
11 Creating new variables

generate and replace
This chapter shows the basics of creating and modifying variables in Stata. We saw how to work

with the Data Editor in [GSU] 6 Using the Data Editor—this chapter shows how we would do this
from the Command window. The two primary commands used for this are

• generate for creating new variables. It has a minimum abbreviation of g.
• replace for replacing the values of an existing variable. It may not be abbreviated because it

alters existing data and hence can be considered dangerous.
The most basic form for creating new variables is generate newvar = exp, where exp is any kind
of expression . Of course, both generate and replace can be used with if and in qualifiers. An
expression is a formula made up of constants, existing variables, operators, and functions. Some
examples of expressions (using variables from the auto dataset) would be 2 + price, weight^2 or
sqrt(gear ratio).

The operators defined in Stata are given in the table below:

Relational
Arithmetic Logical (numeric and string)

+ addition ! not > greater than
- subtraction | or < less than
* multiplication & and >= > or equal
/ division <= < or equal
^ power == equal

!= not equal
+ string concatenation

Stata has many mathematical, statistical, string, date, time-series, and programming functions. See
help functions for the basics, and see [D] functions for a complete list and full details of all the
built-in functions.

You can use menus and dialogs to create new variables and modify existing variables by selecting
menu items from the Data > Create or change data menu. This feature can be handy for finding
functions quickly. However, we will use the Command window for the examples in this chapter
because we would like to illustrate simple usage and some pitfalls.

Stata has some utility commands for creating new variables:
• The egen command is useful for working across groups of variables or within groups of

observations. See [D] egen for more information.
• The encode command turns categorical string variables into encoded numeric variables, while

its counterpart decode reverses this operation. See [D] encode for more information.
• The destring command turns string variables that should be numeric, such as numbers with

currency symbols, into numbers. To go from numbers to strings, the tostring command is
useful. See [D] destring for more information.

We will focus our efforts on generate and replace.

1

http://www.stata.com/manuals13/gsu6.pdf#gsu6UsingtheDataEditor
http://www.stata.com/manuals13/dfunctions.pdf#dfunctions
http://www.stata.com/manuals13/degen.pdf#degen
http://www.stata.com/manuals13/dencode.pdf#dencode
http://www.stata.com/manuals13/ddestring.pdf#ddestring

2 [GSU] 11 Creating new variables

generate
There are some details you should know about the generate command:
• The basic form of the generate command is generate newvar = exp, where newvar is a

new variable name and exp is any valid expression. You will get an error message if you try
to generate a variable that already exists.

• An algebraic calculation using a missing value yields a missing value, as does division by zero,
the square root of a negative number, or any other computation which is impossible.

• If missing values are generated, the number of missing values in newvar is always reported. If
Stata says nothing about missing values, then no missing values were generated.

• You can use generate to set the storage type of the new variable as it is generated. You might
want to create an indicator (0/1) variable as a byte, for example, because it saves 3 bytes per
observation over using the default storage type of float.

Below are some examples of creating new variables from the afewcarslab dataset, which we
created in Labeling values of variables in [GSU] 9 Labeling data. (To work along, start by opening
the auto dataset with sysuse auto. We are using a smaller dataset to make shorter listings.) The
last example shows a way to generate an indicator variable for cars weighing more than 3,000 pounds.
Logical expressions in Stata result in 1 for “true” and 0 for “false”. The if qualifier is used to ensure
that the computations are done only for observations where weight is not missing.

http://www.stata.com/manuals13/gsu9.pdf#gsuLabelingvaluesofvariables
http://www.stata.com/manuals13/gsu9.pdf#gsu9Labelingdata

[GSU] 11 Creating new variables 3

� �
. use afewcarslab
(A few 1978 cars)

. list make mpg weight

make mpg weight

1. VW Rabbit 25 1930
2. Olds 98 21 4060
3. Chev. Monza . 2750
4. 22 2930
5. Datsun 510 24 2280

6. Buick Regal 20 3280
7. Datsun 810 . 2750

. * changing MPG to liters per 100km

. generate lphk = 3.7854 * (100 / 1.6093) / mpg
(2 missing values generated)

. label var lphk "Liters per 100km"

. * getting logarithms of price

. g lnprice = ln(price)

. * making an indicator of hugeness

. gen byte huge = weight >= 3000 if !missing(weight)

. l make mpg weight lphk lnprice huge

make mpg weight lphk lnprice huge

1. VW Rabbit 25 1930 9.408812 8.454679 0
2. Olds 98 21 4060 11.20097 9.084097 1
3. Chev. Monza . 2750 . 8.207129 0
4. 22 2930 10.69183 8.318499 0
5. Datsun 510 24 2280 9.800845 8.532869 0

6. Buick Regal 20 3280 11.76101 8.554296 1
7. Datsun 810 . 2750 . 9.003193 0� �

4 [GSU] 11 Creating new variables

replace

Whereas generate is used to create new variables, replace is the command used for existing
variables. Stata uses two different commands to prevent you from accidentally modifying your data.
The replace command cannot be abbreviated. Stata generally requires you to spell out completely
any command that can alter your existing data.� �

. list make weight

make weight

1. VW Rabbit 1930
2. Olds 98 4060
3. Chev. Monza 2750
4. 2930
5. Datsun 510 2280

6. Buick Regal 3280
7. Datsun 810 2750

. * will give an error because weight already exists

. gen weight = weight/1000
weight already defined
r(110);

. * will replace weight in lbs by weight in 1000s of lbs

. replace weight = weight/1000
(7 real changes made)

. list make weight

make weight

1. VW Rabbit 1.93
2. Olds 98 4.06
3. Chev. Monza 2.75
4. 2.93
5. Datsun 510 2.28

6. Buick Regal 3.28
7. Datsun 810 2.75� �

Suppose that you want to create a new variable, predprice, which will be the predicted price of the
cars in the following year. You estimate that domestic cars will increase in price by 5% and foreign
cars, by 10%.

One way to create the variable would be to first use generate to compute the predicted domestic
car prices. Then use replace to change the missing values for the foreign cars to their proper values.

http://www.stata.com/manuals13/perror.pdf#perrorRemarksandexamplesr(110)

[GSU] 11 Creating new variables 5

� �
. gen predprice = 1.05*price if foreign==0
(3 missing values generated)

. replace predprice = 1.10*price if foreign==1
(3 real changes made)

. list make foreign price predprice, nolabel

make foreign price predpr~e

1. VW Rabbit 1 4697 5166.7
2. Olds 98 0 8814 9254.7
3. Chev. Monza 0 3667 3850.35
4. 0 4099 4303.95
5. Datsun 510 1 5079 5586.9

6. Buick Regal 0 5189 5448.45
7. Datsun 810 1 8129 8941.9� �

Of course, because foreign is an indicator variable, we could generate the predicted variable with
one command:� �

. gen predprice2 = (1.05 + 0.05*foreign)*price

. list make foreign price predprice predprice2, nolabel

make foreign price predpr~e predpr~2

1. VW Rabbit 1 4697 5166.7 5166.7
2. Olds 98 0 8814 9254.7 9254.7
3. Chev. Monza 0 3667 3850.35 3850.35
4. 0 4099 4303.95 4303.95
5. Datsun 510 1 5079 5586.9 5586.9

6. Buick Regal 0 5189 5448.45 5448.45
7. Datsun 810 1 8129 8941.9 8941.9� �

6 [GSU] 11 Creating new variables

generate with string variables

Stata is smart. When you generate a variable and the expression evaluates to a string, Stata creates
a string variable with a storage type as long as necessary, and no longer than that. where is a str1
in the following example:� �

. list make foreign

make foreign

1. VW Rabbit foreign
2. Olds 98 domestic
3. Chev. Monza domestic
4. domestic
5. Datsun 510 foreign

6. Buick Regal domestic
7. Datsun 810 foreign

. gen where = "D" if foreign=="domestic":origin
(3 missing values generated)

. replace where = "F" if foreign=="foreign":origin
(3 real changes made)

. list make foreign where

make foreign where

1. VW Rabbit foreign F
2. Olds 98 domestic D
3. Chev. Monza domestic D
4. domestic D
5. Datsun 510 foreign F

6. Buick Regal domestic D
7. Datsun 810 foreign F

. describe where

storage display value
variable name type format label variable label

where str1 %9s� �
Stata has some useful tools for working with string variables. Here we split the make variable into

make and model and then create a variable that has the model together with where the model was
manufactured:

[GSU] 11 Creating new variables 7

� �
. gen model = substr(make, strpos(make," ")+1, .)
(1 missing value generated)

. gen modelwhere = model + " " + where

. list make where model modelwhere

make where model modelw~e

1. VW Rabbit F Rabbit Rabbit F
2. Olds 98 D 98 98 D
3. Chev. Monza D Monza Monza D
4. D D
5. Datsun 510 F 510 510 F

6. Buick Regal D Regal Regal D
7. Datsun 810 F 810 810 F� �

There are a few things to note about how these commands work:
1. strpos(s1,s2) produces an integer equal to the first position in the string s1 at which the

string s2 is found or 0 if it is not found. In this example, strpos(make," ") finds the position
of the first space in each observation of make.

2. substr(s,start,len) produces a string of length len beginning at character start of string
s. If c1 = ., the result is the string from character start to the end of string s.

3. Putting 1 and 2 together: substr(s,strpos(s," ")+1,.) will always give the string s with
its first word removed. Because make contains both the make and the model of each car, and
make never contains a space in this dataset, we have found each car’s model.

4. The operator “+”, when applied to string variables, will concatenate the strings (that is, join
them together). The expression "this" + "that" results in the string "thisthat". When the
variable modelwhere was generated, a space (" ") was added between the two strings.

5. The missing value for a string is nothing special—it is simply the empty string "". Thus the
value of modelwhere for the car with no make or model is " D" (note the leading space).

