
npregress intro — Introduction to nonparametric regression

Description Remarks and examples References Also see

Description
Nonparametric regression models the mean of an outcome given the covariates without making as-

sumptions about its functional form. This makes nonparametric regression estimates robust to functional

form misspecification. npregress implements the two most common nonparametric regression estima-

tors: series regression and kernel regression.

Nonparametric series estimation regresses the outcome on a function of the covariates. The func-

tion of the covariates is known as a basis function. A basis is a collection of terms that approximates

smooth functions arbitrarily well. A basis function includes a subset of these terms. The bases used by

npregress series are polynomials, piecewise polynomial splines, and B-splines.

Nonparametric kernel estimation computes a weighted average of the outcome. The weights are

functions called kernels, which give rise to the name of the method. npregress kernel performs lo-

cal–linear and local–constant kernel regression.

Whether we choose to approximate the mean of our outcome using series regression or kernel regres-

sion, we obtain estimates that are robust to assumptions about functional form. This robustness comes

at a cost; we need many observations and perhaps a long computation time to estimate the elements of

the approximating function.

This entry introduces the intuition behind the nonparametric regression estimators implemented in

npregress. If you are familiar with these methods, you may want to skip to [R] npregress kernel or

[R] npregress series.

Remarks and examples
Remarks are presented under the following headings:

Overview
Nonparametric series regression

Runge’s phenomenon
Piecewise polynomial splines and B-splines

Nonparametric kernel regression
Limitations of nonparametric methods

Overview
Nonparametric regression is used when we are uncertain about the functional form of the mean of

the outcome given the covariates. For example, when we estimate a linear regression, we assume that

the functional form for the mean of the outcome is a linear combination of the specified covariates.

Both parametric (linear) regression and nonparametric regression provide an estimate of the mean for

the different values of the covariates. Consider the simulated data in figure 1. The mean of the outcome

for all values of x is overlaid on these points.
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https://www.stata.com/manuals/rnpregresskernel.pdf#rnpregresskernel
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
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Figure 1.

Because the mean of the data in figure 1 is not linear in x, using a simple linear regression will not

give us a correct picture about the effect of covariate x on the outcome. For example, if we perform a

linear regression of the outcome on x for the data, we obtain the plot shown in figure 2.
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Figure 2.

The change in the predicted outcome when x changes is positive and constant, yet the true mean is

nonlinear. If the assumption about the functional form of the mean is incorrect, the estimates we obtain

are inconsistent. If we instead fit the model using npregress and graph the estimates, we obtain figure 3.
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Figure 3.

npregress gives us the correct relationship between the outcome and the covariates. The nonpara-

metric regression estimates are consistent as long as the true function is sufficiently smooth. If the linear

regression assumptions are true, nonparametric regression is still consistent but less efficient.

Although nonparametric regression is a way to obtain estimates that are robust to functional form

misspecification, this robustness comes at a cost. You need many observations and more time to com-

pute the estimates. The cost increases with the number of covariates; this is referred to as the curse of

dimensionality.

Nonparametric series regression
The basis and the basis function are concepts essential to understanding series regression. A basis is a

collection of terms that can approximate a smooth function arbitrarily well. Abasis function uses a subset

of these terms to approximate the mean function. npregress series allows you to use a polynomial

basis, a piecewise polynomial spline basis, or a B-spline basis. For each basis, npregress series
selects the basis function for you.

We use an example to illustrate the use of a basis and a basis function. Suppose a researcher has data

on the outcome 𝑦 and a covariate 𝑥. We plot their relationship in the figure 4 below.



npregress intro — Introduction to nonparametric regression 4

-1

0

1

2

3

4

y

0 .2 .4 .6 .8 1
x

Figure 4.

In this case, a regression of 𝑦 on 𝑥 will do a good job of approximating the true function. If our data

looked like the data in figure 5, however, a regression of 𝑦 on 𝑥 would be inadequate.
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Figure 5.

In this case, a regression of 𝑦 on 𝑥 and 𝑥2 is more appropriate.

In each case, we include terms from a polynomial basis. In the first case, we need a constant and

the linear term 𝑥. In the second case, we need a constant, the linear term 𝑥, and the quadratic term 𝑥2.

A more complex function would require a basis function that includes more terms from the polynomial

basis.

If we want to use a polynomial basis function, npregress will select a degree of the polynomial for

us. Additional terms reduce bias but increase the variance of the estimator. npregress will select the

terms that optimally tradeoff bias and variance. In other words, npregress selects a basis function that

includes the terms that minimize the mean squared error. Our example above used a polynomial basis

function, but npregress can also select terms from a piecewise polynomial spline or B-spline basis.
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Runge’s phenomenon

Polynomials are themost intuitive basis but not the preferred basis for nonparametric series estimation.

The reason is that they are poor at interpolating. This problem shows up at the boundaries of the support

of the covariates, where, as you increase the order of the polynomial, the polynomial approximation

oscillates frequently, even when the true function does not behave this way.

Let us demonstrate. Below is an example for which we model a mean function using a third-order

polynomial. We plot the data and the estimate of the mean function:

-.5

0

.5

1

1.5

-1 -.5 0 .5 1
x

Data Third-order polynomial

Figure 6.

Looking at the data, it appears that a higher-order polynomial would be a better fit for the data. Below

is the mean function we get using a sixth-order and a tenth-order polynomial:
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Figure 7.

The predictions improve at values near the middle of the range of 𝑥 but become more variable at the

edges of the parameter space.
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What we illustrated above is referred to as Runge’s phenomenon. Increasing the complexity of the

polynomial order did not improve our approximation. In fact, as we increased the polynomial order, the

behavior at the edges of the parameter space became more variable. The way to address this is to use a

basis that does a better job of interpolating: piecewise polynomial splines or B-splines.

Piecewise polynomial splines and B-splines

Piecewise polynomial splines and B-splines are preferred to a polynomial basis because they are better

at approximation. We discuss piecewise polynomial splines to provide intuition for both the piecewise

polynomial spline basis and the B-spline basis.

Low-order polynomials do a great job of approximating functions in regions where the true function

does not change too much. Splines continuously connect a set of low-order polynomials to create a basis

to approximate a smooth function. The graph below illustrates what this definition means. We show in

maroon a piecewise polynomial spline estimate of the mean function for the data in the example above.
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Figure 8.

To see that splines are better than polynomials, note that the spline approximation of the mean function

fits the data well and that there are no regions where the approximation wiggles wildly.

Now, we delve into the definition above. The vertical lines in the graph partition the support of 𝑥
into subregions. The piecewise polynomial spline basis allows for a different low-order polynomial in

each subregion, and it forces the polynomials in neighboring regions to be continuously connected. In

figure 8 above, the basis used is a third-order polynomial in each subregion. The graph illustrates that the

polynomials are smoothly connected at the subregion boundaries. The subregion boundaries are known

as the knot points, or just the knots, because they are where the different polynomials are tied together.

By default, npregress selects the number of knots for you. Alternatively, you may specify the num-

ber of knots yourself.

We now look at how the mean function at each region was computed. We show this mathematically

and graphically.
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Defining the seven knots as 𝑡1, . . . , 𝑡7, where 𝑡1 < 𝑡2 < · · · < 𝑡6 < 𝑡7, the third-order piecewise

polynomial spline estimate is given by

𝐸 (𝑦𝑖|𝑥𝑖) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖 +
7

∑
𝑗=1

𝛽𝑗+3 max(𝑥𝑖 − 𝑡𝑗, 0)3

Thus, for all 𝑥𝑖 that are less than the smallest knot, 𝑡1, the mean estimate is given by the third-order

polynomial

𝐸 (𝑦𝑖|𝑥𝑖≤𝑡1) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖

Here it is graphically:
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Figure 9.

Likewise, if 𝑥 is less than the second knot, 𝑡2, then the mean estimate for that region is different if

𝑥𝑖 > 𝑡1 than if 𝑥𝑖 ≤ 𝑡1, and is given by

𝐸 (𝑦𝑖|𝑥𝑖≤𝑡2) = ̂𝛽0 + ̂𝛽1𝑥𝑖 + ̂𝛽2𝑥2
𝑖 + ̂𝛽3𝑥3

𝑖 + 𝛽4 (𝑥𝑖 − 𝑡1)3 (𝑥𝑖 > 𝑡1)

Here it is graphically:



npregress intro — Introduction to nonparametric regression 8

-.5

0

.5

1

1.5

-1 -.5 0 .5 1
x

Data Estimate for x < second knot

Figure 10.

As 𝑥 increases, there are additional contributions from each subregion. If we continue plotting the

resulting mean estimates, the following graphs would be what we would obtain:

Figure 11.

This example illustrates how the terms in the spline basis approximate the mean function. Both the

graph of the estimated function and the intuition in the example illustrate why the spline basis is better

than the polynomial basis.

In the examples above, we used a piecewise polynomial spline basis. Specifically, we used a third-

order piecewise polynomial spline basis function to obtain our estimates of the conditional mean. We

could have also used second-order or first-order piecewise polynomial splines, where the order of the

splines is defined by the order of the polynomial terms in the covariates used in each subregion.

As mentioned before, piecewise polynomial splines are preferred to a polynomial basis because they

are better at approximation. However, piecewise polynomial splines also have some issues. In particular,

they can be highly collinear and therefore numerically unstable. You can see this in the regions delineated

in figure 11, which are defined by terms of the form max(𝑥𝑖 − 𝑡𝑗, 0) that may overlap.
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B-splines avoid this problem, so each term that goes into the conditional mean approximation is or-

thogonal. It is for this reason that B-splines are the default basis for npregress series. However, the
intuition we obtain from piecewise polynomial splines and B-splines is equivalent. In fact, B-spline and

piecewise polynomial spline bases can approximate the same functions. For a more detailed explanation

of B-splines, see Methods and formulas in [R] npregress series.

In this section, we provided an intuitive and brief introduction to nonparametric series estimation. For

detailed introductions to series estimators and the methods implemented by npregress series, see de
Boor (2001), Schumaker (2007), Eubank (1999), Schoenberg (1969), Newey (1997), and Chen (2007).

Nonparametric kernel regression
npregress kernel approximates the mean by using a kernel function. In Overview, we plotted the

following data and nonparametric estimate of the mean function:
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Figure 12.

We used kernel regression to estimate this mean function. With this method, we estimate the mean of

the outcome at different values of the covariate x. In this section, we build our intuition for how kernel

regression estimates these means, and we demonstrate this graphically.

Suppose covariate x is discrete. In this case, a consistent estimator of the mean of outcome y given

that x = 𝑎 is the average of the values of y for which x is equal to a given value 𝑎. For instance, the
sample average of the yearly income for married individuals is a consistent estimator for the population

mean yearly income for married individuals.

Now, consider estimating the mean of y given that x = 𝑎 when x is continuous and 𝑎 is a value

observed for x. Because x is continuous, the probability of any observed value being exactly equal to

𝑎 is 0. Therefore, we cannot compute an average for the values of y for which x is equal to a given

value 𝑎. We use the average of y for the observations in which x is close to 𝑎 to estimate the mean of

y given that x = 𝑎. Specifically, we use the observations for which |x − 𝑎| < ℎ, where ℎ is small.

The parameter ℎ is called a bandwidth. In nonparametric kernel regression, a bandwidth determines the

amount of information we use to estimate the conditional mean at each point 𝑎. We demonstrate how

this works graphically.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulas
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintroRemarksandexamplesOverview
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For the simulated data in our example, we choose ℎ = 0.25 and 𝑎 = −0.19. The vertical lines in

figure 13 delimit the values of x around 𝑎 for which we are computing the mean of y. The light blue
square is our estimate of the conditional mean using the observations between the vertical lines.

x-.25 x+.25

-60

-40

-20

0

20

40

-2 -1 0 1 2 3

Nonparametric estimate at one point

Figure 13.

Repeating this estimation when 𝑎 = 2.66 produces figure 14.
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Figure 14.
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Doing this estimation for each point in our data produces a nonparametric estimate of the mean for a

given value of the covariates (see figure 15).
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Figure 15.

The plotted blue squares in figure 15 form what is known as the conditional mean function. Be-

cause these are simulated data, we can compare our estimate with the true conditional mean function, a

comparison we show in figure 16.
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Figure 16.

We see that the estimate is a bit less smooth than the true function. The size of the bandwidth ℎ
determines the shape and smoothness of the estimated conditional mean function, because the bandwidth

defines how many observations around each point are used. For example, if ℎ is arbitrarily large—say,

ℎ = 300—then we get figure 17.
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In this case, all observations are used to estimate the conditional mean at each point, and the estimate

is therefore a constant. On the other hand, a too-small bandwidth produces a jagged function with high

variability, as illustrated in figure 18.
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Figure 18.

The optimal bandwidth is somewhere in between. A too-large bandwidth includes too many observa-

tions, so the estimate is biased but it has a low variance. A too-small bandwidth includes too few obser-

vations, so the estimate has little bias but the variance is large. In other words, the optimal bandwidth

trades off bias and variance. In the case of npregress kernel, the bandwidth is chosen to minimize

the cost of this tradeoff by using either cross-validation, as suggested by Li and Racine (2004), or an

improved Akaike information criterion proposed by Hurvich, Simonoff, and Tsai (1998).

How we average the observations around a point is also important. In the examples above, we gave

the same weight to each observation for which |x − 𝑎| < ℎ. However, we might weight each observation
differently. The weights that observations receive are determined by functions called kernels. We could

have used any of the weights in [R] kdensity. For a nice introduction to kernel weighting, see Silverman

(1986).

https://www.stata.com/manuals/rkdensity.pdf#rkdensity
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The estimator described above uses only nearby observations and is thus a local estimator. It uses a

sample average, which is a regression on a constant, and is thus a locally constant estimator. For these

reasons, the estimator described above fits what is known as a local-constant regression.

The generalization that uses the prediction from a local-linear regression on covariates is known as

local-linear regression. Local-linear regression estimates the derivative of the conditional mean function

in addition to the function itself. Understanding how the conditional mean changes when covariates

change is sometimes the research question of interest, for example, how income changes for different

levels of taxes. Local-linear regression provides an estimate for these changes for continuous and discrete

variables.

See Fan andGijbels (1996) and Li and Racine (2007) for detailed introductions to the kernel estimators

implemented in npregress kernel.

Limitations of nonparametric methods
As discussed above, series regression and kernel regression approximate an unknown mean function.

Series regression uses least squares on the basis function. Kernel regression uses a kernel-weighted

average of nearby observations.

Series estimators are considered to be global estimators because they approximate the mean function

at each point using the value of one overall approximating function. Kernel regression is considered a

local estimator because it only uses nearby observations to approximate the mean for a given covariate

pattern.

Although piecewise polynomial splines and B-splines are considered to be global estimators, in fact,

they are local estimators. They are local because they fit a polynomial in each region defined by the

knots. Like kernel estimators, piecewise polynomial spline and B-spline estimators require that there are

enough data in each region. Suppose our data look like the data below.
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Using a method to select knots optimally at percentiles of the data will give us figure 20.
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Figure 20.

The vertical line denotes the point at which the knot is placed. The blue line is the B-spline estimate,

and the dotted green line is the true mean function. We see that our estimate of the mean function is not

good, especially for higher positive values of the covariate. The reason is that data are sparse for these

values. An alternative is to place the knots uniformly over the values of x. In this case, our estimate of the
mean function improves. However, this does not change the fact that we have regions with insufficient

data to make reliable inferences.

Thus, for kernel, piecewise polynomial spline, and B-spline estimators, we must have enough data

points for all ranges of the data. In particular, piecewise polynomial spline and B-spline estimates should

not be used to predict outside the support of the data.

Another important consideration is model selection. npregress selects the number of terms from a

basis for series estimation and the bandwidth for kernel estimation. After model selection, the models

are taken as given without accounting for model-selection error. You can find an in-depth discussion and

references of some of the issues that arise when performing model selection in [LASSO] Lasso intro.
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