
set sortmethod — Specify a sort method

Description Syntax Remarks and examples Also see

Description
The default sort method was changed in Stata 17 to offer faster performance. The new method is

designated fsort. Prior to Stata 17, the method was qsort. set sortmethod lets you explicitly choose

between the two methods.

Syntax
set sortmethod { default | fsort | qsort }

fsort is the current, faster sort.

qsort is the sort prior to Stata 17.

default is whichever of fsort or qsort was the default for the currently set user version.

Remarks and examples
Remarks are presented under the following headings:

Overview and version control
Controlling the sorter within a program
Reproducibility

Overview and version control
The default sort method was changed in Stata 17 to offer improved sort performance. The new sorter

is a modified quicksort with a three-way partition and switches to an insertion sort algorithm when the

problem size is less than 8. Thismethod is designated fsort. Prior to Stata 17, themethodwas qsort—a

standard quicksort algorithm.

sort follows user version control, so all existing programs and ado-file commands will automati-

cally use the new faster fsort regardless of the version specified in the program. Conversely, version-

controlled do-files will use whichever sort was the default at the time of the version specified in the

do-file. Likewise, interactive use of sort will use whichever version was the default for the current

version.

Controlling the sorter within a program
In the unlikely case that you want to require the straight quicksort be used in a program, add set

sortmethod qsort to the program. Be aware that setting the sortmethod is a global action. All future

sorts will use the old qsort program, both within the program and after the program terminates.

The safest way to force the method to be qsort within a program is to save the current setting in

your program and reset that setting when your sorts are complete. Do all this while being sure that your

program does not exit before you get the setting restored. Here is the safest construct that protects against

both errors and user-entered break keys.

1

https://www.stata.com/manuals/pversion.pdf#pversion

set sortmethod — Specify a sort method 2

nobreak {
local holdsortmeth = c(sortmethod)
capture noisily {

... your code ...
}
local rc = _rc
set sortmethod ‘holdsortmeth’

}

if (‘rc’) exit ‘rc’

Reproducibility
If your sort keys produce a unique ordering of the data, your results are obviously and automatically

reproducible. Every time you sort on those keys in any version of Stata or in any flavor of Stata, you will

get the same results. And that is truly the right way to address reproducible sorts.

If you are sorting on keys that do not produce a unique sort but instead have observations with tied

values of all the sort variables, you should think long and hard about why you want such an indeterminate

ordering. We can think of no case where you would want to perform a sort that does not produce a unique

ordering. See Sorting with ties in [D] sort for a discussion of creating unique sort keys for your sort, even

when you want the ties broken randomly.

That said, Stata allows you to perform sorts with ties that cannot lead to a unique ordering. Moreover,

that ordering will not be the same when you rerun the same sort command. If you have ties in the

variable xyz and type

. sort xyz

And then, after some other commands have changed the sort order, again type

. sort xyz

The orderings of the data after each of those commands will be different!

Both the fsort and qsort methods require an initial jumbling of the order of the data to avoid poten-

tially severe speed penalties for some specific initial orderings. This jumbling is done pseudorandomly

using a fast random-number generator. This is not the excellent random-number generator used in all

of Stata’s random-number functions; see [R] set seed for the specifics. The jumbler’s purpose is to be

fast, not to have good properties in the pseudo–random numbers that are generated. What’s more, the

ordering will differ across Stata/SE and Stata/MP, when Stata/MP is set to use multiple cores, almost

always. Again, this comes down to performance. Stata/MP performs the initial jumbling in parallel.

What’s more, methods fsort and qsort also use the initial jumbling in different ways and will produce

different orderings of tied observations.

So if you want reproducible orderings, do not sort on variables with tied values in some observations.

If you want to break the ties randomly, create a random number using runiform(), and sort on it. Again,
see Sorting with ties in [D] sort.

Also see
[P] creturn — Return c-class values

[P] set sortrngstate — Set the state of sort’s randomizer

[D] sort — Sort data

https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/dsort.pdf#dsortRemarksandexamplesSortingwithties
https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/psetsortrngstate.pdf#psetsortrngstate
https://www.stata.com/manuals/dsort.pdf#dsort

set sortmethod — Specify a sort method 3

[R] set — Overview of system parameters

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/rset.pdf#rset
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

