
expoisson — Exact Poisson regression

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
expoisson fits an exact Poisson regression model, which produces more accurate inference in small

samples than standard maximum-likelihood–based Poisson regression. For stratified data, expoisson
conditions on the number of events in each stratum and is an alternative to fixed-effects Poisson regres-

sion.

Quick start
Exact Poisson regression of y on x1, x2, and x3

expoisson y x1 x2 x3

Add exposure variable evar
expoisson y x1 x2 x3, exposure(evar)

Same as above, but condition on values of x3 to save time and memory

expoisson y x1 x2, exposure(evar) condvars(x3)

Same as above, and allow more memory for computing the conditional distribution of sufficient statistics

expoisson y x1 x2, exposure(evar) condvars(x3) memory(100m)

Report incidence-rate ratios rather than coefficients

expoisson y x1 x2 x3, irr

Report conditional scores tests

expoisson y x1 x2 x3, test(score)

Fit a model with strata identified by svar
expoisson y x1 x2 x3, group(svar)

Menu
Statistics > Exact statistics > Exact Poisson regression
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Syntax
expoisson depvar indepvars [ if ] [ in ] [weight ] [ , options ]

options Description

Model

condvars(varlist𝑐) condition on variables in varlist𝑐
group(varname) groups or strata are stratified by unique values of varname

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

Options

memory(#[ b | k | m | g ]) set limit on memory usage; default is memory(25m)
saving(filename[ , replace ]) save the joint conditional distribution to filename

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

test(testopt) report 𝑝-value for observed sufficient statistic, conditional scores
test, or conditional probabilities test

mue(varlist𝑚) compute the median unbiased estimates for varlist𝑚
midp use the mid-𝑝-value rule
[ no ]log display or suppress the enumeration log; default is to display

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

indepvars, varlist𝑐, and varlist𝑚 may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

condvars(varlist𝑐) specifies variables whose parameter estimates are not of interest to you. You

can save substantial computer time and memory by moving such variables from indepvars to

condvars(). Understand that you will get the same results for x1 and x3 whether you type

. expoisson y x1 x2 x3 x4

or

. expoisson y x1 x3, condvars(x2 x4)

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rexpoisson.pdf#rexpoissonSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/rexpoisson.pdf#rexpoissonOptionstestopt
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rexpoisson.pdf#rexpoissonOptionsdisplay_options
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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group(varname) specifies the variable defining the strata, if any. A constant term is assumed for each

stratum identified in varname, and the sufficient statistics for indepvars are conditioned on the ob-

served number of successes within each group (as well as other variables in the model). The group

variable must be integer valued.

exposure(varname𝑒), offset(varname𝑜); see [R] Estimation options.

� � �
Options �

memory(#[ b | k | m | g ]) sets a limit on the amount of memory expoisson can use when computing the

conditional distribution of the parameter sufficient statistics. The default is memory(25m), where
m stands for megabyte, or 1,048,576 bytes. The following are also available: b stands for byte; k
stands for kilobyte, which is equal to 1,024 bytes; and g stands for gigabyte, which is equal to 1,024

megabytes. The minimum setting allowed is 1m and the maximum is 2048m or 2g, but do not attempt
to use more memory than is available on your computer. Also see the first technical note under

example 3 on counting the conditional distribution.

saving(filename [ , replace ]) saves the joint conditional distribution for each independent variable

specified in indepvars. There is one file for each variable, and it is named using the prefix file-

name with the variable name appended. For example, saving(mydata) with an independent vari-

able named X would generate a data file named mydata X.dta. Use replace to replace an existing

file. Each file contains the conditional distribution for one of the independent variables specified in

indepvars conditioned on all other indepvars and those variables specified in condvars(). There are
two variables in each data file: the feasible sufficient statistics for the variable’s parameter and their

associated weights. The weights variable is named w .

� � �
Reporting �

level(#); see [R]Estimation options. The level() option will not work on replay because confidence
intervals are based on estimator-specific enumerations. To change the confidence level, you must refit

the model.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, exp(𝛽) rather than 𝛽.
Standard errors and confidence intervals are similarly transformed. This option affects how results

are displayed, not how they are estimated or stored. irr may be specified at estimation or when

replaying previously estimated results.

test(sufficient | score | probability) reports the 𝑝-value associated with the observed sufficient
statistics, the conditional scores tests, or the conditional probabilities tests, respectively. The default

is test(sufficient). All the statistics are computed at estimation time regardless of which is

specified. Each statistic may thus also be displayed when replaying results after estimation without

having to refit the model; see [R] expoisson postestimation.

mue(varlist𝑚) specifies that median unbiased estimates (MUEs) be reported for the specified variables.

By default, the conditional maximum likelihood estimates (CMLEs) are reported, except for those pa-

rameters for which the CMLEs are infinite. Specify mue( all) if you wantMUEs for all the indepvars.

midp instructs expoisson to use the mid-𝑝-value rule when computing the MUEs, 𝑝-values, and con-

fidence intervals. This adjustment is for the discreteness of the distribution and halves the value of

the discrete probability of the observed statistic before adding it to the 𝑝-value. The mid-𝑝-value rule
cannot be applied to MUEs whose corresponding parameter CMLE is infinite.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rexpoisson.pdf#rexpoissonRemarksandexamplestechnote
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rexpoissonpostestimation.pdf#rexpoissonpostestimation
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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log and nolog specify whether to display the enumeration log, which shows the progress of computing

the conditional distribution of the sufficient statistics. The enumeration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
and sformat(% fmt); see [R] Estimation options.

Note that the maximumwidths for cformat(), pformat(), and sformat() differ from those widths

listed in [R] Estimation options. The maximum width for each format is 9 for expoisson.

The following option is available with expoisson but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Exact Poisson regression estimates the model parameters by using the conditional distributions of

the parameters’ sufficient statistics, and the resulting parameter estimates are known as CMLEs. Exact

Poisson regression is a small-sample alternative to the maximum-likelihood Poissonmodel. See [R] pois-

son and [XT] xtpoisson to obtain maximum likelihood estimates (MLEs) for the Poisson model and the

fixed-effects Poisson model.

Let 𝑌𝑖 denote a Poisson random variable where we observe the outcome 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.
Associated with each independent observation is a 1 × 𝑝 vector of covariates, x𝑖. We will denote 𝜇𝑖 =
𝐸 [𝑌𝑖 | x𝑖] and use the log-linear model to model the relationship between 𝑌𝑖 and x𝑖,

log (𝜇𝑖) = 𝜃 + x𝑖β

where the constant term, 𝜃, and the 𝑝×1 vector of regression parameters,β, are unknown. The probability
of observing 𝑌𝑖 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛, is

Pr(Y = y) =
𝑛

∏
𝑖=1

𝜇𝑦𝑖
𝑖 𝑒−𝜇𝑖

𝑦𝑖!

where Y = (𝑌1, . . . , 𝑌𝑛) and y = (𝑦1, . . . , 𝑦𝑛). The MLEs for 𝜃 and βmaximize the log of this function.

The sufficient statistics for 𝜃 and 𝛽𝑗, 𝑗 = 1, . . . , 𝑝, are 𝑀 = ∑𝑛
𝑖=1 𝑌𝑖 and 𝑇𝑗 = ∑𝑛

𝑖=1 𝑌𝑖𝑥𝑖𝑗, respec-

tively, and we observe 𝑀 = 𝑚 and 𝑇𝑗 = 𝑡𝑗. expoisson tallies the conditional distribution for each 𝑇𝑗,

given the other sufficient statistics 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗 and 𝑀 = 𝑚. Denote one of these values to be 𝑡(𝑘)
𝑗 ,

𝑘 = 1, . . . , 𝑁, with weight 𝑤𝑘 that accounts for all the generated Y vectors that give rise to 𝑡(𝑘)
𝑗 . The

conditional probability of observing 𝑇𝑗 = 𝑡𝑗 has the form

Pr(𝑇𝑗 = 𝑡𝑗 | 𝑇𝑙 = 𝑡𝑙, 𝑙 ≠ 𝑗, 𝑀 = 𝑚) = 𝑤 𝑒𝑡𝑗𝛽𝑗

∑𝑘 𝑤𝑘𝑒𝑡(𝑘)
𝑗 𝛽𝑗

(1)

where the sum is over the subset of T vectors such that (𝑇 (𝑘)
1 = 𝑡1, . . . , 𝑇 (𝑘)

𝑗 = 𝑡(𝑘)
𝑗 , . . . , 𝑇 (𝑘)

𝑝 = 𝑡𝑝) and
𝑤 is the weight associated with the observed t. The CMLE for 𝛽𝑗 maximizes the log of this function.

https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
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Specifying nuisance variables in condvars() prevents expoisson from estimating their associated

regression coefficients. These variables are still conditional variables when tallying the conditional dis-

tribution for the variables in indepvars.

Inferences from MLEs rely on asymptotics, and if your sample size is small, these inferences may

not be valid. On the other hand, inferences from the CMLEs are exact in that they use the conditional

distribution of the sufficient statistics outlined above.

For small datasets, the dependent variable can be completely determined by the data. Here the MLEs

and the CMLEs are unbounded. When this occurs, expoisson will compute the MUE, the regression

estimate that places the observed sufficient statistic at the median of the conditional distribution.

See [R] exlogistic for a more thorough discussion of exact estimation and related statistics.

Example 1
Armitage, Berry, and Matthews (2002, 499–501) fit a log-linear model to data containing the number

of cerebrovascular accidents experienced by 41 men during a fixed period, each of whom had recovered

from a previous cerebrovascular accident and was hypertensive. Sixteen men received treatment, and in

the original data, there are three age groups (40–49, 50–59, ≥60), but we pool the first two age groups

to simplify the example. Armitage, Berry, and Matthews point out that this was not a controlled trial,

but the data are useful to inquire whether there is evidence of fewer accidents for the treatment group

and if age may be an important factor. The dependent variable count contains the number of accidents,

variable treat is an indicator for the treatment group (1 = treatment, 0 = control), and variable age is

an indicator for the age group (0 = 40−59; 1 = ≥60).

First, we load the dataset, list it, and tabulate the cerebrovascular accident counts by treatment and

age group.

. use https://www.stata-press.com/data/r19/cerebacc
(Cerebrovascular accidents in hypotensive-treated and control groups)
. list

treat count age

1. Control 0 40/59
2. Control 0 >=60
3. Control 1 40/59
4. Control 1 >=60
5. Control 2 40/59

6. Control 2 >=60
7. Control 3 40/59

(output omitted )
35. Treatment 0 40/59

36. Treatment 0 40/59
37. Treatment 0 40/59
38. Treatment 0 40/59
39. Treatment 1 40/59
40. Treatment 1 40/59

41. Treatment 1 40/59

https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
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. tabulate treat age [fw=count]
Hypotensiv

e drug Age group
treatment 40/59 >=60 Total

Control 15 10 25
Treatment 4 0 4

Total 19 10 29

Next, we estimate the CMLE with expoisson and, for comparison, the MLE with poisson.

. expoisson count i.treat i.age
Estimating: 1.treat
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 11
(output omitted )

Observation 39: Enumerations = 410
Observation 40: Enumerations = 410
Observation 41: Enumerations = 30
Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 5
Observation 2: Enumerations = 15
Observation 3: Enumerations = 15
(output omitted )

Observation 39: Enumerations = 455
Observation 40: Enumerations = 455
Observation 41: Enumerations = 30
Exact Poisson regression

Number of obs = 41

count Coefficient Suff. 2*Pr(Suff.) [95% conf. interval]

treat
Treatment -1.594306 4 0.0026 -3.005089 -.4701708

age
>=60 -.5112067 10 0.2794 -1.416179 .3429232

. poisson count i.treat i.age, nolog
Poisson regression Number of obs = 41

LR chi2(2) = 10.64
Prob > chi2 = 0.0049

Log likelihood = -38.97981 Pseudo R2 = 0.1201

count Coefficient Std. err. z P>|z| [95% conf. interval]

treat
Treatment -1.594306 .5573614 -2.86 0.004 -2.686714 -.5018975

age
>=60 -.5112067 .4043525 -1.26 0.206 -1.303723 .2813096
_cons .233344 .2556594 0.91 0.361 -.2677391 .7344271
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expoisson generates an enumeration log for each independent variable in indepvars. The conditional
distribution of the parameter sufficient statistic is tallied for each independent variable. The conditional

distribution for treat, for example, has 30 records containing the weights, 𝑤𝑘, and feasible sufficient

statistics, 𝑡(𝑘)
treat. In essence, the set of points (𝑤𝑘, 𝑡(𝑘)

treat), 𝑘 = 1, . . . , 30, tallied by expoisson now become

the data to estimate the regression coefficient for treat, using (1) as the likelihood. Remember that 1
of the 30 (𝑤𝑘, 𝑡(𝑘)

treat) must contain the observed sufficient statistic, 𝑡treat = ∑41
𝑖=1 treat𝑖 × count𝑖 = 4,

and its relative position in the sorted set of points (sorted by 𝑡(𝑘)
treat) is how the sufficient-statistic 𝑝-value

is computed. This algorithm is repeated for the age variable.

The regression coefficients for treat and age are numerically identical for both Poissonmodels. Both
models provide evidence that the treatment reduces the rate of cerebrovascular accidents, ≈ 𝑒−1.59 ≈
0.204, or a reduction of about 80%. There is no evidence that age plays a role in the rate of accidents.

The results based on the sufficient statistic provide stronger evidence that treatment reduces the rate of

cerebrovascular accidents than the corresponding asymptotic statistics. However, the exact confidence

intervals are wider than their asymptotic counterparts.

Example 2
Agresti (2013, 129) used the data from Laird and Olivier (1981) to demonstrate the Poisson model

for modeling rates. The data consist of patient survival after heart valve replacement operations. The

sample consists of 109 patients that are classified by type of heart valve (aortic, mitral) and by age (<55,

≥55). Follow-up observations cover lengths from 3 to 97 months, and the time at risk, or exposure, is

stored in the variable TAR. The response is whether the subject died. First, we take a look at the data and
then estimate the incidence rates (IRs) with expoisson and poisson.

. use https://www.stata-press.com/data/r19/heartvalve
(Heart valve replacement data)
. list

age valve deaths TAR

1. <55 Aortic 4 1259
2. <55 Mitral 1 2082
3. >=55 Aortic 7 1417
4. >=55 Mitral 9 1647

The age variable is coded 0 for age <55 and 1 for age ≥55, and the valve variable is coded 0 for

the aortic valve and 1 for the mitral valve. The total number of deaths, 𝑀 = 21, is small enough that

enumerating the conditional distributions for age and valve type is feasible and asymptotic inferences

associated with standard maximum-likelihood Poisson regression may be questionable.
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. expoisson deaths i.age i.valve, exposure(TAR) irr
Estimating: 1.age
Enumerating sample-space combinations:
Observation 1: Enumerations = 11
Observation 2: Enumerations = 11
Observation 3: Enumerations = 132
Observation 4: Enumerations = 22
Estimating: 1.valve
Enumerating sample-space combinations:
Observation 1: Enumerations = 17
Observation 2: Enumerations = 17
Observation 3: Enumerations = 102
Observation 4: Enumerations = 22
Exact Poisson regression

Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age
>=55 3.390401 16 0.0194 1.182297 11.86935

valve
Mitral .7190197 10 0.5889 .2729881 1.870068

ln(TAR) 1 (exposure)

. poisson deaths i.age i.valve, exposure(TAR) irr nolog
Poisson regression Number of obs = 4

LR chi2(2) = 7.62
Prob > chi2 = 0.0222

Log likelihood = -8.1747285 Pseudo R2 = 0.3178

deaths IRR Std. err. z P>|z| [95% conf. interval]

age
>=55 3.390401 1.741967 2.38 0.017 1.238537 9.280965

valve
Mitral .7190197 .3150492 -0.75 0.452 .3046311 1.6971

_cons .0018142 .0009191 -12.46 0.000 .0006722 .0048968
ln(TAR) 1 (exposure)

Note: _cons estimates baseline incidence rate.

The CMLE and the MLE are numerically identical. We have strong evidence that the death rate for the

older age group is higher than the younger age group, specifically 3.4 times higher (p = 0.017). This

means that for every death in the younger group each month, we would expect about three deaths in the

older group. The IR estimate for valve type is approximately 0.72, but we do not have enough evidence

to claim that it is different from one. The exact Poisson confidence intervals are a bit wider than the

asymptotic confidence intervals.
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You can use ir (see [R] Epitab) to estimate IRs and exact confidence intervals for one covariate, and

we compare these confidence intervals with those from expoisson, where we estimate the IR by using

age only.

. ir deaths age TAR
Incidence-rate comparison

Age of patient
Exposed Unexposed Total

Number of deaths 16 5 21
Time at risk 3064 3341 6405

Incidence rate .0052219 .0014966 .0032787

Point estimate [95% conf. interval]

Inc. rate diff. .0037254 .00085 .0066007
Inc. rate ratio 3.489295 1.221441 12.17875 (exact)
Attr. frac. ex. .7134092 .1812948 .9178898 (exact)
Attr. frac. pop .5435498

Mid-p-values for tests of incidence-rate difference:
Adj Pr(Exposed Number of deaths <= 16) = 0.9951 (lower one-sided)
Adj Pr(Exposed Number of deaths >= 16) = 0.0049 (upper one-sided)

Two-sided p-value = 0.0099
. expoisson deaths age, exposure(TAR) irr midp nolog
Exact Poisson regression

Number of obs = 4

deaths IRR Suff. 2*Pr(Suff.) [95% conf. interval]

age 3.489295 16 0.0099 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.

Both ir and expoisson give identical IRs and 𝑝-values. Both report the two-sided exact 𝑝-value by
using the mid-𝑝-value rule that accounts for the discreteness in the distribution by subtracting 𝑝1/2 =
Pr(𝑇 = 𝑡)/2 from 𝑝𝑙 = Pr(𝑇 ≤ 𝑡) and 𝑝𝑔 = Pr(𝑇 ≥ 𝑡), computing 2 × min(𝑝𝑙 − 𝑝1/2, 𝑝𝑔 − 𝑝1/2). By
default, expoisson will not use the mid-𝑝-value rule (when you exclude the midp option), and here the

two-sided exact 𝑝-value would be 2 × min(𝑝𝑙, 𝑝𝑔) = 0.0158. The confidence intervals differ because

expoisson uses the mid-𝑝-value rule when computing the confidence intervals, yet ir does not. You

can verify this by executing expoisson without the midp option for this example; you will get the same

confidence intervals as ir.

https://www.stata.com/manuals/repitab.pdf#rEpitab
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You can replay expoisson to view the conditional scores test or the conditional probabilities test by

using the test() option.

. expoisson, test(score) irr
Exact Poisson regression

Number of obs = 4

deaths IRR Score Pr>=Score [95% conf. interval]

age 3.489295 6.76528 0.0113 1.324926 10.64922
ln(TAR) 1 (exposure)

Note: Mid-p-value computed for the probabilities and CIs.

All the statistics for expoisson are defined in Methods and formulas of [R] exlogistic. Apart from

enumerating the conditional distributions for the logistic and Poisson sufficient statistics, computation-

ally, the primary difference between exlogistic and expoisson is the weighting values in the likeli-

hood for the parameter sufficient statistics.

Example 3
In this example, we fabricate data that will demonstrate the difference between the CMLE and the

MUE when the CMLE is not infinite. A difference in these estimates will be more pronounced when the

probability of the coefficient sufficient statistic is skewed when plotted as a function of the regression

coefficient.

. clear

. input y x
y x

1. 0 2
2. 1 1
3. 1 0
4. 0 0
5. 0 .5
6. 1 .5
7. 2 .01
8. 3 .001
9. 4 .0001

10. end

https://www.stata.com/manuals/rexlogistic.pdf#rexlogisticMethodsandformulas
https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
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. expoisson y x, test(score)
Enumerating sample-space combinations:
Observation 1: Enumerations = 13
Observation 2: Enumerations = 91
Observation 3: Enumerations = 169
Observation 4: Enumerations = 169
Observation 5: Enumerations = 313
Observation 6: Enumerations = 313
Observation 7: Enumerations = 1469
Observation 8: Enumerations = 5525
Observation 9: Enumerations = 5479
Exact Poisson regression

Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.534468 2.955316 0.0810 -3.761718 .0485548

. expoisson y x, test(score) mue(x) nolog
Exact Poisson regression

Number of obs = 9

y Coefficient Score Pr>=Score [95% conf. interval]

x -1.309268* 2.955316 0.0810 -3.761718 .0485548

(*) median unbiased estimates (MUE)

We observe (𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 9. If we condition on𝑚 = ∑9
𝑖=1 𝑦𝑖 = 12, the conditional distribution

of 𝑇𝑥 = ∑𝑖 𝑌𝑖𝑥𝑖 has a size of 5,479 elements. For each entry in this enumeration, a realization of

𝑌𝑖 = 𝑦(𝑘)
𝑖 , 𝑘 = 1, . . . , 5,479, is generated such that ∑𝑖 𝑦(𝑘)

𝑖 = 12. One of these realizations produces

the observed 𝑡𝑥 = ∑𝑖 𝑦𝑖𝑥𝑖 ≈1.5234.
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Below is a graphical display comparing the CMLE with the MUE. We plot Pr(𝑇𝑥 = 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥)
versus 𝛽𝑥, −6 ≤ 𝛽𝑥 ≤ 1, in the upper panel and the cumulative probabilities, Pr(𝑇𝑥 ≤ 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥)
and Pr(𝑇𝑥 ≥ 𝑡𝑥 | 𝑀 = 12, 𝛽𝑥), in the lower panel.
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The location of the CMLE, indicated by the dashed line, is at the mode of the probability profile, and the

MUE, indicated by the dotted line, is to the right of the mode. If we solve for the 𝛽(𝑢)
𝑥 and 𝛽(𝑙)

𝑥 such that

Pr(𝑇𝑥 ≤ 𝑡𝑥 | 𝑀 = 12, 𝛽(𝑢)
𝑥 ) = 1/2 and Pr(𝑇𝑥 ≥ 𝑡𝑥 | 𝑀 = 12, 𝛽(𝑙)

𝑥 ) = 1/2, the MUE is (𝛽(𝑢)
𝑥 + 𝛽(𝑙)

𝑥 )/2.
As you can see in the lower panel, the MUE cuts through the intersection of these cumulative probability

profiles.

Technical note
The memory() option limits the amount of memory that expoisson will consume when computing

the conditional distribution of the parameter sufficient statistics. memory() is independent of the data

maximum memory setting (see set max memory in [D] memory), and it is possible for expoisson to

exceed the memory limit specified in set max memorywithout terminating. By default, a log is provided
that displays the number of enumerations (the size of the conditional distribution) after processing each

observation. Typically, you will see the number of enumerations increase, and then at some point they

will decrease as the multivariate shift algorithm (Hirji, Mehta, and Patel 1987) determines that some of

the enumerations cannot achieve the observed sufficient statistics of the conditioning variables. When

the algorithm is complete, however, it is necessary to store the conditional distribution of the parameter

sufficient statistics as a dataset. It is possible, therefore, to get a memory error when the algorithm has

completed if there is not enough memory to store the conditional distribution.

https://www.stata.com/manuals/dmemory.pdf#dmemory
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Technical note
Computing the conditional distributions and reported statistics requires data sorting and numerical

comparisons. If there is at least one single-precision variable specified in the model, expoisson will

make comparisons with a relative precision of 2−5. Otherwise, a relative precision of 2−11 is used. Be

careful if you use recast to promote a single-precision variable to double precision (see [D] recast).

You might try listing the data in full precision (maybe %20.15g; see [D] format) to make sure that this

is really what you want. See [D] Data types for information on precision of numeric storage types.

Stored results
expoisson stores the following in e():

Scalars

e(N) number of observations

e(k groups) number of groups

e(relative weight) relative weight for the observed e(sufficient) and e(condvars)
e(sum y) sum of depvar

e(k indvars) number of independent variables

e(k condvars) number of conditioning variables

e(midp) mid-𝑝-value rule indicator
e(eps) relative difference tolerance

Macros

e(cmd) expoisson
e(cmdline) command as typed

e(title) title in estimation output

e(depvar) name of dependent variable

e(indvars) independent variables

e(condvars) conditional variables

e(groupvar) group variable

e(exposure) exposure variable

e(offset) linear offset variable

e(level) confidence level

e(wtype) weight type

e(wexp) weight expression

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b
e(estat cmd) program used to implement estat
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(mue indicators) indicator for elements of e(b) estimated using MUE instead of CMLE

e(se) e(b) standard errors (CMLEs only)

e(ci) matrix of e(level) confidence intervals for e(b)
e(sum y groups) sum of e(depvar) for each group

e(N g) number of observations in each group

e(sufficient) sufficient statistics for e(b)
e(p sufficient) 𝑝-value for e(sufficient)
e(scoretest) conditional scores tests for indepvars

e(p scoretest) 𝑝-values for e(scoretest)
e(probtest) conditional probabilities tests for indepvars

e(p probtest) 𝑝-value for e(probtest)

Functions

e(sample) marks estimation sample

https://www.stata.com/manuals/drecast.pdf#drecast
https://www.stata.com/manuals/dformat.pdf#dformat
https://www.stata.com/manuals/ddatatypes.pdf#dDatatypes
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Methods and formulas
Let {𝑌1, 𝑌2, . . . , 𝑌𝑛} be a set of 𝑛 independent Poisson random variables. For each 𝑖 = 1, . . . , 𝑛,

we observe 𝑌𝑖 = 𝑦𝑖 ≥ 0, and associated with each observation is the covariate row vector of length

𝑝, x𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). Denote β = (𝛽1, . . . , 𝛽𝑝)𝑇 to be the column vector of regression parameters

and 𝜃 to be the constant. The sufficient statistic for 𝛽𝑗 is 𝑇𝑗 = ∑𝑛
𝑖=1 𝑌𝑖𝑥𝑖𝑗, 𝑗 = 1, . . . , 𝑝, and for 𝜃 is

𝑀 = ∑𝑛
𝑖=1 𝑌𝑖. We observe 𝑇𝑗 = 𝑡𝑗, 𝑡𝑗 = ∑𝑛

𝑖=1 𝑦𝑖𝑥𝑖𝑗, and 𝑀 = 𝑚, 𝑚 = ∑𝑛
𝑖=1 𝑦𝑖. Let 𝜅𝑖 be the

exposure for the 𝑖th observation. Then the probability of observing (𝑌1 = 𝑦1, 𝑌2 = 𝑦2, . . . , 𝑌𝑛 = 𝑦𝑛) is

Pr(𝑌1 = 𝑦1, . . . , 𝑌𝑛 = 𝑦𝑛 | β,X,κ) = exp(𝑚𝜃 + tβ)
exp{∑𝑛

𝑖=1 𝜅𝑖 exp(𝜃 + x𝑖β)}

𝑛
∏
𝑖=1

𝜅𝑦𝑖
𝑖

𝑦𝑖!

where t = (𝑡1, . . . , 𝑡𝑝), X = (x𝑇
1 , . . . , x𝑇

𝑛)𝑇, and κ = (𝜅1, . . . , 𝜅𝑛)𝑇.

The joint distribution of the sufficient statistics (T, 𝑀) is obtained by summing over all possible

sequences 𝑌1 ≥ 0, . . . , 𝑌𝑛 ≥ 0 such that T = t and 𝑀 = 𝑚. This probability function is

Pr(𝑇1 = 𝑡1, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚 | β,X,κ) = exp(𝑚𝜃 + tβ)
exp{∑𝑛

𝑖=1 𝜅𝑖 exp(𝜃 + x𝑖β)}
(∑

u

𝑛
∏
𝑖=1

𝜅𝑢𝑖
𝑖

𝑢𝑖!
)

where the sum∑
u
is over all nonnegative vectors u of length 𝑛 such that∑𝑛

𝑖=1 𝑢𝑖 = 𝑚 and∑𝑛
𝑖=1 𝑢𝑖x𝑖 =

t.

Conditional distribution
Without loss of generality, we will restrict our discussion to the conditional distribution of the suffi-

cient statistic for 𝛽1, 𝑇1. If we condition on observing𝑀 = 𝑚 and 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, the probability

function of (𝑇1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) is

Pr(𝑇1 = 𝑡1 | 𝛽1, 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 = 𝑚) =
(∑

u
∏𝑛

𝑖=1
𝜅𝑢𝑖

𝑖
𝑢𝑖! ) 𝑒𝑡1𝛽1

∑
v

(∏𝑛
𝑖=1

𝜅𝑣𝑖
𝑖

𝑣𝑖! ) 𝑒𝛽1 ∑𝑖 𝑣𝑖𝑥𝑖1
(2)

where the sum∑
u
is over all nonnegative vectors u of length 𝑛 such that∑𝑛

𝑖=1 𝑢𝑖 = 𝑚 and∑𝑛
𝑖=1 𝑢𝑖x𝑖 =

t, and the sum∑
v
is over all nonnegative vectors v of length 𝑛 such that∑𝑛

𝑖=1 𝑣𝑖 = 𝑚,∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖2 = 𝑡2,

. . . , ∑𝑛
𝑖=1 𝑣𝑖𝑥𝑖𝑝 = 𝑡𝑝. The CMLE for 𝛽1 is the value that maximizes the log of (2). This optimization task

is carried out by ml (see [R] ml), using the conditional distribution of (𝑇1 | 𝑇2 = 𝑡2, . . . , 𝑇𝑝 = 𝑡𝑝, 𝑀 =
𝑚) as a dataset. This dataset consists of the feasible values and weights for 𝑇1,

{(𝑠1,
𝑛

∏
𝑖=1

𝜅𝑣𝑖
𝑖

𝑣𝑖!
) ∶

𝑛
∑
𝑖=1

𝑣𝑖 = 𝑚,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖1 = 𝑠1,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖2 = 𝑡2, . . . ,
𝑛

∑
𝑖=1

𝑣𝑖𝑥𝑖𝑝 = 𝑡𝑝}

https://www.stata.com/manuals/rml.pdf#rml
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Computing the CMLE, MUE, confidence intervals, conditional hypothesis tests, and sufficient statistic

𝑝-values is discussed in Methods and formulas of [R] exlogistic. The only difference between the two

techniques is the use of the weights; that is, the weights for exact logistic are the combinatorial coeffi-

cients, 𝑐(t, 𝑚), in theMethods and formulas in [R] exlogistic. expoisson and exlogistic use the same
ml likelihood evaluator to compute the CMLEs as well as the same ado-programs and Mata functions to

compute the MUEs and estimate statistics.

References
Agresti, A. 2013. Categorical Data Analysis. 3rd ed. Hoboken, NJ: Wiley.

Armitage, P., G. Berry, and J. N. S. Matthews. 2002. Statistical Methods in Medical Research. 4th ed. Oxford: Blackwell.

Cox, D. R., and E. J. Snell. 1989.Analysis of Binary Data. 2nd ed. London: Chapman and Hall. https://doi.org/10.1201/

9781315137391.

Hirji, K. F., C. R. Mehta, and N. R. Patel. 1987. Computing distributions for exact logistic regression. Journal of the

American Statistical Association 82: 1110–1117. https://doi.org/10.2307/2289388.

Laird, N. M., and D. Olivier. 1981. Covariance analysis of censored survival data using log-linear analysis techniques.

Journal of the American Statistical Association 76: 231–240. https://doi.org/10.2307/2287816.

Also see
[R] expoisson postestimation — Postestimation tools for expoisson

[R] poisson — Poisson regression

[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/rexlogistic.pdf#rexlogisticMethodsandformulas
https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
https://www.stata.com/manuals/rexlogistic.pdf#rexlogisticMethodsandformulaseq1
https://www.stata.com/manuals/rexlogistic.pdf#rexlogistic
https://doi.org/10.1201/9781315137391
https://doi.org/10.1201/9781315137391
https://doi.org/10.2307/2289388
https://doi.org/10.2307/2287816
https://www.stata.com/manuals/rexpoissonpostestimation.pdf#rexpoissonpostestimation
https://www.stata.com/manuals/rpoisson.pdf#rpoisson
https://www.stata.com/manuals/xtxtpoisson.pdf#xtxtpoisson
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

