monotone, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}]$ mi impute monotone
multinomial logistic regression, [MI] mi impute mlogit
multiple, [MI] intro substantive
multivariate,
chained equations, [MI] mi impute, [MI] mi impute chained
monotone, [MI] mi impute, [MI] mi impute intreg, [MI] mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute nbreg, $[\mathrm{MI}]$ mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, $[\mathrm{MI}]$ mi impute regress, $[\mathrm{MI}] \mathbf{m i}$ impute truncreg
normal, [MI] mi impute, [MI] mi impute mvn
negative binomial regression, [MI] mi impute nbreg on subsamples, [MI] mi impute
ordered logistic regression, [MI] mi impute ologit overdispersed count data, [MI] mi impute nbreg passive, $[\mathrm{MI}]$ mi impute, $[\mathrm{MI}]$ mi impute chained passive variables, [MI] mi impute regress perfect prediction, [MI] mi impute Poisson regression, [MI] mi impute poisson predictive mean matching, [MI] mi impute, [MI] mi impute pmm
regression, [MI] mi impute, [MI] mi impute regress semiparametric, $[\mathrm{MI}]$ mi impute pmm step, [MI] intro substantive, [MI] mi estimate transformations, [MI] mi impute
imputation, continued
truncated data, $[\mathrm{MI}]$ mi impute truncreg
truncated regression, $[\mathrm{MI}]$ mi impute truncreg
univariate, $[\mathrm{MI}]$ mi impute intreg, $[\mathrm{MI}]$ mi impute logit, [MI] mi impute mlogit, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, $[\mathrm{MI}]$ mi impute truncreg
imputation diagnostics, see imputation, diagnostics
imputation method, [MI] mi impute
iterative, [MI] mi impute, [MI] mi impute chained, [MI] mi impute mvn
monotone, $[\mathrm{MI}]$ mi impute monotone
multivariate, [MI] mi impute chained, [MI] mi impute monotone, $[\mathrm{MI}]$ mi impute mvn
proper, [MI] intro substantive
univariate, $[\mathrm{MI}]$ mi impute intreg, $[\mathrm{MI}]$ mi impute logit, [MI] mi impute mlogit, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, $[\mathrm{MI}]$ mi impute truncreg
imputations, recommended number of, [MI] intro substantive, [MI] mi estimate
impute, mi subcommand, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}] \mathbf{m i}$ impute intreg, $[\mathrm{MI}] \mathbf{~ m i}$ impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute mvn, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, [MI] mi impute truncreg
imputed data, [MI] Glossary
imputed variables, see variables, imputed
imtest, estat subcommand, $[R]$ regress postestimation
in range modifier, [P] syntax, [U] 11 Language syntax
in smcl, display directive, [P] display
inbase() function, [M-5] inbase()
incidence, [ST] Glossary
incidence rate, [ST] Glossary
negative binomial regression, $[\mathrm{R}]$ nbreg postestimation, $[\mathrm{R}]$ tnbreg postestimation, $[R]$ zinb postestimation
Poisson regression, $[R]$ poisson postestimation, $[R]$ tpoisson postestimation, $[R]$ zip postestimation
incidence studies, [ST] epitab, [ST] stcurve, [ST] stir, [ST] stptime, [ST] strate, [ST] stsum, [ST] Glossary
incidence-rate ratio, [ME] meglm, [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [R] eform_option, [ST] epitab, [ST] stir, [ST] stptime, [ST] stsum, [XT] xtgee,
[XT] xtnbreg, [XT] xtpoisson
estimation,
negative binomial regression, $[\mathrm{R}]$ nbreg, $[R]$ tnbreg, $[R]$ zinb
Poisson regression, $[R]$ expoisson, $[R]$ ivpoisson, $[R]$ poisson, $[R]$ tpoisson, $[R]$ zip,
[TE] etpoisson
incidence-rate ratio, continued
postestimation, $[\mathrm{R}]$ contrast, $[\mathrm{R}]$ expoisson
postestimation, $[\mathrm{R}]$ lincom
include command, $[\mathrm{P}]$ include
include_bitmap, set subcommand, $[R]$ set
income distributions, $[R]$ inequality
income tax rate function, [D] egen
incomplete
beta function, [D] functions, [M-5] normal()
gamma function, [D] functions, [M-5] normal()
observations, [MI] Glossary, see dropout
increment operator, [M-2] op_increment
independence of irrelevant alternatives,
assumption, $[R]$ clogit, $[R]$ mlogit
relaxing assumption, $[R]$ asclogit, $[R]$ asmprobit,
$[R]$ asroprobit, $[R]$ nlogit
test for, $[R]$ hausman, $[R]$ nlogit, $[R]$ suest
independence test, $[R]$ correlate, $[R]$ spearman,
$[\mathrm{R}]$ tabulate twoway, $[\mathrm{ST}]$ epitab,
[SVY] svy: tabulate twoway
independent and identically distributed, [TS] Glossary
independent and identically distributed sampling assumption, [TE] teffects intro, [TE] teffects intro advanced, [TE] Glossary
index,
mathematical functions, [M-4] statistical
matrix functions, [M-4] utility
statistical functions, [M-4] statistical
stopping rules, see stopping rules
utility functions, [M-4] utility
index of probit and logit, $[\mathrm{R}]$ logit postestimation,
$[R]$ predict, $[R]$ probit postestimation
index search, $[\mathrm{R}]$ search, [U] 4 Stata's help and search facilities
indexnot () function, [D] functions, [M-5] indexnot()
indicator variables, $[R]$ tabulate oneway, $[R]$ xi,
[SEM] Glossary, also see factor variables
indicators, [U] 11.4.3 Factor variables
indirect standardization, $[R]$ dstdize
individual-level treatment effect, [TE] Glossary
ineligible missing values, [MI] mi impute,
[MI] Glossary
inequality measures, $[R]$ inequality
inertia, [MV] Glossary, also see total inertia
inertia, estat subcommand, [MV] ca postestimation
infile command, [D] infile (fixed format), [D] infile (free format)
infix command, [D] infix (fixed format)
influence statistics, see delta beta influence statistic, see delta chi-squared influence statistic, see delta deviance influence statistic, see DFBETA, see LMAX value
\%infint, [D] infile (fixed format)
information
criteria, see Akaike information criterion, see Bayesian information criterion
matrix, $[P]$ matrix get, $[R]$ correlate, $[R]$ maximize
matrix test, $[R]$ regress postestimation

Informix, reading data from, [U] 21.4 Transfer programs
inheritance, $[\mathrm{M}-2]$ class, $[\mathrm{P}]$ class
init, ml subcommand, $[\mathrm{R}] \mathrm{ml}$
init, ssd subcommand, [SEM] ssd
initial values, [SEM] Glossary, see starting values
initialization, class, $[\mathrm{P}]$ class
inlist() function, [D] functions
inner fence, $[R]$ lv
innovation accounting, [TS] irf
input command, [D] input
input, matrix subcommand, $[\mathrm{P}]$ matrix define
input, obtaining from console in programs, see console, obtaining input from
input/output functions, [M-4] io
inputting data
from a file, see importing data
interactively, [D] edit, [D] input, also see editing data, also see importing data
inrange() function, [D] functions
insert, odbc subcommand, [D] odbc
inspect command, [D] inspect
install,
net subcommand, $[\mathrm{R}]$ net
ssc subcommand, $[R]$ ssc
installation
of official updates, $[R]$ update, [U] 28 Using the Internet to keep up to date
of SJ and STB, [R] net, [R] sj, [U] 3.6 Updating and adding features from the web,
[U] 17.6 How do I install an addition?
of user-written commands (updating), $[\mathrm{R}]$ adoupdate instance, [M-6] Glossary
instance, class, $[\mathrm{P}]$ class
.instancemv built-in class function, $[\mathrm{P}]$ class
instance-specific variable, [P] class
instrumental-variables, [XT] Glossary
estimator, [XT] Glossary
regression, $[R]$ gmm, $[R]$ ivpoisson, $[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivtobit, $[R]$ reg3, [SVY] svy estimation, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg, [XT] xtivreg postestimation
int, [D] data types
int (storage type), [U] 12.2.2 Numeric storage types
int () function, [D] functions
integ command, $[R]$ dydx
integer truncation function, [D] functions
integers, [M-5] trunc()
integrals, numeric, $[R]$ dydx
integrated autoregressive moving-average model, [TS] estat acplot, [TS] psdensity
integrated process, [TS] Glossary
intensity, color, adjustment, [G-2] graph twoway histogram, [G-2] graph twoway kdensity, [G-4] colorstyle
intensitystyle, [G-4] intensitystyle
interaction, $[R]$ anova, $[R]$ contrast, $[R]$ fvrevar,
$[R]$ margins, $[R]$ margins, contrast,
$[R]$ margins, pwcompare, $[R]$ marginsplot,
$[R]$ pwcompare, $[R]$ set emptycells,
$[\mathrm{R}]$ xi, [U] 11.4.3 Factor variables,
[U] 13.5.3 Factor variables and time-series operators, [U] 20.18 Obtaining contrasts, tests of interactions, and main effects, [U] 25.2 Estimation with factor variables
interaction effects, [PSS] Glossary
interaction expansion, [R] xi
interaction plots, $[\mathrm{R}]$ marginsplot
intercept, [SEM] intro 4, [SEM] Glossary, also see constraints, specifying
interface, query subcommand, [R] query
internal consistency test, [MV] alpha
Internet,
commands to control connections to, $[R]$ netio
installation of updates from, $[R]$ adoupdate, $[R]$ net,
$[R]$ sj, $[R]$ update, $[U] 28$ Using the Internet to
keep up to date
search, $[\mathrm{R}]$ net search
Stata, [U] 3.2.1 The Stata website (www.stata.com)
Stata Journal, [U] 3.5 The Stata Journal
Stata Press, [U] 3.3 Stata Press
interpolation, [D] ipolate
interquantile range, $[\mathrm{R}]$ qreg
interquartile range, $[R]$ lv, $[R]$ table, $[R]$ tabstat
generating variable containing, $[D]$ egen
making dataset of, [D] collapse
summarizing, [D] pctile
interrater agreement, [R] kappa
interrupting command execution, [U] 10 Keyboard use
interval censoring, see imputation, interval-censored data
interval data, [XT] xtintreg, [XT] Glossary
interval regression, $[\mathrm{R}]$ intreg, $[\mathrm{SEM}]$ example 44 g , [SVY] svy estimation
random-effects, $[\mathrm{XT}]$ xtintreg
intmethod() option, see gsem option intmethod()
intpoints() option, see gsem option intpoints()
intraclass correlation, [ME] Glossary, also see estat icc command, see correlation, intraclass
intracluster correlation, see correlation, intracluster
intreg command, [R] intreg, [R] intreg postestimation
inv() function, [D] functions, $[P]$ matrix define
invbinomial() function, [D] functions, [M-5] normal( )
invbinomialtail() function, [D] functions, [M-5] normal( )
invchi2() function, [D] functions, [M-5] normal()
invchi2tail() function, [D] functions, [M-5] normal( )
invcloglog() function, [D] functions, [M-5] logit()
invdunnettprob() function, [D] functions,
[M-5] normal( )
inverse
cumulative
beta distribution, [D] functions
binomial function, [D] functions
chi-squared distribution function, [D] functions $F$ distribution function, [D] functions incomplete gamma function, [D] functions
hyperbolic tangent transformation, see Fisher's $z$ transformation
matrix, [M-4] solvers, [M-5] invsym( ),
[M-5] cholinv( ), [M-5] luinv( ), [M-5] qrinv( ), [M-5] pinv( ), [M-5] solve_tol( )
noncentral
beta distribution, [D] functions
chi-squared distribution function, [D] functions $F$ distribution, [D] functions
normal distribution function, [D] functions of matrix, $[P]$ matrix define, $[P]$ matrix svd reverse cumulative
beta distribution, [D] functions
binomial function, [D] functions
chi-squared distribution function, [D] functions $F$ distribution function, [D] functions incomplete gamma function, [D] functions $t$ distribution function, [D] functions
inverse-probability weighting, [TE] teffects intro,
[TE] teffects intro advanced, [TE] teffects ipw, [TE] Glossary
inverse-probability-weighted regression adjustment, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects ipwra, [TE] Glossary
invF() function, [D] functions, [M-5] normal( )
_invfft() function, [M-5] fft()
invfft() function, [M-5] fft()
invFtail() function, [D] functions, [M-5] normal()
invgammap () function, [D] functions, [M-5] normal()
invgammaptail() function, [D] functions,
[M-5] normal( )
invHilbert () function, [M-5] Hilbert()
invibeta() function, [D] functions, [M-5] normal()
invibetatail() function, [D] functions,
[M-5] normal()
invlogit() function, [D] functions, [M-5] logit()
invnbinomial() function, [D] functions, [M-5] normal( )
invnbinomialtail() function, [D] functions, [M-5] normal()
invnchi2() function, [D] functions, [M-5] normal()
invnchi2tail() function, [D] functions, [M-5] normal( )
invnFtail() function, [D] functions, [M-5] normal( ) invnibeta() function, [D] functions, [M-5] normal()
invnormal() function, [D] functions, [M-5] normal( )
invnttail() function, [D] functions, [M-5] normal( )
invorder() function, [M-5] invorder()
invpoisson() function, [D] functions,
[M-5] normal( )
invpoissontail() function, [D] functions, [M-5] normal( )
_invsym() function, [M-5] invsym( )
invsym() function, [D] functions, [M-5] invsym( ),
$[\mathrm{P}]$ matrix define
invt () function, [D] functions, [M-5] normal( )
invtokens () function, [M-5] invtokens()
invttail() function, [D] functions, [M-5] normal()
invtukeyprob() function, [D] functions,
[M-5] normal( )
invvech() function, [M-5] vec()
I/O functions, [M-4] io
ipolate command, [D] ipolate
ips, xtunitroot subcommand, [XT] xtunitroot
IPW, see inverse-probability weighting
ipw, teffects subcommand, [TE] teffects ipw
IPWRA, see inverse-probability-weighted regression adjustment
ipwra, teffects subcommand, [TE] teffects ipwra
IQR, see interquartile range
iqr(), egen function, [D] egen
iqreg command, $[\mathrm{R}]$ qreg, $[\mathrm{R}]$ qreg postestimation
ir command, [ST] epitab
irecode() function, [D] functions
IRF, see impulse-response functions
irf, [TS] irf
add command, [TS] irf add
cgraph command, [TS] irf cgraph
create command, [TS] irf create
ctable command, [TS] irf ctable
describe command, [TS] irf describe
drop command, [TS] irf drop
graph command, [TS] irf graph
ograph command, [TS] irf ograph
rename command, [TS] irf rename
set command, [TS] irf set
table command, [TS] irf table
.irf file, [U] 11.6 Filenaming conventions
iri command, [ST] epitab
IRLS, see iterated, reweighted least squares
IRR, see incidence-rate ratio
IRT, see item response theory
.isa built-in class function, $[\mathrm{P}]$ class
iscale() option, [G-2] graph matrix
iscomplex () function, [M-5] isreal()
isdiagonal() function, [M-5] isdiagonal()
isfleeting() function, [M-5] isfleeting()
isid command, [D] isid
.isofclass built-in class function, [P] class
isolines, [G-2] graph twoway contourline
ispointer() function, [M-5] isreal()
isreal() function, [M-5] isreal()
isrealvalues () function, [M-5] isrealvalues()
isstring() function, [M-5] isreal()
issymmetric() function, [D] functions, [M-5] issymmetric( ), $[P]$ matrix define issymmetriconly () function, [M-5] issymmetric( )
istdize command, [R] dstdize
istmt, [M-1] how, [M-6] Glossary
isview () function, [M-5] isview()
italics, [G-4] text
item response theory, [SEM] intro 5,
[SEM] example 28g, [SEM] example 29g
iterate() option, [R] maximize, see gsem option maximize_options, see sem option maximize_options
iterated principal-factor method, [MV] factor, [MV] Glossary
iterated, reweighted least squares, $[\mathrm{R}]$ binreg, $[\mathrm{R}]$ glm, $[R]$ reg3, [R] sureg
iteration,
bisection method, [PSS] power, [PSS] power twoproportions, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
Newton's method, power, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
iterations, controlling the maximum number, [R] maximize
itrim() function, [D] functions
ivpoisson command, [R] ivpoisson, [R] ivpoisson postestimation
ivprobit command, [R] ivprobit, [R] ivprobit postestimation
ivregress command, [R] ivregress, [R] ivregress postestimation
ivtobit command, [R] ivtobit, [R] ivtobit postestimation
[iweight=exp] modifier, [U] 11.1.6 weight, [U] 20.23.4 Importance weights

## J

J () function, [M-5] J( ), [M-2] void, [M-6] Glossary, [D] functions, $[P]$ matrix define
Jaccard coefficient similarity measure,
[MV] measure_option
jackknife, [SEM] Glossary estimation, [R] jackknife, [SVY] jackknife_options, [SVY] svy jackknife, [SVY] variance estimation, [SVY] Glossary standard errors, $[\mathrm{R}]$ vce_option
jackknife prefix command, [R] jackknife, [R] jackknife postestimation
jackknife standard errors, [SVY] svy jackknife, [SVY] variance estimation, [XT] vce_options
jackknifed residuals, $[R]$ regress postestimation
jackknifed standard error, see Monte Carlo error
jackknife_options, [SVY] jackknife_options
Jarque-Bera statistic, [TS] varnorm, [TS] vecnorm

Java, $[\mathrm{P}]$ java, $[\mathrm{P}]$ javacall
JCA, see joint correspondence analysis
Jeffreys noninformative prior, [MI] mi impute mvn
jitter() option, [G-2] graph matrix, [G-2] graph twoway scatter
jitterseed() option, [G-2] graph matrix, [G-2] graph twoway scatter
join operator, [M-2] op_join
joinby command, [D] joinby, [U] 22 Combining datasets
joining datasets, see combining datasets
joining time-span records, [ST] stsplit
joint correspondence analysis, [MV] mca, [MV] mca postestimation, [MV] Glossary
joint normality, see normality, joint
_jumble() function, [M-5] sort()
jumble() function, [M-5] sort()
justification of text, [G-3] textbox_options
justificationstyle, [G-4] justificationstyle

## K

Kaiser normalization, [MV] factor postestimation, [MV] pea postestimation, [MV] rotate, [MV] rotatemat
Kaiser-Meyer-Olkin sampling adequacy, [MV] factor postestimation, [MV] pca postestimation, [MV] Glossary
Kalman
filter, [TS] arima, [TS] dfactor, [TS] dfactor postestimation, [TS] sspace, [TS] sspace postestimation, [TS] ucm, [TS] ucm postestimation, [TS] Glossary
forecast, [TS] dfactor postestimation, [TS] sspace postestimation, [TS] ucm postestimation
smoothing, [TS] dfactor postestimation, [TS] sspace postestimation, [TS] ucm postestimation
kap command, [R] kappa
Kaplan-Meier
product-limit estimate, $[\mathrm{ST}]$ sts, $[\mathrm{ST}]$ sts generate, [ST] sts graph, [ST] sts list, [ST] sts test, [ST] Glossary
survivor function, [ST] Itable, [ST] stcox PHassumption tests, [ST] sts
kappa command, $[R]$ kappa
kapwgt command, $[\mathrm{R}]$ kappa
kdensity command, [R] kdensity
kdensity, graph twoway subcommand, [G-2] graph twoway kdensity
keep command, [D] drop
keeping variables or observations, [D] drop
Kendall's tau, $[R]$ spearman, $[R]$ tabulate twoway
kernel density estimator, $[R]$ kdensity
kernel density smoothing, [G-2] graph other
kernel-weighted local polynomial estimator, $[R]$ lpoly
keyboard
entry, [U] $\mathbf{1 0}$ Keyboard use
search, [U] 4 Stata's help and search facilities
keys, [G-3] clegend_option, [G-3] legend_options
Kish design effects, [R] loneway, [SVY] estat
Kmatrix() function, [M-5] Kmatrix()
kmeans, [MV] Glossary
kmeans clustering, [MV] cluster, [MV] cluster kmeans and kmedians
kmeans, cluster subcommand, [MV] cluster kmeans and kmedians
kmedians, [MV] Glossary
kmedians clustering, [MV] cluster, [MV] cluster kmeans and kmedians
kmedians, cluster subcommand, [MV] cluster kmeans and kmedians
KMO, see Kaiser-Meyer-Olkin sampling adequacy
kmo, estat subcommand, [MV] factor postestimation, [MV] pca postestimation
KNN, see $k$ th-nearest neighbor
knn, discrim subcommand, [MV] discrim knn
Kolmogorov-Smirnov test, $[\mathrm{R}]$ ksmirnov
KR-20, [MV] alpha
Kronecker direct product, [D] cross, [M-2] op_kronecker, $[P]$ matrix define
Kruskal stress, [MV] mds postestimation, [MV] Glossary
Kruskal-Wallis test, $[\mathrm{R}]$ kwallis
ksmirnov command, $[\mathrm{R}]$ ksmirnov
ktau command, $[R]$ spearman
$k$ th-nearest neighbor, [MV] discrim knn, [MV] Glossary
Kuder-Richardson Formula 20, [MV] alpha
Kulczynski coefficient similarity measure,
[MV] measure_option
kurt (), egen function, [D] egen
kurtosis, $[\mathrm{MV}]$ mvtest normality, $[\mathrm{R}]$ lv, $[\mathrm{R}]$ pksumm, $[R]$ regress postestimation, $[R]$ sktest,
$[R]$ summarize, $[R]$ tabstat, $[T S]$ varnorm,
[TS] vecnorm
kwallis command, $[\mathrm{R}]$ kwallis

## L

L1-norm models, $[\mathrm{R}]$ qreg
l1title() option, [G-3] title_options
12title() option, [G-3] title_options
label
command, [U] 12.6 Dataset, variable, and value labels
copy command, [D] label
data command, [D] label
define command, [D] label
dir command, [D] label drop command, [D] label language command, [D] label language list command, [D] label macro extended function, $[\mathrm{P}]$ macro
save command, [D] label
values command, [D] label
variable command, [D] label
label values, [P] macro, [U] 12.6 Dataset, variable, and value labels, [U] 13.10 Label values
label, snapshot subcommand, [D] snapshot labelbook command, [D] labelbook
labeling data, [D] describe, [D] edit, [D] label, [D] label language, [D] notes, [D] varmanage, [U] 12.6 Dataset, variable, and value labels
in other languages, $[\mathrm{U}]$ 12.6.4 Labels in other languages
labels,
axis, [G-3] axis_label_options
creating, [D] edit, [D] varmanage
editing, [D] edit, [D] varmanage
marker, [G-3] marker_label_options
LAD regression, $[\mathrm{R}]$ qreg
ladder command, [R] ladder
ladder of powers, [G-2] graph other, $[\mathrm{R}]$ ladder
lag operator, [TS] Glossary, [U] 11.4.4 Time-series varlists
lag-exclusion statistics, [TS] varwle
lagged values, [U] 11.4.4 Time-series varlists,
[U] 13 Functions and expressions,
[U] 13.7 Explicit subscripting, [U] 13.9.1 Generating lags, leads, and differences
lag-order selection statistics, [TS] var intro, [TS] var, [TS] var svar, [TS] varsoc, [TS] vec intro
Lagrange multiplier test, [PSS] Glossary, [R] regress postestimation time series, [SEM] estat ginvariant, [SEM] estat mindices, [SEM] estat scoretests, [SEM] Glossary, [TS] varlmar, [TS] veclmar, also see score test
Lance and Williams' formula, [MV] cluster language syntax, [P] syntax, [U] 11 Language syntax language, label subcommand, [D] label language
languages, multiple, [D] label language
LAPACK, [M-1] LAPACK, [M-5] cholesky ( ),
[M-5] cholinv( ), [M-5] cholsolve( ),
[M-5] eigensystem( ), [M-5] eigensystemselect( ),
[M-5] fullsvd( ), [M-5] ghessenbergd( ),
[M-5] lapack( ), [M-5] lud( ), [M-5] luinv( ),
[M-5] lusolve( ), [M-5] qrd( ), [M-5] qrinv( ),
[M-5] qrsolve( ), [M-5] svd( ), [M-5] svsolve( ), [M-6] Glossary
Laplacian approximation, [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] Glossary, [SEM] methods and formulas for gsem
latent growth model, [SEM] intro 5, [SEM] example 18, [SEM] Glossary
latent roots, [M-5] eigensystem( )
latent variable, [SEM] intro 4, [SEM] Glossary
latent () option, see gsem option latent (), see sem option latent ()
Latin-square designs, [MV] manova, [R] anova, [R] pkshape
LAV regression, [R] qreg

Lawley-Hotelling trace statistic, [MV] canon, [MV] manova, [MV] mvtest means, [MV] Glossary
lceffects, estat subcommand, [SVY] estat lcolor() option, [G-3] connect_options, [G-3] rspike_options
LDA, see linear discriminant analysis
lda, discrim subcommand, [MV] discrim lda lead
operator, [U] 11.4.4 Time-series varlists
values, see lagged values
leap seconds, [TS] tsset
least absolute
deviations, [R] qreg
residuals, $[\mathrm{R}]$ qreg
value regression, $[\mathrm{R}]$ qreg
least squared deviations, see linear regression
least squares, see linear regression
generalized, see feasible generalized least squares
least-squares means, $[R]$ margins, $[R]$ marginsplot,
[U] 20.15.1 Obtaining estimated marginal means
leave one out, [MV] discrim, [MV] discrim estat, [MV] discrim knn, [MV] discrim knn postestimation, [MV] discrim Ida, [MV] discrim lda postestimation, [MV] discrim qda, [MV] discrim qda postestimation, [MV] Glossary
left eigenvectors, [M-5] eigensystem( ), [M-6] Glossary
left suboption, [G-4] justificationstyle
left-censoring, [ST] Glossary, see imputation, intervalcensored data
_lefteigensystem() function, [M-5] eigensystem()
lefteigensystem() function, [M-5] eigensystem()
lefteigensystemselect*() functions,
[M-5] eigensystemselect()
leftgeigensystem() function, [M-5] geigensystem()
leftgeigensystemselect*() function, [M-5] geigensystem()
left-truncation, see imputation, truncated data, see truncation
legend() option, [G-3] legend_options
legends, [G-3] clegend_option, [G-3] legend_options
problems, [G-3] legend_options
use with by (), [G-3] by_option,
[G-3] clegend_option, [G-3] legend_options
legendstyle, [G-4] legendstyle
length, [M-5] abs( ), [M-5] rows( ), [M-5] strlen( )
length macro extended function, $[\mathrm{P}]$ macro
length of string function, [D] functions
length() function, [D] functions, [M-5] rows()
less than (or equal) operator, [U] 13.2.3 Relational operators
letter values, [R] lv
level command and value, $[\mathrm{P}]$ macro
level() option, see gsem option level(), see sem option level()
level, set subcommand, $[R]$ level, $[R]$ set
levels, [U] 11.4.3 Factor variables
levelsof command, [P] levelsof
Levene's robust test statistic, [R] sdtest
leverage, $[R]$ logistic postestimation, $[R]$ regress postestimation diagnostic plots
leverage plots, [G-2] graph other
leverage-versus-(squared)-residual plot, [R] regress postestimation diagnostic plots
Levin-Lin-Chu test, [XT] xtunitroot
_LEx, [SEM] sem and gsem option covstructure( )
lexis command, [ST] stsplit
lexis diagram, [ST] stsplit
lfit, graph twoway subcommand, [G-2] graph twoway lfit
lfitci, graph twoway subcommand, [G-2] graph twoway lfitci
libraries, [M-1] how, [M-3] mata mlib, [M-3] mata which
license, $[\mathrm{R}]$ about
life tables, [ST] Itable, [ST] sts, [ST] Glossary
likelihood, see maximum likelihood estimation
likelihood displacement value, [ST] stcox postestimation, [ST] Glossary
likelihood-ratio
chi-squared of association, $[R]$ tabulate twoway test, [R] lrtest, [PSS] power twoproportions, [PSS] Glossary, [SEM] Irtest, [SEM] methods and formulas for sem, [U] 20.12.3 Likelihoodratio tests
Likert summative scales, [MV] alpha limited dependent variables, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] meqrlogit, [ME] meqrpoisson, [R] asclogit, [R] asmprobit, [R] asroprobit, $[R]$ binreg, [ $R$ ] biprobit, $[R]$ brier,
$[R]$ clogit, $[R]$ cloglog, $[R]$ cusum,
$[R]$ exlogistic, $[R]$ expoisson, $[R]$ glm,
$[R]$ glogit, $[R]$ heckoprobit, $[R]$ heckprobit,
$[R]$ hetprobit, $[R]$ ivpoisson, $[R]$ ivprobit,
$[R]$ logistic, $[R]$ logit, $[R]$ mlogit, $[R]$ mprobit,
$[R]$ nbreg, $[R]$ nlogit, $[R]$ ologit, $[R]$ oprobit,
$[R]$ poisson, $[R]$ probit, $[R]$ rocfit, $[R]$ rocreg,
$[R]$ rologit, $[R]$ scobit, $[R]$ slogit, $[R]$ tnbreg,
$[R]$ tpoisson, $[R]$ zinb, $[R]$ zip, $[T E]$ etpoisson,
[XT] xtcloglog, [XT] xtgee, [XT] xtlogit,
[XT] xtnbreg, [XT] xtologit, [XT] xtoprobit,
[XT] xtpoisson, [XT] xtprobit
limits, [D] describe, [D] memory, [M-1] limits, $[R]$ limits, $[R]$ matsize, $[U] 6$ Managing memory
numerical and string, $[\mathrm{P}]$ creturn
system, $[\mathrm{P}]$ creturn
lincom command, $[\mathrm{R}]$ lincom, [SEM] intro 7, [SEM] estat stdize, [SEM] lincom, [SVY] svy postestimation
line, definition, [G-4] linestyle
line, graph twoway subcommand, [G-2] graph twoway line
linear
combinations, [SVY] estat, [SVY] svy postestimation
forming, $[\mathrm{P}]$ matrix score
combinations of estimators, $[\mathrm{R}]$ lincom,
[U] 20.13 Obtaining linear combinations of coefficients
discriminant analysis, [MV] candisc, [MV] discrim lda, [MV] Glossary
filter, [TS] tsfilter, [TS] tsfilter cf, [TS] tssmooth ma, [TS] Glossary
hypothesis test after estimation, $[\mathrm{R}]$ contrast,
$[R]$ Irtest, $[R]$ margins, $[R]$ margins, contrast,
$[R]$ margins, pwcompare, $[R]$ pwcompare,
$[R]$ test
interpolation and extrapolation, [D] ipolate
mixed-effects model, [ME] me, [ME] mixed, [ME] Glossary
prediction, see multiple imputation, prediction
regression, [MV] mvreg, $[R]$ anova, $[R]$ areg,
$[R]$ binreg, $[R]$ cnsreg, $[R]$ eivreg, $[R]$ frontier,
$[R]$ glm, $[R]$ gmm, $[R]$ heckman, $[R]$ intreg,
$[R]$ ivregress, $[R]$ ivtobit, $[R]$ qreg, $[R]$ reg3,
$[R]$ regress, $[R]$ rreg, $[R]$ sureg, $[R]$ tobit,
[R] vwls, [SEM] intro 5, [SEM] example 6, [SEM] Glossary, [SVY] svy estimation, [TE] etregress, [TE] teffects ra, [TS] newey, [TS] prais, [XT] xtabond, [XT] xtdpd,
[XT] xtdpdsys, [XT] xtfrontier, [XT] xtgee,
[XT] xtgls, [XT] xthtaylor, [XT] xtintreg,
[XT] xtivreg, [XT] xtpese, [XT] xtrc,
[XT] xtreg, [XT] xtregar, [XT] xttobit also see generalized linear models, also see panel data, also see random-coefficients model
conditional, [U] 26.9 Conditional logistic regression
with heteroskedastic errors, [U] 26.13 Linear regression with heteroskedastic errors
with simple error structures, [U] 26.3 Linear regression with simple error structures
imputation, see imputation, regression
splines, [R] mkspline
test, see estimation, test after
linearization, see linearized variance estimator
linearized variance estimator, [SVY] variance estimation, [SVY] Glossary
linegap, set subcommand, $[R]$ set
linepalette, palette subcommand, [G-2] palette
linepatternstyle, [G-4] linepatternstyle
lines, [G-4] concept: lines
adding, [G-2] graph twoway lfit,
[G-3] added_line_options, also see fits, adding
connecting points, [G-3] connect_options, [G-4] connectstyle
dashed, [G-4] linepatternstyle
dotted, [G-4] linepatternstyle
grid, [G-3] axis_label_options, [G-4] linestyle
lines, continued
long, in do-files and ado-files, [P] \#delimit,
[U] 18.11.2 Comments and long lines in adofiles
look of, [G-3] fcline_options, [G-3] line_options, [G-4] linestyle
patterns, [G-4] linepatternstyle
suppressing, [G-4] linestyle
thickness, [G-4] linewidthstyle
linesize, set subcommand, [R] log, [R] set
linestyle, [G-4] linestyle
added, [G-4] addedlinestyle
linewidthstyle, [G-4] linewidthstyle
link
complementary log-log, [SEM] methods and formulas for gsem
function, $[\mathrm{ME}]$ meglm, $[\mathrm{ME}]$ Glossary, $[\mathrm{R}]$ glm, [SEM] Glossary, [XT] xtgee, [XT] Glossary
identity, [SEM] methods and formulas for gsem
log, [SEM] methods and formulas for gsem
logit, [SEM] methods and formulas for gsem
probit, [SEM] methods and formulas for gsem
link() option, see gsem option link()
link, net subcommand, [R] net
linkage, [MV] cluster, [MV] clustermat, [MV] cluster linkage, [MV] Glossary
linktest command, [R] linktest
list,
cluster subcommand, [MV] cluster utility
estat subcommand, [MV] discrim estat,
[MV] discrim knn postestimation,
[MV] discrim Ida postestimation, [MV] discrim
logistic postestimation, [MV] discrim qda
postestimation
char subcommand, $[\mathrm{P}]$ char
constraint subcommand, $[\mathrm{R}]$ constraint
creturn subcommand, [P] creturn
duplicates subcommand, [D] duplicates
ereturn subcommand, [P] ereturn, [P] return,
[R] stored results
forecast subcommand, [TS] forecast list
label subcommand, [D] label
macro subcommand, $[\mathrm{P}]$ macro
matrix subcommand, $[\mathrm{P}]$ matrix utility
notes subcommand, [D] notes
odbc subcommand, [D] odbc
program subcommand, $[\mathrm{P}]$ program
return subcommand, $[P]$ return, $[R]$ stored results
scalar subcommand, $[\mathrm{P}]$ scalar
snapshot subcommand, [D] snapshot
sreturn subcommand, $[P]$ return, $[\mathrm{R}]$ stored results
ssd subcommand, [SEM] ssd
sts subcommand, [ST] sts list
sysdir subcommand, [P] sysdir
timer subcommand, [P] timer
list command, [D] list
list macro extended function, $[\mathrm{P}]$ macro lists
list manipulation, $[\mathrm{P}]$ macro lists
list subscripts, see subscripts
listing
data, [D] edit, [D] list
estimation results, $[P]$ ereturn, $[P]$ _estimates
macro expanded functions, $[\mathrm{P}]$ macro lists
strings, $[\mathrm{U}]$ 12.4.12 How to see the full contents of a strL or a str\# variable
values of a variable, [P] levelsof
liststruct () function, [M-5] liststruct()
listwise deletion, [MI] intro substantive, [MI] mi estimate, [MI] Glossary
listwise option, see gsem option listwise
llc, xtunitroot subcommand, [XT] xtunitroot
Lmatrix () function, [M-5] Lmatrix( )
LMAX value, [ST] stcox postestimation, [ST] Glossary
LME, see linear mixed-effects model
$\ln ()$ function, [D] functions, $[M-5] \exp ()$
lnfactorial() function, [D] functions,
[M-5] factorial( )
lngamma() function, [D] functions, [M-5] factorial()
lnnormal() function, [D] functions, [M-5] normal()
lnnormalden() function, [D] functions,
[M-5] normal( )
Inskew0 command, [R] Inskew0
load,
bcal subcommand, [D] bcal
odbc subcommand, [D] odbc
loading, [MV] Glossary
loading data, see importing data, see inputting data interactively, see reading data from disk, see using data
loading plot, [MV] scoreplot, [MV] Glossary
loadingplot command, [MV] discrim lda postestimation, [MV] factor postestimation, [MV] pca postestimation, [MV] scoreplot
loadings, estat subcommand, [MV] ca postestimation, [MV] canon postestimation, [MV] discrim lda, [MV] discrim lda postestimation, [MV] pca postestimation
local
++ command, $[\mathrm{P}]$ macro
-- command, $[\mathrm{P}]$ macro
command, $[\mathrm{P}]$ macro, $[\mathrm{U}]$ 18.3.1 Local macros, [U] 18.3.9 Advanced local macro manipulation
local,
ereturn subcommand, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
return subcommand, $[\mathrm{P}]$ return
sreturn subcommand, $[\mathrm{P}]$ return
local linear, [R] lpoly
local polynomial, [R] Ipoly
local polynomial smoothing, [G-2] graph other, [G-2] graph twoway lpoly, [G-2] graph twoway Ipolyci
Local, class prefix operator, $[\mathrm{P}]$ class
locally weighted smoothing, $[R]$ lowess
location, measures of, $[R]$ lv, $[R]$ summarize, $[R]$ table
location, specifying, [G-4] clockposstyle,
[G-4] compassdirstyle, [G-4] ringposstyle
locksplitters, set subcommand, [R] set log
close command, $[R] \log$
command, $[R]$ log, $[R]$ view, $[U] 15$ Saving and printing output-log files, [U] 16.1.2 Comments
and blank lines in do-files
off command, $[R] \log$
on command, $[R] \log$
query command, $[\mathrm{R}] \log$
using command, $[\mathrm{R}] \log$
.log file, [U] 11.6 Filenaming conventions
$\log$ files, see log command
printing, $[R]$ translate, also see log command $\log ()$ function, [D] functions, [M-5] $\exp ()$
$\log$ likelihood, [SEM] methods and formulas for gsem,
[SEM] methods and formulas for sem
log or nolog option, $[\mathrm{R}]$ maximize
log scales, [G-3] axis_scale_options
log transformations, $[R]$ boxcox, $[R]$ Inskew0
$\log 10$ () function, [D] functions, $[\mathrm{M}-5] \exp ()$
logarithms, $[\mathrm{M}-5] \exp (),[\mathrm{M}-5]$ matexpsym ()
logical operators, [M-2] op_logical, [U] 13.2.4 Logical operators
logistic and logit regression, $[R]$ logistic, $[R]$ logit, [SEM] intro 5, [SEM] example 33g, [SEM] example 34g, [SEM] Glossary, [SVY] svy estimation
complementary log-log, $[\mathrm{R}]$ cloglog
conditional, $[R]$ asclogit, $[R]$ clogit, $[R]$ rologit
exact, $[R]$ exlogistic
fixed-effects, $[R]$ asclogit, $[R]$ clogit, $[X T]$ xtlogit
fractional polynomial, $[R] \mathbf{f p}$
generalized estimating equations, $[\mathrm{XT}]$ xtgee
generalized linear model, $[\mathrm{R}]$ glm
mixed-effects, [ME] melogit, [ME] meqrlogit, also see ordered logistic regression
multinomial, $[R]$ asclogit, $[R]$ clogit, $[R]$ mlogit
nested, $[R]$ nlogit
ordered, $[R]$ ologit
polytomous, $[\mathrm{R}]$ mlogit
population-averaged, [XT] xtgee, [XT] xtlogit
random-effects, [XT] xtlogit, [XT] xtologit
rank-ordered, $[\mathrm{R}]$ rologit
skewed, $[R]$ scobit
stereotype, $[R]$ slogit
with grouped data, $[R]$ glogit
logistic command, $[R]$ logistic, $[R]$ logistic postestimation
logistic discriminant analysis, [MV] discrim logistic, [MV] Glossary
logistic regression imputation, see imputation, logistic regression
logistic, discrim subcommand, [MV] discrim logistic
logit command, $[R]$ logit, $[R]$ logit postestimation
logit function, [D] functions
logit option, see gsem option logit
logit regression, see logistic and logit regression
logit() function, [M-5] logit()
log-linear model, [R] expoisson, [R] glm, [R] ivpoisson, $[R]$ poisson, $[R]$ tpoisson, $[R]$ zip, $[S V Y]$ svy estimation, [TE] etpoisson
$\log -\log$ plot, [ST] stcox PH-assumption tests loglogistic survival regression, [ST] streg lognormal survival regression, [ST] streg
log-rank,
power, [ST] stpower logrank
sample size, [ST] stpower logrank
test, [ST] stpower logrank, [ST] sts test
logrank, stpower subcommand, [ST] stpower logrank
logtype, set subcommand, $[R] \log ,[R]$ set
LOHI, [M-5] byteorder( )
loneway command, $[R]$ loneway
long, [D] data types
long (storage type), [U] 12.2.2 Numeric storage types
long lines in ado-files and do-files, [P] \#delimit,
[U] 18.11.2 Comments and long lines in adofiles
long strings, see string variables, long
long, reshape subcommand, [D] reshape
longitudinal data, [MI] mi estimate, [XT] Glossary, see panel data
longitudinal studies, see incidence studies
longitudinal survey data, [SVY] svy estimation
long-memory process, [TS] arfima, [TS] Glossary
LOO, see leave one out
look of areas, [G-3] area_options,
[G-3] fitarea_options
lookfor command, [D] lookfor
lookup,
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
loop, [M-2] do, [M-2] for, [M-2] while
continuing, $[\mathrm{M}-2]$ continue
endless, see endless loop
exiting, [M-2] break
use of semicolons in, [M-2] semicolons
looping, $[\mathrm{P}]$ continue, $[\mathrm{P}]$ foreach, $[\mathrm{P}]$ forvalues,
[P] while
Lorenz curve, $[\mathrm{R}]$ inequality
loss, [MV] Glossary
loss to follow-up, [ST] Glossary
Lotus 1-2-3, reading data from, see spreadsheets
lower
one-sided test, [PSS] Glossary, also see one-sided test, lower
one-tailed test, see lower one-sided test
lower () function, [D] functions
lowercase, [M-5] strupper()
lowercase-string function, [D] functions
_lowertriangle() function, [M-5] lowertriangle()
lowertriangle() function, [M-5] lowertriangle()
lower-triangular matrix, see triangular matrix
lowess, see locally weighted smoothing
lowess command, [R] lowess
lowess smoothing, [G-2] graph other
lowess, graph twoway subcommand, [G-2] graph twoway lowess
lpattern() option, [G-3] connect_options,
[G-3] rspike_options
lpoly command, [R] lpoly
lpoly, graph twoway subcommand, [G-2] graph twoway lpoly
lpolyci, graph twoway subcommand, [G-2] graph twoway lpolyci
L-R plots, [G-2] graph other, [R] regress postestimation diagnostic plots
LRECLs, [D] infile (fixed format)
lroc command, [R] lroc
lrtest command, [R] Irtest, [SEM] example 10, [SEM] example 39g, [SEM] lrtest
ls command, [D] dir
lsens command, [R] Isens
lstat command, see estat classification command
lstretch, set subcommand, [R] set
lstyle() option, [G-3] rspike_options
ltable command, [ST] ltable
ltolerance() option, [R] maximize
ltrim() function, [D] functions
LU decomposition, [M-5] lud( )
_lud() function, [M-5] lud()
lud() function, [M-5] lud()
_lud_la() function, [M-5] lud()
_luinv() function, [M-5] luinv( )
luinv() function, [M-5] luinv()
_luinv_la() function, [M-5] luinv()
_lusolve() function, [M-5] lusolve()
lusolve() function, [M-5] lusolve()
_lusolve_la() function, [M-5] lusolve()
lv command, $[\mathrm{R}] \mathbf{l v}$
lval, [M-2] op_assignment, [M-6] Glossary
lvalue, class, $[\mathrm{P}]$ class
lvr2plot command, [R] regress postestimation diagnostic plots
lwidth() option, [G-3] connect_options, [G-3] rspike_options

## M

$M$, [MI] mi impute, [MI] Glossary
size recommendations, [MI] intro substantive, [MI] mi estimate
$m$, [MI] Glossary
MA, see moving average model
ma, tssmooth subcommand, [TS] tssmooth ma

Mac,
keyboard use, [U] 10 Keyboard use
pause, [P] sleep
specifying filenames, [U] 11.6 Filenaming conventions
machine precision, [M-5] epsilon( ), [M-6] Glossary
macro
dir command, [P] macro
drop command, $[\mathrm{P}]$ macro
list command, $[\mathrm{P}]$ macro
shift command, $[\mathrm{P}]$ macro
macro substitution, $[\mathrm{P}]$ macro
class, $[\mathrm{P}]$ class
macros, $[P]$ creturn, $[P]$ macro, $[P]$ scalar, $[P]$ syntax,
[U] 18.3 Macros, also see e() stored results
macval () macro expansion function, $[\mathrm{P}]$ macro
MAD regression, [R] qreg
$\operatorname{mad}()$, egen function, [D] egen
Mahalanobis
distance, [MV] Glossary
transformation, [MV] Glossary
main effects, $[M V]$ manova, $[R]$ anova
makecns command, $[\mathrm{P}]$ makecns
_makesymmetric() function, [M-5] makesymmetric()
makesymmetric() function, [M-5] makesymmetric()
man command, $[R]$ help
manage, window subcommand, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window manage
MANCOVA, see multivariate analysis of covariance
mangle option, [G-2] graph twoway pcarrow manifest variables, [SEM] Glossary
manipulation commands, [G-2] graph manipulation Mann-Whitney two-sample statistics, [R] ranksum MANOVA, see multivariate analysis of variance manova command, [MV] manova, [MV] manova postestimation
manova, estat subcommand, [MV] discrim Ida postestimation
manovatest command, [MV] manova postestimation
Mantel-Cox method, [ST] strate
Mantel-Haenszel
method, [ST] strate
test, [ST] epitab, [ST] stir
mapping strings to numbers, $[\mathrm{D}]$ destring, $[\mathrm{D}]$ encode,
[D] label, also see real () function
maps, [M-5] asarray ()
MAR, see missing at random, see missing values marginal
effects, $[R]$ margins, $[R]$ marginsplot, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins, [U] 20.19 Graphing margins, marginal effects, and contrasts
homogeneity, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
homogeneity, test of, [R] symmetry
marginal, continued
means, $[R]$ contrast, $[R]$ margins, $[R]$ margins, contrast, $[R]$ margins, pwcompare, [R] marginsplot, [R] pwcompare, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins
proportion, see proportions, marginal
tax rate egen function, [D] egen
margins command, $[R]$ margins, $[R]$ margins postestimation, $[R]$ margins, contrast, $[R]$ margins, pwcompare, $[R]$ marginsplot, [SEM] intro 7, [SVY] svy postestimation, [U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins margins test, $[R]$ margins, $[R]$ pwcompare margins, size of, [G-4] marginstyle marginsplot command, $[\mathrm{R}]$ marginsplot, [U] 20.19 Graphing margins, marginal effects, and contrasts
marginstyle, [G-3] region_options,
[G-3] textbox_options, [G-4] marginstyle
mark command, $[\mathrm{P}]$ mark
marker labels, [G-3] marker_label_options, [G-4] markerlabelstyle
markerlabelstyle, [G-4] markerlabelstyle
markers, [G-3] marker_options, also see marker labels color, [G-4] colorstyle
resizing, [G-3] scale_option
shape of, [G-4] symbolstyle
size of, [G-4] markersizestyle
markersizestyle, [G-4] markersizestyle
markerstyle, [G-4] markerstyle
markin command, [P] mark
marking observations, $[\mathrm{P}]$ mark
markout command, [P] mark
Markov chain Monte Carlo, [MI] mi impute, [MI] mi impute mvn, [MI] Glossary
convergence, [MI] mi impute, [MI] mi impute
chained, [MI] mi impute mvn
parameter trace files, [MI] mi ptrace
marksample command, [P] mark
Marquardt algorithm, [M-5] moptimize( ), [M-5] optimize( )
martingale residual, $[\mathrm{ST}]$ stcox postestimation,
[ST] streg postestimation
mass, [MV] Glossary
mata
clear command, [M-3] mata clear describe command, [M-3] mata describe drop command, [M-3] mata drop help command, [M-3] mata help invocation command, [M-3] mata matdescribe command, [M-3] mata matsave matsave command, [M-3] mata matsave matuse command, [M-3] mata matsave memory command, [M-3] mata memory mlib add command, [M-3] mata mlib mlib create command, [M-3] mata mlib
mata, continued
mlib index command, [M-3] mata mlib mlib query command, [M-3] mata mlib mosave command, [M-3] mata mosave query command, [M-3] mata set, [R] set rename command, [M-3] mata rename
set matacache command, [M-3] mata set, $[R]$ set set matafavor command, [M-3] mata set,
[M-5] favorspeed( ), [R] set
set matalibs command, [M-3] mata set, [R] set
set matalnum command, [M-3] mata set, [R] set
set matamofirst command, [M-3] mata set,
[ $R$ ] set
set mataoptimize command, [M-3] mata set, [R] set
set matastrict command, [M-1] ado,
[M-2] declarations, [M-3] mata set, [R] set
stata command, [M-3] mata stata
which command, [M-3] mata which
Mata, [D] putmata
commands, [M-3] intro
error messages, [M-5] error( ), also see traceback $\log$
.mata source code file, [M-1] source, [M-3] mata mlib, [M-6] Glossary, [U] 11.6 Filenaming conventions
mata, clear subcommand, [D] clear
mata, query subcommand, $[\mathrm{R}]$ query
matched case-control data, [R] asclogit, [R] clogit, [R] symmetry, [ST] epitab, [ST] sttoce, [ST] Glossary
matched study, [PSS] intro, [PSS] power, [PSS] power pairedmeans, [PSS] power pairedproportions, [PSS] Glossary
matched-pairs tests, [R] signrank, [R] ttest
matching coefficient, [MV] Glossary
matching coefficient similarity measure,
[MV] measure_option
matching configuration, [MV] Glossary
matching estimator, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects nnmatch, [TE] teffects psmatch, [TE] Glossary
matcproc command, $[\mathrm{P}]$ makecns
matdescribe, mata subcommand, [M-3] mata matsave
_matexpsym() function, [M-5] matexpsym()
matexpsym() function, [M-5] matexpsym()
math symbols, [G-4] text
mathematical functions, [M-4] mathematical, [M-4] matrix, [M-4] scalar, [M-4] solvers, [M-4] standard
mathematical functions and expressions, [D] functions, [P] matrix define, [U] 13.3 Functions
Matlab, reading data from, [U] 21.4 Transfer programs
matlist command, $[\mathrm{P}]$ matlist
_matlogsym() function, [M-5] matexpsym()
matlogsym() function, [M-5] matexpsym()
matmissing() function, [D] functions, [P] matrix define
matname command, $[\mathrm{P}]$ matrix mkmat
_matpowersym() function, [M-5] matpowersym()
matpowersym() function, [M-5] matpowersym( )
mat_put_rr command, $[\mathrm{P}]$ matrix get
matrices, [M-4] intro, [M-6] Glossary, [P] matrix,
[U] 14 Matrix expressions
accessing internal, $[\mathrm{P}]$ matrix get
accumulating, $[\mathrm{P}]$ matrix accum
appending rows and columns, $[\mathrm{P}]$ matrix define
Cholesky decomposition, $[\mathrm{P}]$ matrix define
coefficient, [P] ereturn
column names, see matrices, row and column names
constrained estimation, $[\mathrm{P}]$ makecns
copying, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix get,
$[\mathrm{P}]$ matrix mkmat
correlation, $[\mathrm{MV}]$ pca, $[\mathrm{P}]$ matrix define
covariance, [MV] pca
covariance matrix of estimators, $[\mathrm{P}]$ ereturn,
$[\mathrm{P}]$ matrix get
cross-product, $[\mathrm{P}]$ matrix accum
determinant, $[\mathrm{P}]$ matrix define
diagonals, $[\mathrm{P}]$ matrix define
displaying, $[\mathrm{P}]$ matlist, $[\mathrm{P}]$ matrix utility
dissimilarity, [MV] matrix dissimilarity,
[MV] Glossary, [P] matrix dissimilarity
distances, $[\mathrm{MV}]$ matrix dissimilarity, $[\mathrm{P}]$ matrix dissimilarity
dropping, $[\mathrm{P}]$ matrix utility
eigenvalues, $[\mathrm{P}]$ matrix eigenvalues, $[\mathrm{P}]$ matrix symeigen
eigenvectors, $[\mathrm{P}]$ matrix symeigen
elements, $[\mathrm{P}]$ matrix define
equation names, see matrices, row and column names
estimation results, $[P]$ ereturn, $[P]$ _estimates
functions, [D] functions, [M-4] manipulation, [M-4] matrix, [M-4] solvers, [M-4] standard,
$[\mathrm{P}]$ matrix define
identity, $[P]$ matrix define
input, $[P]$ matrix define, [U] 14.4 Inputting matrices by hand
inversion, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix svd
Kronecker product, $[\mathrm{P}]$ matrix define
labeling rows and columns, see matrices, row and column names
linear combinations with data, $[\mathrm{P}]$ matrix score
listing, $[P]$ matlist, $[P]$ matrix utility
namespace and conflicts, $[\mathrm{P}]$ matrix, $[\mathrm{P}]$ matrix define
norm, [M-5] norm( )
number of rows and columns, $[\mathrm{P}]$ matrix define
operators such as addition, $[\mathrm{P}]$ matrix define,
[U] 14.7 Matrix operators
orthonormal basis, $[\mathrm{P}]$ matrix svd
partitioned, $[\mathrm{P}]$ matrix define
performing constrained estimation, $[\mathrm{P}]$ makecns
matrices, continued
posting estimation results, $[\mathrm{P}]$ ereturn,
$[\mathrm{P}]$ _estimates
renaming, $[\mathrm{P}]$ matrix utility
row and column names, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix mkmat, $[\mathrm{P}]$ matrix rownames, $[\mathrm{U}] 14.2$ Row and column names rows and columns, $[\mathrm{P}]$ matrix define saving matrix, $[\mathrm{P}]$ matrix mkmat scoring, $[P]$ matrix score
similarity, [MV] matrix dissimilarity, [P] matrix dissimilarity
store variables as matrix, $[\mathrm{P}]$ matrix mkmat
submatrix extraction, $[\mathrm{P}]$ matrix define
submatrix substitution, $[\mathrm{P}]$ matrix define
subscripting, $[\mathrm{P}]$ matrix define,
[U] 14.9 Subscripting
sweep operator, $[\mathrm{P}]$ matrix define
temporary names, $[\mathrm{P}]$ matrix
trace, $[P]$ matrix define
transposing, $[\mathrm{P}]$ matrix define
variables, make into matrix, $[\mathrm{P}]$ matrix mkmat
zero, $[\mathrm{P}]$ matrix define
matrix
accum command, $[\mathrm{P}]$ matrix accum
coleq command, $[\mathrm{P}]$ matrix rownames
colnames command, $[\mathrm{P}]$ matrix rownames
commands, introduction, $[\mathrm{P}]$ matrix
define command, $[P]$ matrix define
dir command, $[\mathrm{P}]$ matrix utility
dissimilarity command, [MV] matrix
dissimilarity, $[\mathrm{P}]$ matrix dissimilarity
drop command, $[\mathrm{P}]$ matrix utility
eigenvalues command, $[P]$ matrix eigenvalues
glsaccum command, $[\mathrm{P}]$ matrix accum
input command, $[\mathrm{P}]$ matrix define
list command, $[\mathrm{P}]$ matrix utility
opaccum command, $[\mathrm{P}]$ matrix accum
rename command, $[\mathrm{P}]$ matrix utility
roweq command, $[\mathrm{P}]$ matrix rownames
rownames command, $[\mathrm{P}]$ matrix rownames
score command, $[\mathrm{P}]$ matrix score
svd command, $[\mathrm{P}]$ matrix svd
symeigen command, $[P]$ matrix symeigen
vecaccum command, $[P]$ matrix accum
matrix, [M-2] declarations
clear subcommand, [D] clear
confirm subcommand, $[\mathrm{P}]$ confirm
ereturn subcommand, $[P]$ ereturn, $[P]$ return
graph subcommand, [G-2] graph matrix
return subcommand, $[\mathrm{P}]$ return
matrix graphs, [G-2] graph matrix
matrix() function, [D] functions, [P] matrix define matsave, mata subcommand, [M-3] mata matsave
matsize, set subcommand, $[\mathrm{M}-1]$ limits, $[\mathrm{P}]$ creturn,
$[P]$ macro, $[R]$ matsize, $[R]$ set, $[U] 14$ Matrix expressions
matuniform() function, [D] functions, [P] matrix define
matuse, mata subcommand, [M-3] mata matsave $\max ()$,
egen function, [D] egen
function, [D] functions, [M-5] minmax( )
maxbyte() function, [D] functions
maxdb, set subcommand, [R] db, [R] set
maxdouble() function, [D] functions,
[M-5] mindouble( )
maxes () option, [G-2] graph matrix
maxfloat () function, [D] functions
maximization, [M-5] moptimize( ), [M-5] optimize( )
maximization technique explained, $[\mathrm{R}]$ maximize, [R] ml
maximize, ml subcommand, $[\mathrm{R}] \mathrm{ml}$
maximize_options, see gsem option maximize_options, see sem option maximize_options
maximum
function, [D] egen, [D] functions
length of string, [M-1] limits
likelihood, [SEM] intro 4, [SEM] methods and formulas for gsem, [SEM] methods and formulas for sem, [SEM] Glossary
likelihood estimation, [MV] factor, $[R]$ maximize, $[\mathrm{R}] \mathbf{m l},[\mathrm{R}]$ mlexp
likelihood factor method, [MV] Glossary
limits, $[R]$ limits
number of observations, [D] memory
number of variables, [D] describe, [D] memory
number of variables and observations,
[U] 6 Managing memory
number of variables in a model, $[\mathrm{R}]$ matsize
pseudolikelihood estimation, [SVY] ml for svy, [SVY] variance estimation
restricted likelihood, [ME] mixed
size of dataset, [U] 6 Managing memory
size of matrix, [M-1] limits
value dissimilarity measure, [MV] measure _option
with missing values, [SEM] example 26,
[SEM] Glossary
maximums and minimums, [M-5] minindex( )
creating dataset of, [D] collapse
functions, [D] egen, [D] functions
reporting, $[R]$ lv, $[R]$ summarize, $[R]$ table
maxindex () function, [M-5] minindex()
maxint() function, [D] functions
maxiter, set subcommand, $[R]$ maximize, $[R]$ set
maxlong() function, [D] functions
max_memory, set subcommand, [D] memory, [R] set
maxvar, set subcommand, [D] memory, [R] set
mband, graph twoway subcommand, [G-2] graph twoway mband
MCA, see multiple correspondence analysis
mca command, [MV] mca, [MV] mca postestimation, [MV] mca postestimation plots
MCAGH, see quadrature, mode-curvature adaptive Gauss-Hermite
mcaplot command, [MV] mca postestimation,
[MV] mca postestimation plots
mcaprojection command, [MV] mca postestimation,
[MV] mca postestimation plots
MCAR, see missing completely at random
mcc command, [ST] epitab
mcci command, [ST] epitab
MCE, see Monte Carlo error
McFadden's choice model, [R] asclogit
MCMC, see Markov chain Monte Carlo
McNemar's chi-squared test, [R] clogit, [ST] epitab
McNemar's test, [PSS] Glossary
mcolor() option, [G-3] marker_options
md command, [D] mkdir
MDES, see minimum detectable effect size
mdev(), egen function, [D] egen
MDS, see multidimensional scaling
mds command, [MV] mds, [MV] mds postestimation,
[MV] mds postestimation plots
mdsconfig command, [MV] mds, [MV] mds postestimation plots
mdslong command, [MV] mds postestimation,
[MV] mds postestimation plots, [MV] mdslong
mdsmat command, [MV] mds postestimation,
[MV] mds postestimation plots, [MV] mdsmat
mdsshepard command, [MV] mds postestimation plots
mdy () function, [D] datetime, [D] functions, [M-5] date()
mdyhms () function, [D] datetime, [D] functions, [M-5] date()
mean command, $[R]$ mean, $[R]$ mean postestimation
mean contrasts, [PSS] Glossary
mean() function, [M-5] mean()
mean(), egen function, [D] egen
means, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs
across variables, not observations, [D] egen arithmetic, geometric, and harmonic, $[R]$ ameans
confidence interval and standard error, $[\mathrm{R}]$ ci
control-group, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] unbalanced designs
correlated, see means, paired
creating
dataset of, [D] collapse
variable containing, [D] egen
displaying, $[R]$ ameans, $[R]$ summarize, $[R]$ table,
$[R]$ tabstat, $[R]$ tabulate, summarize (),
[XT] xtsum
estimating, [R] mean
experimental-group, [PSS] intro, [PSS] power,
[PSS] power twomeans, [PSS] unbalanced designs
means, continued
graphing, [R] grmeanby
independent, see means, two-sample
marginal, [R] margins
multiple-sample, [PSS] power oneway, [PSS] power
twoway, [PSS] power repeated
one-sample, [PSS] intro, [PSS] GUI, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] unbalanced designs
paired, [PSS] intro, [PSS] power, [PSS] power pairedmeans
pairwise comparisons of, $[\mathrm{R}]$ pwmean
pharmacokinetic data, [R] pksumm
posttreatment, [PSS] intro, [PSS] power, [PSS] power pairedmeans
pretreatment, [PSS] intro, [PSS] power, [PSS] power pairedmeans
robust, [R] rreg
means, survey data, [SVY] svy estimation testing equality, [MV] hotelling, [MV] manova, [MV] mvtest means also see equality test of means
two-sample, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] unbalanced designs
means() option, see gsem option means(), see sem option means ()
means, mvtest subcommand, [MV] mvtest means
mean-variance adaptive Gauss-Hermite quadrature, see quadrature, mean-variance adaptive GaussHermite
meanvariance() function, [M-5] mean()
measure, [MV] Glossary
measurement
component, [SEM] Glossary
error, [MV] alpha, [R] vwls, [SEM] intro 5, [SEM] example 1, [SEM] example 27 g
model, [SEM] intro 5, [SEM] example 1, [SEM] example 3, [SEM] example 20, [SEM] example 27 g , [SEM] example 30 g , [SEM] example 31g, [SEM] Glossary
variables, [SEM] Glossary
measures, cluster subcommand, [MV] cluster programming utilities
measures of
association, [R] tabulate twoway
central tendency, see means, see medians
dispersion, see standard deviations, displaying, see variance, displaying, see percentiles, displaying, see range of data
inequality, $[R]$ inequality
location, $[R]$ lv, $[R]$ summarize
mecloglog command, [ME] mecloglog
median command, $[\mathrm{R}]$ ranksum
median regression, [R] qreg
median test, $[\mathrm{R}]$ ranksum
median(), egen function, [D] egen
medianlinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
median-linkage clustering, [MV] cluster,
[MV] clustermat, [MV] cluster linkage,
[MV] Glossary
medians,
creating
dataset of, [D] collapse
variable containing, [D] egen
displaying, [D] pctile, $[R]$ centile, $[R]$ lv,
$[R]$ summarize, $[R]$ table, $[R]$ tabstat
graphing, $[R]$ grmeanby
testing equality of, see equality test of medians
mediation model, [SEM] intro 5, [SEM] example 42g
MEFF, see misspecification effects
MEFT, see misspecification effects
meglm command, [ME] meglm
melogit command, [ME] melogit
member
function, [M-2] class
program, $[\mathrm{P}]$ class
variable, [M-2] class, [P] class
memory, [U] 6 Managing memory
clearing, [D] clear
determining and resetting limits, [D] describe, [D] memory
matsize, see matsize, set subcommand
reducing utilization, [D] compress, [D] encode, $[\mathrm{D}]$ recast, $[\mathrm{P}]$ discard
memory command, [D] memory, [U] 6 Managing memory
memory graphs, describing contents, [G-2] graph describe
memory requirements, estimating for flongsep, [MI] mi convert
memory settings, $[\mathrm{P}]$ creturn
memory utilization, [M-1] limits, [M-3] mata memory
memory, mata subcommand, [M-3] mata memory
memory, query subcommand, [D] memory, [R] query
menbreg command, [ME] menbreg
menu, window subcommand, $[\mathrm{P}]$ window
programming, $[\mathrm{P}]$ window menu
menus, programming, $[\mathrm{P}]$ dialog programming,
$[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen,
$[\mathrm{P}]$ window manage, $[\mathrm{P}]$ window menu,
$[\mathrm{P}]$ window push, $[\mathrm{P}]$ window stopbox
meologit command, [ME] meologit
meoprobit command, [ME] meoprobit
mepoisson command, [ME] mepoisson
meprobit command, [ME] meprobit
meqrlogit command, [ME] meqrlogit
meqrpoisson command, [ME] meqrpoisson
merge command, [D] merge, [U] 22 Combining datasets
_merge variable, [D] merge
merge, mi subcommand, [MI] mi merge
merged-explicit options, [G-4] concept: repeated options
merged-implicit options, [G-4] concept: repeated options
merging data, [MI] mi merge, see combining datasets
messages and return codes, see error messages and return codes
meta-analysis, [R] meta
method, [M-2] class, [SEM] Glossary
method() option, see gsem option method(), see sem option method()
metric scaling, [MV] Glossary
mfcolor() option, [G-3] marker_options
$m f p$ prefix command, $[R] \mathbf{m f p},[R]$ mfp postestimation $m f x$, estat subcommand, $[R]$ asclogit postestimation, [R] asmprobit postestimation, [R] asroprobit postestimation
MGARCH, see multivariate GARCH
mgarch
ccc command, [TS] mgarch cce, [TS] mgarch cce postestimation
dcc command, [TS] mgarch dce, [TS] mgarch dce postestimation
dvech command, [TS] mgarch dvech, [TS] mgarch dvech postestimation
vcc command, [TS] mgarch vec, [TS] mgarch vec postestimation
mhodds command, [ST] epitab
mi
add command, [MI] mi add
append command, [MI] mi append
command, [MI] intro, [MI] styles, [MI] workflow
convert command, [MI] mi convert
copy command, [MI] mi copy, [MI] styles
describe command, [MI] mi describe
erase command, [MI] mi erase, [MI] styles
estimate command, [MI] mi estimate, [MI] mi estimate using, [MI] mi estimate postestimation, [MI] mi test
estimate postestimation, [MI] mi estimate postestimation, [MI] mi predict, [MI] mi test
expand command, [MI] mi expand
export command, [MI] mi export, [MI] mi export ice, [MI] mi export nhanes1
extract command, [MI] mi extract, [MI] mi replace0
fvset command, [MI] mi XXXset
import command, [MI] mi import, [MI] mi import flong, [MI] mi import flongsep, [MI] mi import ice, [MI] mi import nhanes1, [MI] mi import wide
impute command, [MI] mi impute, [MI] mi impute chained, $[\mathrm{MI}]$ mi impute intreg, $[\mathrm{MI}]$ mi impute logit, [MI] mi impute mlogit, [MI] mi impute monotone, [MI] mi impute mvn, [MI] mi impute nbreg, [MI] mi impute ologit, [MI] mi impute pmm, [MI] mi impute poisson, [MI] mi impute regress, $[\mathrm{MI}]$ mi impute truncreg
merge command, [MI] mi merge
misstable command, [MI] mi misstable
passive command, [MI] mi passive
predict command, [MI] mi estimate
postestimation, [MI] mi predict
predictnl command, [MI] mi estimate
postestimation, [MI] mi predict
ptrace command, [MI] mi ptrace
query command, [MI] mi describe
register command, [MI] mi set
rename command, [MI] mi rename
replace 0 command, [MI] mi replace 0
reset command, [MI] mi reset
reshape command, [MI] mi reshape
select command, [MI] mi select, also see mi extract command
set command, [MI] mi set
st command, [MI] mi XXXset
stjoin command, [MI] mi stsplit
streset command, [MI] mi XXXset
stset command, [MI] mi XXXset
stsplit command, [MI] mi stsplit
svyset command, [MI] mi XXXset
test command, [MI] mi estimate postestimation, [MI] mi test
testtransform command, [MI] mi estimate postestimation, $[\mathrm{MI}]$ mi test
tsset command, [MI] mi XXXset
unregister command, [MI] mi set
unset command, [MI] mi set
update command, [MI] mi update, [MI] noupdate option
varying command, [MI] mi varying
xeq command, [MI] mi xeq
xtset command, [MI] mi XXXset
mi data, [MI] Glossary
mi () function, [D] functions
MICE, see multivariate imputation, chained equations
Microsoft
Access, reading data from, [D] odbc,
[U] 21.4 Transfer programs
Excel, [M-5] xl( )
Excel, reading data from, [D] import excel, [D] odbc
Excel, write results to, $[\mathrm{P}]$ putexcel
Office, [M-5]_docx*(), [M-5] xl()
SpreadsheetML, [D] xmlsave
Windows, see Windows
Word, [M-5] _docx*()
middle suboption, [G-4] alignmentstyle
midsummaries, $[R]$ lv
mild outliers, $[\mathrm{R}] \mathbf{l v}$
Mills' ratio, $[\mathrm{R}]$ heckman, $[\mathrm{R}]$ heckman postestimation
MIMIC models, see multiple indicators and multiple causes model
$\min ()$ function, [D] functions, [M-5] minmax( )
$\min ()$, egen function, $[D]$ egen
minbyte() function, [D] functions
mindices, estat subcommand, [SEM] estat mindices mindouble() function, [D] functions,
[M-5] mindouble( )
minfloat() function, [D] functions
minimal
detectable difference, hazard ratio, $[\mathrm{ST}]$ stpower
effect size, hazard ratio, [ST] stpower
minimization, [M-5] moptimize( ), [M-5] optimize( ) minimum
absolute deviations, [R] qreg
detectable effect size, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
detectable value, [PSS] Glossary
entropy rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
squared deviations, $[R]$ areg, $[R]$ ensreg, $[R] n l$, $[R]$ regress, $[R]$ regress postestimation
minimums and maximums, see maximums and minimums, reporting, see maximums and minimums
minindex () function, [M-5] minindex()
minint () function, [D] functions
Minkowski dissimilarity measure, [MV] measure_option
minlong() function, [D] functions
minmax () function, [M-5] minmax ()
min_memory, set subcommand, [D] memory, $[R]$ set
minutes () function, [D] datetime, [D] functions, [M-5] date()
misclassification rate, [MV] Glossary
missing at random, [MI] intro substantive, [MI] mi impute, [MI] Glossary
missing completely at random, $[\mathrm{MI}]$ intro substantive, [MI] Glossary
missing data, $[\mathrm{MI}]$ intro substantive
arbitrary pattern, $[\mathrm{MI}]$ intro substantive, $[\mathrm{MI}] \mathbf{m i}$ impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}] \mathrm{mi}$ impute mvn, [MI] Glossary
monotone pattern, [MI] intro substantive, [MI] mi impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}] \mathrm{mi}$ impute monotone, [MI] mi impute mvn, [MI] Glossary
missing not at random, [MI] intro substantive, [MI] Glossary
missing observations, see dropout
missing values, [M-5] missing( ), [M-5] missingof( ), [M-5] editmissing( ), [M-5] _fillmissing( ), $[\mathrm{D}]$ missing values, $[\mathrm{R}]$ misstable, [SEM] example 26, [U] 12.2.1 Missing values, [U] 13 Functions and expressions
missing values, continued
counting, [D] codebook, [D] inspect
encoding and decoding, [D] mvencode
extended, [D] mvencode
hard and soft, [MI] Glossary
ineligible, [MI] Glossary
pattern of, [MI] mi misstable
replacing, [D] merge
missing() function, [D] functions, [M-5] missing() missingness, pattern, see pattern of missingness
missingof () function, [M-5] missingof()
misspecification effects, [SVY] estat, [SVY] Glossary
misstable
for mi data, [MI] mi misstable
nested command, [R] misstable
patterns command, $[R]$ misstable
summarize command, [R] misstable
tree command, $[R]$ misstable
misstable, mi subcommand, [MI] mi misstable
mixed command, [ME] mixed
mixed designs, $[\mathrm{MV}]$ manova, $[\mathrm{R}]$ anova, [PSS] Glossary
mixed model, [ME] mecloglog, [ME] melogit,
[ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed,
[ME] Glossary, [U] 26.19 Multilevel mixedeffects models
mixed-effects model, see multilevel model
mkdir command, [D] mkdir
_mkdir() function, [M-5] chdir()
mkdir() function, [M-5] chdir()
mkmat command, $[\mathrm{P}]$ matrix mkmat
mkspline command, [R] mkspline
ML, see maximum likelihood
ml, see gsem option method(), see sem option method ()
check command, $[\mathrm{R}] \mathrm{ml}$
clear command, $[\mathrm{R}] \mathrm{ml}$
command, [SVY] ml for svy
count command, $[R] \mathrm{ml}$
display command, [R] ml
footnote command, [R] ml
graph command, [R] ml
init command, [R] ml
maximize command, $[\mathrm{R}] \mathrm{ml}$
model command, [R] ml
plot command, $[\mathrm{R}] \mathrm{ml}$
query command, $[R] \mathrm{ml}$
report command, $[R] \mathbf{m l}$
score command, $[R] \mathrm{ml}$
search command, $[R] \mathrm{ml}$
trace command, $[\mathrm{R}] \mathrm{ml}$
mlabangle() option, [G-3] marker_label_options mlabcolor() option, [G-3] marker_label_options
mlabel() option, [G-3] marker_label_options
mlabgap() option, [G-3] marker_label_options mlabposition() option, [G-3] marker_label_options mlabsize() option, [G-3] marker_label_options mlabstyle() option, [G-3] marker_label_options mlabtextstyle() option,
[G-3] marker_label_options
mlabvposition() option,
[G-3] marker_label_options
mlcolor() option, [G-3] marker_options
mleval command, [R] ml
mlexp command, $[\mathrm{R}]$ mlexp, $[\mathrm{R}]$ mlexp postestimation mlib add, mata subcommand, [M-3] mata mlib mlib create, mata subcommand, [M-3] mata mlib mlib index, mata subcommand, [M-3] mata mlib .mlib library file, [M-1] how, [M-3] mata describe, [M-3] mata mlib, [M-3] mata set, [M-3] mata which, [M-6] Glossary, [U] 11.6 Filenaming conventions
mlib query, mata subcommand, [M-3] mata mlib mlmatbysum command, $[\mathrm{R}] \mathrm{ml}$
mlmatsum command, $[\mathrm{R}] \mathrm{ml}$
MLMV, see maximum likelihood with missing values mlmv, see sem option method()
mlogit command, [R] mlogit, [R] mlogit postestimation
mlogit option, see gsem option mlogit mlong
data style, [MI] styles, [MI] Glossary
technical description, [MI] technical
mlpattern() option, [G-3] marker_options
mlstyle() option, [G-3] marker_options
ml sum command, [R] ml
mlvecsum command, [R] ml
mlwidth() option, [G-3] marker_options
mm () function, [D] datetime, [D] functions,
[M-5] date()
.mmat matrix file, [M-3] mata matsave,
[U] 11.6 Filenaming conventions
mmC () function, [D] datetime, [D] functions, [M-5] date()
MNAR, see missing not at random
MNP, see outcomes, multinomial
.mo object code file, [M-1] how, [M-3] mata mosave, [M-3] mata which, [M-6] Glossary, [U] 11.6 Filenaming conventions
$\bmod ()$ function, $[D]$ functions, $[M-5] \bmod ()$
mode (), egen function, [D] egen
mode-curvature adaptive Gauss-Hermite quadrature, see quadrature, mode-curvature adaptive GaussHermite
model coefficients test, [R] Irtest, [R] test, [R] testnl, [SVY] svy postestimation
model identification, [SEM] intro 4, [SEM] intro 12, [SEM] Glossary
model simplification test, [SEM] example 8, [SEM] example 10
model specification test, see specification test model, ml subcommand, [R] ml
model-implied covariances and correlations,
[SEM] example 11
models, maximum number of variables in, [R] matsize
modern scaling, [MV] Glossary
modification indices, [SEM] estat mindices,
[SEM] example 5, [SEM] methods and formulas for sem, [SEM] Glossary
modification, file, [D] filefilter
modifying data, [D] generate, also see editing data modulus function, [D] functions
modulus transformations, [R] boxcox
$\operatorname{mofd}()$ function, [D] datetime, [D] functions, [M-5] date()
moments (of a distribution), [SEM] Glossary
monadic operator, [M-2] syntax, [M-6] Glossary
monotone imputation, see imputation, monotone
monotone-missing pattern, $[\mathrm{MI}]$ mi impute monotone, [MI] Glossary, [R] misstable
monotonicity, see pattern of missingness
Monte Carlo error, [MI] mi estimate, [MI] mi estimate using, [MI] Glossary
Monte Carlo simulations, $[\mathrm{P}]$ postfile, $[\mathrm{R}]$ permute, $[R]$ simulate
month() function, [D] datetime, [D] functions, [M-5] date( ), [U] 24.5 Extracting components of dates and times
monthly () function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
Moore-Penrose inverse, [M-5] pinv()
_moptimize() function, [M-5] moptimize()
moptimize() function, [M-5] moptimize()
moptimize_ado_cleanup() function, [M-5] moptimize( )
_moptimize_evaluate() function,
[M-5] moptimize( )
moptimize_evaluate() function, [M-5] moptimize()
moptimize_init() function, [M-5] moptimize()
moptimize_init_*() functions, [M-5] moptimize()
moptimize_query() function, [M-5] moptimize()
moptimize_result_*() functions,
[M-5] moptimize()
moptimize_util_*() functions, [M-5] moptimize()
more command and parameter, $[\mathrm{P}]$ macro, $[\mathrm{P}]$ more,
[R] more, [U] 7 -more- conditions,
[U] 16.1.6 Preventing-more- conditions
more() function, [M-5] more()
more, set subcommand, $[R]$ more, $[R]$ set
mortality table, see life tables
mosave, mata subcommand, [M-3] mata mosave moving average
model, [TS] arch, [TS] arfima, [TS] arima,
[TS] sspace, [TS] ucm
process, [TS] Glossary
smoother, [TS] tssmooth, [TS] tssmooth ma
mprobit command, [R] mprobit, [R] mprobit postestimation
mreldif() function, [D] functions, [M-5] reldif( ), [P] matrix define
mreldifre() function, [M-5] reldif()
mreldifsym() function, [M-5] reldif()
msize() option, [G-3] marker_options,
[G-3] rcap_options
msofhours() function, [D] datetime, [D] functions, [M-5] date( )
msofminutes() function, [D] datetime, [D] functions, [M-5] date()
msofseconds() function, [D] datetime, [D] functions, [M-5] date()
mspline, graph twoway subcommand, [G-2] graph twoway mspline
mstyle() option, [G-3] marker_options
msymbol() option, [G-3] marker_options
MTMM, see multitrait-multimethod data and matrices
$m \operatorname{tr}()$, egen function, [D] egen
multiarm trial, [ST] stpower, [ST] Glossary
multidimensional scaling, [MV] mds, [MV] mds postestimation plots, [MV] mdslong, [MV] mdsmat, [MV] Glossary
configuration plot, [MV] Glossary
multilevel data, [MI] mi estimate
multilevel latent variable, [SEM] intro 2, [SEM] gsem path notation extensions
multilevel mixed-effects model, see multilevel model
multilevel model, [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [R] gllamm, [SEM] intro 5, [SEM] example 30g, [SEM] example 38g, [SEM] example 39 g , [SEM] example 40 g , [SEM] example 41g, [SEM] example 42g, [SEM] Glossary, [U] 26.19 Multilevel mixedeffects models
multinomial
logistic regression, [SEM] intro 2, [SEM] intro 5, [SEM] example 37 g , [SEM] example 41 g , [SEM] Glossary, [SVY] svy estimation
logistic regression imputation, see imputation, multinomial logistic regression
outcome model, see outcomes, multinomial
probit regression, [SVY] svy estimation multiple comparisons, $[R]$ contrast, $[R]$ margins, $[R]$ pwcompare, $[\mathrm{R}]$ pwmean, [MV] mvreg, $[R]$ anova postestimation, $[R]$ correlate, $[R]$ oneway, $[R]$ regress postestimation, $[R]$ roccomp, $[R]$ spearman, $[R]$ test, $[R]$ testnl, $[\mathrm{R}]$ tetrachoric
Bonferroni's method, $[R]$ contrast, $[R]$ margins, $[R]$ pwcompare, $[R]$ pwmean, $[R]$ anova postestimation, $[R]$ correlate, $[R]$ oneway, $[R]$ regress postestimation, $[R]$ roccomp, $[R]$ spearman, $[R]$ test, $[R]$ testnl, $[R]$ tetrachoric
Duncan's method, $[R]$ pwcompare, $[R]$ pwmean
Dunnett's method, $[R]$ pwcompare, $[R]$ pwmean
Holm's method, $[R]$ anova postestimation, $[R]$ regress postestimation, $[R]$ test, $[R]$ testnl
multiple-range method, see Dunnett's method subentry
Scheffé's method, $[R]$ contrast, $[R]$ margins, $[R]$ pwcompare, $[R]$ pwmean, $[R]$ oneway
Šidák's method, $[R]$ contrast, $[R]$ margins, $[R]$ pwcompare, $[R]$ pwmean, $[R]$ anova postestimation, $[R]$ correlate, $[R]$ oneway, $[R]$ regress postestimation, $[R]$ roccomp, $[R]$ spearman, $[R]$ test, $[R]$ testnl,
[R] tetrachoric
Studentized-range method, see Tukey's method subentry
Student-Newman-Keuls' method, $[\mathrm{R}]$ pwcompare, [R] pwmean
Tukey's method, $[R]$ pwcompare, $[R]$ pwmean multiple correlation, [SEM] Glossary
multiple correspondence analysis, [MV] Glossary multiple imputation, [MI] intro substantive, [MI] intro, [MI] styles, [MI] workflow, [U] 26.25 Multiple imputation
analysis step, [MI] intro substantive, $[\mathrm{MI}] \mathbf{m i}$ estimate, $[\mathrm{MI}]$ mi estimate using, $[\mathrm{MI}] \mathrm{mi}$ estimate postestimation, [MI] mi test
estimation, [MI] estimation
imputation step, [MI] intro substantive, [MI] mi impute
inference, $[\mathrm{MI}]$ intro substantive
pooling step, [MI] intro substantive, $[\mathrm{MI}] \mathbf{m i}$ estimate, $[\mathrm{MI}]$ mi estimate using
prediction, [MI] mi predict
theory, [MI] intro substantive
multiple indicators and multiple causes model, [SEM] intro 5, [SEM] example 10, [SEM] example 36g, [SEM] Glossary
multiple languages, [D] label language
multiple regression, see linear regression
multiple-failure st data, $[\mathrm{ST}]$ stbase, $[\mathrm{ST}]$ stci,
[ST] stcox, [ST] stcox postestimation,
[ST] stcurve, [ST] stdescribe, [ST] stfill,
[ST] stgen, [ST] stir, [ST] stptime, [ST] strate,
[ST] streg, [ST] streg postestimation, [ST] sts,
[ST] sts generate, [ST] sts graph, [ST] sts list,
[ST] sts test, [ST] stset, [ST] stsplit, [ST] stsum
multiple-range multiple-comparison adjustment, see multiple comparisons, Dunnett's method multiple-record st data, [ST] stbase, [ST] stci,
[ST] stcox, [ST] stcox postestimation,
[ST] stcrreg, [ST] stcrreg postestimation,
[ST] stcurve, [ST] stdescribe, [ST] stfill,
[ST] stgen, [ST] stir, [ST] stptime, [ST] strate,
[ST] streg, [ST] streg postestimation, [ST] sts,
[ST] sts generate, [ST] sts graph, [ST] sts list,
[ST] sts test, [ST] stset, [ST] stsplit, [ST] stsum, [ST] stvary, [ST] Glossary
multiple-sample
means, see means, multiple-sample
study, [PSS] power oneway, [PSS] power twoway,
[PSS] power repeated
multiple-sample, continued
test, [PSS] power oneway, [PSS] power twoway,
[PSS] power repeated
independent samples, [PSS] power oneway,
[PSS] power twoway, [PSS] power repeated
means, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
multiplication operator, see arithmetic operators
multiplicative heteroskedasticity, [TS] arch
multistage clustered sampling, [SVY] survey,
[SVY] svydescribe, [SVY] svyset
multitrait-multimethod data and matrices,
[SEM] intro 5, [SEM] example 17
multivalued treatment effect, [TE] teffects aipw,
[TE] teffects ipw, [TE] teffects ipwra,
[TE] teffects multivalued, [TE] teffects ra,
[TE] Glossary
multivariable fractional polynomial regression, $[\mathrm{R}] \mathbf{m f p}$ multivariate
analysis, [MV] canon, [MV] hotelling,
[MV] mvtest, [U] 26.26 Multivariate and
cluster analysis
bivariate probit, [R] biprobit
three-stage least squares, $[\mathrm{R}]$ reg3
Zellner's seemingly unrelated, $[R]$ nlsur, [R] sureg
analysis of covariance, [MV] manova,
[MV] Glossary
analysis of variance, [MV] manova, [MV] Glossary
Behrens-Fisher problem, [MV] mvtest means
kurtosis, [MV] mvtest normality
normal, [MV] mvtest normality
regression, [MV] mvreg, [MV] Glossary
skewness, [MV] mvtest normality
test, [MV] mvtest
multivariate GARCH, [TS] mgarch, [TS] Glossary model,
constant conditional correlation, [TS] mgarch cec diagonal vech, [TS] mgarch dvech
dynamic conditional correlation, [TS] mgarch dec
varying conditional correlation, [TS] mgarch vec postestimation,
after ccc model, [TS] mgarch ccc postestimation
after dcc model, [TS] mgarch dcc postestimation
after dvech model, [TS] mgarch dvech postestimation
after vcc model, [TS] mgarch vcc postestimation
multivariate imputation, see imputation, multivariate
multivariate imputation using chained equations, see imputation, multivariate, chained equations
multivariate logistic variable imputation, see imputation, multivariate
multivariate normal imputation, see imputation, multivariate normal
multivariate normal simulator, [M-5] ghk( ),
[M-5] ghkfast( )
multivariate regression, [SEM] example 12, [SEM] Glossary, also see seemingly unrelated regression, see multivariate regression
multivariate regression imputation, see imputation, multivariate
multivariate time-series estimators,
dynamic-factor models, [TS] dfactor
MGARCH models, see multivariate GARCH
state-space models, [TS] sspace
structural vector autoregressive models, [TS] var svar
vector autoregressive models, [TS] var, [TS] varbasic
vector error-correction models, [TS] vec
MVAGH, see quadrature, mean-variance adaptive Gauss-Hermite
mvdecode command, [D] mvencode
mvencode command, [D] mvencode
MVN imputation, see imputation, multivariate normal
mvreg command, [MV] mvreg, [MV] mvreg postestimation
mvreg, estat subcommand, [MV] procrustes postestimation
mvtest, [MV] mvtest
correlations command, [MV] mvtest correlations
covariances command, [MV] mvtest covariances
means command, [MV] mvtest means
normality command, [MV] mvtest normality

## N

n and _N built-in variables, [U] 13.4 System variables (_variables), [U] 13.7 Explicit subscripting
name() option, [G-3] name_option
nameexternal() function, [M-5] findexternal()
namelists, [M-3] namelists
names, [U] 11.3 Naming conventions
conflicts, $[\mathrm{P}]$ matrix, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ scalar
matrix row and columns, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix rownames
names, confirm subcommand, [P] confirm
namespace and conflicts, matrices and scalars,
$[\mathrm{P}]$ matrix, $[\mathrm{P}]$ matrix define
naming convention, [M-1] naming
naming groups of variables, [D] rename group
naming variables, [D] rename
NaN, [M-6] Glossary
NARCH, see nonlinear autoregressive conditional heteroskedasticity
NARCHK, see nonlinear autoregressive conditional heteroskedasticity with a shift
natural $\log$ function, [D] functions
natural splines, $[\mathrm{R}]$ mkspline
nbetaden() function, [D] functions, [M-5] normal( ) nbinomial() function, [D] functions, [M-5] normal()
nbinomialp() function, [D] functions, [M-5] normal( )
nbinomialtail() function, [D] functions, [M-5] normal( )
nbreg command, $[R]$ nbreg, $[R]$ nbreg postestimation nbreg option, see gsem option nbreg nchi2() function, [D] functions, [M-5] normal( ) nchi2den() function, [D] functions, [M-5] normal() nchi2tail() function, [D] functions, [M-5] normal() n-class command, $[\mathrm{P}]$ program, $[\mathrm{P}]$ return ndots () option, [G-2] graph twoway dot nearest neighbor, [MI] mi impute pmm, [MV] discrim knn, [MV] Glossary
nearest-neighbor matching, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects nnmatch, [TE] Glossary
needle plot, $[\mathrm{R}]$ spikeplot
_negate () function, [M-5] _negate() negation matrix, [M-5] _negate( ) negation operator, see arithmetic operators negative binomial, [SEM] example 39g
distribution,
cumulative, [D] functions inverse cumulative, [D] functions inverse reverse cumulative, [D] functions reverse cumulative, [D] functions
probability mass function, [D] functions
regression, [R] nbreg, [SEM] Glossary, [SVY] svy estimation, [XT] Glossary fixed-effects, [XT] xtnbreg generalized linear models, [R] glm population-averaged, $[\mathrm{XT}]$ xtgee, $[\mathrm{XT}]$ xtnbreg random-effects, [XT] xtnbreg truncated, $[\mathrm{R}]$ tnbreg zero-inflated, [R] zinb
regression, mixed-effects, [ME] menbreg negative effect size, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary
Nelder-Mead algorithm, [M-5] moptimize( ), [M-5] optimize( )
Nelson-Aalen cumulative hazard, [ST] sts, [ST] sts generate, $[\mathrm{ST}]$ sts graph, $[\mathrm{ST}]$ sts list nested
case-control data, [ST] sttocc
designs, [MV] manova, [R] anova
effects, [MV] manova, [R] anova
logit, [R] nlogit
model statistics, $[R]$ nestreg
number list, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance,
nested number list, continued
[PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
random effects, $[\mathrm{ME}]$ mecloglog, $[\mathrm{ME}]$ meglm,
[ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed, [ME] Glossary
regression, $[R]$ nestreg
nested, misstable subcommand, [R] misstable
nested-effects model, [SEM] Glossary
nestreg prefix command, $[R]$ nestreg
net
cd command, $[\mathrm{R}]$ net
describe command, $[R]$ net
from command, [R] net
get command, $[R]$ net
install command, $[R]$ net
link command, $[R]$ net
query command, $[R]$ net
search command, $[R]$ net search
set ado command, $[R]$ net
set other command, $[R]$ net
sj command, $[R]$ net
stb command, $[R]$ net
net, view subcommand, $[R]$ view
NetCourseNow, [U] 3.7.2 NetCourses
NetCourses, [U] 3.7.2 NetCourses
net_d, view subcommand, $[R]$ view
network, query subcommand, $[R]$ query
.new built-in class function, $[P]$ class
new lines, data without, [D] infile (fixed format)
new () function, [M-2] class
new, ssc subcommand, $[R]$ ssc
newey command, [TS] newey, [TS] newey postestimation
Newey-West
covariance matrix, [TS] Glossary
postestimation, [TS] newey postestimation
regression, [TS] newey
standard errors, $[\mathrm{P}]$ matrix accum, $[\mathrm{R}]$ glm
_newline(\#), display directive, $[P]$ display
news command, [R] news
news, view subcommand, $[R]$ view
newsletter, [U] 3 Resources for learning and using Stata
Newton-Raphson algorithm, [M-5] moptimize( ), [M-5] optimize( ), [R] ml
Newton-Raphson method, [M-5] solvenl( )
Newton's method, see iteration, Newton's method
Neyman allocation, [SVY] estat
nF () function, [D] functions, [M-5] normal()
nFden () function, [D] functions, [M-5] normal()
nFtail() function, [D] functions, [M-5] normal()
nibeta() function, [D] functions, [M-5] normal() niceness, set subcommand, [D] memory, [R] set
nl command, $[\mathrm{R}] \mathrm{nl},[\mathrm{R}] \mathrm{nl}$ postestimation nl, tssmooth subcommand, [TS] tssmooth nl nlcom command, [R] nlcom, [SEM] intro 7, [SEM] estat stdize, [SEM] example 42g, [SEM] nlcom, [SVY] svy postestimation nlogit command, [R] nlogit, [R] nlogit postestimation
nlogitgen command, [R] nlogit
nlogittree command, [R] nlogit
nlsur command, $[R]$ nlsur, $[R]$ nlsur postestimation
nm 1 option, see sem option nm 1
nnmatch, teffects subcommand, [TE] teffects nnmatch
noanchor option, see gsem option noanchor, see sem option noanchor
noasis option, see gsem option noasis
nobreak command, [P] break
nocapslatent option, see gsem option nocapslatent, see sem option nocapslatent
nocnsreport option, see gsem option nocnsreport, see sem option nocnsreport
noconstant option, see gsem option noconstant, see sem option noconstant
nodescribe option, see sem option nodescribe
nodraw option, [G-3] nodraw_option
noestimate option, see gsem option noestimate, see sem option noestimate
nofootnote option, see sem option nofootnote nofvlabel option, see sem option nofvlabel
noheader option, see gsem option noheader, see sem option noheader
noisily prefix, $[\mathrm{P}]$ quietly
noivstart option, see sem option noivstart
nolog or log option, [R] maximize
nomeans option, see sem option nomeans
nominal
alpha, [PSS] Glossary, also see significance level, nominal
power, see power, nominal
sample size, see sample size, nominal
significance level, see significance level, nominal nonadaptive Gauss-Hermite quadrature, see quadrature, Gauss-Hermite
noncentral
beta density, [D] functions
beta distribution, [D] functions
chi-squared distribution, [D] functions
distribution, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
$F$ density, [D] functions
$F$ distribution, [D] functions
Student's $t$ density, [D] functions
Student's $t$ distribution, [D] functions
noncentrality parameter, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
nonconformities, quality control, $[\mathrm{R}]$ qc
nonconstant variance, see robust, Huber/White/sandwich estimator of variance
noncursive model, see nonrecursive model
nondirectional test, see two-sided test
nonlinear
autoregressive conditional heteroskedasticity, [TS] arch
autoregressive conditional heteroskedasticity with a shift, [TS] arch
combinations of estimators, $[\mathrm{R}]$ nlcom
combinations, predictions, and tests, [SVY] svy postestimation
equations, [M-5] solvenl( )
estimation, [TS] arch
hypothesis test after estimation, [R] lrtest,
$[R]$ margins, $[R]$ margins, contrast,
$[R]$ margins, pwcompare, $[R]$ nlcom,
$[R]$ predictnl, $[R]$ testnl
least squares, $[\mathrm{R}] \mathbf{n l}$, [SVY] svy estimation
power autoregressive conditional heteroskedasticity, [TS] arch
prediction, see multiple imputation, prediction
regression, $[R]$ boxcox, $[R]$ nl, $[R]$ nlsur, [TE] teffects ra
smoothing, [TS] tssmooth nl
test, [SVY] svy postestimation, see estimation, test after
nonmetric scaling, [MV] mds, [MV] mdslong, [MV] mdsmat, [MV] Glossary
nonmissing() function, [M-5] missing()
nonmonotonic power, see saw-toothed power function nonnormed fit index, see Tucker-Lewis index
nonparametric analysis,
hypothesis tests,
agreement, $[R]$ kappa
association, $[R]$ spearman, $[R]$ tabulate twoway cusum, $[\mathrm{R}]$ cusum
equality of distributions, $[R]$ ksmirnov,
$[R]$ kwallis, $[R]$ ranksum, $[R]$ signrank
medians, $[\mathrm{R}]$ ranksum
proportions, [R] bitest, [R] prtest
random order, $[\mathrm{R}]$ runtest
trend, $[R]$ nptrend
percentiles, $[R]$ centile
quantile regression, [R] qreg
ROC analysis, $[R]$ roc
estimation, $[R]$ rocreg
graphs, [R] rocregplot
test equality of areas, $[R]$ roccomp
without covariates, $[\mathrm{R}]$ roctab
nonparametric analysis, continued
smoothing, $[R]$ kdensity, $[R]$ lowess, $[R]$ Ipoly, [R] smooth
survival analysis,
Kaplan-Meier curves, [ST] sts graph log rank and other tests of equality, [ST] sts test
Nelson-Aalen curves, [ST] sts graph
treatment effect, [TE] teffects nnmatch,
[TE] teffects psmatch
nonparametric methods, [MV] discrim knn,
[MV] Glossary
nonrecursive model, [SEM] Glossary
stability of, [SEM] estat stable, [SEM] example 7
nonrtolerance option, $[R]$ maximize
nonselection hazard, $[R]$ heckman, $[R]$ heckman postestimation
nonsphericity correction, [PSS] power repeated, [PSS] Glossary
nonstationary time series, [TS] dfgls, [TS] dfuller, [TS] pperron, [TS] vec intro, [TS] vec
nonzero null, [PSS] power onemean, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power onevariance, [PSS] power onecorrelation
nopreserve option, [P] nopreserve option
norm, [M-6] Glossary
norm() function, [M-5] norm()
normal,
density,
mean $\mu$, std. dev. $\sigma$, [D] functions
natural log of mean $\mu$, std. dev. $\sigma$, [D] functions
natural $\log$ of standard normal, [D] functions
standard normal, [D] functions
distribution
cumulative, [D] functions
generating multivariate data with, [D] corr2data inverse cumulative, [D] functions joint cumulative of bivariate, [D] functions natural $\log$ of cumulative, [D] functions sample from multivariate, [D] functions
normal distribution and normality,
examining distributions for, $[\mathrm{R}]$ diagnostic plots, $[\mathrm{R}] \mathbf{l v}$
generating multivariate data, [D] drawnorm
probability and quantile plots, $[\mathrm{R}]$ diagnostic plots test for, $[R]$ sktest, $[R]$ swilk
transformations to achieve, $[\mathrm{R}]$ boxcox, $[\mathrm{R}]$ ladder, [R] Inskew0
normal probability plots, [G-2] graph other
normal() function, [D] functions, [M-5] normal()
normalden() function, [D] functions, [M-5] normal( )
normality,
conditional, [SEM] intro 4, [SEM] Glossary
joint, [SEM] intro 4, [SEM] Glossary
normality test, [MV] mvtest normality after VAR or SVAR, [TS] varnorm after VEC, [TS] vecnorm
normality, mvtest subcommand, [MV] mvtest normality
normalization, [MV] ca, [MV] mca, [MV] mds, [MV] rotate, [MV] Glossary
normalization constraints, see constraints, normalization normalized residuals, [SEM] estat residuals, [SEM] methods and formulas for sem, [SEM] Glossary
normally distributed random numbers, [D] functions
not concave message, $[\mathrm{R}]$ maximize
Not Elsewhere Classified, see Stata Blog
not equal operator, [U] 13.2.3 Relational operators
not operator, [U] 13.2.4 Logical operators
notable option, see gsem option notable, see sem option notable
note() option, [G-3] title_options
notes
command, [D] notes
drop command, [D] notes
list command, [D] notes
renumber command, [D] notes
replace command, [D] notes
search command, [D] notes
notes on estimation results, $[\mathrm{R}]$ estimates notes notes,
cluster analysis, [MV] cluster notes
creating, [D] notes, [D] varmanage
editing, [D] notes, [D] varmanage
notes, cluster subcommand, [MV] cluster notes
notes, estimates subcommand, $[\mathrm{R}]$ estimates notes
notifyuser, set subcommand, $[R]$ set
noupdate option, [MI] noupdate option
novarabbrev command, [P] varabbrev
noxconditional option, see sem option noxconditional
NPARCH, see nonlinear power autoregressive conditional heteroskedasticity
npnchi2() function, [D] functions, [M-5] normal()
npnF () function, [D] functions, [M-5] normal( )
npnt () function, [D] functions, [M-5] normal( ) nproc, estat subcommand, $[R]$ rocreg postestimation nptrend command, $[R]$ nptrend
NR algorithm, [R] ml
nrtolerance() option, [R] maximize
nt () function, [D] functions, [M-5] normal( )
ntden() function, [D] functions, [M-5] normal( ) nttail() function, [D] functions, [M-5] normal() NULL, [M-2] pointers, [M-6] Glossary
null
correlation, [PSS] intro, [PSS] power
hypothesis and alternative hypothesis, [PSS] intro, [PSS] power, [PSS] power, graph,
[PSS] power, table, [PSS] power onemean,
[PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
mean, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power oneproportion, [PSS] power onecorrelation, [PSS] unbalanced designs
mean difference, [PSS] intro, [PSS] power, [PSS] power pairedmeans
parameter, see null value
proportion, [PSS] intro, [PSS] power
space, [PSS] intro
standard deviation, [PSS] intro, [PSS] power, [PSS] power onevariance
value, see hypothesized value
variance, [PSS] intro, [PSS] power, [PSS] power onevariance
nullmat () function, [D] functions, [P] matrix define number to string conversion, see string functions number, confirm subcommand, $[\mathrm{P}]$ confirm
numbered
styles, [G-4] linestyle, [G-4] markerlabelstyle, [G-4] markerstyle, [G-4] pstyle
numbers, [U] 12.2 Numbers
formatting, [D] format
mapping to strings, [D] encode, [D] label
numeric, [M-2] declarations, [M-6] Glossary
numeric list, $[\mathrm{P}]$ numlist, $[\mathrm{P}]$ syntax, [U] 11.1.8 numlist
numeric value labels, [D] labelbook
numerical precision, [U] 13.11 Precision and problems therein
numlabel command, [D] labelbook
numlist command, [P] numlist, [U] 11.1.8 numlist
$N$-way analysis of variance, $[\mathrm{R}]$ anova
N -way multivariate analysis of variance, [MV] manova

## 0

object, $[\mathrm{P}]$ class
object code, [M-1] how, [M-6] Glossary
object-oriented programming, [M-2] class,
[M-6] Glossary, [P] class
objects, size of, [G-4] relativesize
.objkey built-in class function, [P] class
.objtype built-in class function, $[\mathrm{P}]$ class
oblimax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
oblimin rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
oblique rotation, [MV] factor postestimation, [MV] rotate, [MV] rotatemat, [MV] Glossary
oblique transformation, see oblique rotation obs parameter, [D] describe, [D] obs obs, set subcommand, [D] obs, [R] set observational data, $[R]$ correlate, $[R]$ heckman, $[R]$ ivregress, $[R]$ logit, $[R]$ mean, $[R]$ regress,
$[R]$ summarize, $[R]$ tabulate oneway,
$[R]$ tabulate twoway, $[R]$ ttest, [TE] treatment
effects, [TE] etpoisson, [TE] etpoisson postestimation, [TE] etregress, [TE] etregress postestimation, [TE] teffects, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra,
[TE] teffects nnmatch, [TE] teffects overlap, [TE] teffects postestimation, [TE] teffects psmatch, [TE] teffects ra, [TE] Glossary, [U] 12 Data, [U] 20 Estimation and postestimation commands, [U] 26.4 Structural equation modeling (SEM), [U] 26.17 Models with time-series data, [U] 26.18 Panel-data models, [U] 26.19 Multilevel mixed-effects models, [U] 26.20 Survival-time (failure-time) models, [U] 26.21 Treatment-effect models, [U] 26.24 Survey data, [U] 26.26 Multivariate and cluster analysis
observational study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary
observations,
built-in counter variable, [U] 11.3 Naming conventions
complete and incomplete, [MI] Glossary
creating dataset of, [D] collapse
dropping, [D] drop
dropping duplicate, [D] duplicates
duplicating, [D] expand
duplicating, clustered, [D] expandel
identifying duplicate, [D] duplicates
increasing number of, [D] obs
marking, $[\mathrm{P}]$ mark
maximum number of, [D] memory, [U] 6 Managing memory
ordering, [D] gsort, [D] sort
transposing with variables, [D] xpose
observed information matrix, $[\mathrm{R}] \mathrm{ml},[\mathrm{R}]$ vce_option,
[SEM] Glossary, [XT] vce_options
observed level of significance, see $p$-value
observed variables, [SEM] intro 4, [SEM] Glossary
Ochiai coefficient similarity measure,
[MV] measure_option
ocloglog option, see gsem option ocloglog odbc
describe command, [D] odbc
exec () command, [D] odbc
insert command, [D] odbc
list command, [D] odbc
load command, [D] odbe
query command, [D] odbc
sqlfile() command, [D] odbc
ODBC data source, reading data from, [D] odbc,
[U] 21.4 Transfer programs, [U] 21.5 ODBC sources
odbcmgr, set subcommand, [D] odbc, [R] set odds, [PSS] Glossary, [ST] Glossary
odds ratio, [ME] meglm, [ME] melogit, [ME] meologit, [ME] meqrlogit, [PSS] intro, [PSS] power, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] Glossary, [R] eform_option, [ST] epitab, [ST] Glossary, [SVY] svy estimation, [XT] xtcloglog, [XT] xtgee, [XT] xtlogit, [XT] xtologit differences, [SVY] svy postestimation estimation, $[R]$ asclogit, $[R]$ binreg, $[R]$ clogit, $[R]$ cloglog, $[R]$ exlogistic, $[R]$ glm, $[R]$ glogit,
$[R]$ logistic, $[R]$ logit, $[R]$ mlogit, $[R]$ scobit
postestimation, $[R]$ contrast, $[R]$ exlogistic postestimation, $[\mathrm{R}]$ lincom
_OEx, [SEM] sem and gsem option covstructure( ) off,
cmdlog subcommand, [R] log
log subcommand, [R] log
timer subcommand, [P] timer
Office Open XML, [M-5] _docx* ()
Office, Microsoft, see Microsoft Office
offset between axes and data, setting,
[G-3] region_options
offset variable, [ST] Glossary
offset () option, see gsem option offset ()
ograph, irf subcommand, [TS] irf ograph
OIM, see observed information matrix
oim, see gsem option vce(), see sem option vce()
OLDPLACE directory, [P] sysdir, [U] 17.5 Where does
Stata look for ado-files?
OLE Automation, [P] automation
ologit command, [R] ologit, [R] ologit postestimation
ologit option, see gsem option ologit
ologit regression, mixed-effects, [ME] meologit
OLS regression, see linear regression
omitted variables test, $[\mathrm{R}]$ regress postestimation, also see specification test
on,
cmdlog subcommand, $[R] \log$
log subcommand, [R] log
timer subcommand, [P] timer
onecorrelation, power subcommand, [PSS] power onecorrelation
one-level model, [ME] me, [ME] Glossary
onemean, power subcommand, [PSS] power onemean
oneproportion, power subcommand, [PSS] power oneproportion
one-sample correlation, see correlations, one-sample one-sample mean, see means, one-sample
one-sample proportion, see proportions, one-sample
one-sample standard deviation, see standard deviations, one-sample
one-sample study, [PSS] intro, [PSS] GUI,
[PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power oneproportion, [PSS] power onevariance, [PSS] power onecorrelation, [PSS] unbalanced designs
one-sample test, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power oneproportion, [PSS] power onevariance, [PSS] power onecorrelation, [PSS] Glossary
correlation, [PSS] intro, [PSS] power, [PSS] power onecorrelation, [PSS] Glossary
mean, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] unbalanced designs, [PSS] Glossary
proportion, [PSS] intro, [PSS] power, [PSS] power oneproportion, [PSS] Glossary
variance, [PSS] intro, [PSS] power, [PSS] power onevariance, [PSS] Glossary
one-sample variance, see variances, one-sample one-sided test, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] Glossary
lower, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] Glossary upper, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] Glossary one-step-ahead forecast, see static forecast one-tailed test, see one-sided test
onevariance, power subcommand, [PSS] power onevariance
one-way analysis of variance, [PSS] power, [PSS] power oneway, [PSS] Glossary, $[R]$ kwallis, $[R]$ loneway, $[R]$ oneway oneway command, $[R]$ oneway
one-way repeated-measures ANOVA, [PSS] power repeated, [PSS] Glossary
oneway, power subcommand, [PSS] power oneway online help, [U] 7 -more- conditions
opaccum, matrix subcommand, $[\mathrm{P}]$ matrix accum open, file subcommand, [P] file
OpenOffice dates, [D] datetime
operating system command, [D] cd, [D] copy, [D] dir,
[D] erase, [D] mkdir, [D] rmdir, [D] shell,
[D] type
operator, [M-2] op_arith, [M-2] op_assignment,
[M-2] op_colon, [M-2] op_conditional,
[M-2] op_increment, [M-2] op_join,
[M-2] op_kronecker, [M-2] op_logical,
[M-2] op_range, [M-2] op_transpose,
[M-6] Glossary, [P] matrix define,
[U] 13.2 Operators
difference, [U] 11.4.4 Time-series varlists
lag, [U] 11.4.4 Time-series varlists
lead, [U] 11.4.4 Time-series varlists
order of evaluation, [U] 13.2.5 Order of evaluation, all operators
seasonal lag, [U] 11.4.4 Time-series varlists
OPG, see outer product of the gradient
oprobit command, $[R]$ oprobit, $[R]$ oprobit postestimation
oprobit option, see gsem option oprobit
oprobit regression, mixed-effects, [ME] meoprobit
optimization, [M-3] mata set, [M-5] moptimize(),
[M-5] optimize( ), [M-6] Glossary
_optimize() function, [M-5] optimize()
optimize() function, [M-5] optimize()
_optimize_evaluate() function, [M-5] optimize()
optimize_evaluate() function, [M-5] optimize()
optimize_init() function, [M-5] optimize()
optimize_init_*() functions, [M-5] optimize()
optimize_query() function, [M-5] optimize()
optimize_result_*() functions, [M-5] optimize()
options, [U] 11 Language syntax
in a programming context, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ unab
repeated, [G-4] concept: repeated options
or operator, $[\mathrm{U}]$ 13.2.4 Logical operators
Oracle, reading data from, [D] odbc, [U] 21.4 Transfer programs
order command, [D] order
order statistics, [D] egen, [R] lv
order() function, [M-5] sort()
ordered
complementary log-log regression, [SEM] Glossary
logistic regression, [ME] meologit, [SEM] Glossary,
[SVY] svy estimation
logistic regression imputation, see imputation,
ordered logistic regression
logit, [R] ologit, [SEM] example 35g
probit, $[R]$ heckoprobit, $[R]$ oprobit,
[SEM] example 35 g , [SEM] example 36 g
ordered, continued
probit regression, [ME] meoprobit, [SEM] Glossary, [SVY] svy estimation
probit with sample selection, [SVY] svy estimation ordering
observations, [D] gsort, [D] sort
variables, [D] order, [D] sort
ordinal model, [SEM] intro 5, [SEM] example 31g, [SEM] example 32g, [SEM] example 35g, [SEM] example 36 g
ordinal outcome, see outcomes, ordinal
ordinal outcome model, see outcomes, ordinal
ordinary least squares, see linear regression
ordination, [MV] mds, [MV] Glossary
orgtype, [M-2] declarations, [M-6] Glossary
orgtype() function, [M-5] eltype()
orientationstyle, [G-4] orientationstyle
original data, [MI] Glossary
orthog command, $[\mathrm{R}]$ orthog
orthogonal matrix, [M-6] Glossary
orthogonal polynomial, $[\mathrm{R}]$ contrast, $[\mathrm{R}]$ margins, contrast, $[R]$ orthog
orthogonal rotation, $[\mathrm{MV}]$ factor postestimation, [MV] rotate, [MV] rotatemat, [MV] Glossary
orthogonal transformation, see orthogonal rotation
orthogonalized impulse-response function, [TS] irf,
[TS] var intro, [TS] vec intro, [TS] vec,
[TS] Glossary
orthonormal basis, $[\mathrm{P}]$ matrix svd
orthpoly command, $[\mathrm{R}]$ orthog
other graph commands, [G-2] graph other
other, query subcommand, $[R]$ query
outcome model, [TE] etpoisson, [TE] etregress, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipwra, [TE] teffects ra, [TE] Glossary
outcomes,
binary,
complementary log-log, $[\mathrm{R}]$ cloglog,
[XT] xtcloglog
generalized estimating equations, [XT] xtgee
glm for binomial family, $[R]$ binreg, $[R]$ glm
grouped data, $[R]$ glogit
logistic, $[R]$ exlogistic, $[R]$ logistic, $[R]$ logit,
$[\mathrm{R}]$ scobit, $[\mathrm{XT}]$ xtlogit
probit, $[R]$ biprobit, $[R]$ heckprobit,
$[R]$ hetprobit, $[R]$ ivprobit, $[R]$ probit,
[XT] xtprobit
ROC analysis, $[\mathrm{R}]$ rocfit, $[\mathrm{R}]$ rocreg
binary, multilevel mixed-effects, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] meprobit,
[ME] meqrlogit
categorical,
logistic, $[R]$ asclogit, $[R]$ clogit, $[R]$ mlogit,
$[R]$ nlogit, $[R]$ slogit
probit, $[R]$ asmprobit, $[R]$ mprobit
outcomes, continued count,
generalized estimating equations, $[\mathrm{XT}]$ xtgee
multilevel mixed-effects, [ME] menbreg,
[ME] mepoisson, [ME] meqrpoisson
negative binomial, $[\mathrm{R}]$ nbreg, $[\mathrm{R}]$ tnbreg,
[R] zinb, [XT] xtnbreg
Poisson, $[R]$ expoisson, $[R]$ ivpoisson,
$[R]$ poisson, $[R]$ tpoisson, $[R]$ zip,
[TE] etpoisson, [XT] xtpoisson
multinomial, see categorical subentry, see ordinal subentry, see rank subentry
ordinal,
logistic, [R] ologit, [R] slogit, [XT] xtologit probit, $[R]$ heckoprobit, $[R]$ oprobit,
[XT] xtoprobit
ordinal, multilevel mixed-effects, [ME] meologit,
[ME] meoprobit
ordinal, treatment effect, [TE] teffects multivalued polytomous, see categorical subentry, see ordinal subentry, see rank subentry rank,
logistic, [R] rologit
probit, [R] asroprobit
outer fence, $[\mathrm{R}] \mathbf{l v}$
outer product, [D] cross
outer product of the gradient, $[\mathrm{R}] \mathrm{ml},[\mathrm{R}]$ vce_option,
[SEM] Glossary, [XT] vce_options
outfile command, [D] outfile
outliers, $[R]$ lv, $[R]$ qreg, $[R]$ regress postestimation,
[R] rreg
outlines, suppressing, [G-4] linestyle
outlining regions, [G-3] region_options
out-of-sample predictions, $[R]$ predict, $[R]$ predictnl,
[U] 20.10.3 Making out-of-sample predictions
output,
query subcommand, $[\mathrm{R}]$ query
set subcommand, $[P]$ quietly, $[R]$ set
output,
coefficient table,
automatically widen, $[R]$ set display settings, $[R]$ set showbaselevels
format settings, $[R]$ set cformat
controlling the scrolling of, $[\mathrm{R}]$ more
displaying, $[\mathrm{P}]$ display, $[\mathrm{P}]$ smcl
formatting numbers, [D] format
printing, $[\mathrm{R}]$ translate, [U] 15 Saving and printing
output-log files
recording, $[\mathrm{R}] \log$
suppressing, $[\mathrm{P}]$ quietly
output settings, $[\mathrm{P}]$ creturn
outside values, $[\mathrm{R}] \mathbf{l v}$
over() option, [G-2] graph bar, [G-2] graph box, [G-2] graph dot
overdispersion, [ME] menbreg, [ME] mepoisson, [ME] meqrpoisson, [ME] Glossary, see imputation, overdispersed count data
overid, estat subcommand, [R] gmm postestimation, $[R]$ ivpoisson postestimation, $[R]$ ivregress postestimation
overidentifying restrictions, [XT] Glossary tests of, $[R]$ gmm postestimation, $[R]$ ivpoisson postestimation, $[R]$ ivregress postestimation, [XT] xtabond, $[\mathrm{XT}]$ xtabond postestimation, [XT] xtdpd, [XT] xtdpdsys, [XT] xtdpdsys postestimation
overlap assumption, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects overlap, [TE] Glossary
overlap, teffects subcommand, [TE] teffects overlap
overloading, class program names, $[\mathrm{P}]$ class
ovtest, estat subcommand, $[R]$ regress postestimation

## $\mathbf{P}$

P charts, [G-2] graph other
$\mathrm{P}-\mathrm{P}$ plot, $[\mathrm{R}]$ diagnostic plots
$p$-value, [SEM] Glossary
pac command, [TS] corrgram
pagesize, set subcommand, [R] more, [R] set
paging of screen output, controlling, $[\mathrm{P}]$ more, [ R ] more
paired
data, [PSS] Glossary
means, see means, paired
observations, see paired data
proportions, see proportions, paired
study, [PSS] intro, [PSS] power, [PSS] power pairedmeans, [PSS] power pairedproportions
test, [PSS] Glossary
paired-coordinate plots, [G-2] graph twoway pcarrow, [G-2] graph twoway pccapsym, [G-2] graph twoway pcscatter, [G-2] graph twoway pcspike
pairedmeans, power subcommand, [PSS] power pairedmeans
pairedproportions, power subcommand, [PSS] power pairedproportions
paired-sample test, [PSS] intro, [PSS] power, [PSS] power pairedmeans, [PSS] power pairedproportions, [PSS] Glossary
means, [PSS] intro, [PSS] power, [PSS] power pairedmeans, [PSS] Glossary
proportions, [PSS] intro, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
pairwise combinations, [D] cross, [D] joinby
pairwise comparisons, [MV] intro, [R] margins, pwcompare, $[R]$ marginsplot, $[R]$ pwcompare, [R] pwmean, [U] 20.17 Obtaining pairwise comparisons
pairwise correlation, $[R]$ correlate
pairwise, estat subcommand, [MV] mds postestimation
palette command, [G-2] palette
panel data, [M-5] panelsetup (), [MI] mi estimate,
[U] 26.18 Panel-data models, [XT] Glossary
panel-corrected standard error, [XT] xtpese, [XT] Glossary
panels, variable identifying, [XT] xtset
panelsetup() function, [M-5] panelsetup()
panelstats() function, [M-5] panelsetup() panelsubmatrix() function, [M-5] panelsetup() panelsubview() function, [M-5] panelsetup()
Paradox, reading data from, [U] 21.4 Transfer programs
parallel number list, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table parameter constraints, [SEM] estat ginvariant, [SEM] Glossary
parameter trace files, [MI] mi impute mvn, [MI] mi ptrace
parameter values, obtaining symbolic names, see gsem option coeflegend, see sem option coeflegend parameterized curves, [D] range
parameters, [SEM] Glossary
combinations of, [SEM] lincom, [SEM] nlcom
system, see system parameters
parametric methods, [MV] Glossary
parametric spectral density estimation, [TS] psdensity
parametric survival models, [ST] streg, [SVY] svy estimation
PARCH, see power autoregressive conditional heteroskedasticity
parsedistance, cluster subcommand, [MV] cluster programming utilities
parsimax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
parsing, [M-5] tokenget(), [M-5] tokens(), $[\mathrm{P}]$ gettoken, $[\mathrm{P}]$ numlist, $[\mathrm{P}]$ syntax, [P] tokenize, [U] 18.4 Program arguments partial
autocorrelation function, [TS] corrgram, [TS] Glossary
correlation, $[\mathrm{R}]$ pcorr
DFBETA, $[\mathrm{ST}]$ stcox postestimation, $[\mathrm{ST}]$ sterreg postestimation, [ST] Glossary
effects, $[R]$ margins, $[R]$ marginsplot
likelihood displacement value, $[\mathrm{ST}]$ Glossary
LMAX value, [ST] Glossary
regression leverage plot, $[R]$ regress postestimation diagnostic plots
regression plot, $[R]$ regress postestimation diagnostic plots
residual plot, $[R]$ regress postestimation diagnostic plots
partially specified target rotation, $[\mathrm{MV}]$ rotate, [MV] rotatemat, [MV] Glossary
partition cluster-analysis methods, [MV] cluster kmeans and kmedians, [MV] Glossary
partition clustering, see partition cluster-analysis methods
partitioned matrices, $[\mathrm{P}]$ matrix define partitioning memory, [U] 6 Managing memory

Parzen kernel function, [G-2] graph twoway kdensity,
[G-2] graph twoway lpoly, $[\mathrm{R}]$ kdensity,
$[R]$ lpoly, $[R]$ qreg, [TE] teffects overlap
passive imputation, see imputation, passive
passive variables, see variables, passive
passive, mi subcommand, [MI] mi passive
past history, [ST] stset, [ST] Glossary
path, [SEM] Glossary
adding, [SEM] intro 6
coefficients, [SEM] Glossary
constraining, [SEM] intro 4
diagrams, [SEM] intro 2, [SEM] intro 3, [SEM] Glossary
model, [SEM] intro 5
notation, [SEM] intro 2, [SEM] intro 3,
[SEM] gsem path notation extensions, [SEM] sem and gsem path notation, [SEM] sem path notation extensions, [SEM] Glossary
pathasciisuffix() function, [M-5] pathjoin()
pathbasename() function, [M-5] pathjoin()
pathisabs() function, [M-5] pathjoin()
pathisurl() function, [M-5] pathjoin()
pathjoin() function, [M-5] pathjoin()
pathlist() function, [M-5] pathjoin()
pathrmsuffix() function, [M-5] pathjoin()
paths, $[\mathrm{P}]$ creturn, $[\mathrm{U}]$ 11.6 Filenaming conventions
pathsearchlist() function, [M-5] pathjoin()
pathsplit() function, [M-5] pathjoin()
pathstatasuffix() function, [M-5] pathjoin()
pathsubsysdir() function, [M-5] pathjoin()
pathsuffix() function, [M-5] pathjoin()
pattern matching, $[\mathrm{M}-5] \operatorname{strmatch}()$
pattern of missing values, $[R]$ misstable
pattern of missingness, [MI] intro substantive, [MI] mi impute, [MI] mi misstable, [MI] Glossary
patterns of data, [D] egen
patterns, misstable subcommand, $[R]$ misstable pause command, [P] pause
pausing until key is pressed, $[\mathrm{P}]$ more, $[\mathrm{R}]$ more
pc() , egen function, [D] egen
PCA, see principal component analysis
pca command, [MV] pca, [MV] pca postestimation
pcamat command, [MV] pca, [MV] pca postestimation
pcarrow, graph twoway subcommand, [G-2] graph twoway pcarrow
pcarrowi, graph twoway subcommand, [G-2] graph twoway pcarrowi
pcbarrow, graph twoway subcommand, [G-2] graph twoway pcarrow
pccapsym, graph twoway subcommand, [G-2] graph twoway pccapsym
pchart command, $[R]$ qc
pchi command, $[R]$ diagnostic plots
pci, graph twoway subcommand, [G-2] graph twoway pci
pclose, [SEM] example 4
p-conformability, [M-6] Glossary
pcorr command, [R] pcorr
pcscatter, graph twoway subcommand, [G-2] graph twoway pcscatter
PCSE, see panel-corrected standard error
pcspike, graph twoway subcommand, [G-2] graph twoway pespike
_pctile command, [D] pctile
pctile command, [D] pctile
pctile(), egen function, [D] egen
PDF, [G-2] graph export, [R] translate
Pearson coefficient similarity measure,
[MV] measure _option
Pearson goodness-of-fit test, [R] estat gof, $[R]$ logistic postestimation, $[\mathrm{R}]$ poisson postestimation
Pearson product-moment correlation coefficient, [R] correlate
Pearson residual, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [R] binreg postestimation, $[R]$ estat gof, $[R]$ glm postestimation, $[R]$ logistic postestimation, $[\mathrm{R}]$ logit postestimation
Pearson's correlation, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary penalized log-likelihood function, $[\mathrm{ST}]$ stcox, [ST] Glossary
percentiles,
create
dataset of, [D] collapse
displaying, $[R]$ centile, $[R]$ lv, $[R]$ summarize, $[R]$ table, $[R]$ tabstat
variable containing, [D] codebook, [D] egen, [D] pctile
perfect prediction, see imputation, perfect prediction
pergram command, [TS] pergram
_perhapsequilc() function, [M-5] _equilre( )
_perhapsequilr() function, [M-5] _equilrc()
_perhapsequilrc() function, [M-5] _equilre()
period, estat subcommand, [TS] ucm postestimation
periodogram, [G-2] graph other, [TS] pergram,
[TS] psdensity, [TS] Glossary
permname macro extended function, $[\mathrm{P}]$ macro
permutation matrix and vector, [M-1] permutation, [M-5] invorder( ), [M-6] Glossary
permutation test, $[\mathrm{R}]$ permute
permutations, [M-5] cvpermute()
permute prefix command, $[R]$ permute
personal command, $[\mathrm{P}]$ sysdir
PERSONAL directory, [P] sysdir, [U] 17.5 Where does Stata look for ado-files?
person-time, [ST] stptime
pformat, set subcommand, $[R]$ set, $[R]$ set cformat pharmaceutical statistics, $[\mathrm{R}] \mathbf{~ p k},[\mathrm{R}]$ pksumm
pharmacokinetic data, $[\mathrm{R}] \mathbf{p k}$,
[R] pkcollapse, [R] pkcross, [R] pkequiv,
$[R]$ pkexamine, $[R]$ pkshape, $[R]$ pksumm,
[U] 26.27 Pharmacokinetic data
pharmacokinetic plots, [G-2] graph other
phase function, [TS] Glossary
Phillips-Perron test, [TS] pperron
phtest, estat subcommand, [ST] stcox PH-
assumption tests
-pi built-in variable, [U] 11.3 Naming conventions
pi () function, $[\mathrm{M}-5] \sin ()$
pi, value of, [U] 11.3 Naming conventions,
[U] 13.4 System variables (_variables)
pie charts, [G-2] graph pie
pie, graph subcommand, [G-2] graph pie
piece macro extended function, $[\mathrm{P}]$ macro
piecewise
cubic functions, $[R]$ mkspline
linear functions, $[R]$ mkspline
Pillai's trace statistic, [MV] canon, [MV] manova,
[MV] mvtest means, [MV] Glossary
pinnable, set subcommand, $[R]$ set
_pinv() function, [M-5] pinv()
pinv() function, [M-5] pinv()
pk , see pharmacokinetic data
pkcollapse command, [R] pkcollapse
pkcross command, [R] pkcross
pkequiv command, $[\mathrm{R}]$ pkequiv
pkexamine command, $[\mathrm{R}]$ pkexamine
.pkg filename suffix, $[R]$ net
pkshape command, $[R]$ pkshape
pksumm command, [R] pksumm
Plackett-Luce model, [R] rologit
platforms for which Stata is available,
[U] 5.1 Platforms
play () option, [G-3] play_option
play, graph subcommand, [G-2] graph play
playsnd, set subcommand, $[R]$ set
plegend() option, [G-3] legend_options
plot region, [G-3] region_options
suppressing border around, [G-3] region_options
plot, definition, [G-4] pstyle
plot, ml subcommand, [R] ml
plotregion() option, [G-3] region_options
plotregionstyle, [G-4] plotregionstyle
plottypes
base, [G-3] advanced_options
derived, [G-3] advanced_options
plugin,
Java, $[\mathrm{P}]$ java, $[\mathrm{P}]$ javacall
loading, $[\mathrm{P}]$ plugin
plugin option, $[\mathrm{P}]$ plugin, $[\mathrm{P}]$ program
plural() function, [D] functions
PLUS directory, [P] sysdir, [U] 17.5 Where does Stata
look for ado-files?
PMM imputation, see imputation, predictive mean matching
pnorm command, [R] diagnostic plots
point estimate, [SVY] Glossary
point-and-click analysis, see graphical user interface
pointers, [M-2] pointers, [M-2] ftof,
[M-5] findexternal( ), [M-6] Glossary
points, connecting, [G-3] connect_options,
[G-4] connectstyle
Poisson, [SEM] example 34g, [SEM] example 39g
distribution,
confidence intervals, $[\mathrm{R}]$ ci
cumulative, [D] functions
inverse cumulative, [D] functions
inverse reverse cumulative, [D] functions
regression, see Poisson regression
reverse cumulative, [D] functions
probability mass function, [D] functions
poisson command, $[R]$ nbreg, $[R]$ poisson,
$[R]$ poisson postestimation
poisson option, see gsem option poisson
Poisson regression, $[\mathrm{R}]$ nbreg, $[\mathrm{R}]$ poisson,
[SEM] Glossary, [ST] stcox, [SVY] svy estimation
fixed-effects, [XT] xtpoisson
generalized linear model, $[\mathrm{R}]$ glm
mixed-effects, [ME] mepoisson, [ME] meqrpoisson
model, [XT] Glossary
population-averaged, $[\mathrm{XT}]$ xtgee, $[\mathrm{XT}]$ xtpoisson
random-effects, [XT] xtpoisson
truncated, $[\mathrm{R}]$ tpoisson
zero-inflated, [R] zip
poisson() function, [D] functions, [M-5] normal( )
poissonp() function, [D] functions, [M-5] normal( )
poissontail() function, [D] functions,
[M-5] normal( )
polar coordinates, [D] range
polyadd() function, [M-5] polyeval()
polyderiv() function, [M-5] polyeval()
polydiv() function, [M-5] polyeval()
polyeval() function, [M-5] polyeval()
polyinteg() function, [M-5] polyeval()
polymorphism, $[\mathrm{P}]$ class
polymult() function, [M-5] polyeval()
polynomial smoothing, see local polynomial smoothing
polynomials, [M-5] polyeval()
fractional, $[R] \mathbf{f p},[R] \mathbf{m f p}$
orthogonal, $[R]$ orthog
smoothing, see local polynomial
polyroots() function, [M-5] polyeval()
polysolve() function, [M-5] polyeval()
polytomous logistic regression, [SVY] svy estimation
polytomous outcome model, see outcomes, polytomous
polytrim() function, [M-5] polyeval()
POMs, see potential-outcome means
pooled estimates, [ST] epitab
pooled estimator, [XT] Glossary
pooling step, [MI] intro substantive, [MI] mi estimate,
[MI] mi estimate using, [MI] mi predict
population attributable risk, [ST] epitab population error, [SEM] estat gof, [SEM] example 4 population parameter, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
population pyramid, [G-2] graph twoway bar population size, [PSS] power, [PSS] power onemean, [PSS] power pairedmeans
population standard deviation, see subpopulation, standard deviations of
population-averaged model, $[\mathrm{XT}]$ xtcloglog, $[\mathrm{XT}]$ xtgee, [XT] xtlogit, [XT] xtnbreg, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg, [XT] Glossary populations,
diagnostic plots, $[R]$ diagnostic plots
examining, $[R]$ histogram, $[R]$ lv, $[R]$ spikeplot, $[R]$ stem, $[R]$ summarize, $[R]$ table
standard, $[R]$ dstdize
testing equality of, see distributions, testing equality of
testing for normality, $[R]$ sktest, $[R]$ swilk
portmanteau statistic, [TS] corrgram, [TS] wntestq, [TS] Glossary
positive effect size, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary
post command, $[\mathrm{P}]$ postfile
post, ereturn subcommand, $[P]$ ereturn,
$[\mathrm{P}]$ makecns, $[\mathrm{P}]$ return
postclose command, $[\mathrm{P}]$ postfile
posterior
mean, [ME] mecloglog postestimation, [ME] meglm postestimation, [ME] melogit postestimation,
[ME] menbreg postestimation, [ME] meologit postestimation, [ME] meoprobit postestimation, [ME] mepoisson postestimation, [ME] meprobit postestimation, [ME] Glossary
mode, [ME] mecloglog postestimation,
[ME] meglm postestimation, [ME] melogit postestimation, [ME] menbreg postestimation, [ME] meologit postestimation, [ME] meoprobit postestimation, $[\mathrm{ME}]$ mepoisson postestimation, [ME] meprobit postestimation, [ME] Glossary probabilities, [MV] Glossary
postestimation command, [MI] mi estimate postestimation, $[\mathrm{P}]$ estat programming, $[R]$ contrast, $[R]$ estat, $[R]$ estat ic, $[R]$ estat summarize, $[R]$ estat vce, $[R]$ estimates, $[R]$ hausman, $[R]$ lincom, $[R]$ linktest, $[R]$ Irtest, $[R]$ margins, $[R]$ margins, contrast, $[\mathrm{R}]$ margins, pwcompare, $[\mathrm{R}]$ marginsplot, $[\mathrm{R}]$ nlcom, $[\mathrm{R}]$ predict, $[\mathrm{R}]$ predictnl, $[R]$ pwcompare, $[R]$ suest, $[R]$ test, $[R]$ testnl, [SEM] intro 7, [SEM] gsem postestimation, [SEM] sem postestimation, [ST] stcurve, [SVY] estat, [SVY] svy postestimation, [TE] teffects overlap, [TE] teffects postestimation, [TS] estat acplot, [TS] estat aroots, [TS] fcast compute, [TS] fcast graph, [TS] irf, [TS] psdensity, [TS] vargranger, [TS] varlmar, [TS] varnorm, [TS] varsoc, [TS] varstable, [TS] varwle, [TS] veclmar, [TS] vecnorm, [TS] vecstable postestimation, predicted values, [SEM] intro 7, [SEM] example 14, [SEM] example 28 g , [SEM] predict after gsem, [SEM] predict after sem
postfile command, $[\mathrm{P}]$ postfile
PostScript, [G-2] graph export, [G-3] eps_options, [G-3] ps_options, [G-4] text
poststratification, [SVY] poststratification, [SVY] Glossary
posttreatment mean, see means, posttreatment
postulated value, [PSS] power, [PSS] Glossary
postutil
clear command, $[\mathrm{P}]$ postfile
dir command, [P] postfile
potential outcome, [TE] etpoisson, [TE] etpoisson postestimation, [TE] etregress, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects nnmatch, [TE] teffects overlap, [TE] teffects postestimation, [TE] teffects psmatch, [TE] teffects ra, [TE] Glossary
potential-outcome means, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects multivalued, [TE] teffects ra, [TE] Glossary
poverty indices, $[R]$ inequality
power
command, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table
onecorrelation command, [PSS] power onecorrelation
onemean command, [PSS] power onemean
oneproportion command, [PSS] power oneproportion
onevariance command, [PSS] power onevariance
oneway command, [PSS] power oneway
pairedmeans command, [PSS] power pairedmeans
pairedproportions command, [PSS] power pairedproportions
repeated command, [PSS] power repeated
power, continued
twocorrelations command, [PSS] power twocorrelations
twomeans command, [PSS] power twomeans
twoproportions command, [PSS] power twoproportions
twovariances command, [PSS] power twovariances
twoway command, [PSS] power twoway
power, [M-2] op_arith, [M-2] op_colon,
[M-5] matpowersym (), [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary, [ST] Glossary, [U] 19.3 The power command, [U] 26.29 Power and sample-size analysis
actual, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] unbalanced designs, [PSS] Glossary
analysis, see power and sample-size analysis
Cox proportional hazards regression, [ST] stpower, [ST] stpower cox
curve, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] Glossary
determination, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
exponential survival, [ST] stpower, [ST] stpower exponential
exponential test, [ST] stpower, [ST] stpower exponential
function, [PSS] intro, [PSS] Glossary
graph, see power curve
graphical output, [PSS] power, graph
log-rank, [ST] stpower, [ST] stpower logrank

## power, continued

nominal, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
raise to, function, see arithmetic operators power and sample-size analysis, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
goals of, [PSS] intro
prospective, [PSS] intro, [PSS] Glossary
retrospective, [PSS] intro, [PSS] Glossary
power autoregressive conditional heteroskedasticity, [TS] arch
power transformations, $[R]$ boxcox, $[R]$ Inskew0
pperron command, [TS] pperron
pragma, [M-2] pragma, [M-6] Glossary
pragma unset, [M-2] pragma
pragma unused, [M-2] pragma
prais command, [TS] prais, [TS] prais postestimation
Prais-Winsten regression, [TS] prais, [TS] prais postestimation, [TS] Glossary, [XT] xtpcse precision, [U] 13.11 Precision and problems therein predetermined variable, [XT] Glossary
_predict command, $[\mathrm{P}]$ _predict
predict command, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates, $[\mathrm{R}]$ predict, $[\mathrm{R}]$ regress postestimation, [SEM] intro 7, [SEM] example 14, [SEM] example 28g, [SEM] predict after gsem, [SEM] predict after sem, [SVY] svy postestimation, [TE] teffects postestimation, [U] 20.10 Obtaining predicted values
predict, estat subcommand, $[R]$ exlogistic postestimation
predict, mi subcommand, [MI] mi predict predicted values, see postestimation, predicted values predictions, $[R]$ predict, $[R]$ predictnl, [SVY] svy postestimation, see multiple imputation, prediction
obtaining after estimation, $[\mathrm{MI}]$ mi predict, [ P ] _predict
standard error of, $[R]$ glm, $[R]$ predict, $[R]$ regress postestimation
predictive margins, [SVY] Glossary,
[U] 20.15 Obtaining marginal means, adjusted predictions, and predictive margins
predictive mean matching imputation, see imputation, predictive mean matching
predictnl command, $[\mathrm{R}]$ predictnl, [SVY] svy postestimation
predictnl, mi subcommand, [MI] mi predict
prefix command, $[R]$ bootstrap, $[R]$ fp, $[R]$ jackknife, $[R] \mathbf{m f p},[R]$ nestreg, $[R]$ permute, $[R]$ simulate, $[R]$ stepwise, $[R]$ xi, $[U]$ 11.1.10 Prefix commands
Pregibon delta beta influence statistic, see delta beta influence statistic
preprocessor commands, $[\mathrm{R}]$ \#review
preserve command, $[\mathrm{P}]$ preserve
preserving data, $[\mathrm{P}]$ preserve
preserving user's data, $[\mathrm{P}]$ preserve
pretreatment mean, see means, pretreatment
prevalence studies, see case-control data, see crosssectional study
prevented fraction, [ST] epitab, [ST] Glossary
prewhiten, [XT] Glossary
primary sampling unit, [SVY] svydescribe,
[SVY] svyset, [SVY] Glossary
priming values, [TS] Glossary
principal
component analysis, [MV] pca, [MV] Glossary
factors analysis, [MV] factor
print command, $[R]$ translate
print, graph subcommand, [G-2] graph print
printcolor, set subcommand, [G-2] set printcolor, [R] set
printf() function, [M-5] printf()
printing graphs, [G-2] graph print, [G-3] pr_options
exporting options, [G-2] graph set
settings, [G-2] graph set
printing, logs (output), [R] translate, [U] 15 Saving and printing output-log files
prior probabilities, [MV] Glossary
private, [M-2] class
probability
of a type I error, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
of a type II error, [PSS] intro, [PSS] power,
[PSS] power, graph, [PSS] power, table,
[PSS] power onemean, [PSS] power twomeans,
[PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions,
probability of a type II error, continued [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
probability weight, see sampling weight
probit command, $[\mathrm{R}]$ probit, $[\mathrm{R}]$ probit postestimation
probit option, see gsem option probit
probit regression, $[\mathrm{R}]$ probit, [SEM] Glossary, [SVY] svy estimation
alternative-specific multinomial probit, $[\mathrm{R}]$ asmprobit
alternative-specific rank-ordered, $[R]$ asroprobit bivariate, $[R]$ biprobit
generalized estimating equations, [XT] xtgee
generalized linear model, $[\mathrm{R}]$ glm
heteroskedastic, [R] hetprobit
mixed-effects, $[\mathrm{ME}]$ meprobit, also see ordered probit regression
multinomial, $[\mathrm{R}]$ mprobit
ordered, $[R]$ heckoprobit, $[R]$ oprobit
population-averaged, [XT] xtgee, [XT] xtprobit
random-effects, [XT] xtoprobit, [XT] xtprobit
two-equation, $[R]$ biprobit
with endogenous regressors, $[\mathrm{R}]$ ivprobit, [SVY] svy estimation
with grouped data, $[R]$ glogit
with sample selection, $[\mathrm{R}]$ heckprobit, [SVY] svy estimation
procedure codes, [D] icd9
processors, set subcommand, [R] set
procoverlay command, [MV] procrustes postestimation
procrustes command, [MV] procrustes, [MV] procrustes postestimation
Procrustes rotation, [MV] procrustes, [MV] Glossary
Procrustes transformation, see Procrustes rotation product, [M-2] op_arith, [M-2] op_colon,
[M-2] op_kronecker, [M-5] cross( ), [M-5] crossdev( ), [M-5] quadcross()
production
frontier model, $[\mathrm{R}]$ frontier, $[\mathrm{XT}]$ xtfrontier
function, [XT] Glossary
product-moment correlation, $[\mathrm{R}]$ correlate
between ranks, $[R]$ spearman
profile plots, $[R]$ marginsplot
profiles, estat subcommand, [MV] ca postestimation
program
define command, $[\mathrm{P}]$ plugin, $[\mathrm{P}]$ program,
[P] program properties
dir command, $[\mathrm{P}]$ program
drop command, [P] program
list command, [P] program
programmer's commands and utilities, [MI] mi select, [MI] styles, [MI] technical
programming, $[\mathrm{P}]$ syntax
cluster analysis, [MV] cluster programming utilities
cluster subcommands, [MV] cluster programming subroutines
cluster utilities, [MV] cluster programming subroutines
dialog, $[\mathrm{P}]$ dialog programming
estat, $[\mathrm{P}]$ estat programming
functions, [M-4] programming
limits, $[\mathrm{R}]$ limits
Mac, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen, $[\mathrm{P}]$ window manage, $[\mathrm{P}]$ window menu, $[\mathrm{P}]$ window push, $[\mathrm{P}]$ window stopbox
menus, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window menu
rotations, [MV] rotate
use, [M-1] ado
Windows, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen, $[\mathrm{P}]$ window manage, $[\mathrm{P}]$ window menu, $[\mathrm{P}]$ window push, $[\mathrm{P}]$ window stopbox
programs,
adding comments to, $[\mathrm{P}]$ comments
debugging, $[\mathrm{P}]$ trace
dropping, $[\mathrm{P}]$ discard
looping, $[\mathrm{P}]$ continue
user-written, see ado-files
programs, clear subcommand, [D] clear
Project Manager, [P] Project Manager
projection matrix, diagonal elements of, $[\mathrm{R}]$ binreg postestimation, $[\mathrm{R}]$ clogit postestimation, $[\mathrm{R}]$ glm postestimation, $[\mathrm{R}]$ logistic postestimation, $[R]$ logit postestimation, $[R]$ regress postestimation, $[R]$ rreg postestimation
projection plot, [G-2] graph twoway contour, [G-2] graph twoway contourline
projmanager command, $[\mathrm{P}]$ Project Manager
promax power rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
promax rotation, [MV] rotate
propensity score, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects postestimation, [TE] teffects psmatch, [TE] Glossary
propensity-score matching, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects psmatch, [TE] Glossary
proper imputation method, [MI] intro substantive proper values, [M-5] eigensystem()
proper() function, [D] functions
properties, $[\mathrm{P}]$ program properties
properties macro extended function, $[\mathrm{P}]$ macro
proportion command, $[\mathrm{R}]$ proportion,
$[R]$ proportion postestimation
proportional
hazards models, [ST] Glossary, [SVY] svy
estimation, also see Cox proportional hazards
model, also see survival analysis
odds assumption, $[R]$ ologit
relaxed, $[R]$ slogit
odds model, $[R]$ ologit
sampling, [D] sample, [R] bootstrap
proportions, [PSS] intro, [PSS] power, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions
confidence intervals for, [R] ci
control-group, [PSS] intro, [PSS] power,
[PSS] power twoproportions
correlated, see proportions, paired
discordant, [PSS] intro, [PSS] power, [PSS] power pairedproportions
estimating, $[\mathrm{R}]$ proportion
experimental-group, [PSS] intro, [PSS] power, [PSS] power twoproportions
independent, see proportions, two-sample
marginal, [PSS] intro, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
one-sample, [PSS] intro, [PSS] power, [PSS] power oneproportion
paired, [PSS] intro, [PSS] power, [PSS] power pairedproportions
survey data, [SVY] svy estimation,
[SVY] svy: tabulate oneway,
[SVY] svy: tabulate twoway
testing equality of, $[\mathrm{R}]$ bitest, $[\mathrm{R}]$ prtest
two-sample, [PSS] intro, [PSS] power, [PSS] power twoproportions, [PSS] power pairedproportions
prospective study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, $[\mathrm{PSS}]$ power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary, [ST] epitab, [ST] Glossary, also see incidence studies
protected, [M-2] class
proximity, [MV] Glossary
prtest command, [R] prtest
prtesti command, $[R]$ prtest
psdensity command, [TS] psdensity
pseudo $R$-squared, [R] maximize
pseudofunctions, [D] datetime, [D] functions
pseudoinverse, [M-5] pinv()
pseudolikelihood, [SVY] Glossary
pseudosigmas, [R] lv
psi function, [D] functions
psmatch, teffects subcommand, [TE] teffects psmatch
PSS analysis, see power and sample-size analysis
PSS Control Panel, [PSS] GUI, [PSS] Glossary
pstyle, [G-4] pstyle
pstyle() option, [G-2] graph twoway scatter,
[G-3] rspike_options, [G-4] pstyle
PSU, see primary sampling unit
.ptrace file, [MI] mi impute mvn, [MI] mi ptrace
ptrace, mi subcommand, [MI] mi ptrace
public, [M-2] class
push, window subcommand, $[\mathrm{P}]$ window
programming, $[\mathrm{P}]$ window push
putexcel
clear command, $[\mathrm{P}]$ putexcel
command, $[\mathrm{P}]$ putexcel
describe command, $[\mathrm{P}]$ putexcel
set command, $[\mathrm{P}]$ putexcel
putmata command, [D] putmata
$p$-value, [PSS] intro, [PSS] Glossary
pwcompare command, [R] pwcompare,
[R] pwcompare postestimation, [SEM] intro 7,
[SVY] svy postestimation, [U] 20.17 Obtaining pairwise comparisons
pwcorr command, $[R]$ correlate
pwd command, [D] cd
pwd () function, [M-5] chdir()
pweight, see sampling weight
[pweight=exp] modifier, [U] 11.1.6 weight,
[U] 20.23.3 Sampling weights
pwmean command, $[\mathrm{R}]$ pwmean, $[\mathrm{R}]$ pwmean postestimation
pyramid, population, [G-2] graph twoway bar

## Q

Q-Q plot, [R] diagnostic plots
Q statistic, see portmanteau statistic
qc charts, see quality control charts
qchi command, $[\mathrm{R}]$ diagnostic plots
QDA, see quadratic discriminant analysis
qda, discrim subcommand, [MV] discrim qda
qfit, graph twoway subcommand, [G-2] graph twoway qfit
qfitci, graph twoway subcommand, [G-2] graph twoway qfitci
qladder command, [R] ladder
QML, see quasimaximum likelihood
qnorm command, $[R]$ diagnostic plots
qofd() function, [D] datetime, [D] functions, [M-5] date()
qqplot command, [R] diagnostic plots
QR decomposition, [M-5] qrd( ), [ME] meqrlogit, [ME] meqrpoisson, [ME] Glossary
qrd() function, [M-5] $\operatorname{qrd}()$
qrdp() function, [M-5] qrd()
qreg command, $[\mathrm{R}]$ qreg, $[\mathrm{R}]$ qreg postestimation
_qrinv() function, [M-5] qrinv()
qrinv() function, [M-5] qrinv() -qrsolve() function, [M-5] qrsolve()
qrsolve() function, [M-5] qrsolve()
qtolerance() option, [R] maximize
quad precision, $[\mathrm{M}-5]$ mean( ), $[\mathrm{M}-5]$ quadcross( ), [M-5] runningsum (), [M-5] sum() quadchk command, [XT] quadchk quadcolsum() function, [M-5] sum() quadcorrelation() function, [M-5] mean() quadcross() function, [M-5] quadcross() quadcrossdev() function, [M-5] quadcross() quadmeanvariance() function, [M-5] mean() quadrant () function, [M-5] sign() quadratic discriminant analysis, [MV] discrim qda, [MV] Glossary
quadratic terms, [SVY] svy postestimation quadrature, [SEM] Glossary, [XT] Glossary

Gauss-Hermite, [ME] me, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit,
[ME] meqrlogit, [ME] meqrpoisson,
[ME] mixed, [ME] Glossary, [SEM] methods and formulas for gsem, [XT] quadchk
mean-variance adaptive Gauss-Hermite,
[ME] me, [ME] mecloglog, [ME] meglm,
[ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed,
[ME] Glossary, [SEM] methods and formulas for gsem
mode-curvature adaptive Gauss-Hermite, [ME] me, [ME] mecloglog, [ME] meglm,
[ME] melogit, [ME] menbreg, [ME] meologit,
[ME] meoprobit, [ME] mepoisson,
[ME] meprobit, [ME] meqrlogit,
[ME] meqrpoisson, [ME] mixed,
[ME] Glossary, [SEM] methods and formulas for gsem
nonadaptive Gauss-Hermite, see quadrature, GaussHermite
quadrowsum() function, [M-5] sum()
_quadrunningsum () function, [M-5] runningsum()
quadrunningsum() function, [M-5] runningsum()
quadsum() function, [M-5] sum()
quadvariance() function, [M-5] mean()
qualitative dependent variables, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] meologit,
[ME] meoprobit, [ME] meprobit,
[ME] meqrlogit, $[R]$ asclogit, $[R]$ asmprobit,
$[R]$ asroprobit, $[R]$ binreg, $[R]$ biprobit,
$[R]$ brier, $[R]$ clogit, $[R]$ cloglog, $[R]$ cusum,
$[R]$ exlogistic, $[R]$ glm, $[R]$ glogit,
$[R]$ heckoprobit, $[R]$ heckprobit, $[R]$ hetprobit,
$[R]$ ivprobit, $[R]$ logistic, $[R]$ logit, $[R]$ mlogit,
$[R]$ mprobit, $[R]$ nlogit, $[R]$ ologit, $[R]$ oprobit,
$[R]$ probit, $[R]$ rocfit, $[R]$ rocreg, $[R]$ rologit,
[R] scobit, [R] slogit, [SVY] svy estimation,
[U] 26.7 Binary-outcome qualitative dependentvariable models, [U] 26.10 Multiple-outcome qualitative dependent-variable models, [U] 26.18.4 Qualitative dependent-variable models with panel data, [XT] xtcloglog,
qualitative dependent variables, continued [XT] xtgee, [XT] xtlogit, [XT] xtologit, [XT] xtoprobit, [XT] xtprobit
quality control charts, [G-2] graph other, $[\mathrm{R}]$ qc, [R] serrbar
quantile command, $[R]$ diagnostic plots
quantile-normal plots, $[R]$ diagnostic plots
quantile plots, $[\mathrm{G}-2]$ graph other, $[\mathrm{R}]$ diagnostic plots
quantile-quantile plots, [G-2] graph other,
$[\mathrm{R}]$ diagnostic plots
quantile regression, $[\mathrm{R}]$ qreg
quantiles, see percentiles, displaying, see percentiles
quantiles, estat subcommand, [MV] mds postestimation
quarter() function, [D] datetime, [D] functions, [M-5] date()
quarterly () function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date()
quartimax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
quartimin rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
quasimaximum likelihood, [SEM] Glossary
Quattro Pro, reading data from, [U] 21.4 Transfer programs
query
command, $[\mathrm{R}]$ query
efficiency command, [R] query
graphics command, [G-2] set graphics, [G-2] set printcolor, $[\mathrm{G}-2]$ set scheme, $[\mathrm{R}]$ query
interface command, $[R]$ query
mata command, $[R]$ query
memory command, $[D]$ memory, $[R]$ query
network command, $[\mathrm{R}]$ query
other command, $[R]$ query
output command, $[\mathrm{R}]$ query
trace command, $[\mathrm{R}]$ query
update command, $[R]$ query
query,
cluster subcommand, [MV] cluster programming utilities
estimates subcommand, $[R]$ estimates store
file subcommand, $[P]$ file
forecast subcommand, [TS] forecast query
graph subcommand, [G-2] graph query
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
log subcommand, $[R] \log$
mi subcommand, [MI] mi describe
ml subcommand, $[\mathrm{R}] \mathrm{ml}$
net subcommand, $[\mathrm{R}]$ net
odbc subcommand, [D] odbe
translator subcommand, $[\mathrm{R}]$ translate
transmap subcommand, $[R]$ translate
update subcommand, $[\mathrm{R}]$ update
webuse subcommand, [D] webuse
querybreakintr() function, [M-5] setbreakintr()
quick reference, [D] data types, [D] missing values
quietly prefix, [P] quietly
quit Mata, [M-3] end
quitting Stata, see exit command
quotes
to delimit strings, [U] 18.3.5 Double quotes
to expand macros, [P] macro, [U] 18.3.1 Local macros

## R

R charts, [G-2] graph other
$R$ dates, [ $D$ ] datetime
$r$ () function, [D] functions
$r()$ stored results, $[P]$ discard, $[P]$ return, $[R]$ stored results, [U] 18.8 Accessing results calculated by other programs, $[U]$ 18.10.1 Storing results in r()
$r$ (functions) macro extended function, $[P]$ macro
$r$ (macros) macro extended function, $[P]$ macro
$r$ (matrices) macro extended function, $[\mathrm{P}]$ macro
$r$ (scalars) macro extended function, $[\mathrm{P}]$ macro
r1title() option, [G-3] title_options
r2title() option, [G-3] title_options
ra, teffects subcommand, [TE] teffects ra
radians, [D] functions
raise to a power function, $[\mathrm{U}]$ 13.2.1 Arithmetic operators
Ramsey test, [R] regress postestimation
random
coefficient, [ME] Glossary
intercept, [ME] Glossary, [SEM] example 38g
number function, [D] functions, [D] generate
numbers, [M-5] runiform( )
numbers, normally distributed, [D] functions, [ D ] generate
order, test for, $[\mathrm{R}]$ runtest
sample, [D] sample, [R] bootstrap, [U] 21.3 If you run out of memory
slope, [SEM] example 38g
variates, [M-5] runiform( )
walk, [TS] Glossary
random-coefficients
linear regression, [XT] xtre
model, [U] 26.18.6 Random-coefficients model with panel data, [XT] Glossary
random-effects model, [ME] Glossary, [R] anova, [R] loneway, [SEM] example 38g, [SEM] Glossary, [XT] xtabond, [XT] xtcloglog, [XT] xtdpd, [XT] xtdpdsys, [XT] xtgee, [XT] xthtaylor, [XT] xtintreg, [XT] xtivreg, [XT] xtlogit, [XT] xtnbreg, [XT] xtologit, [XT] xtoprobit, [XT] xtpoisson, [XT] xtprobit, [XT] xtreg, [XT] xtregar, [XT] xttobit, [XT] Glossary
multilevel mixed-effects models, [ME] me, [ME] mecloglog, [ME] meglm, [ME] melogit, [ME] menbreg, [ME] meologit, [ME] meoprobit, [ME] mepoisson, [ME] meprobit, [ME] meqrlogit, [ME] meqrpoisson, [ME] mixed
randomized controlled trial study, [PSS] intro,
[PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
random-number generators, $[\mathrm{P}]$ version
random-number seed, [MI] mi impute
random-order test, $[\mathrm{R}]$ runtest
range
chart, $[R]$ qc
of data, [D] codebook, [D] inspect, [R] lv, $[R]$ stem, $[R]$ summarize, $[R]$ table, $[R]$ tabstat, [XT] xtsum
operators, [M-2] op_range
plots, [G-3] rcap_options
spikes, [G-3] rspike_options
subscripts, see subscripts
vector, [M-5] range( )
range command, [D] range
range () function, [M-5] range( )
rangen() function, [M-5] range()
rank, [M-5] rank( ), [M-6] Glossary
rank correlation, [R] spearman
rank() function, [M-5] rank()
rank(), egen function, [D] egen
ranking data, $[\mathrm{R}]$ rologit
rank-order statistics, [D] egen, $[R]$ signrank, [R] spearman
rank-ordered logistic regression, see outcomes, rank
ranks of observations, [D] egen
ranksum command, $[\mathrm{R}]$ ranksum
Rao's canonical-factor method, [MV] factor
rarea, graph twoway subcommand, [G-2] graph twoway rarea
Rasch models, see item response theory rate ratio, [ST] epitab, [ST] stir, [ST] stptime,
[ST] stsum, see incidence-rate ratio ratio command, $[R]$ ratio, $[R]$ ratio postestimation ratio of sample sizes, see allocation ratio ratios, estimating, $[\mathrm{R}]$ ratio
ratios, survey data, [SVY] svy estimation, [SVY] svy: tabulate twoway
raw data, [U] 12 Data .raw file, [U] 11.6 Filenaming conventions raw residuals, [SEM] methods and formulas for sem rbar, graph twoway subcommand, [G-2] graph twoway rbar
rbeta() function, [D] functions, [M-5] runiform( )
rbinomial() function, [D] functions, [M-5] runiform( )
rc (return codes), see error messages and return codes _rc built-in variable, [P] capture, [U] 13.4 System variables (_variables)
rcap, graph twoway subcommand, [G-2] graph twoway rcap
rcapsym, graph twoway subcommand, [G-2] graph twoway rcapsym
rchart command, [R] qc
rchi2() function, [D] functions, [M-5] runiform()
r-class command, $[\mathrm{P}]$ program, $[\mathrm{P}]$ return,
[U] 18.8 Accessing results calculated by other programs
r-conformability, [M-5] normal( ), [M-6] Glossary
rconnected, graph twoway subcommand, [G-2] graph twoway rconnected
RCT, see randomized controlled trial study
rdiscrete() function, [M-5] runiform()
$\operatorname{Re}()$ function, $[\mathrm{M}-5] \operatorname{Re}()$
read, file subcommand, [P] file
reading console input in programs, see console, obtaining input from
reading data, $[\mathrm{M}-5]$ _docx*(), $[\mathrm{M}-5] \mathbf{x l}()$
reading data from disk, [U] 21 Entering and importing data, [U] 21.4 Transfer programs, see importing data
real, [M-2] declarations, [M-6] Glossary
real number to string conversion, [D] destring,
[D] encode, [D] functions
real part, $[\mathrm{M}-5] \operatorname{Re}()$
real() function, [D] functions
realization, [M-6] Glossary
recase() function, [D] functions
recast command, [D] recast
recast() option, [G-3] advanced_options, [G-3] rcap_options, [G-3] rspike_options
receiver operating characteristic analysis, [G-2] graph other, $[R]$ roc, $[U] 26.8$ ROC analysis
area under ROC curve, $[\mathrm{R}]$ lroc
nonparametric analysis without covariates, [R] roctab
parametric analysis without covariates, $[R]$ rocfit
regression models, $[\mathrm{R}]$ rocreg
ROC curves after rocfit, $[R]$ rocfit postestimation
ROC curves after rocreg, $[\mathrm{R}]$ rocregplot
test equality of ROC areas, see equality test of ROC areas
reciprocal averaging, $[\mathrm{MV}]$ ca
recode command, [D] recode
recode() function, [D] functions,
[U] 25.1.2 Converting continuous variables to categorical variables
recoding data, $[\mathrm{D}]$ recode
recoding data autocode() function, [D] functions reconstructed correlations, [MV] factor postestimation record I/O versus stream I/O, [U] 21 Entering and importing data
recording sessions, [U] 15 Saving and printing output-log files
recovariance, estat subcommand, [ME] meqrlogit postestimation, [ME] meqrpoisson postestimation, [ME] mixed postestimation
recruitment period, see accrual period rectangle kernel function, $[\mathrm{R}]$ kdensity, $[\mathrm{R}]$ lpoly, [R] qreg, [TE] teffects overlap rectangularize dataset, [D] fillin recursive estimation, [TS] rolling recursive model, [SEM] Glossary recursive regression analysis, [TS] Glossary redisplay graph, [G-2] graph display reexpression, $[R]$ boxcox, $[R]$ ladder, $[R]$ Inskew0 .ref built-in class function, $[P]$ class reference
group, see control group
value, [PSS] Glossary
references, class, $[\mathrm{P}]$ class
reflection, [MV] procrustes, [MV] Glossary
.ref_n built-in class function, [P] class
reg3 command, $[R]$ reg3, $[R]$ reg3 postestimation
regexm() function, [D] functions
regexr() function, [D] functions
regexs() function, [D] functions
regions
look of, [G-4] areastyle
outlining, [G-3] region_options
shading, [G-3] region_options
register, mi subcommand, [MI] mi set
registered variables, see variables, registered
regress command, $[R]$ regress, $[R]$ regress
postestimation, $[R]$ regress postestimation diagnostic plots, $[R]$ regress postestimation time series
regress option, see gsem option regress
regression, [SEM] Glossary
adjustment, [TE] teffects intro, [TE] teffects intro advanced, [TE] teffects ra, [TE] Glossary
competing risks, [ST] stcrreg
constrained, $[R]$ cnsreg
creating orthogonal polynomials for, $[R]$ orthog diagnostic plots, [G-2] graph other
diagnostics, $[R]$ estat classification, $[R]$ estat gof, $[R]$ logistic postestimation, $[R]$ Iroc, $[R]$ Isens,
$[R]$ poisson postestimation, $[R]$ predict,
$[R]$ predictnl, $[R]$ regress postestimation diagnostic plots, $[R]$ regress postestimation time series, [ST] stcox PH-assumption tests, [ST] stcox postestimation, [ST] stcrreg postestimation, $[\mathrm{ST}]$ streg postestimation, [SVY] estat, [SVY] svy postestimation
dummy variables, with, $[R]$ anova, $[R]$ areg, $[R]$ xi fixed-effects, $[R]$ areg
fractional polynomial, $[R] \mathbf{f p},[R] \mathbf{m f p}$
function, estimating, $[R]$ lpoly
lines, see fits, adding
graphing, $[R]$ logistic, $[R]$ regress postestimation diagnostic plots
grouped data, $[R]$ intreg
increasing number of variables allowed, $[\mathrm{R}]$ matsize
instrumental variables, $[R]$ gmm, $[R]$ ivpoisson,
$[R]$ ivprobit, $[R]$ ivregress, $[R]$ ivtobit
regression, continued
linear, see linear regression
scoring, [MV] factor postestimation
system, [MV] mvreg, $[R]$ gmm, $[R]$ ivpoisson,
$[R]$ ivregress, $[R]$ nlsur, $[R]$ reg3, $[R]$ sureg
truncated, $[\mathrm{R}]$ truncreg
regression (in generic sense), see estimation commands
accessing coefficients and standard errors, [P] matrix get, [U] 13.5 Accessing coefficients and standard errors
dummy variables, with, $[\mathrm{XT}]$ xtreg
fixed-effects, [XT] xtreg
instrumental variables, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys, [XT] xthtaylor, [XT] xtivreg
random-effects, $[\mathrm{XT}]$ xtgee, $[\mathrm{XT}]$ xtreg
regular expressions, [D] functions
regular variables, see variables, regular
rejection region, [PSS] intro, [PSS] Glossary
relational operators, [U] 13.2.3 Relational operators
relative difference function, $[\mathrm{D}]$ functions
relative efficiency, $[\mathrm{MI}]$ mi estimate, $[\mathrm{MI}]$ mi predict, [MI] Glossary
relative risk, [PSS] intro, [PSS] power, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] Glossary, [ST] epitab
relative variance increase, [MI] mi estimate, [MI] mi predict, [MI] Glossary
relative-risk ratio, $[R]$ eform_option, $[R]$ lincom, $[\mathrm{R}]$ mlogit
reldif() function, [D] functions, [M-5] reldif() release marker, $[\mathrm{P}]$ version
releases, compatibility of Stata programs across, [ P$]$ version
reliability, $[M V]$ alpha, $[M V]$ factor, $[R]$ brier, $[R]$ eivreg, $[R]$ icc, $[R]$ intreg, $[R]$ loneway, [R] poisson, [SEM] intro 5, [SEM] intro 12, [SEM] example 24, [SEM] gsem model description options, [SEM] sem and gsem option reliability( ), [SEM] sem model description options, [SEM] Glossary, [ST] survival analysis, [ST] discrete, [ST] Itable, [ST] st, [ST] stcox, [ST] stcrreg, [ST] streg
reliability option, see gsem option reliability(), see sem option reliability()
reliability theory, see survival analysis
remainder function, [D] functions
REML, see restricted maximum likelihood removing
directories, [D] rmdir
files, [D] erase
r._En, [SEM] sem and gsem option covstructure() rename,
char subcommand, $[\mathrm{P}]$ char
cluster subcommand, [MV] cluster utility
graph subcommand, [G-2] graph rename
irf subcommand, [TS] irf rename
mata subcommand, $[\mathrm{M}-3]$ mata rename
rename, continued
mi subcommand, [MI] mi rename
matrix subcommand, $[\mathrm{P}]$ matrix utility
rename command, [D] rename, [D] rename group
rename for mi data, $[\mathrm{MI}]$ mi rename
rename graph, [G-2] graph rename
renamevar, cluster subcommand, [MV] cluster utility
renaming variables, [D] rename, [D] rename group, [MI] mi rename
renumber, notes subcommand, [D] notes
reordering data, [D] gsort, [D] order, [D] sort
reorganizing data, $[\mathrm{D}]$ reshape, $[\mathrm{D}]$ xpose
repair, ssd subcommand, [SEM] ssd
repeated measures, [MV] Glossary, [PSS] power pairedmeans, [PSS] power pairedproportions repeated-measures ANOVA, [PSS] power, [PSS] power repeated, $[R]$ anova
repeated-measures MANOVA, [MV] manova
repeated options, [G-4] concept: repeated options
repeated, power subcommand, [PSS] power repeated repeating and editing commands, $[\mathrm{R}]$ \#review,
[U] 10 Keyboard use
repeating commands, $[\mathrm{D}]$ by, $[\mathrm{P}]$ continue, $[\mathrm{P}]$ foreach, [P] forvalues
replace command, [D] generate, [MI] mi passive, [MI] mi xeq
replace option, [U] 11.2 Abbreviation rules
replace, notes subcommand, [D] notes
replace0, mi subcommand, [MI] mi replace0
replay() function, [D] functions, [P] ereturn, [P] _estimates
replay, estimates subcommand, $[R]$ estimates replay
replaying models, [SEM] intro 7
replicate-weight variable, [SVY] survey, [SVY] svy bootstrap, [SVY] svy brr, [SVY] svy jackknife, [SVY] svy sdr, [SVY] svyset, [SVY] Glossary
replicating
clustered observations, [D] expandcl
observations, [D] expand
replication method, [SVY] svy bootstrap, [SVY] svy brr, [SVY] svy jackknife, [SVY] svy sdr, [SVY] svyset, [SVY] variance estimation
report,
datasignature subcommand, [D] datasignature
duplicates subcommand, [D] duplicates
fvset subcommand, $[R]$ fvset
ml subcommand, $[\mathrm{R}] \mathrm{ml}$
reporting options, [SEM] gsem reporting options, [SEM] sem reporting options
repost, ereturn subcommand, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ return
_request(macname), display directive, $[\mathrm{P}]$ display resampling, [SVY] Glossary
reserved names, [U] 11.3 Naming conventions
reserved words, [M-2] reswords
RESET test, $[\mathrm{R}]$ regress postestimation
reset, mi subcommand, [MI] mi reset
reset, translator subcommand, [R] translate
reset_id, serset subcommand, [P] serset
reshape
command, [D] reshape
error command, [D] reshape
for mi data, [MI] mi reshape
long command, [D] reshape
wide command, [D] reshape
reshape, mi subcommand, [MI] mi reshape
residuals, $[R]$ logistic, $[R]$ predict, $[R]$ regress postestimation diagnostic plots, $[\mathrm{R}]$ rreg postestimation, [SEM] estat gof, [SEM] estat residuals, [SEM] example 4, [SEM] Glossary, [ST] stcox postestimation, [ST] stcrreg postestimation, [ST] streg postestimation residuals, estat subcommand, [MV] factor postestimation, [MV] pca postestimation, [SEM] estat residuals
residual-versus-fitted plot, [G-2] graph other, $[R]$ regress postestimation diagnostic plots residual-versus-predictor plot, [G-2] graph other, $[R]$ regress postestimation diagnostic plots resistant smoothers, $[\mathrm{R}]$ smooth restore,
estimates subcommand, [R] estimates store _return subcommand, [P] _return snapshot subcommand, [D] snapshot
restore command, $[\mathrm{P}]$ preserve restoring data, [D] snapshot restricted cubic splines, $[\mathrm{R}]$ mkspline restricted maximum likelihood, [ME] mixed, [ME] Glossary
results,
clearing, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates, $[\mathrm{P}]$ _return
listing, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ _estimates, $[\mathrm{P}]$ _return
returning, $[\mathrm{P}]$ _return, $[\mathrm{P}]$ return
saving, $[\mathrm{P}]$ _estimates, $[\mathrm{P}]$ putexcel, $[\mathrm{P}]$ _return, [R] estimates save
stored, $[\mathrm{R}]$ stored results
storing, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ postfile, $[\mathrm{P}]$ return
Results window, clearing, [R] cls results, clear subcommand, [D] clear retrospective study, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] Glossary
_return
dir command, $[\mathrm{P}]$ _return
drop command, $[\mathrm{P}]$ _return
hold command, [P] _return
restore command, [P] _return
return, [M-2] return
add command, $[\mathrm{P}]$ return
clear command, $[\mathrm{P}]$ return
list command, $[\mathrm{P}]$ return, $[\mathrm{R}]$ stored results
local command, $[\mathrm{P}]$ return
matrix command, $[\mathrm{P}]$ return
scalar command, $[\mathrm{P}]$ return
return codes, $[\mathrm{P}]$ rmsg, see error messages and return codes
return value, $[\mathrm{P}]$ class
return() function, [D] functions
returning results, $[\mathrm{P}]$ return
class programs, $[\mathrm{P}]$ class
reventries, set subcommand, $[R]$ set
reverse() function, [D] functions
reversed scales, [G-3] axis_scale_options
\#review command, [R] \#review, [U] 10 Keyboard use, $[\mathrm{U}] 15$ Saving and printing output-log files
revkeyboard, set subcommand, [R] set
revorder () function, [M-5] invorder()
rgamma() function, [D] functions, [M-5] runiform()
rhypergeometric() function, [D] functions, [M-5] runiform( )
ridge prior, $[\mathrm{MI}] \mathbf{m i}$ impute mvn
right eigenvectors, [M-5] eigensystem()
right suboption, [G-4] justificationstyle
right-censoring, [ST] Glossary, see imputation, intervalcensored data
rightmost options, [G-4] concept: repeated options
right-truncation, [ST] Glossary, see imputation, truncated data
risk
difference, [PSS] intro, [PSS] power, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] Glossary, [ST] epitab factor, [PSS] Glossary, [ST] epitab, [ST] Glossary pool, $[\mathrm{ST}]$ stcox, $[\mathrm{ST}]$ stcrreg, $[\mathrm{ST}]$ stset, [ST] Glossary
ratio, [PSS] Glossary, [R] binreg, [ST] epitab, [ST] Glossary, also see relative risk
rline, graph twoway subcommand, [G-2] graph twoway rline
rm command, [D] erase
_rmcoll command, [P] _rmcoll
_rmdcoll command, [P] _rmcoll
rmdir command, [D] rmdir
_rmdir() function, [M-5] chdir()
rmdir() function, [M-5] chdir()
rmexternal() function, [M-5] findexternal()
RMSEA, see root mean squared error of approximation
rmsg, [P] creturn, [P] error, [U] 8 Error messages and return codes
set subcommand, $[P]$ rmsg, $[R]$ set
rnbinomial() function, [D] functions, [M-5] runiform( )
rnormal () function, [D] functions, [M-5] runiform( ) robust, [SEM] Glossary
robust, see gsem option vce(), see sem option vce() _robust command, [P] _robust
robust regression, $[\mathrm{R}]$ regress, $[\mathrm{R}]$ rreg, also see robust, Huber/White/sandwich estimator of variance robust standard errors, [XT] Glossary robust test for equality of variance, $[\mathrm{R}]$ sdtest robust, Abadie-Imbens standard errors, [TE] teffects nnmatch, [TE] teffects psmatch robust, Huber/White/sandwich estimator of variance, [P] _robust, [R] vce_option, [SVY] variance estimation, [XT] vce_options
alternative-specific
conditional logit model, $[\mathrm{R}]$ asclogit
multinomial probit regression, [R] asmprobit
rank-ordered probit regression, $[\mathrm{R}]$ asroprobit
ARCH, [TS] arch
ARFIMA, [TS] arfima
ARIMA and ARMAX, [TS] arima
competing-risks regression, [ST] stcrreg
complementary log-log regression, [R] cloglog
Cox proportional hazards model, [ST] stcox
dynamic-factor model, [TS] dfactor
fixed-effects models,
linear, [XT] xtreg
Poisson, [XT] xtpoisson
GARCH, [TS] arch
generalized linear models, [R] glm for binomial family, $[R]$ binreg
generalized method of moments, $[R]$ gmm, [R] ivpoisson
heckman selection model, $[R]$ heckman
instrumental-variables regression, $[R]$ ivregress
interval regression, $[R]$ intreg
linear dynamic panel-data estimation, [XT] xtabond, [XT] xtdpd, [XT] xtdpdsys
linear regression, $[R]$ regress
constrained, $[\mathrm{R}]$ ensreg
truncated, [R] truncreg
with dummy-variable set, $[\mathrm{R}]$ areg
logistic regression, [R] logistic, [R] logit, also see logit regression subentry
conditional, $[\mathrm{R}]$ clogit
multinomial, $[\mathrm{R}]$ mlogit
ordered, $[R]$ ologit
rank-ordered, $[R]$ rologit
skewed, [R] scobit
stereotype, [R] slogit
logit regression, $[R]$ logistic, $[R]$ logit, also see
logistic regression subentry
for grouped data, $[R]$ glogit
nested, [R] nlogit
maximum likelihood estimation, $[\mathrm{R}] \mathbf{m l},[\mathrm{R}]$ mlexp
multilevel mixed-effects model, [ME] mecloglog,
[ME] meglm, [ME] melogit, [ME] menbreg,
[ME] meologit, [ME] meoprobit,
[ME] mepoisson, [ME] meprobit, [ME] mixed
robust, Huber/White/sandwich estimator of variance, continued
multinomial
logistic regression, $[\mathrm{R}]$ mlogit probit regression, $[R]$ mprobit
negative binomial regression, $[\mathrm{R}]$ nbreg truncated, $[\mathrm{R}]$ tnbreg zero-inflated, [R] zinb
Newey-West regression, [TS] newey nonlinear
least-squares estimation, $[R] \mathbf{n l}$ systems of equations, $[\mathrm{R}]$ nlsur
parametric survival models, $[\mathrm{ST}]$ streg
Poisson regression, $[\mathrm{R}]$ poisson
treatment effect, [TE] etpoisson
truncated, [R] tpoisson
with endogenous regressors, $[\mathrm{R}]$ ivpoisson
zero-inflated, [R] zip
population-averaged models, [XT] xtgee complementary log-log, [XT] xtcloglog logit, [XT] xtlogit
negative binomial, [XT] xtnbreg
Poisson, [XT] xtpoisson probit, [XT] xtprobit
Prais-Winsten and Cochrane-Orcutt regression, [TS] prais
probit regression, $[\mathrm{R}]$ probit bivariate, $[\mathrm{R}]$ biprobit
for grouped data, $[R]$ glogit
heteroskedastic, $[\mathrm{R}]$ hetprobit
multinomial, $[\mathrm{R}]$ mprobit
ordered, $[R]$ heckoprobit, $[R]$ oprobit with endogenous regressors, $[R]$ ivprobit with sample selection, $[R]$ heckprobit
quantile regression, $[R]$ qreg
random-effects model
complementary log-log, [XT] xtcloglog
linear, [XT] xtreg
logistic, [XT] xtlogit, [XT] xtologit
Poisson, [XT] xtpoisson
probit, [XT] xtoprobit, [XT] xtprobit
state-space model, [TS] sspace
structural equation modeling, [SEM] intro 8,
[SEM] sem option method( )
summary statistics,
mean, [R] mean
proportion, $[\mathrm{R}]$ proportion
ratio, $[\mathrm{R}]$ ratio
total, $[\mathrm{R}]$ total
tobit model, $[R]$ tobit
with endogenous regressors, $[\mathrm{R}]$ ivtobit
treatment effect, [TE] etpoisson, [TE] etregress,
[TE] teffects aipw, [TE] teffects ipw,
[TE] teffects ipwra, [TE] teffects ra
robust, Huber/White/sandwich estimator of variance, continued
truncated
negative binomial regression, $[\mathrm{R}]$ tnbreg
Poisson regression, [R] tpoisson
regression, $[\mathrm{R}]$ truncreg
unobserved-components model, [TS] ucm
with endogenous regressors,
instrumental-variables regression, $[R]$ ivregress
Poisson regression, $[R]$ ivpoisson
probit regression, $[\mathrm{R}]$ ivprobit
tobit regression, $[\mathrm{R}]$ ivtobit
zero-inflated
negative binomial regression, [R] zinb
Poisson regression, $[\mathrm{R}]$ zip
robust, other methods of, $[R]$ rreg, $[R]$ smooth robvar command, [R] sdtest
ROC, see receiver operating characteristic analysis roccomp command, $[R]$ roc, $[R]$ roccomp rocfit command, $[R]$ rocfit, $[R]$ rocfit postestimation
rocgold command, $[R]$ roc, $[R]$ roccomp
rocplot command, $[R]$ rocfit postestimation
rocreg command, $[R]$ rocreg, $[R]$ rocreg postestimation, $[R]$ rocregplot
rocregplot command, $[R]$ rocregplot
roctab command, $[R]$ roc, $[R]$ roctab
Rogers and Tanimoto similarity measure,
[MV] measure_option
roh, $[\mathrm{R}]$ loneway
rolling command, [TS] rolling
rolling regression, [TS] rolling, [TS] Glossary
rologit command, [R] rologit, [R] rologit postestimation
root mean squared error of approximation, [SEM] estat
gof, [SEM] example 4, [SEM] methods and formulas for sem
rootograms, [G-2] graph other, [R] spikeplot
roots of polynomials, [M-5] polyeval()
rotate command, [MV] factor postestimation,
[MV] pca postestimation, [MV] rotate
rotate, estat subcommand, [MV] canon postestimation
rotatecompare, estat subcommand, [MV] canon postestimation, [MV] factor postestimation, [MV] pca postestimation
rotated
factor loadings, [MV] factor postestimation
principal components, [MV] pca postestimation
rotatemat command, [MV] rotatemat
rotation, [MV] factor postestimation, [MV] pca postestimation, [MV] rotate, [MV] rotatemat, [MV] Glossary
Bentler's invariant pattern simplicity, see Bentler's invariant pattern simplicity rotation
biquartimax, see biquartimax rotation
biquartimin, see biquartimin rotation
rotation, continued
Comrey's tandem 1, see Comrey's tandem 1 and 2 rotations
Comrey's tandem 2, see Comrey's tandem 1 and 2 rotations
covarimin, see covarimin rotation
Crawford-Ferguson, see Crawford-Ferguson rotation equamax, see equamax rotation
factor parsimony, see factor parsimony rotation
minimum entropy, see minimum entropy rotation
oblimax, see oblimax rotation
oblimin, see oblimin rotation
oblique, see oblique rotation
orthogonal, see orthogonal rotation
parsimax, see parsimax rotation
partially specified target, see partially specified target rotation
Procrustes, see Procrustes rotation
promax, see promax rotation
quartimax, see quartimax rotation
quartimin, see quartimin rotation
toward a target, see toward a target rotation
varimax, see varimax rotation
round () function, [D] functions, [M-5] trunc( )
rounding rules, [PSS] unbalanced designs
roundoff error, [M-5] epsilon( ), [M-5] edittozero( ),
[M-5] edittoint ( ), [U] 13.11 Precision and problems therein
row of matrix, selecting, [M-5] select()
row operators for data, [D] egen
row stripes, [M-6] Glossary
roweq macro extended function, $[\mathrm{P}]$ macro
roweq, matrix subcommand, $[P]$ matrix rownames
rowfirst(), egen function, [D] egen
rowfullnames macro extended function, $[P]$ macro
row-join operator, [M-2] op_join
rowlast(), egen function, [D] egen
row-major order, [M-6] Glossary
rowmax () function, [M-5] minmax ()
rowmax (), egen function, [D] egen
rowmaxabs() function, [M-5] minmax ()
rowmean(), egen function, [D] egen
rowmedian(), egen function, [D] egen
rowmin() function, [M-5] minmax ()
rowmin(), egen function, [D] egen
rowminmax () function, [M-5] minmax( )
rowmiss(), egen function, [D] egen
rowmissing() function, [M-5] missing()
rownames macro extended function, $[\mathrm{P}]$ macro
rownames, matrix subcommand, $[\mathrm{P}]$ matrix rownames
rownonmiss(), egen function, [D] egen
rownonmissing() function, [M-5] missing()
rownumb () function, [D] functions, [P] matrix define
rowpctile(), egen function, [D] egen
rows () function, [M-5] rows( )
rows of matrix
appending to, $[\mathrm{P}]$ matrix define
names, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ matrix define, $[\mathrm{P}]$ matrix rownames
operators, $[\mathrm{P}]$ matrix define
rowscalefactors() function, [M-5] _equilre( )
rowsd(), egen function, [D] egen
rowshape () function, [M-5] rowshape()
rowsof () function, [D] functions, [P] matrix define
rowsum() function, [M-5] sum()
rowtotal(), egen function, [D] egen
rowvector, [M-2] declarations, [M-6] Glossary
Roy's
largest root test, [MV] canon, [MV] manova, [MV] mvtest means, [MV] Glossary
union-intersection test, [MV] canon, [MV] mvtest means
union-intersection test, [MV] manova
rpoisson() function, [D] functions, [M-5] runiform()
rreg command, $[\mathrm{R}]$ rreg, [R] rreg postestimation
rscatter, graph twoway subcommand, [G-2] graph twoway rscatter
rseed() function, [D] functions, [M-5] runiform( )
rspike, graph twoway subcommand, [G-2] graph twoway rspike
$R^{2}$, [SEM] estat eqgof
rt() function, [D] functions, [M-5] runiform()
rtrim() function, [D] functions
Rubin's combination rules, [MI] mi estimate, [MI] mi estimate using, [MI] mi predict
run command, $[\mathrm{R}]$ do, $[\mathrm{U}] 16$ Do-files
runiform() function, [D] functions, [M-5] runiform( ), [R] set seed _runningsum() function, [M-5] runningsum() runningsum () function, [M-5] runningsum( )
runtest command, $[\mathrm{R}]$ runtest
Russell and Rao coefficient similarity measure, [MV] measure_option
rvalue, class, $[\mathrm{P}]$ class
rvfplot command, $[R]$ regress postestimation diagnostic plots
RVI, see relative variance increase
rvpplot command, $[\mathrm{R}]$ regress postestimation diagnostic plots

## S

s() function, [D] functions
$s$ () stored results, [D] functions, [P] return, [R] stored results, [U] $\mathbf{1 8 . 8}$ Accessing results calculated by other programs, $[\mathrm{U}]$ 18.10.3 Storing results in s()
s (macros) macro extended function, $[\mathrm{P}]$ macro
s1color scheme, [G-4] scheme s1
s1manual scheme, [G-4] scheme s1
s1mono scheme, [G-4] scheme s1
s1rcolor scheme, [G-4] scheme s1
s2color scheme, [G-4] scheme s2
s2gcolor scheme, [G-4] scheme s2
s2gmanual scheme, [G-4] scheme s2
s2manual scheme, [G-4] scheme s2
s2mono scheme, [G-4] scheme s2
SAARCH, see simple asymmetric autoregressive conditional heteroskedasticity
Sammon mapping criterion, [MV] Glossary
sample, [SVY] Glossary
random, see random sample
sample command, [D] sample
sample size, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary, [U] 26.29 Power and sample-size analysis
actual, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
cell, [PSS] power twoway
control-group, [PSS] intro, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] unbalanced designs
Cox proportional hazards regression, [ST] stpower, [ST] stpower cox
exponential survival, [ST] stpower, [ST] stpower exponential
exponential test, [ST] stpower, [ST] stpower exponential
experimental-group, [PSS] intro, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] unbalanced designs
fractional, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary group, [PSS] power oneway, [PSS] power repeated
sample size, continued
log-rank, [ST] stpower, [ST] stpower logrank nominal, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
total, [PSS] intro, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs
sample-size
analysis, see power and sample-size analysis curve, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] Glossary
determination, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
rounding rules for, [PSS] unbalanced designs
sampling, [D] sample, [R] bootstrap, [R] bsample, [SVY] survey, [SVY] svydescribe, [SVY] svyset, [SVY] Glossary, also see cluster sampling
rate, [PSS] power, [PSS] power onemean,
[PSS] power pairedmeans
stage, [SVY] estat, [SVY] Glossary
unit, [SVY] survey, [SVY] Glossary, also see primary sampling unit
weight, [SVY] survey, [SVY] poststratification, [SVY] Glossary, [U] 11.1.6 weight, [U] 20.23.3 Sampling weights, also see survey data
with and without replacement, [SVY] Glossary sandwich/Huber/White estimator of variance, see robust, Huber/White/sandwich estimator of variance
Sargan test, [XT] xtabond postestimation, [XT] xtdpd postestimation, [XT] xtdpdsys postestimation
sargan, estat subcommand, [XT] xtabond postestimation, [XT] xtdpd postestimation, [XT] xtdpdsys postestimation

SAS dates, [D] datetime
SAS XPORT format, [D] import sasxport
SAS, reading data from, [U] 21.4 Transfer programs sasxport,
export subcommand, [D] import sasxport
import subcommand, [D] import sasxport
satopts() option, see sem option satopts ()
Satterthwaite's $t$ test, [PSS] power, [PSS] power twomeans, [PSS] Glossary
saturated model, [SEM] estat gof, [SEM] example 4, [SEM] methods and formulas for sem, [SEM] Glossary
save,
estimates subcommand, $[R]$ estimates save
graph subcommand, [G-2] graph save
label subcommand, [D] label
snapshot subcommand, [D] snapshot
save command, [D] save
save estimation results, $[\mathrm{P}]$ _estimates
saved results, see stored results
saveold command, [D] save
saving data, [D] import delimited, [D] outfile,
[D] save, [D] snapshot, also see exporting data
saving results, $[\mathrm{P}]$ _estimates, $[\mathrm{P}]$ _return,
[R] estimates save
saving() option, [G-3] saving_option
saw-toothed power function, [PSS] power
oneproportion, [PSS] power twoproportions
scalar, [M-2] declarations, [M-6] Glossary,
[P] scalar
confirm subcommand, [P] confirm
define command, [P] scalar
dir command, [P] scalar
drop command, [P] scalar
ereturn subcommand, $[P]$ ereturn, $[P]$ return
list command, $[P]$ scalar
return subcommand, $[\mathrm{P}]$ return
scalar functions, [M-4] scalar
scalar() function, [D] functions
scalar() pseudofunction, $[\mathrm{P}]$ scalar
scalars, $[P]$ scalar
namespace and conflicts, $[\mathrm{P}]$ matrix, $[\mathrm{P}]$ matrix define
scale,
log, [G-3] axis_scale_options
range of, [G-3] axis_scale_options
reversed, [G-3] axis_scale_options
scale() option, [G-3] scale_option
scaling, [MV] mds, [MV] mds postestimation plots,
[MV] mdslong, [MV] mdsmat
scatter, graph twoway subcommand, [G-2] graph twoway scatter
scatteri, graph twoway subcommand, [G-2] graph twoway scatteri
scatterplot matrices, [G-2] graph matrix
scenarios, [TS] forecast, [TS] forecast adjust,
[TS] forecast clear, [TS] forecast coefvector,
[TS] forecast create, [TS] forecast describe,
[TS] forecast drop, [TS] forecast estimates,
[TS] forecast exogenous, [TS] forecast identity, [TS] forecast list, [TS] forecast query, [TS] forecast solve
Scheffé's multiple-comparison adjustment, see multiple comparisons, Scheffé's method
scheme() option, [G-3] scheme_option
scheme, set subcommand, [G-2] set scheme, [R] set
schemes, [G-2] set scheme, [G-3] play_option,
[G-3] scheme_option, [G-4] schemes intro, [G-4] scheme economist, [G-4] scheme s1, [G-4] scheme s2, [G-4] scheme sj
changing, [G-2] graph display
creating your own, [G-4] schemes intro
default, [G-2] set scheme
Schoenfeld residual, [ST] stcox $\mathbf{P H}$-assumption tests, [ST] stcox postestimation, [ST] stcrreg postestimation
Schur
decomposition, [M-5] schurd( ), [M-6] Glossary form, [M-6] Glossary
_schurd() function, [M-5] schurd()
schurd() function, [M-5] schurd( )
_schurdgroupby() function, [M-5] schurd()
schurdgroupby() function, [M-5] schurd()
_schurdgroupby_la() function, [M-5] schurd()
_schurd_la() function, [M-5] schurd()
Schwarz information criterion, see Bayesian information criterion
scientific notation, [U] 12.2 Numbers
s-class command, $[\mathrm{P}]$ program, $[\mathrm{P}]$ return, $[\mathrm{R}]$ stored results, [U] 18.8 Accessing results calculated by other programs
scobit command, [R] scobit, [R] scobit postestimation
scope, class, [P] class
score, [MV] Glossary
score plot, [MV] scoreplot, [MV] Glossary
score test, [PSS] power oneproportion, [PSS] Glossary, [SEM] intro 7, [SEM] estat ginvariant, [SEM] estat mindices, [SEM] estat scoretests, [SEM] methods and formulas for sem, [SEM] Glossary
score, matrix subcommand, [P] matrix score
score, ml subcommand, [R] ml
scoreplot command, [MV] discrim Ida postestimation, [MV] factor postestimation, [MV] pca postestimation, [MV] scoreplot
scores, $[\mathrm{R}]$ predict, [SEM] Glossary
obtaining, [U] 20.22 Obtaining scores
scoretests, estat subcommand, [SEM] estat scoretests
scoring, [MV] factor postestimation, [MV] pca postestimation, [P] matrix score
scree plot, [MV] screeplot, [MV] Glossary
screeplot command, [MV] discrim Ida postestimation, [MV] factor postestimation, [MV] pca postestimation, [MV] screeplot
scrollbufsize, set subcommand, [R] set scrolling of output, controlling, $[\mathrm{P}]$ more, $[\mathrm{R}]$ more sd(), egen function, [D] egen sd, estat subcommand, [SVY] estat SDR, see successive difference replication sdr_options, [SVY] sdr_options
sdtest command, [R] sdtest
sdtesti command, [R] sdtest
se, estat subcommand, $[R]$ exlogistic postestimation,
[R] expoisson postestimation
_se []$,[\mathrm{U}]$ 13.5 Accessing coefficients and standard errors
search,
icd9 subcommand, [D] icd9
icd9p subcommand, [D] icd9
ml subcommand, [R] ml
net subcommand, $[R]$ net
notes subcommand, [D] notes
view subcommand, [R] view
search command, $[R]$ search, $[U] 4$ Stata's help and search facilities
search Internet, $[R]$ net search
search_d, view subcommand, [R] view
searchdefault, set subcommand, [R] search, [R] set seasonal

ARIMA, [TS] arima
difference operator, [TS] Glossary
lag operator, [U] 11.4.4 Time-series varlists
smoothing, [TS] tssmooth, [TS] tssmooth shwinters
secondary sampling unit, [SVY] Glossary
second-order latent variables, [SEM] Glossary
seconds () function, [D] datetime, [D] functions, [M-5] date()
seed, set subcommand, $[R]$ set, $[R]$ set seed
seek, file subcommand, [P] file
seemingly unrelated
estimation, [R] suest
regression, $[R]$ nlsur, $[R]$ reg3, $[R]$ sureg, [SEM] intro 5, [SEM] example 12, [SEM] Glossary, [TS] dfactor
segmentsize, set subcommand, [D] memory, [R] set
select() function, [M-5] select()
select() option, see sem option select()
select, mi subcommand, [MI] mi select
selectindex() function, [M-5] select()
selection models, $[R]$ heckman, $[R]$ heckoprobit, [R] heckprobit, [SVY] svy estimation
selection-on-observables, see conditional-independence assumption
selection-order statistics, [TS] varsoc
SEM, see structural equation modeling
sem command, [SEM] Builder, [SEM] example 1,
[SEM] example 3, [SEM] example 6, [SEM] example 7, [SEM] example 8, [SEM] example 9, [SEM] example 10, [SEM] example 12, [SEM] example 15, [SEM] example 16, [SEM] example 17, [SEM] example 18, [SEM] example 20, [SEM] example 23, [SEM] example 24, [SEM] example 26, [SEM] example 42g, [SEM] methods and formulas for sem, [SEM] sem, [SEM] sem and gsem path notation, [SEM] sem model description options, [SEM] sem path notation extensions, [SEM] sem postestimation, [SEM] Glossary
missing values, [SEM] example 26
with constraints, [SEM] example 8
sem option
allmissing, [SEM] sem estimation options
baseopts(), [SEM] sem estimation options
coeflegend, [SEM] example 8,
[SEM] example 16, [SEM] sem reporting options
constraints(), [SEM] sem and gsem option constraints(), [SEM] sem model description options
covariance(), [SEM] sem and gsem path notation, [SEM] sem model description options, [SEM] sem path notation extensions
covstructure(), [SEM] intro 5,
[SEM] example 17, [SEM] sem and gsem
option covstructure( ), [SEM] sem model description options
forcecorrelations, [SEM] sem ssd options
forcenoanchor, [SEM] sem model description options
forcexconditional, [SEM] sem option noxconditional
from (), [SEM] intro 12, [SEM] sem and gsem option from(), [SEM] sem model description options
fvwrap(), [SEM] sem reporting options
fvwrapon(), [SEM] sem reporting options
ginvariant(), [SEM] intro 6, [SEM] example 23, [SEM] sem group options
group (), [SEM] intro 6, [SEM] example 20, [SEM] example 23, [SEM] sem group options, [SEM] sem option select (), [SEM] sem path notation extensions
latent(), [SEM] sem and gsem syntax options
level(), [SEM] sem reporting options
maximize_options, [SEM] intro 12, [SEM] sem estimation options
means (), [SEM] intro 5, [SEM] example 18, [SEM] sem and gsem path notation, [SEM] sem model description options, [SEM] sem path notation extensions
method(), [SEM] intro 4, [SEM] intro 8, [SEM] intro 9, [SEM] example 26, [SEM] sem estimation options, [SEM] sem option method(), [SEM] Glossary
sem option, continued
nm 1, [SEM] sem estimation options
noanchor, [SEM] sem model description options
nocapslatent, [SEM] sem and gsem syntax options
nocnsreport, [SEM] sem reporting options
noconstant, [SEM] sem model description options
nodescribe, [SEM] sem reporting options
noestimate, [SEM] sem estimation options
nofootnote, [SEM] sem reporting options
nofvlabel, [SEM] sem reporting options
noheader, [SEM] sem reporting options
noivstart, [SEM] sem estimation options
nomeans, [SEM] sem model description options
notable, [SEM] sem reporting options
noxconditional, [SEM] sem estimation options,
[SEM] sem option noxconditional
reliability(), [SEM] intro 12,
[SEM] example 24, [SEM] sem and gsem option reliability( ), [SEM] sem model description options
satopts(), [SEM] sem estimation options
select(), [SEM] sem option select(), [SEM] sem ssd options
showginvariant, [SEM] sem reporting options standardized, [SEM] sem reporting options variance(), [SEM] sem and gsem path notation, [SEM] sem model description options, [SEM] sem path notation extensions vce(), [SEM] intro 4, [SEM] intro 8, [SEM] intro 9, [SEM] sem estimation options, [SEM] sem option method(), [SEM] Glossary
sem postestimation commands, [SEM] intro 7
semicolons, [M-2] semicolons
semiparametric imputation method, see imputation, predictive mean matching
semiparametric model, $[\mathrm{ST}]$ stcox, $[\mathrm{ST}]$ stcrreg, [ST] Glossary
semirobust standard errors, [XT] Glossary
sensitivity, $[R]$ estat classification, $[R]$ Iroc, $[R]$ Isens, also see receiver operating characteristic analysis,
analysis, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
model, $[R]$ regress postestimation, $[R]$ rreg
separate command, [D] separate
separating string variables into parts, [D] split
seq(), egen function, [D] egen
sequential imputation, $[\mathrm{MI}]$ mi impute, $[\mathrm{MI}]$ mi impute chained, $[\mathrm{MI}]$ mi impute monotone sequential limit theory, [XT] Glossary
sequential regression multivariate imputation, see
imputation, multivariate, chained equations
serial correlation, see autocorrelation
test, [TS] Glossary
serial independence test, $[R]$ runtest
serrbar command, $[R]$ serrbar
serset, [P] serset
clear command, [P] serset
create command, $[\mathrm{P}]$ serset
create_cspline command, $[P]$ serset
create_xmedians command, $[\mathrm{P}]$ serset
dir command, $[\mathrm{P}]$ serset
drop command, $[P]$ serset
reset_id command, [P] serset
set command, $[\mathrm{P}]$ serset
sort command, $[\mathrm{P}]$ serset
summarize command, $[\mathrm{P}]$ serset
use command, $[\mathrm{P}]$ serset
sersetread, file subcommand, [P] serset
sersetwrite, file subcommand, $[P]$ serset
session, recording, $[\mathrm{R}] \log ,[\mathrm{U}] 15$ Saving and printing output-log files
set
adosize command, $[P]$ sysdir, $[R]$ set
autotabgraphs command, $[R]$ set
cformat command, $[R]$ set, $[R]$ set cformat
charset command, $[P]$ smcl, $[R]$ set
checksum command, [D] checksum, $[\mathrm{R}]$ set
coeftabresults command, [R] set
command, $[R]$ query, $[R]$ set
conren command, $[R]$ set
copycolor command, [G-2] set printcolor, [R] set
dockable command, $[R]$ set
dockingguides command, [R] set
doublebuffer command, $[R]$ set
dp command, [D] format, [R] set
emptycells command, $[R]$ set, $[R]$ set emptycells
eolchar command, $[R]$ set
fastscroll command, $[R]$ set
floatwindows command, $[R]$ set
fvlabel command, $[R]$ set, $[R]$ set showbaselevels
f vwrap command, $[R]$ set, $[R]$ set showbaselevels
fvwrapon command, $[R]$ set, $[R]$ set showbaselevels
graphics command, [G-2] set graphics, $[\mathrm{R}]$ set
haverdir command, [D] import haver
haverdir command, $[R]$ set
httpproxy command, $[R]$ netio, $[R]$ set
httpproxyauth command, [R] netio, $[R]$ set
httpproxyhost command, $[R]$ netio, $[R]$ set
httpproxyport command, $[R]$ netio, $[R]$ set
httpproxypw command, $[R]$ netio, $[R]$ set
httpproxyuser command, $[R]$ netio, $[R]$ set
include_bitmap command, [R] set
level command, $[R]$ level, $[R]$ set
linegap command, [R] set
linesize command, $[R] \log ,[R]$ set
set, continued
locksplitters command, [R] set
logtype command, $[R] \log ,[R]$ set
lstretch command, $[R]$ set
matsize command, $[R]$ matsize, $[R]$ set
maxdb command, $[R] \mathbf{d b}$, $[R]$ set
maxiter command, $[R]$ maximize, $[R]$ set
max_memory command, [D] memory, $[R]$ set
maxvar command, $[D]$ memory, $[R]$ set
min_memory command, [D] memory, $[R]$ set
more command, $[\mathrm{P}]$ more, $[\mathrm{R}]$ more, $[\mathrm{R}]$ set
niceness command, [D] memory, [R] set
notifyuser command, $[R]$ set
obs command, [D] obs, $[R]$ set
odbcmgr command, [D] odbc, [R] set
output command, $[\mathrm{P}]$ quietly, $[\mathrm{R}]$ set
pagesize command, $[R]$ more, $[R]$ set
pformat command, $[R]$ set, $[R]$ set cformat
pinnable command, $[R]$ set
playsnd command, $[R]$ set
print, graph subcommand, [G-2] graph set
printcolor command, [G-2] set printcolor, [R] set
processors command, $[R]$ set
reventries command, $[R]$ set
revkeyboard command, $[R]$ set
rmsg command, [P] rmsg, [R] set
scheme command, [G-2] set scheme, [G-4] schemes intro, $[R]$ set
scrollbufsize command, $[R]$ set
searchdefault command, $[R]$ search, $[R]$ set
seed command, $[R]$ set, $[R]$ set seed
segmentsize command, [D] memory, [R] set
sformat command, $[R]$ set, $[R]$ set cformat
showbaselevels command, $[R]$ set, $[R]$ set showbaselevels
showemptycells command, $[R]$ set, $[R]$ set showbaselevels
showomitted command, $[R]$ set, $[R]$ set showbaselevels
smoothfonts command, $[R]$ set
timeout1 command, $[R]$ netio, $[R]$ set
timeout2 command, $[R]$ netio, $[R]$ set
trace command, $[P]$ trace, $[R]$ set
tracedepth command, $[P]$ trace, $[R]$ set
traceexpand command, $[P]$ trace, $[R]$ set
tracehilite command, $[\mathrm{P}]$ trace, $[\mathrm{R}]$ set
traceindent command, $[P]$ trace, $[R]$ set
tracenumber command, $[P]$ trace, $[R]$ set
tracesep command, $[P]$ trace, $[R]$ set
type command, $[D]$ generate, $[R]$ set
update_interval command, [R] set, [R] update
update_prompt command, [R] set, [R] update
update_query command, $[R]$ set, $[R]$ update
varabbrev command, [R] set
varkeyboard command, $[R]$ set
set,
cluster subcommand, [MV] cluster programming utilities
datasignature subcommand, [D] datasignature file subcommand, [P] file
graph subcommand, [G-2] graph set
irf subcommand, [TS] irf set
mi subcommand, [MI] mi set
putexcel subcommand, $[\mathrm{P}]$ putexcel
serset subcommand, $[P]$ serset
ssd subcommand, [SEM] ssd
sysdir subcommand, $[\mathrm{P}]$ sysdir
translator subcommand, $[\mathrm{R}]$ translate
webuse subcommand, [D] webuse
set ado, net subcommand, [R] net
set adosize command, [U] 18.11 Ado-files
set matacache, mata subcommand, [M-3] mata set, [R] set
set matafavor, mata subcommand, [M-3] mata set, [M-5] favorspeed( ), [R] set
set matalibs, mata subcommand, [M-3] mata set, [R] set
set matalnum, mata subcommand, [M-3] mata set, [R] set
set matamofirst, mata subcommand, [M-3] mata set, [R] set
set mataoptimize, mata subcommand, [M-3] mata set, [R] set
set matastrict, mata subcommand, [M-1] ado,
[M-2] declarations, [M-3] mata set, [R] set
set other, net subcommand, $[R]$ net
setbreakintr() function, [M-5] setbreakintr()
set_defaults command, [R] set_defaults
setmore() function, [M-5] more()
setmoreonexit() function, [M-5] more( )
setting $M$, [MI] mi add, [MI] mi set
setting mi data, [MI] mi set
settings,
display, $[R]$ set showbaselevels
efficiency, $[P]$ creturn
format, $[R]$ set cformat
graphics, $[\mathrm{P}]$ creturn
interface, $[\mathrm{P}]$ creturn
memory, $[\mathrm{P}]$ creturn
network, $[\mathrm{P}]$ creturn
output, [P] creturn
program debugging, $[\mathrm{P}]$ creturn
trace, $[\mathrm{P}]$ creturn
sformat, set subcommand, [R] set, [R] set cformat
sfrancia command, [R] swilk
shadestyle, [G-4] shadestyle
shading region, [G-3] region_options
shape parameter, [ST] streg, [ST] Glossary
Shapiro-Francia test for normality, $[R]$ swilk
Shapiro-Wilk test for normality, $[R]$ swilk
shared frailty, [ST] stcox, [ST] stcox postestimation, [ST] stcurve, [ST] streg, [ST] streg postestimation, [ST] Glossary
shared object, $[\mathrm{P}]$ class, $[\mathrm{P}]$ plugin
shell command, [D] shell
Shepard
diagram, [MV] mds postestimation plots, [MV] Glossary
plot, [MV] mds postestimation plots
shewhart command, [R] qc
shift, macro subcommand, [P] macro
showbaselevels, set subcommand, [R] set, [R] set showbaselevels
showemptycells, set subcommand, [R] set, [R] set showbaselevels
showginvariant option, see sem option showginvariant
shownrtolerance option, [R] maximize
showomitted, set subcommand, [R] set, [R] set showbaselevels
showstep option, [R] maximize
showtolerance option, $[R]$ maximize
SHR, see subhazard ratio
shwinters, tssmooth subcommand, [TS] tssmooth shwinters
Šidák's multiple-comparison adjustment, see multiple comparisons, Sidák's method
sign() function, [D] functions, [M-5] sign()
sign test, [PSS] power oneproportion, [PSS] Glossary
signature of data, [D] checksum, [D] datasignature, $[\mathrm{P}]$ _datasignature, $[\mathrm{P}]$ signestimationsample
signestimationsample command,
$[P]$ signestimationsample
significance level, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary, [U] 20.7 Specifying the width of confidence intervals
actual, [PSS] intro, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] Glossary
nominal, [PSS] intro, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
observed, see $p$-value
signing digitally data, see datasignature command signrank command, [R] signrank
signtest command, [R] signrank
signum function, [D] functions
similarity, [MV] Glossary
matrices, $[\mathrm{MV}]$ matrix dissimilarity, $[\mathrm{P}]$ matrix dissimilarity
measures, [MV] cluster, [MV] cluster programming utilities, [MV] matrix
dissimilarity, [MV] measure_option, [P] matrix dissimilarity
Anderberg coefficient, [MV] measure_option
angular, [MV] measure_option
correlation, [MV] measure_option
Dice coefficient, [MV] measure_option
Gower coefficient, [MV] measure_option
Hamann coefficient, [MV] measure_option
Jaccard coefficient, [MV] measure_option
Kulczynski coefficient, [MV] measure_option
matching coefficient, [MV] measure_option
Ochiai coefficient, [MV] measure_option
Pearson coefficient, [MV] measure_option
Rogers and Tanimoto coefficient,
[MV] measure_option
Russell and Rao coefficient,
[MV] measure_option
Sneath and Sokal coefficient,
[MV] measure_option
Yule coefficient, [MV] measure_option
simple asymmetric autoregressive conditional
heteroskedasticity, [TS] arch
simple random sample, [SVY] Glossary
simulate prefix command, $[R]$ simulate
simulation, [TS] forecast, [TS] forecast adjust,
[TS] forecast clear, [TS] forecast coefvector,
[TS] forecast create, [TS] forecast describe,
[TS] forecast drop, [TS] forecast estimates,
[TS] forecast exogenous, [TS] forecast identity, [TS] forecast list, [TS] forecast query, [TS] forecast solve, [U] 20.20 Dynamic forecasts and simulations
Monte Carlo, $[\mathrm{P}]$ postfile, $[\mathrm{R}]$ permute,
$[\mathrm{R}]$ simulate
simultaneous
quantile regression, $[\mathrm{R}]$ qreg
systems, [R] reg3
$\sin ()$ function, [D] functions, $[M-5] \sin ()$
sine function, [D] functions
single-failure st data, see survival analysis
single-imputation methods, [MI] intro substantive
singlelinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
single-linkage clustering, [MV] cluster,
[MV] clustermat, [MV] cluster linkage,
[MV] Glossary
single-precision floating point number,
[U] 12.2.2 Numeric storage types
single-record st data, see survival analysis
singleton strata, [SVY] estat, [SVY] variance estimation
singleton-group data, [ST] stcox, [ST] Glossary singular value decomposition, $[\mathrm{M}-5] \operatorname{svd}()$,
[M-5] fullsvd( ), [MV] Glossary, [P] matrix svd $\sinh ()$ function, [D] functions, [M-5] $\sin ()$
SIR, see standardized incidence ratio
SITE directory, [P] sysdir, [U] 17.5 Where does Stata
look for ado-files?
size, estat subcommand, [SVY] estat size of
all text and markers, [G-3] scale_option
graph, [G-3] region_options
changing, [G-2] graph display
markers, [G-3] marker_options
objects, [G-4] relativesize
test, [PSS] Glossary
text, [G-3] textbox_options
sizeof() function, [M-5] sizeof()
SJ, see Stata Journal and Stata Technical Bulletin
sj scheme, [G-4] scheme sj
sj, net subcommand, [R] net
skew (), egen function, [D] egen
skewed logistic regression, [R] scobit, [SVY] svy estimation
skewness, [MV] mvtest normality, [R] ladder,
$[R]$ regress postestimation, $[R]$ summarize,
[TS] varnorm, [R] Inskew0, [R] lv,
[R] pksumm, [R] sktest, [R] tabstat
_skip(\#), display directive, $[P]$ display
sktest command, [R] sktest
sleep command, $[P]$ sleep
slogit command, [R] slogit, [R] slogit postestimation
S_ macros, [P] creturn, [P] macro
Small Stata, [R] limits, [U] 5 Flavors of Stata
smallestdouble() function, [D] functions,
[M-5] mindouble()
smc, estat subcommand, [MV] factor postestimation, [MV] pca postestimation
SMCL, see Stata Markup and Control Language .smcl file, [U] 11.6 Filenaming conventions smooth command, $[R]$ smooth
smooth treatment-effects matching, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects ra, [TE] Glossary
smoothers, [TS] tssmooth, [TS] Glossary double exponential, [TS] tssmooth dexponential exponential, [TS] tssmooth exponential Holt-Winters,
nonseasonal, [TS] tssmooth hwinters
seasonal, [TS] tssmooth shwinters
moving average, [TS] tssmooth ma
nonlinear, [TS] tssmooth nl
smoothfonts, set subcommand, [R] set
smoothing, [G-2] graph twoway lpoly, [R] Ipoly, [R] smooth
graphs, [G-2] graph other, [R] kdensity, [R] lowess SMR, see standardized mortality ratio
snapshot, [D] snapshot
snapshot
erase command, [D] snapshot
label command, [D] snapshot
list command, [D] snapshot
restore command, [D] snapshot
save command, [D] snapshot
snapshot data, [ST] snapspan, [ST] stset, [ST] Glossary
snapspan command, [ST] snapspan
Sneath and Sokel coefficient similarity measure,
[MV] measure_option
soft missing value, [MI] mi impute, [MI] Glossary
solve $A X=B,[M-4]$ solvers, $[M-5]$ cholsolve( ),
[M-5] lusolve( ), [M-5] qrsolve( ),
[M-5] solve_tol( ), [M-5] solvelower( ), [M-5] svsolve( )
solve, forecast subcommand, [TS] forecast solve _solvelower () function, [M-5] solvelower()
solvelower() function, [M-5] solvelower()
solvenl_dump() function, [M-5] solvenl()
solvenl_init() function, [M-5] solvenl()
solvenl_init_*() functions, [M-5] solvenl()
solvenl_result_*() functions, [M-5] solvenl()
_solvenl_solve() function, [M-5] solvenl()
solvenl_solve() function, [M-5] solvenl()
solve_tol() function, [M-5] solve_tol()
_solvetolerance, [M-5] solve_tol()
_solveupper() function, [M-5] solvelower()
solveupper () function, [M-5] solvelower()
sort command, [D] sort
sort option, [G-3] connect_options
sort order, $[\mathrm{D}]$ describe, $[\mathrm{P}]$ byable, $[\mathrm{P}]$ macro,
[P] sortpreserve
sort order for strings, [U] 13.2.3 Relational operators
_sort() function, [M-5] sort()
sort () function, [M-5] sort()
sort, serset subcommand, [P] serset
sortedby macro extended function, $[\mathrm{P}]$ macro
sortpreserve option, [P] sortpreserve
soundex () function, [D] functions, [M-5] soundex()
soundex_nara() function, [D] functions,
[M-5] soundex ()
source code, [M-1] how, [M-1] source, [M-6] Glossary view, $[\mathrm{P}]$ viewsource
Spearman-Brown prophecy formula, [MV] alpha
spearman command, $[R]$ spearman
Spearman's rho, [ $R$ ] spearman
specialized graphs, [G-2] graph other
specification test, $[R]$ gmm postestimation,
$[R]$ hausman, $[R]$ ivpoisson postestimation,
$[R]$ ivregress postestimation, $[R]$ linktest,
$[R]$ Inskew0, [R] regress postestimation, [R] suest, [ST] stcox, [ST] stcox PH-assumption tests, [ST] stcox postestimation, [ST] stsplit, [XT] xtreg postestimation
specificity, [MV] factor, [R] estat classification, $[R]$ Iroc, $[R]$ Isens, also see receiver operating characteristic analysis
spectral
analysis, [TS] Glossary
density, [TS] psdensity, [TS] Glossary
distribution, [TS] cumsp, [TS] pergram,
[TS] psdensity, [TS] Glossary
distribution plots, cumulative, [G-2] graph other
spectrum, [TS] psdensity, [TS] Glossary
spell data, [ST] Glossary
spherical covariance, [MV] mvtest covariances
sphericity, [MV] Glossary
sphericity assumption, [PSS] power repeated, [PSS] Glossary
Spiegelhalter's $Z$ statistic, [R] brier
spike plot, [R] spikeplot
spike, graph twoway subcommand, [G-2] graph twoway spike
spikeplot command, $[R]$ spikeplot
spline3() function, [M-5] spline3()
spline3eval() function, [M-5] spline3()
splines
linear, $[R]$ mkspline
restricted cubic, $[\mathrm{R}]$ mkspline
split command, [D] split
split-plot designs, [MV] manova, [R] anova
splitting time-span records, [ST] stsplit
S-Plus, reading data from, [U] 21.4 Transfer programs
spread, [R] lv
spreadsheets, transferring
from Stata, [D] edit, [D] export, [D] import
delimited, [D] import excel, [D] import
haver, [D] odbc, [D] outfile, [D] xmlsave,
[U] 21.4 Transfer programs
into Stata, [D] edit, [D] import, [D] import delimited, [D] import excel, [D] import haver, [D] infile (fixed format), [D] infile (free format), [D] odbc, [D] xmlsave, [U] 21 Entering and importing data, [U] 21.4 Transfer programs
sprintf() function, [M-5] printf()
SPSS dates, [D] datetime
SPSS, reading data from, [U] 21.4 Transfer programs
SQL, [D] odbc
sqlfile(), odbc subcommand, [D] odbc
sqreg command, $[R]$ qreg, $[R]$ qreg postestimation
sqrt () function, [D] functions, [M-5] sqrt()
square
matrix, [M-6] Glossary
root, [M-5] sqrt( ), [M-5] cholesky( )
root function, [D] functions
squared multiple correlation, [MV] factor
postestimation, [SEM] methods and formulas for sem
sreturn
clear command, $[\mathrm{P}]$ return
list command, $[\mathrm{P}]$ return, $[\mathrm{R}]$ stored results
local command, $[\mathrm{P}]$ return

SRMI, see imputation, multivariate, chained equations SRMR, see standardized, root mean squared residual SRS, see simple random sample
ss() function, [D] datetime, [D] functions, [M-5] date()
ssc
copy command, [R] ssc
describe command, [R] ssc
hot command, $[R]$ ssc
install command, $[R]$ ssc
new command, $[\mathrm{R}]$ ssc
type command, $[R]$ ssc
uninstall command, [R] ssc
SSC archive, see Statistical Software Components archive
$\operatorname{ssC}()$ function, [D] datetime, [D] functions, [M-5] date()
SSCP matrix, [MV] Glossary
ssd
addgroup command, [SEM] ssd
build command, [SEM] ssd
describe command, [SEM] ssd
init command, [SEM] ssd
list command, [SEM] ssd
repair command, [SEM] ssd
set command, [SEM] ssd
status command, [SEM] ssd
unaddgroup command, [SEM] ssd
SSD, see summary statistics data
sspace command, [TS] sspace, [TS] sspace postestimation
SSU, see secondary sampling unit
st command, [ST] stset
st commands for mi data, [MI] mi stsplit, [MI] mi XXXset
st_ct, [ST] st_is
st data, [ST] st, [ST] Glossary
_st_addobs() function, [M-5] st_addobs()
st_addobs() function, [M-5] st_addobs()
_st_addvar() function, [M-5] st_addvar()
st_addvar() function, [M-5] st_addvar()
_st_data() function, [M-5] st_data()
st_data() function, [M-5] st_data()
st_dir() function, [M-5] st_dir()
st_dropobsif () function, [M-5] st_dropvar()
st_dropobsin() function, [M-5] st_dropvar()
st_dropvar () function, [M-5] st_dropvar()
st_eclear() function, [M-5] st_rclear()
st_global() function, [M-5] st_global()
st_global_hcat() function, [M-5] st_global()
st_is 2, [ST] st_is
st_isfmt() function, [M-5] st_isfmt()
st_islmname() function, [M-5] st_isname()
st_isname () function, [M-5] st_isname()
st_isnumfmt() function, [M-5] st_isfmt()
st_isnumvar () function, [M-5] st_vartype()
st_isstrfmt() function, [M-5] st_isfmt()
st_isstrvar() function, [M-5] st_vartype() st_keepobsif() function, [M-5] st_dropvar() st_keepobsin() function, [M-5] st_dropvar() st_keepvar() function, [M-5] st_dropvar()
st_local() function, [M-5] st_local()
_st_macroexpand() function,
[M-5] st_macroexpand()
st_macroexpand() function,
[M-5] st_macroexpand()
st_matrix() function, [M-5] st_matrix()
st_matrix_hcat() function, [M-5] st_matrix()
st_matrixcolstripe() function, [M-5] st_matrix( )
st_matrixrowstripe() function, [M-5] st_matrix( )
st, mi subcommand, [MI] mi XXXset
st_nobs () function, [M-5] st_nvar()
st_numscalar() function, [M-5] st_numscalar()
st_numscalar_hcat() function,
[M-5] st_numscalar( )
st_nvar() function, [M-5] st_nvar()
st_rclear() function, [M-5] st_rclear()
st_replacematrix() function, [M-5] st_matrix( )
st_sclear() function, [M-5] st_rclear()
_st_sdata() function, [M-5] st_data()
st_sdata() function, [M-5] st_data()
st_select() function, [M-5] select()
st_show, [ST] st_is
_st_sstore() function, [M-5] st_store()
st_sstore() function, [M-5] st_store()
_st_store() function, [M-5] st_store()
st_store() function, [M-5] st_store()
st_strscalar() function, [M-5] st_numscalar()
st_subview () function, [M-5] st_subview( )
st_sview () function, [M-5] st_view()
st_tempfilename() function, [M-5] st_tempname()
st_tempname() function, [M-5] st_tempname()
_st_tsrevar () function, [M-5] st_tsrevar()
st_tsrevar() function, [M-5] st_tsrevar()
st_updata() function, [M-5] st_updata()
st_varformat () function, [M-5] st_varformat()
_st_varindex() function, [M-5] st_varindex()
st_varindex () function, [M-5] st_varindex()
st_varlabel() function, [M-5] st_varformat()
st_varname() function, [M-5] st_varname()
st_varrename() function, [M-5] st_varrename()
st_vartype() function, [M-5] st_vartype()
st_varvaluelabel() function, [M-5] st_varformat()
st_view () function, [M-5] st_view()
st_viewobs() function, [M-5] st_viewvars()
st_viewvars() function, [M-5] st_viewvars()
st_vldrop() function, [M-5] st_vlexists()
st_vlexists() function, [M-5] st_vlexists()
st_vlload() function, [M-5] st_vlexists()
st_vlmap() function, [M-5] st_vlexists()
st_vlmodify() function, [M-5] st_vlexists()
st_vlsearch() function, [M-5] st_vlexists()
stability, [TS] var intro, [TS] var, [TS] var svar, [TS] vecstable
after ARIMA, [TS] estat aroots
after VAR or SVAR, [TS] varstable
after VEC, [TS] vec intro, [TS] vec
of nonrecursive models, see nonrecursive model, stability of
stable unit treatment value assumption, [TE] teffects
intro advanced
stable, estat subcommand, [SEM] estat stable
stack command, [D] stack
stacked variables, [MV] Glossary
stacking data, [D] stack
stacking variables, [MV] Glossary
stairstep, connecting points with, [G-4] connectstyle
standard deviations, [PSS] intro, [PSS] power, [PSS] power onevariance, [PSS] power twovariances
control-group, [PSS] intro, [PSS] power, [PSS] power twovariances
creating
dataset of, [D] collapse
variable containing, [D] egen
displaying, $[R]$ lv, $[R]$ summarize, $[R]$ table, $[R]$ tabstat, $[R]$ tabulate, summarize () , [XT] xtsum
experimental-group, [PSS] intro, [PSS] power, [PSS] power twovariances
independent, see standard deviations, two-sample
one-sample, [PSS] intro, [PSS] power, [PSS] power onevariance
subpopulations, see subpopulation, standard deviations of
testing equality of, $[\mathrm{R}]$ sdtest
two-sample, [PSS] intro, [PSS] power, [PSS] power twovariances
standard error bar charts, [G-2] graph other
standard errors, see gsem option vce(), see sem option vce()
accessing, $[P]$ matrix get, $[\mathrm{U}]$ 13.5 Accessing coefficients and standard errors
balanced repeated replication, see balanced repeated replication standard errors
bootstrap, see bootstrap standard errors
for general predictions, $[\mathrm{R}]$ predictnl
forecast, $[R]$ predict, $[R]$ regress postestimation
jackknife, see jackknife standard errors
mean, $[R]$ ci, [R] mean
panel-corrected, see panel-corrected standard error
prediction, $[R]$ glm, $[R]$ predict, $[R]$ regress postestimation
residuals, $[R]$ predict, $[R]$ regress postestimation
robust, see robust, Abadie-Imbens standard errors, see robust, Huber/White/sandwich estimator of variance
semirobust, see semirobust standard errors
successive difference replication, see successive difference replication standard errors
standard linear SEM, [SEM] Glossary
standard strata, see direct standardization
standard weights, see direct standardization
standardized
coefficients, [SEM] example 3, [SEM] example 6, [SEM] Glossary, also see standardized parameters
covariance, [SEM] Glossary
covariance residual, [SEM] methods and formulas for sem
data, [MV] Glossary
difference, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans
incidence ratio, $[R]$ dstdize
margins, [R] margins
mean residual, [SEM] methods and formulas for sem
means, [R] mean
mortality ratio, $[\mathrm{R}]$ dstdize, $[\mathrm{ST}]$ epitab, [ST] stptime, [ST] Glossary
option, [SEM] example 11
parameters, [SEM] estat stdize, [SEM] methods and formulas for sem
proportions, $[R]$ proportion
rates, $[\mathrm{R}]$ dstdize, $[\mathrm{ST}]$ epitab
ratios, $[R]$ ratio
residuals, $[R]$ binreg postestimation, $[R]$ glm postestimation, $[R]$ logistic postestimation, $[R]$ logit postestimation, $[R]$ predict, $[R]$ regress postestimation, [SEM] estat residuals, [SEM] methods and formulas for sem, [SEM] Glossary
root mean squared residual, [SEM] estat ggof, [SEM] estat gof, [SEM] example 4, [SEM] example 21, [SEM] methods and formulas for sem
standardized option, see sem option standardized standardized, variables, [D] egen
start () option, [G-2] graph twoway histogram startgrid() option, see gsem option startgrid()
starting values, [SEM] intro 12, [SEM] sem and gsem option from ( ), [SEM] sem and gsem path notation, [SEM] sem path notation extensions, [SEM] Glossary
startvalues() option, see gsem option startvalues()
Stata
Blog, [U] 3.2.3 The Stata Blog-Not Elsewhere Classified
c-class results, [M-5] st_global( )
characteristic, [M-5] st_global( ), [M-5] st_dir( )
conference, [U] 3.7.1 Conferences and users group meetings
description, [U] 2 A brief description of Stata
documentation, [U] 1 Read this-it will help

Stata, continued
e-class results, [M-5] st_global( ), [M-5] st_dir( ), [M-5] st_rclear( )
error message, [M-5] error( )
example datasets, [U] 1.2.2 Example datasets
execute command, [M-3] mata stata, [M-5] stata()
exiting, see exit command
for Mac, see Mac
for Unix, see Unix
for Windows, see Windows
forum, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum
internal form, [D] datetime, [D] datetime display
formats, $[\mathrm{D}]$ datetime translation
limits, $[\mathrm{R}]$ limits, [U] 5 Flavors of Stata
logo, [G-2] graph print, [G-3] pr_options
macro, [M-5] st_global( ), [M-5] st_local( ), [M-5] st_dir( )
Markup and Control Language, [M-5] display (), [M-5] printf( ), [M-5] errprintf( ), [G-4] text, $[\mathrm{P}] \mathrm{smcl}$
matrix, [M-5] st_matrix( ), [M-5] st_dir( ), [M-6] Glossary
NetCourseNow, [U] 3.7.2 NetCourses
NetCourses, [U] 3.7.2 NetCourses
on Facebook, [U] 3.2.5 Stata on Twitter and Facebook
on Twitter, [U] 3.2.5 Stata on Twitter and Facebook
op.varname, see Stata, time-series-operated variable
platforms, [U] 5.1 Platforms
Press, [U] 3.3 Stata Press
r-class results, [M-5] st_global( ), [M-5] st_dir( ), [M-5] st_rclear( )
scalar, [M-5] st_numscalar( ), [M-5] st_dir( )
s-class results, [M-5] st_global( ), [M-5] st_dir( ), [M-5] st_rclear( )
Small, see Small Stata
Stata/IC, see Stata/IC
Stata/MP, see Stata/MP
Stata/SE, see Stata/SE
supplementary material, [U] 3 Resources for learning and using Stata
support, [U] 3 Resources for learning and using Stata
temporary
filenames, [M-5] st_tempname()
names, [M-5] st_tempname()
time-series-operated variable, [M-5] st_tsrevar( ), [M-6] Glossary
training, [U] 3.7 Conferences and training
updates, see updates to Stata
users group meeting, [U] 3.7.1 Conferences and users group meetings
value labels, [M-5] st_varformat( ), [M-5] st_vlexists( )

Stata, continued
variable
formats, [M-5] st_varformat( )
labels, [M-5] st_varformat()
website, [U] 3.2.1 The Stata website (www.stata.com)
YouTube Channel, [U] 3.2.2 The Stata YouTube Channel
Stata,
data file format, technical description, $[\mathrm{P}]$ file formats .dta
exiting, see exit command
pause, $[\mathrm{P}]$ sleep
STATA directory, $[\mathrm{P}]$ sysdir
Stata Journal, [G-4] scheme sj
Stata Journal and Stata Technical Bulletin, [U] 3.5 The Stata Journal
installation of, $[R]$ net, $[R]$ sj, $[U]$ 17.6 How do I install an addition?
keyword search of, $[R]$ search, [U] 4 Stata's help and search facilities
Stata News, [U] 3 Resources for learning and using Stata
Stata Technical Bulletin Reprints, [U] 3.5 The Stata Journal
_stata() function, [M-5] stata()
stata() function, [M-5] stata()
stata, mata subcommand, [M-3] mata stata
Stata/IC, [R] limits, [U] 5 Flavors of Stata
Stata/MP, [R] limits, [U] 5 Flavors of Stata
Stata/SE, [R] limits, [U] 5 Flavors of Stata
stata.key file, $[\mathrm{R}]$ search
Statalist, [U] 3.2.4 The Stata forum, [U] 3.4 The Stata forum
statasetversion() function, [M-5] stataversion()
stataversion() function, [M-5] stataversion()
state-space model, [TS] sspace, [TS] sspace postestimation, [TS] Glossary, also see autoregressive integrated moving-average model, also see dynamic factor model
static, [M-2] class
static forecast, [TS] forecast, [TS] forecast adjust, [TS] forecast clear, [TS] forecast coefvector,
[TS] forecast create, [TS] forecast describe,
[TS] forecast drop, [TS] forecast estimates,
[TS] forecast exogenous, [TS] forecast identity, [TS] forecast list, [TS] forecast query, [TS] forecast solve, [TS] Glossary
stationary time series, [TS] dfgls, [TS] dfuller, [TS] pperron, [TS] var intro, [TS] var, [TS] vec intro, [TS] vec
statistical
density functions, [M-5] normal( )
distribution functions, [M-5] normal()
inference, hypothesis testing, see hypothesis test
Statistical Software Components archive, [R] ssc
stats, estimates subcommand, [R] estimates stats
statsby prefix command, [D] statsby

Stat/Transfer, [U] 21.4 Transfer programs status, ssd subcommand, [SEM] ssd STB, see Stata Journal and Stata Technical Bulletin stb, net subcommand, [R] net
stbase command, [ST] stbase
.stbcal file, [D] bcal, [D] datetime business calendars, [D] datetime business calendars creation, [U] 11.6 Filenaming conventions
stci command, [ST] stci
stcox command, [ST] stcox, [ST] stcox PHassumption tests, [ST] stcox postestimation, [ST] stcurve
stcox, fractional polynomials, $[R]$ fp, [R] mfp stcoxkm command, [ST] stcox PH-assumption tests
stcrreg command, [ST] stcrreg, [ST] stcrreg postestimation, [ST] stcurve
stcurve command, [ST] stcurve
std(), egen function, [D] egen
stdescribe command, [ST] stdescribe
stdize, estat subcommand, [SEM] estat stdize steady-state equilibrium, [TS] Glossary
steepest descent (ascent), [M-5] moptimize( ),
[M-5] optimize( )
stem command, $[R]$ stem
stem-and-leaf displays, [R] stem
stepwise estimation, $[R]$ stepwise
stepwise prefix command, $[R]$ stepwise
.ster file, $[\mathrm{MI}]$ mi estimate, $[\mathrm{MI}]$ mi estimate using, [MI] mi predict, [U] 11.6 Filenaming conventions
stereotype logistic regression, [R] slogit, [SVY] svy estimation
stfill command, [ST] stfill
stgen command, [ST] stgen
.sthlp file, [U] 4 Stata's help and search facilities, [U] 11.6 Filenaming conventions, [U] 18.11.6 Writing system help
stir command, [ST] stir
stjoin command, [ST] stsplit
stjoin for mi data, [MI] mi stsplit
stjoin, mi subcommand, [MI] mi stsplit
stmc command, [ST] strate
stmh command, [ST] strate
stochastic
equation, [TS] Glossary
frontier model, [R] frontier, [U] 26.14 Stochastic frontier models, [XT] xtfrontier
trend, [TS] tsfilter, [TS] ucm, [TS] Glossary
stop,
cluster subcommand, [MV] cluster stop
clustermat subcommand, [MV] cluster stop
stopbox, window subcommand, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window stopbox
stopping command execution, [U] $\mathbf{1 0}$ Keyboard use
stopping rules, [MV] Glossary
adding, [MV] cluster programming subroutines
Caliński and Harabasz index, [MV] cluster,
[MV] cluster stop
stopping rules, continued
Duda and Hart index, [MV] cluster, [MV] cluster stop
stepsize, [MV] cluster programming subroutines storage types, [D] codebook, [D] compress,
[D] describe, [D] encode, [D] format,
[D] generate, [D] recast, [D] varmanage,
[U] 11.4 varlists, [U] 12.2.2 Numeric storage types, [U] 12.4 Strings
store estimation results, $[\mathrm{P}]$ ereturn
store, estimates subcommand, [R] estimates store
stored results, $[\mathrm{P}]$ _return, $[\mathrm{P}]$ return, $[\mathrm{R}]$ stored results, [SEM] intro 7, [U] 18.8 Accessing results calculated by other programs, [U] 18.9 Accessing results calculated by estimation commands, [U] 18.10 Storing results
clearing, [M-5] st_rclear( )
hidden or historical, [M-5] st_global( ), [M-5] st_matrix( ), [M-5] st_numscalar( )
storing and restoring estimation results, $[\mathrm{R}]$ estimates store
storing results, $[\mathrm{P}]$ ereturn, $[\mathrm{P}]$ postfile, $[\mathrm{P}]$ return stphplot command, [ST] stcox $\mathbf{P H}$-assumption tests stpower
cox command, [ST] stpower, [ST] stpower cox
exponential command, [ST] stpower,
[ST] stpower exponential
logrank command, [ST] stpower, [ST] stpower logrank
.stpr file, [U] 11.6 Filenaming conventions
stptime command, [ST] stptime
.stptrace file, [U] 11.6 Filenaming conventions
str\#, [D] data types, [U] 12.4 Strings
strata with one sampling unit, [SVY] variance estimation
strata, estat subcommand, [SVY] estat
strate command, [ST] strate
stratification, [ST] epitab, [ST] stcox, [ST] stcox PH-assumption tests, [ST] stir, [ST] strate, [ST] streg, [ST] sts, [ST] sts generate, [ST] sts graph, [ST] sts list, [ST] sts test, [ST] stsplit, also see stratified sampling
stratified
graphs, $[R]$ dotplot
model, [ST] stcox, [ST] streg, [ST] Glossary
models, $[R]$ asclogit, [R] asmprobit, $[R]$ asroprobit,
$[R]$ clogit, $[R]$ exlogistic, $[R]$ expoisson,
[ $R$ ] rocreg, $[R]$ rologit
resampling, $[\mathrm{R}]$ bootstrap, $[\mathrm{R}]$ bsample, $[\mathrm{R}]$ bstat, $[R]$ permute
standardization, $[R]$ dstdize
sampling, [SVY] survey, [SVY] svydescribe, [SVY] svyset, [SVY] Glossary
summary statistics, $[\mathrm{R}]$ mean, $[\mathrm{R}]$ proportion, $[R]$ ratio, $[R]$ total
tables, [ST] epitab
test, [ST] stcox PH-assumption tests, [ST] sts test, [ST] Glossary
stratum collapse, [SVY] svydescribe
strcat() function, [D] functions
strdup() function, [D] functions, [M-5] strdup( )
stream I/O versus record I/O, [U] 21 Entering and importing data
streg command, [ST] stcurve, [ST] streg, [ST] streg postestimation
streset command, [ST] stset
streset command for mi data, [MI] mi XXXset streset, mi subcommand, [MI] mi XXXset stress, [MV] mds postestimation, [MV] Glossary
stress, estat subcommand, [MV] mds postestimation
strict stationarity, [TS] Glossary
string
concatenation, [M-5] invtokens( )
duplication, [M-5] strdup( )
functions, [D] functions, [M-4] string,
[U] 12.4 Strings, [U] 23 Working with strings
pattern matching, [M-5] strmatch( )
variables, [D] data types, [D] infile (free format),
[U] 12.4 Strings, [U] 23 Working with strings
converting to numbers, [D] functions
encoding, [D] encode
exporting, [D] export
formatting, [D] format
importing, [D] import
inputting, [D] edit, [D] input, [U] 21 Entering and importing data
long, $[\mathrm{U}]$ 12.4.12 How to see the full contents of a strL or a str\# variable, also see strL
making from value labels, [D] encode mapping to numbers, [D] destring, [D] encode,
[D] label, also see real () function
parsing, $[\mathrm{P}]$ gettoken, $[\mathrm{P}]$ tokenize
sort order, [U] 13.2.3 Relational operators
splitting into parts, [D] split
string, [M-2] declarations, [M-6] Glossary
string to real, convert, [M-5] strtoreal()
string() function, [D] functions
stritrim() function, [M-5] strtrim()
strL, [D] data types, [U] 12.4 Strings
displaying, [U] 12.4.12 How to see the full contents of a strL or a str\# variable
strlen() function, [D] functions, [M-5] strlen()
strlower() function, [D] functions, [M-5] strupper()
strltrim() function, [D] functions, [M-5] strtrim()
strmatch() function, [D] functions, [M-5] strmatch()
strofreal() function, [D] functions,
[M-5] strofreal( )
strongly balanced, [XT] Glossary
strpos() function, [D] functions, [M-5] strpos( )
strproper() function, [D] functions,
[M-5] strupper( )
strreverse() function, [D] functions,
[M-5] strreverse( )
strrtrim() function, [D] functions, [M-5] strtrim()
strtoname() function, [D] functions,
[M-5] strtoname( )
_strtoreal() function, [M-5] strtoreal()
strtoreal() function, [M-5] strtoreal()
strtrim() function, [D] functions, [M-5] strtrim( )
struct, [M-2] struct
structural equation modeling, [MV] intro, [SEM] methods and formulas for gsem, [SEM] methods and formulas for sem,
[SEM] Glossary, [SVY] svy estimation, [U] 26.4 Structural equation modeling (SEM)
structural model, [SEM] intro 5, [SEM] example 7, [SEM] example 9, [SEM] example 32g, [SEM] Glossary, [TS] Glossary
structural time-series model, [TS] psdensity, [TS] sspace, [TS] ucm, [TS] Glossary
structural vector autoregressive
model, [TS] var intro, [TS] var svar, [TS] Glossary
postestimation, $[\mathrm{R}]$ regress postestimation time series, [TS] fcast compute, [TS] fcast graph, [TS] irf, [TS] irf create, [TS] var svar postestimation, [TS] vargranger, [TS] varlmar, [TS] varnorm, [TS] varsoc, [TS] varstable, [TS] varwle
structure, [MV] Glossary
structure, estat subcommand, [MV] discrim lda postestimation, [MV] factor postestimation
structured, [SEM] Glossary
structured (correlation or covariance), [SEM] Glossary
structures, [M-2] struct, [M-5] liststruct( ), [M-6] Glossary
strupper () function, [D] functions, [M-5] strupper( )
sts command, $[\mathrm{ST}]$ sts, $[\mathrm{ST}]$ sts generate, $[\mathrm{ST}]$ sts graph, [ST] sts list, [ST] sts test
sts generate command, [ST] sts, [ST] sts generate
sts graph command, [ST] sts, [ST] sts graph
sts list command, [ST] sts, [ST] sts list
sts test command, [ST] sts, [ST] sts test
.stsem file, [U] 11.6 Filenaming conventions
stset command, [ST] stset
stset command for mi data, [MI] mi XXXset
stset, mi subcommand, [MI] mi XXXset
stsplit command, [ST] stsplit
stsplit for mi data, [MI] mi stsplit
stsplit, mi subcommand, [MI] mi stsplit
stsum command, [ST] stsum
sttocc command, [ST] sttoce
sttoct command, [ST] sttoct
Stuart-Maxwell test statistic, [R] symmetry
Student-Newman-Keuls' multiple-comparison adjustment, see multiple comparisons, Student-Newman-Keuls' method
Studentized residuals, $[\mathrm{R}]$ predict, [ R$]$ regress postestimation
Studentized-range multiple-comparison adjustment, see multiple comparisons, Tukey's method
Student's $t$, also see $t$ distribution
density,
central, [D] functions
noncentral, [D] functions

Student's $t$, continued
distribution,
cumulative, [D] functions cumulative noncentral, [D] functions inverse cumulative, [D] functions inverse cumulative noncentral, [D] functions inverse reverse cumulative, [D] functions reverse cumulative, [D] functions
study,
case-control, see case-control study
cohort, see cohort study
controlled clinical trial, see controlled clinical trial study
cross-sectional, see cross-sectional study
experimental, see experimental study
follow-up, see cohort study
matched, see matched study
observational, see observational study
one-sample, see one-sample study
paired, see paired study
prospective, see prospective study
randomized controlled trial, see randomized controlled trial study
retrospective, see retrospective study
two-sample, see two-sample study
study design, [PSS] intro
stvary command, [ST] stvary
style
added line, [G-4] addedlinestyle
area, [G-4] areastyle
axis, [G-4] tickstyle
by-graphs, [G-4] bystyle
clock position, [G-4] clockposstyle
color, [G-4] colorstyle
compass direction, [G-4] compassdirstyle
connect points, [G-4] connectstyle
grid lines, [G-4] gridstyle
legends, [G-4] legendstyle
lines, [G-4] linepatternstyle, [G-4] linestyle,
[G-4] linewidthstyle
lists, [G-4] stylelists
margins, [G-4] marginstyle
marker labels, [G-4] markerlabelstyle, [G-4] markersizestyle, [G-4] markerstyle
markers, [G-4] symbolstyle
plot, [G-4] pstyle
text, [G-4] textsizestyle, [G-4] textstyle
text display angle, [G-4] anglestyle
text justification, [G-4] justificationstyle
textboxes, [G-4] orientationstyle,
[G-4] textboxstyle
vertical alignment of text, [G-4] alignmentstyle style,
flong, see flong
flongsep, see flongsep
mlong, see mlong
wide, see wide
style, [MI] mi convert, [MI] styles, [MI] Glossary
stylelist, [G-4] stylelists
subclass, [M-2] class
subdirectories, [U] 11.6 Filenaming conventions
subhazard, [ST] Glossary, also see cumulative subhazard function
subhazard ratio, $[\mathrm{R}]$ eform_option, $[\mathrm{R}]$ lincom, [ST] Glossary, also see cumulative subhazard function
subinertia, estat subcommand, [MV] mca postestimation
subinstr macro extended function, $[\mathrm{P}]$ macro
subinstr() function, [D] functions, [M-5] subinstr()
subinword() function, [D] functions, [M-5] subinstr()
_sublowertriangle() function, [M-5] sublowertriangle()
sublowertriangle() function, [M-5] sublowertriangle()
subpopulation
differences, [SVY] survey, [SVY] svy postestimation
estimation, [SVY] subpopulation estimation, [SVY] svy estimation, [SVY] Glossary
means, [SVY] svy estimation
proportions, [SVY] svy estimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
ratios, [SVY] svy estimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
standard deviations of, [SVY] estat
totals, [SVY] svy estimation, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
subroutines, adding, [MV] cluster programming utilities
subscripting matrices, $[\mathrm{P}]$ matrix define
subscripts, [G-4] text, [M-2] subscripts, [M-6] Glossary
subscripts in expressions, [U] 13.7 Explicit subscripting
substantive constraints, see constraints
_substr() function, [M-5] _substr()
substr() function, [D] functions, [M-5] substr()
substring function, [D] functions
subtitle() option, [G-3] title_options
subtraction operator, see arithmetic operators
success-failure proportion, [PSS] power pairedproportions, [PSS] Glossary
successive difference replication, [SVY] sdr_options, [SVY] svy sdr, [SVY] variance estimation, [SVY] Glossary
successive difference replication standard errors, [SVY] svy sdr, [SVY] variance estimation suest command, $[R]$ suest, $[\mathrm{SVY}]$ svy postestimation .sum file, [U] 11.6 Filenaming conventions sum of vector, [M-5] runningsum()
sum() function, [D] functions, [M-5] sum()
summarize,
estat subcommand, [MV] ca postestimation,
[MV] discrim estat, [MV] discrim
knn postestimation, [MV] discrim Ida
postestimation, [MV] discrim logistic
postestimation, [MV] discrim qda
postestimation, [MV] factor postestimation,
[MV] mca postestimation, [MV] mds postestimation, [MV] pca postestimation, [MV] procrustes postestimation, [R] estat,
$[R]$ estat summarize, [SEM] estat summarize misstable subcommand, $[R]$ misstable serset subcommand, $[P]$ serset
summarize command, [D] format, [R] summarize,
[R] tabulate, summarize()
summarizing data, [D] codebook, [D] inspect, [R] summarize, [R] tabstat, [SVY] svy: tabulate twoway, $[\mathrm{XT}]$ xtsum, $[\mathrm{R}]$ lv, $[\mathrm{R}]$ table,
$[R]$ tabulate oneway, $[R]$ tabulate twoway,
[R] tabulate, summarize()
summary statistics, [SEM] estat summarize, see descriptive statistics
summary statistics data, [SEM] intro 11, [SEM] example 2, [SEM] example 19, [SEM] example 25, [SEM] sem option select( ), [SEM] sem ssd options, [SEM] ssd, [SEM] Glossary
summary variables, generating, [MV] cluster generate
summative (Likert) scales, [MV] alpha
sums,
creating dataset containing, [D] collapse
over observations, [D] egen, [D] functions,
[R] summarize
over variables, [D] egen
sunflower command, [R] sunflower
sunflower plots, [R] sunflower
Super, class prefix operator, [P] class
. superclass built-in class function, [P] class
superscripts, [G-4] text
super-varying variables, [MI] mi varying,
[MI] Glossary
supplementary rows or columns, [MV] ca, [MV] Glossary
supplementary variables, [MV] mca, [MV] Glossary
support of Stata, [U] 3 Resources for learning and using Stata
suppressing graphs, [G-3] nodraw_option
suppressing terminal output, $[\mathrm{P}]$ quietly
SUR, see seemingly unrelated regression
sureg command, $[R]$ sureg, $[R]$ sureg postestimation,
[SEM] intro 5, [SEM] example 12
survey
data, [MI] intro substantive, [MI] mi estimate, [SEM] intro 10, [SVY] survey, [SVY] svydescribe, [SVY] svyset, [SVY] Glossary, [U] 26.24 Survey data design, [SVY] Glossary
postestimation, [SVY] svy postestimation
prefix command, [SVY] svy
survey, continued
sampling, [SVY] survey, [SVY] svydescribe,
[SVY] svyset also see cluster sampling
survival analysis, [G-2] graph other, $[\mathrm{R}]$ intreg,
$[\mathrm{R}]$ logistic, $[\mathrm{R}]$ poisson, $[\mathrm{ST}]$ survival analysis,
[ST] ct, [ST] ctset, [ST] cttost, [ST] discrete,
[ST] Itable, [ST] snapspan, [ST] st, [ST] st_is,
[ST] stcox, [ST] stcox PH-assumption tests,
[ST] stcox postestimation, [ST] stcrreg,
[ST] stcrreg postestimation, [ST] stcurve,
[ST] stdescribe, [ST] stfill, [ST] stgen, [ST] stir,
[ST] stpower cox, [ST] stpower exponential,
[ST] stpower logrank, [ST] stptime, [ST] strate,
[ST] streg, [ST] streg postestimation, [ST] sts,
[ST] sts generate, [ST] sts list, [ST] sts test,
[ST] stset, [ST] stsplit, [ST] stsum, [ST] sttocc,
[ST] sttoct, [ST] stvary, [SVY] svy estimation,
[U] 26.20 Survival-time (failure-time) models
survival clinical trial, [ST] stpower
survival data, [MI] mi estimate, [MI] mi predict
survival models, [SVY] svy estimation
survival-time data, see survival analysis
survivor function, [G-2] graph other, [ST] sts,
[ST] sts generate, [ST] sts list, [ST] sts test,
[ST] Glossary
graph of, [ST] stcurve, [ST] sts graph
SUTVA, see stable unit treatment value assumption
SVAR, see structural vector autoregressive
svar command, [TS] var svar, [TS] var svar postestimation
SVD, see singular value decomposition
_svd() function, [M-5] svd()
svd() function, [M-5] svd()
svd, matrix subcommand, $[\mathrm{P}]$ matrix svd
_svd_la() function, [M-5] svd( ), [M-5] fullsvd( )
_svdsv() function, [M-5] svd()
svdsv() function, [M-5] svd()
svmat command, $[\mathrm{P}]$ matrix mkmat
_svsolve() function, [M-5] svsolve()
svsolve() function, [M-5] svsolve()
svy: biprobit command, [SVY] svy estimation
svy: clogit command, [SVY] svy estimation
svy: cloglog command, [SVY] svy estimation
svy: cnsreg command, [SVY] svy estimation
svy: etregress command, [SVY] svy estimation
svy: glm command, [SVY] svy estimation
svy: gnbreg command, [SVY] svy estimation
svy: heckman command, [SVY] svy estimation
svy: heckoprobit command, [SVY] svy estimation
svy: heckprobit command, [SVY] svy estimation
svy: hetprobit command, [SVY] svy estimation
svy: intreg command, [SVY] svy estimation
svy: ivprobit command, [SVY] svy estimation
svy: ivregress command, [SVY] svy estimation
svy: ivtobit command, [SVY] svy estimation
svy: logistic command, [SVY] svy estimation,
[SVY] svy postestimation
svy: logit command, [SVY] svy estimation
svy: mean command, [SVY] survey, [SVY] estat, [SVY] poststratification, [SVY] subpopulation estimation, [SVY] svy, [SVY] svy estimation, [SVY] svy postestimation, [SVY] svydescribe, [SVY] svyset
svy: mlogit command, [SVY] svy estimation
svy: mprobit command, [SVY] svy estimation
svy : nbreg command, [SVY] svy estimation
svy: nl command, [SVY] svy estimation
svy: ologit command, [SVY] svy estimation, [SVY] svy postestimation
svy: oprobit command, [SVY] svy estimation
svy: poisson command, [SVY] svy estimation
svy: probit command, [SVY] svy estimation
svy: proportion command, [SVY] svy estimation
svy: ratio command, [SVY] direct standardization, [SVY] svy brr, [SVY] svy estimation, [SVY] svy: tabulate twoway
svy: regress command, [SVY] survey, [SVY] svy,
[SVY] svy estimation, [SVY] svy jackknife, [SVY] svy postestimation
svy: scobit command, [SVY] svy estimation
svy: sem command, [SVY] svy estimation
svy: slogit command, [SVY] svy estimation
svy: stcox command, [SVY] svy estimation
svy: streg command, [SVY] svy estimation
svy: tabulate command, [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
svy: tnbreg command, [SVY] svy estimation
svy: tobit command, [SVY] svy estimation
svy: total command, [SVY] svy brr, [SVY] svy estimation
svy: tpoisson command, [SVY] svy estimation svy: truncreg command, [SVY] svy estimation
svy: zinb command, [SVY] svy estimation
svy: zip command, [SVY] svy estimation
svy bootstrap prefix command, [SVY] svy bootstrap svy brr prefix command, [SVY] svy brr
svy jackknife prefix command, [SVY] svy jackknife
svy prefix command, [SVY] svy
svy sdr prefix command, [SVY] svy sdr
svydescribe command, [SVY] survey,
[SVY] svydescribe
svymarkout command, [P] mark, [SVY] svymarkout svyset command, [SVY] survey, [SVY] svyset
svyset command for mi data, [MI] mi XXXset
svyset, estat subcommand, [SVY] estat
svyset, mi subcommand, [MI] mi XXXset
swap() function, [M-5] swap()
sweep() function, $[\mathrm{D}]$ functions, $[\mathrm{P}]$ matrix define
swilk command, $[\mathrm{R}]$ swilk
switching styles, [MI] mi convert
Sybase, reading data from, [U] 21.4 Transfer programs symbolic forms, $[\mathrm{R}]$ anova
symbolpalette, palette subcommand, [G-2] palette symbols, [G-4] text, also see markers
symbolstyle, [G-4] symbolstyle
symeigen, matrix subcommand, $[\mathrm{P}]$ matrix symeigen
_symeigen_la() function, [M-5] eigensystem() _symeigensystem() function, [M-5] eigensystem() symeigensystem() function, [M-5] eigensystem()
_symeigensystemselect*() functions,
[M-5] eigensystemselect()
symeigensystemselect*() functions,
[M-5] eigensystemselect()
_symeigenvalues() function, [M-5] eigensystem() symeigenvalues() function, [M-5] eigensystem()
symmetric matrices, [M-5] issymmetric( ),
[M-5] makesymmetric( ), [M-6] Glossary
symmetriconly, [M-6] Glossary
symmetry, [PSS] power, [PSS] power
pairedproportions, [PSS] Glossary
symmetry command, $[R]$ symmetry
symmetry plots, [G-2] graph other, $[\mathrm{R}]$ diagnostic plots
symmetry test, $[\mathrm{R}]$ symmetry
symmi command, $[R]$ symmetry
symplot command, $[R]$ diagnostic plots
syntax, [M-2] syntax
syntax command, $[\mathrm{P}]$ syntax
syntax diagrams explained, $[R]$ intro
syntax of Stata's language, $[\mathrm{P}]$ syntax,
[U] 11 Language syntax
sysdir
command, [U] 17.5 Where does Stata look for adofiles?
list command, [P] sysdir
macro extended function, $[\mathrm{P}]$ macro
set command, [P] sysdir
sysmiss, see missing values
Systat, reading data from, [U] 21.4 Transfer programs system
estimators, $[R]$ gmm, $[R]$ ivpoisson,
$[R]$ ivregress, $[R]$ nlsur, $[R]$ reg3, $[R]$ sureg,
[U] 26.15 Regression with systems of equations,
also see generalized method of moments
limits, $[\mathrm{P}]$ creturn
of equations, [M-5] solvenl()
parameters, $[\mathrm{P}]$ creturn, $[\mathrm{R}]$ query, $[\mathrm{R}]$ set,
$[R]$ set_defaults
values, $[\mathrm{P}]$ creturn
variables, [U] 13.4 System variables (_variables)
sysuse
command, [D] sysuse
dir command, [D] sysuse
szroeter, estat subcommand, $[R]$ regress postestimation
Szroeter's test for heteroskedasticity, $[\mathrm{R}]$ regress postestimation

## T

$t$ distribution
cdf, [D] functions
confidence interval for mean, $[R] \mathbf{c i},[R]$ mean
testing equality of means, $[R]$ esize, $[R]$ ttest
$t$ test, [PSS] Glossary
\%t formats, [D] format
\%t values and formats, [D] datetime
$t$ () function, [D] functions, [M-5] normal()
t1title() option, [G-3] title_options
t2title() option, [G-3] title_options
tab characters, show, [D] type
tab expansion of variable names, [U] 10.6 Tab expansion of variable names
tab1 command, $[R]$ tabulate oneway
tab2 command, $[R]$ tabulate twoway
tabdisp command, [P] tabdisp
tabi command, [R] tabulate twoway
table command, [R] table
table output, [PSS] intro, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated
table, estat subcommand, [MV] ca postestimation table, estimates subcommand, [R] estimates table table, frequency, see frequency table
table, irf subcommand, [TS] irf table
tables, [TS] irf ctable, [TS] irf table
actuarial, see life tables
coefficient,
display in exponentiated form, $[\mathrm{R}]$ eform_option display settings, $[R]$ estimation options, $[R]$ set showbaselevels
format settings, [R] set cformat maximum likelihood display options, $[\mathrm{R}] \mathrm{ml}$ system parameter settings, [R] set
contingency, $[R]$ table, $[R]$ tabulate twoway, [SVY] svy: tabulate twoway
epidemiological, see epidemiological tables
estimation results, $[\mathrm{R}]$ estimates table
failure, see failure tables
formatting numbers in, [D] format
fourfold, see fourfold tables
frequency, $[R]$ tabulate oneway, $[R]$ tabulate twoway, $[R]$ table, $[R]$ tabstat, $[R]$ tabulate, summarize(), [SVY] svy: tabulate oneway, [SVY] svy: tabulate twoway
hazard, see hazard tables
life, see life tables
missing values, [R] misstable
$N$-way, $[\mathrm{P}]$ tabdisp
of statistics, $[\mathrm{P}]$ tabdisp
printing, [U] 15 Saving and printing output-log files
summary statistics, $[\mathrm{R}]$ table, $[\mathrm{R}]$ tabstat, $[R]$ tabulate, summarize()
tabodds command, [ST] epitab
tabstat command, [R] tabstat
tabulate
one-way, [SVY] svy: tabulate oneway
two-way, [SVY] svy: tabulate twoway
tabulate command, [R] tabulate oneway,
[R] tabulate twoway
summarize(), $[\mathrm{R}]$ tabulate, summarize()
$\operatorname{tag}()$, egen function, [D] egen
tag, duplicates subcommand, [D] duplicates
$\tan$ () function, [D] functions, [M-5] $\sin ()$
tangent function, [D] functions
$\tanh ()$ function, [D] functions, [M-5] $\sin ()$
TARCH, see threshold autoregressive conditional heteroskedasticity
target
between-group variance, [PSS] power oneway
correlation, [PSS] intro, [PSS] power, [PSS] power onecorrelation, [PSS] power twocorrelations
discordant proportions, [PSS] intro, [PSS] power, [PSS] power pairedproportions
effect variance, [PSS] power twoway, [PSS] power repeated
mean, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] unbalanced designs
mean difference, [PSS] intro, [PSS] power, [PSS] power pairedmeans
parameter, [PSS] Glossary, also see population parameter
proportion, [PSS] intro, [PSS] power, [PSS] power oneproportion, [PSS] power twoproportions
rotation, [MV] procrustes, [MV] rotate, [MV] rotatemat, [MV] Glossary
standard deviation, [PSS] intro, [PSS] power, [PSS] power onevariance, [PSS] power twovariances
variance, [PSS] intro, [PSS] power, [PSS] power onevariance, [PSS] power twovariances
tau, [R] spearman
taxonomy, [MV] Glossary
Taylor linearization, see linearized variance estimator tC() pseudofunction, [D] datetime, [D] functions tc () pseudofunction, [D] datetime, [D] functions td() pseudofunction, [D] datetime, [D] functions tden() function, [D] functions, [M-5] normal() TDT test, see transmission-disequilibrium test technical support, [U] 3.9 Technical support technique, [SEM] Glossary
technique () option, [R] maximize
teffects, [TE] teffects, [TE] teffects postestimation
aipw command, [TE] teffects aipw
ipw command, [TE] teffects ipw
ipwra command, [TE] teffects ipwra
nnmatch command, [TE] teffects nnmatch
overlap command, [TE] teffects overlap
psmatch command, [TE] teffects psmatch
ra command, [TE] teffects ra
teffects, estat subcommand, [SEM] estat teffects
tempfile command, $[\mathrm{P}]$ macro
tempfile macro extended function, $[\mathrm{P}]$ macro
tempname command, $[\mathrm{P}]$ macro, $[\mathrm{P}]$ matrix, $[\mathrm{P}]$ scalar
tempname macro extended function, $[\mathrm{P}]$ macro
tempname, class, [P] class
temporary
files, $[P]$ macro, $[P]$ preserve, $[P]$ scalar
names, $[P]$ macro, $[P]$ matrix, $[P]$ scalar,
[U] 18.7.2 Temporary scalars and matrices
variables, $[\mathrm{P}]$ macro, $[\mathrm{U}]$ 18.7.1 Temporary variables
tempvar command, $[\mathrm{P}]$ macro
tempvar macro extended function, $[\mathrm{P}]$ macro
termcap(5), [U] $\mathbf{1 0}$ Keyboard use
terminal
obtaining input from, $[\mathrm{P}]$ display
suppressing output, [P] quietly
terminfo(4), [U] 10 Keyboard use
test,
ARCH, see autoregressive conditional heteroskedasticity test
association, see association test
autocorrelation, see autocorrelation test
autoregressive conditional heteroskedasticity, see
autoregressive conditional heteroskedasticity test
binomial, see binomial test
binomial probability, see binomial probability test
bioequivalence, see bioequivalence test
Breitung, see Breitung test
Breusch-Godfrey, see Breusch-Godfrey test
Breusch-Pagan, see Breusch-Pagan test
Breusch-Pagan Lagrange multiplier, see Breusch-
Pagan Lagrange multiplier test
chi-squared, see chi-squared test
chi-squared hypothesis, see chi-squared hypothesis test
Chow, see Chow test
comparison (between nested models), see comparison test between nested models
Cox proportional hazards model, assumption, see Cox proportional hazards model, test of assumption
cusum, see cusum test
Dickey-Fuller, see Dickey-Fuller test
differences of two means, see differences of two means test
Durbin's alternative, see Durbin's alternative test endogeneity, see endogeneity test
Engle's LM, see Engle's LM test
equality of
binomial proportions, see equality test of binomial proportions coefficients, see equality test of coefficients distributions, see distributions, testing equality of margins, see equality test of margins means, see equality test of means medians, see equality test of medians proportions, see equality test of proportions
test, equality of, continued
ROC areas, see equality test of ROC areas
survivor functions, see equality test, survivor functions
variances, see equality test of variances
equivalence, see equivalence test
exact, see exact test
exogeneity, see endogeneity test
$F$, see $F$ test
Fisher-Irwin's exact, see Fisher-Irwin's exact test
Fisher-type, see Fisher-type test
Fisher's exact, see Fisher's exact test
Fisher's $z$, see Fisher's $z$ test
goodness-of-fit, see goodness of fit
Granger causality, see Granger causality
group invariance, see group invariance test
Hadri Lagrange multiplier, see Hadri Lagrange multiplier stationarity test
Harris-Tzavalis, see Harris-Tzavalis test
Hausman specification, see Hausman specification test
heterogeneity, see heterogeneity test
heteroskedasticity, see heteroskedasticity test
homogeneity, see homogeneity test
hypothesis, see hypothesis test
Im-Pesaran-Shin, see Im-Pesaran-Shin test
independence, also see Breusch-Pagan test, see independence test
independence of irrelevant alternatives, see independence of irrelevant alternatives
information matrix, see information matrix test
internal consistency, see internal consistency test
interrater agreement, see interrater agreement
Kolmogorov-Smirnov, see Kolmogorov-Smirnov test
Kruskal-Wallis, see Kruskal-Wallis test
kurtosis, see kurtosis
Lagrange multiplier, see Lagrange multiplier test
Levin-Lin-Chu, see Levin-Lin-Chu test
likelihood-ratio, see likelihood-ratio test
linear hypotheses after estimation, see linear hypothesis test after estimation
log-rank, see log-rank test
Mantel-Haenszel, see Mantel-Haenszel test
marginal homogeneity, see marginal homogeneity, test of
margins, see margins test
McNemar's chi-squared test, see McNemar's chisquared test
model coefficients, see model coefficients test
model simplification, see model simplification test
model specification, see specification test
modification indices, see modification indices
multivariate, see multivariate test
nonlinear, see nonlinear test
nonlinear hypotheses after estimation, see nonlinear hypothesis test after estimation
normality, see normal distribution and normality, see normality test
test, continued
omitted variables, see omitted variables test
one-sample, see one-sample test
one-sided, see one-sided test
overidentifying restrictions, see overidentifying restrictions, tests of
paired-sample, see paired-sample test
permutation, see permutation test
quadrature, see quadrature
Ramsey, see Ramsey test
random-order, see random-order test
RESET, see RESET test
score, see score test
serial correlation, see autocorrelation
serial independence, see serial independence test
Shapiro-Francia, see Shapiro-Francia test for normality
Shapiro-Wilk, see Shapiro-Wilk test for normality skewness, see skewness
symmetry, see symmetry test
Szroeter's, see Szroeter's test for heteroskedasticity $t$, see $t$ test
TDT, see transmission-disequilibrium test
transmission-disequilibrium test, see transmissiondisequilibrium test
trend, see trend test, see trend, test for
two-sample, see two-sample test
two-sided, see two-sided test
unit-root, see unit-root test
variance-comparison, see variance-comparison test
Vuong, see Vuong test
Wald, see Wald test
weak instrument, see weak instrument test
$z$, see $z$ test
test after estimation, see estimation, test after test command, $[\mathrm{R}]$ anova postestimation, $[\mathrm{R}]$ test, [SEM] estat stdize, [SEM] example 8, [SEM] example 9, [SEM] example 16, [SEM] test, [SVY] survey, [SVY] svy postestimation, [U] 20.12 Performing hypothesis tests on the coefficients
test of symmetry, [PSS] power, [PSS] power pairedproportions, [PSS] Glossary
test statistic, [PSS] intro, [PSS] power, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] Glossary
test, mi subcommand, [MI] mi test
test, sts subcommand, [ST] sts test
test-based confidence intervals, [ST] epitab testnl command, [R] testnl, [SEM] estat stdize, [SEM] testnl, [SVY] svy postestimation
testparm command, [R] test, [SEM] test, [SVY] svy postestimation
testtransform, mi subcommand, [MI] mi test
tetrachoric command, $[\mathrm{R}]$ tetrachoric
tetrachoric correlation, [MV] Glossary text,
adding, [G-3] added_text_options
angle of, [G-4] anglestyle
captions, [G-3] title_options
exporting, see exporting data
in graphs, [G-4] text
look of, [G-4] textboxstyle, [G-4] textstyle
note, [G-3] title_options
reading data in, see importing data
resizing, [G-3] scale_option
running outside of borders,
[G-3] added_text_options
saving data in, see exporting data
size of, [G-3] textbox_options
subtitle, [G-3] title_options
title, [G-3] title_options
vertical alignment, [G-4] alignmentstyle
text and textboxes, relationship between, [G-4] textstyle
text () option, [G-3] added_text_options,
[G-3] aspect_option
textboxes, [G-3] textbox_options
orientation of, [G-4] orientationstyle
textboxstyle, [G-4] textboxstyle
textsizestyle, [G-4] textsizestyle
textstyle, [G-4] textstyle
th() pseudofunction, [D] datetime, [D] functions
thickness of lines, [G-4] linewidthstyle
Thomson scoring, [MV] factor postestimation
thrashing, [ST] Glossary
three-dimensional graph, [G-2] graph twoway contour,
[G-2] graph twoway contourline
three-stage least squares, $[\mathrm{R}]$ reg3
threshold autoregressive conditional heteroskedasticity,
[TS] arch
tick,
definition, [G-4] tickstyle
suppressing, [G-4] tickstyle
ticksetstyle, [G-4] ticksetstyle
tickstyle, [G-4] tickstyle
ties, [MV] Glossary
TIFF, [G-3] tif_options
time of day, $[\mathrm{P}]$ creturn
time stamp, [D] describe
time variables and values, [D] datetime
time-domain analysis, [TS] arch, [TS] arfima,
[TS] arima, [TS] Glossary
timeout1, set subcommand, $[R]$ netio, $[R]$ set
timeout2, set subcommand, $[R]$ netio, $[R]$ set
timer
clear command, [P] timer
list command, [P] timer
timer, continued
off command, $[P]$ timer
on command, $[\mathrm{P}]$ timer
times and dates, [M-5] c( ), [M-5] date( )
time-series
analysis, [D] egen, [P] matrix accum, [R] regress postestimation time series
estimation, [U] 26.17 Models with time-series data
filter, [TS] psdensity, [TS] ucm
formats, [D] format
functions, [D] functions
operators, [TS] tsset, [U] 13.9 Time-series operators
plots, [G-2] graph other, [G-2] graph twoway tsline
unabbreviating varlists, $[\mathrm{P}]$ unab
varlists, [U] 11.4.4 Time-series varlists
time-series-operated variable, [M-5] st_data( ),
[M-5] st_tsrevar( ), [M-6] Glossary
time-span data, [ST] snapspan
time-varying covariates, [ST] Glossary
time-varying variance, [TS] arch
time-versus-concentration curve, $[\mathrm{R}] \mathbf{p k}$
timing code, $[\mathrm{P}]$ timer
tin() function, [D] functions
title() option, [G-3] title_options
title, estimates subcommand, $[R]$ estimates title
titles, [G-3] title_options
of axis, [G-3] axis_title_options
tlabel () option, [G-3] axis_label_options
TLI, see Tucker-Lewis index
tm () pseudofunction, [D] datetime, [D] functions
tmlabel () option, [G-3] axis_label_options
TMPDIR Unix environment variable, [P] macro
tmtick() option, [G-3] axis_label_options
tnbreg command, [R] tnbreg, [R] tnbreg postestimation
tobit command, $[R]$ tobit, $[R]$ tobit postestimation
tobit regression, [R] ivtobit, [R] tobit, [SVY] svy
estimation, also see intreg command, also see
truncreg command
random-effects, [XT] xttobit
with endogenous regressors, [SVY] svy estimation
.toc filename suffix, [R] net
Toeplitz() function, [M-5] Toeplitz()
tokenallowhex () function, [M-5] tokenget()
tokenallownum () function, [M-5] tokenget()
tokenget () function, [M-5] tokenget()
tokengetall () function, [M-5] tokenget()
tokeninit() function, [M-5] tokenget()
tokeninitstata() function, [M-5] tokenget()
tokenize command, [P] tokenize
tokenoffset () function, [M-5] tokenget()
tokenpchars () function, [M-5] tokenget()
tokenpeek() function, [M-5] tokenget()
tokenqchars () function, [M-5] tokenget()
tokenrest () function, [M-5] tokenget()
tokens() function, [M-5] tokens( )
tokenset () function, [M-5] tokenget()
tokenwchars () function, [M-5] tokenget()
tolerance () option, [R] maximize
tolerances, [M-1] tolerance, [M-5] solve_tol()
top() suboption, [G-4] alignmentstyle
tostring command, [D] destring
total command, $[R]$ total, $[R]$ total postestimation
total inertia, $[\mathrm{MV}]$ ca, $[\mathrm{MV}]$ ca postestimation,
[MV] mca, [MV] mca postestimation,
[MV] Glossary
total principal inertia, [MV] ca, [MV] mca,
[MV] Glossary
total sample size, see sample size, total
total (), egen function, [D] egen
totals, estimation, $[\mathrm{R}]$ total
totals, survey data, [SVY] svy estimation
toward a target rotation, [MV] procrustes, [MV] rotate,
[MV] rotatemat
tpoisson command, $[R]$ tpoisson, $[R]$ tpoisson postestimation
tq () pseudofunction, [D] datetime, [D] functions trace,
ml subcommand, [R] ml
query subcommand, [R] query
set subcommand, $[P]$ creturn, $[P]$ trace, $[R]$ set
trace of matrix, [M-5] trace( ), [P] matrix define
trace option, [R] maximize
trace() function, [D] functions, [M-5] trace( ),
[P] matrix define
traceback log, [M-2] errors, [M-5] error(),
[M-6] Glossary
tracedepth, set subcommand, $[\mathrm{P}]$ creturn, $[\mathrm{P}]$ trace,
[R] set
traceexpand, set subcommand, $[P]$ creturn,
$[P]$ trace, $[R]$ set
tracehilite, set subcommand, $[P]$ creturn,
$[P]$ trace, $[R]$ set
traceindent, set subcommand, $[\mathrm{P}]$ creturn,
$[P]$ trace, $[R]$ set
tracenumber, set subcommand, $[\mathrm{P}]$ creturn,
$[P]$ trace, $[R]$ set
tracesep, set subcommand, $[P]$ creturn, $[P]$ trace, [R] set
tracing iterative maximization process, $[\mathrm{R}]$ maximize trademark symbol, [G-4] text
training, [U] 3.7 Conferences and training
transferring data
copying and pasting, [D] edit
from Stata, [D] export, [U] 21.4 Transfer programs
into Stata, [D] import, [U] 21 Entering and
importing data, [U] 21.4 Transfer programs
transformations, [MV] procrustes
$\log ,[R]$ Inskew0
modulus, $[R]$ boxcox
power, $[R]$ boxcox, $[R]$ Inskew0
to achieve normality, $[R]$ boxcox, $[R]$ ladder
to achieve zero skewness, $[R]$ Inskew0
transformed coefficients, [MI] mi estimate, [MI] mi estimate using, [MI] mi test
translate command, $[\mathrm{R}]$ translate
translate logs, $[R]$ translate
translation, file, [D] changeeol, [D] filefilter
translator
query command, [R] translate
reset command, $[R]$ translate
set command, [R] translate
transmap
define command, $[R]$ translate
query command, $[R]$ translate
transmission-disequilibrium test, [R] symmetry
transmorphic, [M-2] declarations, [M-6] Glossary
transpose, [M-6] Glossary, also see conjugate transpose
in place, [M-5] _transpose( )
operator, [M-2] op_transpose
without conjugation, [M-5] transposeonly( )
_transpose() function, [M-5] _transpose()
_transposeonly() function, [M-5] transposeonly()
transposeonly () function, [M-5] transposeonly()
transposing data, [D] xpose
transposing matrices, $[\mathrm{P}]$ matrix define
transposition, [M-2] op_transpose, [M-5] _transpose( ), [M-5] transposeonly()
treatment
effect, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [SEM] example 44g, [TE] treatment effects, [TE] etpoisson, [TE] etregress, [TE] teffects, [TE] teffects intro, [TE] teffects intro advanced, $[\mathrm{TE}]$ teffects aipw, $[\mathrm{TE}]$ teffects ipw, [TE] teffects ipwra, [TE] teffects multivalued, [TE] teffects nnmatch, [TE] teffects overlap, [TE] teffects postestimation, [TE] teffects psmatch, [TE] teffects ra
model, [TE] etpoisson, [TE] etregress, [TE] teffects intro advanced, [TE] teffects aipw, [TE] teffects ipw, [TE] teffects ipwra, [TE] teffects psmatch, [TE] Glossary
treatment-effect models, [U] 26.21 Treatment-effect models
treatment-effects regression, [SVY] svy estimation tree, misstable subcommand, [R] misstable trees, [MV] cluster, [MV] cluster dendrogram trend, [TS] Glossary
test for, $[R]$ nptrend, $[R]$ symmetry
trend test, $[\mathrm{ST}]$ epitab, $[\mathrm{ST}]$ strate, $[\mathrm{ST}]$ sts test triangle kernel function, [R] kdensity, [R] lpoly, $[R]$ qreg, $[T E]$ teffects overlap
triangular matrix, [M-5] solvelower( ), [M-6] Glossary trigamma() function, [D] functions, [M-5] factorial() trigonometric functions, [D] functions, [M-5] $\sin ()$ trim() function, [D] functions
trunc () function, [D] functions, [M-5] trunc( )
truncated
negative binomial regression, $[\mathrm{R}]$ tnbreg, $[\mathrm{SVY}]$ svy estimation
observations, [R] truncreg, also see censored observations
Poisson regression, [R] tpoisson, [SVY] svy estimation
regression, $[\mathrm{R}]$ truncreg, [SVY] svy estimation
truncating
real numbers, [D] functions
strings, [D] functions
truncation, [ST] stset, [ST] Glossary, see imputation, truncated data
truncreg command, [R] truncreg, [R] truncreg postestimation
tsappend command, [TS] tsappend
tscale() option, [G-3] axis_scale_options
tscale, graph twoway subcommand, [G-2] graph twoway tsline
tsfill command, [TS] tsfill
tsfilter, [TS] tsfilter
bk command, [TS] tsfilter bk
bw command, [TS] tsfilter bw
cf command, [TS] tsfilter cf
hp command, [TS] tsfilter hp
tsline command, [TS] tsline
tsline, graph twoway subcommand, [G-2] graph twoway tsline
tsnorm macro extended function, [P] macro
tsreport command, [TS] tsreport
tsrevar command, [TS] tsrevar
tsrline command, [TS] tsline
tsrline, graph twoway subcommand, [G-2] graph twoway tsline
tsset command, [TS] tsset
tsset command for mi data, [MI] mi XXXset
tsset, mi subcommand, [MI] mi XXXset
tssmooth, [TS] tssmooth
dexponential command, [TS] tssmooth dexponential
exponential command, [TS] tssmooth exponential
hwinters command, [TS] tssmooth hwinters
ma command, [TS] tssmooth ma
nl command, [TS] tssmooth nl
shwinters command, [TS] tssmooth shwinters
tsunab command, [P] unab
ttail() function, [D] functions, [M-5] normal( )
ttest and ttesti commands, [R] ttest
ttest command, [MV] hotelling
ttick() option, [G-3] axis_label_options
ttitle() option, [G-3] axis_title_options
Tucker-Lewis index, [SEM] estat gof, [SEM] methods and formulas for sem
tukeyprob() function, [D] functions, [M-5] normal( )
Tukey's multiple-comparison adjustment, see multiple comparisons, Tukey's method

Tukey's Studentized range distribution,
cumulative, [D] functions
inverse cumulative, [D] functions
tuning constant, $[\mathrm{R}]$ rreg
tutorials, [U] 1.2.2 Example datasets $\mathrm{tw}_{\mathrm{w}}()$ pseudofunction, [D] datetime, [D] functions twithin() function, [D] functions
Twitter, see Stata on Twitter
two-level model, [ME] me, [ME] Glossary
twocorrelations, power subcommand, [PSS] power twocorrelations
two-independent-samples test, [PSS] Glossary
twomeans, power subcommand, [PSS] power twomeans
twoproportions, power subcommand, [PSS] power twoproportions
two-sample correlations, see correlations, two-sample two-sample means, see means, two-sample two-sample paired test, [PSS] Glossary two-sample proportions, see proportions, two-sample two-sample standard deviations, see standard deviations, two-sample
two-sample study, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] unbalanced designs
two-sample test, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] Glossary
correlations, [PSS] intro, [PSS] power, [PSS] power twocorrelations, [PSS] Glossary
independent samples, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] Glossary means, [PSS] intro, [PSS] power, [PSS] power twomeans, [PSS] unbalanced designs, [PSS] Glossary
proportions, [PSS] intro, [PSS] power, [PSS] power twoproportions, [PSS] Glossary
variances, [PSS] intro, [PSS] power, [PSS] power twovariances, [PSS] Glossary
two-sample variances, see variances, two-sample
two-sided test, [PSS] intro, [PSS] GUI, [PSS] power, [PSS] power, graph, [PSS] power, table, [PSS] power onemean, [PSS] power twomeans, [PSS] power pairedmeans, [PSS] power oneproportion, [PSS] power twoproportions, [PSS] power pairedproportions, [PSS] power onevariance, [PSS] power twovariances, [PSS] power onecorrelation, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
two-stage least squares, $[\mathrm{R}]$ ivregress, [SVY] svy estimation, $[\mathrm{XT}]$ xthtaylor, $[\mathrm{XT}]$ xtivreg two-tailed test, see two-sided test
twovariances, power subcommand, [PSS] power twovariances
two-way
analysis of variance, [PSS] power, [PSS] power twoway, [PSS] Glossary, [R] anova
multivariate analysis of variance, [MV] manova
repeated-measures ANOVA, [PSS] power repeated, [PSS] Glossary
scatterplots, [R] lowess
twoway, power subcommand, [PSS] power twoway
type
command, [D] type
macro extended function, $[\mathrm{P}]$ macro
parameter, [D] generate
type,
set subcommand, $[R]$ set
ssc subcommand, $[R]$ ssc
type, [M-2] declarations, [M-6] Glossary
type, broad, [M-6] Glossary
type I error, [PSS] intro, [PSS] Glossary, [ST] stpower,
[ST] stpower cox, [ST] stpower exponential,
[ST] stpower logrank, [ST] Glossary
type I error probability, [PSS] intro, [PSS] Glossary, also see $\alpha$
type I study, [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank, [ST] Glossary
type II error, [PSS] intro, [PSS] Glossary, [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank, [ST] Glossary
type II error probability, [PSS] Glossary, also see $\beta$ type II study, [ST] stpower, [ST] stpower cox, [ST] stpower exponential, [ST] stpower logrank, [ST] Glossary
type, set subcommand, [D] generate

## U

$U$ statistic, $[\mathrm{R}]$ ranksum
UCM, see unobserved-components model
ucm command, [TS] ucm, [TS] ucm postestimation
unab command, [P] unab
unabbreviate
command names, $[\mathrm{P}]$ unabemd
variable list, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ unab
unabemd command, $[\mathrm{P}]$ unabemd
unaddgroup, ssd subcommand, [SEM] ssd
. uname built-in class function, $[\mathrm{P}]$ class
unary operator, [M-6] Glossary
unbalanced data, [XT] Glossary
unbalanced design, [PSS] intro, [PSS] power twomeans, [PSS] power twoproportions, [PSS] power twovariances, [PSS] power twocorrelations, [PSS] power oneway, [PSS] power twoway, [PSS] power repeated, [PSS] unbalanced designs, [PSS] Glossary
uncompress files, [D] zipfile
unconfoundedness, see conditional-independence assumption
under observation, [ST] cttost, $[\mathrm{ST}]$ st, $[\mathrm{ST}]$ stset, [ST] Glossary
underlining in syntax diagram, [U] 11 Language syntax underscore $c()$ function, [D] functions underscore functions, [M-1] naming, [M-6] Glossary
underscore variables, [U] 13.4 System variables (_variables)
unequal-allocation design, see unbalanced design unhold, _estimates subcommand, [P] _estimates uniform prior, [MI] mi impute mvn uniformly distributed random numbers, [M-5] runiform()
uniformly distributed random variates,
[M-5] runiform()
uniformly distributed random-number function,
[D] functions, $[R]$ set seed
uninstall,
net subcommand, $[R]$ net
ssc subcommand, $[R]$ ssc
uniqrows() function, [M-5] uniqrows()
unique options, [G-4] concept: repeated options
unique value labels, [D] labelbook
unique values,
counting, $[D]$ codebook, $[R]$ table, $[R]$ tabulate oneway
determining, [D] inspect, [D] labelbook uniqueness, $[\mathrm{MV}]$ factor, $[\mathrm{MV}]$ factor postestimation, [MV] rotate, [MV] Glossary
unit loading, [SEM] intro 4
unit vectors, $[\mathrm{M}-5] \mathbf{e}$ ()
unitary matrix, [M-6] Glossary
unitcircle() function, [M-5] unitcircle()
unit-root
models, [TS] vec, [TS] vec intro
process, [TS] Glossary
test, [TS] dfgls, [TS] dfuller, [TS] pperron,
[TS] Glossary, [XT] xtunitroot
univariate
distributions, displaying, $[R]$ cumul, $[R]$ diagnostic plots, $[R]$ histogram, $[R]$ ladder, $[R]$ lv, [R] stem
imputation, see imputation, univariate
kernel density estimation, $[\mathrm{R}]$ kdensity
time series, [TS] arch, [TS] arfima, [TS] arima, [TS] newey, [TS] prais, [TS] ucm

Unix,
keyboard use, [U] $\mathbf{1 0}$ Keyboard use
pause, [P] sleep
specifying filenames, [U] 11.6 Filenaming conventions
_unlink() function, [M-5] unlink()
unlink() function, [M-5] unlink()
unobserved-components model, [TS] psdensity
model, [TS] ucm
postestimation, [TS] ucm postestimation
unorder() function, [M-5] sort()
unregister, mi subcommand, [MI] mi set
unregistered variables, see variables, unregistered
unrestricted FMI test, [MI] mi estimate, [MI] mi test, [MI] Glossary
unrestricted transformation, [MV] procrustes postestimation, [MV] Glossary
unstandardized coefficient, [SEM] Glossary
unstructured, [SEM] Glossary
unzipfile command, [D] zipfile
update
all command, [R] update
command, $[\mathrm{R}]$ update
from command, [R] update
query command, $[R]$ update
update,
mi subcommand, $[\mathrm{MI}]$ mi update, $[\mathrm{MI}]$ noupdate option
query subcommand, $[\mathrm{R}]$ query
view subcommand, $[R]$ view
update_d, view subcommand, $[R]$ view
update_interval, set subcommand, $[R]$ set, $[\mathrm{R}]$ update
update_prompt, set subcommand, $[R]$ set, $[\mathrm{R}]$ update
update_query, set subcommand, $[R]$ set, $[R]$ update
updates to Stata, $[R]$ adoupdate, $[R]$ net, $[R]$ sj,
$[R]$ update, $[\mathrm{U}]$ 3.5 The Stata Journal,
[U] 3.6 Updating and adding features from the web, [U] 17.6 How do I install an addition?, [U] 28 Using the Internet to keep up to date
upper
one-sided test, [PSS] Glossary, also see one-sided test, upper
one-tailed test, see upper one-sided test
upper() function, [D] functions
uppercase, [M-5] strupper()
uppercase-string function, [D] functions _uppertriangle() function, [M-5] lowertriangle() uppertriangle() function, [M-5] lowertriangle() upper-triangular matrix, see triangular matrix use,
cluster subcommand, [MV] cluster utility
estimates subcommand, $[R]$ estimates save
graph subcommand, [G-2] graph use
serset subcommand, [P] serset
use command, [D] use
uselabel command, [D] labelbook
user interface, $[\mathrm{P}]$ dialog programming
user-written additions,
installing, $[R]$ net, $[R]$ ssc
searching for, $[R]$ net search, $[R]$ ssc
using,
cmdlog subcommand, [R] log
log subcommand, [R] log
using data, [D] sysuse, [D] use, [D] webuse,
$[\mathrm{P}]$ syntax, also see importing data
using graphs, [G-2] graph use
utilities, programming, [MV] cluster utility
utility routines, [MI] technical

## V

valofexternal() function, [M-5] valofexternal() value label macro extended function, $[P]$ macro value labels, [D] codebook, [D] describe, [D] edit, [D] encode, [D] inspect, [D] label, [D] label language, [D] labelbook, [D] varmanage, [P] macro, [U] 12.6.3 Value labels, [U] 13.10 Label values
potential problems in, [D] labelbook values, label subcommand, [D] label Vandermonde() function, [M-5] Vandermonde()
VAR, see vector autoregressive model, see vector autoregressive
var command, [TS] var, [TS] var postestimation varabbrev command, $[\mathrm{P}]$ varabbrev varabbrev, set subcommand, $[R]$ set varbasic command, [TS] varbasic, [TS] varbasic postestimation
vargranger command, [TS] vargranger
variable
abbreviation, $[\mathrm{P}]$ varabbrev
declarations, [M-2] declarations
description, [D] describe
identifying panels, [XT] xtset
labels, [D] codebook, [D] describe, [D] edit, [D] label, [D] label language, [D] notes, [D] varmanage, [P] macro, [U] 11.4 varlists, [U] 12.6.2 Variable labels
lists, see varlist
types, [D] codebook, [D] data types, [D] describe, [M-2] declarations, [P] macro, [SEM] intro 4, [U] 11.4 varlists, [U] 12.2.2 Numeric storage types, [U] 12.4 Strings class, $[\mathrm{P}]$ class
variable label macro extended function, $[P]$ macro variable, confirm subcommand, [P] confirm variable, label subcommand, [D] label variable-naming convention, [M-1] naming _variables, [U] 11.3 Naming conventions,
[U] 13.4 System variables (_variables)
variables,
alphabetizing, [D] order
categorical, see categorical data, agreement, measures for, see categorical data
changing storage types of, [D] recast characteristics of, [M-6] Glossary, [P] char, [P] macro, [U] 12.8 Characteristics
comparing, [D] compare
copying, [D] clonevar
creating, [D] varmanage
creating new, [D] separate
describing, [D] codebook, [D] notes
determining storage types of, [D] describe
displaying contents of, [D] edit, [D] list
documenting, [D] codebook, [D] labelbook, [D] notes
dropping, [D] drop
dummy, see indicator variables, see indicators
factor, see factor variables
filtering, [D] varmanage
finding, [D] lookfor
generating, [MV] cluster generate, [ST] stgen
imputed, [MI] mi rename, [MI] mi reset, [MI] mi set, [MI] Glossary
in dataset, maximum number of, [D] memory, [U] 6 Managing memory
in model, maximum number, $[\mathrm{R}]$ matsize
list values of, $[P]$ levelsof
listing, [D] codebook, [D] describe, [D] edit,
[D] labelbook, [D] list, [M-5] st_data( )
mapping numeric to string, $[\mathrm{D}]$ destring
naming, [D] rename, [U] 11.2 Abbreviation rules, [U] 11.3 Naming conventions
naming groups of, [D] rename group
ordering, [D] sort
orthogonalize, $[\mathrm{R}]$ orthog
passive, [MI] mi impute, [MI] mi passive, [MI] mi rename, $[\mathrm{MI}]$ mi reset, $[\mathrm{MI}] \mathrm{mi}$ set, $[\mathrm{MI}] \mathrm{mi}$ xeq, [MI] Glossary
registered, $[\mathrm{MI}]$ mi rename, $[\mathrm{MI}]$ mi set, [MI] Glossary
regular, [MI] mi rename, [MI] mi set, [MI] Glossary
renaming, see renaming variables
reordering, [D] order
setting properties of, [D] varmanage
sorting, [D] gsort, [D] sort, [D] varmanage
standardizing, [D] egen
storage types, see storage types
string, see string variables
system, see system variables
tab expansion of, [U] 10.6 Tab expansion of variable names
temporary, $[\mathrm{P}]$ macro
transposing with observations, [D] xpose
unabbreviating, $[\mathrm{P}]$ syntax, $[\mathrm{P}]$ unab
variables, continued
unique values, [D] codebook, [D] duplicates, [D] inspect
unregistered, [MI] mi rename, [MI] mi set,
[MI] Glossary
varying and super varying, [MI] mi passive,
[MI] mi predict, [MI] mi set, [MI] mi varying,
[MI] Glossary
Variables Manager, [D] varmanage
variance,
analysis of, [MV] manova, [PSS] power,
[PSS] power oneway, [PSS] power twoway,
[PSS] power repeated, $[R]$ anova, $[R]$ loneway,
[R] oneway, [SEM] intro 4
components, [ME] Glossary, also see mixed model creating dataset of, [D] collapse
creating variable containing, [D] egen
decompositions, see forecast-error variance
decomposition
displaying, $[R]$ summarize, $[R]$ tabstat, $[\mathrm{XT}]$ xtsum estimation, [SVY] variance estimation,
[SVY] Glossary
estimators, [R] vce_option, [XT] vce_options Huber/White/sandwich estimator, see robust,

Huber/White/sandwich estimator of variance inflation factors, $[\mathrm{R}]$ regress postestimation linearized, [SVY] variance estimation nonconstant, [SVY] variance estimation, also see robust, Huber/White/sandwich estimator of variance
stabilizing transformations, [R] boxcox
testing equality of, $[R]$ sdtest
variance-covariance matrix of estimators, $[\mathrm{P}]$ ereturn, $[P]$ matrix get, $[R]$ correlate, $[R]$ estat, $[R]$ estat vce, [SEM] Glossary, [U] 20.9 Obtaining the variance-covariance matrix, also see gsem option vce(), also see sem option vce()
variance() function, [M-5] mean()
variance() option, see gsem option variance(), see sem option variance()
variance-comparison test, [MV] mvtest covariances, [R] sdtest
variances, [PSS] intro, [PSS] power, [PSS] power onevariance, [PSS] power twovariances control-group, [PSS] intro, [PSS] power, [PSS] power twovariances
experimental-group, [PSS] intro, [PSS] power, [PSS] power twovariances
independent, see variances, two-sample
one-sample, [PSS] intro, [PSS] power, [PSS] power onevariance
two-sample, [PSS] intro, [PSS] power, [PSS] power twovariances
variance-weighted least squares, $[R]$ vwls
varimax rotation, [MV] rotate, [MV] rotatemat, [MV] Glossary
varkeyboard, set subcommand, [R] set
varlist, [P] syntax, [U] 11 Language syntax, [U] 11.4 varlists
existing, [U] 11.4.1 Lists of existing variables
new, [U] 11.4.2 Lists of new variables
time series, [U] 11.4.4 Time-series varlists
varlmar command, [TS] varlmar
varmanage command, [D] varmanage
varnorm command, [TS] varnorm
varsoc command, [TS] varsoc
varstable command, [TS] varstable
varwle command, [TS] varwle
varying
conditional-correlation model, [TS] mgarch, [TS] mgarch vce
estimation sample, [MI] mi estimate
variables, [ST] stvary, also see variables, varying and super varying
varying, mi subcommand, [MI] mi varying
vcc, mgarch subcommand, [TS] mgarch vce
VCE, see variance-covariance matrix of estimators
vce() option, [R] vce_option, [XT] vce_options, see
gsem option vce(), see sem option vce()
vce, estat subcommand, $[R]$ estat, $[R]$ estat vce, [SVY] estat
VEC, see vector error-correction model
vec command, [TS] vec, [TS] vec postestimation vec () function, [D] functions, [M-5] vec( ), [P] matrix define
vecaccum, matrix subcommand, $[\mathrm{P}]$ matrix accum vecdiag () function, [D] functions, [P] matrix define vech () function, [M-5] vec()
veclmar command, [TS] veclmar
VECM, see vector error-correction model
vecnorm command, [TS] vecnorm
vecrank command, [TS] vecrank
vecstable command, [TS] vecstable
vector, [M-2] declarations, [M-6] Glossary
vector autoregressive
forecast, [TS] fcast compute, [TS] fcast graph
model, [G-2] graph other, [TS] dfactor, [TS] sspace, [TS] ucm, [TS] var intro, [TS] var, [TS] var svar, [TS] varbasic, [TS] Glossary
moving-average model, [TS] dfactor, [TS] sspace, [TS] ucm
postestimation, [TS] fcast compute, [TS] fcast graph, [TS] irf, [TS] irf create, [TS] var postestimation, [TS] vargranger, [TS] varlmar, [TS] varnorm, [TS] varsoc, [TS] varstable, [TS] varwle
vector error-correction
model, [TS] vec intro, [TS] vec, [TS] Glossary, also see multivariate GARCH
postestimation, [TS] irf, [TS] irf create, [TS] fcast compute, [TS] fcast graph, [TS] varsoc, [TS] vec postestimation, [TS] veclmar, [TS] vecnorm, [TS] vecrank, [TS] vecstable vector norm, [M-5] norm( )
vectors, see matrices
verifying data, [D] assert, [D] count,
[D] datasignature, [D] inspect, also see certifying data
verifying mi data are consistent, [MI] mi update version, [M-2] version
version command, [P] version, [U] 16.1.1 Version,
[U] 18.11.1 Version
class programming, $[\mathrm{P}]$ class
version control, [M-2] version, [M-5] callersversion(), see version command
version of ado-file, $[\mathrm{R}]$ which
version of Stata, [M-5] stataversion(), [R] about
vertical alignment of text, [G-4] alignmentstyle
videos, see Stata YouTube Channel
view
ado command, $[R]$ view
ado_d command, $[R]$ view
browse command, $[\mathrm{R}]$ view
command, $[R]$ view
help command, $[\mathrm{R}]$ view
help_d command, $[R]$ view
net command, $[R]$ view
net_d command, $[R]$ view
news command, $[R]$ view
search command, $[R]$ view
search_d command, $[R]$ view
update command, $[R]$ view
update_d command, $[R]$ view
view_d command, $[R]$ view
view matrix, [M-5] isview( ), [M-5] st_subview( ), [M-5] st_view(), [M-5] st_viewvars(),
[M-6] Glossary
view source code, $[\mathrm{P}]$ viewsource
view_d, view subcommand, $[R]$ view
viewing previously typed lines, $[R]$ \#review
viewsource, [M-1] source
viewsource command, [P] viewsource
vif, estat subcommand, $[R]$ regress postestimation
vignette, [U] 1.2.7 Vignette
virtual, [M-2] class
virtual memory, [D] memory
void
function, [M-2] declarations, [M-6] Glossary
matrix, [M-2] void, [M-6] Glossary
Vuong test, $[\mathrm{R}]$ zinb, $[\mathrm{R}]$ zip
vwls command, $[R]$ vwls, $[R]$ vwls postestimation

## w

Wald test, [PSS] Glossary, [R] contrast, [R] predictnl,
$[\mathrm{R}]$ test, $[\mathrm{R}]$ testnl, $[\mathrm{SEM}]$ intro 7 ,
[SEM] estat eqtest, [SEM] estat ginvariant,
[SEM] example 13, [SEM] example 22,
[SEM] methods and formulas for sem,
[SEM] test, [SEM] testnl, [SEM] Glossary,
[SVY] svy postestimation, [TS] vargranger,
[TS] varwle, [U] 20.12 Performing hypothesis
tests on the coefficients, [U] 20.12.4 Nonlinear
Wald tests
wardslinkage,
cluster subcommand, [MV] cluster linkage
clustermat subcommand, [MV] cluster linkage
Ward's linkage clustering, [MV] cluster,
[MV] clustermat, [MV] cluster linkage, [MV] Glossary
Ward's method clustering, [MV] cluster, [MV] clustermat
warning messages, [M-2] pragma
waveragelinkage,
cluster subcommand, [MV] cluster linkage clustermat subcommand, [MV] cluster linkage wcorrelation, estat subcommand, [ME] mixed postestimation, $[\mathrm{XT}]$ xtgee postestimation
weak instrument test, $[R]$ ivregress postestimation
weakly balanced, [XT] Glossary
website,
stata.com, [U] 3.2.1 The Stata website (www.stata.com)
stata-press.com, [U] 3.3 Stata Press
webuse
command, [D] webuse
query command, [D] webuse
set command, [D] webuse
week() function, [D] datetime, [D] functions, [M-5] date()
weekly() function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
Weibull distribution, [ST] streg
Weibull survival regression, [ST] streg
weight, $[\mathrm{P}]$ syntax
[weight=exp] modifier, [U] 11.1.6 weight,
[U] 20.23 Weighted estimation
weighted data, [U] 11.1.6 weight, [U] 20.23 Weighted estimation, also see survey data
weighted least squares, $[\mathrm{R}]$ regress, $[\mathrm{SEM}]$ methods and formulas for sem, [SEM] Glossary
for grouped data, $[\mathrm{R}]$ glogit
generalized linear models, [R] glm
generalized method of moments estimation, $[R]$ gmm, $[R]$ ivpoisson
instrumental-variables regression, $[\mathrm{R}] \mathrm{gmm}$, $[R]$ ivregress
nonlinear least-squares estimation, $[\mathrm{R}] \mathbf{n l}$
nonlinear systems of equations, $[\mathrm{R}]$ nlsur
variance, $[R]$ vwls
weighted moving average, [TS] tssmooth, [TS] tssmooth ma
weighted-average linkage clustering, [MV] cluster, [MV] clustermat, [MV] cluster linkage, [MV] Glossary
weights, [G-2] graph twoway scatter
probability, [SVY] survey, [SVY] svydescribe, [SVY] svyset
sampling, [SVY] survey, [SVY] svydescribe, [SVY] svyset
Welsch distance, $[R]$ regress postestimation
which, class, [P] classutil
which command, [R] which, [U] 17.3 How can I tell if a command is built in or an ado-file?
which, classutil subcommand, [P] classutil
which, mata subcommand, [M-3] mata which while, [M-2] while, [M-2] continue, [M-2] break, [M-2] semicolons
while command, $[\mathrm{P}]$ while
white noise, [TS] wntestb, [TS] wntestq, [TS] Glossary, [XT] Glossary
White/Huber/sandwich estimator of variance, see robust, Huber/White/sandwich estimator of variance
White's test for heteroskedasticity, $[\mathrm{R}]$ regress postestimation
wide
data style, [MI] styles, [MI] Glossary
technical description, [MI] technical
wide, reshape subcommand, [D] reshape
width of \% frit, [M-5] fmtwidth()
width() option, [G-2] graph twoway histogram Wilcoxon
rank-sum test, $[\mathrm{R}]$ ranksum
signed-ranks test, $[R]$ signrank
test (Wilcoxon-Breslow, Wilcoxon-Gehan, Wilcoxon-Mann-Whitney), [ST] sts test
wildcard, see regexm () function, see regexr() function, see regexs () function, see strmatch() function
Wilks'
lambda, [MV] canon, [MV] manova, [MV] mvtest means, [MV] Glossary
likelihood-ratio test, [MV] canon, [MV] manova, [MV] mvtest means window
fopen command, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window fopen
fsave command, $[\mathrm{P}]$ window programming
manage command, $[\mathrm{P}]$ window programming,
$[\mathrm{P}]$ window manage
menu command, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window menu
push command, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window push
stopbox command, $[\mathrm{P}]$ window programming, $[\mathrm{P}]$ window stopbox
Windows Metafile, [G-2] graph export Windows metafiles programming, $[\mathrm{P}]$ automation Windows programming, $[\mathrm{P}]$ automation Windows,
filenames, [U] 18.3.11 Constructing Windows filenames by using macros
keyboard use, [U] 10 Keyboard use
pause, [P] sleep
specifying filenames, [U] 11.6 Filenaming conventions
winexec command, [D] shell
Wishart distribution, [MV] Glossary
withdrawal, [ST] Glossary
within estimators, [XT] xthtaylor, [XT] xtivreg,
[XT] xtreg, [XT] xtregar, [XT] Glossary
within matrix, [MV] Glossary
within-cell means and variances, [XT] xtsum
within-cell variance, [PSS] power twoway
within-group variance, [PSS] power oneway
within-imputation variability, [MI] mi estimate, [MI] mi predict
within-subject
design, [PSS] power repeated, [PSS] Glossary
factor, [PSS] power repeated, [PSS] Glossary
variance, [PSS] power repeated
WLF, see worst linear function
WLS, see weighted least squares
wntestb command, [TS] wntestb
wntestq command, [TS] wntestq
wofd() function, [D] datetime, [D] functions, [M-5] date( )
Woolf confidence intervals, [ST] epitab
word macro extended function, $[\mathrm{P}]$ macro
word () function, [D] functions
Word, Microsoft, see Microsoft Word
wordcount () function, [D] functions
workflow, [MI] workflow
worst linear function, [MI] mi impute mvn, [MI] Glossary
write, file subcommand, [P] file
writing and reading ASCII text and binary files, $[\mathrm{P}]$ file writing data, see exporting data, see saving data www.stata.com website, [U] 3.2.1 The Stata website (www.stata.com)
www.stata-press.com website, [U] 3.3 Stata Press

## X

xaxis() suboption, [G-3] axis_choice_options X-bar charts, [G-2] graph other
xchart command, $[R]$ qc
xcommon option, [G-2] graph combine
xcorr command, [TS] xcorr
xeq, mi subcommand, [MI] mi xeq
xi prefix command, $[\mathrm{R}]$ xi
xl() function, [M-5] xl()
xlabel() option, [G-3] axis_label_options
xline() option, [G-3] added_line_options
XML, [D] xmlsave
xmlabel() option, [G-3] axis_label_options
xml save command, [D] xmlsave
xmluse command, [D] xmlsave
xmtick() option, [G-3] axis_label_options
xpose command, [D] xpose
xscale() option, [G-3] axis_scale_options
xshell command, [D] shell
xsize() option, [G-2] graph display,
[G-3] region_options
xtabond command, [XT] xtabond, [XT] xtabond postestimation
xtcloglog command, [XT] quadchk, [XT] xtcloglog,
[XT] xtcloglog postestimation
xtdata command, [XT] xtdata
xtdescribe command, [XT] xtdescribe
xtdpd command, [XT] xtdpd, [XT] xtdpd postestimation
xtdpdsys command, [XT] xtdpdsys, [XT] xtdpdsys postestimation
xtfrontier command, [XT] xtfrontier, [XT] xtfrontier postestimation
xtgee command, [XT] xtgee, [XT] xtgee postestimation
xtgls command, [XT] xtgls, [XT] xtgls postestimation
xthtaylor command, [XT] xthtaylor, [XT] xthtaylor postestimation
xtick() option, [G-3] axis_label_options
xtile command, [D] pctile
xtintreg command, [XT] quadchk, [XT] xtintreg, [XT] xtintreg postestimation
xtitle() option, [G-3] axis_title_options
xtivreg command, [XT] xtivreg, [XT] xtivreg postestimation
xtline command, [XT] xtline
xtlogit command, [XT] quadchk, [XT] xtlogit, [XT] xtlogit postestimation
xtnbreg command, [XT] xtnbreg, [XT] xtnbreg postestimation
xtologit command, [XT] xtologit, [XT] xtologit postestimation
xtoprobit command, [XT] xtoprobit, [XT] xtoprobit postestimation
xtpcse command, [XT] xtpese, [XT] xtpese postestimation
xtpoisson command, [XT] quadchk, [XT] xtpoisson, [XT] xtpoisson postestimation
xtprobit command, [XT] quadchk, [XT] xtprobit, [XT] xtprobit postestimation
xtrc command, [XT] xtrc, [XT] xtrc postestimation
xtreg command, [XT] xtreg, [XT] xtreg postestimation
xtregar command, [XT] xtregar, [XT] xtregar postestimation
xtset command, [XT] xtset
xtset command for mi data, [MI] mi XXXset
xtset, mi subcommand, [MI] mi XXXset
xtsum command, [XT] xtsum
xttab command, [XT] xttab
xttest0 command, [XT] xtreg postestimation
xttobit command, [XT] quadchk, [XT] xttobit,
[XT] xttobit postestimation
xttrans command, [XT] xttab
xtunitroot
breitung command, [XT] xtunitroot
fisher command, [XT] xtunitroot
hadri command, [XT] xtunitroot
ht command, [XT] xtunitroot
ips command, [XT] xtunitroot
llc command, [XT] xtunitroot
xvarformat() option, [G-3] advanced_options xvarlabel() option, [G-3] advanced_options xxxset, programming, [MI] technical

## Y

yaxis() suboption, [G-3] axis_choice_options ycommon option, [G-2] graph combine year() function, [D] datetime, [D] functions, [M-5] date( ), [U] 24.5 Extracting components of dates and times
yearly() function, [D] datetime, [D] datetime translation, [D] functions, [M-5] date( )
yh () function, [D] datetime, [D] functions, [M-5] date()
ylabel() option, [G-3] axis_label_options
yline() option, [G-3] added_line_options
$y m()$ function, [D] datetime, [D] functions, [M-5] date()
ymlabel () option, [G-3] axis_label_options
ymtick() option, [G-3] axis_label_options
yofd() function, [D] datetime, [D] functions, [M-5] date( )
YouTube Channel, see Stata YouTube Channel yq() function, [D] datetime, [D] functions, [M-5] date()
yscale() option, [G-3] axis_scale_options
ysize() option, [G-2] graph display,
[G-3] region_options
ytick() option, [G-3] axis_label_options
ytitle() option, [G-3] axis_title_options
Yule coefficient similarity measure,
[MV] measure_option
Yule-Walker equations, [TS] corrgram, [TS] Glossary yvarformat() option, [G-3] advanced_options yvarlabel() option, [G-3] advanced_options yw () function, [D] datetime, [D] functions, [M-5] date()

## Z

$z$ test, [PSS] Glossary
Zellner's seemingly unrelated regression, [R] sureg, $[R]$ reg3, [R] suest
zero matrix, $[\mathrm{P}]$ matrix define
zero-altered, see zero-inflated
zero-inflated
negative binomial regression, $[\mathrm{R}]$ zinb, $[\mathrm{SVY}]$ svy estimation
Poisson regression, [R] zip, [SVY] svy estimation zero-skewness transform, [R] Inskew0
zinb command, $[R]$ zinb, $[R]$ zinb postestimation
zip command, $[\mathrm{R}]$ zip, $[\mathrm{R}]$ zip postestimation
zipfile command, [D] zipfile
zlabel () option, [G-3] axis_label_options
zmlabel() option, [G-3] axis_label_options
zmtick() option, [G-3] axis_label_options
zscale() option, [G-3] axis_scale_options
ztick() option, [G-3] axis_label_options
ztitle() option, [G-3] axis_title_options

