frontier postestimation — Postestimation tools for frontier	
---	--

Postestimation commands predict margins Remarks and examples Reference Also see

Postestimation commands

The following postestimation commands are available after frontier:

Command	Description
contrast	contrasts and ANOVA-style joint tests of parameters
estat ic	Akaike's, consistent Akaike's, corrected Akaike's, and Schwarz's Bayesian infor- mation criteria (AIC, CAIC, AICc, and BIC, respectively)
estat summarize	summary statistics for the estimation sample
estat vce	variance-covariance matrix of the estimators (VCE)
estimates	cataloging estimation results
etable	table of estimation results
hausman	Hausman's specification test
lincom	point estimates, standard errors, testing, and inference for linear combinations of parameters
linktest	link test for model specification
lrtest	likelihood-ratio test
margins	marginal means, predictive margins, marginal effects, and average marginal effects
marginsplot	graph the results from margins (profile plots, interaction plots, etc.)
nlcom	point estimates, standard errors, testing, and inference for nonlinear combinations of parameters
predict	predictions and their SEs, technical efficiency, etc.
predictnl	point estimates, standard errors, testing, and inference for generalized predictions
pwcompare	pairwise comparisons of parameters
test	Wald tests of simple and composite linear hypotheses
testnl	Wald tests of nonlinear hypotheses

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors, and estimates of technical efficiency.

Menu for predict

Statistics > Postestimation

Syntax for predict

```
predict [type] newvar [if] [in] [, statistic]
predict [type] stub* [if] [in], scores
```

statistic	Description			
Main				
xb	linear prediction; the default			
stdp	standard error of the prediction			
u	estimates of minus the natural log of the technical efficiency via $E(u_i \mid \epsilon_i)$			
m	estimates of minus the natural log of the technical efficiency via $M(u_i \epsilon_i)$			
te	estimates of the technical efficiency via $E \{ \exp(-su_i) \mid \epsilon_i \}$			
	$s = \begin{cases} 1, & \text{for production functions} \\ -1, & \text{for cost functions} \end{cases}$			

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation sample.

Options for predict

Main

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via $E(u_i | \epsilon_i)$.

m produces estimates of minus the natural log of the technical efficiency via $M(u_i \mid \epsilon_i)$.

te produces estimates of the technical efficiency via $E\{\exp(-su_i) \mid \epsilon_i\}$.

scores calculates equation-level score variables.

The first new variable will contain $\partial \ln L / \partial (\mathbf{x}_i \boldsymbol{\beta})$.

The second new variable will contain $\partial \ln L / \partial (1 \text{nsig2v})$.

The third new variable will contain $\partial \ln L / \partial (1nsig2u)$.

scores may not be specified after estimation with option distribution(tnormal).

margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

-	
statistic	Description
margins	<pre>marginlist], predict(statistic) [options]</pre>
margins	[marginlist] [, options]

xb	linear prediction; the default	
stdp	not allowed with margins	
u	not allowed with margins	
m	not allowed with margins	
te	not allowed with margins	

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

Example 1

In example 2 of [R] **frontier**, we modeled heteroskedasticity by specifying the vhet() option. We would like to compare the predicted efficiency in that case with respect to a model specification without accounting for the presence of heteroskedasticity in the error term. Kumbhakar and Lovell (2000, 117) show that failing to account for heteroskedasticity associated with firm size may lead to bias in the estimation of the technical efficiency. By incorrectly assuming homoskedasticity, the estimates for relatively small firms would be biased upward, while the estimates for relatively large firms would be biased downward. Let's refit the model and use the te option of predict:

. use https://www.stata-press.com/data/r19/frontier1

Firm size

- . frontier lnoutput lnlabor lncapital, vhet(size)
 (output omitted)
- . predict te_vhet, te

Next, we fit the model assuming homoskedasticity and then again predict the technical efficiency with the te option of predict:

. frontier lnoutput lnlabor lncapital
 (output omitted)
. predict te, te

The graph below shows the estimates for technical efficiency for the smaller and larger firms. The technical efficiency tends to be smaller for smaller firms when the model specification accounts for the presence of heteroskedasticity, whereas the predictions for the technical efficiency tends to be smaller for larger firms assuming homoskedasticity. These results agree with the theoretical statement in Kumbhakar and Lovell (2000) because the firm size was actually relevant to model heteroskedasticity in the idiosyncratic component of the error term.

Modeling heteroskedasticity Assuming homoskedasticity Assuming homoskedas

Firm size

Predicted technical efficiency for smaller and larger firms

Example 2

We also test in example 2 of [R] **frontier** whether the firms use constant returns to scale. We can use lincom as an alternative to perform an equivalent test based on the normal distribution.

. use https://www.stata-press.com/data/r19/frontier1, clear

- . frontier lnoutput lnlabor lncapital, vhet(size)
- (output omitted)
- . lincom _b[lnlabor] + _b[lncapital]-1
- (1) [lnoutput]lnlabor + [lnoutput]lncapital = 1

lnoutput	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
(1)	.1022278	.5888511	0.17	0.862	-1.051899	1.256355

The *p*-value is exactly the same as the one we obtained with the test command in example 2 of [R] frontier. However, notice that by using lincom, we obtained an estimate of the deviation from the constant returns-to-scale assumption, which is not significantly different from zero in this case.

4

Reference

Kumbhakar, S. C., and C. A. K. Lovell. 2000. Stochastic Frontier Analysis. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9781139174411.

Also see

- [R] frontier Stochastic frontier models
- [U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.