
matrix define — Matrix definition, operators, and functions

Description Menu Syntax Remarks and examples Reference Also see

Description
matrix define performs matrix computations. The word define may be omitted.

matrix input provides a method for inputting matrices. The word input may be omitted (see the

discussion that follows).

For an introduction and overview of matrices in Stata, see [U] 14 Matrix expressions.

See [M-2] exp for matrix expressions in Mata.

Menu
matrix define
Data > Matrices, ado language > Define matrix from expression

matrix input
Data > Matrices, ado language > Input matrix by hand

Syntax
Perform matrix computations

matrix [define] matname = matrix expression

Input matrices

matrix [input] matname = (# [,# . . .] [\ # [, # . . .] [\ [. . .]]])

Remarks and examples
Remarks are presented under the following headings:

Introduction
Inputting matrices by hand
Matrix operators
Matrix functions returning matrices
Matrix functions returning scalars
Subscripting and element-by-element definition
Name conflicts in expressions (namespaces)
Macro functions

1

https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/m-2exp.pdf#m-2exp

matrix define — Matrix definition, operators, and functions 2

Introduction
matrix define calculates matrix results from other matrices. For instance,

. matrix define D = A + B + C

creates D containing the sum of A, B, and C. The word define may be omitted,

. matrix D = A + B + C

and the command may be further abbreviated:

. mat D=A+B+C

The same matrix may appear on both the left and the right of the equal sign in all contexts, and Stata will

not become confused. Complicated matrix expressions are allowed.

With matrix input, you define the matrix elements rowwise; commas are used to separate elements
within a row, and backslashes are used to separate the rows. Spacing does not matter.

. matrix input A = (1,2\3,4)

The above would also work if you omitted the input subcommand.

. matrix A = (1,2\3,4)

There is a subtle difference: the first method uses the matrix input command, and the second uses the

matrix expression parser. Omitting input allows expressions in the command. For instance,

. matrix X = (1+1, 2*3/4 \ 5/2, 3)

is understood but

. matrix input X = (1+1, 2*3/4 \ 5/2, 3)

would produce an error.

matrix input, however, has two advantages. First, it allows input of large matrices. (The expression
parser is limited because it must “compile” the expressions and, if the result is too long, will produce an

error.) Second, matrix input allows you to omit the commas.

Inputting matrices by hand
Before turning to operations on matrices, let’s examine how matrices are created. Typically, at least

in programming situations, you obtain matrices by accessing one of Stata’s internal matrices (e(b) and

e(V); see [P] matrix get) or by accumulating it from the data (see [P] matrix accum). Nevertheless,

the easiest way to create a matrix is to enter it using matrix input—this may not be the normal way to

create matrices, but it is useful for performing small, experimental calculations.

Example 1
To create the matrix

A = (1 2
3 4)

type

. matrix A = (1,2 \ 3,4)

https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixaccum.pdf#pmatrixaccum

matrix define — Matrix definition, operators, and functions 3

The spacing does not matter. To define the matrix

B = (1 2 3
4 . 6)

type

. matrix B = (1,2,3 \ 4,.,6)

To define the matrix

C = ⎛⎜
⎝

1 2
3 4
5 6

⎞⎟
⎠

type

. matrix C = (1,2 \ 3,4 \ 5,6)

If you need more than one line, and you are working interactively, just keep typing; Stata will wrap the

line around the screen. If you are working in a do- or ado-file, see [U] 16.1.3 Long lines in do-files.

To create vectors, you enter the elements, separating them by commas or backslashes. To create the

row vector

D = (1 2 3)

type

. matrix D = (1,2,3)

To create the column vector

E = ⎛⎜
⎝

1
2
3
⎞⎟
⎠

type

. matrix E = (1\2\3)

To create the 1 × 1 matrix F = (2), type
. matrix F = (2)

In these examples, we have omitted the input subcommand. They would work either way.

Matrix operators
In what follows, uppercase letters A, B, . . . stand for matrix names. The matrix operators are

+, meaning addition. matrix C=A+B, A: 𝑟 × 𝑐 and B: 𝑟 × 𝑐, creates C: 𝑟 × 𝑐 containing the elementwise
addition A + B. An error is issued if the matrices are not conformable. Row and column names are

obtained from B.

-, meaning subtraction or negation. matrix C=A-B, A: 𝑟 × 𝑐 and B: 𝑟 × 𝑐, creates C containing the

elementwise subtractionA−B. An error is issued if the matrices are not conformable. matrixC=-A
creates C containing the elementwise negation of A. Row and column names are obtained from B.

*, meaning multiplication. matrix C=A*B, A: 𝑎×𝑏 and B: 𝑏 ×𝑐, returns C: 𝑎×𝑐 containing the matrix
productAB; an error is issued ifA and B are not conformable. The row names ofC are obtained from

the row names of A, and the column names of C from the column names of B.

https://www.stata.com/manuals/u16.pdf#u16.1.3Longlinesindo-files

matrix define — Matrix definition, operators, and functions 4

matrix C=A*𝑠 or matrix C=𝑠*A, A: 𝑎 × 𝑏 and 𝑠 a Stata scalar (see [P] scalar) or a literal number,

returns C: 𝑎 × 𝑏 containing the elements of A each multiplied by 𝑠. The row and column names of C

are obtained from A. For example, matrix VC=MYMAT*2.5 multiplies each element of MYMAT by 2.5

and stores the result in VC.

/, meaning matrix division by scalar. matrix C=A/𝑠, A: 𝑎 × 𝑏 and 𝑠 a Stata scalar (see [P] scalar) or a
literal number, returns C: 𝑎 × 𝑏 containing the elements of A each divided by 𝑠. The row and column

names of C are obtained from A.

#, meaning the Kronecker product. matrixC=A#B, A: 𝑎×𝑏 and B: 𝑐 ×𝑑, returnsC: 𝑎𝑐 ×𝑏𝑑 containing

the Kronecker product A ⊗ B, all elementwise products of A and B. The upper-left submatrix of C

is the product 𝐴1,1B; the submatrix to the right is 𝐴1,2B; and so on. Row and column names are

obtained by using the subnames of A as resulting equation names and the subnames of B for the

subnames of C in each submatrix.

Nothing, meaning copy. matrix B=A copies A into B. The row and column names of B are obtained

from A. The matrix rename command (see [P]matrix utility) will rename instead of copy a matrix.

’, meaning transpose. matrix B=A’, A: 𝑟 × 𝑐, creates B: 𝑐 × 𝑟 containing the transpose of A. The row
names of B are obtained from the column names ofA and the column names of B from the row names

of A.

,, meaning join columns by row. matrixC=A,B,A: 𝑎×𝑏 and B: 𝑎×𝑐, returnsC: 𝑎×(𝑏+𝑐) containing
A in columns 1 through 𝑏 and B in columns 𝑏 + 1 through 𝑏 + 𝑐 (the columns of B are appended to

the columns of A). An error is issued if the matrices are not conformable. The row names of C are

obtained from A. The column names are obtained from A and B.

\, meaning join rows by column. matrixC=A\B,A: 𝑎×𝑏 and B: 𝑐×𝑏, returnsC: (𝑎+𝑐)×𝑏 containing
A in rows 1 through 𝑎 and B in rows 𝑎 + 1 through 𝑎 + 𝑐 (the rows of B are appended to the rows of

A). An error is issued if the matrices are not conformable. The column names of C are obtained from

A. The row names are obtained from A and B.

matrix define allows complicated matrix expressions. Parentheses may be used to control the order

of evaluation. The default order of precedence for the matrix operators (from highest to lowest) is

Matrix operator precedence

Operator Symbol

parentheses ()
transpose ’
negation -
Kronecker product #
division by scalar /
multiplication *
subtraction -
addition +
column join ,
row join \

https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pmatrixutility.pdf#pmatrixutility

matrix define — Matrix definition, operators, and functions 5

Example 2
The following examples are artificial but informative:

. matrix A = (1,2\3,4)

. matrix B = (5,7\9,2)

. matrix C = A+B

. matrix list C
C[2,2]

c1 c2
r1 6 9
r2 12 6
. matrix B = A-B
. matrix list B
B[2,2]

c1 c2
r1 -4 -5
r2 -6 2
. matrix X = (1,1\2,5\8,0\4,5)
. matrix C = 3*X*A’*B
. matrix list C
C[4,2]

c1 c2
r1 -162 -3
r2 -612 -24
r3 -528 24
r4 -744 -18
. matrix D = (X’*X - A’*A)/4
. matrix rownames D = dog cat // see [P] matrix rownames

. matrix colnames D = bark meow // see [P] matrix rownames

. matrix list D
symmetric D[2,2]

bark meow
dog 18.75
cat 4.25 7.75
. matrix rownames A = aa bb // see [P] matrix rownames

. matrix colnames A = alpha beta // see [P] matrix rownames

. matrix list A
A[2,2]

alpha beta
aa 1 2
bb 3 4
. matrix D=A#D
. matrix list D
D[4,4]

alpha: alpha: beta: beta:
bark meow bark meow

aa:dog 18.75 4.25 37.5 8.5
aa:cat 4.25 7.75 8.5 15.5
bb:dog 56.25 12.75 75 17
bb:cat 12.75 23.25 17 31
. matrix G=A,B\D

https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames
https://www.stata.com/manuals/pmatrixrownames.pdf#pmatrixrownames

matrix define — Matrix definition, operators, and functions 6

. matrix list G
G[6,4]

alpha beta c1 c2
aa 1 2 -4 -5
bb 3 4 -6 2

aa:dog 18.75 4.25 37.5 8.5
aa:cat 4.25 7.75 8.5 15.5
bb:dog 56.25 12.75 75 17
bb:cat 12.75 23.25 17 31
. matrix Z = (B - A)’*(B + A’*-B)/4
. matrix list Z
Z[2,2]

c1 c2
alpha -81 -1.5
beta -44.5 8.5

Technical note
Programmers: Watch out for confusion when combining ’, meaning to transpose with local macros,

where ’ is one of the characters that enclose macro names: ‘mname’. Stata will not become confused,
but you might. Compare:

. matrix ‘new1’ = ‘old’

and

. matrix ‘new2’ = ‘old’’

Matrix ‘new2’ contains matrix ‘old’, transposed. Stata will become confused if you type

. matrix ‘C’ = ‘A’\‘B’

because the backslash in front of the ‘B’ makes the macro processor take the left quote literally. No

substitution is ever made for ‘B’. Even worse, the macro processor assumes that the backslash was

meant for it and so removes the character! Pretend that ‘A’ contained a, ‘B’ contained b, and ‘C’
contained c. After substitution, the line would read

. matrix c = a‘B’

which is not at all what was intended. To make your meaning clear, put a space after the backslash,

. matrix ‘C’ = ‘A’\ ‘B’

which would then be expanded to read

. matrix c = a\ b

Matrix functions returning matrices
In addition to matrix operators, Stata has matrix functions, which allow expressions to be passed as

arguments. The following matrix functions are provided:

matrix A=I(dim) defines A as the dim × dim identity matrix, where dim is a scalar expression and

will be rounded to the nearest integer. For example, matrix A=I(3) defines A as the 3 × 3 identity

matrix.

matrix define — Matrix definition, operators, and functions 7

matrixA=J(r,c,z) definesA as an r×cmatrix containing elements z. r, c, and z are scalar expressions

with r and c rounded to the nearest integer. For example, matrix A=J(2,3,0) returns a 2×3 matrix

containing 0 for each element.

matrix L=cholesky(mexp) performs Cholesky decomposition. An error is issued if the matrix expres-

sion mexp does not evaluate to a square, symmetric matrix. For example, matrix L=cholesky(A)
produces the lower triangular (square root) matrix L, such that LL′ = A. The row and column names

of L are obtained from A.

matrix B=invsym(mexp), if mexp evaluates to a square, symmetric, and positive-definite matrix, re-

turns the inverse. If mexp does not evaluate to a positive-definite matrix, rows will be inverted until

the diagonal terms are zero or negative; the rows and columns corresponding to these terms will be

set to 0, producing a g2-inverse. The row names of B are obtained from the column names of mexp,

and the column names of B are obtained from the row names of mexp.

matrix B=inv(mexp), if mexp evaluates to a square but not necessarily symmetric or positive-definite

matrix, returns the inverse. A singular matrix will result in an error. The row names of B are obtained

from the column names of mexp, and the column names of B are obtained from the row names of

mexp. invsym() should be used in preference to inv(), which is less accurate, whenever possible.
(Also see [P] matrix svd for singular value decomposition.)

matrix B=sweep(mexp,n) applies the sweep operator to the nth row and column of the square matrix

resulting from the matrix expression mexp. n is a scalar expression and will be rounded to the nearest

integer. The names of B are obtained from mexp, except that the nth row and column names are

interchanged. For A: 𝑛 × 𝑛, B = sweep(A,k) produces B: 𝑛 × 𝑛, defined as

𝐵𝑘𝑘 = 1
𝐴𝑘𝑘

𝐵𝑖𝑘 = − 𝐴𝑖𝑘
𝐴𝑘𝑘

, 𝑖 ≠ 𝑘 (kth column)

𝐵𝑘𝑗 =
𝐴𝑖𝑗

𝐴𝑘𝑘
, 𝑗 ≠ 𝑘 (jth row)

𝐵𝑖𝑗 = 𝐴𝑖𝑗 −
𝐴𝑖𝑘𝐴𝑘𝑗

𝐴𝑘𝑘
, 𝑖 ≠ 𝑘, 𝑗 ≠ 𝑘

matrix B=corr(mexp), where mexp evaluates to a covariance matrix, stores the corresponding corre-

lation matrix in B. The row and column names are obtained from mexp.

matrix B=diag(mexp), where mexp evaluates to a row or column vector (1 × 𝑐 or 𝑐 × 1), creates

B: 𝑐 × 𝑐 with diagonal elements from mexp and off-diagonal elements 0. The row and column names

are obtained from the column names of mexp if mexp is a row vector or the row names if mexp is a

column vector.

matrixB=vec(mexp), wheremexp evaluates to an 𝑟×𝑐matrix, createsB: 𝑟𝑐×1 containing the elements

of mexp starting with the first column and proceeding column by column.

matrix B=vecdiag(mexp), where mexp evaluates to a square 𝑐 × 𝑐 matrix, creates B: 1× 𝑐 containing
the diagonal elements from mexp. vecdiag() is the opposite of diag(). The row name is set to r1.
The column names are obtained from the column names of mexp.

matrix B=vech(mexp), where mexp evaluates to an 𝑟 × 𝑟 matrix, creates B: 𝑟(𝑟 + 1)/2× 1 containing

the lower triangle elements of mexp.

https://www.stata.com/manuals/pmatrixsvd.pdf#pmatrixsvd

matrix define — Matrix definition, operators, and functions 8

matrix B=invvech(mexp), where mexp evaluates to an 𝑟(𝑟 + 1)/2 × 1 matrix, creates symmetric B:

𝑟 × 𝑟 from the elements of mexp.

matrix B=vecp(mexp), where mexp evaluates to an 𝑟 × 𝑟 matrix, creates B: 𝑟(𝑟 + 1)/2× 1 containing

the upper triangle elements of mexp.

matrix B=invvecp(mexp), where mexp evaluates to an 𝑟(𝑟 + 1)/2 × 1 matrix, creates symmetric B:

𝑟 × 𝑟 from the elements of mexp.

matrix B=matuniform(𝑟,𝑐) creates B: 𝑟 ×𝑐 containing uniformly distributed pseudorandom numbers

on the interval [0, 1].
matrix B=hadamard(mexp, nexp), where mexp and nexp evaluate to 𝑟 × 𝑐 matrices, creates a matrix

whose (𝑖, 𝑗) element ismexp[𝑖, 𝑗] ⋅nexp[𝑖, 𝑗]. Ifmexp and nexp do not evaluate to matrices of the same

size, this function reports a conformability error.

nullmat(B)may only be usedwith the row-join (,) and column-join (\) operators and informs Stata that
B might not exist. If B does not exist, the row-join or column-join operator simply returns the other

matrix-operator argument. An example of the use of nullmat() is given in [FN]Matrix functions.

matrix B=get(systemname) returns in B a copy of the Stata internal matrix systemname; see [P] ma-

trix get. You can obtain the coefficient vector and variance–covariance matrix after an estimation

command either with matrix get or by reference to e(b) and e(V).

Example 3
The examples are, once again, artificial but informative.

. matrix myid = I(3)

. matrix list myid
symmetric myid[3,3]

c1 c2 c3
r1 1
r2 0 1
r3 0 0 1
. matrix new = J(2,3,0)
. matrix list new
new[2,3]

c1 c2 c3
r1 0 0 0
r2 0 0 0
. matrix A = (1,2\2,5)
. matrix Ainv = invsym(A)
. matrix list Ainv
symmetric Ainv[2,2]

r1 r2
c1 5
c2 -2 1
. matrix L = cholesky(4*I(2) + A’*A)
. matrix list L
L[2,2]

c1 c2
c1 3 0
c2 4 4.1231056
. matrix B = (1,5,9\2,1,7\3,5,1)

https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctionsFunctionsnullmat()
https://www.stata.com/manuals/fnmatrixfunctions.pdf#fnMatrixfunctions
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget

matrix define — Matrix definition, operators, and functions 9

. matrix Binv = inv(B)

. matrix list Binv
Binv[3,3]

r1 r2 r3
c1 -.27419355 .32258065 .20967742
c2 .15322581 -.20967742 .08870968
c3 .05645161 .08064516 -.07258065
. matrix C = sweep(B,1)
. matrix list C
C[3,3]

r1 c2 c3
c1 1 5 9
r2 -2 -9 -11
r3 -3 -10 -26
. matrix C = sweep(C,1)
. matrix list C
C[3,3]

c1 c2 c3
r1 1 5 9
r2 2 1 7
r3 3 5 1
. matrix Cov = (36.6598,-3596.48\-3596.48,604030)
. matrix R = corr(Cov)
. matrix list R
symmetric R[2,2]

c1 c2
r1 1
r2 -.7642815 1
. matrix d = (1,2,3)
. matrix D = diag(d)
. matrix list D
symmetric D[3,3]

c1 c2 c3
c1 1
c2 0 2
c3 0 0 3
. matrix e = vec(D)
. matrix list e
e[9,1]

c1
c1:c1 1
c1:c2 0
c1:c3 0
c2:c1 0
c2:c2 2
c2:c3 0
c3:c1 0
c3:c2 0
c3:c3 3
. matrix f = vecdiag(D)
. matrix list f
f[1,3]

c1 c2 c3
r1 1 2 3

matrix define — Matrix definition, operators, and functions 10

. * matrix function arguments can be other matrix functions and expressions

. matrix G = diag(inv(B) * vecdiag(diag(d) + 4*sweep(B+J(3,3,10),2)’*I(3))’)

. matrix list G
symmetric G[3,3]

c1 c2 c3
c1 -3.2170088
c2 0 -7.686217
c3 0 0 2.3548387
. set seed 12345
. matrix U = matuniform(3,4)
. matrix list U
U[3,4]

c1 c2 c3 c4
r1 .35762972 .40044262 .68938332 .55973557
r2 .57445129 .20769053 .0286627 .68892448
r3 .46934336 .2071526 .00393225 .01302971
. matrix H = hadamard(B,C)
. matrix list H
H[3,3]

c1 c2 c3
r1 1 25 81
r2 4 1 49
r3 9 25 1

Matrix functions returning scalars
In addition to the above functions used with matrix define, which can be described as matrix func-

tions returning matrices, there are matrix functions that return mathematical scalars. The list of functions

that follow should be viewed as a continuation of [U] 13.3 Functions. If the functions listed below are

used in a scalar context (for example, used with display or generate), then A, B, . . . below stand for

matrix names (possibly as a string literal or string variable name—details later). If the functions below

are used in a matrix context (in matrix define for instance), then A, B, . . . may also stand for matrix

expressions.

rowsof(A) and colsof(A) return the number of rows or columns of A.

rownumb(A,string) and colnumb(A,string) return the row or column number associated with

the name specified by string. For instance, rownumb(MYMAT,”price”) returns the row num-

ber (say, 3) in MYMAT that has the name price (subname price and equation name blank).

colnumb(MYMAT,”out2:price”) returns the column number associated with the name out2:price
(subname price and equation name out2). If row or column name is not found, missing is returned.

rownumb() and colnumb() can also return the first row or column number associated with an equa-

tion name. For example, colnumb(MYMAT,”out2:”) returns the first column number in MYMAT that

has equation name out2. Missing is returned if the equation name out2 is not found.

trace(A) returns the sum of the diagonal elements of square matrix A. If A is not square, missing is

returned.

det(A) returns the determinant of square matrix A. The determinant is the volume of the (𝑝 − 1)-

dimensional manifold described by the matrix in 𝑝-dimensional space. If A is not square, missing is

returned.

https://www.stata.com/manuals/u13.pdf#u13.3Functions

matrix define — Matrix definition, operators, and functions 11

diag0cnt(A) returns the number of zeros on the diagonal of the square matrix A. If A is not square,

missing is returned.

issymmetric(A) returns 1 if the matrix is symmetric and 0 otherwise.

matmissing(A) returns 1 if any elements of the matrix are missing and 0 otherwise.

mreldif(A,B) returns the relative difference of matrix A and B. If A and B do not have the same

dimensions, missing is returned. The matrix relative difference is defined as

max𝑖,𝑗 (|A[𝑖, 𝑗] − B[𝑖, 𝑗]|
|B[𝑖, 𝑗]| + 1

)

el(A,𝑖,𝑗) and A[𝑖,𝑗] return the (𝑖, 𝑗) element of A. Usually either construct may be used;

el(MYMAT,2,3) and MYMAT[2,3] are equivalent, although MYMAT[2,3] is more readable. For the

second construct, however, A must be a matrix name—it cannot be a string literal or string variable.

The first construct allows A to be a matrix name, string literal, or string variable. For instance, as-

sume that mymat (as opposed to MYMAT) is a string variable in the dataset containing matrix names.

mymat[2,3] refers to the (2, 3) element of the matrix named mymat, a matrix that probably does not
exist, and so produces an error. el(mymat,2,3) refers to the data variable mymat; the contents of
that variable will be taken to obtain the matrix name, and el() will then return the (2, 3) element
of that matrix. If that matrix does not exist, Stata will not issue an error; because you referred to it

indirectly, the el() function will return missing.

In either construct, 𝑖 and 𝑗may be any expression (an exp) evaluating to a real. MYMAT[2,3+1] returns
the (2, 4) element. In programs that loop, you might refer to MYMAT[‘i’,‘j’+1].

In a matrix context (such as matrix define), the first argument of el() may be a matrix expression.

For instance, matrix A = B*el(B-C,1,1) is allowed, but display el(B-C,1,1) would be an

error because display is in a scalar context.

The matrix functions returning scalars defined above can be used in any context that allows an expres-

sion—what is abbreviated exp in the syntax diagrams throughout this manual. For instance, trace()
returns the (scalar) trace of a matrix. Say that you have a matrix called MYX. You could type

. generate tr = trace(MYX)

although this would be a silly thing to do. It would force Stata to evaluate the trace of the matrix many

times, once for each observation in the data, and it would then store that same result over and over again in

the new data variable tr. But you could do it because, if you examine the syntax diagram for generate
(see [D] generate), generate allows an exp.

If you just wanted to see the trace of MYX, you could type

. display trace(MYX)

because the syntax diagram for display also allows an exp; see [P] display. You could do either of the

following:

. local tr = trace(MYX)

. scalar tr = trace(MYX)

This is more useful because it will evaluate the trace only once and then store the result. In the first case,

the result will be stored in a local macro (see [P]macro); in the second, it will be stored in a Stata scalar

(see [P] scalar).

https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pscalar.pdf#pscalar

matrix define — Matrix definition, operators, and functions 12

Example 4
Storing the number as a scalar is better for two reasons: it is more accurate (scalars are stored in

double precision), and it is faster (macros are stored as printable characters, and this conversion is a

time-consuming operation). Not too much should be made of the accuracy issue; macros are stored with

at least 13 digits, but it can sometimes make a difference.

In any case, let’s demonstrate that both methods work by using the simple trace function:

. matrix A = (1,6\8,4)

. local tr = trace(A)

. display ‘tr’
5
. scalar sctr = trace(A)
. scalar list sctr

sctr = 5

Subscripting and element-by-element definition
matrix B=A[𝑟1,𝑟2], for range expressions 𝑟1 and 𝑟2 (defined below), extracts a submatrix from A and

stores it in B. Row and column names of B are obtained from the extracted rows and columns of A.

In what follows, assume that A is 𝑎 × 𝑏.
A range expression can be a literal number. For example, matrix B=A[1,2] would return a 1 × 1

matrix containing 𝐴1,2.

A range expression can be a number followed by two periods followed by another number, meaning

the rows or columns from the first number to the second. For example, matrix B=A[2..4,1..5]
would return a 3 × 5 matrix containing the second through fourth rows and the first through fifth

columns of A.

A range expression can be a number followed by three periods, meaning all the remaining rows or

columns from that number. For example, matrix B=A[3,4...] would return a 1 × 𝑏 − 3 matrix

(row vector) containing the fourth through last elements of the third row of A.

A range expression can be a quoted string, in which case it refers to the row or column with the

specified name. For example, matrix B=A[”price”,”mpg”] returns a 1 × 1 matrix contain-

ing the element whose row name is price and column name is mpg, which would be the same

as matrix B=A[2,3] if the second row were named price and the third column mpg. matrix
B=A[”price”,1...] would return the 1 × 𝑏 vector corresponding to the row named price. In

either case, if there is no matrix row or column with the specified name, an error is issued, and the

return code is set to 111. If the row or column names include both an equation name and a subname,

the fully qualified name must be specified, as in matrix B=A[”eq1:price”,1...].

A range expression can be a quoted string containing only an equation name, in which case it refers to

all rows or columns with the specified equation name. For example, matrix B=A[”eq1:”,”eq1:”]
would return the submatrix of rows and columns that have equation names eq1.

A range expression containing a quoted string referring to an element (not to an entire

equation) can be combined with the .. and ... syntaxes above: For example, matrix
B=A[”price”...,”price”...] would define B as the submatrix of A beginning with the rows

matrix define — Matrix definition, operators, and functions 13

and columns corresponding to price. matrix B=A[”price”..”mpg”,”price”..”mpg”] would

define B as the submatrix of A starting at rows and columns corresponding to price and continuing

through the rows and columns corresponding to mpg.

A range expression can be mixed. For example, matrix B=A[1..”price”,2] defines B as the

column vector extracted from the second column ofA containing the first element through the element

corresponding to price.

Scalar expressions may be used in place of literal numbers. The resulting number will be rounded to

the nearest integer. Subscripting with scalar expressions may be used in any expression context (such

as generate or replace). Subscripting with row and column names may be used only in a matrix

expression context. This is really not a constraint; see the rownumb() and colnumb() functions

discussed previously in the section titled Matrix functions returning scalars.

matrix A[r,c]=exp changes the r,c element ofA to contain the result of the evaluated scalar expression,

as defined in [U] 13 Functions and expressions, and as further defined in Matrix functions returning

scalars. r and c may be scalar expressions and will be rounded to the nearest integer. The matrix A

must already exist; the matrix function J() can be used to achieve this.

matrix A[r,c]=mexp places the matrix resulting from the mexp matrix expression into the already ex-

isting matrix A, with the upper-left corner of the mexp matrix located at the r,c element of A. If there

is not enough room to place the mexp matrix at that location, a conformability error will be issued,

and the return code will be set to 503. r and c may be scalar expressions and will be rounded to the

nearest integer.

Example 5
Continuing with our artificial but informative examples,

. matrix A = (1,2,3,4\5,6,7,8\9,10,11,12\13,14,15,16)

. matrix rownames A = mercury venus earth mars

. matrix colnames A = poor average good exc

. matrix list A
A[4,4]

poor average good exc
mercury 1 2 3 4

venus 5 6 7 8
earth 9 10 11 12
mars 13 14 15 16

. matrix b = A[1,2..3]

. matrix list b
b[1,2]

average good
mercury 2 3
. matrix b = A[2...,1..3]
. matrix list b
b[3,3]

poor average good
venus 5 6 7
earth 9 10 11
mars 13 14 15

. matrix b = A[”venus”..”earth”,”average”...]

https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefineRemarksandexamplesMatrixfunctionsreturningscalars
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefineRemarksandexamplesMatrixfunctionsreturningscalars
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefineRemarksandexamplesMatrixfunctionsreturningscalars

matrix define — Matrix definition, operators, and functions 14

. matrix list b
b[2,3]

average good exc
venus 6 7 8
earth 10 11 12
. matrix b = A[”mars”,2...]
. matrix list b
b[1,3]

average good exc
mars 14 15 16
. matrix b = A[sqrt(9)+1..substr(”xmars”,2,4),2.8..2*2] /* strange but valid */
. matrix list b
b[1,2]

good exc
mars 15 16
. matrix rownames A = eq1:alpha eq1:beta eq2:alpha eq2:beta
. matrix colnames A = eq1:one eq1:two eq2:one eq2:two
. matrix list A
A[4,4]

eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 3 4
eq1:beta 5 6 7 8

eq2:alpha 9 10 11 12
eq2:beta 13 14 15 16

. matrix b = A[”eq1:”,”eq2:”]

. matrix list b
b[2,2]

eq2: eq2:
one two

eq1:alpha 3 4
eq1:beta 7 8

. matrix A[3,2] = sqrt(9)

. matrix list A
A[4,4]

eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 3 4
eq1:beta 5 6 7 8

eq2:alpha 9 3 11 12
eq2:beta 13 14 15 16

. matrix X = (-3,0\-1,-6)

. matrix A[1,3] = X

. matrix list A
A[4,4]

eq1: eq1: eq2: eq2:
one two one two

eq1:alpha 1 2 -3 0
eq1:beta 5 6 -1 -6

eq2:alpha 9 3 11 12
eq2:beta 13 14 15 16

matrix define — Matrix definition, operators, and functions 15

Technical note
matrix A[𝑖,𝑗]=exp can be used to implement matrix formulas that perhaps Stata does not have built

in. Let’s pretend that Stata could not multiply matrices. We could still multiply matrices, and after some

work, we could do so conveniently. Given two matrices, A: 𝑎 × 𝑏 and B: 𝑏 × 𝑐, the (𝑖, 𝑗) element of
C = AB, C: 𝑎 × 𝑐, is defined as

𝐶𝑖𝑗 =
𝑏

∑
𝑘=1

𝐴𝑖𝑘𝐵𝑘𝑗

Here is a Stata program to make that calculation:

program matmult // arguments A B C, creates C=A*B
version 19.5 // (or version 19 if you do not have StataNow)
args A B C // unload arguments into better names
if colsof(‘A’)!=rowsof(‘B’) { // check conformability

error 503
}
local a = rowsof(‘A’) // obtain dimensioning information
local b = colsof(‘A’) // see Matrix functions returning
local c = colsof(‘B’) // scalars above
matrix ‘C’ = J(‘a’,‘c’,0) // create result containing 0s
forvalues i = 1/‘a’ {

forvalues ‘j’ = 1/‘c’ {
forvalues ‘k’ = 1/‘b’ {

matrix ‘C’[‘i’,‘j’] = ‘C’[‘i’,‘j’] + /*
/ ‘A’[‘i’,‘k’]‘B’[‘k’,‘j’]

}
}

}
end

Now if in some other program, we needed to multiply matrix XXI by Xy to form result beta, we could
type matmult XXI Xy beta and never use Stata’s built-in method for multiplying matrices (matrix
beta=XXI*Xy). If we typed the program matmult into a file named matmult.ado, we would not even
have to bother to load matmult before using it—it would be loaded automatically; see [U] 17Ado-files.

Name conflicts in expressions (namespaces)
See [P] matrix for a description of namespaces. A matrix might have the same name as a variable in

the dataset, and if it does, Stata might appear confused when evaluating an expression (an exp). When the

names conflict, Stata uses the rule that it always takes the data-variable interpretation. You can override

this.

First, when working interactively, you can avoid the problem by simply naming your matrices differ-

ently from your variables.

Second, when writing programs, you can avoid name conflicts by obtaining names for matrices from

tempname; see [P] macro.

Third, whether working interactively or writing programs, when using names that might conflict, you

can use the matrix() pseudofunction to force Stata to take the matrix-name interpretation.

matrix(name) says that name is to be interpreted as a matrix name. For instance, consider the

statement local new=trace(xx). This might work and it might not. If xx is a matrix and there is no

variable named xx in your dataset, it will work. If there is also a numeric variable named xx in your

dataset, it will not work. Typing the statement will produce a type-mismatch error—Stata assumes that

https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefineRemarksandexamplesMatrixfunctionsreturningscalars
https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefineRemarksandexamplesMatrixfunctionsreturningscalars
https://www.stata.com/manuals/u17.pdf#u17Ado-files
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pmacro.pdf#pmacro

matrix define — Matrix definition, operators, and functions 16

when you type xx, you are referring to the data variable xx because there is a data variable xx. Typing
local new=trace(matrix(xx)) will then produce the desired result. When writing programs using

matrix names not obtained from tempname, you are strongly advised to state explicitly that all matrix

names are indeed matrix names by using the matrix() function.

The only exception to this recommendation has to do with the construct A[𝑖,𝑗]. The two subscripts
indicate to Stata that A must be a matrix name and not an attempt to subscript a variable, so matrix()
is not needed. This exception applies only to A[𝑖,𝑗]; it does not apply to el(A,𝑖,𝑗), which would be
more safely written as el(matrix(A),𝑖,𝑗).

Technical note
The matrix() and scalar() pseudofunctions (see [P] scalar) are really the same function, but you do

not need to understand this fine point to program Stata successfully. Understanding this might, however,

lead to producing more readable code. The formal definition is this:

scalar(exp) (and therefore matrix(exp)) evaluates exp but restricts Stata to interpreting all names
in exp as scalar or matrix names. Scalars and matrices share the same namespace.

Therefore, because scalar() and matrix() are the same function, typing trace(matrix(xx)) or

trace(scalar(xx))would do the same thing, even though the second lookswrong. Because scalar()
and matrix() allow an exp, you could also type scalar(trace(xx)) and achieve the same result.

scalar() evaluates the exp inside the parentheses: it merely restricts how names are interpreted, so

now trace(xx) clearly means the trace of the matrix named xx.

How can you make your code more readable? Pretend that you wanted to calculate the trace plus the

determinant of matrix xx and store it in the Stata scalar named tpd (no, there is no reason you would

ever want to make such a silly calculation). You are writing a program and want to protect yourself from

xx also existing in the dataset. One solution would be

scalar tpd = trace(matrix(xx)) + det(matrix(xx))

Knowing the full interpretation rule, however, you realize that you can shorten this to

scalar tpd = matrix(trace(xx) + det(xx))

and then, to make it more readable, you substitute scalar() for matrix():

scalar tpd = scalar(trace(xx) + det(xx))

Macro functions
The following macro functions (see [P] macro) are also defined:

rownames A and colnames A return a list of all the row or column subnames (with time-series operators

if applicable) of A, separated by single blanks. The equation names, even if present, are not included.

roweq A and coleq A return a list of all the row equation names or column equation names of A, sepa-

rated by single blanks, and with each name appearing however many times it appears in the matrix.

rowfullnames A and colfullnames A return a list of all the row or column names, including equation

names of A, separated by single blanks.

https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pmacro.pdf#pmacro

matrix define — Matrix definition, operators, and functions 17

Example 6
These functions are provided as macro functions and standard expression functions because Stata’s

expression evaluator works only with strings of no more than 2,045 characters, something not true of

Stata’s macro parser. A matrix with many rows or columns can produce an exceedingly long list of

names.

In sophisticated programming situations, you sometimes want to process the matrices by row and

column names rather than by row and column numbers. Assume that you are programming and have

two matrices, xx and yy. You know that they contain the same column names, but they might be in a

different order. You want to reorganize yy to be in the same order as xx. The following code fragment
will create ‘newyy’ (a matrix name obtained from tempname) containing yy in the same order as xx:

tempname newyy newcol
local names : colfullnames(xx)
foreach name of local names {

local j = colnumb(yy,”‘name’”)
if ‘j’>=. {

display as error ”column for ‘name’ not found”
exit 111

}
matrix ‘newcol’ = yy[1...,‘j’]
matrix ‘newyy’ = nullmat(‘newyy’),‘newcol’

}

Reference
Spinelli, D. 2023. Improving flexibility and ease of matrix subsetting: The submatrix command. Stata Journal 23:

1045–1056.

Also see
[P] macro — Macro definition and manipulation

[P] matrix — Introduction to matrix commands

[P] matrix get —Access system matrices

[P] matrix utility — List, rename, and drop matrices

[P] scalar — Scalar variables

[U] 13.3 Functions

[U] 14 Matrix expressions

Mata Reference Manual

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1177/1536867X231212439
https://www.stata.com/manuals/pmacro.pdf#pmacro
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pmatrixget.pdf#pmatrixget
https://www.stata.com/manuals/pmatrixutility.pdf#pmatrixutility
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/u13.pdf#u13.3Functions
https://www.stata.com/manuals/u14.pdf#u14Matrixexpressions
https://www.stata.com/manuals/m-0m.pdf#m-0mMata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

