ttest — t tests (mean-comparison tests)

Description Quick start Menu Syntax

Options Remarks and examples Stored results Methods and formulas

References Also see

Description

ttest performs t tests on the equality of means. The test can be performed for one sample against a hypothesized population mean. Two-sample tests can be conducted for paired and unpaired data. The assumption of equal variances can be optionally relaxed in the unpaired two-sample case.

ttesti is the immediate form of ttest; see [U] 19 Immediate commands.

Quick start

Test that the mean of v1 is equal between two groups defined by catvar

ttest v1, by(catvar)

Same as above, but assume unequal variances

ttest v1, by(catvar) unequal

Paired t test of v2 and v3

ttest v2 == v3

Same as above, but with unpaired data and conduct test separately for each level of catvar

by catvar: ttest v2 == v3, unpaired

Test that the mean of v4 is 3 at the 90% confidence level

ttest v4 == 3, level(90)

Test $\mu_1 = \mu_2$ if $\overline{x}_1 = 3.2$, $sd_1 = 0.1$, $\overline{x}_2 = 3.4$, and $sd_2 = 0.15$ with $n_1 = n_2 = 12$

ttesti 123.2.1123.4.15

Menu

ttest

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > t test (mean-comparison test)

ttesti

Statistics > Summaries, tables, and tests > Classical tests of hypotheses > t test calculator

Syntax

One-sample t test

```
ttest varname == \# [if] [in] [, \underline{1}evel(\#)]
```

Two-sample t test using groups

ttest
$$varname [if][in]$$
, by $(groupvar)[options_1]$

Two-sample t test using variables

$$\texttt{ttest} \ varname_1 == varname_2 \ [\textit{if}\] \ [\textit{in}\], \ \texttt{unpaired} \ [\underline{\texttt{une}} \\ \texttt{qual} \ \underline{\texttt{w}} \\ \texttt{elch} \ \underline{\texttt{level}} (\#) \]$$

Paired t test

level(#)

$$ttest \ varname_1 == varname_2 \ [if \] \ [in \] \ [, \ \underline{\underline{1}}evel(\#) \]$$

Immediate form of one-sample t test

ttesti
$$\#_{obs} \#_{mean} \#_{sd} \#_{val} [, \underline{l}evel(\#)]$$

Immediate form of two-sample t test

ttesti
$$\#_{\text{obs}1}$$
 $\#_{\text{mean}1}$ $\#_{\text{sd}1}$ $\#_{\text{obs}2}$ $\#_{\text{mean}2}$ $\#_{\text{sd}2}$ [, options₂]

$options_1$	Description
Main	
* by (groupvar)	variable defining the groups
reverse	reverse group order for mean difference computation
unequal	unpaired data have unequal variances
welch	use Welch's approximation
_ <u>l</u> evel(#)	set confidence level; default is level (95)
*by(groupvar) is required.	
$options_2$	Description
Main	
<u>une</u> qual	unpaired data have unequal variances
welch	use Welch's approximation

set confidence level; default is level (95)

by and collect are allowed with ttest and ttesti; see [U] 11.1.10 Prefix commands.

Options

- by (groupvar) specifies the groupvar that defines the two groups that ttest will use to test the hypothesis that their means are equal. Specifying by (groupvar) implies an unpaired (two sample) t test. Do not confuse the by () option with the by prefix; you can specify both.
- reverse reverses the order of the mean difference between groups defined in by (). By default, the mean of the group corresponding to the largest value in the variable in by() is subtracted from the mean of the group with the smallest value in by (). reverse reverses this behavior and the order in which variables appear on the table.
- unpaired specifies that the data be treated as unpaired. The unpaired option is used when the two sets of values to be compared are in different variables.

unequal specifies that the unpaired data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch's formula (1947) rather than from Satterthwaite's approximation formula (1946), which is the default when unequal is specified. Specifying welch implies unequal.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is level (95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Remarks and examples

Remarks are presented under the following headings:

One-sample t test Two-sample t test Paired t test Two-sample t test compared with one-way ANOVA Immediate form Video examples

One-sample t test

Example 1

In the first form, ttest tests whether the mean of the sample is equal to a known constant under the assumption of unknown variance. Assume that we have a sample of 74 automobiles. We know each automobile's average mileage rating and wish to test whether the overall average for the sample is 20 miles per gallon.

. ttest mpg==20

One-sample t test

interval]	[95% conf.	Std. dev.	Std. err.	Mean	Obs	Variable
22.63769	19.9569	5.785503	.6725511	21.2973	74	mpg
1.9289 73	t =	Degrees			= mean(mpg) = 20	mean =
ean > 20 = 0.0288			Ha: mean !=	Pr(ean < 20) = 0.9712	

The test indicates that the underlying mean is not 20 with a significance level of 5.8%.

4

Two-sample t test

➤ Example 2: Two-sample t test using groups

We are testing the effectiveness of a new fuel additive. We run an experiment in which 12 cars are given the fuel treatment and 12 cars are not. The results of the experiment are as follows:

treated	mp
0	20
0	23
0	21
0	25
0	18
0	17
0	18
0	24
0	20
0	24
0	23
0	19
1	24
1	25
1	21
1	22
1	23
1	18
1	17
1	28
1	24
1	27
1	21
1	23

The treated variable is coded as 1 if the car received the fuel treatment and 0 otherwise.

We can test the equality of means of the treated and untreated group by typing

- . use https://www.stata-press.com/data/r19/fuel3
- . ttest mpg, by(treated)

Two-sample t test with equal variances

interval]	[95% conf.	Std. dev.	Std. err.	Mean	Obs	Group
22.73475 24.81551	19.26525 20.68449	2.730301 3.250874	.7881701 .9384465	21 22.75	12 12	0
23.17091	20.57909	3.068954	.6264476	21.875	24	Combined
.7915684	-4.291568		1.225518	-1.75		diff
				(1)	(0)	1:00

```
diff = mean(0) - mean(1)
H0: diff = 0
                                                 Degrees of freedom =
    Ha: diff < 0
                                 Ha: diff != 0
                                                               Ha: diff > 0
 Pr(T < t) = 0.0837
                            Pr(|T| > |t|) = 0.1673
                                                            Pr(T > t) = 0.9163
```

We do not find a statistically significant difference in the means.

If we were not willing to assume that the variances were equal and wanted to use Welch's formula, we could type

. ttest mpg, by(treated) welch Two-sample t test with unequal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf	. interval]
0	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
Combined	24	21.875	.6264476	3.068954	20.57909	23.17091
diff		-1.75	1.225518		-4.28369	.7836902

```
diff = mean(0) - mean(1)
                                                               t = -1.4280
H0: diff = 0
                                       Welch's degrees of freedom = 23.2465
   Ha: diff < 0
                               Ha: diff != 0
                                                            Ha: diff > 0
Pr(T < t) = 0.0833
                         Pr(|T| > |t|) = 0.1666
                                                        Pr(T > t) = 0.9167
```

□ Technical note

In two-sample randomized designs, subjects will sometimes refuse the assigned treatment but still be measured for an outcome. In this case, take care to specify the group properly. You might be tempted to let varname contain missing where the subject refused and thus let ttest drop such observations from the analysis. Zelen (1979) argues that it would be better to specify that the subject belongs to the group in which he or she was randomized, even though such inclusion will dilute the measured effect.

4

Example 3: Two-sample t test using variables

There is a second, inferior way to organize the data in the preceding example. We ran a test on 24 cars, 12 without the additive and 12 with. We now create two new variables, mpg1 and mpg2.

mpg1	mpg2
20	24
23	25
21	21
25	22
18	23
17	18
18	17
24	28
20	24
24	27
23	21
19	23

This method is inferior because it suggests a connection that is not there. There is no link between the car with 20 mpg and the car with 24 mpg in the first row of the data. Each column of data could be arranged in any order. Nevertheless, if our data are organized like this, ttest can accommodate us.

- . use https://www.stata-press.com/data/r19/fuel
- . ttest mpg1==mpg2, unpaired

Two-sample t test with equal variances

Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf	. interval]
mpg1 mpg2	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
Combined	24	21.875	.6264476	3.068954	20.57909	23.17091
diff		-1.75	1.225518		-4.291568	.7915684

```
diff = mean(mpg1) - mean(mpg2)
                                                                 t = -1.4280
H0: diff = 0
                                                Degrees of freedom =
                                Ha: diff != 0
   Ha: diff < 0
                                                              Ha: diff > 0
 Pr(T < t) = 0.0837
                           Pr(|T| > |t|) = 0.1673
                                                          Pr(T > t) = 0.9163
```

Paired t test

Example 4

Suppose that the preceding data were actually collected by running a test on 12 cars. Each car was run once with the fuel additive and once without. Our data are stored in the same manner as in example 3, but this time, there is most certainly a connection between the mpg values that appear in the same row. These come from the same car. The variables mpg1 and mpg2 represent mileage without and with the treatment, respectively.

- . use https://www.stata-press.com/data/r19/fuel
- . ttest mpg1==mpg2

Paired t test

Variable	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
mpg1 mpg2	12 12	21 22.75	.7881701 .9384465	2.730301 3.250874	19.26525 20.68449	22.73475 24.81551
diff	12	-1.75	.7797144	2.70101	-3.46614	0338602
	(diff) = mear (diff) = 0	n(mpg1 - mp	g2)	Degrees	t of freedom	= -2.2444 = 11

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0Pr(T < t) = 0.0232Pr(|T| > |t|) = 0.0463Pr(T > t) = 0.9768

We find that the means are statistically different from each other at any level greater than 4.6%.

4

Two-sample t test compared with one-way ANOVA

➤ Example 5

In example 2, we saw that ttest can be used to test the equality of a pair of means; see [R] oneway for an extension that allows testing the equality of more than two means.

Suppose that we have data on the 50 states. The dataset contains the median age of the population (medage) and the region of the country (region) for each state. Region 1 refers to the Northeast, region 2 to the North Central, region 3 to the South, and region 4 to the West. Using oneway, we can test the equality of all four means.

- . use https://www.stata-press.com/data/r19/census (1980 Census data by state)
- . oneway medage region

	Analysis	of var	riance		
Source	SS	df	MS	F	Prob > F
Between groups	46.3961903	3	15.4653968	7.56	0.0003
Within groups	94.1237947	46	2.04616945		
Total	140.519985	49	2.8677548		
Bartlett's equal-	variances test:	chi2(3	3) = 10.5757	Prob>cl	ni2 = 0.014

We find that the means are different, but we are interested only in testing whether the means for the Northeast (region==1) and West (region==4) are different. We could use oneway:

. oneway medage region if region==1 | region==4

	Analysis	of var	riance		
Source	SS	df	MS	F	Prob > F
Between groups	46.241247 46.1969169	1 20	46.241247 2.30984584	20.02	0.0002
Within groups	40.1909109	20	2.30984584		
Total	92.4381638	21	4.40181733		
Bartlett's equal-	variances test:	chi2(1	1) = 2.4679	Prob>cl	hi2 = 0.116

We could also use ttest:

. ttest medage if region==1 | region==4, by(region)

Two-sample t test with equal variances

Group	Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
NE	9	31.23333	.3411581	1.023474	30.44662	32.02005
West	13	28.28462	.4923577	1.775221	27.21186	29.35737
Combined	22	29.49091	. 4473059	2.098051	28.56069	30.42113
diff		2.948718	.6590372		1.57399	4.323445
$\label{eq:diff} \begin{array}{ll} \text{diff = mean(NE) - mean(West)} & \text{t = } 4.4 \\ \text{H0: diff = 0} & \text{Degrees of freedom = } \end{array}$						21 21 20
	iff < 0) = 0.9999		Ha: diff !=			iff > 0) = 0.0001

The significance levels of both tests are the same.

Immediate form

➤ Example 6

ttesti is like ttest, except that we specify summary statistics rather than variables as arguments. For instance, we are reading an article that reports the mean number of sunspots per month as 62.6 with a standard deviation of 15.8. There are 24 months of data. We wish to test whether the mean is 75:

. ttesti 24 62.6 15.8 75

One-	-sample	e t test					
		Obs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
	х	24	62.6	3.225161	15.8	55.92825	69.27175
НО:	mean =	= mean(x) = 75			Degrees	t of freedom	= -3.8448 = 23
Pr		ean < 75) = 0.0004	Pr(Ha: mean != T > t) =			ean > 75) = 0.9996

4

▶ Example 7

There is no immediate form of ttest with paired data because the test is also a function of the covariance, a number unlikely to be reported in any published source. For unpaired data, however, we might type

. ttesti 20 20 5 32 15 4

Two-sample t test with equal variances

	Obs	Mean	Std. err.	Std. dev.	[95% conf	. interval]
х	20 32	20 15	1.118034 .7071068	5 4	17.65993 13.55785	22.34007 16.44215
Combined	52	16.92308	.6943785	5.007235	15.52905	18.3171
diff		5	1.256135		2.476979	7.523021

diff = mean(x) - mean(y)3.9805 H0: diff = 0Degrees of freedom = Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(|T| > |t|) = 0.0002Pr(T < t) = 0.9999Pr(T > t) = 0.0001

If we had typed ttesti 20 20 5 32 15 4, unequal, the test would have assumed unequal variances.

4

Video examples

One-sample t test in Stata

t test for two independent samples in Stata

t test for two paired samples in Stata

One-sample t-test calculator

Two-sample *t*-test calculator

Stored results

One-sample ttest and ttesti store the following in r():

Scalars $r(N_1)$ sample size sample mean $r(mu_1)$ $r(sd_1)$ standard deviation standard error r(se) lower confidence bound for the mean $r(lb_1)$ upper confidence bound for the mean $r(ub_1)$ r(t) t statistic r(df_t) degrees of freedom lower one-sided p-value $r(p_1)$ r(p)two-sided p-value upper one-sided p-value r(p_u) confidence level r(level)

Two-sample ttest and ttesti store the following in r():

$r(N_1)$ sample size n_1 $r(N_2)$ sample size n_2 r(N_combined) combined sample size estimated mean for sample 1 $r(mu_1)$ $r(mu_2)$ estimated mean for sample 2 combined sample mean r(mu_combined) r(mu_diff) difference of means $r(sd_1)$ standard deviation for sample 1

 $r(sd_2)$ standard deviation for sample 2 combined standard deviation r(sd)

r(se) standard error

 $r(se_1)$ standard error of the mean for sample 1 $r(se_2)$ standard error of the mean for sample 2 r(se_combined) standard error of combined sample mean $r(lb_1)$ lower confidence bound for the mean for sample 1

 $r(ub_1)$ upper confidence bound for the mean for sample 1 r(1b_2) lower confidence bound for the mean for sample 2 r(ub_2) upper confidence bound for the mean for sample 2 lower confidence bound for combined sample mean r(lb_combined) r(ub_combined) upper confidence bound for combined sample mean r(lb_diff) lower confidence bound for the difference of means r(ub_diff) upper confidence bound for the difference of means

r(t) t statistic

r(df_t) degrees of freedom $r(p_1)$ lower one-sided p-value two-sided p-value r(p) upper one-sided p-value r(p_u) r(level) confidence level

Paired-sample ttest stores the following in r():

sample size n_1

Scalars

 $r(N_1)$

 $r(p_u)$ r(level)

Scalars

, ,	1 1
r(N_2)	sample size n_2
r(mu_1)	estimated mean for first variable
r(mu_2)	estimated mean for second variable
r(mu_diff)	difference of means
r(sd_1)	standard deviation for first variable
r(sd_2)	standard deviation for second variable
r(sd_diff)	standard deviation of the paired differences
r(se)	standard error
r(se_1)	standard error of the mean for the first variable
r(se_2)	standard error of the mean for the second variable
r(lb_1)	lower confidence bound for the mean of the first variable
r(ub_1)	upper confidence bound for the mean of the first variable
r(lb_2)	lower confidence bound for the mean of the second variable
r(ub_2)	upper confidence bound for the mean of the second variable
r(lb_diff)	lower confidence bound for the difference of means
r(ub_diff)	upper confidence bound for the difference of means
r(t)	t statistic
r(df_t)	degrees of freedom
r(p_l)	lower one-sided p-value
r(p)	two-sided p-value

upper one-sided p-value

confidence level

Methods and formulas

See, for instance, Hoel (1984, 140-161) or Dixon and Massey (1983, 121-130) for an introduction and explanation of the calculation of these tests. Acock (2023, 165–179) and Hamilton (2013, 145–150) describe t tests using applications in Stata.

The test for $\mu = \mu_0$ for unknown σ is given by

$$t = \frac{(\overline{x} - \mu_0)\sqrt{n}}{s}$$

The statistic is distributed as Student's t with n-1 degrees of freedom (Gosset [Student, pseud.] 1908).

The test for $\mu_x = \mu_y$ when σ_x and σ_y are unknown but $\sigma_x = \sigma_y$ is given by

$$t = \frac{\overline{x} - \overline{y}}{\left\{\frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}\right\}^{1/2} \left(\frac{1}{n_x} + \frac{1}{n_y}\right)^{1/2}}$$

The result is distributed as Student's t with $n_x + n_y - 2$ degrees of freedom.

You could perform ttest (without the unequal option) in a regression setting given that regression assumes a homoskedastic error model. To compare with the ttest command, denote the underlying observations on x and y by x_i , $j=1,\ldots,n_x$, and y_i , $j=1,\ldots,n_y$. In a regression framework, typing ttest without the unequal option is equivalent to

- 1. creating a new variable z_j that represents the stacked observations on x and y (so that $z_j=x_j$ for $j=1,\ldots,n_x$ and $z_{n_x+j}=y_j$ for $j=1,\ldots,n_y$)
- 2. and then estimating the equation $z_j=\beta_0+\beta_1d_j+\epsilon_j$, where $d_j=0$ for $j=1,\ldots,n_x$ and $d_j=1$ for $j=n_x+1,\ldots,n_x+n_y$ (that is, $d_j=0$ when the z observations represent x, and $d_j=1$ when the z observations represent y).

The estimated value of β_1 , b_1 , will equal $\overline{y} - \overline{x}$, and the reported t statistic will be the same t statistic as given by the formula above.

The test for $\mu_x = \mu_y$ when σ_x and σ_y are unknown and $\sigma_x \neq \sigma_y$ is given by

$$t = \frac{\overline{x} - \overline{y}}{\left(s_x^2/n_x + s_y^2/n_y\right)^{1/2}}$$

The result is distributed as Student's t with ν degrees of freedom, where ν is given by (with Satterthwaite's [1946] formula)

$$\frac{\left(s_x^2/n_x + s_y^2/n_y\right)^2}{\frac{\left(s_x^2/n_x\right)^2}{n_x - 1} + \frac{\left(s_y^2/n_y\right)^2}{n_y - 1}}$$

With Welch's formula (1947), the number of degrees of freedom is given by

$$-2 + \frac{\left(s_{x}^{2}/n_{x} + s_{y}^{2}/n_{y}\right)^{2}}{\frac{\left(s_{x}^{2}/n_{x}\right)^{2}}{n_{x}+1} + \frac{\left(s_{y}^{2}/n_{y}\right)^{2}}{n_{y}+1}}$$

The test for $\mu_x = \mu_y$ for matched observations (also known as paired observations, correlated pairs, or permanent components) is given by

 $t = \frac{\overline{d}\sqrt{n}}{s_d}$

where \overline{d} represents the mean of $x_i - y_i$ and s_d represents the standard deviation. The test statistic t is distributed as Student's t with n-1 degrees of freedom.

You can also use ttest without the unpaired option in a regression setting because a paired comparison includes the assumption of constant variance. The ttest with an unequal variance assumption does not lend itself to an easy representation in regression settings and is not discussed here. $(x_i - y_i) = \beta_0 + \epsilon_i.$

William Sealy Gosset (1876-1937) was born in Canterbury, England. He studied chemistry and mathematics at Oxford and worked as a chemist with the brewers Guinness in Dublin. Gosset became interested in statistical problems, which he discussed with Karl Pearson and later with Fisher and Neyman. He published several important papers under the pseudonym "Student", and he lent that name to the t test he invented.

Stella Cunliffe (1917-2012) was an advocate for increased understanding of the role of human nature in experiments and methodological rigor in social statistics. She was born in Battersea, England. She was the first person from her local public girls' school to attend college, obtaining a bachelor of science from the London School of Economics. Her first job was with the Danish Bacon Company during World War II, where she was in charge of bacon rations for London. After the war, she moved to Germany and again helped to ration food, this time for refugees.

She then spent a long career in quality control at the Guinness Brewing Company. Cunliffe observed that the weights of rejected casks skewed lighter. Noting that workers had to roll casks that were too light or too heavy uphill to be remade, she had the scales moved to the top of the hill. With workers able to roll rejected casks downhill, the weight of these casks began to follow a normal distribution.

After 25 years at Guinness, Cunliffe joined the British Home Office, where she would go on to become the first woman to serve as director of statistics. During her tenure at the Home Office, she emphasized applying principles of experimental design she had learned at Guinness to the study of such topics as birthrates, recidivism, and criminology. In 1975, she became the first woman to serve as president of the Royal Statistical Society.

References

Acock, A. C. 2023. A Gentle Introduction to Stata. Rev. 6th ed. College Station, TX: Stata Press.

Boland, P. J. 2000. "William Sealy Gosset—alias 'Student' 1876–1937". In Creators of Mathematics: The Irish Connection, edited by K. Houston, 105-112. Dublin: University College Dublin Press.

Dixon, W. J., and F. J. Massey, Jr. 1983. Introduction to Statistical Analysis. 4th ed. New York: McGraw-Hill.

Earnest, A. 2017. Essentials of a Successful Biostatistical Collaboration. Boca Raton, FL: CRC Press.

Gosset, W. S. 1943. "Student's" Collected Papers. London: Biometrika Office, University College.

Gosset [Student, pseud.], W. S. 1908. The probable error of a mean. Biometrika 6: 1–25. https://doi.org/10.2307/2331554.

Hamilton, L. C. 2013. Statistics with Stata: Updated for Version 12. 8th ed. Boston: Brooks/Cole.

Hoel, P. G. 1984. Introduction to Mathematical Statistics. 5th ed. New York: Wiley.

Huber, C. 2013. Measures of effect size in Stata 13. The Stata Blog: Not Elsewhere Classified. https://blog.stata.com/ 2013/09/05/measures-of-effect-size-in-stata-13/.

Kaplan, D. M. 2019. distcomp: Comparing distributions. Stata Journal 19: 832-848.

Mehmetoglu, M., and T. G. Jakobsen. 2022. Applied Statistics Using Stata: A Guide for the Social Sciences. 2nd ed. Thousand Oaks, CA: Sage.

Pearson, E. S., R. L. Plackett, and G. A. Barnard. 1990. 'Student': A Statistical Biography of William Sealy Gosset. Oxford: Oxford University Press.

Preece, D. A. 1982. t is for trouble (and textbooks): A critique of some examples of the paired-samples t-test. Statistician 31: 169–195. https://doi.org/10.2307/2987888.

Satterthwaite, F. E. 1946. An approximate distribution of estimates of variance components. Biometrics Bulletin 2: 110-114. https://doi.org/10.2307/3002019.

Senn, S. J., and W. Richardson. 1994. The first t-test. Statistics in Medicine 13: 785-803. https://doi.org/10.1002/sim. 4780130802.

Welch, B. L. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34: 28–35. https://doi.org/10.2307/2332510.

Zelen, M. 1979. A new design for randomized clinical trials. New England Journal of Medicine 300: 1242-1245. https: //doi.org/10.1056/NEJM197905313002203.

Also see

- [R] bitest Binomial probability test
- [R] ci Confidence intervals for means, proportions, and variances
- [R] esize Effect size based on mean comparison
- [R] mean Estimate means
- [R] **oneway** One-way analysis of variance
- [R] **prtest** Tests of proportions
- [R] sdtest Variance-comparison tests
- [R] ztest z tests (mean-comparison tests, known variance)
- [MV] **hotelling** Hotelling's T^2 generalized means test

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.