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Description

power exponential computes sample size or power for survival analysis comparing two expo-
nential survivor functions by using parametric tests for the difference between hazards or, optionally,
for the difference between log hazards. It accommodates unequal allocation between the two groups,
flexible accrual of subjects into the study, and group-specific losses to follow-up. The accrual dis-
tribution may be chosen to be uniform or truncated exponential over a fixed accrual period. Losses
to follow-up are assumed to be exponentially distributed. Also the computations may be performed
using the conditional or the unconditional approach.

Quick start
Sample size for a test of exponential hazard rates H0: λ2 = λ1 versus Ha: λ2 6= λ1 given control-

group hazard rate h1 = 0.4, experimental-group hazard rate h2 = 0.2, equal group sizes, and no
censoring using default power of 0.8 and significance level α = 0.05

power exponential .4 .2

Same as above, specified using a hazard ratio of 0.5 instead of the experimental-group hazard rate
power exponential .4, hratio(.5)

Same as above, but specify hazard ratios of 0.4, 0.45, 0.5, and 0.55
power exponential .4, hratio(.4(.05).55)

Same as above, but display results in a graph
power exponential .4, hratio(.4(.05).55) graph

Total and per group sample sizes given twice as many observations in the experimental group as in
the control group

power exponential .4 .2, nratio(2)

Sample size with survival probabilities s1 = 0.65 and s2 = 0.8 and reference survival time 2
power exponential .65 .8, time(2)

Same as above, specified using survival probability s1 and a hazard ratio
power exponential .65, time(2) hratio(.52)

Same as above, but for a one-sided test with power of 0.95
power exponential .65, time(2) hratio(.52) onesided power(.95)

Sample size for a test of a log hazard-ratio given h1 = 0.4 and hazard ratio of 0.5
power exponential .4, hratio(.5) loghazard
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2 power exponential — Power analysis for a two-sample exponential test

Same as above, but specify corresponding survival probabilities s1 and s2 at reference time 2
power exponential .45 .67, time(2) loghazard

Sample size for a design with a 10-year follow-up period and a 1-year accrual period
power exponential .4 .2, fperiod(10) aperiod(1)

Power for a test of H0: λ2 = λ1, with h1 = 0.4, h2 = 0.2, a sample size of 80, and default α = 0.05
power exponential .4 .2, n(80)

Power for a test of the log hazard-ratio with α = 0.01
power exponential .4, hratio(.5) loghazard n(200) alpha(.01)

Menu
Statistics > Power, precision, and sample size

Syntax

Compute sample size

Specify hazard rates

power exponential
[

h1
[

h2
] ] [

, power(numlist) options
]

Specify survival probabilities

power exponential s1
[

s2
]
, time(#)

[
power(numlist) options

]
Compute power

Specify hazard rates

power exponential
[

h1
[

h2
] ]
, n(numlist)

[
options

]
Specify survival probabilities

power exponential s1
[

s2
]
, time(#) n(numlist)

[
options

]
where

h1 is the hazard rate in the control group;

h2 is the hazard rate in the experimental group;

s1 is the survival probability in the control group at reference (base) time t; and

s2 is the survival probability in the experimental group at reference (base) time t.

h1, h2 and s1, s2 may each be specified either as one number or as a list of values in parentheses
(see [U] 11.1.8 numlist).

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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options Description

Main
∗time(numlist) reference time t for survival probabilities s1 and s2
∗alpha(numlist) significance level; default is alpha(0.05)
∗power(numlist) power; default is power(0.8)
∗beta(numlist) probability of type II error; default is beta(0.2)
∗n(numlist) total sample size; required to compute power
∗n1(numlist) sample size of the control group
∗n2(numlist) sample size of the experimental group
∗nratio(numlist) ratio of sample sizes, N2/N1; default is nratio(1), meaning

equal group sizes
nfractional allow fractional sample sizes

∗hratio(numlist) hazard ratio (effect size) of the experimental to the control
group; default is hratio(0.5); may not be combined
with lnhratio() or hdifference()

∗lnhratio(numlist) log hazard-ratio (effect size) of the experimental to the control
group; may not be combined with hratio()
or hdifference()

∗hdifference(numlist) difference between the experimental-group and control-group
hazard rates (effect size); may not be combined with
hratio() or lnhratio()

loghazard power or sample-size computation for the test of the
difference between log hazards; default is the test of the
difference between hazards

unconditional power or sample-size computation using the
unconditional approach

effect(effect) specify the type of effect to display; default is method specific
onesided one-sided test; default is two sided
parallel treat number lists in starred options or in command arguments as

parallel when multiple values per option or argument are
specified (do not enumerate all possible combinations of values)

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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4 power exponential — Power analysis for a two-sample exponential test

Accrual/Follow-up
∗studytime(numlist) duration of the study; if not specified, the study is assumed to

continue until all subjects experience an event (fail)
∗fperiod(numlist) length of the follow-up period; if not specified, the

study is assumed to continue until all subjects experience an
event (fail)

∗aperiod(numlist) length of the accrual period; default is aperiod(0),
meaning no accrual

∗aprob(numlist) proportion of subjects accrued by time ta under
truncated exponential accrual; default is aprob(0.5)

∗aptime(numlist) proportion of the accrual period, ta/aperiod(), by
which proportion of subjects in aprob() is accrued; default
is aptime(0.5)

∗atime(numlist) reference accrual time ta by which the proportion of
subjects in aprob() is accrued; default value is
0.5×aperiod()

∗ashape(numlist) shape of the truncated exponential accrual distribution;
default is ashape(0), meaning uniform accrual

∗lossprob(numlist) proportion of subjects lost to follow-up by time
losstime() in the control and the experimental groups;
default is lossprob(0), meaning no losses to follow-up

∗lossprob1(numlist) proportion of subjects lost to follow-up by time losstime()
in the control group; default is lossprob1(0), meaning
no losses to follow-up in the control group

∗lossprob2(numlist) proportion of subjects lost to follow-up by time losstime()
in the experimental group; default is lossprob2(0),
meaning no losses to follow-up in the experimental group

∗losstime(numlist) reference time tL by which the proportion of subjects
specified in lossprob(), lossprob1(), or lossprob2()
is lost to follow-up; default is losstime(1)

∗losshaz(numlist) loss hazard rates in the control and the experimental
groups; default is losshaz(0), meaning no losses to
follow-up

∗losshaz1(numlist) loss hazard rates in the control group; default is losshaz1(0),
meaning no losses to follow-up in the control group

∗losshaz2(numlist) loss hazard rates in the experimental group; default is
losshaz2(0), meaning no losses to follow-up in the
experimental group

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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Table[
no
]
table

[
(tablespec)

]
suppress table or display results as a table;

see [PSS-2] power, table
saving(filename

[
, replace

]
) save the table data to filename; use replace to overwrite

existing filename

Graph

graph
[
(graphopts)

]
graph results; see [PSS-2] power, graph

Reporting

show display group-specific numbers of events and, in the presence
of loss to follow-up, numbers of losses

show(showspec) display group-specific numbers of events, numbers of losses,
and event probabilities

notitle suppress the title

∗Specifying a list of values in at least two starred options, or at least two command arguments, or at least one
starred option and one argument results in computations for all possible combinations of the values; see
[U] 11.1.8 numlist. Also see the parallel option.

collect is allowed; see [U] 11.1.10 Prefix commands.
notitle does not appear in the dialog box.

effect Description

hratio hazard ratio
lnhratio log hazard-ratio
hdifference difference between hazard rates
lnhdifference difference between log hazard-rates (equivalent to

log hazard-ratio)
difference synonym for hdifference

showspec Description

events numbers of events
losses numbers of losses
eventprobs event probabilities
all all the above

where tablespec is

column
[
:label

] [
column

[
:label

] [
. . .
] ] [

, tableopts
]

column is one of the columns defined below, and label is a column label (may contain quotes and
compound quotes).

https://www.stata.com/manuals/pss-2.pdf#pss-2powerexponentialSyntaxtablespec
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graphSyntaxgraphopts
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/pss-2.pdf#pss-2powerexponentialSyntaxcolumn
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,tableSyntaxtableopts
https://www.stata.com/manuals/pss-2.pdf#pss-2powerexponentialSyntaxcolumn
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column Description Symbol

alpha significance level α
power power 1− β
beta type II error probability β
N total number of subjects N
N1 number of subjects in the control group N1

N2 number of subjects in the experimental group N2

nratio ratio of sample sizes, experimental to control N2/N1

delta effect size δ
s1 survival probability in the control group S1(t)
s2 survival probability in the experimental group S2(t)
time reference survival time t
h1 hazard rate in the control group λ1
h2 hazard rate in the experimental group λ2
hdiff difference between hazard rates λ2 − λ1
hratio hazard ratio ∆
lnhratio log hazard-ratio ln(∆)
studytime duration of a study T
fperiod follow-up period f
aperiod accrual period r
aprob proportion of subjects accrued by time atime

(or by aptime×100% of accrual period) pa
aptime proportion of an accrual period by which

aprob×100% of subjects are accrued ta/r
atime reference accrual time ta
ashape shape of the accrual distribution γ
E0 total number of events under H0 E0

E01 number of events in the control group under H0 E01

E02 number of events in the experimental group under H0 E02

Ea total number of events under Ha Ea
Ea1 number of events in the control group under Ha Ea1
Ea2 number of events in the experimental group under Ha Ea2
Pr E01 control-group probability of an event under H0 Pr E01

Pr E02 experimental-group probability of an event under H0 Pr E02

Pr Ea1 control-group probability of an event under Ha Pr Ea1
Pr Ea2 experimental-group probability of an event under Ha Pr Ea2
lossprob proportion of subjects lost to follow-up in the

control and experimental groups L(tL)
lossprob1 proportion of subjects lost to follow-up in the

control group L1(tL)
lossprob2 proportion of subjects lost to follow-up in the

experimental group L2(tL)
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losstime reference loss-to-follow-up time tL
losshaz loss hazard rate in the control and experimental groups η
losshaz1 loss hazard rate in the control group η1
losshaz2 loss hazard rate in the experimental group η2
L0 total number of losses under H0 L0

L01 number of losses in the control group under H0 L01

L02 number of losses in the experimental group under H0 L02

La total number of losses under Ha La
La1 number of losses in the control group under Ha La1
La2 number of losses in the experimental group under Ha La2
target target parameter; synonym for h2 or hratio
all display all supported columns

Column beta is shown in the default table in place of column power if option beta() is specified.
Column hratio is shown in the default table if option hratio() is specified or implied by the command.
Columns nratio and lnhratio are shown in the default table if the corresponding options are specified.
Columns h1, h2, s1, and s2 are available and are shown in the default table when the corresponding command

arguments are specified.
Columns time, studytime, fperiod, aperiod, aprob, aptime, atime, ashape, losshaz, losshaz1, losshaz2,

lossprob, lossprob1, lossprob2, and losstime are available and are shown in the default table when the
corresponding options are specified.

Columns containing numbers of events, numbers of losses, and probabilities of an event are displayed if specified or
if respective options show(events), show(losses), or show(eventprobs) are specified. If show is specified,
numbers of events and losses are displayed. If show(all) is specified, numbers of events, numbers of losses, and
probabilities are displayed.

Options

� � �
Main �

time(#) specifies a fixed time t (reference survival time) such that the proportions of subjects in
the control and experimental groups still alive past this time point are as specified in s1 and s2.
If this option is specified, the input parameters s1 and s2 are the survival probabilities S1(t) and
S2(t). Otherwise, the input parameters are assumed to be hazard rates λ1 and λ2 given as h1 and
h2, respectively.

alpha(), power(), beta(), n(), n1(), n2(), nratio(), nfractional; see [PSS-2] power.

hratio(numlist) specifies the hazard ratio (effect size) of the experimental group to the control group.
The default is hratio(0.5). This value typically defines the clinically significant improvement
of the experimental procedure over the control procedure desired to be detected by a test with a
certain power. If h1 and h2 (or s1 and s2) are given, hratio() is not allowed and the hazard
ratio is computed as h2/h1 [or ln(s2)/ ln(s1)]. Also see Alternative ways of specifying effect for
various specifications of an effect size.

This option is not allowed with the effect-size determination and may not be combined with
lnhratio() or hdifference().

lnhratio(numlist) specifies the log hazard-ratio (effect size) of the experimental group to the control
group. This value typically defines the clinically significant improvement of the experimental
procedure over the control procedure desired to be detected by a test with a certain power. If h1
and h2 (or s1 and s2) are given, lnhratio() is not allowed and the log hazard-ratio is computed
as ln(h2/h1) [or ln{ ln(s2)/ ln(s1)}]. Also see Alternative ways of specifying effect for various
specifications of an effect size.

https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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This option is not allowed with the effect-size determination and may not be combined with
hratio() or hdifference().

hdifference(numlist) specifies the difference between the experimental-group hazard rate and the
control-group hazard rate. It requires that the control-group hazard rate, the command argument
h1, is specified. hdifference() provides a way of specifying an effect size; see Alternative ways
of specifying effect for details.

This option is not allowed with the effect-size determination and may not be combined with
hratio() or lnhratio().

loghazard requests sample-size or power computation for the test of the difference between log
hazards (or the log hazard-ratio test). This option implies uniform accrual. By default, the test of
the difference between hazards is assumed.

unconditional requests that the unconditional approach be used for sample-size or power com-
putation; see The conditional versus unconditional approaches and Methods and formulas for
details.

effect(effect) specifies the type of the effect size to be reported in the output as delta. effect is one
of hratio, lnhratio, hdifference, or lnhdifference. By default, the effect size delta is a
hazard ratio, effect(hratio), for a hazard-ratio test and a log hazard-ratio, effect(lnhratio),
for a log hazard-ratio test (when schoenfeld is specified).

onesided, parallel; see [PSS-2] power.

� � �
Accrual/Follow-up �

studytime(numlist) specifies the duration of the study, T . By default, it is assumed that subjects
are followed up until the last subject experiences an event (fails). The (minimal) follow-up period
is defined as the length of the period after the recruitment of the last subject to the study until the
end of the study. If r is the length of an accrual period and f is the length of the follow-up period,
then T = r + f . You can specify only two of the three options studytime(), fperiod(), and
aperiod().

fperiod(numlist) specifies the follow-up period of the study, f . By default, it is assumed that
subjects are followed up until the last subject experiences an event (fails). The (minimal) follow-up
period is defined as the length of the period after the recruitment of the last subject to the study
until the end of the study. If T is the duration of a study and r is the length of an accrual
period, then the follow-up period is f = T − r. You can specify only two of the three options
studytime(), fperiod(), and aperiod().

aperiod(numlist) specifies the accrual period, r, during which subjects are to be recruited into the
study. The default is aperiod(0), meaning no accrual. You can specify only two of the three
options studytime(), fperiod(), and aperiod().

aprob(numlist) specifies the proportion of subjects expected to be accrued by time t∗ according to
the truncated exponential distribution. The default is aprob(0.5). This option is useful when the
shape parameter is unknown but the proportion of accrued subjects at a certain time is known.
aprob() is often used in conjunction with aptime() or atime(). This option may not be specified
with ashape() or loghazard and requires specifying a nonzero accrual period in aperiod().

aptime(numlist) specifies the proportion of the accrual period, t∗/r, by which the proportion of
subjects specified in aprob() is expected to be accrued according to the truncated exponential
distribution. The default is aptime(0.5). This option may not be combined with atime(),
ashape(), or loghazard and requires specifying a nonzero accrual period in aperiod().

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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atime(numlist) specifies the time point t∗, reference accrual time, by which the proportion of subjects
specified in aprob() is expected to be accrued according to the truncated exponential distribution.
The default value is 0.5 × r. This option may not be combined with aptime(), ashape(), or
loghazard and requires specifying a nonzero accrual period in aperiod(). The value in atime()
may not exceed the value in aperiod().

ashape(numlist) specifies the shape, γ, of the truncated exponential accrual distribution. The default
is ashape(0), meaning uniform accrual. This option is not allowed in conjunction with loghazard
and requires specifying a nonzero accrual period in aperiod().

lossprob(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the control and the experimental groups. The default is lossprob(0), meaning no losses to
follow-up. This option requires specifying aperiod() or fperiod() and may not be combined
with lossprob1(), lossprob2(), losshaz(), losshaz1(), or losshaz2().

lossprob1(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the control group. The default is lossprob1(0), meaning no losses to follow-up in the control
group. This option requires specifying aperiod() or fperiod() and may not be combined with
lossprob(), losshaz(), losshaz1(), or losshaz2().

lossprob2(numlist) specifies the proportion of subjects lost to follow-up by time losstime() in
the experimental group. The default is lossprob2(0), meaning no losses to follow-up in the
experimental group. This option requires specifying aperiod() or fperiod() and may not be
combined with lossprob(), losshaz(), losshaz1(), or losshaz2().

losstime(numlist) specifies the time at which the proportion of subjects specified in lossprob()
or lossprob1() and lossprob2() is lost to follow-up, also referred to as the reference loss
to follow-up time. The default is losstime(1). This option requires specifying lossprob(),
lossprob1(), or lossprob2().

losshaz(numlist) specifies an exponential hazard rate of losses to follow-up common to both the
control and the experimental groups. The default is losshaz(0), meaning no losses to follow-
up. This option requires specifying aperiod() or fperiod() and may not be combined with
lossprob(), lossprob1(), lossprob2(), losshaz1(), or losshaz2().

losshaz1(numlist) specifies an exponential hazard rate of losses to follow-up, η1, in the control
group. The default is losshaz1(0), meaning no losses to follow-up in the control group. This
option requires specifying aperiod() or fperiod() and may not be combined with lossprob(),
lossprob1(), lossprob2(), or losshaz().

losshaz2(numlist) specifies an exponential hazard rate of losses to follow-up, η2, in the experimental
group. The default is losshaz2(0), meaning no losses to follow-up in the experimental group. This
option requires specifying aperiod() or fperiod() and may not be combined with lossprob(),
lossprob1(), lossprob2(), or losshaz().

� � �
Table �

table, table(), notable; see [PSS-2] power, table.

saving(); see [PSS-2] power.

� � �
Graph �

graph, graph(); see [PSS-2] power, graph. Also see the column table for a list of symbols used by
the graphs.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
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� � �
Reporting �

show and show(showspec) specify to display additional output containing the numbers of events,
losses to follow-up, and event probabilities. If show is specified, group-specific numbers of events
and, in the presence of losses to follow-up, group-specific numbers of losses to follow-up are
displayed for the null and alternative hypotheses. With the table output, the numbers are displayed
as additional columns.

showspec may contain any combination of events, losses, eventprobs, and all. events
displays the group-specific numbers of events under the null and alternative hypotheses. losses,
if present, displays group-specific numbers of losses under the null and alternative hypotheses.
eventprobs displays group-specific event probabilities under the null and alternative hypotheses.
all displays all the above.

The following option is available with power exponential but is not shown in the dialog box:

notitle; see [PSS-2] power.

Remarks and examples stata.com

Remarks are presented under the following headings:
Introduction
Using power exponential

Alternative ways of specifying effect
Computing sample size

Computing sample size in the absence of censoring
Computing sample size in the presence of censoring
Nonuniform accrual
Exponential losses to follow-up

The conditional versus unconditional approaches
Link to the sample-size and power computation for the log-rank test
Computing power
Testing hypotheses about two exponential survivor functions

This entry describes the power exponential command and the methodology for power and
sample-size analysis for a two-sample comparison of exponential survivor functions. See [PSS-2] Intro
(power) for a general introduction to power and sample-size analysis and [PSS-2] power for a general
introduction to the power command using hypothesis tests. See Survival data in [PSS-2] Intro (power)
for an introduction to power and sample-size analysis for survival data.

Introduction
Let S1(t) and S2(t) be the exponential survivor functions with hazard rates λ1 and λ2 in the

control and experimental groups, respectively. Define δ to be the treatment effect that can be expressed
as a difference, ψ = λ2 − λ1, between hazard rates or as the log of the hazard ratio (a difference
between log hazard-rates), ln(∆) = ln(λ2/λ1) = ln(λ2)− ln(λ1). Negative values of the treatment
effect δ imply the superiority of the experimental treatment over the standard (control) treatment.
Denote r and T to be the length of the accrual period and the total duration of the study, respectively.
Then, the follow-up period f is f = T − r.

Consider a study designed to compare the exponential survivor functions, S1(t) = e−λ1t and
S2(t) = e−λ2t, of the two treatment groups. The disparity in survivor functions may be tested using
the hazards λ1 and λ2 for the exponential model. Depending on the definition of the treatment effect
δ, two test statistics based on the difference and on the log ratio of the hazards may be used to conduct
tests of the difference between survivor functions using respective null hypotheses, H0: ψ = 0 and
H0: ln(∆) = 0.

https://www.stata.com/manuals/pss-2power.pdf#pss-2power
http://stata.com
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)RemarksandexamplesSurvivaldata
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
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The basic formula for the sample-size and power calculations for the test of H0: ψ = 0 is proposed
by Lachin (1981). He also derives the equation relating the sample size and power allowing for
uniform accrual of subjects into the study over the period from 0 to r. Lachin and Foulkes (1986)
extend this formula to truncated exponential accrual over the interval 0 to r and exponential losses
to follow-up over the interval 0 to T .

The simplest method for the sample-size and power calculations for the test of H0: ln(∆) = 0
is presented by George and Desu (1974). Rubinstein, Gail, and Santner (1981) extend their method
to account for uniform accrual and exponential losses to follow-up and apply it to planning the
duration of a survival study. The formula that relates the sample size and power for this test and
takes into account the uniform accrual and exponential losses to follow-up is formulated by Lakatos
and Lan (1992), based on the derivations of Rubinstein, Gail, and Santner (1981).

You can use power exponential to

• compute required number of events and sample size when you know power and effect size;
or

• compute power when you know sample size (number of events) and effect size.

You can also supply effect size as hazard rates, survival probabilities, hazard ratio, or log hazard-
ratio; adjust results for censoring; adjust results for uniform or exponential accrual; adjust results for
group-specific exponentially distributed losses to follow-up; and compute results using the conditional
or unconditional approach.

Using power exponential

power exponential computes sample size or power for a test comparing two exponential
survivor functions. All computations are performed for a two-sided hypothesis test where, by default,
the significance level is set to 0.05. You may change the significance level by specifying the alpha()
option. You can specify the onesided option to request a one-sided test. By default, all computations
assume a balanced- or equal-allocation design; see [PSS-4] Unbalanced designs for a description of
how to specify an unbalanced design.

To compute a total sample size, you specify an effect size and, optionally, the power of the test in
the power() option. The default power is set to 0.8. By default, the computed sample size is rounded
up. You can specify the nfractional option to see the corresponding fractional sample size; see
Fractional sample sizes in [PSS-4] Unbalanced designs for an example. The nfractional option is
allowed only for sample-size determination.

To compute power, you must specify the total sample size in the n() option and an effect size.

An effect size may be specified as a hazard ratio in option hratio(), as a log hazard-ratio in
option lnhratio(), or as a difference between hazard rates in option hdifference(). By default,
a hazard ratio of 0.5 is assumed. For a fixed-duration study, the control-group hazard rate h1 or the
control-group survival probability s1 must also be specified. See Alternative ways of specifying effect
below for details.

Instead of the total sample size n(), you can specify individual group sizes in n1() and n2() or
specify one of the group sizes and nratio() when computing power or effect size. See Two samples
in [PSS-4] Unbalanced designs for more details.

If the time() option is specified, the command’s input parameters are the values of survival
probabilities in the control (or the less favorable) group, S1(t), and in the experimental group, S2(t),
at a fixed time, t (reference survival time), specified in time(), given as s1 and s2, respectively.
Otherwise, the input parameters are assumed to be the values of the hazard rates in the control group,
λ1, and in the experimental group, λ2, given as h1 and h2, respectively. If survival probabilities are

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesTwosamples
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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specified, they are converted to hazard rates by using the formula for the exponential survivor function
and the value of time t in t().

By default, the estimates of sample sizes or power for the test of the difference between hazards
are reported. This may be changed to the test versus the difference between log hazards by using
the loghazard option. The default conditional approach may be replaced with the unconditional
approach by using unconditional; see The conditional versus unconditional approaches.

If the duration of a study (T ) in option studytime(), the length of a follow-up period (f ) in
option fperiod(), or the length of an accrual period (r) in option aperiod() is not specified, then
the study is assumed to continue until all subjects experience an event (failure), regardless of how
much time is required. If only studytime() is specified or only fperiod() is specified, the length
of the accrual period is assumed to be zero and the follow-up period equals the duration of the study.
If only aperiod() is specified, the length of the follow-up is assumed to be zero and the duration
of the study equals the length of the accrual period (continuous accrual until the end of the study). If
either aperiod() or fperiod() is specified with studytime(), the other one is computed using
the relationship T = r + f . If both aperiod() or fperiod() are specified, a fixed-duration study
of length T = r + f is assumed.

If an accrual period of length r is specified in the aperiod() option, uniform accrual over the
period [0, r] is assumed. The accrual distribution may be changed to truncated exponential when
the shape parameter is specified in ashape(). The combination of the aprob() and aptime() (or
atime()) options may be used in place of the ashape() option to request the desired shape of the
truncated exponential accrual. For examples, see Nonuniform accrual.

To take into account exponential losses to follow-up, the losshaz() or lossprob() and
losstime() options may be used. Instead of specifying losses common to both groups, you can use
options losshaz1() and losshaz2() or lossprob1() and lossprob2() to specify group-specific
losses to follow-up. For examples, see Exponential losses to follow-up.

Alternative ways of specifying effect

power exponential provides several ways to specify the disparity between the control-group
and experimental-group survivor functions for sample-size and power determinations. You can specify
group hazard rates or group survival probabilities at a fixed time t directly. If survival probabilities
are specified, they are converted to hazard rates by using the formula for the exponential survivor
function and the value of time t. Alternatively, you can specify the control-group hazard rate or the
control-group survival probability and an effect size expressed as a hazard ratio, a log hazard-ratio,
or a difference between the two hazard rates. The corresponding experimental-group hazard rate will
then be computed using the specified values of the control-group hazard rate and effect size.

By default, power exponential performs computation assuming a hazard ratio of 0.5. You
can use the hratio() option to specify a different value for the hazard ratio or you can use the
lnhratio() option to specify an effect size as a log hazard-ratio. If a control-group hazard rate
or survival probability is specified, you can also specify an effect size as a difference between the
experimental-group and control-group hazard rates in option hdifference().

For a fixed-duration study when not all subjects experience an event by the end of the study,
a control-group hazard rate or a control-group survival probability at time t must be specified in
addition to an effect size.
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You specify the control-group hazard rate h1 following the command name. You can use any of
the three options mentioned above to specify an effect size. The experimental-group hazard rate is
then computed using the specified values of the control-group hazard rate and effect size.

power exponential h1
[
, hratio() | lnhratio() | hdifference() . . .

]
Alternatively, you can specify the experimental-group hazard rate h2 directly.

power exponential h1 h2
[
, . . .

]
Instead of the control-group hazard rate, you can specify the control-group survival probability s1

at time t; the reference time t must be specified in option time().

power exponential s1 , time(#)
[
hratio() | lnhratio() | hdifference() . . .

]
Similarly to hazard rates, you can specify the experimental-group survival probability at time t

instead of an effect size.

power exponential s1 s2 , time(#)
[
. . .
]

The displayed effect size delta corresponds to the difference between hazard rates (or the hazard
ratio if the control-group hazard is not specified) for the hazard-difference test and to the log hazard-
ratio for the log hazard-ratio (or log hazard-difference) test when the loghazard option is specified.
You can change this by specifying the effect() option: effect(hratio) reports the hazard ratio,
effect(lnhratio) reports the log hazard-ratio, and effect(hdifference) reports the difference
between the experimental-group and control-group hazard rates.

In the following sections, we describe the use of power exponential accompanied by examples
for computing sample size and power.

Computing sample size

To compute sample size and number of events, you must specify an effect size and, optionally,
the power of the test in the power() option. A default power of 0.8 is assumed if power() is not
specified. A hazard ratio of 0.5 is assumed if an effect size is not specified. See Alternative ways of
specifying effect for various ways of specifying an effect size.

Consider the following two types of survival studies: the first type, a type I study, is when
investigators have enough resources to monitor the subjects until all of them experience an event
(failure) and the second type, a type II study, is when the study terminates after a fixed period of
time, regardless of whether all subjects experienced an event by that time.

Computing sample size in the absence of censoring

In this subsection we explore sample-size estimates using different approximations for a type I
study. Examples of sample-size determination for a type II study are presented in the next subsection.

In survival studies, the requirement for the sample size is based on the requirement to observe a
certain number of events (failures) to ensure a prespecified power of a test to detect a difference in
survivor functions. For a type I study, the number of subjects required for the study is the same as
the number of events required to be observed in the study because all subjects experience an event
by the end of the study.
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Example 1: Sample size using the Lachin method

Consider an example from Lachin (1981, 107). A clinical trial is to be conducted to compare the
survivor functions in the control and the experimental groups with a one-sided exponential test, based
on the difference between hazards, of the superiority of a new treatment (Ha: ψ < 0) for a disease
with moderate levels of mortality. Subjects in the control group receive a standard treatment and
subjects in the experimental group receive a new treatment. From previous studies the yearly hazard
rate for the standard treatment was found to be λ1 = 0.3, corresponding to 50% survival after 2.3
years. The investigators would like to know how many subjects are required to detect a reduction in
hazard to λ2 = 0.2 (Ha: ψ = −0.1), which corresponds to an increase in survival to 63% at 2.3
years, with 90% power, equal-sized groups, and a significance level, α, of 0.05.

To obtain the estimate of the sample size for the above study, we supply hazard rates 0.3 and 0.2
as arguments and specify the power(0.9) option for 90% power and the onesided option for a
one-sided test.

. power exponential 0.3 0.2, power(0.9) onesided
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 218
N per group = 109

From the output, a total of 218 events (subjects) must be observed (recruited) in a study to ensure
a power of 90% of a one-sided exponential test to detect a 13% increase in survival probability of
subjects in the experimental group with α = 0.05. Our estimate of 218 of the total number of subjects
(109 per group) required for the study is the same as the one reported in Lachin (1981, 107).

Example 2: Sample size using the George–Desu method

Example 1 reports the sample size obtained using the approximation of Lachin (1981) for the test
based on the hazard difference. To obtain the sample size using the approximation of George and
Desu (1974), for the equivalent alternative Ha: ln(∆) = −0.4055 (a test based on the log of the
hazard ratio), we need to specify the loghazard option.
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. power exponential 0.3 0.2, power(0.9) onesided loghazard
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, conditional
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.4055 (log hazard-ratio)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 210
N per group = 105

The George–Desu method yields a slightly smaller estimate (210) of the total number of events
(subjects). George and Desu (1974) studied the accuracy of the two approximations based on ψ and
ln(∆) and concluded that the former is slightly conservative; that is, it gives slightly larger sample-size
estimates. The latter was found to be accurate to one or two units of the exact solution for equal-sized
groups.

Technical note
The approach from example 2 may also be used to obtain an approximation to the sample size

or power for the exact F test of equality of two exponential mean analysis (life) times (using the
relation between a mean and a hazard rate of the exponential distribution, µ = 1/λ).

For example, the sample size of 210 obtained above may be used as an approximation to the
number of subjects required in a study of which the goal is to detect an increase in a mean analysis
(life) time of the experimental group from 3.33 = 1/0.3 to 5 = 1/0.2 by using the one-sided 5%-level
F test with 90% power.

The test statistic of the F test is a ratio of two sample means from two exponential distributions
that has an exact F distribution. The George–Desu method is based on the normal approximation of
the distribution of the log of this test statistic. George and Desu (1974) studied this approximation
for equal-sized groups and some common values of significance levels, powers, and hazard ratios and
found it to be accurate to one or two units of the exact solution.

Example 3: Alternative ways of specifying effect

In Alternative ways of specifying effect, we described various ways in which the survival information
of the groups can be supplied to power exponential. Here we demonstrate several examples.

In example 1, we specified the survival information by supplying the control-group and experimental-
group hazard rates.

Instead of the experimental-group hazard rate, we can specify the difference between hazards in
the hdifference() option and obtain identical results.
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. power exponential 0.3, power(0.9) onesided hdifference(-0.1)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

h2 - h1 = -0.1000

Estimated sample sizes:

N = 218
N per group = 109

We can redisplay the effect size delta as a hazard ratio instead of the hazard difference:

. power exponential 0.3, power(0.9) onesided hdifference(-0.1) effect(hratio)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6667 (hazard ratio)

Survival information:

h1 = 0.3000
h2 = 0.2000

h2 - h1 = -0.1000

Estimated sample sizes:

N = 218
N per group = 109

We can specify the hazard ratio of 0.2/0.3 = 0.66667 in the hratio() option instead of
hdifference(-0.1).

. power exponential 0.3, power(0.9) onesided hratio(0.6667)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Survival information:

h1 = 0.3000
h2 = 0.2000

hratio = 0.6667

Estimated sample sizes:

N = 218
N per group = 109
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We can obtain the same results from power exponential if we specify the control-group survival
probability of 0.5 at time t = 2.3.

. power exponential 0.5, time(2.3) power(0.9) onesided hratio(0.6667)
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1004 (hazard difference)

Survival information:

h1 = 0.3014 s1 = 0.5000
h2 = 0.2009 s2 = 0.6299

hratio = 0.6667 t = 2.3000

Estimated sample sizes:

N = 218
N per group = 109

We can also specify the experimental-group survival probability of 0.63 at time t = 2.3 directly
instead of specifying the hazard ratio.

. power exponential 0.5 0.63, time(2.3) power(0.9) onesided
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1005 (hazard difference)

Survival information:

h1 = 0.3014 s1 = 0.5000
h2 = 0.2009 s2 = 0.6300

t = 2.3000

Estimated sample sizes:

N = 218
N per group = 109

Example 4: Unbalanced design

By default, power exponential computes sample size for a balanced- or equal-allocation design.
If we know the allocation ratio of subjects between the groups, we can compute the required sample
size for an unbalanced design by specifying the nratio() option.

In example 1, we assumed the same numbers of subjects in the two groups. Suppose that we
anticipate to recruit twice as many subjects in the experimental group, that is, n2/n1 = 2. We specify
the nratio(2) option to compute the required sample size for the specified unbalanced design.
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. power exponential 0.3 0.2, power(0.9) onesided nratio(2)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)
N2/N1 = 2.0000

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 242
N1 = 81
N2 = 161

N2/N1 = 1.9877

We need a total of 242 subjects—81 in the control group and 161 in the experimental group.

When different from the specified allocation rate, power exponential also displays the actual
allocation rate corresponding to the reported rounded group sample sizes. If you wish, you can
specify the nfractional option to see sample sizes without rounding; see Fractional sample sizes
in [PSS-4] Unbalanced designs for more information.

Also see Two samples in [PSS-4] Unbalanced designs for more examples of unbalanced designs
for two-sample tests.

Computing sample size in the presence of censoring

Often in practice, investigators may not have enough resources to continue a study until all subjects
experience an event and, therefore, plan to terminate the study after a fixed period, T . Some subjects
may not experience an event by the end of the study, in which case the (administrative) censoring
of subjects occurs. In the presence of censoring, the number of subjects required in a study will be
larger than the number of events required to be observed in the study.

We investigate how terminating the study after some fixed period, T , before all subjects experience
an event affects the requirements for the sample size. The duration of a study is divided into two
phases: an accrual phase of a length r, during which subjects are recruited to the study, and a
follow-up phase of a length f , during which subjects are followed up until the end of the study and
no new subjects enter the study. The duration of a study, T , is the sum of the lengths of the two
phases.

Consider the following study designs. In the first study design, A, each subject is followed up for
a length of time T . Here the minimum follow-up time f is equal to T , and, consequently, r = 0. In
practice, however, subjects will often enter the study at random times and will be followed up until
the end of a study at time T , in which case the subjects observed later will have a shorter follow-up
than subjects who entered the study at the beginning. Therefore, the minimum follow-up time f will
be less than T , and r will be equal to T − f . In this case the length of the accrual period, r, must
be taken into account in the computations. In the presence of an accrual period, subjects may be
recruited continuously during a period of length T (r = T, f = 0) for the second study design, B.
Or subjects may be recruited for a fixed period, r, and then followed up for a period of time, f ,

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesTwosamples
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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during which no new subjects enter the trial, so that the total duration of study is T = r + f (the
third design, C).

Example 5: Sample size in the presence of accrual and follow-up periods

Continuing with example 1, assume that the investigators have resources to continue the study for
only 5 years, T = 5. We specify the duration of the study in the studytime() option, and we tabulate
sample-size values for different lengths of an accrual period specified as a list (see [U] 11.1.8 numlist)
in aperiod(). For simplicity, we use the table() option to obtain a table containing only columns
power, N, aperiod, fperiod, h1, h2, and alpha.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(0(1)5) studytime(5)
> table(power N aperiod fperiod h1 h2 alpha)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

power N aperiod fperiod h1 h2 alpha

.9 304 0 5 .3 .2 .05

.9 322 1 4 .3 .2 .05

.9 344 2 3 .3 .2 .05

.9 378 3 2 .3 .2 .05

.9 426 4 1 .3 .2 .05

.9 502 5 0 .3 .2 .05

Note: Uniform accrual; 50% accrued by 50% of accrual period.

For multiple values of parameters, the results are automatically displayed in a table, as we see
above. For more examples of tables, see [PSS-2] power, table. If you wish to produce a power plot,
see [PSS-2] power, graph.

The first and the last entries of the above table correspond to the extreme cases of no accrual
(design A) and no follow-up (design B), respectively. When aperiod() is specified, a uniform
accrual is assumed that implies, for example, that 50% of the subjects will be recruited once 50% of
the accrual period has elapsed.

For design A, the estimate of the sample size, 304, is larger than the earlier estimate of 218 from
example 1. That is, if the study in example 1 terminates after 5 years, the requirement for the sample
size increases by 39% to ensure that the same number of 218 events is observed.

By trying different values of the follow-up period, we may find that a 30-year follow-up is required
if the investigators can recruit no more than 218 subjects: 30 years is required to observe an event
for all subjects in this study.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/pss-2powertable.pdf#pss-2power,table
https://www.stata.com/manuals/pss-2powergraph.pdf#pss-2power,graph
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. power exponential 0.3 0.2, power(0.9) onesided fperiod(30)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 30.0000
follow-up = 30.0000

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 218
N per group = 109

Returning to our table, for designB, instead of being monitored for 5 years, subjects are continuously
recruited throughout those 5 years; the total sample size increases from 304 to 502. The reason for
such an increase is that the average analysis time (the time when a subject is at risk of a failure)
decreases from 5 to 2.5 and, therefore, reduces the probability of a subject failing by the end of the
study.

In general, the estimates of the total sample size steadily increase as the length of the follow-up
decreases. That is, the presence of a follow-up period reduces the requirement for the number of
subjects in the study. For example, a clinical trial with a 3-year uniform accrual and a 2-year follow-up
needs a total of 378 subjects (189 per group) compared with the total of 502 subjects required for a
study with no follow-up and a 5-year accrual.

Example 6: Uniform accrual

In example 5, we investigated the effect of the length of accrual on sample size for a type II
study when not all subjects experience an event by the end of the study. We specified the length
of the accrual period in option aperiod() and the duration of the study in option studytime().
When aperiod() is specified, the accrual distribution is assumed to be uniform, that is, 10% of the
subjects are expected to be recruited once 10% of the accrual period has elapsed, 25% of subjects are
expected to be recruited once 25% of the accrual period has elapsed, 50% of subjects are expected to
be recruited once 50% of the accrual period has elapsed, and so on. Let’s compute the sample size
for a study with a 3-year uniform accrual and a 2-year follow-up. We use options aperiod() and
fperiod() to specify the accrual and follow-up periods, respectively.
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. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (uniform)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 378
N per group = 189

The required total sample size is 378 with 189 subjects per group. This is the same sample size we
obtained in the table from example 5 with the corresponding values of the accrual and follow-up
periods.

Nonuniform accrual

In the presence of an accrual period, power exponential performs computations assuming
uniform accrual over the period of time r, specified in aperiod(). The assumption of uniform
accrual may be relaxed by requesting a truncated exponential accrual over the interval 0 to r with
shape γ as specified in ashape(#). If an estimate of γ is unavailable, the proportion of subjects
expected to be recruited, G(t∗), may be specified in aprob() along with either the fixed time by
which the subjects were recruited, t∗, in option atime() or the elapsed proportion of the accrual
period, t∗/r, in option aptime(). This information is used to find the corresponding γ by using

G(t∗) = {1− exp(−γt∗)}/{1− exp(−γr)}

Also see Cleves, Gould, and Marchenko (2016, sec. 16.2) for more information, and see Methods
and formulas for technical details.

Example 7: Truncated exponential entry distribution

Continuing with example 6, we investigate the influence of nonuniform accrual on the estimate of
the sample size for a study with a 3-year accrual and a 2-year follow-up. Suppose that the recruitment
of subjects to the study is slow for most of the accrual period and increases rapidly toward the end
of the recruitment. Consider an extreme case of such an accrual corresponding to shape parameter
−6. The graph of a uniform entry distribution and an exponential entry distribution with shape −6
truncated over [0, 3] is given below.
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From the above graph, the accrual of subjects is extremely slow during most of the recruitment
period, with 70% of subjects being recruited within the last few months of a 3-year accrual period.
Stated another way, according to the graph, only 30% of subjects are expected to be recruited during
the first 2.8 years.

To obtain the estimate of the sample size for this study, we type

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2) ashape(-6)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 50.00 (by time t*)

t* = 2.8845 (96.15% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258

and conclude that 516 subjects have to be recruited to this study. This sample size ensures 90% power
of a one-sided, 5%-level test to detect a reduction in hazard from 0.3 to 0.2 when the accrual of
subjects follows the considered truncated exponential distribution. For this extreme case of a negative
truncated exponential entry distribution (the concave entry distribution), the estimate of the sample,
516, increases substantially compared with an estimate of 378 from example 6, which assumes a
uniform entry distribution. On the other hand, a truncated exponential distribution with positive values
of the shape parameter (convex entry distribution) will reduce the requirement for the sample size
when compared with uniform accrual.
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Suppose that we do not know (or do not wish to guess) the value of the shape parameter. The
only information available to us from the above graph is that 30% of the subjects are expected to be
recruited in the first 2.8 years. We submit this information in the aprob() and atime() options, as
shown below, and obtain the same estimate of 516 for sample size.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> aprob(0.3) atime(2.8)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 30.00 (by time t*)

t* = 2.8000 (93.33% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258

Another way we can supply the information about accrual is by specifying a percentage of subjects
expected to be recruited by a certain percentage of the accrual period. For example, and equivalent
to the above specification, 30% of subjects are expected to be recruited after 93.33% of the accrual
period has elapsed. We submit this information in the aprob() and aptime() options, and we again
obtain the same estimate of 516 for sample size.

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> aprob(0.3) aptime(0.9333)
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (exponential)
accrual(%) = 30.00 (by time t*)

t* = 2.7999 (93.33% of accrual)

Survival information:

h1 = 0.3000
h2 = 0.2000

Estimated sample sizes:

N = 516
N per group = 258



24 power exponential — Power analysis for a two-sample exponential test

Exponential losses to follow-up

Apart from administrative censoring, subjects may not experience an event by the end of the study
because of being lost to follow-up for various reasons. See Survival data in [PSS-2] Intro (power) and
[PSS-5] Glossary for a more detailed description. Rubinstein, Gail, and Santner (1981) and Lachin
and Foulkes (1986) extend sample-size and power computations to take into account exponentially
distributed losses to follow-up. In addition to being exponentially distributed, losses to follow-up are
assumed to be independent of the survival times.

Example 8: Exponential losses to follow-up

Suppose that in example 6, in the study with a 3-year uniform accrual and a 2-year follow-up,
yearly loss hazards in the control and the experimental groups are 0.2. A loss hazard rate common
to both groups can be specified in option losshaz().

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> losshaz(0.2) show
note: input parameters are hazard rates.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, hazard difference, conditional
H0: h2 = h1 versus Ha: h2 < h1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.1000 (hazard difference)

Accrual and follow-up information:

duration = 5.0000
follow-up = 2.0000

accrual = 3.0000 (uniform)

Survival information:

h1 = 0.3000
h2 = 0.2000

Loss-to-follow-up information:

lh1 = 0.2000
lh2 = 0.2000

Estimated expected number of events:

E|Ha = 213 E|H0 = 216
E1|Ha = 121 E1|H0 = 108
E2|Ha = 92 E2|H0 = 108

Estimated expected number of losses to follow-up:

L|Ha = 173 L|H0 = 172
L1|Ha = 81 L1|H0 = 86
L2|Ha = 92 L2|H0 = 86

Estimated sample sizes:

N = 500
N per group = 250

The sample size required for a one-sided, 5%-level test to detect a reduction in hazard from 0.3
to 0.2 with 90% power increases from 378 (see example 6) to 500. We observe that for the extreme
case of losses to follow-up, sample size increases significantly. A conservative adjustment commonly
applied in practice is n(1 + pL), where pL is the expected proportion of losses to follow-up in both
groups combined. For this example, pL may be computed as 0.5(0.369+0.324) ≈ 0.35 from table 2 of
Lachin and Foulkes (1986). Then the conservative estimate of the sample size is 378(1+0.35) = 510,
which is slightly greater than 500, the actual required sample size.

https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)RemarksandexamplesSurvivaldata
https://www.stata.com/manuals/pss-2intropower.pdf#pss-2Intro(power)
https://www.stata.com/manuals/pss-5glossary.pdf#pss-5Glossary
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We also requested that additional information about the expected number of events and losses
to follow-up under the null and under the alternative hypothesis be displayed by using the show
option. From the above output, a total of 173 subjects (81 from the control group and 92 from the
experimental group) are expected to be lost in the study with exponentially distributed losses with
yearly rates of 0.2 in each group under the alternative hypothesis.

If the proportion of subjects lost to follow-up by a fixed period in each group is available, it can
be supplied by using the lossprob() and losstime() options rather than loss to follow-up rates.
For example, in the above study approximately 33%, 1− exp(−0.2× 2) ≈ 0.33, of subjects in each
group are lost at time 2 (years). We can obtain the same estimates of sample sizes by typing

. power exponential 0.3 0.2, power(0.9) onesided aperiod(3) fperiod(2)
> lossprob(0.33) losstime(2)

(output omitted )

The conditional versus unconditional approaches

Denote δ to be the effect size, and denote λ̂1 and λ̂2 to be the maximum likelihood estimates of
the respective hazard-rate parameters. Consider the two effect-size estimators based on the difference
between the hazard rates, λ̂2 − λ̂1, and based on the log of the hazard ratio, ln(λ̂2/λ̂1). Both
estimators are asymptotically normal under the null and under the alternative hypothesis.

We adopt Chow et al. (2018, 156) terminology when referring to the conditional and unconditional
tests. The conditional test is the test that uses the constraint λ2 = λ1 (conditional on H0) when
computing the variance of the effect-size estimator under the null. The unconditional test is the test
that does not use the above constraint when computing the variance of the effect-size estimator under
the null. The score and the Wald tests are each one of the examples of conditional and unconditional
tests, respectively. Chow et al. (2018) note that neither of the two tests (conditional or unconditional)
is always more powerful than the other under the alternative hypothesis. Therefore, there is no definite
recommendation of which one is preferable in practice.

The conditional approach relies on the following relationship between sample size and power,
given in Lachin (1981), to compute estimates of required sample size or power,

|δ| = z1−α {Var(δ,H0)}1/2 + z1−β {Var(δ,Ha)}1/2

where z1−α and z1−β are the (1−α)th and the (1−β)th quantiles of the standard normal distribution,
and Var(δ,H0) and Var(δ,Ha) are the asymptotic variances under the null and under the alternative,
respectively, of the effect-size estimator, δ̂. This approach uses the variance of the estimator conditional
on the hypothesis type.

The unconditional approach replaces Var(δ,H0) with Var(δ,Ha) in the above and uses the variance
under the alternative to compute the estimates of sample size and power:

|δ| = (z1−α + z1−β) {Var(δ,Ha)}1/2

Therefore, the resulting formulas based on the two approaches are different.

Lakatos and Lan (1992) formulate the sample-size formula for the log hazard-ratio test based
on the method of Rubinstein, Gail, and Santner (1981). This formula is based on the unconditional
approach. Lachin and Foulkes (1986) provide the sample-size formula for the test of the log of the
hazard ratio that uses the conditional approach. They also present both conditional and unconditional



26 power exponential — Power analysis for a two-sample exponential test

versions of formulas for the test based on the difference between hazards. As noted by Lachin and
Foulkes (1986), sample sizes estimated based on the unconditional approach will be larger than the
estimates based on the conditional approach for equal-sized groups.

Both approaches are available with power exponential; the conditional is the default and the
unconditional may be requested by specifying the unconditional option. Refer to Methods and
formulas for the formulas underlying these approaches.

Example 9: Sample size using the Rubinstein–Gail–Santner method

Consider the following scenario in Lakatos and Lan (1992, table I). A 10-year survival study with a
1-year accrual period and a 9-year follow-up is conducted to compare the survivor functions of the two
groups by using a two-sided, 0.05 exponential test based on the log of the hazard ratio. The probability
of surviving to the end of a study for subjects in the control group is 0.8 [S1(t) = 0.8, t = 10].
Subjects are recruited uniformly over the interval [0, 1]. Lakatos and Lan (1992) report an estimate
of 664 for the sample size required to detect a change in the hazard of the experimental group
corresponding to the hazard ratio ∆ = 0.5 with 90% power by using the Rubinstein–Gail–Santner
(1981) method. To obtain the estimates according to this method, we need to specify both loghazard
and unconditional.

. power exponential 0.8, t(10) power(0.9) aperiod(1) fperiod(9) loghazard
> unconditional
note: input parameters are survival probabilities.

Estimated sample sizes for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated sample sizes:

N = 664
N per group = 332

Because the default value of the hazard ratio is 0.5, we omit the hratio(0.5) option in the above.
From the output, we obtain the same estimate of 664 of the sample size as reported in Lakatos and
Lan (1992).

In the absence of censoring, the estimates of the sample size or power based on the test of log of
the hazard ratio are the same for the conditional and the unconditional approaches. For example, both

. power exponential 0.8, t(10) power(0.9) loghazard
(output omitted )

and
. power exponential 0.8, t(10) power(0.9) loghazard unconditional

(output omitted )
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produce the same estimate of the sample size (88). The asymptotic variance of maximum likelihood
estimates of the log of the hazard ratio does not depend on hazard rates when there is no censoring
and, therefore, does not depend on the type of hypothesis, Var(δ̂, H0) = Var(δ̂, Ha) = 2/N .

Link to the sample-size and power computation for the log-rank test

Example 10: Sample size using the Freedman and the Schoenfeld methods

Continuing with examples 1 and 2, Lachin (1981, 106) gives another approximation to obtain the
estimate of the sample size under the equal-group allocation. This approximation coincides with the
formula derived by Freedman (1982) for the number of events in the context of the log-rank test. We
can obtain such an estimate by using power logrank and by specifying the hazard ratio of 0.66667
computed earlier.

. power logrank, hratio(0.66667) power(0.9) onesided

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR < 1

Study parameters:

alpha = 0.0500
power = 0.9000
delta = 0.6667 (hazard ratio)

hratio = 0.6667

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 216
N = 216

N per group = 108

The estimate, 216, of the sample size is the same as given in Lachin (1981, 107) and is slightly
smaller than the estimate, 218, obtained in example 1 and larger than the estimate, 210, obtained
using the George–Desu method in example 2.

The approximation due to George and Desu (1974) is the same as the approximation to the number
of events derived by Schoenfeld (1981) in application to the log-rank test. We can confirm that by
typing

. power logrank, hratio(0.66667) power(0.9) onesided schoenfeld

Estimated sample sizes for two-sample comparison of survivor functions
Log-rank test, Schoenfeld method
H0: ln(HR) = 0 versus Ha: ln(HR) < 0

Study parameters:

alpha = 0.0500
power = 0.9000
delta = -0.4055 (log hazard-ratio)

hratio = 0.6667

Censoring:

Pr_E = 1.0000

Estimated number of events and sample sizes:

E = 210
N = 210

N per group = 105
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We obtain the same estimate of 210 as when using power exponential with the loghazard option
in example 2.

Computing power

Sometimes the number of subjects available for enrollment into the study is limited. In such cases,
the researchers may want to investigate with what power they can detect a desired treatment effect
for a given sample size.

To compute power, you must specify the sample size in the n() option and an effect size. A hazard
ratio of 0.5 is assumed if an effect size is not specified. Also see Alternative ways of specifying effect
for various ways of specifying an effect size.

Example 11: Power determination

We verify the power computation for the study from example 9. We expect the power estimate to
be close to 0.9.

The only thing we change in the power exponential command from example 9 is replacing the
power(0.9) option with the n(664) option.

. power exponential 0.8, t(10) n(664) aperiod(1) fperiod(9)
> loghazard unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
N = 664

N per group = 332
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.9000

We obtain the estimate of power 0.9.
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Testing hypotheses about two exponential survivor functions

Example 12: Using streg to perform the log hazard-ratio test

In this example, we demonstrate the importance of sample-size computations to ensure a high power
of a test to detect a difference between exponential survivor functions. We consider an asymptotic
Wald (or normal z) test to test whether the log of the hazard ratio is zero.

Continuing with example 11, suppose that the investigators have only 100 subjects available for
the study. As we see below, the power to detect a 50% risk reduction in a hazard of the experimental
group (the hazard ratio of 0.5) decreases from 90% to 24%:

. power exponential 0.8, t(10) n(100) aperiod(1) fperiod(9)
> loghazard unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, log hazard-ratio, unconditional
H0: ln(HR) = 0 versus Ha: ln(HR) != 0

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = -0.6931 (log hazard-ratio)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.2414

To demonstrate the implication of this reduction, consider the following example. We generate the
data according to the study from example 11 with the following code:

program simdata
args n h1 h2 r
set obs ‘n’
generate double entry = ‘r’*runiform()
generate double u = runiform()
/* random allocation to two groups of equal sizes */
generate double u1 = runiform()
generate double u2 = runiform()
sort u1 u2, stable
generate byte drug = (_n<=‘n’/2)
/* exponential failure times with rates h1 and h2 */
generate double failtime = entry - ln(1-u)/‘h1’ if drug==0
replace failtime = entry - ln(1-u)/‘h2’ if drug==1

end

. clear

. set seed 234

. quietly simdata 100 0.0223 0.0112 1
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The entry times of subjects are generated from a uniform [0, 1) distribution and stored in variable
entry. The subjects are randomized to two groups of equal size of 50 subjects each. The survival
times are generated from exponential distribution with the hazard rate of − ln(0.8)/10 = 0.0223 in
the control group, drug = 0, and the hazard rate of 0.5×0.0223 = 0.0112 in the experimental group,
drug = 1, conditional on subjects’ entry times in entry.

Before analyzing these survival data, we need to set up the data properly using stset. The
failure-time variable is failtime. The study terminates at t = 10, so we use exit(time 10) with
stset to specify that all failure times past 10 are to be treated as censored. Because subjects enter
the study at random times (entry) and become at risk of a failure upon entering the study, we also
specify the origin(entry) option to ensure that the analysis time is adjusted for the entry times.
For more details, see [ST] stset.

. stset failtime, exit(time 10) origin(entry)

Survival-time data settings

Failure event: (assumed to fail at time=failtime)
Observed time interval: (origin, failtime]

Exit on or before: time 10
Time for analysis: (time-origin)

Origin: time entry

100 total observations
0 exclusions

100 observations remaining, representing
7 failures in single-record/single-failure data

921.825 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 9.990494

To perform the log hazard-ratio test, we fit an exponential regression model on drug by using
streg (see [ST] streg). We can express the log of the hazard ratio in terms of regression coefficients as
follows: ln(∆) = ln(λ2/λ1) = ln {exp(β0 + β1)/exp(β0)} = β1, where β0 and β1 are the estimated
coefficients for the constant and drug in the regression model. Then the test of H0: ln(∆) = 0 may
be rewritten in terms of a coefficient on drug as H0: β1 = 0. This test is part of the standard output
after streg.

https://www.stata.com/manuals/ststset.pdf#ststset
https://www.stata.com/manuals/ststreg.pdf#ststreg
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. streg drug, distribution(exponential) nohr

Failure _d: 1 (meaning all fail)
Analysis time _t: (failtime-origin)

Origin: time entry
Exit on or before: time 10

Iteration 0: Log likelihood = -29.718762
Iteration 1: Log likelihood = -29.049311
Iteration 2: Log likelihood = -29.014323
Iteration 3: Log likelihood = -29.014222
Iteration 4: Log likelihood = -29.014222

Exponential PH regression

No. of subjects = 100 Number of obs = 100
No. of failures = 7
Time at risk = 921.8249

LR chi2(1) = 1.41
Log likelihood = -29.014222 Prob > chi2 = 0.2352

_t Coefficient Std. err. z P>|z| [95% conf. interval]

drug .9428118 .83666 1.13 0.260 -.6970117 2.582635
_cons -5.453234 .7071068 -7.71 0.000 -6.839137 -4.06733

From the output table above, the p-value for a two-sided test of the coefficient for drug, 0.260, is
greater than 0.05. On that basis, we do not have evidence to reject the null hypothesis of no difference
between the two exponential survivor functions. Therefore, we make an incorrect decision because
we simulated the data with different group hazard rates. If we were to repeat this, say, 100 times,
using different datasets simulated according to the alternative Ha : ln(∆) = ln(0.5) = −0.6931
(see [R] simulate), for roughly 76 of them we would have failed to reject the null hypothesis of no
difference (a type II error). Therefore, more subjects are required to be able to detect the log of the
hazard ratio of −0.4055 in this study.

https://www.stata.com/manuals/rsimulate.pdf#rsimulate
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Example 13: Using results from streg to perform the Wald test of hazard difference

We obtain the power of the test based on the difference between hazards for the study in example 12
(omit the loghazard option from the syntax of power exponential).

. power exponential 0.8, t(10) n(100) aperiod(1) fperiod(9) unconditional
note: input parameters are survival probabilities.

Estimated power for two-sample comparison of survivor functions
Exponential test, hazard difference, unconditional
H0: h2 = h1 versus Ha: h2 != h1

Study parameters:

alpha = 0.0500
N = 100

N per group = 50
delta = -0.0112 (hazard difference)

Accrual and follow-up information:

duration = 10.0000
follow-up = 9.0000

accrual = 1.0000 (uniform)

Survival information:

h1 = 0.0223 s1 = 0.8000
h2 = 0.0112 s2 = 0.8944

hratio = 0.5000 t = 10.0000

Estimated power:

power = 0.2458

We obtain a power estimate of 0.2458, which is close to 0.2414 from example 12.

To test the difference between hazard rates by using the Wald test, we express this difference in
terms of coefficients, λ2−λ1 = exp(β0){exp(β1)− 1}, and we use testnl ([R] testnl) after streg
to perform the nonlinear hypothesis test of H0: exp(β0){exp(β1)− 1} = 0.

. testnl exp(_b[_cons])*(exp(_b[drug])-1) = 0

(1) exp(_b[_cons])*(exp(_b[drug])-1) = 0

chi2(1) = 1.35
Prob > chi2 = 0.2451

We obtain the same conclusions from the Wald test based on the difference between hazards as
in example 12. That is, based on the p-value of 0.2451, we fail to reject the null hypothesis of no
difference between hazards of two groups (or miss the alternative Ha: ψ = −0.0112 corresponding
to reduction in hazard from roughly 0.02 to 0.01) for the data from example 12.

Often in practice, to test the disparity in two exponential survivor functions, the log-rank test is
used instead of the hazard-difference test. Also the Wald (or the score) test from the Cox model is
used instead of the exponential log hazard-ratio test. Refer to [ST] sts test and [ST] stcox for examples
on how to perform these tests (also see [PSS-2] power logrank and [PSS-2] power cox).

Sometimes the estimates of sample size and power obtained under the assumption of the exponential
model are used as an approximation to the results used in a more general context of the log-rank
test or the Cox proportional hazards model. Refer to Lachin (2011, 483–484) for the rationale behind
this. Also see Lakatos and Lan (1992) for a discussion of the circumstances under which sample-size
estimates obtained assuming the exponential model may be inaccurate when used with more general
proportional hazards models.

https://www.stata.com/manuals/rtestnl.pdf#rtestnl
https://www.stata.com/manuals/stststest.pdf#stststest
https://www.stata.com/manuals/ststcox.pdf#ststcox
https://www.stata.com/manuals/pss-2powerlogrank.pdf#pss-2powerlogrank
https://www.stata.com/manuals/pss-2powercox.pdf#pss-2powercox
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Stored results
power exponential stores the following in r():

Scalars
r(alpha) significance level
r(power) power
r(beta) probability of a type II error
r(delta) effect size
r(N) total sample size
r(N a) actual sample size
r(N1) sample size of the control group
r(N2) sample size of the experimental group
r(nratio) ratio of sample sizes, N2/N1
r(nratio a) actual ratio of sample sizes
r(nfractional) 1 if nfractional is specified, 0 otherwise
r(onesided) 1 for a one-sided test, 0 otherwise
r(hratio) hazard ratio
r(lnhratio) log hazard-ratio
r(hdiff) difference between hazard rates
r(h1) hazard in the control group (if specified)
r(h2) hazard in the experimental group
r(s1) survival probability in the control group (if specified)
r(s2) survival probability in the experimental group (if specified)
r(time) reference survival time (if time() is specified)
r(aperiod) length of the accrual period (if specified)
r(fperiod) length of the follow-up period (if specified)
r(studytime) duration of the study (if specified)
r(ashape) shape parameter (if aperiod() is specified)
r(aprob) shape parameter (if aprob() is specified)
r(aptime) proportion of accrual period (if aptime() is specified)
r(atime) reference accrual time (if atime() is specified)
r(losshaz) loss hazard rate in both groups (if specified)
r(losshaz1) loss hazard in the control group (if specified)
r(losshaz2) loss hazard in the experimental group (if specified)
r(lossprob) proportions of subjects lost to follow-up in both groups (if lossprob() is specified)
r(losstime) reference loss to follow-up time (if losstime() is specified)
r(unconditional) 1 if unconditional is specified, 0 otherwise
r(separator) number of lines between separator lines in the table
r(divider) 1 if divider is requested in the table, 0 otherwise

Macros
r(type) test
r(method) exponential
r(test) hazard difference or log-hazard difference
r(accrual) uniform or exponential
r(effect) hratio, lnhratio, hdifference, or lnhdifference
r(columns) displayed table columns
r(labels) table column labels
r(widths) table column widths
r(formats) table column formats
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Matrices
r(pss table) table of results
r(Pr vec) 1×4 matrix of probabilities of an event (when computed)
r(Ea vec) 1×3 matrix of expected number of events under the alternative (when computed)
r(E0 vec) 1×3 matrix of expected number of events under the null (when computed)
r(La vec) 1×3 matrix of expected number of losses under the alternative (when computed)
r(L0 vec) 1×3 matrix of expected number of losses under the null (when computed)

Methods and formulas
By default, power exponential computes the sample size required to achieve a specified power

to detect a difference between hazard rates, ψa = λ2a − λ1a, using the method of Lachin (1981).
If loghazard is specified, the sample size required to detect a log of the hazard ratio ln(∆a) =
ln(λ2a/λ1a) with specified power is reported using the formula derived by George and Desu (1974).
In the presence of an accrual period, the methods of Lachin and Foulkes (1986) or (for uniform
accrual only) Rubinstein, Gail, and Santner (1981) (if loghazard and unconditional are specified)
are used.

In addition to the notation given in Introduction, denote n, n1, and n2 to be the total number
of subjects required for the study, the number of subjects in the control group, and the number
of subjects in the experimental group, respectively. Let R = n2/n1 denote the ratio of sample
sizes of the experimental group to the control group. Let p1 = n1/n = 1/(1 + R) and p2 =
n2/n = 1 − p1 = R/(1 + R) be the proportions of subjects allocated to the control and the
experimental groups; γ be the shape parameter of the truncated exponential distribution with p.d.f.
g(z) = γexp(−γz)/{1 − exp(−γr)}, 0 ≤ z ≤ r, γ 6= 0; η1 and η2 be the loss hazards in the
control and the experimental groups; and z(1−α/k) and z(1−β) be the (1−α/k)th and the (1− β)th
quantiles of the standard normal distribution, with k = 1 for the one-sided test and k = 2 for the
two-sided test. Denote λ = p1λ1 + p2λ2. Recall that the difference between hazards is denoted by
ψ = λ2 − λ1 and the hazard ratio is denoted by ∆ = λ2/λ1.

If survival probabilities S1(t) and S2(t) at a fixed time t are specified rather than hazard rates,
the hazard rates are computed as λi = − ln{Si(t)}/t, i = 1, 2. If loss to follow-up probabilities
L1(tL) and L2(tL) at a fixed time tL are given instead of loss to follow-up hazard rates, the loss
hazard rates are computed as ηi = − ln{1− Li(tL)}/tL, i = 1, 2.

All formulas below are derived under the assumption of exponential survival distributions with
hazard rates in the control and the experimental groups λ1 and λ2, respectively, and rely on large-sample
properties of the maximum likelihood estimates of λ1 and λ2.

Denote ξo = ζ(λ, γ, η1)p−1
1 + ζ(λ, γ, η2)p−1

2 and ξa = ζ(λ1, γ, η1)p−1
1 + ζ(λ2, γ, η2)p−1

2 .

The formula for the sample-size calculation using the conditional approach is

n =

(
z1−α/kξ

1/2
o + z1−βξ

1/2
a

)2
δ2

and using the unconditional approach is

n =
(z1−α/k + z1−β)2ξa

δ2

where ζ(λ, γ, η) = λ2/pE if δ = ψ, ζ(λ, γ, η) = 1/pE if δ = ln(∆), and pE is to be defined later.
λ and η denote a failure hazard rate and a loss to follow-up hazard rate.
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In the absence of censoring, the overall probability of an event (failure), pE , is set to 1. Here
the resulting formula for the sample size for the log hazard-ratio test depends only on the ratio of
hazards and not on the individual group hazard rates. The resulting sample size formula for the test
of the difference may also be rewritten as a function of the ratio of hazards only. Therefore, under
no censoring, for a fixed value of the hazard ratio ∆ = λ2/λ1, the estimates of the sample size (or
power) will be constant with respect to varying hazard rates λ1 and λ2.

In the presence of censoring, when each subject is followed up for a fixed period f = T ,

pE = pE(λ, η) =
λ

λ+ η
[1− exp{−(λ+ η)T}]

In the presence of an accrual period, the probability of an event is defined as

pE = pE(λ, η) =
λ

(λ+ η)

[
1− exp{−(λ+ η)(T − r)} − exp{−(λ+ η)T}

(λ+ η)r

]
or

pE = pE(λ, γ, η) =
λ

(λ+ η)

(
1 +

γexp{−(λ+ η)T}[1− exp{(λ+ η − γ)r}]
(λ+ η − γ){1− exp(−γr)}

)
under uniform or truncated exponential accrual with shape γ over [0, r], respectively. Uniform accrual
is assumed for |γ| < 10−6.

The formulas are obtained from Lachin (1981), Lachin and Foulkes (1986), and Lakatos and
Lan (1992). To avoid division by 0 in the case λ+ η = γ, the probability of an event is taken to be
the limit of the above expression, pE = limλ+η−>γpE(λ, γ, η).

The number of subjects required to be recruited in each group is obtained as n1 = n/(1 +R) and
n2 = nR/(1 +R). If nfractional is not specified, sample sizes are rounded to integer values; see
Fractional sample sizes in [PSS-4] Unbalanced designs for details.

The expected number of events and losses to follow-up are computed as suggested by Lachin and
Foulkes (1986). Under the null hypothesis,

EH0
= n1pE(λ, γ, η1) + n2pE(λ, γ, η2)

LH0
= n1(η1/λ)pE(λ, γ, η1) + n2(η2/λ)pE(λ, γ, η2)

and under the alternative hypothesis,

EHa
= n1pE(λ1, γ, η1) + n2pE(λ2, γ, η2)

LHa
= n1(η1/λ1)pE(λ1, γ, η1) + n2(η2/λ2)pE(λ2, γ, η2)

For unconditional tests, the expected number of events and losses to follow-up under the null is
computed by setting λ = λ1. The estimates of the expected number of events and losses to follow-up
in each group are rounded to the nearest integer.

To obtain the estimate of the power, 1−β, the formulas for the sample size are solved for z(1−β)
and the normal cumulative distribution function is used to obtain the corresponding probability 1−β.

https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4UnbalanceddesignsRemarksandexamplesFractionalsamplesizes
https://www.stata.com/manuals/pss-4unbalanceddesigns.pdf#pss-4Unbalanceddesigns
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To obtain the unknown shape parameter, γ, of a truncated exponential entry distribution, an iterative
procedure is used to solve the equation

pa = G(ta) =
1− exp(−γta)

1− exp(−γr)

for a given proportion of subjects pa recruited at a given time, ta, for ta ∈ [0, r].
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