Syntax

```
twoway qfitci yvar xvar [if] [in] [weight] [, options]
```

<table>
<thead>
<tr>
<th>options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>stdp</td>
<td>CIs from SE of prediction; the default</td>
</tr>
<tr>
<td>stdf</td>
<td>CIs from SE of forecast</td>
</tr>
<tr>
<td>stdr</td>
<td>CIs from SE of residual; seldom specified</td>
</tr>
<tr>
<td>level(#)</td>
<td>set confidence level; default is <code>level(95)</code></td>
</tr>
<tr>
<td>range(##)</td>
<td>range over which predictions are calculated</td>
</tr>
<tr>
<td>n(#)</td>
<td>number of prediction points</td>
</tr>
<tr>
<td>atobs</td>
<td>calculate predictions at <code>xvar</code></td>
</tr>
<tr>
<td>estopts(regress_options)</td>
<td>options for <code>regress</code></td>
</tr>
<tr>
<td>predopts(predict_options)</td>
<td>options for <code>predict</code></td>
</tr>
<tr>
<td>nofit</td>
<td>do not plot the prediction</td>
</tr>
<tr>
<td>fitplot(plottype)</td>
<td>how to plot fit; default is <code>fitplot(line)</code></td>
</tr>
<tr>
<td>ciplot(plottype)</td>
<td>how to plot CIs; default is <code>ciplot(rarea)</code></td>
</tr>
<tr>
<td>fcline_options</td>
<td>change look of predicted line</td>
</tr>
<tr>
<td>fitarea_options</td>
<td>change look of CI</td>
</tr>
<tr>
<td>axis_choice_options</td>
<td>associate plot with alternative axis</td>
</tr>
<tr>
<td>twoway_options</td>
<td>titles, legends, axes, added lines and text, by, regions, name, aspect ratio, etc.</td>
</tr>
</tbody>
</table>

aweights, fweights, and pweights are allowed. Weights, if specified, affect estimation but not how the weighted results are plotted. See [U] 11.1.6 weight.

Menu

Graphics > Twoway graph (scatter, line, etc.)
Description

twoway qfitci calculates the prediction for yvar from a regression of yvar on xvar and xvar^2 and plots the resulting line along with a confidence interval.

Options

stdp, stdf, and stdr determine the basis for the confidence interval. stdp is the default.

- stdp specifies that the confidence interval be the confidence interval of the mean.
- stdf specifies that the confidence interval be the confidence interval for an individual forecast, which includes both the uncertainty of the mean prediction and the residual.
- stdr specifies that the confidence interval be based only on the standard error of the residual.

level(#) specifies the confidence level, as a percentage, for the confidence intervals. The default is level(95) or as set by set level; see [U] 20.7 Specifying the width of confidence intervals.

range(# #) specifies the x range over which predictions are calculated. The default is range(. .), meaning the minimum and maximum values of xvar. range(0 10) would make the range 0 to 10, range(. 10) would make the range the minimum to 10, and range(0 .) would make the range 0 to the maximum.

n(#) specifies the number of points at which the predictions and the CI over range() are to be calculated. The default is n(100).

atobs is an alternative to n() and specifies that the predictions be calculated at the xvar values.

atobs is the default if predopts() is specified and any statistic other than the xb is requested.

estopts(regress_options) specifies options to be passed along to regress to estimate the linear regression from which the curve will be predicted; see [R] regress. If this option is specified, commonly specified is estopts(nocons).

predopts(predict_options) specifies options to be passed along to predict to obtain the predictions after estimation by regress; see [R] regress postestimation.

nofit prevents the prediction from being plotted.

fitplot(plottype), which is seldom used, specifies how the prediction is to be plotted. The default is fitplot(line), meaning that the prediction will be plotted by graph twoway line. See [G-2] graph twoway for a list of plottype choices. You may choose any that expect one y and one x variable.

ciplot(plottype) specifies how the confidence interval is to be plotted. The default is ciplot(rarea), meaning that the prediction will be plotted by graph twoway rarea.

A reasonable alternative is ciplot(rline), which will substitute lines around the prediction for shading. See [G-2] graph twoway for a list of plottype choices. You may choose any that expect two y variables and one x variable.

fcline_options specify how the prediction line is rendered; see [G-3] fcline_options. If you specify fitplot(), then rather than using fcline_options, you should select options that affect the specified plottype from the options in scatter; see [G-2] graph twoway scatter.

fitarea_options specify how the confidence interval is rendered; see [G-3] fitarea_options. If you specify ciplot(), then rather than using fitarea_options, you should specify whatever is appropriate.

axis_choice_options associate the plot with a particular y or x axis on the graph; see [G-3] axis_choice_options.
Remarks and examples

Remarks are presented under the following headings:

- Typical use
- Advanced use
- Cautions
- Use with by()

Typical use

twoway qfitci by default draws the confidence interval of the predicted mean:

```
. use http://www.stata-press.com/data/r13/auto
   (1978 Automobile Data)
. twoway qfitci mpg weight
```

![Graph showing quadratic fitted values with confidence intervals]
If you specify the `ciplot(rline)` option, rather than shading the confidence interval, it will be designated by lines:

```
. twoway qfitci mpg weight, ciplot(rline)
```

![Graph with 95% CI and fitted values](image)

Advanced use

`qfitci` can be overlaid with other plots:

```
. use http://www.stata-press.com/data/r13/auto, clear
(1978 Automobile Data)
. twoway qfitci mpg weight, stdf || scatter mpg weight
```

![Graph with 95% CI, fitted values, and scatter plot](image)

In the above command, we specified `stdf` to obtain a confidence interval based on the standard error of the forecast rather than the standard error of the mean. This is more useful for identifying outliers.
We typed

```
    . twoway qfitci ... || scatter ... 
```

and not

```
    . twoway scatter ... || qfitci ... 
```

Had we drawn the scatter diagram first, the confidence interval would have covered up most of the points.

Cautions

Do not use `twoway qfitci` when specifying the `axis_scale_options` `yscale(log)` or `xscale(log)` to create log scales. Typing

```
    . twoway qfitci mpg weight, stdf || scatter mpg weight ||, xscale(log)
```

The result may look pretty but, if you think about it, it is not what you want. The prediction line is not a parabola because the regression estimated for the prediction was for `mpg` on `weight` and `weight^2`, not `mpg` on `log(weight)` and `log(weight)^2`.
Use with by()

qfitci may be used with by() (as can all the twoway plot commands):

```
. twoway qfitci mpg weight, stdf ||
    scatter mpg weight ||
    , by(foreign, total row(1))
```

Also see

[G-2] graph twoway lfitci — Twoway linear prediction plots with CIs

[G-2] graph twoway fpfitci — Twoway fractional-polynomial prediction plots with CIs

[G-2] graph twoway qfit — Twoway quadratic prediction plots

[R] regress — Linear regression