Title

stack — Sta	ck data			
	ntax marks and examples	Menu Reference	Description Also see	Options
vntax				
stack varlis	$t [if] [in], \{into$	(<i>newvars</i>) gro	$oup(#) \} [opt]$	ions
stack varlis	t [<i>if</i>] [<i>in</i>], { <u>i</u> nto	(newvars) gro	oup(#) } [<i>opt</i>	ions]
stack varlis	t [if] [in], { <u>i</u> nto Description	(newvars) gro	$\operatorname{pup}(\#) \left\{ \left[opt \right] \right\}$	ions]
		(newvars) gro	<pre>pup(#) } [opt.</pre>	ions]
options				ions]
options Main * <u>i</u> nto (<i>newvars</i>)	Description	of new variable	s to be created	ions]
options Main	Description identify names of	of new variable	s to be created	ions]

* Either into(newvars) or group(#) is required.

Menu

Data > Create or change data > Other variable-transformation commands > Stack data

Description

stack stacks the variables in *varlist* vertically, resulting in a dataset with variables *newvars* and $_\mathbb{N} \cdot (N_v/N_n)$ observations, where N_v is the number of variables in *varlist* and N_n is the number in *newvars*. stack creates the new variable _stack identifying the groups.

Options

Main

- into(newvars) identifies the names of the new variables to be created. into() may be specified
 using variable ranges (for example, into(v1-v3)). Either into() or group(), but not both,
 must be specified.
- group(#) specifies the number of groups of variables in varlist to be stacked. The created variables
 will be named according to the first group in varlist. Either group() or into(), but not both,
 must be specified.
- clear indicates that it is okay to clear the dataset in memory. If you do not specify this option, you will be asked to confirm your intentions.
- wide includes any of the original variables in *varlist* that are not specified in *newvars* in the resulting data.

Remarks and examples

stata.com

Example 1: Illustrating the concept

This command is best understood by examples. We begin with artificial but informative examples and end with useful examples.

```
. use http://www.stata-press.com/data/r13/stackxmpl
```

. list

	a	b	с	d	
1.	1	2	3	4	
2.	5	6	7	8	

- . stack a b c d, into(e f) clear
- . list

	_stack	е	f
1.	1	1	2
2.	1	5	6
3.	2	3	4
4.	2	7	8

We formed the new variable e by stacking a and c, and we formed the new variable f by stacking b and d. _stack is automatically created and set equal to 1 for the first (a, b) group and equal to 2 for the second (c, d) group. (When _stack==1, the new data e and f contain the values from a and b. When _stack==2, e and f contain values from c and d.)

There are two groups because we specified four variables in the *varlist* and two variables in the into list, and 4/2 = 2. If there were six variables in the *varlist*, there would be 6/2 = 3 groups. If there were also three variables in the into list, there would be 6/3 = 2 groups. Specifying six variables in the *varlist* and four variables in the into list would result in an error because 6/4 is not an integer.

4

Example 2: Stacking a variable multiple times

Variables may be repeated in the *varlist*, and the *varlist* need not contain all the variables:

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

	a	b	с	d				
1. 2.	1 5	2 6	3 7	4 8				
. sta	ick a	a b	ac,	int	to(a	bc)	clea	r

. list

	_stack	a	bc
1.	1	1	2
2.	1	5	6
3.	2	1	3
4.	2	5	7

a was stacked on a and called a, whereas b was stacked on c and called bc.

If we had wanted the resulting variables to be called simply a and b, we could have used

. stack a b a c, group(2) clear

which is equivalent to

. stack a b a c, into(a b) clear

4

Example 3: Keeping the original variables

In this artificial but informative example, the wide option includes the variables in the original dataset that were specified in *varlist* in the output dataset:

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

	a	b	с	d				
1. 2.	1	2 6	3	4 8				
2.	5	0		0				
stac	k a	ъb	c d,	int	o(e	f) c]	lear	wide
list	;							
	_st	ack	е	f	a	b	с	d
1.		1	1	2	1	2		
2. 3.		1	5	6	5	6		.
3. 4.		2 2	3	4			3	4
			7	8			7	8

In addition to the stacked e and f variables, the original a, b, c, and d variables are included. They are set to missing where their values are not appropriate.

4

Example 4: Using wide with repeated variables

This is the last artificial example. When you specify the wide option and repeat the same variable name in both the *varlist* and the into list, the variable will contain the stacked values:

. use http://www.stata-press.com/data/r13/stackxmpl, clear

. list

	a	b	с	d					
1. 2.	1 5	2 6	3 7	4 8					
	ck a	b a	с,	into	o(a b	c)	cle	ear	wide
list	t								
	-								
	_st	ack	a	bo	c b)	с		
1.		1	1	4	2 2	2			
		1	5		5 6				
2. 3. 4.		2	1	3	3.		3		
4.		2	5	7	· .		7		

4

Example 5: Using stack to make graphs

We want one graph of y against x1 and y against x2. We might be tempted to type scatter y x1 x2, but that would graph y against x2 and x1 against x2. One solution is to type

- . save mydata
- . stack y x1 y x2, into(yy x12) clear
- . generate y1 = yy if _stack==1
- . generate y2 = yy if _stack==2
- . scatter y1 y2 x12
- . use mydata, clear

The names yy and x12 are supposed to suggest the contents of the variables. yy contains (y,y), and x12 contains (x1,x2). We then make y1 defined at the x1 points but missing at the x2 points—graphing y1 against x12 is the same as graphing y against x1 in the original dataset. Similarly, y2 is defined at the x2 points but missing at x1—graphing y2 against x12 is the same as graphing y against x2 in the original dataset. Therefore, scatter y1 y2 x12 produces the desired graph.

Example 6: Plotting cumulative distributions

We wish to graph y1 against x1 and y2 against x2 on the same graph. The logic is the same as above, but let's go through it. Perhaps we have constructed two cumulative distributions by using cumul (see [R] cumul):

```
. use http://www.stata-press.com/data/r13/citytemp
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
```

We want to graph both cumulatives in the same graph; that is, we want to graph cjan against tempjan and cjuly against tempjuly. Remember that we could graph the tempjan cumulative by typing

```
. scatter cjan tempjan, c(l) m(o) sort
(output omitted)
```

We can graph the tempjuly cumulative similarly. To obtain both on the same graph, we must stack the data:

```
. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. generate cjan = c if _stack==1
(958 missing values generated)
. generate cjuly = c if _stack==2
(958 missing values generated)
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)
```

Alternatively, if we specify the wide option, we do not have to regenerate cjan and cjuly because they will be created automatically:

```
. use http://www.stata-press.com/data/r13/citytemp, clear
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear wide
. scatter cjan cjuly temp, c(l l) m(o o) sort
(output omitted)
```

4

Technical note

There is a third way, not using the wide option, that is exceedingly tricky but is sometimes useful:

```
. use http://www.stata-press.com/data/r13/citytemp, clear
(City Temperature Data)
. cumul tempjan, gen(cjan)
. cumul tempjuly, gen(cjuly)
. stack cjuly tempjuly cjan tempjan, into(c temp) clear
. sort _stack temp
. scatter c temp, c(L) m(o)
(output omitted)
```

Note the use of connect's capital L rather than lowercase 1 option. c(L) connects points only from left to right; because the data are sorted by _stack temp, temp increases within the first group (cjuly vs. tempjuly) and then starts again for the second (cjan vs. tempjan); see [G-4] *connectstyle*.

Reference

Baum, C. F. 2009. An Introduction to Stata Programming. College Station, TX: Stata Press.

Also see

- [D] **contract** Make dataset of frequencies and percentages
- [D] reshape Convert data from wide to long form and vice versa
- [D] **xpose** Interchange observations and variables