Description Remarks and examples Reference Also see

Description

In this example, we demonstrate how to use table to compute summary statistics for levels of a categorical variable and store them in a collection. We also demonstrate how to use the collect suite of commands to create a customized table with these results.

Remarks and examples

Remarks are presented under the following headings:

Computing statistics with the table command Customizing the table

Computing statistics with the table command

Below, we use data from the Second National Health and Nutrition Examination Survey (NHANES II) (McDowell et al. 1981). We want to create a table to compare summary statistics for males and females.

With the table command, we can compute several types of summary statistics. Below, we use the statistic() option to compute the mean and standard deviation (sd) of age, body mass index (bmi), and systolic blood pressure (bpsystol) for each category of sex. We place our variables (var) on the rows and the levels of sex on the columns. Additionally, we format the means and standard deviations to display only two digits to the right of the decimal.

```
    use https://www.stata-press.com/data/r19/nhanes21
    (Second National Health and Nutrition Examination Survey)
    table (var) (sex),
```

```
. Lable (Val) (Sex),
```

```
> statistic(mean age bmi bpsystol)
```

```
> statistic(sd age bmi bpsystol)
```

```
> nformat(%6.2f)
```

	Male	Sex Female	Total
Age (years)			
Mean	47.42	47.72	47.58
Standard deviation	17.17	17.26	17.21
Body mass index (BMI)			
Mean	25.51	25.56	25.54
Standard deviation	4.02	5.60	4.91
Systolic blood pressure			
Mean	132.89	129.07	130.88
Standard deviation	20.99	25.13	23.33

The table above reports summary statistics for continuous variables. We might also want to incorporate statistics for categorical variables. For instance, let's report frequencies and percentages for the levels of diabetes and hlthstat. The statistic fvfrequency provides the frequency for each level of a categorical variable, and fvpercent reports the percentage of observations in each category. We still want to format our means and standard deviations but not our other statistics. With nformat(), we can specify the statistics to which we want to apply the format.

. table (var) (sex),

> statistic(fvfrequency diabetes) statistic(fvpercent diabetes)

- > statistic(mean age bmi) statistic(sd age bmi)
- > statistic(fvfrequency hlthstat) statistic(fvpercent hlthstat)
- > statistic(mean bpsystol) statistic(sd bpsystol)
- > nformat(%6.2f mean sd)

	Male	Sex Female	Total
Diabetes status=Not diabetic			
Factor-variable frequency	4,698	5,152	9,850
Factor-variable percent	95.58	94.81	95.18
Diabetes status=Diabetic			
Factor-variable frequency	217	282	499
Factor-variable percent	4.42	5.19	4.82
Age (years)			
Mean	47.42	47.72	47.58
Standard deviation	17.17	17.26	17.21
Body mass index (BMI)			
Mean	25.51	25.56	25.54
Standard deviation	4.02	5.60	4.91
Health status=Excellent			
Factor-variable frequency	1,252	1,155	2,407
Factor-variable percent	25.50	21.29	23.29
Health status=Very good			
Factor-variable frequency	1,213	1,378	2,591
Factor-variable percent	24.71	25.40	25.07
Health status=Good			
Factor-variable frequency	1,340	1,598	2,938
Factor-variable percent	27.30	29.45	28.43
Health status=Fair			
Factor-variable frequency	722	948	1,670
Factor-variable percent	14.71	17.47	16.16
Health status=Poor			
Factor-variable frequency	382	347	729
Factor-variable percent	7.78	6.40	7.05
Systolic blood pressure			
Mean	132.89	129.07	130.88
Standard deviation	20.99	25.13	23.33

We now have a table with summary statistics for males and females in our data. However, we likely want to polish the table so that the labels are not distracting.

Customizing the table

By default, table will display the table and store the results in a collection called Table. We can now use the collect suite of commands to work with this collection and modify the look of the table.

To get started, note that the statistics are stored as levels of the dimension result. We can see the levels of this dimension by using collect levelsof. We will use the names of the dimension and its levels in the collect subcommands that we use to modify our table.

```
. collect levelsof result
Collection: Table
Dimension: result
Levels: fvfrequency fvpercent mean sd
```

First, let's remove the labels for the statistics in the row headers. We can use collect style header to hide the level labels for the dimension result. Then, we preview our table with collect preview.

```
. collect style header result, level(hide)
```

```
. collect preview
```

	Male	Sex Female	Total
Diabetes status=Not diabetic	4,698	5,152	9,850
	95.58	94.81	95.18
Diabetes status=Diabetic	217	282	499
	4.42	5.19	4.82
Age (years)	47.42	47.72	47.58
	17.17	17.26	17.21
Body mass index (BMI)	25.51	25.56	25.54
	4.02	5.60	4.91
Health status=Excellent	1,252	1,155	2,407
	25.50	21.29	23.29
Health status=Very good	1,213	1,378	2,591
	24.71	25.40	25.07
Health status=Good	1,340	1,598	2,938
	27.30	29.45	28.43
Health status=Fair	722	948	1,670
	14.71	17.47	16.16
Health status=Poor	382	347	729
	7.78	6.40	7.05
Systolic blood pressure	132.89	129.07	130.88
· ·	20.99	25.13	23.33

The variable labels and value labels for our categorical variables are bound by an equal sign. Instead of repeating the variable labels, we can use collect style row stack to list each one only once and stack these headers in a single column. We also specify the spacer option to insert a blank line between row dimensions. Finally, we can remove the border on the right side of the row headers by setting the border pattern to nil. We then preview our table once more.

- . collect style row stack, nobinder spacer
- . collect style cell border_block, border(right, pattern(nil))
- . collect preview

	Sex		
	Male	Female	Total
Diabetes status			
Not diabetic	4,698	5,152	9,850
	95.58	94.81	95.18
Diabetic	217	282	499
	4.42	5.19	4.82
Age (years)	47.42	47.72	47.58
	17.17	17.26	17.21
Body mass index (BMI)	25.51	25.56	25.54
	4.02	5.60	4.91
Health status			
Excellent	1,252	1,155	2,407
	25.50	21.29	23.29
Very good	1,213	1,378	2,591
	24.71	25.40	25.07
Good	1,340	1,598 29.45	2,938 28.43
Fair	722 14.71	948 17.47	1,670
Poor	382 7.78	347 6.40	729
Systolic blood pressure	132.89	129.07	130.88
	20.99	25.13	23.33

This layout is one nice way to compare the summary statistics. We could continue to modify its style to finalize our table.

However, we may also want to consider another layout—one in which the means of continuous variables and frequencies of categorical variables are in one column and the standard deviations of continuous variables and percentages for categorical variables are in another column.

Currently, the frequencies for the categorical variables are tagged with the level fvfrequency of the result dimension, and the percentages are tagged with level fvpercent of the result dimension. To align the frequencies with the means and the percentages with the standard deviations, we recode them to the levels mean and sd of the same dimension. Then, we lay out our table with the variables on the rows and the results for males and females on the columns. Note that by typing sex[12], we specify that only levels 1 and 2 of the sex dimension be included. This allows us to omit the statistics that table computed for all observations in the data and that would be included if we simply include the dimension sex.

. collect recode result fvfrequency=mean fvpercent=sd
(42 items recoded in collection Table)
. collect layout (var) (sex[1 2]#result)
Collection: Table
 Rows: var
 Columns: sex[1 2]#result
 Table 1: 15 x 4

	Sex			
	Male		Female	
Diabetes status Not diabetic Diabetic	4698.00 217.00	95.58 4.42	5152.00 282.00	94.81 5.19
Age (years) Body mass index (BMI)	47.42 25.51	17.17 4.02	47.72 25.56	17.26 5.60
Health status Excellent Very good Good Fair Poor	1252.00 1213.00 1340.00 722.00 382.00	25.50 24.71 27.30 14.71 7.78	1155.00 1378.00 1598.00 948.00 347.00	21.29 25.40 29.45 17.47 6.40
Systolic blood pressure	132.89	20.99	129.07	25.13

Now, we can finish customizing this table by adding percent signs to the percentages, enclosing our standard deviations in parentheses, and fixing the numeric formatting. (Now that the frequencies are part of the level mean, they have the numeric format that we applied earlier to that level.)

We can use collect style cell to modify all cells in the table or specific cells.

First, we add a percent sign to our percentages. Because we recoded the percentages to the sd level of result, we will need to refer to them with the tag result[sd]. However, this is not enough. If we refer to only result[sd], we will refer to both standard deviations and percentages. To apply a change only to our categorical variables, we type result[sd]#var[i.diabetes i.hlthstat]. By interacting these two tags, we reference only values that are tagged with the sd level of result as well as the levels of either i.diabetes or i.hlthstat of var.

The option sformat() changes the string format, and %s refers to the numeric value. The text will be placed around our numeric values in the table as we place it around %s in this option. Adding a percent sign requires a special character, %%.

Similarly, we can type result[sd]#var[age bmi bpsystol] to refer to the standard deviations of our continuous variables. We enclose these values in parentheses.

```
. collect style cell result[sd]#var[i.diabetes i.hlthstat], sformat("%s%%")
```

```
. collect style cell result[sd]#var[age bmi bpsystol], sformat("(%s)")
```

Last, we do not want to display any digits to the right of the decimal for the frequencies. So we use collect style cell with the nformat() option for the frequencies (tagged with mean of the result dimension and of the levels hlthstat and diabetes of the var dimension).

. collect style cell result[mean]#var[i.diabetes i.hlthstat], nformat(%4.0f)

. collect preview

	Sex			
	Male		Female	
Diabetes status				
Not diabetic	4698	95.58%	5152	94.81%
Diabetic	217	4.42%	282	5.19%
Age (years)	47.42	(17.17)	47.72	(17.26)
Body mass index (BMI)	25.51	(4.02)	25.56	(5.60)
Health status				
Excellent	1252	25.50%	1155	21.29%
Very good	1213	24.71%	1378	25.40%
Good	1340	27.30%	1598	29.45%
Fair	722	14.71%	948	17.47%
Poor	382	7.78%	347	6.40%
Systolic blood pressure	132.89	(20.99)	129.07	(25.13)

Our final table is much neater and easier to read.

Reference

McDowell, A., A. Engel, J. T. Massey, and K. Maurer. 1981. "Plan and operation of the Second National Health and Nutrition Examination Survey, 1976–1980". In Vital and Health Statistics, ser. 1, no. 15. Hyattsville, MD: National Center for Health Statistics.

Also see

[TABLES] collect recode — Recode dimension levels in a collection

[R] table — Table of frequencies, summaries, and command results

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.