
dfgls — DF-GLS unit-root test

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
dfgls performs a modified Dickey–Fuller 𝑡 test for a unit root in which the series has been trans-

formed by a generalized least-squares regression.

Quick start
Modified Dickey–Fuller unit-root test for y1 using GLS-transformed series using tsset data

dfgls y1

Same as above, for series y2 that has no linear time trend

dfgls y2, notrend

Same as above, but with at most 2 lags

dfgls y2, notrend maxlag(2)

Menu
Statistics > Time series > Tests > DF-GLS test for a unit root
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Syntax
dfgls varname [ if ] [ in ] [ , options ]

options Description

Main

maxlag(#) use # as the highest lag order for Dickey–Fuller GLS regressions

notrend series is stationary around a mean instead of around a linear time trend

ers present interpolated critical values from Elliott, Rothenberg, and Stock (1996)

You must tsset your data before using dfgls; see [TS] tsset.
varname may contain time-series operators; see [U] 11.4.4 Time-series varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

maxlag(#) sets the value of 𝑘, the highest lag order for the first-differenced, detrended variable in the
Dickey–Fuller regression. By default, dfgls sets 𝑘 according to the method proposed by Schwert

(1989); that is, dfgls sets 𝑘max = floor[12{(𝑇 + 1)/100}0.25].
notrend specifies that the alternative hypothesis be that the series is stationary around a mean instead

of around a linear time trend. By default, a trend is included.

ers specifies that dfgls should present interpolated critical values from tables presented by Elliott,

Rothenberg, and Stock (1996), which they obtained from simulations. See Critical values underMeth-

ods and formulas for details.

Remarks and examples
dfgls tests for a unit root in a time series. It performs the modified Dickey–Fuller 𝑡 test (known as

the DF-GLS test) proposed by Elliott, Rothenberg, and Stock (1996). Essentially, the test is an augmented

Dickey–Fuller test, similar to the test performed by Stata’s dfuller command, except that the time

series is transformed via a generalized least squares (GLS) regression before performing the test. Elliott,

Rothenberg, and Stock and later studies have shown that this test has significantly greater power than the

previous versions of the augmented Dickey–Fuller test.

dfgls performs the DF-GLS test for the series of models that include 1 to 𝑘 lags of the first-differenced,
detrended variable, where 𝑘 can be set by the user or by the method described in Schwert (1989). Stock

and Watson (2019, 622–624) provide an excellent discussion of the approach.

As discussed in [TS] dfuller, the augmented Dickey–Fuller test involves fitting a regression of the

form

Δ𝑦𝑡 = 𝛼 + 𝛽𝑦𝑡−1 + 𝛿𝑡 + 𝜁1Δ𝑦𝑡−1 + 𝜁2Δ𝑦𝑡−2 + · · · + 𝜁𝑘Δ𝑦𝑡−𝑘 + 𝜖𝑡

and then testing the null hypothesis 𝐻0∶ 𝛽 = 0. The DF-GLS test is performed analogously but on GLS-

detrended data. The null hypothesis of the test is that 𝑦𝑡 is a random walk, possibly with drift. There are

two possible alternative hypotheses: 𝑦𝑡 is stationary about a linear time trend or 𝑦𝑡 is stationary with a

possibly nonzero mean but with no linear time trend. The default is to use the former. To specify the

latter alternative, use the notrend option.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/tsdfgls.pdf#tsdfglsMethodsandformulascritvalues
https://www.stata.com/manuals/tsdfuller.pdf#tsdfuller
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Example 1
Here we use the German macroeconomic dataset and test whether the natural log of investment ex-

hibits a unit root. We use the default options with dfgls.

. use https://www.stata-press.com/data/r19/lutkepohl2
(Quarterly SA West German macro data, Bil DM, from Lutkepohl 1993 Table E.1)
. dfgls ln_inv
DF-GLS test for unit root Number of obs = 80
Variable: ln_inv
Lag selection: Schwert criterion Maximum lag = 11

Critical value
[lags] DF-GLS tau 1% 5% 10%

11 -2.925 -3.610 -2.763 -2.489
10 -2.671 -3.610 -2.798 -2.523
9 -2.766 -3.610 -2.832 -2.555
8 -3.259 -3.610 -2.865 -2.587
7 -3.536 -3.610 -2.898 -2.617
6 -3.115 -3.610 -2.929 -2.646
5 -3.054 -3.610 -2.958 -2.674
4 -3.016 -3.610 -2.986 -2.699
3 -2.071 -3.610 -3.012 -2.723
2 -1.675 -3.610 -3.035 -2.744
1 -1.752 -3.610 -3.055 -2.762

Opt lag (Ng--Perron seq t) = 7 with RMSE = .0388771
Min SIC = -6.169137 at lag 4 with RMSE = .0398949
Min MAIC = -6.136692 at lag 1 with RMSE = .0440319

The null hypothesis of a unit root is not rejected for lags 1–3, it is rejected at the 10% level for

lags 9–10, and it is rejected at the 5% level for lags 4–8 and 11. For comparison, we also test for a unit

root in log of investment by using dfuller with two different lag specifications. We need to use the

trend option with dfuller because it is not included by default.
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. dfuller ln_inv, lag(4) trend
Augmented Dickey--Fuller test for unit root
Variable: ln_inv Number of obs = 87

Number of lags = 4
H0: Random walk with or without drift

Dickey--Fuller
Test critical value

statistic 1% 5% 10%

Z(t) -3.133 -4.069 -3.463 -3.158

MacKinnon approximate p-value for Z(t) = 0.0987.
. dfuller ln_inv, lag(7) trend
Augmented Dickey--Fuller test for unit root
Variable: ln_inv Number of obs = 84

Number of lags = 7
H0: Random walk with or without drift

Dickey--Fuller
Test critical value

statistic 1% 5% 10%

Z(t) -3.994 -4.075 -3.466 -3.160

MacKinnon approximate p-value for Z(t) = 0.0090.

The critical values and the test statistic produced by dfuller with 4 lags do not support rejecting the

null hypothesis, although the MacKinnon approximate 𝑝-value is less than 0.1. With 7 lags, the critical

values and the test statistic reject the null hypothesis at the 5% level, and the MacKinnon approximate

𝑝-value is less than 0.01.
That the dfuller results are not as strong as those produced by dfgls is not surprising because the

DF-GLS test with a trend has been shown to be more powerful than the standard augmented Dickey–Fuller

test.

Stored results
If maxlag(0) is specified, dfgls stores the following in r():

Scalars

r(N) number of observations

r(rmse0) RMSE

r(dft0) DF-GLS statistic

r(cv 1) 1% critical value

r(cv 5) 5% critical value

r(cv 10) 10% critical value

Otherwise, dfgls stores the following in r():

Scalars

r(maxlag) highest lag order 𝑘
r(N) number of observations

r(siclag) lag chosen by SIC

r(maiclag) lag chosen by modified AIC

r(optlag) lag chosen by sequential-𝑡
r(siclag) lag chosen by SIC
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r(maiclag) lag chosen by modified AIC

r(optlag) lag chosen by sequential-𝑡
r(sicmin) minimum SIC

r(maicmin) minimum MAIC

r(optrmse) RMSE for sequential-𝑡 method
r(sicrmse) RMSE for SIC method

r(maicrmse) RMSE for MAIC method

Matrices

r(results) 𝑘, MAIC, SIC, RMSE, and DF-GLS statistics

r(cvalues) 𝑘, DF-GLS statistics, and critical values

Methods and formulas
dfgls tests for a unit root. There are two possible alternative hypotheses: 𝑦𝑡 is stationary around a

linear trend or 𝑦𝑡 is stationary with no linear time trend. Under the first alternative hypothesis, the DF-GLS

test is performed by first estimating the intercept and trend via GLS. The GLS estimation is performed by

generating the new variables, ̃𝑦𝑡, 𝑥𝑡, and 𝑧𝑡, where

̃𝑦1 = 𝑦1

𝑦𝑡 = 𝑦𝑡 − 𝛼∗𝑦𝑡−1 𝑡 = 2, . . . , 𝑇
𝑥1 = 1
𝑥𝑡 = 1 − 𝛼∗ 𝑡 = 2, . . . , 𝑇
𝑧1 = 1
𝑧𝑡 = 𝑡 − 𝛼∗(𝑡 − 1)

and 𝛼∗ = 1 − (13.5/𝑇 ). An OLS regression is then estimated for the equation

̃𝑦𝑡 = 𝛿0𝑥𝑡 + 𝛿1𝑧𝑡 + 𝜖𝑡

The OLS estimators ̂𝛿0 and
̂𝛿1 are then used to remove the trend from 𝑦𝑡; that is, we generate

𝑦∗ = 𝑦𝑡 − ( ̂𝛿0 + ̂𝛿1𝑡)

Finally, we perform an augmented Dickey–Fuller test on the transformed variable by fitting the OLS

regression

Δ𝑦∗
𝑡 = 𝛼 + 𝛽𝑦∗

𝑡−1 +
𝑘

∑
𝑗=1

𝜁𝑗Δ𝑦∗
𝑡−𝑗 + 𝜖𝑡 (1)

and then test the null hypothesis 𝐻0∶ 𝛽 = 0 by using tabulated critical values.

To perform the DF-GLS test under the second alternative hypothesis, we proceed as before but de-

fine 𝛼∗ = 1 − (7/𝑇 ), eliminate 𝑧 from the GLS regression, compute 𝑦∗ = 𝑦𝑡 − 𝛿0, fit the augmented

Dickey–Fuller regression by using the newly transformed variable, and perform a test of the null hypoth-

esis that 𝛽 = 0 by using the tabulated critical values.

dfgls reports the DF-GLS statistic and its critical values obtained from the regression in (1) for 𝑘 ∈
{1, 2, . . . , 𝑘max}. By default, dfgls sets 𝑘max = floor[12{(𝑇 + 1)/100}0.25] as proposed by Schwert
(1989), although you can override this choice with another value. The sample size available with 𝑘max
lags is used in all the regressions. Because there are 𝑘max lags of the first-differenced series, 𝑘max + 1

observations are lost, leaving𝑇 −𝑘max observations. dfgls requires that the sample of𝑇 +1 observations

on 𝑦𝑡 = (𝑦0, 𝑦1, . . . , 𝑦𝑇) have no gaps.
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dfgls reports the results of three different methods for choosing which value of 𝑘 to use. These are

method 1, the Ng–Perron sequential 𝑡; method 2, the minimum Schwarz information criterion (SIC); and

method 3, the Ng–Perron modified Akaike information criterion (MAIC). Although the SIC has a long

history in time-series modeling, the Ng–Perron sequential 𝑡 was developed by Ng and Perron (1995),

and the MAIC was developed by Ng and Perron (2000).

The SIC can be calculated using either the log likelihood or the sum-of-squared errors from a regres-

sion; dfgls uses the latter definition. Specifically, for each 𝑘

SIC = ln(r̂mse2) + (𝑘 + 1) ln(𝑇 − 𝑘max)
(𝑇 − 𝑘max)

where

r̂mse = 1
(𝑇 − 𝑘max)

𝑇
∑

𝑡=𝑘max+1
̂𝑒2
𝑡

dfgls reports the value of the smallest SIC and the 𝑘 that produced it.

Ng and Perron (1995) derived a sequential-𝑡 algorithm for choosing 𝑘:

i. Set 𝑛 = 0 and run the regression in method 2 with all 𝑘max−𝑛 lags. If the coefficient on 𝛽𝑘max
is significantly different from zero at level 𝛼, choose 𝑘 to 𝑘max. Otherwise, continue to ii.

ii. If 𝑛 < 𝑘max, set 𝑛 = 𝑛 + 1 and continue to iii. Otherwise, set 𝑘 = 0 and stop.

iii. Run the regression in method 2 with 𝑘max−𝑛 lags. If the coefficient on 𝛽𝑘max−𝑛 is significantly

different from zero at level 𝛼, choose 𝑘 to 𝑘max − 𝑛. Otherwise, return to ii.

Per Ng and Perron (1995), dfgls uses 𝛼 = 10%. dfgls reports the 𝑘 selected by this sequential-𝑡
algorithm and the r̂mse from the regression.

Method 3 is based on choosing 𝑘 to minimize the MAIC. The MAIC is calculated as

MAIC(𝑘) = ln(r̂mse2) + 2{𝜏(𝑘) + 𝑘}
𝑇 − 𝑘max

where

𝜏(𝑘) = 1
r̂mse

2
̂𝛽 2
0

𝑇
∑

𝑡=𝑘max+1
̃𝑦 2
𝑡

and ̃𝑦 was defined previously.

Critical values

By default, dfgls uses the 5% and 10% critical values computed from the response surface analysis

of Cheung and Lai (1995). Because Cheung and Lai (1995) did not present results for the 1% case, the

1% critical values are always interpolated from the critical values presented by ERS.

ERS presented critical values, obtained from simulations, for the DF-GLS test with a linear trend and

showed that the critical values for the mean-only DF-GLS test were the same as those for the ADF test. If

dfgls is run with the ers option, dfgls will present interpolated critical values from these tables. The

method of interpolation is standard. For the trend case, below 50 observations and above 200 there is no

interpolation; the values for 50 and ∞ are reported from the tables. For a value 𝑁 that lies between two

values in the table, say, 𝑁1 and 𝑁2, with corresponding critical values CV1 and CV2, the critical value
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CV = CV1 + 𝑁 − 𝑁1
𝑁1

(CV2 − CV1)

is presented. The same method is used for the mean-only case, except that interpolation is possible for

values between 50 and 500.
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