Description Remarks and examples Also see

Description

To demonstrate estat framework, which displays results in Bentler–Weeks form, we continue where [SEM] **Example 10** left off:

```
. use https://www.stata-press.com/data/r19/sem_mimic1
. ssd describe
. notes
. sem (SubjSES -> s_income s_occpres s_socstat)
                                                  111
      (SubjSES <- income occpres)
. estat residuals, normalized
. estimates store mimic1
. sem (SubjSES -> s_income s_occpres s_socstat)
                                                    111
                                                    111
      (SubjSES <- income occpres)
      (s_income <- income)</pre>
                                                    111
      (s_occpres <- occpres)
. lrtest mimic1 .
```

See Structural models 10: MIMIC models in [SEM] Intro 5 for background.

Remarks and examples

If you prefer to see SEM results reported in Bentler-Weeks form, type estat framework after estimating with sem. Many people find Bentler-Weeks form helpful in understanding how the model is fit.

. estat framework, fitted Endogenous variables on endogenous variables

5	Observed	,		Latent
Beta	s_income	s_occpres	s_socstat	SubjSES
Observed				
s_income	0	0	0	1
s_occpres	0	0	0	.783781
s_socstat	0	0	0	1.195539
Latent				
SubjSES	0	0	0	0

Endogenous variables on exogenous variables

Gamma	Observed income	occpres
Observed s_income s_occpres s_socstat	.0532425 0 0	0 .0045201 0
Latent SubjSES	.0538025	.0034324

Covariances of error variables

Psi	Observed e.s_inc~e	e.s_occ~s	e.s_soc~t	Latent e.SubjSES
Observed e.s_income e.s_occpres e.s_socstat	.2292697 0 0	.2773786 0	.1459009	
Latent e.SubjSES	0	0	0	.1480275

Intercepts of endogenous variables

alpha	Observed s_income	s_occpres	s_socstat	Latent SubjSES
_cons	.8825314	1.06586	1.07922	0

Covariances of exogenous variables

Phi	Observed income	occpres
Observed income occpres	4.820021 13.62431	451.6628

Means of exogenous variables

kappa	Observed income	occpres
mean	5.04	36.698

Sigma	Observed s_income	s_occpres	s_socstat	Latent SubjSES	Observed income
Observed					
s_income	.4478609				
s_occpres	.1614446	.4086519			
s_socstat	.225515	.1738222	.392219		
Latent					
SubjSES	.1886304	.1453924	.2060311	.1723333	
Observed					
income	.5627232	.3014937	.3659463	.3060932	4.820021
occpres	3.008694	3.831184	2.729776	2.283302	13.62431
	Observed				
Sigma	000001.00				
Sigma	occpres				
Observed					
occpres	451.6628				
ted means of o	bserved and	latent vari	ables		

Fitted covariances of observed and latent variables

mu	Observed s_income	s_occpres	s_socstat	Latent SubjSES	Observed income
mu	1.548	1.543	1.554	.3971264	5.04

mu	Observed occpres
mu	36.698

Notes:

Fit

- 1. Bentler–Weeks form is a vector and matrix notation for the estimated parameters of the model. The matrices are known as β , Γ , Ψ , α , Φ , and κ . Those Greek names are spelled out in the labels, along with a header stating what each contains.
- 2. We specified estat framework option fitted. That caused estat framework to list one more matrix and one more vector at the end: Σ and μ . These two results are especially interesting to those wishing to see the ingredients of the residuals reported by estat residuals.
- 3. One of the more useful results reported by estat framework, fitted is the Σ matrix, which reports all estimated covariances in a readable format and includes the model-implied covariances that do not appear in sem's ordinary output.
- 4. estat framework also allows the standardized option if you want standardized output.

Also see

- [SEM] Example 10 MIMIC model
- [SEM] estat framework Display estimation results in modeling framework

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.