
mgarch ccc — Constant conditional correlation multivariate GARCH model
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Description
mgarch ccc estimates the parameters of constant conditional correlation (CCC) multivariate general-

ized autoregressive conditionally heteroskedastic (MGARCH) models in which the conditional variances

are modeled as univariate generalized autoregressive conditionally heteroskedastic (GARCH) models and

the conditional covariances are modeled as nonlinear functions of the conditional variances. The con-

ditional correlation parameters that weight the nonlinear combinations of the conditional variance are

constant in the CCC MGARCH model.

The CCCMGARCHmodel is less flexible than the dynamic conditional correlationMGARCHmodel (see

[TS] mgarch dcc) and varying conditional correlation MGARCH model (see [TS] mgarch vcc), which

specify GARCH-like processes for the conditional correlations. The conditional correlation MGARCH

models are more parsimonious than the diagonal vech MGARCH model (see [TS] mgarch dvech).

Quick start
Fit constant conditional correlation multivariate GARCH with first- and second-order ARCH components

for dependent variables y1 and y2 using tsset data

mgarch ccc (y1 y2), arch(1 2)

Add regressors x1 and x2 and first-order GARCH component

mgarch ccc (y1 y2 = x1 x2), arch(1 2) garch(1)

Add z1 to the model for the conditional heteroskedasticity

mgarch ccc (y1 y2 = x1 x2), arch(1 2) garch(1) het(z1)

Menu
Statistics > Multivariate time series > Multivariate GARCH

1

https://www.stata.com/manuals/tsmgarchdcc.pdf#tsmgarchdcc
https://www.stata.com/manuals/tsmgarchvcc.pdf#tsmgarchvcc
https://www.stata.com/manuals/tsmgarchdvech.pdf#tsmgarchdvech
https://www.stata.com/manuals/tstsset.pdf#tstsset
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Syntax
mgarch ccc eq [ eq . . . eq ] [ if ] [ in ] [ , options ]

where each eq has the form

(depvars = [ indepvars ] [ , eqoptions ])

options Description

Model

arch(numlist) ARCH terms for all equations

garch(numlist) GARCH terms for all equations

het(varlist) include varlist in the specification of the conditional variance

for all equations

distribution(dist [ # ]) use dist distribution for errors [may be gaussian
(synonym normal) or t; default is gaussian]

unconcentrated perform optimization on unconcentrated log likelihood

constraints(numlist) apply linear constraints

SE/Robust

vce(vcetype) vcetype may be oim or robust

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

from(matname) initial values for the coefficients; seldom used

coeflegend display legend instead of statistics

eqoptions Description

noconstant suppress constant term in the mean equation

arch(numlist) ARCH terms

garch(numlist) GARCH terms

het(varlist) include varlist in the specification of the conditional variance

You must tsset your data before using mgarch ccc; see [TS] tsset.
indepvars and varlist may contain factor variables; see [U] 11.4.3 Factor variables.

depvars, indepvars, and varlist may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, fp, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccSyntaxeqoptions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccOptionsdisplay_options
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model �

arch(numlist) specifies the ARCH terms for all equations in the model. By default, no ARCH terms are

specified.

garch(numlist) specifies the GARCH terms for all equations in the model. By default, no GARCH terms

are specified.

het(varlist) specifies that varlist be included in the specification of the conditional variance for all equa-
tions. This varlist enters the variance specification collectively as multiplicative heteroskedasticity.

distribution(dist [ # ]) specifies the assumed distribution for the errors. dist may be gaussian,
normal, or t.

gaussian and normal are synonyms; each causes mgarch ccc to assume that the errors come from

a multivariate normal distribution. # cannot be specified with either of them.

t causes mgarch ccc to assume that the errors follow a multivariate Student 𝑡 distribution, and

the degree-of-freedom parameter is estimated along with the other parameters of the model. If

distribution(t #) is specified, then mgarch ccc uses a multivariate Student 𝑡 distribution with
# degrees of freedom. # must be greater than 2.

unconcentrated specifies that optimization be performed on the unconcentrated log likelihood. The

default is to start with the concentrated log likelihood.

constraints(numlist) specifies linear constraints to apply to the parameter estimates.

� � �
SE/Robust �

vce(vcetype) specifies the estimator for the variance–covariance matrix of the estimator.

vce(oim), the default, specifies to use the observed information matrix (OIM) estimator.

vce(robust) specifies to use the Huber/White/sandwich estimator.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(matname); see [R] Maximize for all options except

from(), and see below for information on from(). These options are seldom used.

from(matname) specifies initial values for the coefficients. from(b0) causes mgarch ccc to begin the

optimization algorithm with the values in b0. b0 must be a row vector, and the number of columns

must equal the number of parameters in the model.

The following option is available with mgarch ccc but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Eqoptions
noconstant suppresses the constant term in the mean equation.

arch(numlist) specifies the ARCH terms in the equation. By default, no ARCH terms are specified. This

option may not be specified with model-level arch().

garch(numlist) specifies the GARCH terms in the equation. By default, no GARCH terms are specified.

This option may not be specified with model-level garch().

het(varlist) specifies that varlist be included in the specification of the conditional variance. This varlist
enters the variance specification collectively as multiplicative heteroskedasticity. This option may not

be specified with model-level het().

Remarks and examples
We assume that you have already read [TS] mgarch, which provides an introduction to MGARCH

models and the methods implemented in mgarch ccc.

MGARCH models are dynamic multivariate regression models in which the conditional variances and

covariances of the errors follow an autoregressive-moving-average structure. The CCC MGARCH model

uses a nonlinear combination of univariate GARCH models in which the cross-equation weights are time

invariant to model the conditional covariance matrix of the disturbances.

As discussed in [TS] mgarch, MGARCH models differ in the parsimony and flexibility of their spec-

ifications for a time-varying conditional covariance matrix of the disturbances, denoted by H𝑡. In the

conditional correlation family ofMGARCHmodels, the diagonal elements ofH𝑡 are modeled as univariate

GARCH models, whereas the off-diagonal elements are modeled as nonlinear functions of the diagonal

terms. In the CCC MGARCH model,

ℎ𝑖𝑗,𝑡 = 𝜌𝑖𝑗√ℎ𝑖𝑖,𝑡ℎ𝑗𝑗,𝑡

where the diagonal elements ℎ𝑖𝑖,𝑡 and ℎ𝑗𝑗,𝑡 follow univariate GARCH processes and 𝜌𝑖𝑗 is a time-invariate

weight interpreted as a conditional correlation.

In the dynamic conditional correlation (DCC) and varying conditional correlation (VCC) MGARCH

models discussed in [TS] mgarch dcc and [TS] mgarch vcc, the 𝜌𝑖𝑗 are allowed to vary over time.

Although the conditional-correlation structure provides a useful tradeoff between parsimony and flex-

ibility in the DCC MGARCH and VCC MGARCH models, the time-invariant parameterization used in the

CCC MGARCH model is generally viewed as too restrictive for many applications; see Silvennoinen and

Teräsvirta (2009). The baseline CCCMGARCH estimates are frequently compared with DCCMGARCH and

VCC MGARCH estimates.

Technical note
Formally, the CCC MGARCH model derived by Bollerslev (1990) can be written as

y𝑡 = Cx𝑡 + ε𝑡

ε𝑡 = H
1/2
𝑡 ν𝑡

H𝑡 = D
1/2
𝑡 RD

1/2
𝑡

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/tsmgarch.pdf#tsmgarch
https://www.stata.com/manuals/tsmgarch.pdf#tsmgarch
https://www.stata.com/manuals/tsmgarchdcc.pdf#tsmgarchdcc
https://www.stata.com/manuals/tsmgarchvcc.pdf#tsmgarchvcc
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where

y𝑡 is an 𝑚 × 1 vector of dependent variables;

C is an 𝑚 × 𝑘 matrix of parameters;

x𝑡 is a 𝑘 × 1 vector of independent variables, which may contain lags of y𝑡;

H
1/2
𝑡 is the Cholesky factor of the time-varying conditional covariance matrix H𝑡;

ν𝑡 is an 𝑚 × 1 vector of normal, independent, and identically distributed innovations;

D𝑡 is a diagonal matrix of conditional variances,

D𝑡 =
⎛⎜⎜⎜⎜
⎝

𝜎2
1,𝑡 0 · · · 0
0 𝜎2

2,𝑡 · · · 0
⋮ ⋮ ⋱ ⋮
0 0 · · · 𝜎2

𝑚,𝑡

⎞⎟⎟⎟⎟
⎠

in which each 𝜎2
𝑖,𝑡 evolves according to a univariate GARCH model of the form

𝜎2
𝑖,𝑡 = 𝑠𝑖 + ∑𝑝𝑖

𝑗=1 𝛼𝑗𝜖2
𝑖,𝑡−𝑗 + ∑𝑞𝑖

𝑗=1 𝛽𝑗𝜎2
𝑖,𝑡−𝑗

by default, or

𝜎2
𝑖,𝑡 = exp(𝛄𝑖z𝑖,𝑡) + ∑𝑝𝑖

𝑗=1 𝛼𝑗𝜖2
𝑖,𝑡−𝑗 + ∑𝑞𝑖

𝑗=1 𝛽𝑗𝜎2
𝑖,𝑡−𝑗

when the het() option is specified, where 𝛄𝑡 is a 1 × 𝑝 vector of parameters, z𝑖 is a 𝑝 × 1

vector of independent variables including a constant term, the 𝛼𝑗’s are ARCH parameters, and

the 𝛽𝑗’s are GARCH parameters; and

R is a matrix of time-invariant unconditional correlations of the standardized residualsD
−1/2
𝑡 ε𝑡,

R =
⎛⎜⎜⎜
⎝

1 𝜌12 · · · 𝜌1𝑚
𝜌12 1 · · · 𝜌2𝑚

⋮ ⋮ ⋱ ⋮
𝜌1𝑚 𝜌2𝑚 · · · 1

⎞⎟⎟⎟
⎠

This model is known as the constant conditional correlation MGARCH model because R is time in-

variant.

Some examples

Example 1: Model with common covariates
We have daily data on the stock returns of three car manufacturers—Toyota, Nissan, and Honda, from

January 2, 2003, to December 31, 2010—in the variables toyota, nissan, and honda. We model the

conditional means of the returns as a first-order vector autoregressive process and the conditional covari-

ances as a CCC MGARCH process in which the variance of each disturbance term follows a GARCH(1,1)

process. We specify the noconstant option, because the returns have mean zero. The estimated con-

stants in the variance equations are near zero in this example because of how the data are scaled.
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. use https://www.stata-press.com/data/r19/stocks
(Data from Yahoo! Finance)
. mgarch ccc (toyota nissan honda = L.toyota L.nissan L.honda, noconstant),
> arch(1) garch(1)
Calculating starting values....
Optimizing concentrated log likelihood
(setting technique to bhhh)
Iteration 0: Log likelihood = 16898.994
Iteration 1: Log likelihood = 17008.914
Iteration 2: Log likelihood = 17156.946
Iteration 3: Log likelihood = 17249.527
Iteration 4: Log likelihood = 17287.251
Iteration 5: Log likelihood = 17313.5
Iteration 6: Log likelihood = 17335.087
Iteration 7: Log likelihood = 17356.534
Iteration 8: Log likelihood = 17376.051
Iteration 9: Log likelihood = 17400.035
(switching technique to nr)
Iteration 10: Log likelihood = 17423.634
Iteration 11: Log likelihood = 17440.659
Iteration 12: Log likelihood = 17446.75
Iteration 13: Log likelihood = 17447.631
Iteration 14: Log likelihood = 17447.645
Iteration 15: Log likelihood = 17447.645
Optimizing unconcentrated log likelihood
Iteration 0: Log likelihood = 17447.645
Iteration 1: Log likelihood = 17447.651
Iteration 2: Log likelihood = 17447.651
Constant conditional correlation MGARCH model
Sample: 2 thru 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(9) = 17.46
Log likelihood = 17447.65 Prob > chi2 = 0.0420

Coefficient Std. err. z P>|z| [95% conf. interval]

toyota
toyota

L1. -.0537817 .0353211 -1.52 0.128 -.1230098 .0154463

nissan
L1. .026686 .024841 1.07 0.283 -.0220015 .0753734

honda
L1. -.0043073 .0302761 -0.14 0.887 -.0636473 .0550327

ARCH_toyota
arch
L1. .0615321 .0087313 7.05 0.000 .0444191 .0786452

garch
L1. .9213798 .0110412 83.45 0.000 .8997395 .9430201

_cons 4.42e-06 1.12e-06 3.93 0.000 2.21e-06 6.62e-06
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nissan
toyota

L1. -.0232321 .0400563 -0.58 0.562 -.1017411 .0552769

nissan
L1. -.0299552 .0309362 -0.97 0.333 -.0905891 .0306787

honda
L1. .0369229 .0360532 1.02 0.306 -.0337401 .1075859

ARCH_nissan
arch
L1. .0740294 .0119353 6.20 0.000 .0506366 .0974222

garch
L1. .9102548 .0142328 63.95 0.000 .882359 .9381506

_cons 6.36e-06 1.76e-06 3.61 0.000 2.91e-06 9.81e-06

honda
toyota

L1. -.0378616 .036792 -1.03 0.303 -.1099727 .0342495

nissan
L1. .0551649 .0272559 2.02 0.043 .0017444 .1085855

honda
L1. -.0431919 .0331268 -1.30 0.192 -.1081193 .0217354

ARCH_honda
arch
L1. .0433036 .0070224 6.17 0.000 .0295399 .0570674

garch
L1. .939117 .010131 92.70 0.000 .9192605 .9589735

_cons 5.02e-06 1.31e-06 3.83 0.000 2.45e-06 7.59e-06

corr(toyota,
nissan) .6532264 .0128035 51.02 0.000 .628132 .6783208

corr(toyota,
honda) .7185412 .0108132 66.45 0.000 .6973477 .7397346

corr(nissan,
honda) .6298972 .0135336 46.54 0.000 .6033717 .6564226

The iteration log has three parts: the dots from the search for initial values, the iteration log from

optimizing the concentrated log likelihood, and the iteration log from maximizing the unconcentrated

log likelihood. Adetailed discussion of the optimization methods can be found in Methods and formulas.

The header describes the estimation sample and reports aWald test against the null hypothesis that all

the coefficients on the independent variables in the mean equations are zero. Here the null hypothesis is

rejected at the 5% level.

The output table first presents results for the mean or variance parameters used to model each depen-

dent variable. Subsequently, the output table presents results for the conditional correlation parameters.

For example, the conditional correlation between the standardized residuals for Toyota and Nissan is

estimated to be 0.65.

https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccMethodsandformulas
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The output above indicates that we may not need all the vector autoregressive parameters, but that

each of the univariate ARCH, univariate GARCH, and conditional correlation parameters are statistically

significant. That the estimated conditional correlation parameters are positive and significant indicates

that the returns on these stocks rise or fall together.

That the conditional correlations are time invariant is a restrictive assumption. The DCC MGARCH

model and the VCC MGARCH model nest the CCC MGARCH model. When we test the time-invariance

assumption with Wald tests on the parameters of these more general models in [TS] mgarch dcc and

[TS] mgarch vcc, we reject the null hypothesis that these conditional correlations are time invariant.

Example 2: Model with covariates that differ by equation
We improve the previous example by removing the insignificant parameters from the model. To

remove these parameters, we specify the honda equation separately from the toyota and nissan equa-

tions:

. mgarch ccc (toyota nissan = , noconstant) (honda = L.nissan, noconstant),
> arch(1) garch(1)
Calculating starting values....
Optimizing concentrated log likelihood
(setting technique to bhhh)
Iteration 0: Log likelihood = 16886.88
Iteration 1: Log likelihood = 16974.779
Iteration 2: Log likelihood = 17147.893
Iteration 3: Log likelihood = 17247.473
Iteration 4: Log likelihood = 17285.549
Iteration 5: Log likelihood = 17311.153
Iteration 6: Log likelihood = 17333.588
Iteration 7: Log likelihood = 17353.717
Iteration 8: Log likelihood = 17374.895
Iteration 9: Log likelihood = 17400.669
(switching technique to nr)
Iteration 10: Log likelihood = 17425.661
Iteration 11: Log likelihood = 17436.8
Iteration 12: Log likelihood = 17439.741
Iteration 13: Log likelihood = 17439.865
Iteration 14: Log likelihood = 17439.866
Optimizing unconcentrated log likelihood
Iteration 0: Log likelihood = 17439.865
Iteration 1: Log likelihood = 17439.872
Iteration 2: Log likelihood = 17439.872

https://www.stata.com/manuals/tsmgarchdcc.pdf#tsmgarchdcc
https://www.stata.com/manuals/tsmgarchvcc.pdf#tsmgarchvcc
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccRemarksandexamplesex1
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Constant conditional correlation MGARCH model
Sample: 2 thru 2015 Number of obs = 2,014
Distribution: Gaussian Wald chi2(1) = 1.81
Log likelihood = 17439.87 Prob > chi2 = 0.1781

Coefficient Std. err. z P>|z| [95% conf. interval]

ARCH_toyota
arch
L1. .0619604 .0087942 7.05 0.000 .044724 .0791968

garch
L1. .9208961 .0110995 82.97 0.000 .8991414 .9426508

_cons 4.43e-06 1.13e-06 3.94 0.000 2.23e-06 6.64e-06

ARCH_nissan
arch
L1. .0773095 .012328 6.27 0.000 .0531471 .1014719

garch
L1. .906088 .0147303 61.51 0.000 .8772171 .9349589

_cons 6.77e-06 1.85e-06 3.66 0.000 3.14e-06 .0000104

honda
nissan

L1. .0186628 .0138575 1.35 0.178 -.0084975 .0458231

ARCH_honda
arch
L1. .0433741 .006996 6.20 0.000 .0296622 .0570861

garch
L1. .9391094 .0100707 93.25 0.000 .9193712 .9588476

_cons 5.02e-06 1.31e-06 3.83 0.000 2.45e-06 7.60e-06

corr(toyota,
nissan) .652299 .0128271 50.85 0.000 .6271583 .6774396

corr(toyota,
honda) .7189531 .0108005 66.57 0.000 .6977845 .7401218

corr(nissan,
honda) .628435 .0135653 46.33 0.000 .6018475 .6550225

It turns out that the coefficient on L1.nissan in the honda equation is now statistically insignificant.

We could further improve the model by removing L1.nissan from the model.

As expected, removing the insignificant parameters from conditional mean equations had almost no

effect on the estimated conditional variance parameters.

There is no mean equation for Toyota or Nissan. In [TS] mgarch ccc postestimation, we discuss

prediction from models without covariates.

https://www.stata.com/manuals/tsmgarchcccpostestimation.pdf#tsmgarchcccpostestimation
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Example 3: Model with constraints
Here we fit a bivariate CCC MGARCH model for the Toyota and Nissan shares. We believe that the

shares of these car manufacturers follow the same process, so we impose the constraints that the ARCH

and the GARCH coefficients are the same for the two companies.

. constraint 1 _b[ARCH_toyota:L.arch] = _b[ARCH_nissan:L.arch]

. constraint 2 _b[ARCH_toyota:L.garch] = _b[ARCH_nissan:L.garch]

. mgarch ccc (toyota nissan = , noconstant), arch(1) garch(1) constraints(1 2)
Calculating starting values....
Optimizing concentrated log likelihood
(setting technique to bhhh)
Iteration 0: Log likelihood = 10317.225
Iteration 1: Log likelihood = 10630.464
Iteration 2: Log likelihood = 10865.964
Iteration 3: Log likelihood = 11063.329
(iteration log omitted)

Iteration 8: Log likelihood = 11273.962
Iteration 9: Log likelihood = 11274.409
(switching technique to nr)
Iteration 10: Log likelihood = 11274.494
Iteration 11: Log likelihood = 11274.499
Iteration 12: Log likelihood = 11274.499
Optimizing unconcentrated log likelihood
Iteration 0: Log likelihood = 11274.499
Iteration 1: Log likelihood = 11274.501
Iteration 2: Log likelihood = 11274.501
Constant conditional correlation MGARCH model
Sample: 1 thru 2015 Number of obs = 2,015
Distribution: Gaussian Wald chi2(.) = .
Log likelihood = 11274.5 Prob > chi2 = .
( 1) [ARCH_toyota]L.arch - [ARCH_nissan]L.arch = 0
( 2) [ARCH_toyota]L.garch - [ARCH_nissan]L.garch = 0

Coefficient Std. err. z P>|z| [95% conf. interval]

ARCH_toyota
arch
L1. .0742677 .0095467 7.78 0.000 .0555564 .092979

garch
L1. .9131676 .0111563 81.85 0.000 .8913017 .9350335

_cons 3.77e-06 1.02e-06 3.71 0.000 1.78e-06 5.77e-06

ARCH_nissan
arch
L1. .0742677 .0095467 7.78 0.000 .0555564 .092979

garch
L1. .9131676 .0111563 81.85 0.000 .8913017 .9350335

_cons 5.30e-06 1.36e-06 3.89 0.000 2.63e-06 7.97e-06

corr(toyota,
nissan) .651389 .0128482 50.70 0.000 .626207 .6765709
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We could test our constraints by fitting the unconstrained model and performing a likelihood-ratio

test. The results indicate that the restricted model is preferable.

Example 4: Model with a GARCH term
In this example, we have data on fictional stock returns for the Acme and Anvil corporations and we

believe that the movement of the two stocks is governed by different processes. We specify oneARCH and

one GARCH term for the conditional variance equation for Acme and twoARCH terms for the conditional

variance equation for Anvil. In addition, we include the lagged value of the stock return for Apex, the

main subsidiary of Anvil corporation, in the variance equation of Anvil. For Acme, we have data on the

changes in an index of futures prices of products related to those produced by Acme in afrelated. For
Anvil, we have data on the changes in an index of futures prices of inputs used by Anvil in afinputs.
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. use https://www.stata-press.com/data/r19/acmeh

. mgarch ccc (acme = afrelated, noconstant arch(1) garch(1))
> (anvil = afinputs, arch(1/2) het(L.apex))
Calculating starting values....
Optimizing concentrated log likelihood
(setting technique to bhhh)
Iteration 0: Log likelihood = -12996.245
Iteration 1: Log likelihood = -12609.982
Iteration 2: Log likelihood = -12563.103
Iteration 3: Log likelihood = -12554.73
Iteration 4: Log likelihood = -12554.542
Iteration 5: Log likelihood = -12554.534
Iteration 6: Log likelihood = -12554.534
Iteration 7: Log likelihood = -12554.534
Optimizing unconcentrated log likelihood
Iteration 0: Log likelihood = -12554.534
Iteration 1: Log likelihood = -12554.533
Constant conditional correlation MGARCH model
Sample: 2 thru 2500 Number of obs = 2,499
Distribution: Gaussian Wald chi2(2) = 2212.30
Log likelihood = -12554.53 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

acme
afrelated .9175148 .0651088 14.09 0.000 .7899039 1.045126

ARCH_acme
arch
L1. .0798719 .0169526 4.71 0.000 .0466455 .1130983

garch
L1. .7336823 .060157 12.20 0.000 .6157768 .8515877

_cons 2.880836 .7602061 3.79 0.000 1.390859 4.370812

anvil
afinputs -1.015561 .0226437 -44.85 0.000 -1.059942 -.97118

_cons .0703606 .0211689 3.32 0.001 .0288703 .1118508

ARCH_anvil
arch
L1. .4893288 .0286012 17.11 0.000 .4332714 .5453862
L2. .2782296 .0208172 13.37 0.000 .2374287 .3190305

apex
L1. 1.894972 .0616293 30.75 0.000 1.774181 2.015763

_cons .1034111 .0735512 1.41 0.160 -.0407466 .2475688

corr(acme,
anvil) -.5354047 .0143275 -37.37 0.000 -.563486 -.5073234

The results indicate that increases in the futures prices for related products lead to higher returns on

the Acme stock, and increased input prices lead to lower returns on the Anvil stock. In the conditional

variance equation for Anvil, the coefficient on L1.apex is positive and significant, which indicates that

an increase in the return on theApex stock leads to more variability in the return on theAnvil stock. That
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the estimated conditional correlation between the two returns is −0.54 indicates that these returns tend

to move in opposite directions; in other words, an increase in the return for the Acme stock tends to be

associated with a decrease in the return for the Anvil stock, and vice versa.

Stored results
mgarch ccc stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k extra) number of extra estimates added to b
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(estdf) 1 if distribution parameter was estimated, 0 otherwise

e(usr) user-provided distribution parameter

e(tmin) minimum time in sample

e(tmax) maximum time in sample

e(N gaps) number of gaps

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mgarch
e(model) ccc
e(cmdline) command as typed

e(depvar) names of dependent variables

e(covariates) list of covariates

e(dv eqs) dependent variables with mean equations

e(indeps) independent variables in each equation

e(tvar) time variable

e(hetvars) variables included in the conditional variance equations

e(title) title in estimation output

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(tmins) formatted minimum time

e(tmaxs) formatted maximum time

e(dist) distribution for error term: gaussian or t
e(arch) specified ARCH terms

e(garch) specified GARCH terms

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(marginsdefault) default predict() specification for margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
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Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(hessian) Hessian matrix

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(pinfo) parameter information, used by predict
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
mgarch ccc estimates the parameters of the CCC MGARCH model by maximum likelihood. The un-

concentrated log-likelihood function based on the multivariate normal distribution for observation 𝑡 is

𝑙𝑡 = −0.5𝑚 log(2𝜋) − 0.5log {det (R)} − log{det (D1/2
𝑡 )} − 0.5 ̃ε𝑡R

−1 ̃ε′
𝑡 (1)

where ̃ε𝑡 = D
−1/2
𝑡 ε𝑡 is an 𝑚 × 1 vector of standardized residuals, ε𝑡 = y𝑡 − Cx𝑡. The log-likelihood

function is ∑𝑇
𝑡=1 𝑙𝑡.

If we assume that ν𝑡 follow a multivariate 𝑡 distribution with degrees of freedom (df) greater than 2,

then the unconcentrated log-likelihood function for observation 𝑡 is

𝑙𝑡 = logΓ (df + 𝑚
2

) − logΓ (df

2
) − 𝑚

2
log {(df − 2)𝜋}

− 0.5log {det (R)} − log{det (D1/2
𝑡 )} − df + 𝑚

2
log(1 + ̃ε𝑡R

−1 ̃ε′
𝑡

df − 2
)

(2)

The correlation matrix R can be concentrated out of (1) and (2) by defining the (𝑖, 𝑗)th element of R
as

̂𝜌𝑖𝑗 = (
𝑇

∑
𝑡=1

̃ε𝑖𝑡 ̃ε𝑗𝑡) (
𝑇

∑
𝑡=1

̃ε2
𝑖𝑡)

− 1
2 (

𝑇
∑
𝑡=1

̃ε2
𝑗𝑡)

− 1
2

mgarch ccc starts the optimization process with the concentrated log-likelihood function.

The starting values for the parameters in the mean equations and the initial residuals ̂ε𝑡 are obtained

by least-squares regression. The starting values for the parameters in the variance equations are obtained

by a procedure proposed by Gouriéroux and Monfort (1997, sec. 6.2.2). If the optimization is started

with the unconcentrated log likelihood, then the initial values for the parameters inR are calculated from

the standardized residuals ̃ε𝑡.

https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccMethodsandformulaseq1
https://www.stata.com/manuals/tsmgarchccc.pdf#tsmgarchcccMethodsandformulaseq2
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GARCH estimators require initial values that can be plugged in for ε𝑡−𝑖ε
′
𝑡−𝑖 and H𝑡−𝑗 when 𝑡 − 𝑖 < 1

and 𝑡 − 𝑗 < 1. mgarch ccc substitutes an estimator of the unconditional covariance of the disturbances

𝚺̂ = 𝑇 −1
𝑇

∑
𝑡=1

̂̂ε𝑡
̂̂ε
′
𝑡 (3)

for ε𝑡−𝑖ε
′
𝑡−𝑖 when 𝑡 − 𝑖 < 1 and for H𝑡−𝑗 when 𝑡 − 𝑗 < 1, where ̂̂ε𝑡 is the vector of residuals calculated

using the estimated parameters.

mgarch ccc requires a sample size that at the minimum is equal to the number of parameters in the

model plus twice the number of equations.

mgarch ccc uses numerical derivatives in maximizing the log-likelihood function.
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