
Intro 2 — A tour of concepts and commands

Description Remarks and examples Also see

Description
There is one key concept on which the collection system is built—tags.

In this entry, we introduce tags and how they are created and used by the collect commands. Along

the way, we will introduce several of the most important collect commands. Our focus here is on

concepts and general features. We will not attempt to cover everything. See [TABLES] Intro 3 for the

quickest overview of the features.

We make no attempt in this entry to create pretty or interesting tables. Our sole purpose is to introduce

concepts and commands.

Remarks and examples
Remarks are presented under the following headings:

Tags, dimensions, and levels
Introducing collect:
Introducing collect layout
Introducing collect recode

Using collect layout
Selecting specific levels of a dimension

What is in my collection?
Introducing collect levelsof
Introducing collect label list
Where do result labels come from?
Introducing collect label levels
Introducing collect label save
Introducing collect label use

Interactions in collect layout
Introducing collect style cell
Introducing collect preview
Reordering columns
More layout
Introducing collect style autolevels

What is in my collection, regression edition
The result levels r b, r se, ...
The colname dimension
Labels on levels of dimension colname
collect layout with regression results
Introducing collect style showbase
Tables of model statistics

What is in my collection, multiple-equation models (dimension coleq)
What is in my collection, collecting results from multiple commands (dimension cmdset)
Seeing what is my collection

Introducing collect dims
Factor variables in regressions and other commands

Special dimensions created by table
Dimension variables
Variables from statistic() option—dimension var
Dimension colname and matching to regressions
Index of command() options—dimension command
Index of command() and statistic() options—dimension statcmd
Other dimensions

1

https://www.stata.com/manuals/tablesintro3.pdf#tablesIntro3

Intro 2 — A tour of concepts and commands 2

Let’s talk styles
Overview
Basic targeting
Advanced targeting
Saving and using

Exporting
Saving collections
Managing collections

Tags, dimensions, and levels
Your goal is to construct tables from the results of one or more commands. You need something to

organize results from commands in such a way that you can conveniently place the results onto the rows

and columns of tables. You would also like to control how everything looks, from the row and column

headers to numeric formats, or even to the background color of an emphasized result. You do all that

using the collection system, and the collection system needs to do lots of bookkeeping. The bookkeeping

system for collect is tags.

We start by collecting results. Collecting results is as simple as placing the prefix collect in front

of any command that returns results. Let’s also place a by prefix in front of our command so we have

results by each level of the by variables.

https://www.stata.com/manuals/tablescollectget.pdf#tablescollectget
https://www.stata.com/manuals/dby.pdf#dby

Intro 2 — A tour of concepts and commands 3

Introducing collect:
. use https://www.stata-press.com/data/r19/nhanes2l
(Second National Health and Nutrition Examination Survey)
. collect clear
. sort sex region
. collect: by sex region: summarize weight

-> sex = Male, region = NE
Variable Obs Mean Std. dev. Min Max

weight 1,018 78.15295 12.89267 47.17 129.84

-> sex = Male, region = MW
Variable Obs Mean Std. dev. Min Max

weight 1,310 78.24791 13.50132 41.5 139.03

-> sex = Male, region = S
Variable Obs Mean Std. dev. Min Max

weight 1,332 77.5923 14.27054 30.84 158.53

-> sex = Male, region = W
Variable Obs Mean Std. dev. Min Max

weight 1,255 77.98812 13.6871 44.11 175.88

-> sex = Female, region = NE
Variable Obs Mean Std. dev. Min Max

weight 1,078 65.50096 14.0839 39.12 148.21

-> sex = Female, region = MW
Variable Obs Mean Std. dev. Min Max

weight 1,464 66.50488 14.7564 34.93 159.44

-> sex = Female, region = S
Variable Obs Mean Std. dev. Min Max

weight 1,521 67.16907 15.19103 35.27 138.91

-> sex = Female, region = W
Variable Obs Mean Std. dev. Min Max

weight 1,373 66.11902 14.66786 36.06 134.61

So we have computed means, standard deviations, and the minimum and maximum of weight for

each combination of the levels of variables sex and region. By placing the collect: prefix in front

of the by: command, we have collected those results into the default collection. We collect cleared
first to be sure we were starting clean and not adding to an existing collection.

For readers more familiar with pounds, these weights are in kilograms; you can double these numbers

in your head. Or multiply by 2.2 to be more accurate.

Intro 2 — A tour of concepts and commands 4

What do we mean by “collected”? The results have been stored, but more importantly they have been

tagged. Let’s trim down all of that by: output and focus on the means. Here is a “picture” of what

collect: has done.

=============================== ==
by sex region: summarize weight --> Collection
=============================== ==

Or, more specifically,

=============================== ==
Variable | ... Mean value tags

----------+-------------------- ------ -----------------------------------

sex = Male, region = NE
weight | ... 78.15295 ... --> 78.15 sex[Male] region[NE] result[mean]

sex = Male, region = MW
weight | ... 78.24791 ... --> 78.25 sex[Male] region[MW] result[mean]

sex = Male, region = S
weight | ... 77.5923 ... --> 77.59 sex[Male] region[S] result[mean]

sex = Male, region = W
weight | ... 77.98812 ... --> 77.99 sex[Male] region[W] result[mean]

sex = Female, region = NE
weight | ... 65.50096 ... --> 65.50 sex[Female] region[NE] result[mean]

sex = Female, region = MW
weight | ... 66.50488 ... --> 66.50 sex[Female] region[MW] result[mean]

sex = Female, region = S
weight | ... 67.16907 ... --> 67.17 sex[Female] region[S] result[mean]

sex = Female, region = W
weight | ... 66.11902 ... --> 66.11 sex[Female] region[W] result[mean]

=============================== ==

Consider the first mean, 78.15. In the collection, it is tagged with sex[Male], region[NE],
result[mean]. The second mean is tagged with sex[Male], region[MW], result[mean]. So one

of its tags is the same as the first value—both are tagged sex[Male]. The region tags differ across the

two means—region[MW] and region[NE]. All the values are tagged with result[mean].

Scanning the “picture”, it is clear that each value is tagged with the levels of the sex and region
variables from its by group. That seems sensible.

Each tag has two parts—part1[part2]. Having two parts lets us group related things using part1.

Having two parts also lets us refer to all the tags with the same part1 by just saying the name of part1

and not having to enumerate all the names in part2.

In the collection system, we do not call them “part1” and “part2”. We could, but eventually this entry

would start to sound like a Dr. Seuss children’s book. We call “part1” dimension, and we call “part2”

level, or level within dimension, dimension[level].

Every tag always has this two-part structure.

In our collection, we have considered three dimensions—sex, region, and result. Dimension sex
has two levels—Male and Female. Dimension region has four levels—NE, MW, S, and W.

We can specify all levels in the sex dimension by typing either sex[Male] sex[Female] or just sex.

Intro 2 — A tour of concepts and commands 5

Introducing collect layout

Let’s take advantage of referring to groups of tags by just their dimension name and create our first

table. The command for laying out tables is collect layout, and it wants us to specify what goes on
the rows and columns of the table. We computed means across two categorical variables, and collect
tagged those means with the categories of those variables. Those tags seem like the natural things to put

on the rows and columns of our table.

The basic syntax of collect layout is

collect layout (row tags) (column tags) (table tags)

We will specify all the sex tags for the rows and all the region tags for the columns. Recalling that

the dimension names typed alone represent all the tags in the dimension, we type

. collect layout (sex) (region) (result[mean])
Collection: default

Rows: sex
Columns: region
Tables: result[mean]

Table 1: 2 x 4

NE MW S W

Male 78.15 78.25 77.59 77.99
Female 65.50 66.50 67.17 66.12

The row headers in the table result from enumerating all the tags in dimension sex—Male and

Female. The column headers result from enumerating all the tags in the dimension region—NE, MW,
S, and W. Each cell in the table is identified by the intersection of the levels of sex and region from

the cell’s row and column headers. So the first cell is identified by sex[Male] and region[NE], and
it is filled in with the value in the collection that has those two tags (78.15). Continuing down the first

column, we see the cell at the bottom left of the table gets its tags from its row and column and is thus

sex[Female] and region[NE], which is 65.50 from the collection. And so on. That is how collect
layout fills in a simple table like ours.

The only thing a bit surprising is that we specified something for the table tags, result[mean], when
we wanted only one table. We have not discussed it yet, but summarize stored multiple results, and the

collect prefix collected all of them. In addition to the means, our collection contains the standard

deviation, the minimum, the maximum, and several other results. So we needed to tell collect layout
which statistic we wanted, and we did that by specifying a table tag. We wanted only one statistic, means,

and only one table, so we specified only one tag—result[mean].

We have been telling a little fib about the names of some dimension levels. The by variables sex and

region are numeric variables in the dataset, and their values are labeled with the labels we see on the

by results and in the table we produced—Male, Female, NE, MW, S, and W. To ease in mapping the results
of our by: summarize command to the tags in the collection, we pretended that the levels of sex and

region were the level labels. In truth, the collection mirrors the dataset. The levels of sex are actually

numeric—1 for Male and 2 for Female. The same is true for the levels of region—1 for NE, 2 for MW, 3
for S, and 4 for W. The collection stores the labels for the levels separately.

We were not fibbing about mean in dimension result. mean really is the name of the level for the

means. Dimension levels can be either numeric or string. If the string contains spaces, you must enclose

it in quotes wherever it is used.

https://www.stata.com/manuals/tablescollectlayout.pdf#tablescollectlayout
https://www.stata.com/manuals/dlabel.pdf#dlabel

Intro 2 — A tour of concepts and commands 6

So to be more truthful, the collection looks more like

==
Collection

==
value tags
----- -----------------------------------

78.15 sex[1] region[1] result[mean]

78.25 sex[1] region[2] result[mean]

77.59 sex[1] region[3] result[mean]

77.99 sex[1] region[4] result[mean]

65.50 sex[2] region[1] result[mean]

66.50 sex[2] region[2] result[mean]

67.17 sex[2] region[3] result[mean]

66.12 sex[2] region[4] result[mean]
--

dimension level label
--------- ----- ------
sex 1 Male

2 Female

region 1 NE
2 MW
3 S
4 W

result mean Mean
==

From here on, we will use the actual numeric levels created by collect for dimensions sex and

region.

Introducing collect recode

As a sidebar, with a small collection like ours, we could have easily turned our fib into the truth. The

command collect recode recodes dimension levels from one value to another. Were we to type

. collect recode sex 1=Male 2=Female

. collect recode region 1=NE 2=MW 3=S 4=W

then everything we said above would be true. And we could use terms like sex[Female] rather than

sex[2] in everything we type below.

Using collect layout
You might be thinking that you can do everything we have done so far with the table command, and

you are right. In fact, you could have created a collection that is very similar to the one we are working

with by typing

. table (sex) (region), statistic(mean weight)

https://www.stata.com/manuals/tablescollectrecode.pdf#tablescollectrecode
https://www.stata.com/manuals/rtable.pdf#rtable

Intro 2 — A tour of concepts and commands 7

Let’s start doing things that you cannot do with table directly.

By the way, the collection that table creates is so similar to the one we created with collect: by:
that you could do everything we do below after either the table command above or the collect: by:
command we started with. The main difference you would see is that table computed subtotals for sex
and region and created levels for those totals in the sex and region dimensions. You can prevent that

by adding the option nototals.

First, let’s transpose our table by swapping where sex and region appear in the command.

. collect layout (region) (sex) (result[mean])
Collection: default

Rows: region
Columns: sex
Tables: result[mean]

Table 1: 4 x 2

Male Female

NE 78.15 65.50
MW 78.25 66.50
S 77.59 67.17
W 77.99 66.12

Wait! You say, “I could have done that with table by typing”.

. table (region) (sex), statistic(mean weight)

That is not the same thing. table went back through the dataset, recomputed statistics, and then

presented them in tabular form. If your dataset had 1 billion observations, that could take some time. We

just told collect layout to show us the existing collection in a different way.

Let’s go on.

Selecting specific levels of a dimension

We have been using dimensions sex and region to represent all the tags associated with their levels.

That implies that we did not need to use all the levels of sex and region in our layout command. And,

indeed, that is true. We could type just a few tags specifically, or even one.

. collect layout (region[1] region[3] region[4]) (sex[2]) (result[mean])
Collection: default

Rows: region[1] region[3] region[4]
Columns: sex[2]
Tables: result[mean]

Table 1: 3 x 1

Female

NE 65.50
S 67.17
W 66.12

Intro 2 — A tour of concepts and commands 8

We explicitly typed out the list of region tags. There is a shorthand for specifying lists of levels

within a dimension—type the list within the brackets. The following would have produced an identical

table:

. collect layout (region[1 3 4]) (sex[2]) (result[mean])

Taken to extremes, collect layout is the way to pull a single value out of a collection.

. collect layout (region[3]) (sex[2]) (result[mean])
Collection: default

Rows: region[3]
Columns: sex[2]
Tables: result[mean]

Table 1: 1 x 1

Female

S 67.17

What is in my collection?
We have been ignoring that result dimension. Let’s rectify that.

Introducing collect levelsof

First, let’s list the levels of result.
. collect levelsof result
Collection: default
Dimension: result

Levels: N Var max mean min sd sum sum_w

If you use summarize much, that list of levels may look familiar. Let’s use that list to be a little

more explicit about what values collect actually collects. It collects everything that is returned by your

command in e() or r(). The final summarize from our by command is the last r-class command we

have run. Here are the results returned by that summarize.

. return list
scalars:

r(sum) = 90781.40996932983
r(max) = 134.6100006103516
r(min) = 36.06000137329102
r(sd) = 14.66785984772278

r(Var) = 215.1461125124382
r(mean) = 66.11901672930068

r(sum_w) = 1373
r(N) = 1373

The names of the r() results returned by summarize are a one-to-one match with the level names in

dimension result. They are ordered differently because collect keeps the levels sorted alphabetically

(with capitals first). Regardless, the names of the levels are exactly the names of the r() results, with

“r()” stripped away. The same would be true if we collected results from a command that returns in

e(). Every result is collected, and it is tagged with its r() or e() name. Well, almost every result; we

will amend that in collect get, but you will not care.

https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/tablescollectget.pdf#tablescollectget

Intro 2 — A tour of concepts and commands 9

As we saw earlier, every collected value has multiple tags, but one of them will always be its

result[name], where name is taken from its e() or r() name.

The simple list of levels from collect levelsof does not tell us much. We can learn a bit more

about the levels by listing their labels.

Introducing collect label list

. collect label list result, all
Collection: default
Dimension: result

Label: Result
Level labels:

N Number of observations
Var Variance
max Maximum

mean Mean
min Minimum
sd Std. dev.

sum Sum of variable
sum_w Sum of the weights

Nowwe are getting somewhere. Those results are everything that was reported on the summarize output
plus a “Sum of variable”, “Sum of the weights”, and a “Variance”.

Where do result labels come from?

Where did those labels come from? They are system default labels for collections. There is a default

label for nearly every result returned in r() or e() by official commands.

Introducing collect label levels

It is easy for you to change a label. Perhaps you think “Number of observations” is too verbose,
particularly if you want to make it a column in a table. Let’s make it way shorter; lots of folks just go

with “N”.
. collect label levels result N ”N”, modify

Maybe we should also shorten the other two long labels.

. collect label levels result sum ”Sum” sum_w ”Sum wts.”, modify

Introducing collect label save

Later, after you have made lots of label changes, you can save your preferred labels in a file. Type

. collect label save mylabels

where mylabels is whatever filename you prefer. Over time, you may override most of the default

system labels.

Intro 2 — A tour of concepts and commands 10

Introducing collect label use

You can later apply those labels to a collection by typing

. collect label use mylabels

You do not have to worry if your collection does not contain some of the things you are labeling. The

labels exist separately, and there is no harm in labeling things not in your collection. In fact, if those

things are later created in your collection because you collect more results, they will get your labels

automatically. So you can type collect label use mylabels when you first create a collection or

right before you create a table; it makes no difference.

Now that we know what other results are tagged by dimension result, let’s put some of those in a
table. One possibility that comes to mind is to remove the shackles of result[mean] from our earlier

layout command and ask for all levels of result as tables.

. collect layout (region) (sex) (result)
Collection: default

Rows: region
Columns: sex
Tables: result

Table 1: 4 x 2
Table 2: 4 x 2
Table 3: 4 x 2
Table 4: 4 x 2
Table 5: 4 x 2
Table 6: 4 x 2
Table 7: 4 x 2
Table 8: 4 x 2

N

Male Female

NE 1018.00 1078.00
MW 1310.00 1464.00
S 1332.00 1521.00
W 1255.00 1373.00

Variance

Male Female

NE 166.22 198.36
MW 182.29 217.75
S 203.65 230.77
W 187.34 215.15

(output omitted)

Sum wts.

Male Female

NE 1018.00 1078.00
MW 1310.00 1464.00
S 1332.00 1521.00
W 1255.00 1373.00

Intro 2 — A tour of concepts and commands 11

Interactions in collect layout
Well, that was easy to type but not very interesting. For a table like this, it is time to learn about

interactions.

First, let’s consider our collection for a minute. We chose this particular problem earlier because it

was two dimensional, just like many tables. We chose region for the rows and sex for the columns.

The interaction of those two dimensions produces the cells in the table. By “interaction”, we mean all

combinations of the levels of region with the levels of sex. In one cell, you must be both male and in
the Northeast. In another cell, you must be both female and in the South.

But wait. Our collection does not really have just two dimensions. That was an artifact of our consider-

ing only the mean. We have a whole other dimension—result. Our results really form a cube—region
X sex X result. There is a value in every cell of that cube. Now you see the reason we call part1 of our

tags a dimension.

collect layout automatically interacts the row and column specifications. For our current example,

each row represents a level of dimension region, and each column represents a level of sex. Each cell
results from the interaction of the levels of its row and column. When we added the result dimension

to create separate tables, each sex, region, and result triad represented one of the cells in one of the

tables. Each cell was the result of a three-way interaction.

There is a term for interactions that you place on the rows of tables—“super rows”. Likewise, tables

can have super columns. If a table has either super rows or super columns, it is representing an underlying

three-dimensional set of results. If it has both super rows and super columns, it is representing a four-

dimensional set of results. You might have super-super rows or super-super columns. collect allows

over 20 supers in each of the row, column, and table specifications; so you can represent up to silly-

dimensional results.

Adding a super row or a super column is as easy as explicitly interacting two dimensions in the

collect layout specification. You interact two dimensions by placing a # between them. Let’s put our

original row and column dimensions both onto the rows.

. collect layout (sex#region) (result[mean])
Collection: default

Rows: sex#region
Columns: result[mean]
Table 1: 10 x 1

Mean

Male
NE 78.15
MW 78.25
S 77.59
W 77.99

Female
NE 65.50
MW 66.50
S 67.17
W 66.12

Now the levels of dimension sex form super rows and the levels of region form rows within sex.
These are the same results from our very first table, just organized differently.

Intro 2 — A tour of concepts and commands 12

Wemoved result[mean] to the column specification because there was no longer a reason to specify
a tables dimension.

We could have specified a tables dimension and typed

. collect layout (sex#region) () (result[mean])

Note that an empty () is perfectly acceptable. It indicates that there are no tags for the columns.

We could even have pulled the interaction of dimension result into the rows specification and not

specified any columns or tables.

. collect layout (sex#region#result[mean])

All of these commands produce a single column of results. Type them and see. The labels change a

bit because collect layout tries to keep you informed of what you are seeing.

Now we are ready to put our three-dimensional data onto a table. Let’s try result on the columns of

the table.

. collect layout (sex#region) (result)
Collection: default

Rows: sex#region
Columns: result
Table 1: 10 x 8

N Variance Maximum Mean Minimum Std. dev. Sum Sum wts.

Male
NE 1018.00 166.22 129.84 78.15 47.17 12.89 79559.70 1018.00
MW 1310.00 182.29 139.03 78.25 41.50 13.50 1.0e+05 1310.00
S 1332.00 203.65 158.53 77.59 30.84 14.27 1.0e+05 1332.00
W 1255.00 187.34 175.88 77.99 44.11 13.69 97875.09 1255.00

Female
NE 1078.00 198.36 148.21 65.50 39.12 14.08 70610.03 1078.00
MW 1464.00 217.75 159.44 66.50 34.93 14.76 97363.14 1464.00
S 1521.00 230.77 138.91 67.17 35.27 15.19 1.0e+05 1521.00
W 1373.00 215.15 134.61 66.12 36.06 14.67 90781.41 1373.00

We hope that is what you were expecting.

Introducing collect style cell

Some of the numbers are oddly formatted, for example, two decimal places on the observation count!

This is a good time to admit that we cheated a bit at the outset. We changed the default formatting to get

pretty numbers we could talk about. If you have been following along, you were already onto us because

your tables showed more decimal places than ours.

Here is what we typed earlier but did not tell you about:

. collect style cell result, nformat(%8.2f)

Intro 2 — A tour of concepts and commands 13

Styles control literally everything about how a table looks. Without getting too much into styles right

now, what our style command “said” was, “Set the numeric format for all results to be %8.2f.” Let’s set

it back to its system default and redraw our table.

. collect style cell result, nformat(%9.0g)

. collect preview

N Variance Maximum Mean Minimum Std. dev. Sum Sum wts.

Male
NE 1018 166.221 129.84 78.15295 47.17 12.89267 79559.7 1018
MW 1310 182.2857 139.03 78.24791 41.5 13.50132 102504.8 1310
S 1332 203.6484 158.53 77.5923 30.84 14.27054 103352.9 1332
W 1255 187.3368 175.88 77.98812 44.11 13.6871 97875.09 1255

Female
NE 1078 198.3562 148.21 65.50096 39.12 14.0839 70610.03 1078
MW 1464 217.7513 159.44 66.50488 34.93 14.7564 97363.14 1464
S 1521 230.7675 138.91 67.16907 35.27 15.19103 102164.2 1521
W 1373 215.1461 134.61 66.11902 36.06 14.66786 90781.41 1373

Introducing collect preview

collect preview! That is a new command. We were not changing the layout, so there was no need

to specify a new layout. We just asked collect to preview our existing layout using the style settings

currently in effect.

Even so, “preview” seems an odd word. What we see in the Results window is often not our end goal.

Often, we are creating a table to be exported to Microsoft Word, HTML, LATEX, or some other format.

Moreover, some of the styles we use cannot be shown in the Results window. So this is just a preview

of what you might ultimately obtain when you export your results.

Note that collect preview does not display the report about the structure of the table that collect
layout displays. collect preview provides cleaner output—just the table.

With the “new” numeric format, our table shows the numbers we should have been seeing all along.

https://www.stata.com/manuals/tablescollectexport.pdf#tablescollectexport

Intro 2 — A tour of concepts and commands 14

Reordering columns

Continuing with collect layout, you can select the levels of dimension result you want, and in

any order you want, perhaps,

. collect layout (sex#region) (result[mean sd min max N])
Collection: default

Rows: sex#region
Columns: result[mean sd min max N]
Table 1: 10 x 5

Mean Std. dev. Minimum Maximum N

Male
NE 78.15295 12.89267 47.17 129.84 1018
MW 78.24791 13.50132 41.5 139.03 1310
S 77.5923 14.27054 30.84 158.53 1332
W 77.98812 13.6871 44.11 175.88 1255

Female
NE 65.50096 14.0839 39.12 148.21 1078
MW 66.50488 14.7564 34.93 159.44 1464
S 67.16907 15.19103 35.27 138.91 1521
W 66.11902 14.66786 36.06 134.61 1373

Change the order of the levels specified to collect layout, and you change the order of the columns
on the table.

. collect layout (sex#region) (result[N min mean max sd N])

You can even repeat levels.

. collect layout (sex#region) (result[max max max max max max])

(Tabulus maximus?)

Type either command and see.

We could even present just the counts as a frequency cross-tabulation. Feel free to type

. collect layout (region) (sex) (result[N])

You can also organize the rows and columns differently. You might type any of these layouts or try

some of your choosing.

. collect layout (sex#result[mean N]) (region)

. collect layout (region#result[mean min max]) (sex)

. collect layout (region#result[mean min max]) (sex)

Intro 2 — A tour of concepts and commands 15

More layout

Our result options increase dramatically if we collect summarize, detail.
. collect clear
. collect: by sex region: summarize weight, detail

Let’s see what our result choices are now.

. collect label list result, all
Collection: default
Dimension: result

Label: Result
Level labels:

N Number of observations
Var Variance

kurtosis Kurtosis
max Maximum

mean Mean
min Minimum
p1 1st percentile

p10 10th percentile
p25 25th percentile
p5 5th percentile

p50 50th percentile
p75 75th percentile
p90 90th percentile
p95 95th percentile
p99 99th percentile
sd Std. dev.

skewness Skewness
sum Sum of variable

sum_w Sum of the weights

We could create a table of whatever percentile distributions interest us, perhaps the quartiles,

. collect layout (sex#region) (result[min p25 p50 p75 max])

or a finer grain,

. collect layout (sex#region) (result[p5 p10 p25 p50 p75 p90 p95])

Intro 2 — A tour of concepts and commands 16

The authors typed that and found that the labels on the percentiles are far too long. So let’s shorten

them.

. collect label levels result p5 ”5th” p10 ”10th” p25 ”25th”
> p50 ”50th” p75 ”75th” p90 ”90th” p95 ”95th”, modify
. collect preview

5th 10th 25th 50th 75th 90th 95th

Male
NE 59.42 62.82 69.63 76.89 85.62 95.82 101.61
MW 58.97 62.655 69.17 77.055 85.16 95.2 102.97
S 57.49 60.56 67.19 76.43 85.84 95.03 103.19
W 57.95 62.03 68.49 76.77 85.96 95.03 101.49

Female
NE 47.51 50.24 55.45 62.88 72.24 84.48 91.74
MW 48.31 50.69 56.59 63.62 73.425 85.39 94.46
S 47.74 50.8 56.36 64.41 75.3 86.98 95.82
W 47.85 50.69 56.25 63.39 72.92 85.96 95.6

We would like to have that %8.2f format back about now.

If you are a fan of third and fourth moments, you could assess and compare all the distributions using

skewness and kurtosis.

. collect layout (sex#region) (result[mean sd skewness kurtosis])
Collection: default

Rows: sex#region
Columns: result[mean sd skewness kurtosis]
Table 1: 10 x 4

Mean Std. dev. Skewness Kurtosis

Male
NE 78.15295 12.89267 .5601461 3.705207
MW 78.24791 13.50132 .7798423 4.354643
S 77.5923 14.27054 .6834379 4.384609
W 77.98812 13.6871 .8854262 5.942613

Female
NE 65.50096 14.0839 1.154802 5.090129
MW 66.50488 14.7564 1.327805 6.098792
S 67.16907 15.19103 1.100521 4.796148
W 66.11902 14.66786 1.231803 5.036233

Introducing collect style autolevels

There is an alternative way to specify the levels on dimension result that we used in the last two

tables. Instead of specifying them directly in the collect layout command, we can preset levels to be

used when a dimension name is specified without levels. If you type

. collect style autolevels result mean sd skewness kurtosis

then whenever result appears alone in a collect layout command, only levels mean, sd, skewness,
and kurtosis will be enumerated. We call these levels “automatic levels”. It is just as though you typed

result[mean sd skewness kurtosis].

Intro 2 — A tour of concepts and commands 17

So typing

. collect style autolevels result mean sd skewness kurtosis

. collect layout (sex#region) (result)

produces exactly the same result as

. collect layout (sex#region) (result[mean sd skewness kurtosis])

Every time you type collect style autolevels on the same dimension, it adds whatever levels

you type to any existing autolevels for the dimension. So typing

. collect style autolevels result p5 p10 p25

. collect style autolevels result p50 p75 p90 p95

is equivalent to typing

. collect style autolevels result p5 p10 p25 p50 p75 p90 p95

Typing

. collect style autolevels result, clear

. collect style autolevels result p5 p10 p25 p50 p75 p90 p95

. collect layout (sex#region) (result)

produces exactly the same table we created earlier when we typed

. collect layout (sex#region) (result[p5 p10 p25 p50 p75 p90 p95])

collect style autolevels can be particularly convenient when you are exploring several table

layouts and you want to use the same result levels on all the tables. Or, for that matter, the same levels

of any dimension used in the table.

What is in my collection, regression edition
We have already seen one unusual dimension—result. The dimensions representing categorical

variables, sex and region, are easy to understand. Anyone who has created a cross-tabulation has used
categorical variables as the rows and columns of a table. Dimension result was a little bit different.

It is just a place where we are keeping related identifiers (levels)—in this case, all the names of results

returned in r() and e().

We warn you, collect uses other unusual dimensions. And it uses a few unusual levels.

Consider the output from a regression.

. regress bpsystol age weight i.sex
Source SS df MS Number of obs = 10,351

F(3, 10347) = 1501.75
Model 1709209.9 3 569736.633 Prob > F = 0.0000

Residual 3925460.13 10,347 379.381476 R-squared = 0.3033
Adj R-squared = 0.3031

Total 5634670.03 10,350 544.412563 Root MSE = 19.478

bpsystol Coefficient Std. err. t P>|t| [95% conf. interval]

age .6374325 .0111334 57.25 0.000 .6156088 .6592562
weight .4170339 .013474 30.95 0.000 .3906221 .4434456

sex
Female .8244702 .4140342 1.99 0.046 .0128832 1.636057

_cons 70.13615 1.187299 59.07 0.000 67.80881 72.46348

https://www.stata.com/manuals/tablescollectstyleautolevels.pdf#tablescollectstyleautolevels

Intro 2 — A tour of concepts and commands 18

The result levels r b, r se, . . .

The results are already laid out as a table with the coefficient names on the rows and the coefficient

statistics on the columns. Neither the rows nor the columns fit into the dimension and level names we

have been using.

Let’s consider the columns first—the coefficient statistics. We certainly have an appropriate dimen-

sion where we can place these: the result dimension. What is tricky is how to name their levels. The

coefficients themselves are saved as a row vector named e(b), so we could name their level b in result,
as we have all the other stored results. Spoiler alert, we do not.

The problem is we do not store vectors for the standard error, the 𝑡 statistic, the 𝑝-value, or the confi-
dence interval. These are stored in hidden places or can be derived from other results. You do not care

about that; you want to use what you see in the regress results in your own tables. So we gave these

results special level names— r b for the regression coefficients, r se for the standard errors, and so

on. Here is the full list of special level names for regression and regressionlike results:

Identifier Result

r b coefficients or transformed coefficients reported by command

r se standard errors of r b
r z test statistics for r b
r z abs absolute values of r z
r df degrees of freedom for r b
r p 𝑝-values for r b
r lb lower bounds of confidence intervals for r b
r ub upper bounds of confidence intervals for r b
r ci confidence intervals for r b
r cri credible interval (CrI) of Bayesian estimates

r crlb lower bound of CrI of Bayesian estimates

r crub upper bound of CrI of Bayesian estimates

We admit the r is a bit much to type and requires explanation. There is a reason for the leading

underscore. collect will collect all the results from e() and r() for any official command or from any

command written by you or by other users. Those results could have any valid name. By convention, we

have told users that anything with a leading underscore is reserved for official names. There is also the

precedence of b[coefname] and se[coefname] being supported in expressions to retrieve coefficients

and their standard errors.

As an aside, all the r names you see above are now supported in expressions. After the regression

command above, you could type

. display _r_b[age] / _r_se[age]

to compute the 𝑡 statistic by hand and display it.

https://www.stata.com/manuals/u29.pdf#u29.4Downloadingandmanagingadditionsbyusers
https://www.stata.com/manuals/u11.pdf#u11.3Namingconventions

Intro 2 — A tour of concepts and commands 19

There is also a reason we chose r. Consider the logistic regression

. logistic highbp age weight i.sex
Logistic regression Number of obs = 10,351

LR chi2(3) = 2326.44
Prob > chi2 = 0.0000

Log likelihood = -5887.5446 Pseudo R2 = 0.1650

highbp Odds ratio Std. err. z P>|z| [95% conf. interval]

age 1.052054 .0014852 35.95 0.000 1.049147 1.054969
weight 1.044683 .001759 25.96 0.000 1.041242 1.048137

sex
Female 1.036659 .0498306 0.75 0.454 .9434528 1.139074

_cons .002525 .0004077 -37.05 0.000 .0018401 .003465

Note: _cons estimates baseline odds.

The default “coefficients” displayed after logistic are the odds ratios, not the raw coefficients.

You can see the raw coefficients instead by adding the option coef. The “r” in r b stands for “re-

ported”. After our logistic regression, the odds ratios, not the raw coefficients, are collected. In this case,

result[r b] tags the odds ratios. If we add coef to our command, or even if we replay the results

with the option coef,

. logistic, coef

the raw coefficients are collected. r b then stands for the raw coefficient estimates. You can collect

whichever transformation you prefer. When transformations are available, whatever you are reporting

is what is collected. Type two collect commands if you want to collect both transformed and raw

coefficients.

There are quite a few commands that report transformations of their coefficients—incidence rate

ratios for poisson, hazard ratios for stcox, standardized coefficients for sem, and several others. Many

of these estimators also have panel-data and multilevel commands.

The r results are collected after all regression and regression-like commands. The regression-like

commands include mean, proportion, ratio, bayesmh, margins, contrast, and others.

The colname dimension

There is still the issue of what dimension name we should use for the rows of a regression table. They

look like variables, so why not variable? Because those rows can contain lots of things that are not

variables: for example, the ancillary parameters for variance on many regression commands, parameters

on latent variables in sem and gsem, contrasts or expressions in margins, and so on.

collect uses the dimension colname to hold these variable/parameter/estimate tags. There truly is

no good meaningful name for all the things this dimension can hold.

There is also a technical reason for using colname. The r results are all related to e(b), and e(b)
is a row vector. Let’s list e(b) for our logistic regression.

. matrix list e(b)
e(b)[1,5]

highbp: highbp: highbp: highbp: highbp:
1b. 2.

age weight sex sex _cons
y1 .05074447 .04371396 0 .03600346 -5.981495

https://www.stata.com/manuals/rlogistic.pdf#rlogistic
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/ststcox.pdf#ststcox
https://www.stata.com/manuals/semsem.pdf#semsem
https://www.stata.com/manuals/rmean.pdf#rmean
https://www.stata.com/manuals/rproportion.pdf#rproportion
https://www.stata.com/manuals/rratio.pdf#rratio
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rcontrast.pdf#rcontrast
https://www.stata.com/manuals/semsem.pdf#semsem
https://www.stata.com/manuals/semgsem.pdf#semgsem

Intro 2 — A tour of concepts and commands 20

Those labels immediately above the matrix values are the column names for the matrix. All matrices

in Stata have row and column names. That way, you can refer to the rows and columns by name as well

as by index number. The matrix’s column names collectively are called its colname. We can use a macro

function to display just the column names.

. display ”‘: colname e(b)’”
age weight 1b.sex 2.sex _cons

Considering just e(b) (r b), collect is really collecting a matrix. To identify a cell in a matrix

collect not only needs a tag for the whole matrix, result[r b], but also needs tags for the specific
row and specific column that identify a particular cell. The column tags are placed in dimension colname
because that is what Stata calls the column names of a matrix. For our logistic model, the colname
tags associated with all the r results are colname[age], colname[weight], colname[1.sex],
colname[2.sex], and colname[cons].

If you guessed from the matrix we listed that there would be a rowname tag for the r b “matrix”

that we collected, you would be right. That tag is rowname[y]. You won’t use the rowname dimension

nearly so often as you will use the colname dimension.

Labels on levels of dimension colname

There is something else special about colname. We discussed earlier that the levels of the result
dimension are labeled using a set of system default labels. collect can also automatically label most

levels of colname. That is because most levels of colname are variable names. If a variable is labeled,

collect picks up that label and uses it to label the level. What is more, if a level represents a factor

variable, such as 2.sex, then collect labels that level of the factor variable with the appropriate value

label from the dataset. It sounds complicated, but it is really just doing what you want. When we type

. quietly collect: mean weight, over(sex)

. collect style autolevels result _r_b _r_se _r_ci

. collect layout (colname) (result)
Collection: default

Rows: colname
Columns: result
Table 1: 2 x 3

Coefficient Std. error 95% CI

Weight (kg) @ Male 77.98423 .1945289 77.60292 78.36555
Weight (kg) @ Female 66.39418 .1998523 66.00243 66.78593

we see “Male” and “Female” as part of our row headers, not “1” and “2”.

Note too that we just used some of the r levels of result and that we used dimension colname too.

No need for fanfare. They are just other levels and dimensions that we can use to lay out our tables.

colname is not the only dimension that picks up labels from variables. Dimensions rowname, coleq,
roweq, var, and across also fetch variable labels for the levels and factor-variable levels whenever they
can.

It turns out the r levels and the colname dimension are not truly unusual. They work just the way

any other levels or dimensions work. Their names are just arbitrary.

If you are not liking the row headers in the table above, you can change them. See collect style
row.

https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxmacro_fcn
https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxmacro_fcn
https://www.stata.com/manuals/tablescollectstylerow.pdf#tablescollectstylerow
https://www.stata.com/manuals/tablescollectstylerow.pdf#tablescollectstylerow

Intro 2 — A tour of concepts and commands 21

collect layout with regression results

We claimed this subsection was about regression collections, so we should at least create a basic table

of regression results from our first regression. First, we type

. collect clear

. collect: regress bpsystol age weight i.sex

Then, we type

. collect style autolevels result _r_b _r_se _r_z _r_p

. collect layout (colname) (result)
Collection: default

Rows: colname
Columns: result
Table 1: 5 x 4

Coefficient Std. error t p-value

Age (years) .6374325 .0111334 57.25 0.000
Weight (kg) .4170339 .013474 30.95 0.000
Male 0 0
Female .8244702 .4140342 1.99 0.046
Intercept 70.13615 1.187299 59.07 0.000

We used autolevels to specify the automatic levels for result. That looks a lot like the regression
output, except we did not ask for the confidence intervals, there is less column spacing, and this table

uses labels rather than variable names on the row headers.

Introducing collect style showbase

There is a lot we could do to make this table prettier, but let’s at least get rid of the row for Male. Male
is the base level for the factor variable i.sex and we do not need to see its zero coefficient. To turn off

displaying base levels for factor variables, we type

. collect style showbase off

Recall that we do not have to respecify our layout just to see the effect of style changes. We just type

. collect preview

Coefficient Std. error t p-value

Age (years) .6374325 .0111334 57.25 0.000
Weight (kg) .4170339 .013474 30.95 0.000
Female .8244702 .4140342 1.99 0.046
Intercept 70.13615 1.187299 59.07 0.000

The base level is gone.

That is all we are going to style on this table. We will have much more to say about styles in section

Let’s talk styles.

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesLetstalkstyles

Intro 2 — A tour of concepts and commands 22

At this point, it should come as no surprise that we can transpose the table by swapping the position

of colname and result in our layout.

. collect layout (result) (colname)
Collection: default

Rows: result
Columns: colname
Table 1: 4 x 4

Age (years) Weight (kg) Sex Intercept
Female

Coefficient .6374325 .4170339 .8244702 70.13615
Std. error .0111334 .013474 .4140342 1.187299
t 57.25 30.95 1.99 59.07
p-value 0.000 0.000 0.046 0.000

Let’s clear the automatic levels so they does not surprise us later.

. collect style autolevels result, clear

Okay, it did bite the authors when they were writing this entry, and we do not want you to be surprised

in the same way. It is pretty easy to convince yourself that collections are broken when you have an

autolevels set that is at odds with levels you are trying to report.

Tables of model statistics

Before we leave this simple regression, let’s look at one more thing. You may think that the regression

coefficients are the only “tabular” results we have collected. But there is another set of results lurking in

our collection, the model-level statistics. They are all about this one model, so collectively they are a set

of one-dimensional results. Even so, a one-dimensional table is still a table.

Intro 2 — A tour of concepts and commands 23

We can also tell that the model statistics have been collected by listing the labels of dimension result.

. collect label list result
Collection: default
Dimension: result

Label: Result
Level labels:

F F statistic
N Number of observations

_r_b Coefficient
_r_ci __LEVEL__% CI
_r_df df
_r_lb __LEVEL__% lower bound
_r_p p-value

_r_se Std. error
_r_ub __LEVEL__% upper bound
_r_z t

_r_z_abs |t|
beta Standardized coefficient
cmd Command

cmdline Command line as typed
depvar Dependent variable

df_m Model DF
df_r Residual DF

estat_cmd Program used to implement estat
ll Log likelihood

ll_0 Log likelihood, constant-only model
marginsok Predictions allowed by margins

model Model
mss Model sum of squares

predict Program used to implement predict
properties Command properties

r2 R-squared
r2_a Adjusted R-squared
rank Rank of VCE
rmse RMSE
rss Residual sum of squares

sum_w Sum of the weights
title Title of output

vce SE method

It takes a bit of scanning, but about midway down we see the Model DF, the Residual DF, and the

Log likelihood. A bit farther down, we see the R-squared, the Adjusted R-squared, and the RMSE.

Do not be distracted by the LEVEL %; that is just the way labels obtain the confidence level that
can be specified using the level() option of regression commands.

Previously, we pulled out the coefficient statistics by interacting dimensions result and colname.
How do we ask for just model-level results? They are a one-way table (listing) of results, so we do not

need to specify anything for our columns. We just ask for dimension result on the rows.

Intro 2 — A tour of concepts and commands 24

. collect layout (result)
Collection: default

Rows: result
Table 1: 23 x 1

F statistic 1501.751
Number of observations 10351
Command regress
Command line as typed regress bpsystol age weight i.sex
Dependent variable bpsystol
Model DF 3
Residual DF 10347
Program used to implement estat regress_estat
Log likelihood -45420.36
Log likelihood, constant-only model -47291.07
Predictions allowed by margins XB default
Model ols
Model sum of squares 1709210
Program used to implement predict regres_p
Command properties b V
R-squared .3033381
Adjusted R-squared .3031361
Rank of VCE 4
RMSE 19.47772
Residual sum of squares 3925460
Sum of the weights 10351
Title of output Linear regression
SE method ols

Well, we certainly have our model statistics, but we have a lot of other “junk” too—the Dependent
variable, a flag for Predictions allowed by margins, the Rank of VCE, and even the Program
used to implement predict and the Command line as typed. We are going to have to be specific

with collect layout about the levels of result we want.

. collect layout (result[N r2 rmse df_m df_r F])
Collection: default

Rows: result[N r2 rmse df_m df_r F]
Table 1: 6 x 1

Number of observations 10351
R-squared .3033381
RMSE 19.47772
Model DF 3
Residual DF 10347
F statistic 1501.751

In explaining how we ask for the model statistics compared with how we ask for the coefficient

statistics, we said, “They are a one-way table (listing) of results, so we do not need to specify anything

for our columns.” That is true, but it is also a pretty fast explanation. If it seems logical to you, you are

good to go. If you would like to understand more fully why it is true, see section How collect layout

processes tag specifications in [TABLES] Collection principles.

https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexamplesHowcollectlayoutprocessestagspecifications
https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciplesRemarksandexamplesHowcollectlayoutprocessestagspecifications
https://www.stata.com/manuals/tablescollectionprinciples.pdf#tablesCollectionprinciples

Intro 2 — A tour of concepts and commands 25

What is in my collection, multiple-equation models (dimension coleq)
Another “unusual” dimension that is useful for multivariate models is coleq. Let’s collect the results

from a simple multivariate regression.

. collect clear

. collect: mvreg bpsystol bpdiast = age weight
Equation Obs Parms RMSE ”R-sq” F P>F

bpsystol 10,351 3 19.48051 0.3031 2250 0.0000
bpdiast 10,351 3 11.51474 0.2067 1348.469 0.0000

Coefficient Std. err. t P>|t| [95% conf. interval]

bpsystol
age .6379892 .0111315 57.31 0.000 .6161692 .6598091

weight .4069041 .0124786 32.61 0.000 .3824435 .4313646
_cons 71.27096 1.041742 68.42 0.000 69.22894 73.31297

bpdiast
age .187733 .0065797 28.53 0.000 .1748355 .2006306

weight .3116502 .007376 42.25 0.000 .2971918 .3261086
_cons 50.37585 .615764 81.81 0.000 49.16884 51.58287

What is new about this regression is that it has multiple equations—one for bpsystol and one for

bpdiast. It is sensible to tag each equation in the model and to put those tags into a dimension where
they can be referenced together. That is just what collect does.

What does it name that dimension? Let’s look at the e(b) matrix again.

. matrix list e(b)
e(b)[1,6]

bpsystol: bpsystol: bpsystol: bpdiast: bpdiast: bpdiast:
age weight _cons age weight _cons

y1 .63798917 .40690407 71.270956 .18773302 .31165024 50.375852

We see that there are colnames on this matrix, as there were on the simple regression. But we also

see bpsystol: and bpdiast: above the colnames. Those are the dependent variables of our equation,
and they also label the columns of the matrix. Collectively, we call bpsystol and bpdiast the matrix’s

coleqs, and there are matrix commands for setting and fetching the coleq. So coleq is the name

collect gives to the dimension that holds the tags for the equations. In our model, the levels of those

tags are the dependent variable names—bpsystol and bpdiast. Let’s confirm

. collect label list coleq, all
Collection: default
Dimension: coleq

Label: Depvars, parameters, and column equations
Level labels:

bpdiast Diastolic blood pressure
bpsystol Systolic blood pressure

Indeed coleq is a dimension. It has its own nice, long label—Depvars, parameters, and
column equations. Its levels are indeed the dependent variable names from our multivariate regres-

sion—bpdiast and bpsystol. And those dimensions have their own nice, long labels—Diastolic
blood pressure and Systolic blood pressure.

https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames

Intro 2 — A tour of concepts and commands 26

collect label list can tell us a lot about what is in a dimension, how we might use it in a layout,

and whether we are likely to want to change its labels for our table.

We clearly cannot use our univariate regression layout specification.

. collect layout (colname) (result)

Every cell in that table would have two values, one for the bpdiast dependent variable and one for

the bpsystol dependent variable. That specification does not uniquely identify the cells in the table.

We need to add dimension coleq. Let’s try it in the tables specification first.

. collect style autolevels result _r_b _r_ci _r_se _r_z _r_p

. collect layout (colname) (result) (coleq)
Collection: default

Rows: colname
Columns: result
Tables: coleq

Table 1: 3 x 5
Table 2: 3 x 5

Systolic blood pressure

Coefficient 95% CI Std. error t p-value

Age (years) .6379892 .6161692 .6598091 .0111315 57.31 0.000
Weight (kg) .4069041 .3824435 .4313646 .0124786 32.61 0.000
Intercept 71.27096 69.22894 73.31297 1.041742 68.42 0.000

Diastolic blood pressure

Coefficient 95% CI Std. error t p-value

Age (years) .187733 .1748355 .2006306 .0065797 28.53 0.000
Weight (kg) .3116502 .2971918 .3261086 .007376 42.25 0.000
Intercept 50.37585 49.16884 51.58287 .615764 81.81 0.000

We have presented our regression results in two tables.

That is not the best arrangement if we want to compare across the two regressions. Let’s shuffle the

equations onto the columns and put both the colnames and the result dimensions on the rows.

Intro 2 — A tour of concepts and commands 27

. collect layout (colname#result) (coleq)
Collection: default

Rows: colname#result
Columns: coleq
Table 1: 18 x 2

Systolic blood pressure Diastolic blood pressure

Age (years)
Coefficient .6379892 .187733
95% CI .6161692 .6598091 .1748355 .2006306
Std. error .0111315 .0065797
t 57.31 28.53
p-value 0.000 0.000

Weight (kg)
Coefficient .4069041 .3116502
95% CI .3824435 .4313646 .2971918 .3261086
Std. error .0124786 .007376
t 32.61 42.25
p-value 0.000 0.000

Intercept
Coefficient 71.27096 50.37585
95% CI 69.22894 73.31297 49.16884 51.58287
Std. error 1.041742 .615764
t 68.42 81.81
p-value 0.000 0.000

Now it is easy to compare the regression coefficients and their statistics across dependent variables.

Again, there is a lot we could do to make this table prettier. The justification makes the CIs jut out. As

we predicted, the labels on bpsystol and bpdiast are too long for column headers. There are too many

digits in the results. And more. We will address those types of concerns in Let’s talk styles.

What is in my collection, collecting results from multiple commands (dimension
cmdset)

We have been collecting results from a single command. It is just as easy to collect and tabulate results

from several commands.

Let’s collect results from two regressions.

. collect clear

. collect: regress bpsystol age weight

. collect: regress bpsystol age weight i.hlthstat

In the second regression, we added a factor variable that records self-reported health status.

With two regressions in our collection, we have two coefficients for age and weight. We have

two of every statistic associated with those coefficients. That is painfully obvious, but important when

specifying a layout. Because we have two of nearly everything, we need another dimension to tell the

coefficients in the regression apart.

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesLetstalkstyles

Intro 2 — A tour of concepts and commands 28

If only we had a dimension that identified the specific commands from which we collected results.

We do, dimension cmdset. Let’s look at its levels.

. collect label list cmdset, all
Collection: default
Dimension: cmdset

Label: Command results index
Level labels:

1
2

Well, that is minimalist. The levels are 1 and 2 and they are unlabeled. Regardless, cmdset is a

counter (or index) for each command from which we collected results. That is enough. Let’s put that on

the columns and put both the colname and result dimensions on the rows. To keep things short, let’s

just show the coefficients and their standard errors.

. collect style autolevels result _r_b _r_se

. collect layout (colname#result) (cmdset)
Collection: default

Rows: colname#result
Columns: cmdset
Table 1: 24 x 2

1 2

Age (years)
Coefficient .6379892 .6071483
Std. error .0111315 .0119737

Weight (kg)
Coefficient .4069041 .4039598
Std. error .0124786 .012471

Excellent
Coefficient 0
Std. error 0

Very good
Coefficient .715111
Std. error .5519263

Good
Coefficient 2.233169
Std. error .5453581

Fair
Coefficient 4.133798
Std. error .6492333

Poor
Coefficient 3.549244
Std. error .8558511

Intercept
Coefficient 71.27096 71.22963
Std. error 1.041742 1.073791

And we need not stop there. We can add the results of as many commands as we like to a collection.

Let’s add a third regression with one more covariate.

. collect: regress bpsystol age weight i.hlthstat i.sex

Intro 2 — A tour of concepts and commands 29

To see those results on our table, we do not have to respecify our layout. We still want the commands

on the columns. We have just added one more command. All we need to do is repreview the table.

. collect preview

1 2 3

Age (years)
Coefficient .6379892 .6071483 .6070032
Std. error .0111315 .0119737 .011973

Weight (kg)
Coefficient .4069041 .4039598 .4122565
Std. error .0124786 .012471 .0134793

Excellent
Coefficient 0 0
Std. error 0 0

Very good
Coefficient .715111 .6759903
Std. error .5519263 .5524101

Good
Coefficient 2.233169 2.184542
Std. error .5453581 .5461395

Fair
Coefficient 4.133798 4.062105
Std. error .6492333 .6506867

Poor
Coefficient 3.549244 3.537842
Std. error .8558511 .8558125

Male
Coefficient 0
Std. error 0

Female
Coefficient .6725152
Std. error .4148375

Intercept
Coefficient 71.27096 71.22963 70.32292
Std. error 1.041742 1.073791 1.210646

Just what we expected.

We could make this table prettier; see section Let’s talk styles.

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesLetstalkstyles

Intro 2 — A tour of concepts and commands 30

Let’s at least get rid of the base levels of the factor variables and make the column headers a bit more

informative.

. collect style showbase off

. collect label levels cmdset 1 ”Base” 2 ”Partial” 3 ”Full”

. collect preview

Base Partial Full

Age (years)
Coefficient .6379892 .6071483 .6070032
Std. error .0111315 .0119737 .011973

Weight (kg)
Coefficient .4069041 .4039598 .4122565
Std. error .0124786 .012471 .0134793

Very good
Coefficient .715111 .6759903
Std. error .5519263 .5524101

Good
Coefficient 2.233169 2.184542
Std. error .5453581 .5461395

Fair
Coefficient 4.133798 4.062105
Std. error .6492333 .6506867

Poor
Coefficient 3.549244 3.537842
Std. error .8558511 .8558125

Female
Coefficient .6725152
Std. error .4148375

Intercept
Coefficient 71.27096 71.22963 70.32292
Std. error 1.041742 1.073791 1.210646

You cannot only collect from multiple commands but also collect from multiple sets of related com-

mands. In the current example, we could have collected results from test commands for the additional

covariates in the Partial and Full models. Or we could have collected the results of lrtest for the

same purpose. Or we could have collected the results of margins commands that might have estimated

the effect of dropping weight by 10%. Any or all of these results could have been collected and added

below the coefficients in the table above. For an example, see [TABLES] Example 6.

Seeing what is my collection
We have been pulling dimension names out of thin air and using them. Let’s do more. You can ask

your collection about its dimensions at any time.

https://www.stata.com/manuals/rtest.pdf#rtest
https://www.stata.com/manuals/rlrtest.pdf#rlrtest
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/tablesexample6.pdf#tablesExample6

Intro 2 — A tour of concepts and commands 31

Introducing collect dims

. collect dims
Collection dimensions
Collection: default

Dimension No. levels

Layout, style, header, label
cmdset 3
coleq 1

colname 10
colname_remainder 1

hlthstat 5
program_class 1

result 33
result_type 3

rowname 1
sex 2

Style only
border_block 4

cell_type 4

We read from the output that the current collection is the default collection. And we see a list of

dimensions in groups.

Header Layout, style, header, label is telling you that you can do anything in the collection

system with the dimensions in that group. You can lay out tables using collect layout. You can set

cell styles on specific dimensions and levels using collect style cell. (Cell styles are all the styles
for how things look—bolding, numeric formats, color, etc.) You can set whether the headers show labels,

names or nothing for dimensions, or levels of dimensions, using collect style header. You can set
the content of the labels used in the row and column headers using collect label.

The second grouping reads Style only. The only thing you can do with these dimensions and their
levels is set cell styles.

A third grouping, not shown here but appearing between the above two, reads Header, label. You
can do only two things with the dimensions in this group. You can set whether labels or names are shown

in the headers, and you can change the content of the labels used in the headers. This group is populated

by factor variables found in dimension coleq, roweq, or rowname but not colname or var.

It is not a syntax error to use any of these dimensions on one of the commands that are not in its usage

group. Style and label commands are always allowed so long as their syntax is legal. The dimensions

and levels that they reference do not need to exist in the current collection.

Let’s return to the output of collect dims. In the first grouping of dimensions, we immediately

recognize cmdset, colname, coleq, and result. They need no further explanation. That leaves three
dimensions in the first group that we do not recognize—colname remainder, program class, and
result type. Let’s list their levels and labels to search for clues.

https://www.stata.com/manuals/tablescollectset.pdf#tablescollectset
https://www.stata.com/manuals/tablescollectlayout.pdf#tablescollectlayout
https://www.stata.com/manuals/tablescollectstylecell.pdf#tablescollectstylecell
https://www.stata.com/manuals/tablescollectstyleheader.pdf#tablescollectstyleheader
https://www.stata.com/manuals/tablescollectlabel.pdf#tablescollectlabel

Intro 2 — A tour of concepts and commands 32

First, colname remainder,

. collect label list colname_remainder, all
Collection: default
Dimension: colname_remainder

Label: Covariate names with factors removed
Level labels:

_cons

colname remainder is not interesting in this example. This dimension is created when collect
augments the tags on a result with the factor variables from dimensions colname and var already in

the tag. colname remainder is the remaining (nonfactor) elements of interactions or cons when the

colname level is a single factor variable. This dimension might be necessary to help uniquely match

items when you specify factor variables directly in collect layout instead of using them as levels

within dimension colname or var.

Second, program class,

. collect label list program_class, all
Collection: default
Dimension: program_class

Label: Result program class
Level labels:

eclass

Well, that could not be more boring. The single, unlabeled level is eclass. We collected results from

two commands, two regress commands, and regress returns only results in e(). Results returned in
e() are called e-class results, ergo, eclass. Had we also collected results from summarize, or even
margins, then we would see a second level here—rclass.

We cannot think of a reason to use dimension program class in the collect system. You could set

the background to red for results returned by e-class commands and set the background to blue for results

returned by r-class commands. We do not know why you would, but you could. Perhaps you are writing

Stata documentation and want to emphasize where the results came from.

Third, result type,

. collect label list result_type, all
Collection: default
Dimension: result_type

Label: Result type
Level labels:

macro Macro
matrix Matrix
scalar Scalar

The levels are macro, matrix, and scalar. Those are the types of results that can be returned in

e() or r(). Again, not something you would use often in specifying a layout or styling cells. But you
could. If you added the interaction #result type[scalar] to any term in the row, column, or table

specification in collect layout, you would limit the table to include only scalar results.

Factor variables in regressions and other commands

In the first group, we see the two dimensions, hlthstat and sex. Those are the two factor variables
from our regressions. collect creates dimensions for factor variables from regressions and from other

commands that accept factor variables in the varlist.

https://www.stata.com/manuals/rsummarize.pdf#rsummarize
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

Intro 2 — A tour of concepts and commands 33

These dimensions are similar to the dimensions that are named after the by variables in our very

first example in this entry. All of these dimensions can be used to specify rows and columns in

collect layout. Even dimensions hlthstat and sex can be used; however, they must be specified as

i.hlthstat and i.sex when used in the colname dimension.

One way to tag regression results is colname[i.hlthstat]. So we do get a table by typing
. collect layout (colname[i.hlthstat]#result) (cmdset)
Collection: default

Rows: colname[i.hlthstat]#result
Columns: cmdset
Table 1: 12 x 2

Partial Full

Very good
Coefficient .715111 .6759903
Std. error .5519263 .5524101

Good
Coefficient 2.233169 2.184542
Std. error .5453581 .5461395

Fair
Coefficient 4.133798 4.062105
Std. error .6492333 .6506867

Poor
Coefficient 3.549244 3.537842
Std. error .8558511 .8558125

We have selected just the i.hlthstat levels of dimension colname. Note that the “Base” column is
no longer in the table. Factor variable i.hlthstat was not in the base regression, so there is no “Base”

column to report when the table is limited to colname[i.hlthstat].

We can even limit the table to just some of the levels of the factor variable i.hlthstat. To do that,
we use standard factor-variable notation.

. collect layout (colname[2.hlthstat 4.hlthstat]#result) (cmdset)
Collection: default

Rows: colname[2.hlthstat 4.hlthstat]#result
Columns: cmdset
Table 1: 6 x 2

Partial Full

Very good
Coefficient .715111 .6759903
Std. error .5519263 .5524101

Fair
Coefficient 4.133798 4.062105
Std. error .6492333 .6506867

You can use full factor-variable notation, so typing

. collect layout (colname[i(2 4).hlthstat]#result) (cmdset)

would produce the same table.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables

Intro 2 — A tour of concepts and commands 34

Another thing we can do with dimensions hlthstat and sex is change their labels and the labels on

their levels. Let’s relabel the 4th level of hlthstat, and then repreview our most recent table.

. collect label levels hlthstat 4 ”Between Very good and Poor”, modify

. collect preview

Partial Full

Very good
Coefficient .715111 .6759903
Std. error .5519263 .5524101

Between Very good and Poor
Coefficient 4.133798 4.062105
Std. error .6492333 .6506867

That leaves the two dimensions in the Style only group of collect dims—border block and

cell type. These dimensions are for advanced use, but let’s list the levels and labels for cell type
anyway.

. collect label list cell_type, all
Collection: default
Dimension: cell_type

Label: Table cell type
Level labels:

column-header
corner

item
row-header

The levels row-header, column-header, item, and corner are referring to the cells in the four

parts of a table—the cells in the row headers, the cells in the column headers, the item cells in the body

of the table, and the no mans land of the upper left corner. When you type

. collect style cell cell_type[row-header], shading(background(blue))

you are changing the background color of all the cells in the row-header region to blue.

See [TABLES] Example 4 for an example using dimension cell type.

Surprisingly, the levels of dimension border block are exactly the same as the levels of cell type.
Whereas dimension cell type refers to the cells in the table regions, dimension border block refers

to the entire block of the region.

Special dimensions created by table
We have covered the most important special dimensions that can be created when you collect results.

There may be others if your collection was created by table. The nomenclature is familiar now, so let’s
cover these dimensions quickly. Not because they are unimportant but because you are now ready to

drink from the fire hose. Our examples will be terse and intended solely to demonstrate features, not to

be interesting or meaningful.

The table command is built on top of the collection system. The table command builds a collection
to hold all the results you request, customizes some styles, creates a layout, and then previews the table.

table names the collection it creates Table. If you run another table command, the collection

Table is replaced with the collection created by the new table command. Collection Table, when it

exists, always contains the collection for the most recent table command.

https://www.stata.com/manuals/tablesexample4.pdf#tablesExample4

Intro 2 — A tour of concepts and commands 35

Dimension variables

We mentioned much earlier that there is not much difference in the collection created by a command

like collect: by region: summarize . . . and a command like table region Both create a dimen-
sion named region, and its levels are the distinct values that the variable region takes on in the dataset.

We discussed this type of dimension at length in Tags, dimensions, and levels through Interactions in

collect layout and will say no more here.

Variables from statistic() option—dimension var

When you specify statistics using the statistic() option of table, table creates a dimension

named var whose levels are the names of the variables for which statistics were computed. Take the

simple table,

. table region, statistic(mean age lead) statistic(sd age lead)

Mean Standard deviation
Age (years) Lead (mcg/dL) Age (years) Lead (mcg/dL)

Region
NE 47.81584 14.83784 17.01692 5.782612
MW 46.52776 14.78544 17.37627 6.698146
S 48.19068 13.29985 16.86443 6.200866
W 47.83828 14.52686 17.53498 5.704972
Total 47.57965 14.32033 17.21483 6.166468

We can learn more about this table by typing collect layout:

. collect layout
Collection: Table

Rows: region
Columns: result#var
Table 1: 6 x 4

Mean Standard deviation
Age (years) Lead (mcg/dL) Age (years) Lead (mcg/dL)

Region
NE 47.81584 14.83784 17.01692 5.782612
MW 46.52776 14.78544 17.37627 6.698146
S 48.19068 13.29985 16.86443 6.200866
W 47.83828 14.52686 17.53498 5.704972
Total 47.57965 14.32033 17.21483 6.166468

When specified without arguments, collect layout redisplays the most recent table it created, and

yes, table used collect layout to create its table. Let’s focus on the header that we have heretofore

ignored. It tells us what the row specificationwas—region. And it tells us what the column specification
was—result#var. Knowing those specifications can be truly convenient. If we want to rearrange the
table rows and columns, we know which dimensions to use.

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesUsingcollectlayout
https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesTags,dimensions,andlevels
https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesInteractionsincollectlayout
https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2RemarksandexamplesInteractionsincollectlayout
https://www.stata.com/manuals/rtable.pdf#rtableOptionsstat

Intro 2 — A tour of concepts and commands 36

Dimension var is the new player in that specification. Let’s look at var a little more closely.

. collect label list var
Collection: Table
Dimension: var

Label: Statistic option variable
Level labels:

age Age (years)
lead Lead (mcg/dL)

We see levels age and lead. Those are the names of the variables we specified in the statistic()
option. Dimension var looks a lot like the dimension colname, which we sawwhen collecting regression

results. Great we know how to use dimensions like that. Let’s shuffle our table so that the means and

standard deviations are near each other.

. collect layout (var#result) (region)
Collection: Table

Rows: var#result
Columns: region
Table 1: 6 x 5

Region
NE MW S W Total

Age (years)
Mean 47.81584 46.52776 48.19068 47.83828 47.57965
Standard deviation 17.01692 17.37627 16.86443 17.53498 17.21483

Lead (mcg/dL)
Mean 14.83784 14.78544 13.29985 14.52686 14.32033
Standard deviation 5.782612 6.698146 6.200866 5.704972 6.166468

Dimension colname and matching to regressions

We said that dimension var looked a lot like dimension colname. In fact, they serve exactly the same
purpose. So much so that table also creates dimension colname, which is identical to dimension var.
This can be useful if you are trying to put results from table on the same rows or columns as results

from regressions or regressionlike commands. Recall that collect puts covariate names into dimension

colname.

Here is a silly example using colname to align the results from table and regress.

First, we type the table command.

. table, statistic(mean age lead) statistic(sd age lead)

Mean
Age (years) 47.57965
Lead (mcg/dL) 14.32033

Standard deviation
Age (years) 17.21483
Lead (mcg/dL) 6.166468

https://www.stata.com/manuals/tablesintro2.pdf#tablesIntro2Remarksandexamplesreglike

Intro 2 — A tour of concepts and commands 37

Then, we add our regression results to the table results.

. collect, name(Table): regress bpsystol age lead
Source SS df MS Number of obs = 4,948

F(2, 4945) = 775.82
Model 640033.944 2 320016.972 Prob > F = 0.0000

Residual 2039746.25 4,945 412.486602 R-squared = 0.2388
Adj R-squared = 0.2385

Total 2679780.19 4,947 541.698038 Root MSE = 20.31

bpsystol Coefficient Std. err. t P>|t| [95% conf. interval]

age .6517974 .0168645 38.65 0.000 .6187355 .6848593
lead .2680019 .0468828 5.72 0.000 .1760907 .359913

_cons 96.0544 1.057516 90.83 0.000 93.9812 98.1276

Note that we used the collect option name(), which we used to place our results into collection

Table—the collection produced by the table command.

Behind the scenes, table sets the automatic levels of results to be only the results you have speci-

fied on the table command or what table thinks are sensible results to show if you have included a

command() option. We need to add the regression results we wanted displayed to the automatic levels.

Let’s add coefficients and their standard errors.

. collect style autolevels result _r_b _r_se

All that is left is to specify how we want our table to look.

. collect layout (colname) (result)
Collection: Table

Rows: colname
Columns: result
Table 1: 3 x 4

Mean Standard deviation Coefficient Std. error

Age (years) 47.57965 17.21483 .6517974 .0168645
Lead (mcg/dL) 14.32033 6.166468 .2680019 .0468828
Intercept 96.0544 1.057516

We have both our table and regress results in one table.

Intro 2 — A tour of concepts and commands 38

We could organize the table as one column.

. collect layout (colname#result)
Collection: Table

Rows: colname#result
Table 1: 13 x 1

Age (years)
Mean 47.57965
Standard deviation 17.21483
Coefficient .6517974
Std. error .0168645

Lead (mcg/dL)
Mean 14.32033
Standard deviation 6.166468
Coefficient .2680019
Std. error .0468828

Intercept
Coefficient 96.0544
Std. error 1.057516

Why would we want the results in one column? Perhaps we would like to compare the results across

groups.

If we just add the region variable as the row specification to our table command, we will compute

the means by the levels of region.

. table region, statistic(mean age lead) statistic(sd age lead) nototal

If we insert by region: into the command that collects regression results, the regression results will

also be computed by the levels of region.

. collect, name(Table): by region, sort: regress bpsystol age lead

We still need to add to the automatic levels.

. collect style autolevels result _r_b _r_se

Intro 2 — A tour of concepts and commands 39

All that is left is to add dimension region as our column specification.

. collect layout (colname#result) (region)
Collection: Table

Rows: colname#result
Columns: region
Table 1: 13 x 4

Region
NE MW S W

Age (years)
Mean 47.81584 46.52776 48.19068 47.83828
Standard deviation 17.01692 17.37627 16.86443 17.53498
Coefficient .6819023 .6143461 .6761958 .6459431
Std. error .0390149 .0305406 .034739 .0319899

Lead (mcg/dL)
Mean 14.83784 14.78544 13.29985 14.52686
Standard deviation 5.782612 6.698146 6.200866 5.704972
Coefficient .3411097 .26796 .3455647 .1104092
Std. error .1148679 .0796156 .0934401 .0969654

Intercept
Coefficient 93.83657 97.91132 93.83902 98.2411
Std. error 2.50846 1.837282 2.150045 2.09812

Index of command() options—dimension command

The table command itself can collect results from multiple commands. Here is an example of two

nested regressions.

. table, command(regress bpsystol age lead)
> command(regress bpsystol age lead weight)

regress bpsystol age lead
Age (years) .6517974
Lead (mcg/dL) .2680019
Intercept 96.0544

regress bpsystol age lead weight
Age (years) .6373174
Lead (mcg/dL) .1183383
Weight (kg) .3998766
Intercept 70.08091

Clearly, table is keeping track of the commandswe typed; the full commands are shown right there on
the table. The commands are the super rows, and the regression coefficients from the result dimension

are the rows. table creates the dimension command and uses it to hold a level for each command()
option.

. collect label list command
Collection: Table
Dimension: command

Label: Command option index
Level labels:

1 regress bpsystol age lead
2 regress bpsystol age lead weight

Intro 2 — A tour of concepts and commands 40

We can put the commands on the columns for a more conventional regression comparison table.

. collect layout (colname#result) (command)
Collection: Table

Rows: colname#result
Columns: command
Table 1: 4 x 2

regress bpsystol age lead regress bpsystol age lead weight

Age (years) .6517974 .6373174
Lead (mcg/dL) .2680019 .1183383
Weight (kg) .3998766
Intercept 96.0544 70.08091

We should clearly shorten the labels on the levels of command using the collect label levels
command. We might also want to add the standard errors of the coefficients or other coefficient statistics

using collect style autolevels result. We leave that as an exercise.

Index of command() and statistic() options—dimension statcmd

What if our table command has both command() and statistic() options?

. table region, statistic(mean age lead) statistic(sd age lead) ///
command(regress bpsystol age lead) nototal

We are not going to show the output from that command because it would wrap on this page. Let’s

instead see how the table was laid out.

. collect layout
Collection: Table

Rows: region
Columns: statcmd#result#colname
Table 1: 5 x 7

(output omitted)

We again omit the table from the output because it would wrap. Let’s focus on the header. The only

dimension we do not recognize is statcmd in the Columns: listing. Let’s look at statcmd.

. collect label list statcmd
Collection: Table
Dimension: statcmd

Label: Statistic/command option index
Level labels:

1 Mean
2 Standard deviation
3 regress bpsystol age lead

Intro 2 — A tour of concepts and commands 41

So each level of statcmd represents one of our statistic() or command() option. Let’s transpose

our row and column specifications so we can finally see a table.

. collect layout (statcmd#result#colname) (region)
Collection: Table

Rows: statcmd#result#colname
Columns: region
Table 1: 13 x 4

Region
NE MW S W

Mean
Mean

Age (years) 47.81584 46.52776 48.19068 47.83828
Lead (mcg/dL) 14.83784 14.78544 13.29985 14.52686

Standard deviation
Standard deviation

Age (years) 17.01692 17.37627 16.86443 17.53498
Lead (mcg/dL) 5.782612 6.698146 6.200866 5.704972

regress bpsystol age lead
Coefficient

Age (years) .6819023 .6143461 .6761958 .6459431
Lead (mcg/dL) .3411097 .26796 .3455647 .1104092
Intercept 93.83657 97.91132 93.83902 98.2411

Other dimensions

One other dimension that table sometimes creates automatically is across(). That dimension holds
all the combinations of any across() options that are specified to determine over which groups percent-

ages and proportions are computed. You will not use this dimension often.

table also creates any dimensions that collect would create for any commands that appear in

command() options. Which is to say, any of the dimensions we have discussed in this entry and more.

We already saw such dimensions when we included command(regress . . .) in some of our examples

above.

Let’s talk styles

Overview

Styles affect how almost everything on your table looks, is organized, or composed. Even so, we are

not going to categorize all the styles or even discuss what you can do with styles. That is done in the

individual style entries. This entry is about concepts and how you use those concepts. For a categorization

of styles with links to their entries, go to [TABLES] Intro 4 and see these sections:

Change styles—formats, bolding, colors, and more

Control display of zero coefficients in regression results

Modify labels in row and column headers

There is a bit of labeling in that last section, but it also links to styles. In row and column headers,

both content and format matter.

https://www.stata.com/manuals/tablesintro4.pdf#tablesIntro4
https://www.stata.com/manuals/tablesintro4.pdf#tablesIntro4RemarksandexamplesChangestyles---formats,bolding,colors,andmore
https://www.stata.com/manuals/tablesintro4.pdf#tablesIntro4RemarksandexamplesControldisplayofzerocoefficientsinregressionresults
https://www.stata.com/manuals/tablesintro4.pdf#tablesIntro4RemarksandexamplesModifylabelsinrowandcolumnheaders

Intro 2 — A tour of concepts and commands 42

Basic targeting

What is common to all styles is changing what you want changed and not changing what you do not

want changed. You may want to make all coefficients italicized but not any of the other results. You may

want to emphasize all the statistics on the coefficient age by making them bold but not change the rest

of the covariates. Hitting your target is what matters. So we will call this targeting.

We are going to use numeric format to demonstrate. Changes to numeric format can be seen in all

export formats and in the Results window. Changes to numeric formats can even be seen in the Linux

console version of Stata.

Let’s use a table created from one of our simple regressions from earlier. We will not show the

regression results,

. collect clear

. collect: regress bpsystol age weight lead

but we will show the table we lay out.

. collect layout (colname) (result[_r_b _r_ci _r_se _r_z _r_p])
Collection: default

Rows: colname
Columns: result[_r_b _r_ci _r_se _r_z _r_p]
Table 1: 4 x 5

Coefficient 95% CI Std. error t p-value

Age (years) .6373174 .6057546 .6688803 .0160998 39.59 0.000
Weight (kg) .3998766 .3644918 .4352614 .0180494 22.15 0.000
Lead (mcg/dL) .1183383 .0296721 .2070044 .0452276 2.62 0.009
Intercept 70.08091 67.04886 73.11296 1.546613 45.31 0.000

Command collect style cell has option nformat(), which lets us set the numeric format. Let’s
change all numeric formats on the entire table to %7.4f.

. collect style cell, nformat(%7.4f)

We did not specify anything after cell, so we are changing the format for everything. Let’s see the
effect of that change.

. collect preview

Coefficient 95% CI Std. error t p-value

Age (years) 0.6373 0.6058 0.6689 0.0161 39.5853 0.0000
Weight (kg) 0.3999 0.3645 0.4353 0.0180 22.1546 0.0000
Lead (mcg/dL) 0.1183 0.0297 0.2070 0.0452 2.6165 0.0089
Intercept 70.0809 67.0489 73.1130 1.5466 45.3125 0.0000

Intro 2 — A tour of concepts and commands 43

Everything has four decimals. What if we want to change the format of only the coefficients? Recall

that the coefficients are level r b in dimension result. We simply specify the tag result[r b] as

the only value for which we want to change the format.

. collect style cell result[_r_b], nformat(%7.2f)

. collect preview

Coefficient 95% CI Std. error t p-value

Age (years) 0.64 0.6058 0.6689 0.0161 39.5853 0.0000
Weight (kg) 0.40 0.3645 0.4353 0.0180 22.1546 0.0000
Lead (mcg/dL) 0.12 0.0297 0.2070 0.0452 2.6165 0.0089
Intercept 70.08 67.0489 73.1130 1.5466 45.3125 0.0000

Only the coefficients have two decimal places.

The format for the coefficients, their confidence intervals, and their standard errors is usually the

same. Here is how we specify all of those results to have two decimal places.

. collect style cell result[_r_b _r_ci _r_se], nformat(%7.2f)

. collect preview

Coefficient 95% CI Std. error t p-value

Age (years) 0.64 0.61 0.67 0.02 39.5853 0.0000
Weight (kg) 0.40 0.36 0.44 0.02 22.1546 0.0000
Lead (mcg/dL) 0.12 0.03 0.21 0.05 2.6165 0.0089
Intercept 70.08 67.05 73.11 1.55 45.3125 0.0000

We typed result[r b r ci r se] to target all three of the results, just as we would type

result[r b r ci r se] on collect layout to select the three results for rows or columns. Styles
are yet another reason why tags, dimensions, and levels are so important in the collection system.

We could go on formatting results, but you get the idea.

We can target any dimension that tags any value or label on our table. If wewanted to draw our reader’s

attention to the results for covariate lead, we might change the color of its row to red, or we might bold

the text. Instead, we will change the numeric format as a proxy for one of those more reasonable changes.

. collect style cell colname[lead], nformat(%7.5f)

. collect preview

Coefficient 95% CI Std. error t p-value

Age (years) 0.64 0.61 0.67 0.02 39.5853 0.0000
Weight (kg) 0.40 0.36 0.44 0.02 22.1546 0.0000
Lead (mcg/dL) 0.11834 0.02967 0.20700 0.04523 2.61651 0.00891
Intercept 70.08 67.05 73.11 1.55 45.3125 0.0000

And now the results for lead are “emphasized”.

Let’s fit this same regression on males, females, and all data. The table command makes that easy.

We will not show the results of table.

. table sex, command(regress bpsystol age weight lead)

Intro 2 — A tour of concepts and commands 44

Instead, we will show some tidier results.

. collect layout (colname#result[_r_b _r_se]) (sex)
Collection: Table

Rows: colname#result[_r_b _r_se]
Columns: sex
Table 1: 8 x 3

Sex
Male Female Total

Age (years) .4756206 .783255 .6373174
.0221995 .023314 .0160998

Weight (kg) .3499395 .440647 .3998766
.0281172 .0262451 .0180494

Lead (mcg/dL) .1154999 .1008595 .1183383
.0580126 .0850915 .0452276

Intercept 81.09842 61.13921 70.08091
2.700181 2.133394 1.546613

It is hard to tell the standard errors from the coefficients on that table. We could use a header style to

add row labels for the coefficient and standard error, but let’s instead put parentheses around the standard

errors. That can be done using the sformat() option of collect style cell.

. collect style cell result[_r_se], sformat((%s))

. collect preview

Sex
Male Female Total

Age (years) .4756206 .783255 .6373174
(.0221995) (.023314) (.0160998)

Weight (kg) .3499395 .440647 .3998766
(.0281172) (.0262451) (.0180494)

Lead (mcg/dL) .1154999 .1008595 .1183383
(.0580126) (.0850915) (.0452276)

Intercept 81.09842 61.13921 70.08091
(2.700181) (2.133394) (1.546613)

Yes, somewhat surprisingly, you can apply both a numeric and a string format to a value. Once the

value is numerically formatted, it is then passed through a string format. For numeric values, that string

format is primarily used just as we used it here—to adorn the result.

Advanced targeting

What if we want to emphasize just one result in this whole table? What if the age coefficient

for females was of particular import to our research? We saw just above that we could specify mul-

tiple tags by including multiple levels in a dimension using styles. We can also use tag interac-

tions when applying styles. It takes three tags to identify the result we described—result[r b],
colname[age], and sex[2]. The way we specify that all of those tags are required is to interact them—
result[r b]#colname[age]#sex[2]. The translation of that interaction term into English is literally

result must be coefficient and covariate must be age and sex must be female. We put that term as the

argument to collect style cell and type the command.

. collect style cell result[_r_b]#colname[age]#sex[2], nformat(%7.2f)

https://www.stata.com/manuals/tablescollectstyleheader.pdf#tablescollectstyleheader

Intro 2 — A tour of concepts and commands 45

Previewing our table gives

. collect preview

Sex
Male Female Total

Age (years) .4756206 0.78 .6373174
(.0221995) (.023314) (.0160998)

Weight (kg) .3499395 .440647 .3998766
(.0281172) (.0262451) (.0180494)

Lead (mcg/dL) .1154999 .1008595 .1183383
(.0580126) (.0850915) (.0452276)

Intercept 81.09842 61.13921 70.08091
(2.700181) (2.133394) (1.546613)

Our desired coefficient has been “highlighted”.

More likely, we want to “highlight” both the coefficient and its standard error. That just requires that

we specify the tags for both coefficient and standard error, rather than just for the coefficient.

. collect style cell result[_r_b _r_se]#colname[age]#sex[2], nformat(%7.2f)

. collect preview

Sex
Male Female Total

Age (years) .4756206 0.78 .6373174
(.0221995) (0.02) (.0160998)

Weight (kg) .3499395 .440647 .3998766
(.0281172) (.0262451) (.0180494)

Lead (mcg/dL) .1154999 .1008595 .1183383
(.0580126) (.0850915) (.0452276)

Intercept 81.09842 61.13921 70.08091
(2.700181) (2.133394) (1.546613)

Okay, we will do one thing just for looks. Let’s get rid of that obnoxious vertical rule. You never see

those in publications.

. collect style cell border_block, border(right, pattern(nil))

. collect preview

Sex
Male Female Total

Age (years) .4756206 0.78 .6373174
(.0221995) (0.02) (.0160998)

Weight (kg) .3499395 .440647 .3998766
(.0281172) (.0262451) (.0180494)

Lead (mcg/dL) .1154999 .1008595 .1183383
(.0580126) (.0850915) (.0452276)

Intercept 81.09842 61.13921 70.08091
(2.700181) (2.133394) (1.546613)

We specified the border block dimension, but we did not need to target a specific level. We turned

off right borders on every block in the table, which includes those that were creating that vertical rule.

pattern(nil) is a programmery way of saying no line.

Intro 2 — A tour of concepts and commands 46

Saving and using

Do not forget you can save and use styles; see [TABLES] collect style save.

If you get a table styled just the way you want, you can save its style and apply that style to other

similar tables. There is also nothing wrong with keeping all your style commands in their own do-file

and running that do-file before you preview a similar table.

Either way works fine. The advantage of keeping your style commands in a do-file is that you can

review and change them in the do-file. Keeping a do-file is more challenging if you are using the Table

Builder to style your table.

Exporting
We are not going to say much about exporting, which seems odd given that exporting will be the end

goal for many tables. There just is not much to say. You type collect export, followed by a filename
with the format you want as the file suffix. That’s about it. This is an entry about concepts, and exporting

does not have many concepts to explain.

What wewill tell you is that not all styles export to all export formats. If you are exporting toMicrosoft

Word or to HTML, you are in luck. Almost all styles export to those formats. If you are exporting to plain

text (.txt), you are out of luck. Aside from numeric formats and some text positioning, almost no styles

export to plain text.

To learn more about exporting tables from a collection, see collect export.

Saving collections
You can save and restore collections. There is not anything conceptually interesting to add to that.

We do recommend that if you are typing collect commands interactively that you do save your work
by saving your collection.

Managing collections
You can list the collections in memory, set the current collection, copy collections, combine collec-

tions, rename collections, and drop collections. All of those operations can be useful. None of those

operations is fraught with conceptual challenges.

Just to be clear: combining collections is no different from adding to an existing collection using

repeated collect prefixes or collect get commands without collect clearing.

Also see
[TABLES] Intro 3 — Workflow outline

[TABLES] Intro 4 — Overview of commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/tablescollectstylesave.pdf#tablescollectstylesave
https://www.stata.com/manuals/tablestablesbuilder.pdf#tablesTablesBuilder
https://www.stata.com/manuals/tablestablesbuilder.pdf#tablesTablesBuilder
https://www.stata.com/manuals/tablescollectexport.pdf#tablescollectexport
https://www.stata.com/manuals/tablescollectdir.pdf#tablescollectdir
https://www.stata.com/manuals/tablescollectset.pdf#tablescollectset
https://www.stata.com/manuals/tablescollectcopy.pdf#tablescollectcopy
https://www.stata.com/manuals/tablescollectcombine.pdf#tablescollectcombine
https://www.stata.com/manuals/tablescollectcombine.pdf#tablescollectcombine
https://www.stata.com/manuals/tablescollectrename.pdf#tablescollectrename
https://www.stata.com/manuals/tablescollectdrop.pdf#tablescollectdrop
https://www.stata.com/manuals/tablesintro3.pdf#tablesIntro3
https://www.stata.com/manuals/tablesintro4.pdf#tablesIntro4
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

