
Example 1 — Single-factor measurement model

Description Remarks and examples References Also see

Description
The single-factor measurement model is demonstrated using the following data:

. use https://www.stata-press.com/data/r19/sem_1fmm
(Single-factor measurement model)
. summarize

Variable Obs Mean Std. dev. Min Max

x1 500 99.518 14.35402 60 137
x2 500 99.954 14.1939 52 140
x3 500 99.052 14.26395 59 150
x4 500 94.474 70.11603 -113 295

. notes
_dta:

1. fictional data
2. Variables x1, x2, x3, and x4 each contain a test score designed to

measure X. The test is scored to have mean 100.

See Single-factor measurement models in [SEM] Intro 5 for background.

Remarks and examples
Remarks are presented under the following headings:

Single-factor measurement model
Satorra–Bentler scaled 𝜒2 test
Fitting the same model with gsem
Fitting the same model with the Builder
The measurement-error model interpretation

Single-factor measurement model
Below we fit the following model:
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https://www.stata.com/manuals/semintro5.pdf#semIntro5RemarksandexamplesSingle-factormeasurementmodels
https://www.stata.com/manuals/semintro5.pdf#semIntro5
https://www.stata.com/manuals/semexample1.pdf#semExample1RemarksandexamplesSatorra--Bentlerscaledchi-squaredtest
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. sem (x1 x2 x3 x4 <- X)
Endogenous variables

Measurement: x1 x2 x3 x4
Exogenous variables

Latent: X
Fitting target model:
Iteration 0: Log likelihood = -8487.5905
Iteration 1: Log likelihood = -8487.2358
Iteration 2: Log likelihood = -8487.2337
Iteration 3: Log likelihood = -8487.2337
Structural equation model Number of obs = 500
Estimation method: ml
Log likelihood = -8487.2337
( 1) [x1]X = 1

OIM
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
x1

X 1 (constrained)
_cons 99.518 .6412888 155.18 0.000 98.2611 100.7749

x2
X 1.033249 .0723898 14.27 0.000 .8913676 1.17513

_cons 99.954 .6341354 157.62 0.000 98.71112 101.1969

x3
X 1.063876 .0729725 14.58 0.000 .9208526 1.2069

_cons 99.052 .6372649 155.43 0.000 97.80298 100.301

x4
X 7.276754 .4277638 17.01 0.000 6.438353 8.115156

_cons 94.474 3.132547 30.16 0.000 88.33432 100.6137

var(e.x1) 115.6865 7.790423 101.3823 132.0089
var(e.x2) 105.0445 7.38755 91.51873 120.5692
var(e.x3) 101.2572 7.17635 88.12499 116.3463
var(e.x4) 144.0406 145.2887 19.94838 1040.069

var(X) 89.93921 11.07933 70.64676 114.5001

LR test of model vs. saturated: chi2(2) = 1.46 Prob > chi2 = 0.4827

The equations for this model are

𝑥1 = 𝛼1 + 𝑋𝛽1 + 𝑒.𝑥1

𝑥2 = 𝛼2 + 𝑋𝛽2 + 𝑒.𝑥2

𝑥3 = 𝛼3 + 𝑋𝛽3 + 𝑒.𝑥3

𝑥4 = 𝛼4 + 𝑋𝛽4 + 𝑒.𝑥4

Notes:

1. Variable X is latent exogenous and thus needs a normalizing constraint. The variable is anchored to

the first observed variable, x1, and thus the path coefficient is constrained to be 1. See Identification
2: Normalization constraints (anchoring) in [SEM] Intro 4.

https://www.stata.com/manuals/semintro4.pdf#semIntro4RemarksandexamplesIdentification2Normalizationconstraints(anchoring)
https://www.stata.com/manuals/semintro4.pdf#semIntro4RemarksandexamplesIdentification2Normalizationconstraints(anchoring)
https://www.stata.com/manuals/semintro4.pdf#semIntro4
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2. The path coefficients for X->x1, X->x2, and X->x3 are 1 (constrained), 1.03, and 1.06. Meanwhile,

the path coefficient for X->x4 is 7.28. This is not unexpected; we at StataCorp generated these data,

and the true coefficients are 1, 1, 1, and 7.

3. A test for “model versus saturated” is reported at the bottom of the output; the 𝜒2(2) statistic is 1.46
and its significance level is 0.4827. We cannot reject the null hypothesis of this test.

This test is a goodness-of-fit test in badness-of-fit units; a significant result implies that the model

does not fit well.

More mathematically, the null hypothesis of the test is that the fitted covariance matrix and mean

vector of the observed variables are equal to the matrix and vector observed in the population.

Satorra–Bentler scaled 𝜒2 test
The model-versus-saturated goodness-of-fit statistic shown above does not follow the 𝜒2 distribution

that it is referred to when the data are nonnormal. Satorra and Bentler (1994) provide a scaled version

of this statistic that more closely follows the mean of the reference distribution in the presence of non-

normal data. We can request this statistic and the corresponding robust standard errors by specifying the

vce(sbentler) option.
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. sem (x1 x2 x3 x4 <- X), vce(sbentler)
Endogenous variables

Measurement: x1 x2 x3 x4
Exogenous variables

Latent: X
Fitting target model:
Iteration 0: Log pseudolikelihood = -8487.5905
Iteration 1: Log pseudolikelihood = -8487.2358
Iteration 2: Log pseudolikelihood = -8487.2337
Iteration 3: Log pseudolikelihood = -8487.2337
Structural equation model Number of obs = 500
Estimation method: ml
Log pseudolikelihood = -8487.2337
( 1) [x1]X = 1

Satorra--Bentler
Coefficient std. err. z P>|z| [95% conf. interval]

Measurement
x1

X 1 (constrained)
_cons 99.518 .6419311 155.03 0.000 98.25984 100.7762

x2
X 1.033249 .0767608 13.46 0.000 .8828006 1.183698

_cons 99.954 .6347705 157.46 0.000 98.70987 101.1981

x3
X 1.063876 .0751028 14.17 0.000 .9166773 1.211075

_cons 99.052 .6379032 155.28 0.000 97.80173 100.3023

x4
X 7.276754 .4386592 16.59 0.000 6.416998 8.13651

_cons 94.474 3.135684 30.13 0.000 88.32817 100.6198

var(e.x1) 115.6865 7.744173 101.4617 131.9055
var(e.x2) 105.0445 6.499187 93.04833 118.5872
var(e.x3) 101.2572 7.00047 88.42551 115.9509
var(e.x4) 144.0406 145.6607 19.84766 1045.347

var(X) 89.93921 11.2763 70.34416 114.9927

LR test of model vs. saturated: chi2(2) = 1.46 Prob > chi2 = 0.4827
Satorra--Bentler scaled test: chi2(2) = 1.59 Prob > chi2 = 0.4526

The rescaled statistic is labeled “Satorra–Bentler scaled test” and has a value of 1.59 with a signifi-

cance level of 0.4526. As with the unadjusted test, we cannot reject the null hypothesis.
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Fitting the same model with gsem
sem and gsem produce the same results for standard linear SEMs. Let’s demonstrate that.

. gsem (x1 x2 x3 x4 <- X)
Fitting fixed-effects model:
Iteration 0: Log likelihood = -8948.2394
Iteration 1: Log likelihood = -8948.2394
Refining starting values:
Grid node 0: Log likelihood = -8487.5916
Fitting full model:
Iteration 0: Log likelihood = -8487.5916
Iteration 1: Log likelihood = -8487.5051
Iteration 2: Log likelihood = -8487.3836
Iteration 3: Log likelihood = -8487.2697
Iteration 4: Log likelihood = -8487.2337
Iteration 5: Log likelihood = -8487.2337
Generalized structural equation model Number of obs = 500
Response: x1
Family: Gaussian
Link: Identity
Response: x2
Family: Gaussian
Link: Identity
Response: x3
Family: Gaussian
Link: Identity
Response: x4
Family: Gaussian
Link: Identity
Log likelihood = -8487.2337
( 1) [x1]X = 1

Coefficient Std. err. z P>|z| [95% conf. interval]

x1
X 1 (constrained)

_cons 99.518 .6412888 155.18 0.000 98.2611 100.7749

x2
X 1.033249 .0723898 14.27 0.000 .8913676 1.17513

_cons 99.954 .6341354 157.62 0.000 98.71112 101.1969

x3
X 1.063876 .0729725 14.58 0.000 .9208526 1.206899

_cons 99.052 .6372649 155.43 0.000 97.80298 100.301

x4
X 7.276753 .4277636 17.01 0.000 6.438352 8.115154

_cons 94.474 3.132547 30.16 0.000 88.33432 100.6137

var(X) 89.93923 11.07933 70.64678 114.5001

var(e.x1) 115.6865 7.790422 101.3822 132.0089
var(e.x2) 105.0444 7.387549 91.51872 120.5692
var(e.x3) 101.2572 7.176349 88.12498 116.3463
var(e.x4) 144.0408 145.2886 19.94848 1040.067



Example 1 — Single-factor measurement model 6

Notes:

1. Results are virtually the same. Coefficients, variance estimates, and standard errors may differ in the

last digit; for instance, x4<-X was 7.276754 and now it is 7.276753.

These are the kind of differences we would expect to see. gsem follows a different approach for

obtaining results that involves far more numeric machinery, which correspondingly results in slightly

less accuracy.

2. The log-likelihood values reported are the same. This model is one of the few models we could have

chosen where sem and gsem would produce the same log-likelihood values. In general, gsem log

likelihoods are on different metrics from those of sem. In the case where the model does not include
observed exogenous variables, however, they share the same metric.

3. There is no reason to use gsem over sem when both can fit the same model. sem is slightly more

accurate, is quicker, and has more postestimation features.

Fitting the same model with the Builder
Use the diagram above for reference.

1. Open the dataset.

In the Command window, type

. use https://www.stata-press.com/data/r19/sem_1fmm

2. Open a new Builder diagram.

Select menu item Statistics > SEM (structural equation modeling) > Model building and esti-

mation.

3. Create the measurement component for X.

Select the Add measurement component tool, , and then click in the diagram about one-third of

the way down from the top and slightly left of the center.

In the resulting dialog box,

a. change the Latent variable name to X;

b. select x1, x2, x3, and x4 by using the Measurement variables control;

c. select Down in the Measurement direction control;

d. click on OK.

If you wish, move the component by clicking on any variable and dragging it.

Notice that the constraints of 1 on the paths from the error terms to the observed measures are

implied, so we do not need to add these to our diagram.

4. Estimate.

Click on the Estimate button, , in the Standard Toolbar, and then click on OK in the resulting

SEM estimation options dialog box.

You can open a completed diagram in the Builder by typing

. webgetsem sem_1fmm
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The measurement-error model interpretation
As we pointed out in Using path diagrams to specify standard linear SEMs in [SEM] Intro 2, if we

rename variable x4 to be y, we can reinterpret this measurement model as a measurement-error model.
In this interpretation, X is the unobserved true value. x1, x2, and x3 are each measurements of X, but
with error. Meanwhile, y (x4) is really something else entirely. Perhaps y is earnings, and we believe

y = 𝛼4 + 𝛽4X + e.y

We are interested in 𝛽4, the effect of true X on y.

If we were to go back to the data and type regress y x1, we would obtain an estimate of 𝛽4, but we

would expect that estimate to be biased toward 0 because of the errors-in-variable problem. The same

applies for y on x2 and y on x3. If we do that, we obtain

𝛽4 based on regress y x1 3.19
𝛽4 based on regress y x2 3.36
𝛽4 based on regress y x3 3.43

In the sem output above, we have an estimate of 𝛽4 with the bias washed away:

𝛽4 based on sem (y<-X) 7.28

The number 7.28 is the value reported for (x4<-X) in the sem output.

That 𝛽4 might be 7.28 seems plausible because we expect that the estimate should be larger than the

estimates we obtain using the variables measured with error. In fact, we can tell you that the 7.28 estimate

is quite good because we at StataCorp know that the true value of 𝛽4 is 7. Here is how we manufactured

this fictional dataset:

set seed 83216
set obs 500
gen X = round(rnormal(0,10))
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(100 + 7*X + rnormal(0, 10))
drop X

The data recorded in sem 1fmm.dta were obviously generated using normality, the same assumption

that is most often used to justify the SEMmaximum likelihood estimator. In [SEM] Intro 4, we explained

that the normality assumption can be relaxed and conditional normality can usually be substituted in its

place.

So let’s consider nonnormal data. Let’s make X be 𝜒2(2), a violently nonnormal distribution, resulting
in the data-manufacturing code

set seed 83216
set obs 500
gen X = (rchi2(2)-2)*(10/2)
gen x1 = round(100 + X + rnormal(0, 10))
gen x2 = round(100 + X + rnormal(0, 10))
gen x3 = round(100 + X + rnormal(0, 10))
gen x4 = round(100 + 7*X + rnormal(0, 10))
drop X

https://www.stata.com/manuals/semintro2.pdf#semIntro2RemarksandexamplesUsingpathdiagramstospecifystandardlinearSEMs
https://www.stata.com/manuals/semintro2.pdf#semIntro2
https://www.stata.com/manuals/semintro4.pdf#semIntro4
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All the rnormal() functions remaining in our code have to do with the assumed normality of the

errors. The multiplicative and additive constants in the generation of X simply rescale the 𝜒2(2) variable
to have mean 100 and standard deviation 10, which would not be important except for the subsequent

round() functions, which themselveswere unnecessary except that wewanted to produce a pretty dataset
when we created the original sem 1fmm.dta.

In any case, if we rerun the commands with these data, we obtain

𝛽4 based on regress y x1 3.24
𝛽4 based on regress y x2 3.14
𝛽4 based on regress y x3 3.36

𝛽4 based on sem (y<-X) 7.25

We will not burden you with the details of running simulations to assess coverage; we will just tell

you that coverage is excellent: reported test statistics and significance levels can be trusted.

By the way, errors in the variables is something that does not go awaywith progressively larger sample

sizes. Change the code above to produce a 100,000-observation dataset instead of a 500-observation one,

and you will obtain

𝛽4 based on regress y x1 3.47
𝛽4 based on regress y x2 3.48
𝛽4 based on regress y x3 3.50

𝛽4 based on sem (y<-X) 6.97
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