
anova — Analysis of variance and covariance

Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
The anova command fits analysis-of-variance (ANOVA) and analysis-of-covariance (ANCOVA) mod-

els for balanced and unbalanced designs, including designs with missing cells; for repeated-measures

ANOVA; and for factorial, nested, or mixed designs.

Quick start
One-way ANOVAmodel of y for factor a

anova y a

Two-way full-factorial ANOVA for factors a and b
anova y a b a#b

Same as above

anova y a##b

ANCOVAmodel including continuous variable x
anova y a##b c.x

Factor b nested within a
anova y a / b|a /

Repeated-measures ANOVAwith repeated variable rvar
anova y a rvar, repeated(rvar)

Repeated-measures ANOVAwith subjects, idvar, observed at each level of rvar
anova y a / idvar|a rvar rvar#a, repeated(rvar)

Menu
Statistics > Linear models and related > ANOVA/MANOVA > Analysis of variance and covariance
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Syntax
anova varname [ termlist ] [ if ] [ in ] [weight ] [ , options ]

where termlist is a factor-variable list (see [U] 11.4.3 Factor variables) with the following additional

features:

• Variables are assumed to be categorical; use the c. factor-variable operator to override this.

• The | symbol (indicating nesting) may be used in place of the # symbol (indicating interaction).

• The / symbol is allowed after a term and indicates that the following term is the error term for the

preceding terms.

options Description

Model

repeated(varlist) variables in terms that are repeated-measures variables

partial use partial (or marginal) sums of squares

sequential use sequential sums of squares

noconstant suppress constant term

dropemptycells drop empty cells from the design matrix

Adv. model

bse(term) between-subjects error term in repeated-measures ANOVA

bseunit(varname) variable representing lowest unit in the between-subjects error term

grouping(varname) grouping variable for computing pooled covariance matrix

bootstrap, by, collect, fp, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
aweights and fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

repeated(varlist) indicates the names of the categorical variables in the terms that are to be treated as
repeated-measures variables in a repeated-measures ANOVA or ANCOVA.

partial presents theANOVA table using partial (or marginal) sums of squares. This setting is the default.
Also see the sequential option.

sequential presents the ANOVA table using sequential sums of squares.

noconstant suppresses the constant term (intercept) from the ANOVA or regression model.

dropemptycells drops empty cells from the design matrix. If c(emptycells) is set to keep (see

[R] set emptycells), this option temporarily resets it to drop before running the ANOVA model. If

c(emptycells) is already set to drop, this option does nothing.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/ranova.pdf#ranovaSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetemptycells.pdf#rsetemptycells
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� � �
Adv. model �

bse(term) indicates the between-subjects error term in a repeated-measures ANOVA. This option is

needed only in the rare case when the anova command cannot automatically determine the between-
subjects error term.

bseunit(varname) indicates the variable representing the lowest unit in the between-subjects error term
in a repeated-measures ANOVA. This option is rarely needed because the anova command automati-

cally selects the first variable listed in the between-subjects error term as the default for this option.

grouping(varname) indicates a variable that determines which observations are grouped together in

computing the covariance matrices that will be pooled and used in a repeated-measures ANOVA. This

option is rarely needed because the anova command automatically selects the combination of all

variables except the first (or as specified in the bseunit() option) in the between-subjects error term
as the default for grouping observations.

Remarks and examples
Remarks are presented under the following headings:

Introduction
One-way ANOVA
Two-way ANOVA
N-way ANOVA
Weighted data
ANCOVA
Nested designs
Mixed designs
Latin-square designs
Repeated-measures ANOVA
Video examples

Introduction
anova uses least squares to fit the linear models known as ANOVA or ANCOVA (henceforth referred to

simply as ANOVAmodels).

If you want to fit one-way ANOVA models, you may find the oneway or loneway command more

convenient; see [R] oneway and [R] loneway. If you are interested in MANOVA or MANCOVA, see

[MV] manova.

Structural equation modeling provides a more general framework for fitting ANOVAmodels; see the

Stata Structural Equation Modeling Reference Manual.

ANOVA was pioneered by Fisher. It features prominently in his texts on statistical methods and his

design of experiments (1925, 1935). Many books discuss ANOVA; see, for instance, Altman (1991);

van Belle et al. (2004); Cobb (1998); Snedecor and Cochran (1989); or Winer, Brown, and Michels

(1991). For a classic source, see Scheffé (1959). Kennedy and Gentle (1980) discussANOVA’s computing

problems. Edwards (1985) is concerned primarily with the relationship between multiple regression and

ANOVA. Acock (2023, chap. 9) and Baldwin (2019, chap. 5 and 6) illustrate their discussion with Stata

output. Repeated-measures ANOVA is discussed in Winer, Brown, and Michels (1991) and Milliken and

Johnson (2009). Pioneering work in repeated-measures ANOVA can be found in Box (1954); Geisser

and Greenhouse (1958); Huynh and Feldt (1976); and Huynh (1978). For a Stata-specific discussion of

ANOVA contrasts, see Mitchell (2021, chap. 7–9; 2015, chap. 4–9).

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/roneway.pdf#roneway
https://www.stata.com/manuals/rloneway.pdf#rloneway
https://www.stata.com/manuals/mvmanova.pdf#mvmanova
https://www.stata.com/manuals/semintro1.pdf#semIntro1
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One-way ANOVA
anova, entered without options, performs and reports standard ANOVA. For instance, to perform a

one-way layout of a variable called endog on exog, you would type anova endog exog.

Example 1: One-way ANOVA
We run an experiment varying the amount of fertilizer used in growing apple trees. We test four

concentrations, using each concentration in three groves of 12 trees each. Later in the year, we measure

the average weight of the fruit.

If all had gone well, we would have had 3 observations on the average weight for each of the four con-

centrations. Instead, two of the groves were mistakenly leveled by a confused man on a large bulldozer.

We are left with the following data:

. use https://www.stata-press.com/data/r19/apple
(Apple trees)
. list, abbrev(10) sepby(treatment)

treatment weight

1. 1 117.5
2. 1 113.8
3. 1 104.4

4. 2 48.9
5. 2 50.4
6. 2 58.9

7. 3 70.4
8. 3 86.9

9. 4 87.7
10. 4 67.3

To obtain one-way ANOVA results, we type

. anova weight treatment
Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob>F

Model 5295.5443 3 1765.1814 21.46 0.0013

treatment 5295.5443 3 1765.1814 21.46 0.0013

Residual 493.59167 6 82.265278

Total 5789.136 9 643.23733

We find significant (at better than the 1% level) differences among the four concentrations.

Although the output is a usualANOVA table, let’s run through it anyway. Above the table is a summary

of the underlying regression. The model was fit on 10 observations, and the root mean squared error

(Root MSE) is 9.07. The 𝑅2 for the model is 0.9147, and the adjusted 𝑅2 is 0.8721.
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The first line of the table summarizes the model. The sum of squares (Partial SS) for the model is
5295.5 with 3 degrees of freedom (df). This line results in a mean square (MS) of 5295.5/3 ≈ 1765.2.

The corresponding 𝐹 statistic is 21.46 and has a significance level of 0.0013. Thus, the model appears

to be significant at the 0.13% level.

The next line summarizes the first (and only) term in the model, treatment. Because there is only
one term, the line is identical to that for the overall model.

The third line summarizes the residual. The residual sum of squares is 493.59 with 6 degrees of

freedom, resulting in a mean squared error of 82.27. The square root of this latter number is reported as

the Root MSE.

The model plus the residual sum of squares equals the total sum of squares, which is reported as

5789.1 in the last line of the table. This is the total sum of squares of weight after removal of the

mean. Similarly, the model plus the residual degrees of freedom sum to the total degrees of freedom, 9.

Remember that there are 10 observations. Subtracting 1 for the mean, we are left with 9 total degrees of

freedom.

Technical note
Rather than using the anova command, we could have performed this analysis by using the oneway

command. Example 1 in [R] oneway repeats this same analysis. You may wish to compare the output.

The regress command (see [R] regress) is used to fit the underlying regression model corresponding
to an ANOVA model fit using the anova command. Type regress after anova to see the coefficients,

standard errors, etc., of the regression model for the last run of anova.

Example 2: Regression table from a one-way ANOVA
Returning to the apple tree experiment, we found that the fertilizer concentration appears to signifi-

cantly affect the average weight of the fruit. Although that finding is interesting, we next want to know

which concentration appears to grow the heaviest fruit. One way to find out is by examining the under-

lying regression coefficients.

. regress, baselevels
Source SS df MS Number of obs = 10

F(3, 6) = 21.46
Model 5295.54433 3 1765.18144 Prob > F = 0.0013

Residual 493.591667 6 82.2652778 R-squared = 0.9147
Adj R-squared = 0.8721

Total 5789.136 9 643.237333 Root MSE = 9.07

weight Coefficient Std. err. t P>|t| [95% conf. interval]

treatment
1 0 (base)
2 -59.16667 7.405641 -7.99 0.000 -77.28762 -41.04572
3 -33.25 8.279758 -4.02 0.007 -53.50984 -12.99016
4 -34.4 8.279758 -4.15 0.006 -54.65984 -14.14016

_cons 111.9 5.236579 21.37 0.000 99.08655 124.7134

https://www.stata.com/manuals/roneway.pdf#ronewayRemarksandexamplesex1_oneway
https://www.stata.com/manuals/roneway.pdf#roneway
https://www.stata.com/manuals/rregress.pdf#rregress
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See [R] regress for an explanation of how to read this table. The baselevels option of regress displays
a row indicating the base category for our categorical variable, treatment. In summary, we find that
concentration 1, the base (omitted) group, produces significantly heavier fruits than concentration 2,

3, and 4; concentration 2 produces the lightest fruits; and concentrations 3 and 4 appear to be roughly

equivalent.

Example 3: ANOVA replay
We previously typed anova weight treatment to produce and display theANOVA table for our apple

tree experiment. Typing regress displays the regression coefficients. We can redisplay theANOVA table

by typing anova without arguments:

. anova
Number of obs = 10 R-squared = 0.9147
Root MSE = 9.07002 Adj R-squared = 0.8721

Source Partial SS df MS F Prob>F

Model 5295.5443 3 1765.1814 21.46 0.0013

treatment 5295.5443 3 1765.1814 21.46 0.0013

Residual 493.59167 6 82.265278

Total 5789.136 9 643.23733

Two-way ANOVA
You can include multiple explanatory variables with the anova command, and you can specify inter-

actions by placing ‘#’ between the variable names. For instance, typing anova y a b performs a two-way
layout of y on a and b. Typing anova y a b a#b performs a full two-way factorial layout. The shorthand
anova y a##b does the same.

With the default partial sums of squares, when you specify interacted terms, the order of the terms

does not matter. Typing anova y a b a#b is the same as typing anova y b a b#a.

Example 4: Two-way factorial ANOVA
The classic two-way factorial ANOVA problem, at least as far as computer manuals are concerned, is

a two-way ANOVA design from Afifi and Azen (1979).

Fifty-eight patients, each suffering from one of three different diseases, were randomly assigned to

one of four different drug treatments, and the change in their systolic blood pressure was recorded. Here

are the data:

Disease 1 Disease 2 Disease 3

Drug 1 42, 44, 36 33, 26, 33 31, –3, 25
13, 19, 22 21 25, 24

Drug 2 28, 23, 34 34, 33, 31 3, 26, 28
42, 13 36 32, 4, 16

Drug 3 1, 29, 19 11, 9, 7 21, 1, 9
1, –6 3

Drug 4 24, 9, 22 27, 12, 12 22, 7, 25
–2, 15 –5, 16, 15 5, 12

https://www.stata.com/manuals/rregress.pdf#rregress
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Let’s assume that we have entered these data into Stata and stored the data as systolic.dta. Below
we use the data, list the first 10 observations, summarize the variables, and tabulate the control

variables:

. use https://www.stata-press.com/data/r19/systolic
(Systolic blood pressure data)
. list in 1/10

drug disease systolic

1. 1 1 42
2. 1 1 44
3. 1 1 36
4. 1 1 13
5. 1 1 19

6. 1 1 22
7. 1 2 33
8. 1 2 26
9. 1 2 33

10. 1 2 21

. summarize
Variable Obs Mean Std. dev. Min Max

drug 58 2.5 1.158493 1 4
disease 58 2.017241 .8269873 1 3

systolic 58 18.87931 12.80087 -6 44
. tabulate drug disease

Patient’s disease
Drug used 1 2 3 Total

1 6 4 5 15
2 5 4 6 15
3 3 5 4 12
4 5 6 5 16

Total 19 19 20 58

Each observation in our data corresponds to one patient, and for each patient we record drug, disease,
and the increase in the systolic blood pressure, systolic. The tabulation reveals that the data are not
balanced—there are not equal numbers of patients in each drug–disease cell. Stata does not require

that the data be balanced. We can perform a two-way factorial ANOVA by typing

. anova systolic drug disease drug#disease
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Partial SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

drug 2997.4719 3 999.15729 9.05 0.0001
disease 415.87305 2 207.93652 1.88 0.1637

drug#disease 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237
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Although Stata’s table command does not performANOVA, it can produce useful summary tables of

your data (see [R] table):

. table drug disease, statistic(mean systolic) nformat(%8.2f)

Patient’s disease
1 2 3 Total

Drug used
1 29.33 28.25 20.40 26.07
2 28.00 33.50 18.17 25.53
3 16.33 4.40 8.50 8.75
4 13.60 12.83 14.20 13.50
Total 22.79 18.21 15.80 18.88

These are simple means and are not influenced by our anova model. More useful is the margins com-

mand (see [R] margins) that provides marginal means and adjusted predictions. Because drug is the

only significant factor in our ANOVA, we now examine the adjusted marginal means for drug.

. margins drug, asbalanced
Adjusted predictions Number of obs = 58
Expression: Linear prediction, predict()
At: disease (asbalanced)

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.99444 2.751008 9.45 0.000 20.45695 31.53194
2 26.55556 2.751008 9.65 0.000 21.01806 32.09305
3 9.744444 3.100558 3.14 0.003 3.503344 15.98554
4 13.54444 2.637123 5.14 0.000 8.236191 18.8527

These adjusted marginal predictions are not equal to the simple drug means (see the totals from the

table command); they are based upon predictions from our ANOVAmodel. The asbalanced option of
margins corresponds with the interpretation of the 𝐹 statistic produced by ANOVA—each cell is given

equal weight regardless of its sample size (see the following three technical notes). You can omit the

asbalanced option and obtain predictive margins that take into account the unequal sample sizes of the
cells.

. margins drug
Predictive margins Number of obs = 58
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 25.89799 2.750533 9.42 0.000 20.36145 31.43452
2 26.41092 2.742762 9.63 0.000 20.89003 31.93181
3 9.722989 3.099185 3.14 0.003 3.484652 15.96132
4 13.55575 2.640602 5.13 0.000 8.24049 18.871

https://www.stata.com/manuals/rtable.pdf#rtable
https://www.stata.com/manuals/rmargins.pdf#rmargins
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Technical note
How do you interpret the significance of terms like drug and disease in unbalanced data? If you

are familiar with SAS, the sums of squares and the 𝐹 statistic reported by Stata correspond to SAS type

III sums of squares. (Stata can also calculate sequential sums of squares, but we will postpone that topic

for now.)

Let’s think in terms of the following table:

Disease 1 Disease 2 Disease 3

Drug 1 𝜇11 𝜇12 𝜇13 𝜇1⋅
Drug 2 𝜇21 𝜇22 𝜇23 𝜇2⋅
Drug 3 𝜇31 𝜇32 𝜇33 𝜇3⋅
Drug 4 𝜇41 𝜇42 𝜇43 𝜇4⋅

𝜇⋅1 𝜇⋅2 𝜇⋅3 𝜇⋅⋅

In this table, 𝜇𝑖𝑗 is the mean increase in systolic blood pressure associated with drug 𝑖 and disease 𝑗,
while 𝜇𝑖⋅ is the mean for drug 𝑖, 𝜇⋅𝑗 is the mean for disease 𝑗, and 𝜇⋅⋅ is the overall mean.

If the data are balanced, meaning that there are equal numbers of observations going into the calcula-

tion of each mean 𝜇𝑖𝑗, the row means, 𝜇𝑖⋅, are given by

𝜇𝑖⋅ = 𝜇𝑖1 + 𝜇𝑖2 + 𝜇𝑖3
3

In our case, the data are not balanced, but we define the 𝜇𝑖⋅ according to that formula anyway. The test

for the main effect of drug is the test that

𝜇1⋅ = 𝜇2⋅ = 𝜇3⋅ = 𝜇4⋅

To be absolutely clear, the 𝐹 test of the term drug, called the main effect of drug, is formally equivalent
to the test of the three constraints:

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇21 + 𝜇22 + 𝜇23
3

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇31 + 𝜇32 + 𝜇33
3

𝜇11 + 𝜇12 + 𝜇13
3

= 𝜇41 + 𝜇42 + 𝜇43
3

In our data, we obtain a significant 𝐹 statistic of 9.05 and thus reject those constraints.

Technical note
Stata can display the symbolic form underlying the test statistics it presents, as well as display other

test statistics and their symbolic forms; see Obtaining symbolic forms in [R] anova postestimation. Here

is the result of requesting the symbolic form for the main effect of drug in our data:

https://www.stata.com/manuals/ranovapostestimation.pdf#ranovapostestimationRemarksandexamplesObtainingsymbolicforms
https://www.stata.com/manuals/ranovapostestimation.pdf#ranovapostestimation
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. test drug, symbolic
drug

1 -(r2+r3+r4)
2 r2
3 r3
4 r4

disease
1 0
2 0
3 0

drug#disease
1 1 -1/3 (r2+r3+r4)
1 2 -1/3 (r2+r3+r4)
1 3 -1/3 (r2+r3+r4)
2 1 1/3 r2
2 2 1/3 r2
2 3 1/3 r2
3 1 1/3 r3
3 2 1/3 r3
3 3 1/3 r3
4 1 1/3 r4
4 2 1/3 r4
4 3 1/3 r4

_cons 0

This says exactly what we said in the previous technical note.

Technical note
Saying that there is no main effect of a variable is not the same as saying that it has no effect at all.

Stata’s ability to perform ANOVA on unbalanced data can easily be put to ill use.

For example, consider the following table of the probability of surviving a bout with one of two

diseases according to the drug administered to you:

Disease 1 Disease 2

Drug 1 1 0

Drug 2 0 1

If you have disease 1 and are administered drug 1, you live. If you have disease 2 and are administered

drug 2, you live. In all other cases, you die.

This table has no main effects of either drug or disease, although there is a large interaction effect.

You might now be tempted to reason that because there is only an interaction effect, you would be

indifferent between the two drugs in the absence of knowledge about which disease infects you. Given

an equal chance of having either disease, you reason that it does not matter which drug is administered

to you—either way, your chances of surviving are 0.5.

You may not, however, have an equal chance of having either disease. If you knew that disease 1 was

100 times more likely to occur in the population, and if you knew that you had one of the two diseases,

you would express a strong preference for receiving drug 1.
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When you calculate the significance ofmain effects on unbalanced data, youmust ask yourself why the

data are unbalanced. If the data are unbalanced for random reasons and you are making predictions for a

balanced population, the test of the main effect makes perfect sense. If, however, the data are unbalanced

because the underlying populations are unbalanced and you are making predictions for such unbalanced

populations, the test of the main effect may be practically—if not statistically—meaningless.

Example 5: ANOVA with missing cells
Stata can perform ANOVA not only on unbalanced populations, but also on populations that are so

unbalanced that entire cells are missing. For instance, using our systolic blood pressure data, let’s refit

the model eliminating the drug 1–disease 1 cell. Because anova follows the same syntax as all other

Stata commands, we can explicitly specify the data to be used by typing the if qualifier at the end of the
anova command. Here we want to use the data that are not for drug 1 and disease 1:

. anova systolic drug##disease if !(drug==1 & disease==1)
Number of obs = 52 R-squared = 0.4545
Root MSE = 10.1615 Adj R-squared = 0.3215

Source Partial SS df MS F Prob>F

Model 3527.959 10 352.7959 3.42 0.0025

drug 2686.5783 3 895.52611 8.67 0.0001
disease 327.7926 2 163.8963 1.59 0.2168

drug#disease 703.0076 5 140.60152 1.36 0.2586

Residual 4233.4833 41 103.25569

Total 7761.4423 51 152.18514

Here we used drug##disease as a shorthand for drug disease drug#disease.

Technical note
The test of the main effect of drug in the presence of missing cells is more complicated than that for

unbalanced data. Our underlying tableau now has the following form:

Disease 1 Disease 2 Disease 3

Drug 1 𝜇12 𝜇13
Drug 2 𝜇21 𝜇22 𝜇23 𝜇2⋅
Drug 3 𝜇31 𝜇32 𝜇33 𝜇3⋅
Drug 4 𝜇41 𝜇42 𝜇43 𝜇4⋅

𝜇⋅2 𝜇⋅3

The hole in the drug 1–disease 1 cell indicates that the mean is unobserved. Considering the main effect

of drug, the test is unchanged for the rows in which all the cells are defined:

𝜇2⋅ = 𝜇3⋅ = 𝜇4⋅

The first row, however, requires special attention. Here we want the average outcome for drug 1, which

is averaged only over diseases 2 and 3, to be equal to the average values of all other drugs averaged over

those same two diseases:

𝜇12 + 𝜇13
2

=
(𝜇22 + 𝜇23)/2 + (𝜇32 + 𝜇33)/2 + (𝜇42 + 𝜇43)/2

3
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Thus, the test contains three constraints:

𝜇21 + 𝜇22 + 𝜇23
3

=
𝜇31 + 𝜇32 + 𝜇33

3
𝜇21 + 𝜇22 + 𝜇23

3
=

𝜇41 + 𝜇42 + 𝜇43
3

𝜇12 + 𝜇13
2

=
𝜇22 + 𝜇23 + 𝜇32 + 𝜇33 + 𝜇42 + 𝜇43

6

Stata can calculate two types of sums of squares, partial and sequential. If you do not specify which

sums of squares to calculate, Stata calculates partial sums of squares. The technical notes above have

gone into great detail about the definition and use of partial sums of squares. Use the sequential option
to obtain sequential sums of squares.

Technical note
Before we illustrate sequential sums of squares, consider one more feature of the partial sums. If you

know how such things are calculated, you may worry that the terms must be specified in some particular

order, that Stata would balk or, even worse, produce different results if you typed, say, anova systolic
drug#disease drug disease rather than anova systolic drug disease drug#disease. We assure

you that is not the case.

When you type a model, Stata internally reorganizes the terms, forms the cross-product matrix, inverts

it, converts the result to an upper-Hermite form, and then performs the hypothesis tests. As a final touch,

Stata reports the results in the same order that you typed the terms.

Example 6: Sequential sums of squares
We wish to estimate the effects on systolic blood pressure of drug and disease by using sequential

sums of squares. We want to introduce disease first, then drug, and finally, the interaction of drug and

disease:

. anova systolic disease drug disease#drug, sequential
Number of obs = 58 R-squared = 0.4560
Root MSE = 10.5096 Adj R-squared = 0.3259

Source Seq. SS df MS F Prob>F

Model 4259.3385 11 387.21259 3.51 0.0013

disease 488.63938 2 244.31969 2.21 0.1210
drug 3063.4329 3 1021.1443 9.25 0.0001

disease#drug 707.26626 6 117.87771 1.07 0.3958

Residual 5080.8167 46 110.45254

Total 9340.1552 57 163.86237

The 𝐹 statistic on disease is now 2.21. When we fit this same model by using partial sums of squares,

the statistic was 1.88.
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N-way ANOVA
You may include high-order interaction terms, such as a third-order interaction between the variables

A, B, and C, by typing A#B#C.

Example 7: Three-way factorial ANOVA
Wewish to determine the operating conditions that maximize yield for amanufacturing process. There

are three temperature settings, two chemical supply companies, and two mixing methods under investi-

gation. Three observations are obtained for each combination of these three factors.

. use https://www.stata-press.com/data/r19/manuf
(Manufacturing process data)
. describe
Contains data from https://www.stata-press.com/data/r19/manuf.dta
Observations: 36 Manufacturing process data

Variables: 4 2 Jan 2024 13:28

Variable Storage Display Value
name type format label Variable label

temperature byte %9.0g temp Machine temperature setting
chemical byte %9.0g supplier Chemical supplier
method byte %9.0g meth Mixing method
yield byte %9.0g Product yield

Sorted by:

We wish to perform a three-way factorial ANOVA. We could type

. anova yield temp chem temp#chem meth temp#meth chem#meth temp#chem#meth

but prefer to use the ## factor-variable operator for brevity.

. anova yield temp##chem##meth
Number of obs = 36 R-squared = 0.5474
Root MSE = 2.62996 Adj R-squared = 0.3399

Source Partial SS df MS F Prob>F

Model 200.75 11 18.25 2.64 0.0227

temperature 30.5 2 15.25 2.20 0.1321
chemical 12.25 1 12.25 1.77 0.1958

temperature#chemical 24.5 2 12.25 1.77 0.1917
method 42.25 1 42.25 6.11 0.0209

temperature#method 87.5 2 43.75 6.33 0.0062
chemical#method .25 1 .25 0.04 0.8508

temperature#chemical#
method 3.5 2 1.75 0.25 0.7785

Residual 166 24 6.9166667

Total 366.75 35 10.478571
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The interaction between temperature and method appears to be the important story in these data. A

table of means for this interaction is given below.

. table method temp, statistic(mean yield) nformat(%8.2f)

Machine temperature setting
Low Medium High Total

Mixing method
Stir 7.50 6.00 6.00 6.50
Fold 5.50 9.00 11.50 8.67
Total 6.50 7.50 8.75 7.58

Here ourANOVA is balanced (each cell has the same number of observations), and we obtain the same

values as in the table above (but with additional information such as confidence intervals) by using the

margins command. Because ourANOVA is balanced, using the asbalanced option with marginswould
not produce different results. We request the predictive margins for the two terms that appear significant

in our ANOVA: temperature#method and method.

. margins temperature#method method
Predictive margins Number of obs = 36
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

temperature#
method

Low#Stir 7.5 1.073675 6.99 0.000 5.284044 9.715956
Low#Fold 5.5 1.073675 5.12 0.000 3.284044 7.715956

Medium#Stir 6 1.073675 5.59 0.000 3.784044 8.215956
Medium#Fold 9 1.073675 8.38 0.000 6.784044 11.21596

High#Stir 6 1.073675 5.59 0.000 3.784044 8.215956
High#Fold 11.5 1.073675 10.71 0.000 9.284044 13.71596

method
Stir 6.5 .6198865 10.49 0.000 5.220617 7.779383
Fold 8.666667 .6198865 13.98 0.000 7.387284 9.946049

We decide to use the folding method of mixing and a high temperature in our manufacturing process.

Weighted data
Like all estimation commands, anova can produce estimates on weighted data. See [U] 11.1.6 weight

for details on specifying the weight.

https://www.stata.com/manuals/u11.pdf#u11.1.6weight
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Example 8: Three-way factorial ANOVA on grouped data
Wewish to investigate the prevalence of byssinosis, a form of pneumoconiosis that can afflict workers

exposed to cotton dust. We have data on 5,419 workers in a large cotton mill. We know whether each

worker smokes, his or her race, and the dustiness of the work area. The variables are

smokes smoker or nonsmoker in the last five years

race white or other

workplace 1 (most dusty), 2 (less dusty), 3 (least dusty)

Wewish to fit anANOVAmodel explaining the prevalence of byssinosis according to a full factorial model

of smokes, race, and workplace.

The data are unbalanced. Moreover, although we have data on 5,419 workers, the data are grouped

according to the explanatory variables, along with some other variables, resulting in 72 observations.

For each observation, we know the number of workers in the group (pop), the prevalence of byssinosis
(prob), and the values of the three explanatory variables. Thus, we wish to fit a three-way factorial model
on grouped data.

We begin by showing a bit of the data, which are from Higgins and Koch (1977).

. use https://www.stata-press.com/data/r19/byssin
(Byssinosis incidence)
. describe
Contains data from https://www.stata-press.com/data/r19/byssin.dta
Observations: 72 Byssinosis incidence

Variables: 5 19 Dec 2024 07:04

Variable Storage Display Value
name type format label Variable label

smokes byte %8.0g smokes Smokes
race byte %8.0g race Race
workplace byte %8.0g workplace

Dustiness of workplace
pop int %8.0g Population size
prob float %9.0g Prevalence of byssinosis

Sorted by:
. list in 1/5, abbrev(10) divider

smokes race workplace pop prob

1. Yes White Most 40 .075
2. Yes White Less 74 0
3. Yes White Least 260 .0076923
4. Yes Other Most 164 .152439
5. Yes Other Less 88 0

The first observation in the data represents a group of 40 white workers who smoke and work in a “most”

dusty work area. Of those 40 workers, 7.5% have byssinosis. The second observation represents a group

of 74 white workers who also smoke but who work in a “less” dusty environment. None of those workers

has byssinosis.
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Almost every Stata command allows weights. Here we want to weight the data by pop. We can, for

instance, make a table of the number of workers by their smoking status and race:

. tabulate smokes race [fw=pop]
Race

Smokes Other White Total

No 799 1,431 2,230
Yes 1,104 2,085 3,189

Total 1,903 3,516 5,419

The [fw=pop] at the end of the tabulate command tells Stata to count each observation as representing
pop persons. When making the tally, tabulate treats the first observation as representing 40 workers,

the second as representing 74 workers, and so on.

Similarly, we can make a table of the dustiness of the workplace:

. tabulate workplace [fw=pop]
Dustiness

of
workplace Freq. Percent Cum.

Least 3,450 63.66 63.66
Less 1,300 23.99 87.65
Most 669 12.35 100.00

Total 5,419 100.00

We can discover the average incidence of byssinosis among these workers by typing

. summarize prob [fw=pop]
Variable Obs Mean Std. dev. Min Max

prob 5,419 .0304484 .0567373 0 .287037

We discover that 3.04% of these workers have byssinosis. Across all cells, the byssinosis rates vary from

0 to 28.7%. Just to prove that there might be something here, let’s obtain the average incidence rates

according to the dustiness of the workplace:

. table (workplace) (race smokes) [fw=pop], statistic(mean prob) nototals

Race
Other White
Smokes Smokes

No Yes No Yes

Dustiness of workplace
Least .0107527 .0101523 .0081549 .0162774
Less .02 .0081633 .0136612 .0143149
Most .0820896 .1679105 .0833333 .2295082

Let’s now fit the ANOVAmodel.
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. anova prob workplace smokes race workplace#smokes workplace#race smokes#race
> workplace#smokes#race [aweight=pop]
(sum of wgt is 5,419)

Number of obs = 65 R-squared = 0.8300
Root MSE = .025902 Adj R-squared = 0.7948

Source Partial SS df MS F Prob>F

Model .17364654 11 .01578605 23.53 0.0000

workplace .09762518 2 .04881259 72.76 0.0000
smokes .01303081 1 .01303081 19.42 0.0001

race .00109472 1 .00109472 1.63 0.2070
workplace#smokes .01969034 2 .00984517 14.67 0.0000

workplace#race .00135252 2 .00067626 1.01 0.3718
smokes#race .00166287 1 .00166287 2.48 0.1214

workplace#smokes#race .00095084 2 .00047542 0.71 0.4969

Residual .03555777 53 .0006709

Total .2092043 64 .00326882

Of course, if we want to see the underlying regression, we could type regress.

Above, we examined simple means of the cells of workplace#smokes#race. Our ANOVA shows

workplace, smokes, and their interaction as being the only significant factors in our model. We now

examine the predictive marginal mean byssinosis rates for these terms.

. margins workplace#smokes workplace smokes
Predictive margins Number of obs = 65
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

workplace#
smokes

Least#No .0090672 .0062319 1.45 0.152 -.0034323 .0215667
Least#Yes .0141264 .0053231 2.65 0.010 .0034497 .0248032

Less#No .0158872 .009941 1.60 0.116 -.0040518 .0358263
Less#Yes .0121546 .0087353 1.39 0.170 -.0053662 .0296755
Most#No .0828966 .0182151 4.55 0.000 .0463617 .1194314

Most#Yes .2078768 .012426 16.73 0.000 .1829533 .2328003

workplace
Least .0120701 .0040471 2.98 0.004 .0039526 .0201875
Less .0137273 .0065685 2.09 0.041 .0005526 .0269019
Most .1566225 .0104602 14.97 0.000 .1356419 .177603

smokes
No .0196915 .0050298 3.91 0.000 .0096029 .02978

Yes .0358626 .0041949 8.55 0.000 .0274488 .0442765

Smoking combined with the most dusty workplace produces the highest byssinosis rates.
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� �
Ronald Aylmer Fisher (1890–1962) (Sir Ronald from 1952) studied mathematics at Cambridge.

Even before he finished his studies, he had published on statistics. He worked as a statistician

at Rothamsted Experimental Station (1919–1933), as professor of eugenics at University College

London (1933–1943), as professor of genetics at Cambridge (1943–1957), and in retirement at

the CSIRO Division of Mathematical Statistics in Adelaide. His many fundamental and applied

contributions to statistics and genetics mark him as one of the greatest statisticians of all time,

including original work on tests of significance, distribution theory, theory of estimation, fiducial

inference, and design of experiments.� �
ANCOVA

You can include multiple explanatory variables with the anova command, but unless you explicitly

state otherwise by using the c. factor-variable operator, all the variables are interpreted as categorical

variables. Using the c. operator, you can designate variables as continuous and thus perform ANCOVA.

Example 9: ANCOVA (ANOVA with a continuous covariate)
We have census data recording the deathrate (drate) and median age (age) for each state. The dataset

also includes the region of the country in which each state is located (region):
. use https://www.stata-press.com/data/r19/census2
(1980 Census data by state)
. summarize drate age region

Variable Obs Mean Std. dev. Min Max

drate 50 84.3 13.07318 40 107
age 50 29.5 1.752549 24 35

region 50 2.66 1.061574 1 4

age is coded in integral years from 24 to 35, and region is coded from 1 to 4, with 1 standing for the

Northeast, 2 for the North Central, 3 for the South, and 4 for the West.

When we examine the data more closely, we discover large differences in the deathrate across regions

of the country:

. tabulate region, summarize(drate)
Census Summary of Deathrate
region Mean Std. dev. Freq.

NE 93.444444 7.0553368 9
N Cntrl 88.916667 5.5833899 12

South 88.3125 8.5457104 16
West 68.769231 13.342625 13

Total 84.3 13.073185 50

Naturally, we wonder if these differences might not be explained by differences in the median ages of

the populations. To find out, we fit a regression model (via anova) of drate on region and age. In the
anova example below, we treat age as a categorical variable.

https://www.stata.com/giftshop/bookmarks/series2/fisher/
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. anova drate region age
Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob>F

Model 6638.8653 11 603.53321 13.21 0.0000

region 1320.0097 3 440.00324 9.63 0.0001
age 2237.2494 8 279.65617 6.12 0.0000

Residual 1735.6347 38 45.674598

Total 8374.5 49 170.90816

We have the answer to our question: differences in median ages do not eliminate the differences in

deathrates across the four regions. TheANOVA table summarizes the two terms in the model, region and
age. The region term contains 3 degrees of freedom, and the age term contains 8 degrees of freedom.

Both are significant at better than the 1% level.

The age term contains 8 degrees of freedom. Because we did not explicitly indicate that age was to

be treated as a continuous variable, it was treated as categorical, meaning that unique coefficients were

estimated for each level of age. The only clue of this labeling is that the number of degrees of freedom

associated with the age term exceeds 1. The labeling becomes more obvious if we review the regression

coefficients:

. regress, baselevels
Source SS df MS Number of obs = 50

F(11, 38) = 13.21
Model 6638.86529 11 603.533208 Prob > F = 0.0000

Residual 1735.63471 38 45.6745977 R-squared = 0.7927
Adj R-squared = 0.7328

Total 8374.5 49 170.908163 Root MSE = 6.7583

drate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NE 0 (base)

N Cntrl .4428387 3.983664 0.11 0.912 -7.621668 8.507345
South -.2964637 3.934766 -0.08 0.940 -8.261981 7.669054
West -13.37147 4.195344 -3.19 0.003 -21.8645 -4.878439

age
24 0 (base)
26 -15 9.557677 -1.57 0.125 -34.34851 4.348506
27 14.30833 7.857378 1.82 0.076 -1.598099 30.21476
28 12.66011 7.495513 1.69 0.099 -2.51376 27.83399
29 18.861 7.28918 2.59 0.014 4.104825 33.61717
30 20.87003 7.210148 2.89 0.006 6.273847 35.46621
31 29.91307 8.242741 3.63 0.001 13.22652 46.59963
32 27.02853 8.509432 3.18 0.003 9.802089 44.25498
35 38.925 9.944825 3.91 0.000 18.79275 59.05724

_cons 68.37147 7.95459 8.60 0.000 52.26824 84.47469

The regress command displayed the anova model as a regression table. We used the baselevels
option to display the dropped level (or base) for each term.
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If we want to treat age as a continuous variable, we must prepend c. to age in our anova.

. anova drate region c.age
Number of obs = 50 R-squared = 0.7203
Root MSE = 7.21483 Adj R-squared = 0.6954

Source Partial SS df MS F Prob>F

Model 6032.0825 4 1508.0206 28.97 0.0000

region 1645.6623 3 548.55409 10.54 0.0000
age 1630.4666 1 1630.4666 31.32 0.0000

Residual 2342.4175 45 52.053721

Total 8374.5 49 170.90816

The age term now has 1 degree of freedom. The regression coefficients are

. regress, baselevels
Source SS df MS Number of obs = 50

F(4, 45) = 28.97
Model 6032.08254 4 1508.02064 Prob > F = 0.0000

Residual 2342.41746 45 52.0537213 R-squared = 0.7203
Adj R-squared = 0.6954

Total 8374.5 49 170.908163 Root MSE = 7.2148

drate Coefficient Std. err. t P>|t| [95% conf. interval]

region
NE 0 (base)

N Cntrl 1.792526 3.375925 0.53 0.598 -5.006935 8.591988
South .6979912 3.18154 0.22 0.827 -5.70996 7.105942
West -13.37578 3.723447 -3.59 0.001 -20.87519 -5.876377

age 3.922947 .7009425 5.60 0.000 2.511177 5.334718
_cons -28.60281 21.93931 -1.30 0.199 -72.79085 15.58524

Although we started analyzing these data to explain the regional differences in deathrate, let’s focus on

the effect of age for a moment. In our first model, each level of age had a unique deathrate associated

with it. For instance, the predicted deathrate in a north central state with a median age of 28 was

0.44 + 12.66 + 68.37 ≈ 81.47

whereas the predicted deathrate from our current model is

1.79 + 3.92 × 28 − 28.60 ≈ 82.95

Our previous model had an 𝑅2 of 0.7927, whereas our current model has an 𝑅2 of 0.7203. This “small”

loss of predictive power accompanies a gain of 7 degrees of freedom, so we suspect that the continuous-

age model is as good as the discrete-age model.

Technical note
There is enough information in the twoANOVA tables to attach a statistical significance to our suspicion

that the loss of predictive power is offset by the savings in degrees of freedom. Because the continuous-

age model is nested within the discrete-age model, we can perform a standard Chow test. For those of

us who know such formulas off the top of our heads, the 𝐹 statistic is
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(2342.41746 − 1735.63471)/7
45.6745977

= 1.90

There is, however, a better way.

We can find out whether our continuous model is as good as our discrete model by putting age in the
model twice: once as a continuous variable and once as a categorical variable. The categorical variable

will then measure deviations around the straight line implied by the continuous variable, and the 𝐹 test

for the significance of the categorical variable will test whether those deviations are jointly zero.

. anova drate region c.age age
Number of obs = 50 R-squared = 0.7927
Root MSE = 6.7583 Adj R-squared = 0.7328

Source Partial SS df MS F Prob>F

Model 6638.8653 11 603.53321 13.21 0.0000

region 1320.0097 3 440.00324 9.63 0.0001
age 699.74137 1 699.74137 15.32 0.0004
age 606.78275 7 86.68325 1.90 0.0970

Residual 1735.6347 38 45.674598

Total 8374.5 49 170.90816

We find that the 𝐹 test for the significance of the (categorical) age variable is 1.90, just as we calcu-
lated above. It is significant at the 9.7% level. If we hold to a 5% significance level, we cannot reject

the null hypothesis that the effect of age is linear.

Example 10: Interaction of continuous and categorical variables
In our census data, we still find significant differences across the regions after controlling for the

median age of the population. We might now wonder whether the regional differences are differences

in level—independent of age—or are instead differences in the regional effects of age. Just as we can

interact categorical variables with other categorical variables, we can interact categorical variables with

continuous variables.

. anova drate region c.age region#c.age
Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob>F

Model 6167.7737 7 881.11053 16.77 0.0000

region 188.7136 3 62.904534 1.20 0.3225
age 873.4256 1 873.4256 16.62 0.0002

region#age 135.69116 3 45.230387 0.86 0.4689

Residual 2206.7263 42 52.541102

Total 8374.5 49 170.90816

The region#c.age term in our model measures the differences in slopes across the regions. We cannot

reject the null hypothesis that there are no such differences. The region effect is now “insignificant”.

This status does not mean that there are no regional differences in deathrates because each test is a



anova — Analysis of variance and covariance 22

marginal or partial test. Here, with region#c.age included in the model, region is being tested at the
point where age is zero. Apart from this value not existing in the dataset, it is also a long way from

the mean value of age, so the test of region at this point is meaningless (although it is valid if you

acknowledge what is being tested).

To obtain a more sensible test of region, we can subtract the mean from the age variable and use

this in the model.

. quietly summarize age

. generate mage = age - r(mean)

. anova drate region c.mage region#c.mage
Number of obs = 50 R-squared = 0.7365
Root MSE = 7.24852 Adj R-squared = 0.6926

Source Partial SS df MS F Prob>F

Model 6167.7737 7 881.11053 16.77 0.0000

region 1166.1473 3 388.71578 7.40 0.0004
mage 873.4256 1 873.4256 16.62 0.0002

region#mage 135.69116 3 45.230387 0.86 0.4689

Residual 2206.7263 42 52.541102

Total 8374.5 49 170.90816

region is significant when tested at the mean of the age variable.

Remember that we can specify interactions by typing varname#varname. We have seen examples

of interacting categorical variables with categorical variables and, in the examples above, a categorical

variable (region) with a continuous variable (age or mage).

We can also interact continuous variables with continuous variables. To include an age2 term in our

model, we could type c.age#c.age. If we also wanted to interact the categorical variable region with
the age2 term, we could type region#c.age#c.age (or even c.age#region#c.age).

Nested designs
In addition to specifying interaction terms, nested terms can also be specified in anANOVA. A vertical

bar is used to indicate nesting: A|B is read as A nested within B. A|B|C is read as A nested within B, which
is nested within C. A|B#C is read as A is nested within the interaction of B and C. A#B|C is read as the

interaction of A and B, which is nested within C.

Different error terms can be specified for different parts of the model. The forward slash is used to

indicate that the next term in the model is the error term for what precedes it. For instance, anova y A /
B|A indicates that the 𝐹 test for A is to be tested by using the mean square from B|A in the denominator.
Error terms (terms following the slash) are generally not tested unless they are themselves followed by

a slash. Residual error is the default error term.
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For example, consider A / B / C, where A, B, and C may be arbitrarily complex terms. Then, anova
will report A tested by B and B tested by C. If we add one more slash on the end to form A / B / C /,
then anova will also report C tested by the residual error.

Example 11: Simple nested ANOVA
We have collected data from a manufacturer that is evaluating which of five different brands of ma-

chinery to buy to perform a particular function in an assembly line. Twenty assembly-line employees

were selected at random for training on these machines, with four employees assigned to learn a partic-

ular machine. The output from each employee (operator) on the brand of machine for which he trained

was measured during four trial periods. In this example, the operator is nested within machine. Because

of sickness and employee resignations, the final data are not balanced. The following table gives the

mean output and sample size for each machine and operator combination.

. use https://www.stata-press.com/data/r19/machine, clear
(Machine data)
. table machine operator, statistic(mean output) statistic(freq)
> totals(machine) nformat(%8.2f mean)

Operator nested in machine
1 2 3 4 Total

Five brands of machine
1

Mean 9.15 9.48 8.27 8.20 8.75
Frequency 2 4 3 4 13

2
Mean 15.03 11.55 11.45 11.53 12.47
Frequency 3 2 2 4 11

3
Mean 11.27 10.13 11.13 10.84
Frequency 3 3 3 9

4
Mean 16.10 18.97 15.35 16.60 16.65
Frequency 3 3 4 3 13

5
Mean 15.30 14.35 10.43 13.63
Frequency 4 4 3 11

Assuming that operator is random (that is, we wish to infer to the larger population of possible

operators) and machine is fixed (that is, only these five machines are of interest), the typical test for

machine uses operator nested within machine as the error term. operator nested within machine
can be tested by residual error. Our earlier warning concerning designs with either unplanned missing

cells or unbalanced cell sizes, or both, also applies to interpreting theANOVA results from this unbalanced

nested example.
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. anova output machine / operator|machine /
Number of obs = 57 R-squared = 0.8661
Root MSE = 1.47089 Adj R-squared = 0.8077

Source Partial SS df MS F Prob>F

Model 545.82229 17 32.107193 14.84 0.0000

machine 430.98079 4 107.7452 13.82 0.0001
operator|machine 101.3538 13 7.7964465

operator|machine 101.3538 13 7.7964465 3.60 0.0009

Residual 84.376658 39 2.1635041

Total 630.19895 56 11.253553

operator|machine is preceded by a slash, indicating that it is the error term for the terms before it

(here machine). operator|machine is also followed by a slash that indicates it should be tested with

residual error. The output lists the operator|machine term twice, once as the error term for machine

and again as a term tested by residual error. A line is placed in the ANOVA table to separate the two. In

general, a dividing line is placed in the output to separate the terms into groups that are tested with the

same error term. The overall model is tested by residual error and is separated from the rest of the table

by a blank line at the top of the table.

The results indicate that the machines are not all equal and that there are significant differences be-

tween operators.

Example 12: ANOVA with multiple levels of nesting
Your company builds and operates sewage treatment facilities. You want to compare two particulate

solutions during the particulate reduction step of the sewage treatment process. For each solution, two

area managers are randomly selected to implement and oversee the change to the new treatment process

in two of their randomly chosen facilities. Two workers at each of these facilities are trained to operate

the new process. Ameasure of particulate reduction is recorded at various times during the month at each

facility for each worker. The data are described below.

. use https://www.stata-press.com/data/r19/sewage
(Sewage treatment)
. describe
Contains data from https://www.stata-press.com/data/r19/sewage.dta
Observations: 64 Sewage treatment

Variables: 5 9 May 2024 12:43

Variable Storage Display Value
name type format label Variable label

particulate byte %9.0g Particulate reduction
solution byte %9.0g 2 particulate solutions
manager byte %9.0g 2 managers per solution
facility byte %9.0g 2 facilities per manager
worker byte %9.0g 2 workers per facility

Sorted by: solution manager facility worker
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Youwant to determine if the two particulate solutions provide significantly different particulate reduc-

tion. You would also like to know if manager, facility, and worker are significant effects. solution
is a fixed factor, whereas manager, facility, and worker are random factors.

In the following anova command, we use abbreviations for the variable names, which can sometimes
make long ANOVAmodel statements easier to read.

. anova particulate s / m|s / f|m|s / w|f|m|s /, dropemptycells
Number of obs = 64 R-squared = 0.6338
Root MSE = 12.7445 Adj R-squared = 0.5194

Source Partial SS df MS F Prob>F

Model 13493.609 15 899.57396 5.54 0.0000

solution 7203.7656 1 7203.7656 17.19 0.0536
manager|solution 838.28125 2 419.14063

manager|solution 838.28125 2 419.14063 0.55 0.6166
facility|manager|

solution 3064.9375 4 766.23438

facility|manager|
solution 3064.9375 4 766.23438 2.57 0.1193

worker|facility|
manager|solution 2386.625 8 298.32813

worker|facility|
manager|solution 2386.625 8 298.32813 1.84 0.0931

Residual 7796.25 48 162.42188

Total 21289.859 63 337.93428

While solution is not declared significant at the 5% significance level, it is near enough to that

threshold to warrant further investigation (see example 3 in [R] anova postestimation for a continuation

of the analysis of these data).

Technical note
Why did we use the dropemptycells option with the previous anova? By default, Stata retains

empty cells when building the design matrix and currently treats | and # the same in how it deter-

mines the possible number of cells. Retaining empty cells in an ANOVA with nested terms can cause

your design matrix to become too large. In example 12, there are 1024 = 2 × 4 × 8 × 16 cells

that are considered possible for the worker|facility|manager|solution term because the worker,
facility, and manager variables are uniquely numbered. With the dropemptycells option, the

worker|facility|manager|solution term requires just 16 columns in the design matrix (corre-

sponding to the 16 unique workers).

Why did we not use the dropemptycells option in example 11, where operator is nested in

machine? If you look at the table presented at the beginning of that example, you will see that operator
is compactly instead of uniquely numbered (you need both operator number and machine number to

determine the operator). Here the dropemptycells option would have only reduced our design matrix
from 26 columns down to 24 columns (because there were only 3 operators instead of 4 for machines 3
and 5).

https://www.stata.com/manuals/ranovapostestimation.pdf#ranovapostestimationRemarksandexamplesex_anovapost_sewage
https://www.stata.com/manuals/ranovapostestimation.pdf#ranovapostestimation
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex_anova_sewage
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex_anova_machinery
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We suggest that you specify dropemptycellswhen there are nested terms in yourANOVA. You could
also use the set emptycells drop command to accomplish the same thing; see [R] set.

Mixed designs
An ANOVA can consist of both nested and crossed terms. A split-plot ANOVA design provides an

example.

Example 13: Split-plot ANOVA
Two reading programs and three skill-enhancement techniques are under investigation. Ten classes

of first-grade students were randomly assigned so that five classes were taught with one reading program

and another five classes were taught with the other. The 30 students in each class were divided into

six groups with 5 students each. Within each class, the six groups were divided randomly so that each

of the three skill-enhancement techniques was taught to two of the groups within each class. At the

end of the school year, a reading assessment test was administered to all the students. In this split-plot

ANOVA, the whole-plot treatment is the two reading programs, and the split-plot treatment is the three

skill-enhancement techniques.

. use https://www.stata-press.com/data/r19/reading
(Reading experiment data)
. describe
Contains data from https://www.stata-press.com/data/r19/reading.dta
Observations: 300 Reading experiment data

Variables: 5 9 Mar 2024 18:57
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

score byte %9.0g Reading score
program byte %9.0g Reading program
class byte %9.0g Class nested in program
skill byte %9.0g Skill enhancement technique
group byte %9.0g Group nested in class and skill

Sorted by:

In this split-plot ANOVA, the error term for program is class nested within program. The error

term for skill and the program by skill interaction is the class by skill interaction nested within

program. Other terms are also involved in the model and can be seen below.

Our anova command is too long to fit on one line of this manual. Where we have chosen to break the

command into multiple lines is arbitrary. If we were typing this command into Stata, we would just type

along and let Stata automatically wrap across lines, as necessary.

https://www.stata.com/manuals/rset.pdf#rset
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. anova score prog / class|prog skill prog#skill / class#skill|prog /
> group|class#skill|prog /, dropemptycells

Number of obs = 300 R-squared = 0.3738
Root MSE = 14.6268 Adj R-squared = 0.2199

Source Partial SS df MS F Prob>F

Model 30656.517 59 519.60198 2.43 0.0000

program 4493.07 1 4493.07 8.73 0.0183
class|program 4116.6133 8 514.57667

skill 1122.6467 2 561.32333 1.54 0.2450
program#skill 5694.62 2 2847.31 7.80 0.0043

class#skill|program 5841.4667 16 365.09167

class#skill|program 5841.4667 16 365.09167 1.17 0.3463
group|class#skill|

program 9388.1 30 312.93667

group|class#skill|
program 9388.1 30 312.93667 1.46 0.0636

Residual 51346.4 240 213.94333

Total 82002.917 299 274.25725

The program#skill term is significant, as is the program term. Let’s look at the predictive margins for
these two terms and at a marginsplot for the first term.

. margins, within(program skill)
Predictive margins Number of obs = 300
Expression: Linear prediction, predict()
Within: program skill
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

program#skill
1 1 68.16 2.068542 32.95 0.000 64.08518 72.23482
1 2 52.86 2.068542 25.55 0.000 48.78518 56.93482
1 3 61.54 2.068542 29.75 0.000 57.46518 65.61482
2 1 50.7 2.068542 24.51 0.000 46.62518 54.77482
2 2 56.54 2.068542 27.33 0.000 52.46518 60.61482
2 3 52.1 2.068542 25.19 0.000 48.02518 56.17482
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. marginsplot, plot2opts(m(D)) plot3opts(m(T))
Variables that uniquely identify margins: program skill
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Predictive margins with 95% CIs

. margins, within(program)
Predictive margins Number of obs = 300
Expression: Linear prediction, predict()
Within: program
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

program
1 60.85333 1.194273 50.95 0.000 58.50074 63.20593
2 53.11333 1.194273 44.47 0.000 50.76074 55.46593

Because our ANOVA involves nested terms, we used the within() option of margins; see [R] mar-

gins.

skill 2 produces a low score when combined with program 1 and a high score when combined

with program 2, demonstrating the interaction between the reading program and the skill-enhancement

technique. You might conclude that the first reading program and the first skill-enhancement technique

perform best when combined. However, notice the overlapping confidence interval for the first reading

program and the third skill-enhancement technique.

Technical note
There are several valid ways to write complicated anova terms. In the reading experi-

ment example (example 13), we had a term group|class#skill|program. This term can be

read as group nested within both class and skill and further nested within program. You

can also write this term as group|class#skill#program or group|program#class#skill or

group|skill#class|program, etc. All variations will produce the same result. Some people pre-

fer having only one ‘|’ in a term and would use group|class#skill#program, which is read as group
nested within class, skill, and program.

https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex13_anova
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� �
Gertrude Mary Cox (1900–1978) was born on a farm near Dayton, Iowa. Initially intending to

become superintendent of an orphanage, she enrolled at Iowa State College. There she majored in

mathematics and attained the college’s first Master’s degree in statistics. After working on her PhD

in psychological statistics for two years at the University of California–Berkeley, she decided to go

back to Iowa State to work with George W. Snedecor. There she pursued her interest in and taught

a course in design of experiments. That work led to her collaboration with W. G. Cochran, which

produced a classic text. In 1940, when Snedecor shared with her his list of men he was nominating

to head the statistics department at North Carolina State College, she wanted to know why she

had not been included. He added her name, she won the position, and she built an outstanding

department at North Carolina State. Cox retired early so she could work at the Research Triangle

Institute in North Carolina. She consulted widely, served as editor of Biometrics, and was elected

to the National Academy of Sciences.� �
Latin-square designs

You can use anova to analyze a Latin-square design. Consider the following example, published in

Snedecor and Cochran (1989).

Example 14: Latin-square ANOVA
Data from a Latin-square design are as follows:

Row Column 1 Column 2 Column 3 Column 4 Column 5

1 257(B) 230(E) 279(A) 287(C) 202(D)

2 245(D) 283(A) 245(E) 280(B) 260(C)

3 182(E) 252(B) 280(C) 246(D) 250(A)

4 203(A) 204(C) 227(D) 193(E) 259(B)

5 231(C) 271(D) 266(B) 334(A) 338(E)

In Stata, the data might appear as follows:

. use https://www.stata-press.com/data/r19/latinsq

. list

row c1 c2 c3 c4 c5

1. 1 257 230 279 287 202
2. 2 245 283 245 280 260
3. 3 182 252 280 246 250
4. 4 203 204 227 193 259
5. 5 231 271 266 334 338

Before anova can be used on these data, the data must be organized so that the outcome measurement
is in one column. reshape is inadequate for this task because there is information about the treatments

in the sequence of these observations. pkshape is designed to reshape this type of data; see [R] pkshape.

https://www.stata.com/giftshop/bookmarks/series3/cox/
https://www.stata.com/manuals/rpkshape.pdf#rpkshape
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. pkshape row row c1-c5, order(beacd daebc ebcda acdeb cdbae)

. list

sequence outcome treat carry period

1. beacd 257 b 0 1
2. daebc 245 d 0 1
3. ebcda 182 e 0 1
4. acdeb 203 a 0 1
5. cdbae 231 c 0 1

6. beacd 230 e b 2
7. daebc 283 a d 2
8. ebcda 252 b e 2
9. acdeb 204 c a 2

10. cdbae 271 d c 2

11. beacd 279 a e 3
12. daebc 245 e a 3
13. ebcda 280 c b 3
14. acdeb 227 d c 3
15. cdbae 266 b d 3

16. beacd 287 c a 4
17. daebc 280 b e 4
18. ebcda 246 d c 4
19. acdeb 193 e d 4
20. cdbae 334 a b 4

21. beacd 202 d c 5
22. daebc 260 c b 5
23. ebcda 250 a d 5
24. acdeb 259 b e 5
25. cdbae 338 e a 5

. anova outcome sequence period treat
Number of obs = 25 R-squared = 0.6536
Root MSE = 32.4901 Adj R-squared = 0.3073

Source Partial SS df MS F Prob>F

Model 23904.08 12 1992.0067 1.89 0.1426

sequence 13601.36 4 3400.34 3.22 0.0516
period 6146.16 4 1536.54 1.46 0.2758
treat 4156.56 4 1039.14 0.98 0.4523

Residual 12667.28 12 1055.6067

Total 36571.36 24 1523.8067

These methods will work with any type of Latin-square design, including those with replicated mea-

surements. For more information, see [R] pk, [R] pkcross, and [R] pkshape.

https://www.stata.com/manuals/rpk.pdf#rpk
https://www.stata.com/manuals/rpkcross.pdf#rpkcross
https://www.stata.com/manuals/rpkshape.pdf#rpkshape
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Repeated-measures ANOVA
One approach for analyzing repeated-measures data is to use multivariate ANOVA (MANOVA); see

[MV] manova. In this approach, the data are placed in wide form (see [D] reshape), and the repeated

measures enter the MANOVA as dependent variables.

A second approach for analyzing repeated measures is to use anova. However, one of the underlying
assumptions for the 𝐹 tests in ANOVA is independence of observations. In a repeated-measures design,

this assumption is almost certainly violated. In a repeated-measures ANOVA, the subjects (or whatever

the experimental units are called) are observed for each level of one or more of the other categorical

variables in the model. These variables are called the repeated-measure variables. Observations from

the same subject are likely to be correlated, though this is only a problem if the observations violate

compound symmetry or the sphericity condition.

The approach used in repeated-measures ANOVA to correct for violation of compound symmetry or

sphericity is to apply correction to the degrees of freedom of the 𝐹 test for terms in the model that involve

repeated measures. This correction factor, 𝜖, lies between the reciprocal of the degrees of freedom for

the repeated term and 1. Box (1954) provided the pioneering work in this area. Milliken and Johnson

(2009) refer to the lower bound of this correction factor as Box’s conservative correction factor. Winer,

Brown, and Michels (1991) call it simply the conservative correction factor.

Geisser and Greenhouse (1958) provide an estimate for the correction factor called the Green-

house–Geisser 𝜖. This value is estimated from the data. Huynh and Feldt (1976) show that the Green-

house–Geisser 𝜖 tends to be conservatively biased. They provide a revised correction factor called the
Huynh–Feldt 𝜖. When the Huynh–Feldt 𝜖 exceeds 1, it is set to 1. Thus, there is a natural ordering for
these correction factors:

Box’s conservative 𝜖 ≤ Greenhouse–Geisser 𝜖 ≤ Huynh–Feldt 𝜖 ≤ 1

A correction factor of 1 is the same as no correction.

anovawith the repeated() option computes these correction factors and displays the revised test re-
sults in a table that follows the standardANOVA table. In the resulting table, H-F stands for Huynh–Feldt,

G-G stands for Greenhouse–Geisser, and Box stands for Box’s conservative 𝜖.

Example 15: Repeated-measures ANOVA
This example is taken from table 4.3 of Winer, Brown, and Michels (1991). The reaction time for five

subjects each tested with four drugs was recorded in the variable score. Here is a table of the data (see
[P] tabdisp if you are unfamiliar with tabdisp):

. use https://www.stata-press.com/data/r19/t43, clear
(T4.3 -- Winer, Brown, Michels)
. tabdisp person drug, cellvar(score)

Drug
Person 1 2 3 4

1 30 28 16 34
2 14 18 10 22
3 24 20 18 30
4 38 34 20 44
5 26 28 14 30

https://www.stata.com/manuals/mvmanova.pdf#mvmanova
https://www.stata.com/manuals/dreshape.pdf#dreshape
https://www.stata.com/manuals/ptabdisp.pdf#ptabdisp
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drug is the repeated variable in this simple repeated-measures ANOVA example. The ANOVA is speci-
fied as follows:

. anova score person drug, repeated(drug)
Number of obs = 20 R-squared = 0.9244
Root MSE = 3.06594 Adj R-squared = 0.8803

Source Partial SS df MS F Prob>F

Model 1379 7 197 20.96 0.0000

person 680.8 4 170.2 18.11 0.0001
drug 698.2 3 232.73333 24.76 0.0000

Residual 112.8 12 9.4

Total 1491.8 19 78.515789

Between-subjects error term: person
Levels: 5 (4 df)

Lowest b.s.e. variable: person
Repeated variable: drug

Huynh-Feldt epsilon = 1.0789
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6049
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

drug 3 24.76 0.0000 0.0000 0.0006 0.0076
Residual 12

Here the Huynh–Feldt 𝜖 is 1.0789, which is larger than 1. It is reset to 1, which is the same as making no
adjustment to the standard test computed in the mainANOVA table. The Greenhouse–Geisser 𝜖 is 0.6049,
and its associated 𝑝-value is computed from an 𝐹 ratio of 24.76 using 1.8147 (= 3𝜖) and 7.2588 (= 12𝜖)
degrees of freedom. Box’s conservative 𝜖 is set equal to the reciprocal of the degrees of freedom for the

repeated term. Here it is 1/3, so Box’s conservative test is computed using 1 and 4 degrees of freedom

for the observed 𝐹 ratio of 24.76.

Even for Box’s conservative 𝜖, drug is significant with a 𝑝-value of 0.0076. The following table gives
the predictive marginal mean score (that is, response time) for each of the four drugs:

. margins drug
Predictive margins Number of obs = 20
Expression: Linear prediction, predict()

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

drug
1 26.4 1.371131 19.25 0.000 23.41256 29.38744
2 25.6 1.371131 18.67 0.000 22.61256 28.58744
3 15.6 1.371131 11.38 0.000 12.61256 18.58744
4 32 1.371131 23.34 0.000 29.01256 34.98744
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TheANOVA table for this example provides an 𝐹 test for person, but you should ignore it. An appro-
priate test for person would require replication (that is, multiple measurements for person and drug
combinations). Also, without replication there is no test available for investigating the interaction be-

tween person and drug.

Example 16: Repeated-measures ANOVA with nesting
Table 7.7 of Winer, Brown, and Michels (1991) provides another repeated-measuresANOVA example.

There are four dial shapes and two methods for calibrating dials. Subjects are nested within calibration

method, and an accuracy score is obtained. The data are shown below.

. use https://www.stata-press.com/data/r19/t77
(T7.7 -- Winer, Brown, Michels)
. tabdisp shape subject calib, cell(score)

2 methods for calibrating dials and
Subject nested in calib

4 dial 1 2
shapes 1 2 3 1 2 3

1 0 3 4 4 5 7
2 0 1 3 2 4 5
3 5 5 6 7 6 8
4 3 4 2 8 6 9

The calibration method and dial shapes are fixed factors, whereas subjects are random. The appro-

priate test for calibration method uses the nested subject term as the error term. Both the dial shape

and the interaction between dial shape and calibration method are tested with the dial shape by subject

interaction nested within calibration method. Here we drop this term from the anova command, and it

becomes residual error. The dial shape is the repeated variable because each subject is tested with all

four dial shapes. Here is the anova command that produces the desired results:

. anova score calib / subject|calib shape calib#shape, repeated(shape)
Number of obs = 24 R-squared = 0.8925
Root MSE = 1.11181 Adj R-squared = 0.7939

Source Partial SS df MS F Prob>F

Model 123.125 11 11.193182 9.06 0.0003

calib 51.041667 1 51.041667 11.89 0.0261
subject|calib 17.166667 4 4.2916667

shape 47.458333 3 15.819444 12.80 0.0005
calib#shape 7.4583333 3 2.4861111 2.01 0.1662

Residual 14.833333 12 1.2361111

Total 137.95833 23 5.9981884
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Between-subjects error term: subject|calib
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: calib (for repeated variable)

Repeated variable: shape
Huynh-Feldt epsilon = 0.8483
Greenhouse-Geisser epsilon = 0.4751
Box’s conservative epsilon = 0.3333

Prob > F
Source df F Regular H-F G-G Box

shape 3 12.80 0.0005 0.0011 0.0099 0.0232
calib#shape 3 2.01 0.1662 0.1791 0.2152 0.2291

Residual 12

The repeated-measure 𝜖 corrections are applied to any terms that are tested in the main ANOVA table

and have the repeated variable in the term. These 𝜖 corrections are given in a table below the mainANOVA

table. Here the repeated-measures tests for shape and calib#shape are presented.

Calibration method is significant, as is dial shape. The interaction between calibration method and

dial shape is not significant. The repeated-measure 𝜖 corrections do not change these conclusions, but
they do change the significance level for the tests on shape and calib#shape. Here, though, unlike in
the example 15, the Huynh–Feldt 𝜖 is less than 1.

Here are the predictive marginal mean scores for calibration method and dial shapes. Because the

interaction was not significant, we request only the calib and shape predictive margins.

. margins, within(calib)
Predictive margins Number of obs = 24
Expression: Linear prediction, predict()
Within: calib
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

calib
1 3 .3209506 9.35 0.000 2.300709 3.699291
2 5.916667 .3209506 18.43 0.000 5.217375 6.615958

. margins, within(shape)
Predictive margins Number of obs = 24
Expression: Linear prediction, predict()
Within: shape
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

shape
1 3.833333 .4538926 8.45 0.000 2.844386 4.82228
2 2.5 .4538926 5.51 0.000 1.511053 3.488947
3 6.166667 .4538926 13.59 0.000 5.17772 7.155614
4 5.333333 .4538926 11.75 0.000 4.344386 6.32228

https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex15
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Technical note
The computation of the Greenhouse–Geisser and Huynh–Feldt epsilons in a repeated-measures

ANOVA requires the number of levels and degrees of freedom for the between-subjects error term, as

well as a value computed from a pooled covariance matrix. The observations are grouped based on all

but the lowest-level variable in the between-subjects error term. The covariance over the repeated vari-

ables is computed for each resulting group, and then these covariancematrices are pooled. The dimension

of the pooled covariance matrix is the number of levels of the repeated variable (or combination of levels

for multiple repeated variables). In example 16, there are four levels of the repeated variable (shape),
so the resulting covariance matrix is 4 × 4.

The anova command automatically attempts to determine the between-subjects error term and the

lowest-level variable in the between-subjects error term to group the observations for computation of the

pooled covariance matrix. anova issues an error message indicating that the bse() or bseunit() option
is required when anova cannot determine them. You may override the default selections of anova by

specifying the bse(), bseunit(), or grouping() option. The term specified in the bse() option must
be a term in the ANOVAmodel.

The default selection for the between-subjects error term (the bse() option) is the interaction of the

nonrepeated categorical variables in the ANOVAmodel. The first variable listed in the between-subjects

error term is automatically selected as the lowest-level variable in the between-subjects error term but can

be overridden with the bseunit(varname) option. varname is often a term, such as subject or subsample

within subject, and is most often listed first in the term because of the nesting notation of ANOVA. This

term makes sense in most repeated-measures ANOVA designs when the terms of the model are written in

standard form. For instance, in example 16, there were three categorical variables (subject, calib, and
shape), with shape being the repeated variable. Here anova looked for a term involving only subject
and calib to determine the between-subjects error term. It found subject|calib as the term with six

levels and 4 degrees of freedom. anova then picked subject as the default for the bseunit() option

(the lowest variable in the between-subjects error term) because it was listed first in the term.

The grouping of observations proceeds, based on the different combinations of values of the variables

in the between-subjects error term, excluding the lowest level variable (as found by default or as specified

with the bseunit() option). You may specify the grouping() option to change the default grouping

used in computing the pooled covariance matrix.

The between-subjects error term, number of levels, degrees of freedom, lowest variable in the term,

and grouping information are presented after the main ANOVA table and before the rest of the repeated-

measures output.

Example 17: Repeated-measures ANOVA with two repeated variables
Data with two repeated variables are given in table 7.13 of Winer, Brown, and Michels (1991). The

accuracy scores of subjects making adjustments to three dials during three different periods are recorded.

Three subjects are exposed to a certain noise background level, whereas a different set of three subjects is

exposed to a different noise background level. Here is a table of accuracy scores for the noise, subject,
period, and dial variables:

https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex16
https://www.stata.com/manuals/ranova.pdf#ranovaOptionsbse()
https://www.stata.com/manuals/ranova.pdf#ranovaOptionsbseunit()
https://www.stata.com/manuals/ranova.pdf#ranovaOptionsgrouping()
https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex16
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. use https://www.stata-press.com/data/r19/t713
(T7.13 -- Winer, Brown, Michels)
. tabdisp subject dial period, by(noise) cell(score) stubwidth(11)

Noise
background
and Subject 10 minute time periods and Type of dial
nested in 1 2 3
noise 1 2 3 1 2 3 1 2 3

1
1 45 53 60 40 52 57 28 37 46
2 35 41 50 30 37 47 25 32 41
3 60 65 75 58 54 70 40 47 50

2
1 50 48 61 25 34 51 16 23 35
2 42 45 55 30 37 43 22 27 37
3 56 60 77 40 39 57 31 29 46

noise, period, and dial are fixed, whereas subject is random. Both period and dial are repeated
variables. The ANOVA for this example is specified next.

. anova score noise / subject|noise period noise#period /
> period#subject|noise dial noise#dial /
> dial#subject|noise period#dial noise#period#dial, repeated(period dial)

Number of obs = 54 R-squared = 0.9872
Root MSE = 2.81859 Adj R-squared = 0.9576

Source Partial SS df MS F Prob>F

Model 9797.7222 37 264.8033 33.33 0.0000

noise 468.16667 1 468.16667 0.75 0.4348
subject|noise 2491.1111 4 622.77778

period 3722.3333 2 1861.1667 63.39 0.0000
noise#period 333 2 166.5 5.67 0.0293

period#subject|noise 234.88889 8 29.361111

dial 2370.3333 2 1185.1667 89.82 0.0000
noise#dial 50.333333 2 25.166667 1.91 0.2102

dial#subject|noise 105.55556 8 13.194444

period#dial 10.666667 4 2.6666667 0.34 0.8499
noise#period#dial 11.333333 4 2.8333333 0.36 0.8357

Residual 127.11111 16 7.9444444

Total 9924.8333 53 187.26101
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Between-subjects error term: subject|noise
Levels: 6 (4 df)

Lowest b.s.e. variable: subject
Covariance pooled over: noise (for repeated variables)

Repeated variable: period
Huynh-Feldt epsilon = 1.0668
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.6476
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

period 2 63.39 0.0000 0.0000 0.0003 0.0013
noise#period 2 5.67 0.0293 0.0293 0.0569 0.0759

period#subject|noise 8

Repeated variable: dial
Huynh-Feldt epsilon = 2.0788
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.9171
Box’s conservative epsilon = 0.5000

Prob > F
Source df F Regular H-F G-G Box

dial 2 89.82 0.0000 0.0000 0.0000 0.0007
noise#dial 2 1.91 0.2102 0.2102 0.2152 0.2394

dial#subject|noise 8

Repeated variables: period#dial
Huynh-Feldt epsilon = 1.3258
*Huynh-Feldt epsilon reset to 1.0000
Greenhouse-Geisser epsilon = 0.5134
Box’s conservative epsilon = 0.2500

Prob > F
Source df F Regular H-F G-G Box

period#dial 4 0.34 0.8499 0.8499 0.7295 0.5934
noise#period#dial 4 0.36 0.8357 0.8357 0.7156 0.5825

Residual 16

For each repeated variable and for each combination of interactions of repeated variables, there are dif-

ferent 𝜖 correction values. The anova command produces tables for each applicable combination.

The two most significant factors in this model appear to be dial and period. The noise by period
interaction may also be significant, depending on the correction factor you use. Below is a table of

predictive margins for the accuracy score for dial, period, and noise by period.
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. margins, within(dial)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: dial
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

dial
1 37.38889 .6643478 56.28 0.000 35.98053 38.79724
2 42.22222 .6643478 63.55 0.000 40.81387 43.63058
3 53.22222 .6643478 80.11 0.000 51.81387 54.63058

. margins, within(period)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: period
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

period
1 54.33333 .6643478 81.78 0.000 52.92498 55.74169
2 44.5 .6643478 66.98 0.000 43.09165 45.90835
3 34 .6643478 51.18 0.000 32.59165 35.40835

. margins, within(noise period)
Predictive margins Number of obs = 54
Expression: Linear prediction, predict()
Within: noise period
Empty cells: reweight

Delta-method
Margin std. err. t P>|t| [95% conf. interval]

noise#period
1 1 53.77778 .9395297 57.24 0.000 51.78606 55.76949
1 2 49.44444 .9395297 52.63 0.000 47.45273 51.43616
1 3 38.44444 .9395297 40.92 0.000 36.45273 40.43616
2 1 54.88889 .9395297 58.42 0.000 52.89717 56.8806
2 2 39.55556 .9395297 42.10 0.000 37.56384 41.54727
2 3 29.55556 .9395297 31.46 0.000 27.56384 31.54727

Dial shape 3 produces the highest score, and scores decrease over the periods.

Example 17 had two repeated-measurement variables. Up to four repeated-measurement variables

may be specified in the anova command.

Video examples
Analysis of covariance in Stata

Two-way ANOVA in Stata

https://www.stata.com/manuals/ranova.pdf#ranovaRemarksandexamplesex17
https://www.youtube.com/watch?v=Kb9WG4o9zLk
https://www.youtube.com/watch?v=3g1Yj7Vd0mE
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Stored results
anova stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model

e(ss #) sum of squares for term #

e(df #) numerator degrees of freedom for term #

e(ssdenom #) denominator sum of squares for term # (when using nonresidual error)

e(dfdenom #) denominator degrees of freedom for term # (when using nonresidual error)

e(F #) 𝐹 statistic for term # (if computed)

e(N bse) number of levels of the between-subjects error term

e(df bse) degrees of freedom for the between-subjects error term

e(box#) Box’s conservative epsilon for a particular combination of repeated variables

(repeated() only)
e(gg#) Greenhouse–Geisser epsilon for a particular combination of repeated variables

(repeated() only)
e(hf#) Huynh–Feldt epsilon for a particular combination of repeated variables

(repeated() only)
e(rank) rank of e(V)

Macros

e(cmd) anova
e(cmdline) command as typed

e(depvar) name of dependent variable

e(varnames) names of the right-hand-side variables

e(term #) term #

e(errorterm #) error term for term # (when using nonresidual error)

e(sstype) type of sum of squares; sequential or partial
e(repvars) names of repeated variables (repeated() only)
e(repvar#) names of repeated variables for a particular combination (repeated() only)
e(model) ols
e(wtype) weight type

e(wexp) weight expression

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(Srep) covariance matrix based on repeated measures (repeated() only)

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(ANOVA) matrix containing the sums of squares with their degrees of freedom, mean squares, 𝐹
statistics, and 𝑝-values

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Also see
[R] anova postestimation — Postestimation tools for anova

[R] contrast — Contrasts and linear hypothesis tests after estimation

[R] icc — Intraclass correlation coefficients

[R] loneway — Large one-way ANOVA, random effects, and reliability

[R] oneway — One-way analysis of variance

[R] regress — Linear regression

[MV] manova — Multivariate analysis of variance and covariance

[PSS-2] power oneway — Power analysis for one-way analysis of variance

[PSS-2] power repeated — Power analysis for repeated-measures analysis of variance

[PSS-2] power twoway — Power analysis for two-way analysis of variance
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