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Description
demandsys fits demand systems, sets of equations derived from economic theory that describe con-

sumers’ purchases of various goods or services. demandsys allows you to fit eight different demand

systems, including the Cobb–Douglas system, the almost ideal demand system (AIDS) of Deaton and

Muellbauer (1980b), the translog indirect utility demand system of Christensen, Jorgenson, and Lau

(1975), and variants of the latter two. You can also include demographic variables that affect a con-

sumer’s or household’s demands.

Quick start
Fit an AIDS demand system with four goods with expenditure shares w1, w2, w3, and w4; prices, p1, p2,

p3, and p4; and total expenditure, totexp
demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///

expenditure(totexp)

Same as above, reporting Marshallian (uncompensated) elasticities rather than coefficients

demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) elasticities(uncompensated) ///
nocoeftable

Same as above, labeling goods in output for easier interpretation

demandsys aids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) elasticities(uncompensated) ///
nocoeftable labels(”apples bananas carrots dates”)

Fit a quadratic AIDS model with four goods, controlling for x1 and x2 using demographic translation

demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) demographics(x1 x2)

Same as above, but use demographic scaling rather than translating

demandsys quaids w1 w2 w3 w4, prices(p1 p2 p3 p4) ///
expenditure(totexp) demographics(x1 x2, scaling)

Menu
Statistics > Linear models and related > Multiple-equation models > Demand system
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Syntax
demandsys model varlist𝑠 [ if ] [ in ] [weight ], prices(varlist𝑝)

expenditure(varname) [ options ]

model Description

cdouglas Cobb–Douglas demand system

les linear expenditure system

translog basic translog demand system

gtranslog generalized translog demand system

aids almost ideal demand system (AIDS)

gaids generalized AIDS

quaids quadratic AIDS

gquaids generalized quadratic AIDS

varlist𝑠 indicates the list of 𝐺 variables containing the expenditure shares of the 𝐺 goods in the model.

options Description

Main
∗ prices(varlist𝑝) specify the variables containing prices
∗ expenditure(varname) specify the variable containing total expenditure

demographics(varlist𝑑[ , scaling ]) specify other variables affecting a consumer’s demand
for the goods; use demographic scaling instead of
translating

piconstant(#) specify constant term in transcendental logarithmic
price index

SE/Robust

vce(vcetype) vcetype may be gnr, robust, cluster clustvar,
bootstrap, or jackknife

Reporting

elasticities(e type) report elasticities; e type may be expenditure,
compensated, or uncompensated

labels(string) specify labels for goods

level(#) set confidence level; default is level(95)
noheader suppress the summary header at the top of the output

nocoeftable do not display the table of estimated coefficients

display options control columns and column formats and line width

Optimization

optimization options control the optimization process; seldom used

coeflegend display legend instead of statistics

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysSyntaxvarlist_s
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysSyntaxweight
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsvarlist_p
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsvarlist_p
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsvarlist_d
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsvcetype
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsdisplay_options
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysOptionsoptopts
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∗prices() and expenditure() are required.

bayesboot and collect are allowed; see [U] 11.1.10 Prefix commands.

aweights, fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Main �

prices(varlist𝑝) specifies a list of 𝐺 variables corresponding to the prices of the 𝐺 goods faced by each

consumer. The number of variables specified here must match the number specified in varlist𝑠, and

the price variables must be specified in the same order as the share variables. All the price variables

must be strictly positive for all the demand systems implemented. prices() is required.

expenditure(varname) specifies the variable corresponding to the total expenditure on all goodswithin
the system by each consumer. This variable must be strictly positive. expenditure() is required.

demographics(varlist𝑑[ , scaling ]) specifies one or more demographic variables that affect each

consumer’s demand for the goods in the system. Suboption scaling, available only with models

aids and quaids, requests that demographics be incorporated via demographic scaling rather than

demographic translation, the default.

piconstant(#) specifies the value of the constant term in the transcendental logarithmic price index; by

default, this is set to the logarithm of the minimum expenditure observed in the sample. This option

is relevant only for models aids and quaids.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (gnr), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(gnr), the default, uses the conventionally derived variance estimator for nonlinear models fit

using Gauss–Newton regression.

� � �
Reporting �

elasticities(e type) requests that elasticities be reported instead of, or in addition to, the param-

eter estimates. e type may be expenditure, compensated, or uncompensated. expenditure
computes demand elasticity to changes in expenditure. compensated computes demand elasticity

to changes in prices, ignoring income effects. These elasticities are also known as Hicksian price

elasticities. uncompensated computes demand elasticity to changes in prices. These elasticities are

also known as Marshallian price elasticities. The elasticities are computed at the estimation sample

means of the prices, expenditures, and any demographic variables specified. For more flexibility in

obtaining elasticities, use the postestimation command estat elasticities.

https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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labels(string) specifies a set of names with which the goods are to be labeled. By default, if you

specify a four-good demand system, then the goods will be labeled generically: “Good 1”, “Good 2”,

“Good 3”, and “Good 4”.

If you specify labels(”shelter fuel food other”), then the four goods will be labeled “shelter”,
“fuel”, “food”, and “other” in the output. If you specify a demand system with 𝐺 goods, then you

must supply 𝐺 labels separated by spaces.

level(#); see [R] Estimation options.

noheader requests that the header summarizing the model, estimation sample, and other statistics not

be shown in the output.

nocoeftable requests that the table containing the parameter estimates, their standard errors, and so on

not be displayed. Typically, you would use this option if you specify the elasticities() option.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: iterate(#), [no]log, trace, eps(#), ifgnlsiterate(#),
ifgnlseps(#), and delta(#).

iterate(#) specifies the maximum number of iterations to use for nonlinear least squares at each

round of feasible generalized nonlinear least-squares (FGNLS) estimation. The default is the num-

ber set using set maxiter, which is 300 by default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

trace specifies that the iteration log should include the current parameter vector.

eps(#) specifies the convergence criterion for successive parameter estimates and for the residual

sum of squares. The default is eps(1e-5) (0.00001). eps() also specifies the convergence crite-

rion for successive parameter estimates between rounds of iterative FGNLS.

ifgnlsiterate(#) specifies the maximum number of FGNLS iterations to perform. The default is

the number set using set maxiter, which is 300 by default.

ifgnlseps(#) specifies the convergence criterion for successive estimates of the error covariance

matrix during iterative FGNLS estimation. The default is ifgnlseps(1e-10).

delta(#) specifies the relative change in a parameter, 𝛿, to be used in computing the numeric deriva-
tives. The derivative for parameter 𝑏𝑒𝑡𝑎𝑖 is computed as

{𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖 + 𝑑, 𝛽𝑖+1, . . .) − 𝑓𝑖 (x𝑖, 𝛽1, 𝛽2, . . . , 𝛽𝑖, 𝛽𝑖+1, . . .)} /𝑑

where 𝑑 = 𝛿(|𝛽𝑖| + 𝛿). The default is delta(4e-7).

The following option is available with demandsys but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Some notation
Cobb–Douglas
Linear expenditure system (LES)
Translog

Basic translog
Generalized translog

AIDS
QUAIDS
Controlling for demographic factors
Demographic translation
Demographic scaling
Epilogue

Introduction
demandsys fits demand systems, sets of equations derived from economic theory that describe con-

sumers’ purchases of various goods or services. Typically, you will have a large cross-sectional survey

containing consumers’ data on their expenditures on various goods and services along with the prices

paid for them. We often refer to the items as “goods” for brevity, but of course some of the items may

be services. Whether they are physical goods or intangible services, in the context of utility-maximizing

consumers, they are both goods in the sense that “more is better”. We also use the term “purchase” some-

what loosely; in some cases, what we are interested in is not the actual purchase of goods but rather their

consumption over a fixed time period.

To fit a demand system, you must first decide on what is in the consumption basket or bundle and

the set of goods whose demands you wish to model. Using the parameters from the model, you may

then obtain the elasticities—the effects of changes in prices or changes in expenditure on demand of

goods. You may also perform welfare analysis by contrasting changes in demand or utility that occur at

different price or expenditure levels. We assume that you have decided which consumption bundle to

model already or else that you have several alternative baskets to model and compare.

The left-hand-side variables you specify with demandsys are expenditure shares, the shares of to-

tal expenditure spent on goods or services. Given 𝑝𝑔 (the price of good 𝑔), 𝑞𝑔 (the quantity of good

𝑔 purchased), and 𝑚 (the consumer’s total expenditure on all goods within the demand system), the

expenditure share for good 𝑔 is defined as

𝑤𝑔 =
𝑝𝑔 𝑞𝑔

𝑚

demandsys requires that you have the prices of all the goods and that you have the total expenditure

across all the goods. demandsys does not need the quantities of the goods purchased, though you may

need them to calculate the expenditure shares.

Consumer theory in microeconomics presents demand models in terms of quantities. In demand

system analysis, we model expenditure shares, not quantities. By our definition of total expenditure,

0 ≤ 𝑤𝑔 ≤ 1 for all 𝑔, and ∑𝑔 𝑤𝑔 = 1. For all but the simplest utility or cost functions, the algebra

to obtain expenditure shares is arguably easier than that to obtain quantities. demandsys checks your

expenditure shares for all goods and will exit with an error message if an expenditure share is found

outside that range or if the sum is not equal to one (allowing for small rounding errors).
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You may also specify additional variables that may affect a consumer’s purchase decisions. These

are often demographic variables, such as the number of children and adults in a household, or a set of

indicator variables to denote the region of a country in which a consumer is located. If you have data

that were collected over the course of different months or years, you may wish to include indicators to

control for the time at which the consumer’s purchases were observed. We call all of these variables

demographics, even if some of these variables are not really demographic characteristics.

Based on the theoretical considerations in Lewbel (2001), we strongly encourage you to include de-

mographic variables in your model. He shows that econometrically estimated demand functions will

not satisfy rationality conditions unless other variables that affect demand and are correlated with ex-

penditures are included. Conversely, if we include all such variables in our model, then the estimated

demands will satisfy rationality even if preferences vary among households. On the other hand, you

should also bear in mind that including too many demographic variables can greatly increase the number

of parameters in your model, especially if your demand system includes many goods.

demandsys offers just a small sampling of demand systems that have been proposed in the literature.

As a practical matter, which one should you use? We have included the Cobb–Douglas model mainly for

pedagogical purposes because most students are familiar with Cobb–Douglas utility, though soon there-

after they learn about its severe restrictions on consumer behavior. Stone’s (1954) linear expenditure

system (LES) is historically important as an early demand system but also places somewhat strong re-

strictions on consumer behavior. Christensen, Jorgenson, and Lau’s (1975) translog model relaxes some

of the LES’s restrictions. It is not as widely used as some of the newer models, though a very similar

translog production function those authors proposed continues to see extensive use. Shortly after the

translog model arrived, Deaton and Muellbauer (1980b) proposed their more flexible AIDS, which has

been a workhorse model of demand system analysis ever since its arrival. Banks, Blundell, and Lewbel

(1997) provided a quadratic extension to AIDS that is also popular.

Banks, Blundell, and Lewbel (1997) suggest using QUAIDS because of its flexibility. Moreover,

QUAIDS satisfies certain theoretical properties developed in Gorman (1981); and it allows goods to be

either luxuries or necessities depending on a consumer’s income, which Banks, Blundell, and Lewbel

(1997) show to be important in the data they consider.

With the AIDS and QUAIDS models, you can include demographics via two different methods: demo-

graphic translation and demographic scaling; see Demographic translation and Demographic scaling. If

you believe that subsistence or committed quantities are appropriate for the goods you are modeling, you

can use what we call the generalized QUAIDS model. If you do that, you should check to see that the

subsistence quantity interpretation holds; we do that in example 2 of [R] demandsys postestimation.

You can also do a simple likelihood-ratio test to see whether the quadratic terms of these QUAIDSmodels

increase their explanatory power over Deaton and Muellbauer’s AIDS and its generalized variant; see

example 5 below.

Throughout the rest of the discussion, we assume that you are familiar with a few basicmicroeconomic

concepts, including utility maximization, the expenditure function, and the indirect utility function. The

presentations in standard texts like Varian (1992, chap. 7–10) and Mas-Colell, Whinston, and Green

(1995, chap. 3) provide good introductions to these concepts. The classic monograph by Deaton and

Muellbauer (1980a) and the book by Pollak andWales (1992) describe demand system analysis in much

greater detail than space permits us here. More recent survey papers include Holt and Goodwin (2009)

and Barnett and Serletis (2008). Fisher, Fleissig, and Serletis (2001) compare many flexible functional

forms for demand system analysis, including several that are implemented by demandsys.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesDemographictranslation
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesDemographicscaling
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimationRemarksandexamplesex2_demandsysp
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesex5_demandsys
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Some notation
It will be useful to establish at the outset some standard notationwewill use throughout this discussion.

We use subscript 𝑖 = 1, . . . , 𝑁 to index observations, 𝑔 = 1, . . . , 𝐺 to index goods, and 𝑑 = 1, . . . , 𝐷 to

index demographic variables. In formulas where we must use double summations across goods or else

have used subscript 𝑔 elsewhere, we also use ℎ = 1, . . . , 𝐺 and 𝑗 = 1, . . . , 𝐺 to index goods. When no

confusion could arise, we omit the observation subscript to reduce the number of subscripts.

Let 𝑤𝑔 be the expenditure share for good 𝑔 defined as 𝑤𝑔 ≡ (𝑝𝑔 𝑞𝑔)/𝑚, where 𝑝𝑔 is the price of good

𝑔, 𝑞𝑔 is the quantity of good 𝑔 consumed, and 𝑚 denotes total expenditure on all the goods in the system

being modeled. We use the notation p to refer to the 𝐺-length vector of all 𝐺 prices. When we refer to

𝑤𝑔, we are referring to the observed expenditure share for good 𝑔 for consumer 𝑖. When we refer to, say,

𝑤𝑔(p, 𝑚;α,β), we are referring to an expenditure-share equation or function for good 𝑔 that depends on
the prices of all the goods and total expenditure as well as parameter vectors α and β. We include the

parameter vectors and matrices in the arguments for expenditure shares as well as some other functions

to emphasize that they are estimated and will appear in the output from demandsys and that statistics

available via predict or estat elasticities after estimation depend on those parameters.

The observed 𝑤𝑔 is assumed to be related to the expenditure-share function 𝑤𝑔(p, 𝑚;α,β) as

𝑤𝑔 = 𝑤𝑔(p, 𝑚;α,β) + 𝜖𝑔

where 𝜖𝑔 is a zero-mean error term that we discuss in more detail in Methods and formulas.

Cobb–Douglas
Although widely used in many economic models, the Cobb–Douglas utility function is arguably too

simple for serious demand system analysis because of its severe restrictions on the expenditure-share

equations and elasticities. For instance, it restricts expenditure elasticities to be identically equal to 1

for all goods. Nevertheless, we include it because it serves as a good starting point for our discussion

and allows us to present various aspects of demandsys. For three goods, consumers maximize their

Cobb–Douglas utility function subject to the constraint that total expenditure does not exceed the allo-

cated budget,

max𝑞1,𝑞2,𝑞3
𝑞𝛼1

1 𝑞𝛼2
2 𝑞(1−𝛼1−𝛼2)

3

subject to 𝑝1𝑞1 + 𝑝2𝑞2 + 𝑝3𝑞3 ≤ 𝑚

where, without loss of generality, we have made the sum of the exponents of the Cobb–Douglas utility

function sum to 1. It is easy to show that the optimal quantities 𝑞∗
1, 𝑞∗

2, and 𝑞∗
3 are

𝑞∗
1 = 𝛼1

𝑚
𝑝1

𝑞∗
2 = 𝛼2

𝑚
𝑝2

𝑞∗
3 = (1 − 𝛼1 − 𝛼2) 𝑚

𝑝3

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysMethodsandformulas
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To obtain the expenditure-share function of, say, good 1, we have

𝑤1(p, 𝑚;α) = 𝑝1 𝑞1
𝑚

= 𝛼1
𝑚
𝑝1

𝑝1
𝑚

= 𝛼1

and likewise for goods 2 and 3. Notice that the expenditure-share function for good 𝑔 is simply its coef-
ficient 𝛼𝑔 in the Cobb–Douglas utility function, or, equivalently, the coefficients in the Cobb–Douglas

utility function are simply the shares of total expenditure allocated to each good. Most importantly,

the expenditure shares for the Cobb–Douglas model are not functions of prices, income, or any other

variables.

We made the sum of the exponents in the Cobb–Douglas utility function sum to 1, and it is clear

that 𝑤1 + 𝑤2 + 𝑤3 = 1. Without the constraint on the sum, we would have to carry around the divisor

𝛼1 + 𝛼2 + 𝛼3 in our expenditure-share equations, but we would gain absolutely no additional insight.

Moreover, with the constraint we need estimate only two parameters rather than three.

More generally, for a Cobb–Douglas utility function of the form

𝑢(q;α) =
𝐺

∏
𝑔=1

𝑞𝛼𝑔
𝑔 with

𝐺
∑
𝑔=1

𝛼𝑔 = 1

the expenditure-share function for the 𝑔th good is simply 𝑤𝑔(p, 𝑚;α) = 𝛼𝑔.

Example 1
We first describe the dataset we will use in this example and all others in this manual entry:

. use https://www.stata-press.com/data/r19/food_consumption
(Food consumption)
. describe
Contains data from https://www.stata-press.com/data/r19/food_consumption.dta
Observations: 4,160 Food consumption

Variables: 13 17 Jul 2024 16:03
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

w_dairy float %10.6f Expenditure share on dairy
w_proteins float %10.6f Expenditure share on meats and

proteins
w_fruitveg float %10.6f Expenditure share on fruits and

vegetables
w_flours float %10.6f Expenditure share on flours,

breads, pasta, and cereals
w_misc float %10.6f Expenditure share on misc. food

items
p_dairy float %10.6f Price of dairy
p_proteins float %10.6f Price of meats and proteins
p_fruitveg float %10.6f Price of fruits and vegetables
p_flours float %10.6f Price of flours, breads, pasta,

and cereals
p_misc float %10.6f Price of misc. food items
expfd float %10.6f Total expenditure on all food

categories
n_adults byte %8.0g # adults in household
n_kids byte %8.0g # kids in household

Sorted by:
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The observation level of this dataset is the household, and we have data on 4,160 households. The data

include five categories of food: dairy products; proteins, including meats and fish; fruits and vegetables;

flour-based products, including breads, pastas, and cereals; and a catchall category. For each of the five

categories, we have the expenditure shares and prices, and we have the household’s total expenditure on

all five categories in the week that the household was surveyed. We also have demographic data for the

household, including the numbers of children and adults.

Although we constructed the expenditure shares ourselves and know they sum to one, it is a good idea

to verify that you have created your expenditure-share variables properly:

. egen wsum = rowtotal(w_dairy w_proteins w_fruitveg w_flours w_misc)

. summarize wsum
Variable Obs Mean Std. dev. Min Max

wsum 4,160 1 4.40e-08 .9999999 1

demandsys will check that for you and exit with an error message if it is not the case, but doing so during

your data management tasks may make debugging easier. demandsys will also check that all your price

variables and expenditure variable are strictly positive, though again you might want to check those facts

earlier in your data pipeline.

With a dataset in hand, we are ready to fit our first Cobb–Douglas demand system.

. demandsys cdouglas w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc) expenditure(expfd)
Calculating NLS estimates:
Iteration 0: Residual SS = 180.2506
Iteration 1: Residual SS = 180.2506
Calculating FGNLS estimates:
Iteration 0: Scaled RSS = 16640
FGNLS iteration 2:
Iteration 0: Scaled RSS = 16640
Parameter change = 0.00e+00
Covariance matrix change = 0.00e+00
Cobb--Douglas model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Uncentered R2 of model for

Good 1 = 0.7519
Good 2 = 0.8851
Good 3 = 0.8329
Good 4 = 0.7467
Good 5 = 0.6836

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1505844 .0013411 112.29 0.000 .147956 .1532129
2 .3986526 .0022265 179.05 0.000 .3942887 .4030166
3 .2406533 .0016711 144.01 0.000 .237378 .2439286
4 .1031129 .0009312 110.73 0.000 .1012877 .104938

Note: alpha estimates are expenditure shares.
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Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .1069968 .0011286 94.80 0.000 .1047847 .1092088

Note: alpha estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd

We specified the command name, demandsys, followed by the model we wish to fit, cdouglas. We

then specified the five expenditure-share variables, w dairy through w misc. The price variables,

p dairy through p misc, go into the prices() option, and the expenditure variable, expfd, goes
into the expenditure() option. demandsys uses a nonlinear multiple-equation estimator, so the top of

the output includes an iteration log showing the model’s convergence. In fact, the Cobb–Douglas model

is linear, but that is the only model fit by demandsys that is. Stata uses the same nonlinear estimator for

cdouglas as we use for the other demand systems. The header of the output includes 𝑅2 values to get

some idea of how well the model fits the data.

The table of coefficients is a bit different frommost other estimators in Stata, which report coefficients

organized by equations. The Cobb–Douglas model is unique in that each equation has its own parameter.

However, that is not the case for any other demand system that demandsys fits. For most demand

systems, many of the parameters appear in multiple equations, and there is no way to link parameters

and equations. Hence, we cannot provide a coefficient table organized by equations as other multiple-

equation estimators such as sureg provide. Instead, demandsys organizes estimates by parameter type.

We mentioned having a five-good demand system, so why do we see only four estimated parameters

in the main output table? Recall that we used the normalization that the sum of the parameters in the

Cobb–Douglas utility function is one. The upshot is that we really have only four free parameters because

the fifth parameter must equal one minus the sum of the other four parameters. We provide the estimate

of the fifth parameter in a separate table. It is computed separately using the parameter estimates of our

fitted demand system and their standard errors. Given how the fifth parameter was computed, it does not

share a covariance matrix with the other parameters and cannot be used for testing. We provide it here

for reference.

demandsys shows only unconstrained parameters in the main estimation output because, with many

goods and more complicated models, the output becomes long. Moreover, the estimated parameters

themselves are of less interest than elasticities and other statistics derived from the fitted model.

Technical note
In the header of the output in the previous example, we see that the equation-level 𝑅2 values are

labeled as uncentered. Recall that the standard𝑅2 in regression analysis measures the ability of themodel

to predict the regressand comparedwith amodel that contains just a constant term. For the Cobb–Douglas

demand system, the expenditure shares are simply constant terms to be estimated. Hence, the traditional

𝑅2 is by definition zero. We therefore report the uncentered 𝑅2, which is an alternative that measures the

model’s explanatory power as a fraction of the sum of squares of an equation’s left-hand-side variable. A
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higher uncentered 𝑅2 is presumably better than a lower uncentered 𝑅2, but you cannot compare the

uncentered 𝑅2 of a Cobb–Douglas share equation with the centered 𝑅2 of a share equation from a

different demand system.

The command estat elasticities, which is available after demandsys, allows you to calculate

expenditure and price elasticities after fitting your demand system, and estat elasticities provides

options to specify how those elasticities are calculated and for which observations. The full syntax for

that command is listed in [R] demandsys postestimation, but the basic command is easy to pick up as

we work through examples below.

Here we use estat elasticities to obtain the expenditure elasticities for the estimation sample.

. estat elasticities, expenditure
Expenditure elasticities Number of obs = 4,160

Expenditure Elasticity

Good
1 1
2 1
3 1
4 1
5 1

Note: No standard errors are displayed because all elasticities are
identically equal to one.

The expenditure elasticities for all five goods are identically equal to one, and so the standard errors,

test statistics, and confidence interval are not displayed because there is no sampling variance. The

Cobb–Douglas function is an example of a utility function with “homothetic preferences”, meaning that

the ratio of two goods demanded by a consumer with such preferences depends only on the goods’relative

prices and not on income. Homothetic preferences also imply that, regardless of changes in income, the

shares consumed of each good remain the same; the expansion path of consumption is linear in income.

The Cobb–Douglas case is a particularly extreme example, where the expenditure elasticities are one,

the uncompensated own-price elasticities are minus one, and uncompensated cross-price elasticities are

zero, which you can verify by typing

estat elasticities, uncompensated

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Particularly with more complex demand systems, the coefficients themselves can be more difficult to

interpret. Therefore, demandsys allows you to request that expenditure, uncompensated price, or com-

pensated price elasticities be displayed in addition to, or in place of, the table of estimated coefficients.

The elasticities reported directly by demandsys are calculated at the estimation sample means of prices,

expenditures, and any demographics that you specify. To obtain, say, the uncompensated price elasticities

instead of the coefficient table from a Cobb–Douglas demand system, you would type

demandsys cdouglas ..., prices(...) expenditure(...) ///
elasticities(uncompensated) nocoeftable

estat elasticities gives you much more flexibility in terms of the sample used, and you can even

specify particular prices or expenditures at which you want the elasticities to be calculated.

Linear expenditure system (LES)
Nobel laureate Sir Richard Stone’s estimation of the LES, developed based on theory by Nobel laure-

ates Paul Samuelson and Lawrence Klein, together with Herman Rubin, represents the genesis of flexible

demand system estimation (Stone 1954). LES provides for more flexible consumption patterns than the

Cobb–Douglas model. The LES begins with the utility function

𝑢(q;β,µ) = ∏
𝑔

(𝑞𝑔 − 𝜇𝑔)𝛽𝑔

where 𝜇𝑔 is the 𝑔th element of 𝐺×1 vectorµ, which is to be estimated. This utility function results from
translating or shifting the origin of the Cobb–Douglas utility function; utility does not accrue from good

𝑔 unless its consumption exceeds an amount 𝜇𝑔. That parameter is known as a subsistence or committed

quantity that a consumer must purchase for survival. 𝛽𝑔 is the 𝑔th element of𝐺×1 vectorβ. 𝛽𝑔 measures

the share of supernumerary expenditure, namely, the share of remaining expenditure once all subsistence

quantities have been purchased, on good 𝑔. As in the Cobb–Douglas case, we normalize the 𝐺 × 1

parameter vector β so that ∑𝑔 𝛽𝑔 = 1. Thus, the model has 2𝐺 − 1 parameters we must estimate.

Solving

maxq ∏
𝑔

(𝑞𝑔 − 𝜇𝑔)𝛽𝑔 s. t. p′q ≤ 𝑚

yields the expenditure-share functions

𝑤𝑔(p, 𝑚;β,µ) =
𝑝𝑔𝜇𝑔

𝑚
+ 𝛽𝑔 (1 − ∑

ℎ

𝑝ℎ𝜇ℎ
𝑚

)

The term to the left of the plus sign is the fraction of expenditure that must be spent on good 𝑔 to maintain
subsistence. To the right, the term bound in parentheses is the fraction of expenditure left after the

subsistence level for all other goods has been spent. Of this amount, a share 𝛽𝑔 is spent on good 𝑔. The
normalization that ∑𝑔 𝛽𝑔 = 1 ensures that ∑𝑔 𝑤𝑔(p, 𝑚) = 1, as must be true of a demand system.

While we have interpreted the 𝜇𝑔 as minimum required amounts of each good, there is no requirement

that 𝜇𝑔 > 0 for all 𝑔, nor do we impose any such constraints during estimation. Moreover, for this

interpretation to hold we must have that for each household 𝑖, ∑𝑔 𝑝𝑔𝑖𝜇𝑔𝑖 ≤ 𝑚𝑖.
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Example 2
Here we fit an LES to the same data as in example 1.

. use https://www.stata-press.com/data/r19/food_consumption, clear
(Food consumption)
. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...
Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Centered R2 of model for

Good 1 = -0.0508
Good 2 = 0.0494
Good 3 = 0.0366
Good 4 = 0.0829
Good 5 = 0.0603

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1650894 .0018783 87.89 0.000 .161408 .1687708
2 .4108231 .0033135 123.98 0.000 .4043288 .4173175
3 .2262407 .0024899 90.86 0.000 .2213607 .2311208
4 .0949082 .0013152 72.16 0.000 .0923304 .097486

mu
Good

1 .1794068 .0383858 4.67 0.000 .1041721 .2546416
2 .6975436 .0800327 8.72 0.000 .5406824 .8544048
3 2.368491 .1351367 17.53 0.000 2.103628 2.633354
4 .4215745 .0202499 20.82 0.000 .3818854 .4612636
5 .3742182 .0243646 15.36 0.000 .3264644 .421972

Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.
Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .1029385 .0015833 65.02 0.000 .0998354 .1060416

Note: beta estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesex1_demandsys
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We specified the nolog option to suppress the detailed iteration log. We first noticed that the 𝑅2 for the

model for Good 1 is actually negative. Because the equations here are nonlinear, the value of 𝑅2 is not

constrained to be between 0 and 1; that is only true for linear regression. The footer of the table with

normalized parameters reemphasizes the fact that we have made ∑𝑔 𝛽𝑔 = 1.

All the 𝜇 parameters are greater than zero. The 𝜇 parameter for Good 3, fruits and vegetables, is

largest, implying the physical quantity of them required is much higher than the other four goods. How-

ever, we should also look at the average prices of the goods:

. summarize p_*
Variable Obs Mean Std. dev. Min Max

p_dairy 4,160 .4387958 .4238236 .1041262 18
p_proteins 4,160 1.729284 .69554 .3333333 9.258823
p_fruitveg 4,160 .5472199 .1945325 .1073369 2.672269

p_flours 4,160 1.49421 .6816424 .0805687 7.202127
p_misc 4,160 1.47115 .8588024 .1428571 15.74629

Based on the average price of each good, the dollar amount of protein required for survival is only

9 cents less than the dollar amount of fruits and vegetables required (2.368 × 0.547 = $1.30 versus

0.698 × 1.729 = $1.21).

As we mentioned in the introductory remarks, if you have demographic variables, you should incor-

porate them into your model. demandsys incorporates demographics into models by applying Pollak

and Wales’s (1978) “demographic translation” to the expenditure-share equations. Just as the linear

expenditure system is a translated version of the Cobb–Douglas system, Pollak and Wales incorporate

demographics by translating the consumer’s available level of expenditures.

Suppose for each consumer we have a 𝐷 × 1 vector of demographic characteristics d. We have 𝐺
expenditure-share equations, so associated with d is a 𝐺 × 𝐷 matrix of parameters N with typical row

ν𝑔. Let c = Nd with typical element 𝑐𝑔. In demographic translation, we write each translated demand

function as

𝑥𝑔(p, 𝑚, c) = 𝑐𝑔 + 𝑥𝑔(p, 𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)

For the LES, we have

𝑥𝑔(p, 𝑚, d;β,µ,N) = (𝜇𝑔 + 𝑐𝑔) +
𝛽𝑔

𝑝𝑔
(𝑚 − ∑

ℎ
𝑝ℎ𝜇ℎ − ∑

ℎ
𝑝ℎ𝑐ℎ)

so that

𝑤𝑔(p, 𝑚, d;β,µ,N) =
𝑝𝑔(𝜇𝑔 + ν𝑔d)

𝑚
+ 𝛽𝑔 {1 −

∑ℎ 𝑝ℎ (𝜇ℎ + νℎd)
𝑚

}

For the LES, the effect of the demographic variables is to adjust the 𝜇 parameters, though we must be

cautious in interpreting the term 𝜇𝑔 + ν𝑔d as a minimum required quantity because there is nothing

preventing it from being negative.

Example 3
The dataset described in example 1 also includes two demographic characteristics, the numbers of

children and adults in each household. Here we refit the LES to these data, controlling for these two

demographics.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesIntroduction
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamplesex1_demandsys
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. use https://www.stata-press.com/data/r19/food_consumption
(Food consumption)
. demandsys les w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> expenditure(expfd) demographics(n_kids n_adults) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
FGNLS iteration 5 ...
Linear expenditure system Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for

Good 1 = -0.0444
Good 2 = 0.0665
Good 3 = 0.0584
Good 4 = 0.1576
Good 5 = 0.0922

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

1 .1656925 .0023639 70.09 0.000 .1610594 .1703256
2 .4170346 .0042631 97.82 0.000 .408679 .4253901
3 .2434237 .0032072 75.90 0.000 .2371377 .2497098
4 .0800666 .0015889 50.39 0.000 .0769525 .0831808

mu
Good

1 -.3932844 .164016 -2.40 0.016 -.71475 -.0718189
2 -.53048 .1798223 -2.95 0.003 -.8829251 -.1780349
3 1.010915 .3046076 3.32 0.001 .4138951 1.607935
4 -.0269827 .0426005 -0.63 0.526 -.1104782 .0565128
5 .0097685 .0526521 0.19 0.853 -.0934277 .1129647

Nu
Good#

c.n_kids
1 .4332196 .160145 2.71 0.007 .1193413 .747098
2 -.0680289 .1197109 -0.57 0.570 -.302658 .1666002
3 -.7945652 .2003774 -3.97 0.000 -1.187298 -.4018328
4 .3923541 .0273698 14.34 0.000 .3387103 .4459979
5 .3563529 .0368047 9.68 0.000 .284217 .4284888

Good#
c.n_adults

1 .4856673 .1525998 3.18 0.001 .1865771 .7847574
2 .8669319 .1316001 6.59 0.000 .6090005 1.124863
3 .843552 .227083 3.71 0.000 .3984775 1.288626
4 .3576213 .0318802 11.22 0.000 .2951373 .4201054
5 .2639693 .0374888 7.04 0.000 .1904925 .3374461

Note: beta estimates measure how expenditure shares respond to increases in
supernumerary income.

Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on subsistence

levels of consumption.
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Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

beta
Good

5 .0937826 .0019264 48.68 0.000 .090007 .0975582

Note: beta estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

The estimated parameter matrix N is shown in the last block of the coefficient table, and demandsys
labels the coefficients using factor-variable notation. Yet you should not think of the terms as you would

of interactions in a regression. Here the notation means something different. The first five rows of the

output for N correspond to the demographic variable n kids and how it affects the consumption of each

good. The remaining five correspond to n adults. For instance, all the coefficients for n adults are

positive, as we would expect, meaning that having more adults in the family increases consumption of

all goods. The coefficient for n kids on the consumption of Good 3, fruits and vegetables, is negative,

meaning consumption decreases as the number of children increases.

Directly interpreting the coefficients on demographic variables is not difficult for the LES, but for

more complicated models, it can be. One easy way to see the practical effect of that negative coefficient

is to use the margins command to see how our predicted quantity for Good 3 changes as the number of

children changes.

. margins, predict(quantities equation(#3)) at(n_kids=1 n_kids=2 n_kids=3)
Predictive margins Number of obs = 4,160
Model VCE: GNR
Expression: Predicted quantity of good 3, predict(quantities equation(#3))
1._at: n_kids = 1
2._at: n_kids = 2
3._at: n_kids = 3

Delta-method
Margin std. err. z P>|z| [95% conf. interval]

_at
1 22.57831 .1734791 130.15 0.000 22.2383 22.91833
2 21.407 .2254155 94.97 0.000 20.96519 21.84881
3 20.23569 .323032 62.64 0.000 19.60256 20.86882

We asked margins to produce predictions of quantities of Good 3, fruits and vegetables, by specifying

the equation(#3) option, and we asked it to do so when the number of children is equal to one, again

when the number of children is equal to two, and finally when the number of children is equal to three.

margins first sets n kids equal to one for all 4,160 observations in the estimation sample and obtains

the predicted quantities; the mean of those predictions is 22.6. When n kids is equal to two for all

observations, the mean is 21.4, and when n kids is equal to three, the mean is 20.2.

Kids do not always eat their fruits and vegetables, but finding that the quantity of fruits and vegetables

actually declines as the household grows is rather surprising. Perhaps we have omitted other relevant

demographic variables from our model, biasing our estimates, or perhaps the model itself is simply too

rigid.

https://www.stata.com/manuals/rmargins.pdf#rmargins
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Finally, we use estat elasticities to obtain uncompensated price elasticities. We will obtain two

sets of results, one for households with fewer than three kids and one for households with three or more

kids.

. estat elasticities if n_kids <= 2, uncompensated
Uncompensated (Marshallian) price elasticities Number of obs = 3,742

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9537446 .0083361 -114.41 0.000 -.970083 -.9374061
2 -.00852 .0015032 -5.67 0.000 -.0114662 -.0055738
3 -.0083598 .0014808 -5.65 0.000 -.0112621 -.0054574
4 -.0062373 .0011228 -5.56 0.000 -.0084379 -.0040367
5 -.0071346 .0012983 -5.50 0.000 -.0096793 -.00459

Good 2
Good

1 -.0621117 .012096 -5.13 0.000 -.0858194 -.038404
2 -.9289446 .0085912 -108.13 0.000 -.945783 -.9121063
3 -.0499231 .0062304 -8.01 0.000 -.0621346 -.0377117
4 -.0390871 .0048967 -7.98 0.000 -.0486844 -.0294897
5 -.0445883 .0056323 -7.92 0.000 -.0556274 -.0335492

Good 3
Good

1 -.0503597 .0118715 -4.24 0.000 -.0736274 -.0270921
2 -.0410463 .0036302 -11.31 0.000 -.0481614 -.0339312
3 -.886701 .0100534 -88.20 0.000 -.9064052 -.8669968
4 -.030438 .0027264 -11.16 0.000 -.0357816 -.0250944
5 -.0348829 .0032109 -10.86 0.000 -.0411761 -.0285897

Good 4
Good

1 -.0428307 .0038014 -11.27 0.000 -.0502814 -.0353801
2 -.0373442 .0014421 -25.90 0.000 -.0401707 -.0345178
3 -.0357288 .0013809 -25.87 0.000 -.0384354 -.0330223
4 -.7107582 .0101357 -70.12 0.000 -.7306238 -.6908925
5 -.0306015 .0012718 -24.06 0.000 -.0330941 -.0281089

Good 5
Good

1 -.0347514 .0047892 -7.26 0.000 -.0441381 -.0253647
2 -.0296409 .0016063 -18.45 0.000 -.0327893 -.0264926
3 -.0285217 .0015907 -17.93 0.000 -.0316394 -.025404
4 -.0212131 .0011859 -17.89 0.000 -.0235375 -.0188887
5 -.7824229 .0109448 -71.49 0.000 -.8038744 -.7609714
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. estat elasticities if n_kids >= 3, uncompensated
Uncompensated (Marshallian) price elasticities Number of obs = 418

Price Elasticity Std. err. z P>|z| [95% conf. interval]

Good 1
Good

1 -.9395485 .0146154 -64.28 0.000 -.9681941 -.9109029
2 -.0126359 .0032625 -3.87 0.000 -.0190303 -.0062416
3 -.0146746 .004299 -3.41 0.001 -.0231005 -.0062486
4 -.0082076 .002108 -3.89 0.000 -.0123393 -.0040759
5 -.0093949 .0024408 -3.85 0.000 -.0141788 -.0046109

Good 2
Good

1 -.023357 .0100783 -2.32 0.020 -.04311 -.0036039
2 -.9674982 .0135281 -71.52 0.000 -.9940128 -.9409836
3 -.028745 .0152303 -1.89 0.059 -.0585959 .0011058
4 -.0152942 .0064352 -2.38 0.017 -.0279071 -.0026813
5 -.0178107 .007578 -2.35 0.019 -.0326633 -.0029581

Good 3
Good

1 -.0000379 .0055043 -0.01 0.995 -.0108261 .0107504
2 .0001398 .0056976 0.02 0.980 -.0110273 .0113068
3 -1.000682 .0201954 -49.55 0.000 -1.040264 -.9610998
4 -.0000842 .0035771 -0.02 0.981 -.0070951 .0069268
5 -.0000569 .0041395 -0.01 0.989 -.0081702 .0080565

Good 4
Good

1 -.0451601 .0025582 -17.65 0.000 -.0501741 -.0401461
2 -.0463532 .0024489 -18.93 0.000 -.051153 -.0415534
3 -.052944 .0045994 -11.51 0.000 -.0619587 -.0439293
4 -.6843304 .0131677 -51.97 0.000 -.7101385 -.6585222
5 -.0334225 .0018152 -18.41 0.000 -.0369803 -.0298648

Good 5
Good

1 -.0356486 .002797 -12.75 0.000 -.0411305 -.0301666
2 -.0365794 .0027339 -13.38 0.000 -.0419377 -.0312212
3 -.0401475 .0035616 -11.27 0.000 -.0471281 -.033167
4 -.0234098 .0017471 -13.40 0.000 -.0268341 -.0199856
5 -.7542306 .0156676 -48.14 0.000 -.7849385 -.7235226

For example, in the table for households with 3 or more children, the price elasticity for Good 5 with

respect to Good 1 is −0.0356486. Among these households, if the price of Good 5 (miscellaneous items)

increases by 1%, then the quantity of Good 1 (dairy products) purchased will decrease by an average of

0.036%.

We summarize the own-price elasticities in table 1. We again focus on the demand for fruits and

vegetables. Among households with two children or fewer, it is inelastic, while it is (barely) elastic for

households with three or more children. Again, we have no explanation for why that would be the case,

though we suspect the model is simply too rigid to accurately model the consumption patterns seen in

our data.
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Table 1: Own-price elasticities based on number of children

# of Children

Good ≤ 2 ≥ 3

Dairy −0.954 −0.940

Proteins −0.939 −0.967

Fruits & vegetables −0.887 −1.001

Flours −0.711 −0.684

Miscellany −0.782 −0.754

Translog
Pollak and Wales (1992, sec. 3.1) discuss an entire class of demand systems that they describe as the

transcendental logarithmic or “translog” family. We implement the version they call the “basic translog”

function, which is probably the most well known, because it corresponds to the translog indirect utility

function proposed by Christensen, Jorgenson, and Lau (1975). We also implement the version Pollak

andWales call the “generalized translog” function, which is a more flexible version of the basic translog

that has been translated in a way analogous to how the LES is a shifted version of the Cobb–Douglas

utility function.

Basic translog

Christensen, Jorgenson, and Lau (1975) proposed both direct and indirect utility functions with the

“translog” functional form. For their direct utility function, they obtain expenditure shares that are a

function of expenditure and quantities, which is not the focus of demandsys. We instead implement the

demand system based on their translog indirect utility function. The starting point is the indirect utility

function

ln𝑣(p, 𝑚;α, 𝚪) = − ∑
𝑔

𝛼𝑔ln
𝑝𝑔

𝑚
− 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎln

𝑝𝑔

𝑚
ln

𝑝ℎ
𝑚

(1)

Equation (1) is twice differentiable in prices, and based onYoung’s (1909) theorem, we must have 𝛾𝑔ℎ =
𝛾ℎ𝑔 for all 𝑔 and ℎ. (Young’s theorem states that cross-partial derivatives are equal.)

Roy (1943) introduced what would be known as Roy’s identity, which equates a consumer’s Mar-

shallian demand function for a good with a function of their indirect utility function. Applying Roy’s

identity, we have the expenditure-share functions

𝑤𝑔(p, 𝑚;α, 𝚪) =
𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln

𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

where we have imposed the normalization ∑𝑔 𝛼𝑔 = 1. This ensures that the expenditure shares sum to

1, a property known as “additivity”.

As we remarked in the introduction, if one has relevant demographic variables, one should include

them in the demand system, so wewill not present an example of the translogmodel without demographic

variables. Moreover, it is in fact easier to describe how we incorporate demographic variables into the

translog system if we first describe the generalized translog model.
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Generalized translog

Another way to perform translation and introduce subsistence or committed quantities into a demand

system is to translate the indirect utility function, so that consumers’ effective expenditures are their

expenditures after the subsistence quantities of all goods are purchased. Pollak and Wales (1992, 56) do

this to Christensen, Jorgenson, and Lau’s (1975) indirect utility function to obtain

ln𝑣(p, 𝑚;α, 𝚪,µ) = − ∑
𝑔

𝛼𝑔ln
𝑝𝑔

𝑚
− 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎ ln

𝑝𝑔

𝑚
ln

𝑝ℎ
𝑚

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ𝜇ℎ ∑
ℎ

𝛼ℎ = 1 𝛾𝑔ℎ = 𝛾ℎ𝑔

where again µ is a 𝐺×1 vector of subsistence quantities with typical element 𝜇𝑔. A tedious but straight-

forward application of Roy’s identity gives the expenditure-share functions as

𝑤𝑔(p, 𝑚;α, 𝚪,µ) =
𝑝𝑔𝜇𝑔

𝑚
+ 𝑚

𝑚
(

𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln
𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

)

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ𝜇ℎ ∑
ℎ

𝛼ℎ = 1 𝛾ℎ𝑗 = 𝛾𝑗ℎ

It is apparent that the sum of 𝑤𝑔(p, 𝑚;α, 𝚪,µ) across all 𝑔 is equal to one, as must be true of a demand
system. Again, suppose for each consumer that we have a 𝐷 × 1 vector of demographics d and an

associated 𝐺 × 𝐷 matrix N, and again, let 𝑐𝑔 denote the 𝑔th element of the vector c = Nd.

To apply both demographic characteristics and committed quantities, we can translate the translog

indirect utility function, this time with the value (𝜇𝑔 + 𝑐𝑔) replacing 𝜇𝑔 in the developments above.

Thus, the generalized translog system with demographic variables has expenditure-share functions of

the form

𝑤𝑔(p, 𝑚, d;α, 𝚪,µ,N) =
𝑝𝑔(𝜇𝑔 + ν𝑔d)

𝑚
+ 𝑚

𝑚
(

𝛼𝑔 + ∑ℎ 𝛾𝑔ℎln
𝑝ℎ
𝑚

1 + ∑𝑗 ∑ℎ 𝛾𝑗ℎln
𝑝ℎ
𝑚

)

𝑚 = 𝑚 − ∑
ℎ

𝑝ℎ(𝜇ℎ + νℎd) ∑
ℎ

𝛼ℎ = 1 𝛾ℎ𝑗 = 𝛾𝑗ℎ

The basic translog model results if we set µ = 0 and N = 0, and the basic translog model with de-

mographics results if we set just µ = 0. The generalized translog model results if we set just N = 0.

The generalized translog model is essentially a translog model with a constant term included among the

demographic variables.



demandsys — Estimation of flexible demand systems 21

Example 4
We first fit a basic translogmodel to our food consumption data, controlling for the number of children

and adults in each household. We will also store these estimation results so we can use them later.

. use https://www.stata-press.com/data/r19/food_consumption
(Food consumption)
. demandsys translog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Basic translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for

dairy = 0.0448
proteins = 0.1593
fruitveg = 0.0976
flours = 0.1881
misc = 0.1678

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .90727 .0157948 57.44 0.000 .8763129 .9382272
proteins 1.0912 .0102476 106.48 0.000 1.071115 1.111285
fruitveg .9629558 .0128444 74.97 0.000 .9377813 .9881303

flours .8728076 .0152504 57.23 0.000 .8429174 .9026979
misc 1.000333 .0177894 56.23 0.000 .9654664 1.0352

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store translog

We specified the nocoeftable option to suppress the coefficient table and the

elasticities(expenditure) option to obtain expenditure elasticities. Finally, we used the

labels() option to name our five goods. Had we not done that, then the output would simply have

numbered the goods from one to five.
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For comparison’s sake, we also fit the equivalent generalized translog model. We note that despite

the long commands, the following one differs from the previous by just one character:

. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 2
Centered R2 of model for

dairy = 0.0478
proteins = 0.1615
fruitveg = 0.0988
flours = 0.1903
misc = 0.1732

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .906851 .0174393 52.00 0.000 .8726706 .9410313
proteins 1.074059 .01144 93.89 0.000 1.051637 1.096481
fruitveg .9716098 .0144251 67.36 0.000 .943337 .9998826

flours .892461 .0170431 52.36 0.000 .8590571 .9258649
misc 1.023297 .0194942 52.49 0.000 .9850886 1.061504

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store gtranslog

The 𝑅2 statistics from the generalized translog model are trivially higher than for the basic translog

model. Because demandsys is based on maximum likelihood estimation and because the translog model

is nested within the generalized translog model, we can use a likelihood-ratio test to see whether the

inclusion of committed quantities is warranted here.

. lrtest gtranslog translog
Likelihood-ratio test
Assumption: translog nested within gtranslog
LR chi2(5) = 59.00

Prob > chi2 = 0.0000

The generalized translog model adds additional 𝐺 parameters over the basic translog model, so the 𝜒2

statistic has five degrees of freedom in this example. The result indicates that the use of the generalized

version of the translog model is warranted. Of course, if you do this test for your own models, you must

use the same demographic specification in both.
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As we cautioned with the LES, interpreting the 𝜇 parameters of the generalized translog model as

subsistence quantities requires care. We do not force the estimates to be positive, nor does demandsys
check that ∑𝑔 𝑝𝑔𝑖(𝜇𝑔 +ν′

𝑔d𝑖) ≤ 𝑚𝑖 for each observation 𝑖 in the dataset or that 𝜇𝑔 +ν′
𝑔d𝑖 ≥ 0 for each

observation and each good, both of which must be true if the subsistence argument is to be credible. We

have noted that the generalized translog model can produce negative estimates of 𝜇’s quite frequently
and changing the demographic specification is often enough to produce negative estimates.

For example, if we refit the previous example controlling for just the number of children but not the

number of adults, we obtain negative estimates for some of the 𝜇 parameters:

. demandsys gtranslog w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids) expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized translog model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5
Demographic method: Translating Number of demographics = 1
Centered R2 of model for

Good 1 = 0.0421
Good 2 = 0.1600
Good 3 = 0.0929
Good 4 = 0.1825
Good 5 = 0.1706

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1745891 .0097353 17.93 0.000 .1555082 .1936699
2 .3416641 .0188744 18.10 0.000 .304671 .3786572
3 .3634044 .0192262 18.90 0.000 .3257218 .401087
4 .0598082 .0066154 9.04 0.000 .0468423 .0727741

Gamma
Good_g#
Good_h

1#1 .0232919 .002496 9.33 0.000 .0183998 .0281841
1#2 -.0146955 .0032932 -4.46 0.000 -.02115 -.0082411
1#3 .0005704 .0018905 0.30 0.763 -.0031349 .0042758
1#4 .001351 .0009723 1.39 0.165 -.0005546 .0032566
1#5 .0026193 .0010776 2.43 0.015 .0005073 .0047312
2#2 .120652 .0085591 14.10 0.000 .1038764 .1374275
2#3 -.0301533 .0055644 -5.42 0.000 -.0410593 -.0192474
2#4 -.0184411 .0027052 -6.82 0.000 -.0237432 -.013139
2#5 -.0228452 .0032034 -7.13 0.000 -.0291238 -.0165667
3#3 .0698867 .0067428 10.36 0.000 .056671 .0831023
3#4 .0006331 .0013394 0.47 0.636 -.0019921 .0032583
3#5 -.0065477 .0017672 -3.71 0.000 -.0100113 -.003084
4#4 .0233853 .0023855 9.80 0.000 .0187097 .0280608
4#5 -.0074747 .0011361 -6.58 0.000 -.0097014 -.005248
5#5 .0323539 .0030878 10.48 0.000 .0263019 .0384059
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mu
Good

1 -.1560689 .0474664 -3.29 0.001 -.2491014 -.0630364
2 -.811357 .2053694 -3.95 0.000 -1.213874 -.4088403
3 -.7661874 .3576452 -2.14 0.032 -1.467159 -.0652156
4 .2121302 .0367754 5.77 0.000 .1400517 .2842087
5 .0887401 .0446207 1.99 0.047 .0012853 .176195

Nu
Good#

c.n_kids
1 -.5508244 .1957429 -2.81 0.005 -.9344734 -.1671754
2 -1.350384 .1934558 -6.98 0.000 -1.72955 -.9712175
3 -2.749218 .303765 -9.05 0.000 -3.344586 -2.153849
4 .0446036 .0442943 1.01 0.314 -.0422117 .1314189
5 -.103696 .0559887 -1.85 0.064 -.2134318 .0060399

Note: alpha estimates are constant expenditures for each good.
Note: Gamma estimates measure the effect of price on expenditures shares

across goods.
Note: mu estimates are subsistence levels of consumption for each good.
Note: Nu estimates measure the effect of demographic variables on shares and

subsistence levels of consumption.
Normalized parameter

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0605342 .007785 7.78 0.000 .045276 .0757925

Note: alpha estimates sum to 1.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids

Here, again, we see factor-variable notation for the parameter matrix N but also for 𝚪. As we men-
tioned before, you should not interpret the factor-variable notation as you would in a regression output.

We see the estimate labeled 1#2 under Good g#Good h. This is the estimate of 𝛾12, the coefficient

associated with ln𝑝2/𝑚 in the equation for Good 1.

AIDS
One of the most commonly used demand systems is the celebrated AIDS model of Deaton and Muell-

bauer (1980b). Among other benefits, the AIDS model can be viewed as a first-order approximation

to any demand system. Historically, the AIDS model was also favored because it is “almost linear” in

the sense that replacing the price index with an approximation results in share equations that are linear.

Given the speed with which computers can fit nonlinear system of equations, we do not implement that

approximation.

An additional nice property of the AIDS model is that the functional form for its budget shares is a

member of the “price-independent generalized log-linear” and the broader “price-independent general-

ized linear” families. An advantage to price-independent generalized linear expenditure shares is that

they satisfy certain conditions required for the existence of a representative consumer and the related
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theory of aggregation. In short, expenditure shares of this form can be fit to data aggregated across

consumers. The implied market demand curves are consistent with a single utility-maximizing represen-

tative agent and satisfy the same conditions like Slutsky symmetry that hold for demand curves implied

by a single consumer’s utility-maximizing behavior. For more on price-independent generalized linear

demands, see, for example, Muellbauer (1975), Lewbel (1989), and Pollak and Wales (1992, chap. 2).

The starting point for the AIDS model is the expenditure function

ln𝑒(p, 𝑢; 𝛼0,α,β, 𝚪) = (1 − ln𝑢)ln𝑎(p) + ln𝑢 {ln𝑎(p) + 𝑏(p)} (2)

where 𝑢 is utility, the price index ln𝑎(p) is defined as

ln𝑎(p) ≡ 𝛼0 + ∑
𝑔

𝛼𝑔ln𝑝𝑔 + 1
2

∑
𝑔

∑
ℎ

𝛾𝑔ℎln𝑝𝑔ln𝑝ℎ

where 𝑝𝑔 is the price of good 𝑔, and the price aggregator 𝑏(p) is defined as

𝑏(p) ≡ 𝛽0 ∏
𝑔

𝑝𝛽𝑔
𝑔

Parameter 𝛽0 cannot be distinguished from 𝑢, so we take 𝛽0 = 1 in the following. In their original

formulation, Deaton and Muellbauer (1980b) wrote their expenditure function slightly differently, with

𝑢 in place of ln𝑢 in (2). We have chosen to use ln𝑢 to draw some comparisons with the QUAIDS model

later, and because utility is an ordinal concept, it will not affect the expenditure-share equations.

Suppose that all prices are equal to one. Then (2) with 𝛽0 = 1 implies that ln𝑒(𝑝, 𝑢) = 𝛼0. Thus,

exp(𝛼0) can be interpreted as the level of expenditure needed for minimal subsistence when all prices are
equal to one. In practice, estimating 𝛼0 is difficult, particularly when prices are correlated, as they often

are. Therefore, by default, we set 𝛼0 equal to the natural logarithm of the minimum level of expenditure

in the estimation sample. You can override the default by specifying the piconstant() option. Of

course, prices are generally not all equal to one, so you will want to try various values for 𝛼0 to see how

sensitive elasticities and other calculations you may perform are to its value.

Expenditure functions consistent with rational consumer choice must be homogeneous of degree one

in prices and expenditure, which imply that we must have ∑𝑔 𝛼𝑔 = 1, ∑𝑔 𝛽𝑔 = 0, and ∑𝑔 𝛾𝑔ℎ =
∑ℎ 𝛾𝑔ℎ = 0. Slutsky symmetry further requires that 𝛾𝑔ℎ = 𝛾ℎ𝑔 for all 𝑔 and ℎ. Note that demandsys
imposes these restrictions on the model being fit. An alternative is to fit the model with and without

one or more of those restrictions and then test whether they hold. However, such unrestricted models

can often fail to converge because of the increased number of parameters or because the models are “too

flexible” and contain unidentifiable parameters.

Shephard’s (1970) lemma equates the Hicksian demand functions with the partial derivatives of the

expenditure function with respect to the price of the goods. Using Shephard’s lemma, we can write the

expenditure-share functions as

𝑤𝑔(p, 𝑚; 𝛼0,α,β, 𝚪) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} (3)

Notice the simplicity of these share equations. Good 𝑔’s expenditure share depends linearly on the log
prices of all the goods as well as the log of an expenditure term. The expenditure term𝑚/𝑎(p) essentially
adjusts each household’s expenditure to control the cost of living faced by that household. This term is

sometimes referred to as deflated expenditure. Equation (3) also makes clear that luxury goods have

𝛽𝑔 > 1 while necessities have 𝛽𝑔 < 1; inferior goods have 𝛽𝑔 < 0.
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Setting 𝑒(p, 𝑢) = 𝑚 and manipulating (2) yields the indirect utility function

ln𝑣(p, 𝑚; 𝛼0,α,β, 𝚪) = ln𝑚 − ln𝑎(p)
𝑏(p)

(4)

We will come back to this equation below. We show how the indirect utility function plays a role in

computing welfare measures in [R] demandsys postestimation.

QUAIDS
The Engel curves for theAIDSmodel have the so-called “Working–Leser” form after Working (1943)

and Leser (1963),

𝑤𝑔 = 𝜔𝑔 + 𝜓𝑔ln𝑚

so that the share of expenditures spent on good 𝑔 is a linear function of the logarithm of total expenditures.

Banks, Blundell, and Lewbel (1997) provided evidence that in fact linear Engel curves provide a poor

fit for many goods. They therefore consider Engel curves with an additional expenditure term,

𝑤𝑔 = 𝐴𝑔(p) + 𝐵𝑔(p)ln{ 𝑚
𝑎(p)

} + 𝐶𝑔(p) 𝑓 { 𝑚
𝑎(p)

} (5)

where 𝐴𝑔(p), 𝐵𝑔(p), and 𝐶𝑔(p) are differentiable functions of prices and 𝑓 {𝑚/𝑎(p)} is a differentiable
function of real expenditures. 𝑎(p) is the same translog price index as in the AIDS model.

Lewbel (1991), building on the work of Gorman (1981), showed that any exactly aggregable demand

system must have the form of (5) and that additional terms containing functions of 𝑚/𝑎(p) are not

theoretically possible if exact aggregability is to hold. Lewbel (1991) termed demand systems of the

form (5) as having rank three because there are three linearly independent terms; Gorman (1981) showed

that the maximum rank of demand systems is three if exact aggregability is to hold. In contrast, theAIDS

model has rank two.

Banks, Blundell, and Lewbel (1997) further showed that the only indirect utility functions consistent

with rank-three expenditure-share equations like (5) have the form

ln𝑣(p, 𝑚) = [{ ln𝑚 − ln𝑎(p)
𝑏(p)

}
−1

+ 𝜆(p)]
−1

where in their application they use the same definitions for 𝑎(p) and 𝑏(p) as in the AIDS model and they
take 𝜆(p) = ∑𝑔 𝜆𝑔ln𝑝𝑔 with ∑𝑔 𝜆𝑔 = 0. As with the restrictions implied by economic theory for the

AIDS model, demandsys imposes the restriction that the 𝜆’s sum to zero. Also notice that if we restrict

𝜆𝑔 = 0 for all 𝑔, we are left with the indirect utility function for the AIDS model shown in (4).
Solving for ln𝑚 yields the cost function

ln𝑒(p, 𝑢) = 𝑏(p)
1
ln𝑢

− 𝜆(p)
+ ln𝑎(p)

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Applying Shephard’s lemma, we have the expenditure-share functions

𝑤𝑔(p, 𝑚;α, 𝚪, 𝚲) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} +
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

This equation also makes clear our earlier claim that if 𝜆𝑔 = 0 for all 𝑔 then the QUAIDS model reduces

to the AIDS model; see (3).

Controlling for demographic factors
demandsys allows you to choose between two different methods of incorporating demographic char-

acteristics into AIDS and QUAIDS. The first method is the same as we have used with demand systems

we have already covered: Pollak and Wales’s (1978) demographic translation. An added benefit of

translation is that it allows us to introduce constant terms that might be interpreted as subsistence or

committed quantities. A possible downside to demographic translation is that the intuition behind how

demographic variables affect expenditure shares may not strike all users as entirely lucid. Essentially,

demographic variables alter the level of subsistence for each household or observation. However, as we

cautioned above in our discussion of the generalized translog model, there are no restrictions to force

∑𝑔 𝑝𝑔𝑖(𝜇𝑔 + ν′
𝑔d𝑖) ≤ 𝑚𝑖, nor are there any restrictions to force (𝜇𝑔 + ν′

𝑔d𝑖) ≥ 0.

The second method of incorporating demographics that demandsys implements is based on Ray

(1983) and Poi (2002) and is known as demographic scaling. This method explicitly allows for de-

mographic variables to have “scale” and “composition” effects on expenditures as we explain below.

There are two possible downsides to demographic scaling. First, it does not allow one to incorporate

subsistence quantities into the demand system. While one may be tempted to include a constant term in

the list of demographic variables because that is essentially what demographic translation does to incor-

porate subsistence quantities, the resulting parameter estimates do not have such a clearcut interpretation.

Second, in our experience, models that incorporate demographic scaling sometimes take many iterations

to converge. Specifying fewer demographic characteristics may help achieve convergence. We think

this method is more intuitive than demographic translation, but either method should prove adequate for

most applications.

Demographic translation
We have already discussed demographic translation in the context of the LES and the translog and

generalized translog demand systems, so we will not show the details here. In Methods and formulas,

we show the formula for the expenditure shares for the generalized QUAIDS model, and we discuss the

parameter restrictions that give rise to the generalized AIDS model and their nongeneralized variants.

demandsys provides for four models in the AIDS family that can incorporate demographic variables

via demographic translation: aids, quaids, gaids, and gquaids. The first two models do not allow for

committed quantities, while the latter two represent generalized variants that do. The arguments in Pollak

and Wales (1992, 75) suggest that the generalized variants are to be preferred because doing so ensures

that a constant term is included in each demand equation (compare with share equation). Whether the

constants allow for a subsistence interpretation is another matter, and in [R] demandsys postestimation,

we provide an example of how to see whether that interpretation holds.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysMethodsandformulas
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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Demographic scaling
demandsys also implements the demographic scaling method used by Ray (1983) for theAIDSmodel

and extended by Poi (2002) to the QUAIDS model. For each consumer, we again have a 𝐷-length vector

of demographic characteristics d. Suppose d is the number of children in a household and we are mod-

eling expenditures on household goods, rent, utilities, and food. Then the household’s expenditures will

presumably increase by virtue of there being more members in the household; call this the scale effect.

Second, the consumption pattern of the household may shift as more money is spent on items consumed

by children versus adults; think of that as a composition effect. Ray (1983) does this by writing the

expenditure function as

𝑒(p,d, 𝑢) = 𝑒𝑅(p, 𝑢) 𝑚0(d) 𝜙(p,d, 𝑢)

Here 𝑒𝑅(p, 𝑢) is the expenditure function for a reference household, where d = 0. 𝑚0(d) increases
total expenditure of the household and accounts for the scale effect. 𝜙(p,d, 𝑢) controls for composition
effects. For AIDS, Ray (1983) controlled for both of these effects by taking

𝑚0(d) = 1 + ρ′d

for 𝐺 × 1 parameter vector ρ and

𝜙(p,d, 𝑢) = exp{𝑢 ∏
𝑖

𝑝𝛽𝑔
𝑔 (∏

𝑔
𝑝
η𝑔d

𝑔 − 1)}

where η𝑔 is the 𝑔th row of 𝐺 × 𝐷 parameter matrix H. In Methods and formulas, we show that the

expenditure-share functions for the AIDS model with demographic scaling are

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑖d)ln{ 𝑚
𝑚0(d;ρ) 𝑎(p)

}

Basically, the function 𝑚0(d;ρ) acts to reduce the effective amount of money available for spending. If
d represents a set of indicator variables for regions of a country, then 𝑚0(d;ρ) is controlling for the cost
of living in different regions of the country. The function 𝜙(p,d, 𝑢) is to make each good’s expenditure
expansion path a function of the household’s demographics. Rather than all households increasing their

expenditure share of good 𝑔 by the same 𝛽𝑔 in response to a change in 𝑚, now their responses can vary

by household composition.

For the QUAIDS model, we show in Methods and formulas that an appropriate choice for 𝜙(p,d, 𝑢)
leads to expenditure share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) =𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑖d)ln{ 𝑚
𝑚0(d;ρ) 𝑎(p)

}

+
𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

𝑚0(d;ρ) 𝑎(p)
}]

2

The models aids and quaids allow for demographic scaling. To request demographic scaling, rather

than demographic translation, we specify the scaling suboption of the demographics() option, as the

next example shows.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysMethodsandformulas
https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysMethodsandformulas
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Example 5
Here we fit a QUAIDS model to our food consumption data, controlling for the numbers of children

and adults in each household. We request that demographic scaling be used rather than the default de-

mographic translation.

. use https://www.stata-press.com/data/r19/food_consumption
(Food consumption)
. demandsys quaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels(”dairy proteins fruitveg flours misc”)
> expenditure(expfd) elasticities(expenditure) nolog nocoeftable
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 1.615
Demographic method: Scaling Number of demographics = 2
Centered R2 of model for

dairy = 0.0453
proteins = 0.1530
fruitveg = 0.0949
flours = 0.1813
misc = 0.1726

Calculating expenditure elasticities ...
Expenditure elasticities

Expenditure Elasticity Std. err. z P>|z| [95% conf. interval]

dairy .8918188 .0176252 50.60 0.000 .857274 .9263636
proteins 1.077283 .0117431 91.74 0.000 1.054267 1.100299
fruitveg 1.043209 .014428 72.30 0.000 1.01493 1.071487

flours .8409016 .0162384 51.78 0.000 .8090749 .8727284
misc .9460643 .0189172 50.01 0.000 .9089872 .9831413

Note: Elasticities are calculated at prices’, demographic variables’, and
expenditure means.

. estimates store quaids_s

Because the QUAIDSmodel with demographic scaling for a 5-good system with 2 demographic variables

has 32 estimated parameters, we instructed demandsys to report expenditure elasticities rather than the

estimated parameters. We draw your attention to this part of the command:

demographics(n_kids n_adults, scaling)

Notice that we specified the scaling suboption. Had we not included this suboption, then demandsys
would have used demographic translation instead. Finally, we asked Stata to store these estimation results

as quaids s.
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The header of the output shows that demandsys fit a QUAIDS model as requested and that our demo-

graphic variables were incorporated using demographic scaling. Take note of the line that reads

Price index constant = 1.615

In our discussion of the basic AIDS model, we discussed the price index 𝑎(p) that includes a constant
term 𝛼0. We discussed that when all prices are equal to one, then exp(𝛼0) can be interpreted as the level
of expenditure needed for minimal subsistence. demandsys looked at our expenditure variable expfd
and found that the minimum value within the estimation sample is $5.03. It therefore set 𝛼0 = ln 5.03 =
1.615. You can specify your own value for 𝛼0 by using the piconstant() option, which stands for price
index constant.

The QUAIDS model nests the AIDS model, so we can easily use a likelihood-ratio test to see whether

the quadratic terms in the expenditure-share equations contribute to the explanatory power of the model.

We include quietly to fit the corresponding aids model without displaying the results and store the

estimation results:

. quietly demandsys aids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults, scaling)
> labels(”dairy proteins fruitveg flours misc”) expenditure(expfd)
. estimates store aids_s

Becausewe specified quietly, we did not request expenditure elasticities. Doing sowould have required
Stata to do more computations that we would not have seen.

We now perform the likelihood-ratio test:

. lrtest quaids_s aids_s
Likelihood-ratio test
Assumption: aids_s nested within quaids_s
LR chi2(4) = 36.58

Prob > chi2 = 0.0000

In this example, we reject the null hypothesis that the four free 𝜆 parameters are jointly equal to zero.

Hence, the use of the QUAIDS model instead of the linear AIDS model is justified here. (Recall that to

satisfy the adding-up constraint, we impose ∑𝑔 𝜆𝑔 = 0 so that in our example the fifth parameter is

determined by the first four and is not estimated.)

When one conducts tests of one model versus another using the likelihood-ratio principle, the more

restrictive model must be nested within the more general model. For example, each of the AIDS models

implemented here is nested within the corresponding QUAIDS models, and the AIDS model with demo-

graphic translation is nested within the generalized AIDS model. But it would make no sense to fit a

generalizedAIDSmodel and compare it with a generalized translog model because one is not a restricted

variant of the other. In Methods and formulas, we describe the most flexible variant within each class of

demand system, and we describe the parameter restrictions that give rise to less flexible variants; using

lrtest to choose among members within the same class is valid.

Also, for a likelihood-ratio test to be valid, themodel specifications—apart from the component we are

testing—must be identical. That is, the two models must include the same estimation sample, the same

goods, and the same demographic specification, including the method by which demographic variables

are introduced for AIDS and QUAIDS models. Moreover, for AIDS and QUAIDS models, you must use the

same value for the price index constant 𝛼0. If you do not specify the piconstant() option, demandsys
will use the same value, assuming you use the same estimation sample.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysMethodsandformulas
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Example 6
In this example, we will fit a generalized QUAIDS model, again controlling for the number of chil-

dren and adults. Because we are fitting a generalized model, the demographics will be incorporated via

demographic translation. To demonstrate the use of the piconstant() option, we will specify 𝛼0 = 3.

. use https://www.stata-press.com/data/r19/food_consumption
(Food consumption)
. demandsys gquaids w_dairy w_proteins w_fruitveg w_flours w_misc,
> prices(p_dairy p_proteins p_fruitveg p_flours p_misc)
> demographics(n_kids n_adults) piconstant(3) expenditure(expfd) nolog
Calculating NLS estimates ...
Calculating FGNLS estimates ...
FGNLS iteration 2 ...
FGNLS iteration 3 ...
FGNLS iteration 4 ...
Generalized quadratic AIDS model Number of obs = 4,160
Expenditure variable: expfd Number of goods = 5

Price index constant = 3
Demographic method: Translating Number of demographics = 2
Centered R2 of model for

Good 1 = 0.0486
Good 2 = 0.1596
Good 3 = 0.0996
Good 4 = 0.1893
Good 5 = 0.1715

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

1 .1911178 .0084914 22.51 0.000 .1744749 .2077607
2 .2916652 .0180614 16.15 0.000 .2562654 .3270649
3 .3606389 .0168958 21.34 0.000 .3275237 .3937542
4 .0716379 .0045291 15.82 0.000 .062761 .0805149

beta
Good

1 -.0123296 .0075589 -1.63 0.103 -.0271448 .0024856
2 .0007156 .0191226 0.04 0.970 -.036764 .0381953
3 -.0083998 .0137386 -0.61 0.541 -.0353269 .0185273
4 .0118892 .0045299 2.62 0.009 .0030106 .0207677

Gamma
Good_g#
Good_h

1#1 .0381355 .0030825 12.37 0.000 .032094 .044177
1#2 -.0326577 .0029964 -10.90 0.000 -.0385305 -.026785
1#3 -.0106876 .0026841 -3.98 0.000 -.0159483 -.0054269
1#4 .0021791 .0012889 1.69 0.091 -.000347 .0047052
2#2 .1579944 .0060979 25.91 0.000 .1460428 .169946
2#3 -.0694334 .0044839 -15.49 0.000 -.0782216 -.0606452
2#4 -.024068 .0020371 -11.82 0.000 -.0280606 -.0200755
3#3 .0923088 .005649 16.34 0.000 .0812371 .1033806
3#4 -.0001376 .0017618 -0.08 0.938 -.0035908 .0033156
4#4 .0313475 .0023698 13.23 0.000 .0267027 .0359922
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lambda
Good

1 .0043566 .0028362 1.54 0.125 -.0012021 .0099154
2 .0005706 .0059707 0.10 0.924 -.0111316 .0122729
3 -.0068449 .004352 -1.57 0.116 -.0153747 .0016848
4 -.0001594 .0017033 -0.09 0.925 -.0034979 .003179

mu
Good

1 1.06405 .2097966 5.07 0.000 .6528563 1.475244
2 .6058156 .4529227 1.34 0.181 -.2818965 1.493528
3 2.146931 .6621706 3.24 0.001 .8490999 3.444761
4 .3204353 .0685528 4.67 0.000 .1860743 .4547964
5 .3588502 .0854053 4.20 0.000 .191459 .5262415

Nu
Good#

c.n_kids
1 -.2399129 .1953618 -1.23 0.219 -.6228149 .1429892
2 -1.176653 .1938486 -6.07 0.000 -1.556589 -.7967167
3 -2.604984 .3121795 -8.34 0.000 -3.216845 -1.993123
4 .1120979 .0416122 2.69 0.007 .0305396 .1936563
5 -.0296108 .0541832 -0.55 0.585 -.1358079 .0765863

Good#
c.n_adults

1 -1.271932 .2071674 -6.14 0.000 -1.677972 -.865891
2 -1.278973 .2249348 -5.69 0.000 -1.719837 -.8381089
3 -2.698807 .3809636 -7.08 0.000 -3.445482 -1.952132
4 -.0562651 .0483113 -1.16 0.244 -.1509536 .0384234
5 -.2693881 .0569314 -4.73 0.000 -.3809716 -.1578045

Note: alpha estimates are constant terms in expenditure-share equations and
also appear in the price index.

Note: beta estimates measure sensitivity of expenditure shares to changes in
deflated expenditure and also appear in the price aggregator function.

Note: Gamma estimates measure the effect of price on expenditures shares
across goods.

Note: lambda estimates measure the sensitivity of expenditure shares to
changes in deflated expenditure.

Note: Nu estimates measure the effect of demographic variables on expenditure
shares of each good.
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Normalized parameters

Estimate Std. err. z P>|z| [95% conf. interval]

alpha
Good

5 .0849402 .0049286 17.23 0.000 .0752803 .0946001

beta
Good

5 .0081246 .0050562 1.61 0.108 -.0017854 .0180345

Gamma
Good_g#
Good_h

1#5 .0030308 .0014661 2.07 0.039 .0001572 .0059044
2#5 -.0318352 .0023155 -13.75 0.000 -.0363734 -.0272969
3#5 -.0120502 .0019986 -6.03 0.000 -.0159674 -.008133
4#5 -.0093209 .0011512 -8.10 0.000 -.0115772 -.0070646

lambda
Good

5 .0020771 .0019631 1.06 0.290 -.0017705 .0059247

Note: alpha estimates sum to 1.
Note: beta estimates sum to 0.
Note: Gamma estimates sum to 0 over goods.
Note: lambda estimates sum to 0 over goods.
Shares: w_dairy w_proteins w_fruitveg w_flours w_misc
Prices: p_dairy p_proteins p_fruitveg p_flours p_misc
Expenditure: expfd
Demographics: n_kids n_adults

We see in the header of the output that demandsys did set the price index constant 𝛼0 = 3 as per our

request.

The 𝜇 parameter estimates are all greater than zero, but it is difficult to interpret them in isolation.

Because we control for the number of children and the number of adults in each household, the 𝜇 pa-

rameters themselves would represent subsistence expenditure shares for a hypothetical household with

neither any children nor any adults! In a somewhat technical example in [R] demandsys postestima-

tion, we continue this example and show how to recover the estimated µ and N parameters and then use

those estimates to calculate the actual subsistence shares for each household. We then compare the cal-

culated subsistence expenditures with actual expenditures to see whether the subsistence interpretation

even holds.

Epilogue
demandsys provides easy access to some of the most commonly used demand systems and their

extensions. You can control for demographic characteristics. Options and postestimation commands

make obtaining elasticities trivial.

Despite what may appear to be a thorough implementation, we have only scratched the surface.

demandsys is designed for large cross-sectional datasets. The Rotterdam model of Theil (1965) and

Barten (1966) and its extensions are widely used in the analysis of time-series data.

https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimationRemarksandexamplesex2_demandsysp
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation


demandsys — Estimation of flexible demand systems 34

A frequent concern is that datasets often have expenditure shares that are zero for some households.

Deaton and Irish (1984) is an early contribution to the literature on how to deal with zero shares. Heien

and Wessells (1990) proposed a two-step Heckman estimation procedure, but it has been shown to lead

to inconsistent estimates (Vermeulen 2001). Tauchmann (2010) provides an alternative Heckman-type

estimator that is consistent. Shonkwiler andYen (1999) proposed an alternative estimator for zero shares.

See also Yen and Lin (2006) for yet another approach and Meyerhoefer, Ranney, and Sahn (2005), who

develop an estimator that controls for censoring with panel data. More recently, Caro et al. (2021) have

developed the community-contributed Stata command quaidsce, which provides an implementation of
Schonkwiler and Yen’s estimator.

All of our estimators treat price as an exogenous variable. There are multiple reasons why one may

want to allow for endogenous prices. In the classical supply and demand setting, which may occur for ex-

ample in small villages, there are a small number of buyers and sellers, so the decisions that buyers make

will influence prices, causing them to be endogenous in expenditure-share equations. A more pertinent

concern is that prices may be measured with error. Consumption is often collected by survey data, and

consumers are often not able to recall the exact price paid for an item. Unobserved quality differences

also cause prices to be measured with error, especially when the goods being modeled are aggregates of

individual items. For example, you may purchase filet mignon every week, while I purchase economy-

grade ground beef. Both items are lumped together as “meat” even though, arguably, the two products

are not even close substitutes; Nelson (1991) considers this type of problem. Spatial patterns may also

make prices endogenous; see Case (1991) as an example.

Lecocq and Robin (2015) provide a community-contributed command called aidsills that allows

one to fit an AIDS model with endogenous variables. Their command, however, provides the AIDS and

QUAIDS models with only one method of including demographic variables that is similar to the demo-

graphic translation approach used here.

We have presented the QUAIDS model as somewhat of an endpoint because it has rank 3, which Gor-

man (1981) and Lewbel (1991) showed is the maximum rank of an exactly aggregable demand system.

Lewbel and Pendakur (2009) develop what they call a theory of “implicit Marshallian demands” that

are not within the class of demand equations considered by Gorman and Lewbel and hence can have

any rank. Lewbel and Pendakur propose a demand system they call the exact affine Stone index that

allows for interactions between prices and expenditures and allows for much more flexible Engel curves.

Their empirical application shows that observed demands often deviate from those implied by demands

that are linear or quadratic in income. Moreover, their model can be fit using the generalized method of

moments, so the possibility of controlling for price endogeneity exists.

Stored results
demandsys stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(n demos) number of demographic factors

e(n goods) number of goods

e(mss #) model sum of squares for the #th equation

e(rss #) residual sum of squares for the #th equation

e(tss #) total sum of squares for the #th equation

e(r2 #) 𝑅2 for the #th equation

e(ll) Gaussian log likelihood

e(N clust) number of clusters
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e(piconstant) number of constant term

e(rank) rank of e(V)
e(ic) number of iterations

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) demandsys
e(cmdline) command as typed

e(wtype) weight type

e(wexp) weight expression

e(model) demand model

e(model eval) demand evaluator

e(title) title in estimation output

e(clustvar) name of cluster variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(demo type) demographic variable specification

e(demos) demographic variables

e(has demos) 1 if demographic variables are used, 0 otherwise

e(expenditures) expenditures variable

e(prices) price variables

e(shares) expenditure-share variables

e(r2 type) 𝑅2 type computed

e(p index) whether model has price index

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins

Matrices

e(b) coefficient vector

e(Sigma) error covariance matrix (𝚺̂)

e(V) variance–covariance matrix of the estimators

e(b normalized) coefficient vector of the normalized parameters

e(V normalized) variance–covariance matrix of the normalized parameters

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
LES
Generalized translog
QUAIDS with demographic translation
QUAIDS with demographic scaling
Estimation



demandsys — Estimation of flexible demand systems 36

Introduction
As in the text in Remarks and examples, we continue to use subscript 𝑖 = 1, . . . , 𝑁 to index obser-

vations, 𝑔 = 1, . . . , 𝐺 to index goods, and 𝑑 = 1, . . . , 𝐷 to index demographic variables. In formulas

where we must use double summations across goods, we use ℎ = 1, . . . , 𝐺 and 𝑗 = 1, . . . , 𝐺 to index

goods. We omit the observation subscript for most of this discussion; all variables and expressions with-

out 𝑖 subscripts implicitly refer to the 𝑖th observation. Only when we sum across observations do we

make the 𝑖 subscript explicit.
Let 𝑤𝑔 be the expenditure share for good 𝑔 defined as 𝑤𝑔 ≡ (𝑝𝑔 𝑞𝑔)/𝑚, where 𝑝𝑔 is the price of good

𝑔, 𝑞𝑔 is the quantity of good 𝑔 consumed, and 𝑚 denotes total expenditure on all the goods in the system

being modeled. We use w, p, and q to represent the 𝐺 × 1 vectors of expenditure shares, prices, and

quantities for observation 𝑖. Let d represent the 𝐷 × 1 vector of demographic characteristics.

We use the notation 𝑤𝑔 to denote the observed expenditure share for good 𝑔 for observation 𝑖. We

use the notation 𝑤𝑔(p, 𝑚;θ) to represent an expenditure-share functions where we will replace generic
parameter vector θwith eachmodel’s parameter vectors andmatrices. We adorn direct and indirect utility

functions and expenditure functions analogously.

We use the notation 𝐸𝑔
ℎ to denote the uncompensated (Marshallian) elasticity of the quantity of good

𝑔 with respect to the price of good ℎ. We use the notation 𝐸𝑔 to note the expenditure elasticity of good

𝑔. Then, given the definition of 𝑤𝑔, one can easily verify the following facts that are useful in obtaining

the formulas for the elasticities:

𝐸𝑔 = 1
𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑚
+ 1 = 𝑚

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑚
+ 1

𝐸𝑔
𝑔 = 1

𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑝𝑔
− 1 =

𝑝𝑔

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑝𝑔
− 1

𝐸𝑔
ℎ = 1

𝑤𝑔

𝜕𝑤𝑔

𝜕ln𝑝ℎ
= 𝑝ℎ

𝑤𝑔

𝜕𝑤𝑔

𝜕𝑝ℎ

The Slutsky equation can be written in elasticity form to obtain the compensated (Hicksian) elasticity

of the quantity of good 𝑔with respect to the price of good ℎ: 𝐸𝑔
ℎ = 𝐸𝑔𝑤ℎ+𝐸𝑔

ℎ, where𝑤ℎ is the predicted

expenditure share for good ℎ. We discuss elasticities in more detail, including why we use 𝑤ℎ rather than

𝑤ℎ, in [R] demandsys postestimation.

For each demand system, we provide the equations for the 𝑔th expenditure share, the direct utility

function (if available), the indirect utility function, the expenditure function (if available), and the elas-

ticities of the quantity of good 𝑔 with respect to expenditure and the price of good ℎ. Predicted values

of the first four items are available via predict; the elasticities are available via estat elasticities.
When one demand system is nested within a more general demand system, we provide the equations

for only the more general demand system and note what parameter restrictions would result in the less

general demand system. Moreover, we include demographic variables in our exposition; versions of

models without demographic variables result when the corresponding parameter vectors and matrices

are set to zero. We also note what parameter restrictions are imposed at estimation to ensure adding up,

homogeneity, and Slutsky symmetry.

https://www.stata.com/manuals/rdemandsys.pdf#rdemandsysRemarksandexamples
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
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LES
Let 𝑐𝑔 = 𝜇𝑔 + ν𝑔d, where ν𝑔 is the 𝑔th row of 𝐺 × 𝐷 parameter matrix N. The LES begins with the

utility function

𝑢(q,d;β,µ,N) = ∏
𝑔

(𝑞𝑔 − 𝑐𝑔)𝛽𝑔

Utility maximization yields the expenditure-share equations

𝑤𝑔(p, 𝑚, d;β,µ,N) =
𝑝𝑔𝑐𝑔

𝑚
+ 𝛽𝑔 (1 − ∑

ℎ

𝑝ℎ𝑐ℎ
𝑚

)

To enforce adding up, we impose the constraint ∑𝑔 𝛽𝑔 = 1. Slutsky symmetry and homogeneity are

implied by the functional form of the LES model. Straightforward algebra shows the indirect utility

function is

𝑣(p, 𝑚, d;β,µ,N) =
∏𝑔 𝛽𝛽𝑔

𝑔

∏𝑔 𝑝𝛽𝑔
𝑔

(𝑚 − ∑
𝑔

𝑝𝑔𝑐𝑔)

and inverting provides the expenditure function

𝑒(p, 𝑢, d;β,µ,N) = 𝑢
∏𝑔 𝑝𝛽𝑔

𝑔

∏𝑔 𝛽𝛽𝑔
𝑔

+ ∑
𝑔

𝑝𝑔𝑐𝑔

The expenditure and uncompensated price elasticities are given by

𝐸𝑔 =
𝛽𝑔𝑚

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ)

𝐸𝑔
ℎ =

⎧{{{{
⎨{{{{⎩

𝑝𝑔𝑐𝑔(1 − 𝛽𝑔)

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)
− 1 𝑔 = ℎ

−𝛽𝑔𝑝ℎ𝑐ℎ

𝑝𝑔𝑐𝑔 + 𝛽𝑔 (𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ)
𝑔 ≠ ℎ

The Cobb–Douglas demand system results if we set µ = 0. Models without demographics result if we

set N = 0.
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Generalized translog
Continuing to use 𝑐𝑔 = 𝜇𝑔 +ν𝑔d, we can obtain the generalized translog expenditure-share equations

with demographics by first obtaining the regular translog expenditure-share equations and then applying

translation with both a constant term and demographic characteristics to those expenditure-share equa-

tions to obtain

𝑤𝑔(p, 𝑚, d;α, 𝚪,µ,N) =
𝑝𝑔𝑐𝑔

𝑚
+ 𝑚

𝑚

𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln(𝑝ℎ
𝑚

)

1 + ∑
ℎ

∑
𝑗

𝛾ℎ𝑗ln(
𝑝𝑗

𝑚
)

𝑚 = 𝑚 − ∑
𝑗

𝑝𝑗𝑐𝑗

The normalization ∑𝑔 𝛼𝑔 = 1 ensures the expenditure shares sum to 1, and Slutsky symmetry requires

that 𝛾𝑗ℎ = 𝛾ℎ𝑗. Homogeneity is implied by the functional form of the expenditure-share equation.

Noting that the translated indirect utility function has the same form as the untranslated version except

with 𝑚 replacing 𝑚, we have the indirect utility function

ln𝑣(p, 𝑚, d;α, 𝚪,µ,N) = − ∑
𝑔

𝛼𝑔ln(
𝑝𝑔

𝑚
) − 1

2
∑

𝑔
∑

ℎ
𝛾𝑔ℎln(

𝑝𝑔

𝑚
) ln(𝑝ℎ

𝑚
)

A limitation of the generalized translog model is that we cannot solve the indirect utility function for

a closed-form expression for the cost function, nor does a closed-form expression for the direct utility

function exist. (The direct utility function described in Christensen, Jorgenson, and Lau [1975] is not the

utility function that is implied by their indirect utility function.)

Demand systems with translated demographics and committed quantities tend to produce elastic-

ity formulas that are rather long. Omitting function arguments for clarity, we begin by writing the

expenditure-share equation for good 𝑔 as

𝑤𝑔 = 𝐴𝑔 + 𝐵𝑔 ×
𝑁𝑔

𝐷𝑔

where

𝐴𝑔 =
𝑝𝑔𝑐𝑔

𝑚

𝐵𝑔 = 𝑚
𝑚

= 1 −
∑ℎ 𝑝ℎ𝑐ℎ

𝑚
𝑁𝑔 = 𝛼𝑔 + ∑

ℎ
𝛾𝑔ℎln𝑝ℎ − ln(𝑚 − ∑

ℎ
𝑝ℎ𝑐ℎ) ∑

ℎ
𝛾𝑔ℎ

𝐷𝑔 = 1 + ∑
𝑗

∑
ℎ

𝛾𝑗ℎln𝑝ℎ − ln(𝑚 − ∑
ℎ

𝑝ℎ𝑐ℎ) ∑
𝑗

∑
ℎ

𝛾𝑗ℎ
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Applying the chain and quotient rules of elementary calculus, we have

𝜕𝑤𝑔

𝜕𝑚
=

𝜕𝐴𝑔

𝜕𝑚
+ 𝐵𝑔

⎛⎜⎜⎜
⎝

𝐷𝑔
𝜕𝑁𝑔

𝜕𝑚
− 𝑁𝑔

𝜕𝐷𝑔

𝜕𝑚
𝐷2

𝑔

⎞⎟⎟⎟
⎠

+
𝑁𝑔

𝐷𝑔

𝜕𝐵𝑔

𝜕𝑚

where

𝜕𝐴𝑔

𝜕𝑚
= −

𝑝𝑔𝑐𝑔

𝑚2
𝜕𝐵𝑔

𝜕𝑚
=

∑ℎ 𝑝ℎ𝑐ℎ

𝑚2

𝜕𝑁𝑔

𝜕𝑚
= − 1

𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ
∑

ℎ
𝛾𝑔ℎ

𝜕𝐷𝑔

𝜕𝑚
= − 1

𝑚 − ∑ℎ 𝑝ℎ𝑐ℎ
∑

𝑗
∑

ℎ
𝛾𝑗ℎ

Given 𝜕𝑤𝑔/𝜕𝑚, the expenditure elasticity of good 𝑔 is calculated as 𝐸𝑔 = (𝑚/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑚) + 1. We

also have

𝜕𝑤𝑔

𝜕𝑝ℎ
=

𝜕𝐴𝑔

𝜕𝑝ℎ
+ 𝐵𝑔

⎛⎜⎜⎜⎜
⎝

𝐷𝑔
𝜕𝑁𝑔

𝜕𝑝ℎ
− 𝑁𝑔

𝜕𝐷𝑔

𝜕𝑝ℎ
𝐷2

𝑔

⎞⎟⎟⎟⎟
⎠

+
𝑁𝑔

𝐷𝑔

𝜕𝐵𝑔

𝜕𝑝ℎ

where

𝜕𝐴𝑔

𝜕𝑝ℎ
= {𝑐𝑔/𝑚 ℎ = 𝑔

0 ℎ ≠ 𝑔
𝜕𝐵𝑔

𝜕𝑝ℎ
= −

𝑐𝑔

𝑚
𝜕𝑁𝑔

𝜕𝑝ℎ
=

𝛾𝑔ℎ

𝑐ℎ
+ 𝑐ℎ

𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗
∑

𝑗
𝛾𝑔𝑗

𝜕𝐷𝑔

𝜕𝑝ℎ
= 1

𝑝ℎ
∑

𝑗
𝛾𝑗ℎ + 𝑐ℎ

𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗
∑
𝑗𝑘

𝛾𝑗𝑘

Given 𝜕𝑤𝑔/𝜕𝑝ℎ, the uncompensated price elasticity of good 𝑔 with respect to price ℎ is calculated as

𝐸𝑔
ℎ = (𝑝ℎ/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑝ℎ) + Iℎ=𝑔, where I𝑥 is the indicator function that takes on the value one if 𝑥 is

true and zero otherwise.

The basic translog results if we set µ = 0, and models without demographics have N = 0.
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QUAIDS with demographic translation
Translating Banks, Blundell, and Lewbel’s (1997) indirect utility function, we have

ln𝑉 (p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,µ,N) = [{ ln𝑚 − ln𝑎(p)
𝑏(p)

}
−1

+ 𝜆(p)]
−1

ln𝑎(p) = 𝛼0 + ∑
𝑔

𝛼𝑔ln𝑝𝑔 + 1
2

∑
𝑔

∑
ℎ

𝛾𝑔ℎln𝑝𝑔ln𝑝ℎ

𝑏(p) = ∏
𝑔

𝑝𝛽𝑔
𝑔

𝜆(p) = ∑
𝑔

𝜆𝑔ln𝑝𝑔

where 𝛼0 is the value specified in the piconstant() option. Solving for 𝑚 and recalling that 𝑚 =
𝑚 + ∑𝑔 𝑝𝑔𝑐𝑔 for 𝑐𝑔 = 𝜇𝑔 + ν𝑔𝑑, we have the expenditure function

𝑒(p, 𝑢, d; 𝛼0,α,β, 𝚪,λ,µ,N) = exp{ 𝑏(p)ln𝑢
1 − 𝜆(p)ln𝑢

+ ln𝑎(p)} + ∑
𝑔

𝑝𝑔𝑐𝑔 (6)

Applying Shepherd’s lemma yields the expenditure-share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,µ,N) =

𝑝𝑔𝑐𝑔

𝑚
+ 𝑚

𝑚
(𝛼𝑔 + ∑

ℎ
𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚

𝑎(p)
} +

𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

)
(7)

To obtain the expenditure elasticities, we first write (7) as

𝑤𝑔 = 𝑅𝑔 + 𝑆𝑔 × 𝑇𝑔 (8)

where

𝑅𝑔 =
𝑝𝑔𝑐𝑔

𝑚
𝑆𝑔 = 𝑚

𝑚

𝑇𝑔 = 𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + 𝛽𝑔ln{ 𝑚
𝑎(p)

} +
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2
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Taking the derivative with respect to ln𝑚, we have

𝜕𝑤𝑔

𝜕ln𝑚
=

𝜕𝑅𝑔

𝜕ln𝑚
+ 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑚
+ 𝑇𝑔

𝜕𝑆𝑔

𝜕ln𝑚

where

𝜕𝑅𝑔

𝜕ln𝑚
= −

𝑝𝑔𝑐𝑔

𝑚
𝜕𝑆𝑔

𝜕ln𝑚
= 1 − 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑚
= 1

𝑆𝑔
[𝛽𝑔 + 2

𝜆𝑔

𝑏(p)
ln{ 𝑚

𝑎(p)
}]

Then the expenditure elasticity for good 𝑔 is given by 𝐸𝑔 = (1/𝑤𝑔)(𝜕𝑤𝑔/𝜕ln𝑚) + 1.

To obtain the uncompensated price elasticity of good 𝑔 with respect to price ℎ, we again use (8). Taking
the partial derivative with respect to ln𝑝ℎ, we have

𝜕𝑤𝑔

𝜕ln𝑝ℎ
=

𝜕𝑅𝑔

𝜕ln𝑝ℎ
+ 𝑆𝑔

𝜕𝑇𝑔

𝜕ln𝑝ℎ
+ 𝑇𝑔

𝜕𝑆𝑔

𝜕ln𝑝ℎ

The required partials are

𝜕𝑅𝑔

𝜕ln𝑝ℎ
= {

𝑝ℎ𝑐ℎ𝑚 ℎ = 𝑔
0 ℎ ≠ 𝑔

𝜕𝑆𝑔

𝜕ln𝑝ℎ
= −𝑝ℎ𝑐ℎ

𝑚
𝜕𝑇𝑔

𝜕ln𝑝ℎ
= 𝛾𝑔ℎ + 𝛽𝑔

𝜕
𝜕ln𝑝ℎ

[ln{ 𝑚
𝑎(p)

}] + 𝜕
𝜕ln𝑝ℎ

(
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

)

where

𝜕
𝜕ln𝑝ℎ

[ln{ 𝑚
𝑎(p)

}] = − ( 𝑝ℎ𝑐ℎ
𝑚 − ∑𝑗 𝑝𝑗𝑐𝑗

+ 𝛼ℎ + ∑
𝑗

𝛾ℎ𝑗ln𝑝𝑗)

𝜕
𝜕ln𝑝ℎ

(
𝜆𝑔

𝑏(p)
[ln{ 𝑚

𝑎(p)
}]

2

) = 2
𝜆𝑔

𝑏(p)
ln{ 𝑚

𝑎(p)
} 𝜕

𝜕ln𝑝ℎ
[ln{ 𝑚

𝑎(p)
}]

−
𝜆𝑔𝛽ℎ

𝑏(p)
[ln{ 𝑚

𝑎(p)
}

2

]

The uncompensated price elasticity of good 𝑔with respect to price ℎ is𝐸𝑔
ℎ = (𝑝ℎ/𝑤𝑔)(𝜕𝑤𝑔/𝜕𝑝ℎ)+Iℎ=𝑔.

The AIDS model results if λ = 0. The nongeneralized variants result if µ = 0. The variants without

demographics result if N = 0.
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QUAIDS with demographic scaling
As can be gleaned from (6), the expenditure function for a QUAIDS model without any form of trans-

lation or scaling is

𝑒(p, 𝑢; 𝛼0,α,β, 𝚪,λ) = exp{ 𝑏(p)ln𝑢
1 − 𝜆(p)ln𝑢

+ ln𝑎(p)} = exp{ 𝑏(p)
1
ln𝑢

− 𝜆(p)
+ ln𝑎(p)}

𝑎(p) = 𝛼0 + ∑
𝑗

𝛼𝑗ln𝑝𝑗 + 1
2

∑
𝑗

∑
𝑘

𝛾𝑗𝑘ln𝑝𝑗ln𝑝𝑘

𝑏(p) = ∏
𝑗

𝑝𝛽𝑗
𝑗

𝜆(p) = ∑
𝑗

𝜆𝑗ln𝑝𝑗

The AIDS case results when λ = 0, and we obtain the expenditure function given by (2).

To implement Ray’s (1983) demographic scaling as extended to the QUAIDS case in Poi (2002), we

require a function that can be split into two parts, one part that depends on prices and utility and one part

that does not:

𝑚0(p, 𝑢, d) = 𝑚0(d) 𝜙(p,d, 𝑢)

For 𝑚0(d), we use the same function as in Ray,

𝑚0(d;ρ) = 1 + ρ′d

where ρ is a 𝐷 × 1 parameter vector. For 𝜙(p, δ, 𝑢), we follow Poi (2002) and use

𝜙(p,d, 𝑢;β,λ,H) = exp

⎧{
⎨{⎩

𝑏(p) (∏𝑗 𝑝
η𝑗d

𝑗 − 1)
1
ln𝑢

− 𝜆(p)

⎫}
⎬}⎭

where η𝑗 is the 𝑗th row of𝐺×𝐷 parameter matrixH. ForAIDSwhenλ = 0, we are left with the function

used by Ray (1983). The expenditure function for the QUAIDS model with demographic scaling is then

𝑒(p, 𝑢, d; 𝛼0,α,β, 𝚪,λ,ρ,H) = 𝑒(p, 𝑢; 𝛼0,α,β, 𝚪,λ) × 𝑚0(d;ρ) × 𝜙(p,d, 𝑢;β,H)
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Applying Shepherd’s lemma, we have the share equations

𝑤𝑔(p, 𝑚, d; 𝛼0,α,β, 𝚪,λ,ρ,H) =

𝛼𝑔 + ∑
ℎ

𝛾𝑔ℎln𝑝ℎ + (𝛽𝑔 + η𝑔d)ln [ 𝑚
𝑚0(d;ρ) 𝑎(p)

] +
𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

𝑚0(d;ρ) 𝑎(p)
}]

2

where the demographic-adjusted price aggregator is defined as 𝑐(p,d) ≡ ∏𝑗 𝑝
η𝑗d

𝑗 . The indirect utility

function is

ln𝑉 (p, 𝑚, d; 𝛼0,α,β, 𝛄,λ,ρ,H) = [ 𝑏(p) 𝑐(p,d)
ln {𝑚 − 𝑚0(d;ρ) − 𝑎(p)}

+ 𝜆(p)]
−1

Because we are not dealing with demographic translation here, the partial derivatives required for

elasticities are not as involved as they are for the QUAIDS model with demographic translation or the

generalized translog model. We have

𝜕𝑤𝑔

𝜕ln𝑚
= 𝛽𝑔 + η𝑔d +

2𝜆𝑔

𝑏(p) 𝑐(p,d)
ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}

and

𝜕𝑤𝑔

𝜕ln𝑝ℎ
= 𝛾𝑔ℎ − [𝛽𝑔 + η𝑔d +

2𝜆𝑔

𝑏(p) 𝑐(p,d)
ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}] × (𝛼ℎ + ∑

𝑘
𝛾ℎ𝑘ln𝑝𝑘)

+
(𝛽ℎ + ηℎd) 𝜆𝑔

𝑏(p) 𝑐(p,d)
[ln{ 𝑚

(1 + ρ′d) 𝑎(p)
}]

2

The AIDS model with demographic scaling results if λ = 0, and models without demographic scaling

result if ρ = 0 and H = 0.

Estimation
The expenditure shares of a demand system represent a set of nonlinear seemingly unrelated regression

(SUR) equations. Hence, estimation is performed using nlsur with just one complication. Our system

of equations for observation 𝑖 and generic parameter vector θ can be written as

𝑤1𝑖 = 𝑤1(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖1𝑖

𝑤2𝑖 = 𝑤2(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖2𝑖

⋮ = ⋮
𝑤𝐺𝑖 = 𝑤𝐺(p𝑖, 𝑚𝑖,d𝑖;θ) + 𝜖𝐺𝑖

where ε𝑖 = (𝜖1𝑖, 𝜖2𝑖, . . . , 𝜖𝐺𝑖) is a vector of zero-mean disturbances. Because ∑𝑔 𝑤𝑔𝑖 = 1 and by

the construction of our demand systems we also have ∑𝑔 𝑤𝑔(p𝑖, 𝑚𝑖,d𝑖;θ) = 1, it must be the case

that ∑𝑔 𝜖𝑔𝑖 = 0. Therefore, det(𝚺) = det {𝐸(εε′)} = 0, and neither the (quasi)maximum likelihood

estimator nor the feasible generalized nonlinear SUR estimator is defined.

Barten (1969) showed that to obtain a well-defined likelihood function, we can drop any one of the

expenditure-share equations and fit the system containing the remaining 𝐺 − 1 equations. Parameter

restrictions that force the demand system’s equations to sum to 1 can then be used to recover the param-

eters of the dropped equation. demandsys drops the final equation from the demand system, but which

equation is dropped should not concern you: Barten (1969) showed that you obtain the same likelihood

function regardless of which one is dropped.

https://www.stata.com/manuals/rnlsur.pdf#rnlsur
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Moreover, the nonlinear SUR model satisfies the so-called Oberhofer–Kmenta (1974) conditions that

allow us to cycle between estimating the parameters θ and the error covariance matrix 𝚺 as nlsur does

when we specify the ifgnls option. The upshot is that we fit our expenditure-share equations by calling

nlsur with the ifgnls option. The resulting parameter estimate θ̂ is the (quasi)maximum likelihood

estimate of the parameters of our demand system. The (𝐺 − 1) × (𝐺 − 1) estimated error covariance

matrix is returned in matrix e(Sigma).

Estimation weights, variance–covariance matrix options, and options to control the optimization pro-

cess available with demandsys are simply passed to nlsur. See Methods and formulas in [R] nlsur.

When you type predict ..., shares eq(#), you obtain the predicted shares for the #th equation,

based on the expenditure-share equation for the demand system estimated. By construction, the sum of

predicted shares for each observation is equal to one.

When you type predict ..., residuals eq(#), you obtain the residuals for the #th equation de-

fined as 𝑟#𝑖 = 𝑤#𝑖 − 𝑤#𝑖, where 𝑤#𝑖 is the predicted share for equation # for observation 𝑖.
When you type predict ..., quantities eq(#), predict first computes the predicted shares𝑤#𝑖

and then computes 𝑞#𝑖 = 𝑚𝑖𝑤#𝑖/𝑝#𝑖.

When you type predict ..., iuf, predict evaluates the indirect utility function based on the for-

mulas given above.

When you type predict ..., ef utilities(u), predict evaluates the expenditure function based
on the formulas given above at the levels of utility specified in variable u.

Acknowledgment
We thank Brian Poi of Poi Consulting LLC, East Fallowfield, PA, for writing the popular community-

contributed quaids command, which motivated us to implement demandsys. We also thank Dr. Poi for

his advice on and review of the demandsys command.

References
Banks, J., R. W. Blundell, and A. Lewbel. 1997. Quadratic Engel curves and consumer demand. Review of Economics

and Statistics 79: 527–539. https://doi.org/10.1162/003465397557015.

Barnett, W.A., andA. Serletis. 2008. Consumer preferences and demand systems. Journal of Econometrics 147: 210–224.

https://doi.org/10.1016/j.jeconom.2008.09.009.

Barten, A. P. 1966. Theorie en empirie van een volledig stelsel van vraagvergelijkingen. PhD thesis, University of Rot-

terdam.

———. 1969. Maximum likelihood estimation of a complete system of demand equations. European Economic Review

1: 7–73. https://doi.org/10.1016/0014-2921(69)90017-8.

Caro, J. C., G. Melo, J.A. Molina, and J. C. Salgado. 2021. Censored demand system estimation with quaidsce. Presented

at the 2021 Stata Conference, virtual, August 6. https://www.stata.com/meeting/us21/slides/US21_Melo.pdf.

Case, A. C. 1991. Spatial patterns in household demand. Econometrica 59: 953–965. https://doi.org/10.2307/2938168.

Christensen, L. R., D.W. Jorgenson, and L. J. Lau. 1975. Transcendental logarithmic utility functions.American Economic

Review 65: 367–383. https://doi.org/10.2307/1927992.

Deaton, A. S., and M. Irish. 1984. Statistical models for zero expenditures in household budgets. Journal of Public Eco-

nomics 23: 59–80. https://doi.org/10.1016/0047-2727(84)90067-7.

Deaton, A. S., and J. Muellbauer. 1980a. Economics and Consumer Behavior. Cambridge: Cambridge University Press.

https://doi.org/10.1017/CBO9780511805653.

———. 1980b. An almost ideal demand system.American Economic Review 70: 312–326.

https://www.stata.com/manuals/rnlsur.pdf#rnlsurMethodsandformulas
https://www.stata.com/manuals/rnlsur.pdf#rnlsur
https://doi.org/10.1162/003465397557015
https://doi.org/10.1016/j.jeconom.2008.09.009
https://doi.org/10.1016/0014-2921(69)90017-8
https://www.stata.com/meeting/us21/slides/US21_Melo.pdf
https://doi.org/10.2307/2938168
https://doi.org/10.2307/1927992
https://doi.org/10.1016/0047-2727(84)90067-7
https://doi.org/10.1017/CBO9780511805653


demandsys — Estimation of flexible demand systems 45

Fisher, D., A. R. Fleissig, and A. Serletis. 2001. An empirical comparison of flexible demand system functional forms.

Journal of Applied Econometrics 16: 59–80. https://doi.org/10.1002/jae.585.

Gorman, W. M. 1981. “Some Engle curves”. In Essays in the Theory and Measurement of Consumer Behavior: In Honour

of Sir Richard Stone, edited by A. Deaton, 7–30. Cambridge: Cambridge University Press. https://doi.org/10.1017/

CBO9780511984082.003.

Heien, D., and C. R.Wessells. 1990. Demand systems estimation withmicrodata: Acensored regression approach. Journal

of Business and Economic Statistics 8: 365–371. https://doi.org/10.2307/1391973.

Holt, M. T., and B. K. Goodwin. 2009. The almost ideal and translog demand systems. MPRA Paper 15092, University

Library, Ludwig Maximilians University, München, Germany. https://mpra.ub.uni-muenchen.de/15092/.

Lecocq, S., and J.-M. Robin. 2015. Estimating almost-ideal demand systems with endogenous regressors. Stata Journal

15: 554–573.

Leser, C. E. V. 1963. Forms of Engel functions. Econometrica 31: 694–703. https://doi.org/10.2307/1909167.

Lewbel, A. 1989. Household equivalence scales and welfare comparisons. Journal of Public Economics 39: 377–391.

https://doi.org/10.1016/0047-2727(89)90035-2.

———. 1991. The rank of demand systems: Theory and nonparametric estimation. Econometrica 59: 711–730. https:

//doi.org/10.2307/2938225.

———. 2001. Demand systems with and without errors. American Economic Review 91: 611–618. https://doi.org/10.

1257/aer.91.3.611.

Lewbel, A., and K. Pendakur. 2009. Tricks with Hicks: The EASI demand system. American Economic Review 99:

827–863. https://doi.org/10.1257/aer.99.3.827.

Mas-Colell, A., M. D. Whinston, and J. R. Green. 1995.Microeconomic Theory. New York: Oxford University Press.

Meyerhoefer, C. D., C. K. Ranney, and D. E. Sahn. 2005. Consistent estimation of censored demand systems using panel

data.American Journal of Agricultural Economics 87: 660–672. https://doi.org/10.1111/j.1467-8276.2005.00754.x.

Muellbauer, J. 1975.Aggregation, income distribution, and consumer demand. Review of Economic Studies 42: 525–543.

https://doi.org/10.2307/2296792.

Nelson, D. B. 1991. Conditional heteroskedasticity in asset returns: A new approach. Econometrica 59: 347–370. https:

//doi.org/10.2307/2938260.

Oberhofer, W., and J. Kmenta. 1974. A general procedure for obtaining maximum likelihood estimates in generalized

regression models. Econometrica 42: 579–590. https://doi.org/10.2307/1911792.

Poi, B. P. 2002. From the help desk: Demand system estimation. Stata Journal 2: 403–410.

———. 2012. Easy demand-system estimation with quaids. Stata Journal 12: 433–446.

Pollak, R. A., and T. J. Wales. 1978. Estimation of complete demand systems from household budget data: The linear

and quadratic expenditure systems.American Economic Review 68: 348–359.

———. 1992. Demand System Specification and Estimation. New York: Oxford University Press.

Ray, R. 1983. Measuring the costs of children: An alternative approach. Journal of Public Economics 22: 89–102. https:

//doi.org/10.1016/0047-2727(83)90058-0.

Roy, P. R. 1943. La hiérarchie des besoins et la notion de groupes dans l’économie de choix. Econometrica 11: 13–24.

https://doi.org/10.2307/1905715.

Shephard, R. W. 1970. Theory of Cost and Production Functions. Princeton, NJ: Princeton University Press.

Shonkwiler, J. S., and S. T. Yen. 1999. Two-step estimation of a censored system of equations. American Journal of

Agricultural Economics 81: 972–982. https://doi.org/10.2307/1244339.

Stone, R. 1954. Linear expenditure systems and demand analysis: An application to the pattern of British demand.

Economic Journal 64: 511–527. https://doi.org/10.2307/2227743.

Tauchmann, H. 2010. Consistency of Heckman-type two-step estimators for the multivariate sample-selection model.

Applied Economics 42: 3895–3902. https://doi.org/10.1080/00036840802360179.

Theil, H. 1965. The information approach to demand analysis. Econometrica 33: 67–87. https://doi.org/10.2307/1911889.

Varian, H. R. 1992.Microeconomic Analysis. 3rd ed. New York: W. W. Norton.

https://doi.org/10.1002/jae.585
https://doi.org/10.1017/CBO9780511984082.003
https://doi.org/10.1017/CBO9780511984082.003
https://doi.org/10.2307/1391973
https://mpra.ub.uni-muenchen.de/15092/
https://doi.org/10.1177/1536867X1501500214
https://doi.org/10.2307/1909167
https://doi.org/10.1016/0047-2727(89)90035-2
https://doi.org/10.2307/2938225
https://doi.org/10.2307/2938225
https://doi.org/10.1257/aer.91.3.611
https://doi.org/10.1257/aer.91.3.611
https://doi.org/10.1257/aer.99.3.827
https://doi.org/10.1111/j.1467-8276.2005.00754.x
https://doi.org/10.2307/2296792
https://doi.org/10.2307/2938260
https://doi.org/10.2307/2938260
https://doi.org/10.2307/1911792
https://www.stata-journal.com/article.html?article=st0029
https://www.stata-journal.com/article.html?article=st0268
https://doi.org/10.1016/0047-2727(83)90058-0
https://doi.org/10.1016/0047-2727(83)90058-0
https://doi.org/10.2307/1905715
https://doi.org/10.2307/1244339
https://doi.org/10.2307/2227743
https://doi.org/10.1080/00036840802360179
https://doi.org/10.2307/1911889


demandsys — Estimation of flexible demand systems 46

Vermeulen, F. 2001. A note on Heckman-type corrections in models for zero expenditures. Applied Economics 33:

1089–1092. https://doi.org/10.1080/00036840010004004.

Working, H. 1943. Statistical laws of family expenditure. Journal of theAmerican Statistical Association 38: 43–56. https:

//doi.org/10.2307/2279311.

Yen, S. T., and B.-H. Lin. 2006.Asample selection approach to censored demand systems.American Journal ofAgricultural

Economics 88: 742–749. https://doi.org/10.1111/j.1467-8276.2006.00892.x.

Young, W. H. 1909. On the conditions for the reversibility of the order of partial differentiation. Proceedings of the Royal

Society, B ser., 29: 136–164. https://doi.org/10.1017/S0370164600008865.

Also see
[R] demandsys postestimation — Postestimation tools for demandsys

[R] nlsur — Estimation of nonlinear system of equations

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1080/00036840010004004
https://doi.org/10.2307/2279311
https://doi.org/10.2307/2279311
https://doi.org/10.1111/j.1467-8276.2006.00892.x
https://doi.org/10.1017/S0370164600008865
https://www.stata.com/manuals/rdemandsyspostestimation.pdf#rdemandsyspostestimation
https://www.stata.com/manuals/rnlsur.pdf#rnlsur
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

