
xtgee — GEE population-averaged panel-data models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear models

and allows you to specify the within-group correlation structure for the panels.

Quick start
Population-averaged linear regression of y on x1 and x2

xtgee y x1 x2

Same as above, but estimate time-varying intragroup correlations

xtgee y x1 x2, corr(unstructured)

Same as above, but estimate a common second-order autoregression structure for the within-panel cor-

relation

xtgee y x1 x2, corr(ar 2)

Population-averaged negative binomial regression of y2 on x3 and x4 equivalent to xtnbreg, pa
xtgee y2 x3 x4, family(nbinomial 1)

Population-averaged logistic regression of y3 on x5 and x6 when y3 is the number of events out of 10

trials

xtgee y3 x5 x6, family(binomial 10)

Menu
Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equa-
tions (GEE)
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Syntax
xtgee depvar [ indepvars ] [ if ] [ in ] [weight ] [ , options ]

options Description

Model

family(family) distribution of depvar

link(link) link function

Model 2

exposure(varname) include ln(varname) in model with coefficient constrained to 1

offset(varname) include varname in model with coefficient constrained to 1

noconstant suppress constant term

asis retain perfect predictor variables

force estimate even if observations unequally spaced in time

Correlation

corr(correlation) within-group correlation structure

SE/Robust

vce(vcetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor 𝑁 − 𝑃 instead of the default 𝑁
rgf multiply the robust variance estimate by (𝑁 − 1)/(𝑁 − 𝑃)
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #

Reporting

level(#) set confidence level; default is level(95)
eform report exponentiated coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimize options control the optimization process; seldom used

nodisplay suppress display of header and coefficients

coeflegend display legend instead of statistics

A panel variable must be specified. Correlation structures other than exchangeable and independent require that a time
variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4 varname and varlists.

by, collect, mfp, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

nodisplay and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeSyntaxweight
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeSyntaxfamily
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeSyntaxlink
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeSyntaxcorrelation
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeOptionsdisplay_options
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeOptionsoptopts
https://www.stata.com/manuals/xtxtset.pdf#xtxtset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/mimiestimate.pdf#mimiestimate
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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family Description

gaussian Gaussian (normal); family(normal) is a synonym

igaussian inverse Gaussian

binomial[# | varname] Bernoulli/binomial

poisson Poisson

nbinomial[#] negative binomial

gamma gamma

link Link function/definition

identity identity; 𝑦 = 𝑦
log log; ln(𝑦)
logit logit; ln{𝑦/(1 − 𝑦)}, natural log of the odds
probit probit; Φ−1(𝑦), where Φ( ) is the normal cumulative distribution
cloglog cloglog; ln{−ln(1 − 𝑦)}
power[#] power; 𝑦𝑘 with 𝑘 = #; # = 1 if not specified

opower[#] odds power; [{𝑦/(1 − 𝑦)}𝑘 − 1]/𝑘 with 𝑘 = #; # = 1 if not specified

nbinomial negative binomial; ln{𝑦/(𝑦 + 𝛼)}
reciprocal reciprocal; 1/𝑦

correlation Description

exchangeable exchangeable

independent independent

unstructured unstructured

fixed matname user-specified

ar # autoregressive of order #

stationary # stationary of order #

nonstationary # nonstationary of order #

Options

� � �
Model �

family(family) specifies the distribution of depvar; family(gaussian) is the default.

link(link) specifies the link function; the default is the canonical link for the family() specified (ex-

cept for family(nbinomial)).

� � �
Model 2 �

exposure(varname) and offset(varname) are different ways of specifying the same thing. exposure()
specifies a variable that reflects the amount of exposure over which the depvar events were observed

for each observation; ln(varname) with coefficient constrained to be 1 is entered into the regression

equation. offset() specifies a variable that is to be entered directly into the log-link function with its
coefficient constrained to be 1; thus, exposure is assumed to be 𝑒varname. If you were fitting a Poisson

regression model, family(poisson) link(log), for instance, you would account for exposure time
by specifying offset() containing the log of exposure time.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin

on the scale defined by the link function.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations

andmay produce instabilities in maximization; see [R] probit. This option is only allowed with option

family(binomial) with a denominator of 1.

force specifies that estimation be forced even though the time variable is not equally spaced. This is

relevant only for correlation structures that require knowledge of the time variable. These correlation

structures require that observations be equally spaced so that calculations based on lags correspond

to a constant time change. If you specify a time variable indicating that observations are not equally

spaced, the (time dependent) model will not be fit. If you also specify force, the model will be fit,
and it will be assumed that the lags based on the data ordered by the time variable are appropriate.

� � �
Correlation �

corr(correlation) specifies the within-group correlation structure; the default corresponds to the equal-

correlation model, corr(exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s

name with or without a blank; for example, corr(ar 1) or corr(ar1).

If you specify the fixed correlation structure, you specify the name of the matrix containing the as-

sumed correlations following the word fixed, for example, corr(fixed myr).

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (conventional), that are robust to some kinds of misspecification (robust), and
that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

vce(robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place

of the default conventional variance estimator (see Methods and formulas below). Use of this option

causes xtgee to produce valid standard errors even if the correlations within group are not as hypoth-

esized by the specified correlation structure. Under a noncanonical link, it does, however, require that

the model correctly specifies the mean. The resulting standard errors are thus labeled “semirobust”

instead of “robust” in this case. Although there is no vce(cluster clustvar) option, results are as if

this option were included and you specified clustering on the panel variable.

nmp; see [XT] vce options.

rgf specifies that the robust variance estimate is multiplied by (𝑁 − 1)/(𝑁 − 𝑃), where 𝑁 is the total

number of observations and 𝑃 is the number of coefficients estimated. This option can be used only

with family(gaussian) when vce(robust) is either specified or implied by the use of pweights.
Using this option implies that the robust variance estimate is not invariant to the scale of any weights

used.

scale(x2 | dev | phi | #); see [XT] vce options.

� � �
Reporting �

level(#); see [R] Estimation options.

https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeMethodsandformulas
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/xtvce_options.pdf#xtvce_options
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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eform displays the exponentiated coefficients and corresponding standard errors and confidence intervals
as described in [R] Maximize. For family(binomial) link(logit) (that is, logistic regression),

exponentiation results in odds ratios; for family(poisson) link(log) (that is, Poisson regression),
exponentiated coefficients are incidence-rate ratios.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimize options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,

the optimization stops and presents the current results, even if convergence has not been reached. The

default is iterate(100).

tolerance(#) specifies the tolerance for the coefficient vector. When the relative change in the

coefficient vector from one iteration to the next is less than or equal to #, the optimization process is

stopped. tolerance(1e-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:

nodisplay is for programmers. It suppresses display of the header and coefficients.

coeflegend; see [R] Estimation options.

Remarks and examples
For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2013). More

information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have been

several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988); Zeger

and Liang (1986), and Liang (1987). Pendergast et al. (1996) surveys the current methods for analyzing

clustered data in regard to binary response data. Our implementation follows that of Liang and Zeger

(1986).

xtgee fits generalized linear models of 𝑦𝑖𝑡 with covariates x𝑖𝑡

𝑔{𝐸(𝑦𝑖𝑡)} = x𝑖𝑡β, 𝑦 ∼ 𝐹 with parameters 𝜃𝑖𝑡

for 𝑖 = 1, . . . , 𝑚 and 𝑡 = 1, . . . , 𝑛𝑖, where there are 𝑛𝑖 observations for each group identifier 𝑖. 𝑔( ) is
called the link function, and 𝐹 is the distributional family. Substituting various definitions for 𝑔( ) and
𝐹 results in a wide array of models. For instance, if 𝑦𝑖𝑡 is distributed Gaussian (normal) and 𝑔( ) is the
identity function, we have

𝐸(𝑦𝑖𝑡) = x𝑖𝑡β, 𝑦 ∼ 𝑁( )
yielding linear regression, random-effects regression, or other regression-related models, depending on

what we assume for the correlation structure.

If 𝑔(⋅) is the logit function and 𝑦𝑖𝑡 is distributed Bernoulli (binomial), we have

logit{𝐸(𝑦𝑖𝑡)} = x𝑖𝑡β, 𝑦 ∼ Bernoulli

https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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or logistic regression. If 𝑔(⋅) is the natural log function and 𝑦𝑖𝑡 is distributed Poisson, we have

ln{𝐸(𝑦𝑖𝑡)} = x𝑖𝑡β, 𝑦 ∼ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the link() option, the distributional family with family(), and
the assumed within-group correlation structure with corr().

The binomial distribution can be specified as case 1 family(binomial), case 2 family(binomial
#), or case 3 family(binomial varname). In case 2, # is the value of the binomial denominator 𝑁, the

number of trials. Specifying family(binomial 1) is the same as specifying family(binomial); both
mean that 𝑦 has the Bernoulli distribution with values 0 and 1 only. In case 3, varname is the variable

containing the binomial denominator, thus allowing the number of trials to vary across observations.

The negative binomial distribution must be specified as family(nbinomial #), where # denotes the
value of the parameter 𝛼 in the negative binomial distribution. The results will be conditional on this

value.

You do not have to specify both family() and link(); the default link() is the canonical link for

the specified family() (excluding family(nbinomial)):

Family Default link

family(binomial) link(logit)
family(gamma) link(reciprocal)
family(gaussian) link(identity)
family(igaussian) link(power -2)
family(nbinomial) link(log)
family(poisson) link(log)

The canonical link for the negative binomial family is obtained by specifying link(nbinomial). If

you specify both family() and link(), not all combinations make sense. You may choose among the
following combinations:

Gaussian Inverse Binomial Poisson Negative Gamma
Gaussian Binomial

Identity x x x x x x
Log x x x x x x
Logit x
Probit x
C. log–log x
Power x x x x x x
Odds Power x
Neg. binom. x
Reciprocal x x x x

You specify the assumed within-group correlation structure with the corr() option.

For example, callR the working correlationmatrix formodeling thewithin-group correlation, a square

max{𝑛𝑖} × max{𝑛𝑖} matrix. corr() specifies the structure of R. Let R𝑡,𝑠 denote the 𝑡, 𝑠 element.
The independent structure is defined as

R𝑡,𝑠 = {1 if 𝑡 = 𝑠
0 otherwise
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The corr(exchangeable) structure (corresponding to equal-correlation models) is defined as

R𝑡,𝑠 = {1 if 𝑡 = 𝑠
𝜌 otherwise

The corr(ar g) structure is defined as the usual correlation matrix for an AR(g) model. This is

sometimes called multiplicative correlation. For example, an AR(1) model is given by

R𝑡,𝑠 = {1 if 𝑡 = 𝑠
𝜌|𝑡−𝑠| otherwise

The corr(stationary g) structure is a stationary(g) model. For example, a stationary(1) model is

given by

R𝑡,𝑠 =
⎧{
⎨{⎩

1 if 𝑡 = 𝑠
𝜌 if |𝑡 − 𝑠| = 1
0 otherwise

The corr(nonstationary g) structure is a nonstationary(g) model that imposes only the constraints
that the elements of the working correlation matrix along the diagonal be 1 and the elements outside the

gth band be zero,

R𝑡,𝑠 =
⎧{
⎨{⎩

1 if 𝑡 = 𝑠
𝜌𝑡𝑠 if 0 < |𝑡 − 𝑠| ≤ 𝑔, 𝜌𝑡𝑠 = 𝜌𝑠𝑡
0 otherwise

corr(unstructured) imposes only the constraint that the diagonal elements of the working corre-

lation matrix be 1.

R𝑡,𝑠 = {1 if 𝑡 = 𝑠
𝜌𝑡𝑠 otherwise, 𝜌𝑡𝑠 = 𝜌𝑠𝑡

The corr(fixed matname) specification is taken from the user-supplied matrix, such that

R = matname

Here the correlations are not estimated from the data. The user-suppliedmatrixmust be a valid correlation

matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the Methods and formulas below.

https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeMethodsandformulas
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Technical note
Some family(), link(), and corr() combinations result in models already fit by Stata:

family() link() corr() Other Stata estimation command

gaussian identity independent regress
gaussian identity exchangeable xtreg, re
gaussian identity exchangeable xtreg, pa
binomial cloglog independent cloglog (see note 1)
binomial cloglog exchangeable xtcloglog, pa
binomial logit independent logit or logistic
binomial logit exchangeable xtlogit, pa
binomial probit independent probit (see note 2)
binomial probit exchangeable xtprobit, pa
nbinomial log independent nbreg (see note 3)
poisson log independent poisson
poisson log exchangeable xtpoisson, pa
gamma log independent streg, dist(exp) nohr (see note 4)
family link independent glm, irls (see note 5)

Notes:

1. For cloglog estimation, xtgeewith corr(independent) and cloglog (see [R] cloglog) will produce
the same coefficients, but the standard errors will be only asymptotically equivalent because cloglog

is not the canonical link for the binomial family.

2. For probit estimation, xtgee with corr(independent) and probit will produce the same coeffi-

cients, but the standard errors will be only asymptotically equivalent because probit is not the canon-

ical link for the binomial family. If the binomial denominator is not 1, the equivalent maximum-

likelihood command is glmwith options family(binomial #) or family(binomial varname) and
link(probit); see [R] probit and [R] glm.

3. Fitting a negative binomial model by using xtgee (or using glm) will yield results conditional on the
specified value of 𝛼. The nbreg command, however, estimates that parameter and provides uncon-

ditional estimates; see [R] nbreg.

4. xtgeewith corr(independent) can be used to fit exponential regressions, but this requires specify-
ing scale(1). As with probit, the xtgee-reported standard errors will be only asymptotically equiv-
alent to those produced by streg, dist(exp) nohr (see [ST] streg) because log is not the canonical

link for the gamma family. xtgee cannot be used to fit exponential regressions on censored data.

Using the independent correlation structure, the xtgee command will fit the same model fit with

the glm, irls command if the family–link combination is the same.

5. If the xtgee command is equivalent to another command, using corr(independent) and the

vce(robust) option with xtgee corresponds to using the vce(cluster clustvar) option in the

equivalent command, where clustvar corresponds to the panel variable.

xtgee is a generalization of the glm, irls command and gives the same output when the same family
and link are specified together with an independent correlation structure. What makes xtgee useful is

• the number of statistical models that it generalizes for use with panel data, many of which are not

otherwise available in Stata;

• the richer correlation structure xtgee allows, even when models are available through other xt com-

mands; and

https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeRemarksandexamplesnote1
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeRemarksandexamplesnote2
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeRemarksandexamplesnote3
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeRemarksandexamplesnote4
https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeRemarksandexamplesnote5
https://www.stata.com/manuals/rcloglog.pdf#rcloglog
https://www.stata.com/manuals/rprobit.pdf#rprobit
https://www.stata.com/manuals/rglm.pdf#rglm
https://www.stata.com/manuals/rnbreg.pdf#rnbreg
https://www.stata.com/manuals/ststreg.pdf#ststreg
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• the availability of robust standard errors (see [U] 20.22 Obtaining robust variance estimates), even

when the model and correlation structure are available through other xt commands.

In the following examples, we illustrate the relationships of xtgeewith other Stata estimation commands.
Remember that, although xtgee generalizes many other commands, the computational algorithm is dif-

ferent; therefore, the answers you obtain will not be identical. The dataset we are using is a subset of the

nlswork data (see [XT] xt); we are looking at observations before 1980.

Example 1
We can use xtgee to perform ordinary least squares by regress:

. use https://www.stata-press.com/data/r19/nlswork2
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. regress ln_w grade age c.age#c.age

Source SS df MS Number of obs = 16,085
F(3, 16081) = 1413.68

Model 597.54468 3 199.18156 Prob > F = 0.0000
Residual 2265.74584 16,081 .14089583 R-squared = 0.2087

Adj R-squared = 0.2085
Total 2863.29052 16,084 .178021047 Root MSE = .37536

ln_wage Coefficient Std. err. t P>|t| [95% conf. interval]

grade .0724483 .0014229 50.91 0.000 .0696592 .0752374
age .1064874 .0083644 12.73 0.000 .0900922 .1228825

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.06904 -.6672577

. xtgee ln_w grade age c.age#c.age, corr(indep) nmp
Iteration 1: Tolerance = 8.684e-13
GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: independent avg = 4.1

max = 9
Wald chi2(3) = 4241.04

Scale parameter = .1408958 Prob > chi2 = 0.0000
Pearson chi2(16081) = 2265.75 Deviance = 2265.75
Dispersion (Pearson) = .1408958 Dispersion = .1408958

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0724483 .0014229 50.91 0.000 .0696594 .0752372
age .1064874 .0083644 12.73 0.000 .0900935 .1228812

c.age#c.age -.0016931 .0001655 -10.23 0.000 -.0020174 -.0013688

_cons -.8681487 .1024896 -8.47 0.000 -1.069025 -.6672728

https://www.stata.com/manuals/u20.pdf#u20.22Obtainingrobustvarianceestimates
https://www.stata.com/manuals/xtxt.pdf#xtxt
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When nmp is specified, the coefficients and the standard errors produced by the estimators are the same.

Moreover, the scale parameter estimate from the xtgee command equals the MSE calculation from

regress; both are estimates of the variance of the residuals.

Example 2
The identity link and Gaussian family produce regression-type models. With the independent corre-

lation structure, we reproduce ordinary least squares. With the exchangeable correlation structure, we

produce an equal-correlation linear regression estimator.

xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS

estimator provided by xtreg, re and to the full maximum-likelihood estimator provided by xtreg,
mle. In balanced data, xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle produce the

same results. With unbalanced data, the results are close but differ because the two estimators handle

unbalanced data differently. For both balanced and unbalanced data, the results produced by xtgee,
fam(gauss) link(ident) corr(exch) and xtreg, mle differ from those produced by xtreg, re.
Below we demonstrate the use of the three estimators with unbalanced data. We begin with xtgee; show
the maximum likelihood estimator xtreg, mle; show the GLS estimator xtreg, re; and finally show

xtgee with the vce(robust) option.

. xtgee ln_w grade age c.age#c.age, nolog
GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.1

max = 9
Wald chi2(3) = 2918.26

Scale parameter = .1416586 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717731 .00211 34.02 0.000 .0676377 .0759086
age .1077645 .006885 15.65 0.000 .0942701 .1212589

c.age#c.age -.0016381 .0001362 -12.03 0.000 -.001905 -.0013712

_cons -.9480449 .0869277 -10.91 0.000 -1.11842 -.7776698
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. xtreg ln_w grade age c.age#c.age, mle
Fitting constant-only model:
Iteration 0: Log likelihood = -5868.3483
Iteration 1: Log likelihood = -5858.8833
Iteration 2: Log likelihood = -5858.8244
Fitting full model:
Iteration 0: Log likelihood = -4591.9241
Iteration 1: Log likelihood = -4562.4406
Iteration 2: Log likelihood = -4562.3526
Iteration 3: Log likelihood = -4562.3525
Random-effects ML regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Random effects u_i ~ Gaussian Obs per group:

min = 1
avg = 4.1
max = 9

LR chi2(3) = 2592.94
Log likelihood = -4562.3525 Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717747 .002142 33.51 0.000 .0675765 .075973
age .1077899 .0068266 15.79 0.000 .0944101 .1211697

c.age#c.age -.0016364 .000135 -12.12 0.000 -.0019011 -.0013718

_cons -.9500833 .086384 -11.00 0.000 -1.119393 -.7807737

/sigma_u .2689639 .0040854 .2610748 .2770915
/sigma_e .2669944 .0017113 .2636613 .2703696

rho .5036748 .0086449 .4867329 .52061

LR test of sigma_u=0: chibar2(01) = 4996.22 Prob >= chibar2 = 0.000
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. xtreg ln_w grade age c.age#c.age, re
Random-effects GLS regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
R-squared: Obs per group:

Within = 0.0983 min = 1
Between = 0.2946 avg = 4.1
Overall = 0.2076 max = 9

Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000

ln_wage Coefficient Std. err. z P>|z| [95% conf. interval]

grade .0717757 .0021666 33.13 0.000 .0675294 .0760221
age .1078042 .0068125 15.82 0.000 .0944519 .1211566

c.age#c.age -.0016355 .0001347 -12.14 0.000 -.0018996 -.0013714

_cons -.9512118 .0863139 -11.02 0.000 -1.120384 -.7820397

sigma_u .27383747
sigma_e .26624266

rho .51405959 (fraction of variance due to u_i)

. xtgee ln_w grade age c.age#c.age, vce(robust) nolog
GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.1

max = 9
Wald chi2(3) = 2031.28

Scale parameter = .1416586 Prob > chi2 = 0.0000
(Std. err. adjusted for clustering on idcode)

Robust
ln_wage Coefficient std. err. z P>|z| [95% conf. interval]

grade .0717731 .0023341 30.75 0.000 .0671983 .0763479
age .1077645 .0098097 10.99 0.000 .0885379 .1269911

c.age#c.age -.0016381 .0001964 -8.34 0.000 -.002023 -.0012532

_cons -.9480449 .1195009 -7.93 0.000 -1.182262 -.7138274

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates with

valid standard errors for random-effects models. These standard errors are robust to model misspecifi-

cation. The vce(robust) option of xtgee, on the other hand, requires that the model correctly specify
the mean and the link function when the noncanonical link is used.

https://www.stata.com/manuals/rregress.pdf#rregress
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Stored results
xtgee stores the following in e():

Scalars

e(N) number of observations

e(N g) number of groups

e(df m) model degrees of freedom

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(df pear) degrees of freedom for Pearson 𝜒2

e(chi2 dev) 𝜒2 test of deviance

e(chi2 dis) 𝜒2 test of deviance dispersion

e(deviance) deviance

e(dispers) deviance dispersion

e(phi) scale parameter

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(tol) target tolerance

e(dif) achieved tolerance

e(rank) rank of e(V)
e(rc) return code

Macros

e(cmd) xtgee
e(cmdline) command as typed

e(depvar) name of dependent variable

e(ivar) variable denoting groups

e(tvar) variable denoting time within groups

e(model) pa
e(family) distribution family

e(link) link function

e(corr) correlation structure

e(scale) x2, dev, phi, or #; scale parameter
e(wtype) weight type

e(wexp) weight expression

e(offset) linear offset variable

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(nmp) nmp, if specified
e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(R) estimated working correlation matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Calculating GEE for GLM
Correlation structures

Independent
Exchangeable
Autoregressive and stationary
Nonstationary and unstructured

Introduction
xtgee fits generalized linear models for panel data with the GEE approach described in Liang and

Zeger (1986). Arelatedmethod, referred to asGEE2, is described in Zhao and Prentice (1990) and Prentice

and Zhao (1991). The GEE2 method attempts to gain efficiency in the estimation of β by specifying a

parametric model for α and then assumes that the models for both the mean and dependency parameters

are correct. Thus there is a tradeoff in robustness for efficiency. The preliminary work of Liang, Zeger,

and Qaqish (1992), however, indicates that there is little efficiency gained with this alternative approach.

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

ℎ(µ𝑖,𝑗) = 𝑥T
𝑖,𝑗β

Var(𝑦𝑖,𝑗) = 𝑔(𝜇𝑖,𝑗)𝜙
µ𝑖 = 𝐸(y𝑖) = {ℎ−1(𝑥T

𝑖,1β), . . . , ℎ−1(𝑥T
𝑖,𝑛𝑖

β)}T

A𝑖 = diag{𝑔(𝜇𝑖,1), . . . , 𝑔(𝜇𝑖,𝑛𝑖
)}

Cov(y𝑖) = 𝜙A𝑖 for independent observations.

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate

analog of the quasiscore function introduced by Wedderburn (1974):

Sβ(β,α) =
𝑚

∑
𝑖=1

(
𝜕µ𝑖
𝜕β

)
T

Var(y𝑖)−1(y𝑖 − µ𝑖) = 0

We can solve for correlation parameters α by simultaneously solving

Sα(β,α) =
𝑚

∑
𝑖=1

(
𝜕η𝑖
𝜕α

)
T

H−1
𝑖 (W𝑖 − η𝑖) = 0
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In the GEE approach to GLM, we let R𝑖(α) be a “working” correlation matrix depending on the pa-

rameters in α (see the Correlation structures section for the number of parameters), and we estimate β
by solving the GEE,

U(β) =
𝑚

∑
𝑖=1

(
𝜕µ𝑖
𝜕β

)
T

V−1
𝑖 (α)(y𝑖 − µ𝑖) = 0

where V𝑖(α) = A
1/2
𝑖 R𝑖(α)A1/2

𝑖

To solve this equation, we need only a crude approximation of the variance matrix, which we can obtain

from a Taylor series expansion, where

Cov(y𝑖) = L𝑖Z𝑖D𝑖Z
T
𝑖 L𝑖 + 𝜙A𝑖 = Ṽ𝑖

L𝑖 = diag{𝜕ℎ−1(𝑢)/𝜕𝑢, 𝑢 = 𝑥T
𝑖,𝑗β, 𝑗 = 1, . . . , 𝑛𝑖}

which allows that

D̂𝑖 ≈ (ZT
𝑖 Z𝑖)−1Z𝑖L̂

−1
𝑖 {(y𝑖 − µ̂𝑖)(y𝑖 − µ̂𝑖)

T − ̂𝜙Â𝑖} L̂−1
𝑖 ZT

𝑖 (Z′
𝑖Z𝑖)−1

̂𝜙 =
𝑚

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑦𝑖,𝑗 − ̂𝜇𝑖,𝑗)2 − (L̂𝑖,𝑗)2ZT
𝑖,𝑗D̂𝑖Z𝑖,𝑗

𝑔( ̂𝜇𝑖,𝑗)

Calculating GEE for GLM
Using the notation from Liang and Zeger (1986), let y𝑖 = (𝑦𝑖,1, . . . , 𝑦𝑖,𝑛𝑖

)T be the 𝑛𝑖 × 1 vector of

outcome values, and let X𝑖 = (𝑥𝑖,1, . . . , 𝑥𝑖,𝑛𝑖
)T be the 𝑛𝑖 × 𝑝 matrix of covariate values for the 𝑖th

subject 𝑖 = 1, . . . , 𝑚. We assume that the marginal density for 𝑦𝑖,𝑗 may be written in exponential family

notation as

𝑓(𝑦𝑖,𝑗) = exp [{𝑦𝑖,𝑗𝜃𝑖,𝑗 − 𝑎(𝜃𝑖,𝑗) + 𝑏(𝑦𝑖,𝑗)} 𝜙]
where 𝜃𝑖,𝑗 = ℎ(𝜂𝑖,𝑗), 𝜂𝑖,𝑗 = 𝑥𝑖,𝑗β. Under this formulation, the first two moments are given by

𝐸(𝑦𝑖,𝑗) = 𝑎′(𝜃𝑖,𝑗), Var(𝑦𝑖,𝑗) = 𝑎″(𝜃𝑖,𝑗)/𝜙

In what follows, we let 𝑛𝑖 = 𝑛 without loss of generality. We define the quantities, assuming that we

have an 𝑛 × 𝑛 working correlation matrix R(α),

𝚫𝑖 = diag(𝑑𝜃𝑖,𝑗/𝑑𝜂𝑖,𝑗) 𝑛 × 𝑛 matrix

A𝑖 = diag{𝑎″(𝜃𝑖,𝑗)} 𝑛 × 𝑛 matrix

S𝑖 = y𝑖 − 𝑎′(θ𝑖) 𝑛 × 1 matrix

D𝑖 = A𝑖𝚫𝑖X𝑖 𝑛 × 𝑝 matrix

V𝑖 = A
1/2
𝑖 R(α)A1/2

𝑖 𝑛 × 𝑛 matrix

such that the GEE becomes 𝑚
∑
𝑖=1

DT
𝑖V

−1
𝑖 S𝑖 = 0

We then have that

β̂𝑗+1 = β̂𝑗 − {
𝑚

∑
𝑖=1

DT
𝑖 (β̂𝑗)Ṽ

−1
𝑖 (β̂𝑗)D𝑖(β̂𝑗)}

−1

{
𝑚

∑
𝑖=1

DT
𝑖 (β̂𝑗)Ṽ

−1
𝑖 (β̂𝑗)S𝑖(β̂𝑗)}

https://www.stata.com/manuals/xtxtgee.pdf#xtxtgeeMethodsandformulasCorrelationstructures
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where the term

{
𝑚

∑
𝑖=1

DT
𝑖 (β̂𝑗)Ṽ

−1
𝑖 (β̂𝑗)D𝑖(β̂𝑗)}

−1

is what we call the conventional variance estimate. It is used to calculate the standard errors if

the vce(robust) option is not specified. This command supports the clustered version of the Hu-

ber/White/sandwich estimator of the variance with panels treated as clusters when vce(robust) is spec-
ified. See [P] robust, particularly Maximum likelihood estimators and Methods and formulas. Liang

and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

D = (DT
1 , . . . ,DT

𝑚)
S = (ST1 , . . . ,ST𝑚)T

Ṽ = 𝑛𝑚 × 𝑛𝑚 block diagonal matrix with Ṽ𝑖

Z = Dβ − S

At a given iteration, the correlation parametersα and scale parameter 𝜙 can be estimated from the current

Pearson residuals, defined by

̂𝑟𝑖,𝑗 = {𝑦𝑖,𝑗 − 𝑎′( ̂𝜃𝑖,𝑗)}/{𝑎″( ̂𝜃𝑖,𝑗)}1/2

where ̂𝜃𝑖,𝑗 depends on the current value for β̂. We can then estimate 𝜙 by

̂𝜙−1 =
𝑚

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

̂𝑟 2
𝑖,𝑗/(𝑁 − 𝑝)

As this general derivation is complicated, let’s follow the derivation of the Gaussian family with the

identity link (regression) to illustrate the generalization. After making appropriate substitutions, we will

see a familiar updating equation. First, we rewrite the updating equation for β as

β̂𝑗+1 = β̂𝑗 − Z−1
1 Z2

and then derive Z1 and Z2.

Z1 =
𝑚

∑
𝑖=1

DT
𝑖 (β̂𝑗)Ṽ

−1
𝑖 (β̂𝑗)D𝑖(β̂𝑗) =

𝑚
∑
𝑖=1

XT
𝑖 𝚫T

𝑖A
T
𝑖 {A1/2

𝑖 R(α)A1/2
𝑖 }−1A𝑖𝚫𝑖X𝑖

=
𝑚

∑
𝑖=1

XT
𝑖 diag{

𝜕𝜃𝑖,𝑗

𝜕(Xβ)
} diag{𝑎″(𝜃𝑖,𝑗)} [diag{𝑎″(𝜃𝑖,𝑗)}

1/2
R(α) diag{𝑎″(𝜃𝑖,𝑗)}

1/2]
−1

diag{𝑎″(𝜃𝑖,𝑗)} diag{
𝜕𝜃𝑖,𝑗

𝜕(Xβ)
}X𝑖

=
𝑚

∑
𝑖=1

XT
𝑖 II(III)−1IIX𝑖 =

𝑚
∑
𝑖=1

XT
𝑖X𝑖 = XTX

https://www.stata.com/manuals/p_robust.pdf#p_robust
https://www.stata.com/manuals/p_robust.pdf#p_robustRemarksandexamplesMaximumlikelihoodestimators
https://www.stata.com/manuals/p_robust.pdf#p_robustMethodsandformulas
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Z2 =
𝑚

∑
𝑖=1

DT
𝑖 (β̂𝑗)Ṽ

−1
𝑖 (β̂𝑗)S𝑖(β̂𝑗) =

𝑚
∑
𝑖=1

XT
𝑖 𝚫T

𝑖A
T
𝑖 {A1/2

𝑖 R(α)A1/2
𝑖 }−1 (y𝑖 − X𝑖β̂𝑗)

=
𝑚

∑
𝑖=1

XT
𝑖 diag{

𝜕𝜃𝑖,𝑗

𝜕(Xβ)
} diag{𝑎″(𝜃𝑖,𝑗)} [diag{𝑎″(𝜃𝑖,𝑗)}

1/2
R(α) diag{𝑎″(𝜃𝑖,𝑗)}

1/2]
−1

(y𝑖 − X𝑖β̂𝑗)

=
𝑚

∑
𝑖=1

XT
𝑖 II(III)−1(y𝑖 − X𝑖β̂𝑗) =

𝑚
∑
𝑖=1

XT
𝑖 (y𝑖 − X𝑖β̂𝑗) = XT ̂𝑠𝑗

So, we may write the update formula as

β̂𝑗+1 = β̂𝑗 − (XTX)−1XT ̂𝑠𝑗

which is the same formula for GLS in regression.

Correlation structures
The working correlation matrixR is a function ofα and is more accurately written asR(α). Depend-

ing on the assumed correlation structure, α might be

Independent no parameters to estimate

Exchangeable α is a scalar

Autoregressive α is a vector

Stationary α is a vector

Nonstationary α is a matrix

Unstructured α is a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss R𝑖, which is

the upper left 𝑛𝑖 × 𝑛𝑖 submatrix of the ultimately stored matrix in e(R), max{𝑛𝑖} × max{𝑛𝑖}.
The only panels that enter into the estimation for a lag-dependent correlation structure are those with

𝑛𝑖 > 𝑔 (assuming a lag of 𝑔). xtgee drops panels with too few observations (and mentions when it does

so).

Independent

The working correlation matrix R is an identity matrix.

Exchangeable

α =
∑𝑚

𝑖=1 (∑𝑛𝑖
𝑗=1 ∑𝑛𝑖

𝑘=1 ̂𝑟𝑖,𝑗 ̂𝑟𝑖,𝑘 − ∑𝑛𝑖
𝑗=1 ̂𝑟 2

𝑖,𝑗)

∑𝑚
𝑖=1 {𝑛𝑖(𝑛𝑖 − 1)}

/
∑𝑚

𝑖=1 (∑𝑛𝑖
𝑗=1 ̂𝑟 2

𝑖,𝑗)

∑𝑚
𝑖=1 𝑛𝑖

and the working correlation matrix is given by

R𝑠,𝑡 = {1 𝑠 = 𝑡
𝛼 otherwise
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Autoregressive and stationary

These two structures require 𝑔 parameters to be estimated so that α is a vector of length 𝑔 + 1 (the

first element of α is 1).

α =
𝑚

∑
𝑖=1

⎛⎜
⎝

∑𝑛𝑖
𝑗=1 ̂𝑟 2

𝑖,𝑗

𝑛𝑖
,

∑𝑛𝑖−1
𝑗=1 ̂𝑟𝑖,𝑗 ̂𝑟𝑖,𝑗+1

𝑛𝑖
, . . . ,

∑𝑛𝑖−𝑔
𝑗=1 ̂𝑟𝑖,𝑗 ̂𝑟𝑖,𝑗+𝑔

𝑛𝑖

⎞⎟
⎠

/(
𝑚

∑
𝑖=1

∑𝑛𝑖
𝑗=1 ̂𝑟 2

𝑖,𝑗

𝑛𝑖
)

The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices formed

from the α vector; see Newton (1988). The working correlation matrix for the stationary model is given

by

R𝑠,𝑡 = {α1,|𝑠−𝑡| if |𝑠 − 𝑡| ≤ 𝑔
0 otherwise

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. α is estimated (where we replace

̂𝑟𝑖,𝑗 = 0 whenever 𝑖 > 𝑛𝑖 or 𝑗 > 𝑛𝑖) as

α =
𝑚

∑
𝑖=1

𝑚
⎛⎜⎜⎜⎜
⎝

𝑁−1
1,1 ̂𝑟 2

𝑖,1 𝑁−1
1,2 ̂𝑟𝑖,1 ̂𝑟𝑖,2 · · · 𝑁−1

1,𝑛 ̂𝑟𝑖,1 ̂𝑟𝑖,𝑛
𝑁−1

2,1 ̂𝑟𝑖,2 ̂𝑟𝑖,1 𝑁−1
2,2 ̂𝑟 2

𝑖,2 · · · 𝑁−1
2,𝑛 ̂𝑟𝑖,2 ̂𝑟𝑖,𝑛

⋮ ⋮ ⋱ ⋮
𝑁−1

𝑛,1 ̂𝑟𝑖,𝑛𝑖
̂𝑟𝑖,1 𝑁−1

𝑛,2 ̂𝑟𝑖,𝑛𝑖
̂𝑟𝑖,2 · · · 𝑁−1

𝑛,𝑛 ̂𝑟 2
𝑖,𝑛

⎞⎟⎟⎟⎟
⎠

/(
𝑚

∑
𝑖=1

∑𝑛𝑖
𝑗=1 ̂𝑟 2

𝑖,𝑗

𝑛𝑖
)

where 𝑁𝑝,𝑞 = ∑𝑚
𝑖=1 𝐼(𝑖, 𝑝, 𝑞) and

𝐼(𝑖, 𝑝, 𝑞) = {1 if panel 𝑖 has valid observations at times 𝑝 and 𝑞
0 otherwise

where 𝑁𝑖,𝑗 = min(𝑁𝑖, 𝑁𝑗), 𝑁𝑖 = number of panels observed at time 𝑖, and 𝑛 = max(𝑛1, 𝑛2, . . . , 𝑛𝑚).
The working correlation matrix for the nonstationary model is given by

R𝑠,𝑡 =
⎧{
⎨{⎩

1 if 𝑠 = 𝑡
α𝑠,𝑡 if 0 < |𝑠 − 𝑡| ≤ 𝑔
0 otherwise

The working correlation matrix for the unstructured model is given by

R𝑠,𝑡 = {1 if 𝑠 = 𝑡
α𝑠,𝑡 otherwise

such that the unstructured model is equal to the nonstationary model at lag 𝑔 = 𝑛 − 1, where the panels

are balanced with 𝑛𝑖 = 𝑛 for all 𝑖.
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