
makespline — Spline generation

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
makespline generates a set of variables that form B-spline, piecewise polynomial spline, and re-

stricted cubic spline basis functions from a list of existing variables. B-spline and piecewise polynomial

spline bases may be first, second, or third order, with knots at percentiles of the data or uniformly spaced

over the range of the variables. Restricted cubic splines, also known as natural splines, may only be of

third order.

Quick start
Generate variables from x1 and x2 that form third-order B-spline basis functions, with one knot at the

median of each variable

makespline bspline x1 x2

Same as above, but with three knots at the 25th, 50th, and 75th percentiles

makespline bspline x1 x2, knots(3)

Same as above, but use second-order B-splines

makespline bspline x1 x2, knots(3) order(2)

Generate variables that form a linear spline for x1 with knots at 10 and 20

makespline piecewise x1, knotslist(10 20) order(1)

Same as above, but do not rescale x1 before creating spline variables

makespline piecewise x1, knotslist(10 20) order(1) norescalevars

Generate variables that form third-order piecewise polynomial splines for x1 and x2, with knots at their
25th, 50th, and 75th percentiles

makespline piecewise x1 x2, knots(3)

Same as above, but with three knots at evenly spaced points over the range of x1 and of x2
makespline piecewise x1 x2, knots(3) uniformknots

Specify values of knots in matrix K to generate variables forming restricted cubic splines

makespline rcs x1 x2, knotsmat(K)

Generate variables that form a linear spline for x1 without rescaling the values of x1
makespline linear x1

Menu
Data > Create or change data > Other variable-creation commands > Spline generation

1

makespline — Spline generation 2

Syntax
makespline basis varlist [if] [in] [weight] [, options]

basis Description

bspline B-spline

piecewise piecewise polynomial spline

rcs restricted cubic spline

linear linear spline—piecewise basis of order 1 without rescaling variables

options Description

Main

bsepsilon(#) specify the distance (#) from the variable’s boundary for B-spline
knot placement; default is bsepsilon(0.01)

local generate first-order polynomial spline variables centered around
adjacent knots

harrell place knots according to percentiles in Harrell (2001); only for
rcs basis

order(#) use a spline basis of order #; default is order(3)
knots(#) use a spline basis function with # knots

knotslist(knotvals) use knots specified in knotvals

knotsmat(matname) use knots in matrix matname

distinct(#) set minimum number of distinct values required for variables
used to construct splines to #; default is distinct(10)

replace replace existing variables having the same names as the new basis
and rescaled variables, if they exist

norescalevars do not rescale variables before generating spline basis

uniformknots place knots at evenly spaced points over the range of each
variable; default is placement at percentiles

float set type for generated variables to float instead of double

basis(stub | newvarlist) store elements of spline basis function using stub or newvarlist

rescale(stub | newvarlist) store rescaled values of variables using stub or newvarlist

collect is allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and iweights are allowed; see [U] 11.1.6 weight.

Options

� � �
Main �

bsepsilon(#) specifies the distance from the boundary of the variable where B-spline knots may be

placed. The default is bsepsilon(0.01).

local specifies that a basis function for a first-order piecewise polynomial be generated with variables

centered around adjacent knots. When splines are generated for only one variable and used in estima-

tion, the regression coefficients measure slopes for the intervals defined by knots.

harrell specifies that knots be placed according to the percentiles recommended in Harrell (2001, 23).

This option may be used only with basis rcs and when specifying 3 to 7 knots.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rmakespline.pdf#rmakesplineSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight

makespline — Spline generation 3

order(#) specifies that a spline of order # be used as the basis. order() may be 1, 2, or 3 for basis

bspline and basis piecewise. order() may only be 3 for basis rcs. For basis linear or when

the local option is specified, order() may only be 1. The default is order(3), cubic splines.

knots(#) specifies that a spline or B-spline basis function with # interior knots be used. The number of

knots must be an integer greater than or equal to 1. The maximum number of knots is either 4,096 or

two-thirds of the sample size, whichever is smaller. Also, the number of knots must be less than the

number of distinct values in the variable used to generate the basis function. The default is knots(1)
if exact knot values are not specified using knotslist() or knotsmat(). For basis rcs, the default
is knots(3), and the number of knots must be 3 or greater.

knotslist(knotvals) specifies in knotvals the values of knots to be used for each variable. The knot

values must be specified in the order of varlist, and a backslash (\) must be used to separate knots for
different variables. For example, if splines are generated for x1 and x2, the knots may be specified

as knotslist(20 40 60 \ 5 10 15).

knotsmat(matname) specifies that, in matname, the knots for each variable be the values in each row.

The number of knots should be the same for each variable, and there must be as many rows as there

are variables. If rows of matname are not labeled with varnames, then rows are assumed to be in the

order of varlist.

distinct(#) specifies the minimum number of distinct values required for the variables used to con-

struct the basis functions. Intuitively, using discrete variables for continuous interpolation is difficult

to justify. # specifies the number of distinct values necessary for a variable to be considered continu-

ous. The default is distinct(10).

replace specifies that the variables generated to form the basis function be replaced. If basis(stub | new-
varlist) or rescale(stub | newvarlist) are specified, the variables named with stub, or those listed in

newvarlist, are replaced. Otherwise, variables with the default names are replaced.

norescalevars specifies that the original values of the variables in varlist be used to generate the basis

function. By default, variables are first rescaled to [0, 1]. norescalevars may not be used with basis

bspline or basis linear.

uniformknots specifies that knots be placed at evenly spaced points over the range of each variable.

The default is placement at percentiles of each of the specified variables.

float specifies that variables be generated as floats. Because of numerical precision and stability, the

default is double.

basis(stub | newvarlist) specifies that the elements of the basis function be generated with the specified

names.

When stub is specified, this prefix is used to generate enumerated variables for each element of the

basis function.

When newvarlist is specified, variables with these names are generated for the elements of the basis

function.

rescale(stub | newvarlist) specifies that the rescaled variables used to generate the basis function be

stored with the specified names. This option applies only to basis piecewise and basis rcs.

When stub is specified, this prefix is used to generate enumerated variables for the rescaled variables.

When newvarlist is specified, variables with these names are generated for the rescaled variables.

makespline — Spline generation 4

Remarks and examples
makespline generates new variables that form B-splines, piecewise polynomial splines, and re-

stricted cubic splines from existing variables. Splines allow for different low-order polynomials in differ-

ent regions of the original variables, and they approximate a smooth function by continuously connecting

these low-order polynomials. Knots define the boundaries of the regions.

The standard piecewise polynomial variables created by makespline piecewise allow the functions

to be linear, quadratic, or cubic in each region. makespline linear provides a convenient method for

creating linear splines from the original variables, without rescaling. This is useful when you wish to

directly interpret regression coefficients in the metric of the original variables. The terms in the standard

piecewise polynomial spline function can be highly collinear and may be numerically unstable when

used in estimation. B-splines, which can be created by makespline bspline, avoid this problem by

creating orthogonal spline terms. For an introduction to piecewise polynomial splines and B-splines, see

Piecewise polynomial splines and B-splines in [R] npregress intro. makespline rcs creates restricted

cubic splines, also known as natural splines, in which the function is linear before the first knot, cubic

between adjacent knots, and linear again after the last knot. This can improve performance in the tails

over the standard cubic spline.

In addition to selecting the type of spline, makespline allows you to specify the location of knots—

the locations where the function changes. You can specify the number of knots you wish to allow, and

makespline will place the knots based on percentiles of the data or uniformly spaced across the range

of values in the data. Alternatively, you can specify the exact values at which you wish the knots to be

placed.

Regardless of the type of spline, we can refer to our newly created variables as a spline basis function.

A basis is a collection of terms that can approximate a smooth function arbitrarily well. A basis function,

such as one of the spline functions created by makespline, is a subset of the basis terms that can be used
to approximate the mean function.

The basis function variables generated by makespline are useful for nonparametric and semipara-

metric estimation. For instance, makespline can be used when we want to fit models such as

y = x1𝛽 + 𝑔 (x2, x3, . . . , x𝑘) + ε (1)

In the expression above, the outcome y, the covariates x1, . . . , x𝑘, and the unobservable ε are 𝑛 × 1

vectors of covariates. The function 𝑔(⋅) is unknown and x1 enters the model linearly. These types of

models are commonly used when we are interested in estimating the effect of x1 on the mean of y. We

are agnostic about the functional form in which the controls, x2, . . . , x𝑘, enter the model, but to get a

precise estimate of the effect of x1, we need a reliable approximation of 𝑔(⋅). We may use makespline
to generate the basis functions that best approximate 𝑔(⋅) and then use the basis functions to fit the model
in (1).

For instance, we can generate basis functions with basis as the stub name:

makespline bspline x2-x5, basis(basis)

This would generate a third-order B-spline basis function for each of the variables in x2-x5, with knots
at the medians of x2-x5. Each of the basis functions would consist of five variables; see Methods and

formulas in [R] npregress series for details.

https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintroRemarksandexamplesPiecewisepolynomialsplinesandB-splines
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulasB-splines
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulasB-splines
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries

makespline — Spline generation 5

Once we have these basis functions, we can fit the model in (1) by typing

regress y x1 c.(basis*)##c.(basis*)

where c.(basis*)##c.(basis*) specifies that the terms in the basis functions be included in themodel
on their own as well as interacted with each of the other terms.

Above, we are assuming that we constructed a good approximation of the unknown function 𝑔(⋅).
We could go further and select from among these spline basis terms by using a technique such as lasso

for prediction, described in [LASSO] lasso, or, if we are interested in inferences on estimated effects,

a technique such as the partialing-out or double-selection lasso method, described in [LASSO] Lasso

inference intro.

Let’s say we are interested in getting a reliable estimate of the effect of x1 on the mean of the outcome.
We would type

poregress y x1, controls(c.(basis*)##c.(basis*))

The method used by the above command is partialing-out lasso, which selects from the elements of

the basis function to provide an optimal approximation of 𝑔(⋅) while accounting for the implied model

selection error. The result is an estimate of the effect of x1 on the outcome with reliable standard errors.

Of course, the model does not have to be like the one presented in (1). It could be

y = 𝑔 (x1, x2, . . . , x𝑘) + ε

or

y = 𝑔 (x1) + 𝑔 (x2) + · · · + 𝑔 (x𝑘) + ε

or we might instead be interested in using the basis functions for visualization.

Example 1: Generating and naming B-spline basis functions
Below, we generate a third-order B-spline basis function with one knot placed at the median. The

basis function is constructed from the variable price.

. sysuse auto
(1978 automobile data)
. makespline bspline price

The basis function consists of these five variables:

. describe _*
Variable Storage Display Value

name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro

makespline — Spline generation 6

The default naming convention is to give the elements of the basis function a name that starts with

bsp and two subscripts. The first subscript enumerates the basis functions, and the second subscript

enumerates the elements within the basis function. For example, if we created basis functions for two

variables, we would obtain the following:

. makespline bspline price mpg, replace

. describe _*
Variable Storage Display Value

name type format label Variable label

_bsp_1_1 double %10.0g B-spline basis term 1 for price
_bsp_1_2 double %10.0g B-spline basis term 2 for price
_bsp_1_3 double %10.0g B-spline basis term 3 for price
_bsp_1_4 double %10.0g B-spline basis term 4 for price
_bsp_1_5 double %10.0g B-spline basis term 5 for price
_bsp_2_1 double %10.0g B-spline basis term 1 for mpg
_bsp_2_2 double %10.0g B-spline basis term 2 for mpg
_bsp_2_3 double %10.0g B-spline basis term 3 for mpg
_bsp_2_4 double %10.0g B-spline basis term 4 for mpg
_bsp_2_5 double %10.0g B-spline basis term 5 for mpg

If we want to change the stub name bsp to autobasis, we could use the basis() option as follows:

. makespline bspline price mpg, basis(autobasis)

. describe auto*
Variable Storage Display Value

name type format label Variable label

autobasis_1_1 double %10.0g B-spline basis term 1 for price
autobasis_1_2 double %10.0g B-spline basis term 2 for price
autobasis_1_3 double %10.0g B-spline basis term 3 for price
autobasis_1_4 double %10.0g B-spline basis term 4 for price
autobasis_1_5 double %10.0g B-spline basis term 5 for price
autobasis_2_1 double %10.0g B-spline basis term 1 for mpg
autobasis_2_2 double %10.0g B-spline basis term 2 for mpg
autobasis_2_3 double %10.0g B-spline basis term 3 for mpg
autobasis_2_4 double %10.0g B-spline basis term 4 for mpg
autobasis_2_5 double %10.0g B-spline basis term 5 for mpg

Alternatively, we could provide names for each of the variables that form a basis function. For exam-

ple,

. makespline bspline mpg, basis(mpg1 mpg2 mpg3 mpg4 mpg5)

. describe mpg1-mpg5
Variable Storage Display Value

name type format label Variable label

mpg1 double %10.0g B-spline basis term 1 for mpg
mpg2 double %10.0g B-spline basis term 2 for mpg
mpg3 double %10.0g B-spline basis term 3 for mpg
mpg4 double %10.0g B-spline basis term 4 for mpg
mpg5 double %10.0g B-spline basis term 5 for mpg

makespline — Spline generation 7

Example 2: Generating and naming piecewise polynomial spline basis functions
Below, we generate a third-order piecewise polynomial spline with one knot at the median and show

the variables we generated:

. makespline piecewise mpg

. describe *_sp*
Variable Storage Display Value

name type format label Variable label

_rs_sp_1 double %10.0g mpg rescaled to [0,1]
_sp_1_1 double %10.0g Piecewise polynomial basis term 1

for mpg

The only syntactical difference is that, after makespline, we specify piecewise instead of bspline
to be the basis. makespline generates two variables in this case. They are the elements that are necessary
to construct a basis function.

The default naming convention is to give the elements of the spline function a name that starts with

sp and has two subscripts. The first subscript enumerates the piecewise polynomial spline for a given

variable, and the second subscript denotes the knot number. The rescaled variable starts with rs sp
followed by a subscript denoting the element in the variable list.

Again, we may use a stub to modify the names that precede the subscripts, or we may specify a name

for each new variable. Below, we also specified the names for the rescaled variables:

. makespline piecewise mpg price, basis(mpgsp pricesp) rescale(mpgrs pricers)

. describe mpgsp mpgrs pricesp pricers
Variable Storage Display Value

name type format label Variable label

mpgsp double %10.0g Piecewise polynomial basis term 1
for mpg

mpgrs double %10.0g mpg rescaled to [0,1]
pricesp double %10.0g Piecewise polynomial basis term 1

for price
pricers double %10.0g price rescaled to [0,1]

The logic behind the variables generated is that they consist of all the elements needed to approxi-

mate the unknown function 𝑔(⋅) of the specified variables nonparametrically. In this case, a third-order
piecewise polynomial spline approximation of 𝑔(⋅) consists of the levels, square, and cube of mpgsp,
mpgrs, pricesp, and pricers. Specifically, to include the fully interacted basis functions in a model,
we would need to include the term below in our specification:

c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

makespline simplifies this task by returning a local macro with the terms needed to fit 𝑔(⋅). The
local macro has the name r(regressors). In this case, it expands to the following:

. display ”‘r(regressors)’”
c.(c.mpgrs##c.mpgrs##c.mpgrs mpgsp)##c.(c.pricers##c.pricers##c.pricers pricesp)

Note that when you generate basis functions for more than one variable, as we did above,

r(regressors) fully interacts these basis functions. These fully interacted basis functions can be in-

cluded when fitting a model by adding ‘r(regressors)’ to your list of covariates.

makespline — Spline generation 8

Example 3: Using makespline in semiparametric estimation
As we mentioned previously, basis functions are particularly useful for approximating unknown func-

tions. For example, say we want to obtain the average marginal effect of x1 on the conditional mean of

the continuous outcome y. We have two controls, x2 and x3, but it is unclear whether they enter the

model linearly or with another functional form.

To approximate the unknown function of x2 and x3, we construct two B-spline basis functions with
eight knots each. We use the simulated dataset and then the makespline bspline command:

. use https://www.stata-press.com/data/r19/splines, clear
(Simulated data)
. makespline bspline x2 x3, knots(8)

This yields basis functions with 12 elements. Once you fully interact the two basis functions, you

get 168 regressors. Using all of them to approximate the unknown function would not be a sound idea.

Thus, we will use poregress to perform partialing-out lasso linear regression. This estimator will select

from the 168 covariates to provide a good approximation to the unknown function and at the same time

provide a reliable estimate of the marginal effect of interest.

Rather than interact the basis terms manually, we can simply refer to the macro r(regressors),
which contains the full interaction of the basis functions:

. poregress y x1, controls(‘r(regressors)’)
Estimating lasso for y using plugin
Estimating lasso for x1 using plugin
Partialing-out linear model Number of obs = 5,000

Number of controls = 168
Number of selected controls = 19
Wald chi2(1) = 3535.78
Prob > chi2 = 0.0000

Robust
y Coefficient std. err. z P>|z| [95% conf. interval]

x1 2.951242 .049632 59.46 0.000 2.853965 3.048519

Note: Chi-squared test is a Wald test of the coefficients of the variables
of interest jointly equal to zero. Lassos select controls for model
estimation. Type lassoinfo to see number of selected variables in each
lasso.

We obtain an average marginal effect of 2.95.

A researcher does not know the true value of the effect; however, we do. These are simulated data.

The model is given by

y = 3x1 + 3sin {3 (x2 − x3)} + ε

The unknown function of x2 and x3 is complex, yet we obtained a precise estimate of the averagemarginal

effect.

makespline — Spline generation 9

Example 4: Using makespline for estimation and graphing
It is common to use linear splines to create a graph after estimation. The knots of a regressor define

a piecewise polynomial that can be visualized conditional on the values of other covariates.

Below, we study the effect of mileage in miles per gallon (mpg) on car prices (price). We regress

price on mpg, three linear polynomial basis terms defined by knots at the quartiles of mpg, and a dummy
variable, foreign (1 if cars are foreign).

We first generate the variables that form the polynomial basis and then fit the regression.

. sysuse auto, clear
(1978 automobile data)
. makespline linear mpg, knots(3) basis(mpg)
. regress price mpg mpg_* i.foreign

Source SS df MS Number of obs = 74
F(5, 68) = 13.49

Model 316201619 5 63240323.8 Prob > F = 0.0000
Residual 318863777 68 4689173.19 R-squared = 0.4979

Adj R-squared = 0.4610
Total 635065396 73 8699525.97 Root MSE = 2165.4

price Coefficient Std. err. t P>|t| [95% conf. interval]

mpg -1330.299 213.0425 -6.24 0.000 -1755.419 -905.1798
mpg_1_1 1698.953 622.5153 2.73 0.008 456.7432 2941.163
mpg_1_2 -622.9298 651.5686 -0.96 0.342 -1923.115 677.2551
mpg_1_3 139.4188 277.0762 0.50 0.616 -413.4783 692.3158

foreign
Foreign 1676.381 609.4723 2.75 0.008 460.1983 2892.564

_cons 28796.47 3449.408 8.35 0.000 21913.28 35679.65

The regression line for our model is given by the following command:

generate double xb = _b[_cons] + _b[1.foreign]*foreign + ///
mpg*_b[mpg] + (mpg>18)*(mpg-18)*_b[mpg_1_1] + ///

(mpg>20)*(mpg-20)*_b[mpg_1_2] + ///
(mpg>25)*(mpg-25)*_b[mpg_1_3]

The effect of mpg changes at the knots. If mpg is less than or equal to 18, it is b[mpg]; if it is greater
than 18 but less than or equal to 20, it is (b[mpg] + b[mpg 1 1]); if it is greater than 20 but less

than or equal to 25, it is (b[mpg] + b[mpg 1 1] + b[mpg 1 2]); and if it is greater than 25, it is
(b[mpg] + b[mpg 1 1] + b[mpg 1 2] + b[mpg 1 3]).

We can plot regression lines for foreign and domestic cars. We first generate the predictions for foreign

and domestic cars.

. generate xb_domestic = _b[_cons] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]
. generate xb_foreign = _b[_cons] + _b[1.foreign] + mpg*_b[mpg]
> + (mpg>18)*(mpg-18)*_b[mpg_1_1]
> + (mpg>20)*(mpg-20)*_b[mpg_1_2]
> + (mpg>25)*(mpg-25)*_b[mpg_1_3]

makespline — Spline generation 10

Then we plot both regression lines referencing the placement of the knots with vertical lines. In the

graph, we also include the values of the dependent variable. We can inspect graphically how the effect

of mpg differs across the regions defined by the knots.

. twoway line xb_domestic mpg,
> lcolor(blue) lpattern(dash) sort ||
> line xb_foreign mpg,
> lcolor(red) lpatter(dash_dot) sort ||
> scatter price mpg if foreign==0, mcolor(blue%30) ||
> scatter price mpg if foreign==1, mcolor(red%30)
> xline(18 20 25)
> title(Fitted values for domestic and foreign cars)
> subtitle(Spline regression with knots at quartiles of mpg)

0

5000

10000

15000

10 20 30 40
Mileage (mpg)

xb_domestic
xb_foreign
Price
Price

Spline regression with knots at quartiles of mpg

Fitted values for domestic and foreign cars

Stored results
makespline stores the following in r():

Scalars

r(N knots) number of knots

r(local) 1 if local was specified, 0 otherwise

r(bsepsilon) distance from variable’s boundary for B-spline knot placement

Macros

r(basis) spline type used to generate basis function

r(regressors) regressors formed from basis functions

r(basisnames#) variable names of basis function for variable #

r(wtype) weight type

r(wexp) weight expression

Matrices

r(minmax) minimum and maximum of all variables

r(knots) matrix of knots

makespline — Spline generation 11

Methods and formulas
See Methods and formulas in [R] npregress series for piecewise polynomial spline and B-spline

computation.

When the local option is specified, let 𝑉𝑖, 𝑖 = 1, . . . , 𝑛, be the variables to be created; 𝑘𝑖, 𝑖 =
1, . . . , 𝑛 − 1, be the corresponding knots; and 𝒱 be the original variable rescaled to be in [0, 1]. Then

𝑉1 = min(𝒱, 𝑘1)

𝑉𝑖 = max{min(𝒱, 𝑘𝑖), 𝑘𝑖−1} − 𝑘𝑖−1 𝑖 = 2, . . . , 𝑛 − 1

𝑉𝑛 = max(𝒱, 𝑘𝑛−1) − 𝑘𝑛−1

When the rcs basis is specified, let 𝑘𝑖, 𝑖 = 1, . . . , 𝑛, be the knot values; 𝑉𝑖, 𝑖 = 1, . . . , 𝑛 − 1, be the

variables to be created; and 𝒱 be the original variable rescaled to be in [0, 1]. Then

𝑉1 = 𝒱

𝑉𝑖+1 =
(𝒱 − 𝑘𝑖)3

+ − (𝑘𝑛 − 𝑘𝑛−1)−1{(𝒱 − 𝑘𝑛−1)3
+(𝑘𝑛 − 𝑘𝑖) − (𝒱 − 𝑘𝑛)3

+(𝑘𝑛−1 − 𝑘𝑖)}
(𝑘𝑛 − 𝑘1)2

𝑖 = 1, . . . , 𝑛 − 2

where

(𝑢)+ = { 𝑢, if 𝑢 > 0
0, if 𝑢 ≤ 0

When the harrell option is specified, the knots are placed using the percentiles recommended in

Harrell (2001, 23). These percentiles are based on the chosen number of knots as follows:

No.

of knots Percentiles

3 10 50 90

4 5 35 65 95

5 5 27.5 50 72.5 95

6 5 23 41 59 77 95

7 2.5 18.33 34.17 50 65.83 81.67 97.5

References
Chetverikov, D., D. Kim, and D. Wilhelm. 2018. Nonparametric instrumental-variable estimation. Stata Journal 18:

937–950.

de Boor, C. 2001.A Practical Guide to Splines. Rev. ed. New York: Springer.

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing. 2nd ed. New York: Dekker. https://doi.org/10.

1201/9781482273144.

Hansen, B. E. 2009. University of Wisconsin–Madison, ECON 718, NonParametric Econometrics, Spring 2009, course

notes. Last visited on 2019/01/15. https://www.ssc.wisc.edu/∼bhansen/718/718.htm.

———. 2022. Econometrics. Princeton, NJ: Princeton University Press.

Harrell, F. E., Jr. 2001. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and

Survival Analysis. New York: Springer. https://doi.org/10.1007/978-1-4757-3462-1.

https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseriesMethodsandformulas
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
https://www.stata-journal.com/article.html?article=st0547
https://doi.org/10.1201/9781482273144
https://doi.org/10.1201/9781482273144
https://www.ssc.wisc.edu/~bhansen/718/718.htm
https://www.stata.com/bookstore/econometrics-hansen
https://doi.org/10.1007/978-1-4757-3462-1

makespline — Spline generation 12

Li, Q., and J. S. Racine. 2007. Nonparametric Econometrics: Theory and Practice. Princeton, NJ: Princeton University

Press.

Schoenberg, I. J., ed. 1969.Approximations with Special Emphasis on Spline Functions. New York: Academic Press.

Schumaker, L. L. 2007. Spline Functions: Basic Theory. 3rd ed. Cambridge: Cambridge University Press. https://doi.org/

10.1017/CBO9780511618994.

Also see
[R] npregress series — Nonparametric series regression

[R] npregress series postestimation — Postestimation tools for npregress series

[R] npregress intro — Introduction to nonparametric regression

[R] kdensity — Univariate kernel density estimation

[R] lpoly — Kernel-weighted local polynomial smoothing

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1017/CBO9780511618994
https://doi.org/10.1017/CBO9780511618994
https://www.stata.com/manuals/rnpregressseries.pdf#rnpregressseries
https://www.stata.com/manuals/rnpregressseriespostestimation.pdf#rnpregressseriespostestimation
https://www.stata.com/manuals/rnpregressintro.pdf#rnpregressintro
https://www.stata.com/manuals/rkdensity.pdf#rkdensity
https://www.stata.com/manuals/rlpoly.pdf#rlpoly
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

