
macro — Macro definition and manipulation

Description Syntax Remarks and examples References Also see

Description
global assigns strings to specified global macro names (mnames). local assigns strings to local

macro names (lclnames). Both double quotes (” and ”) and compound double quotes (‘” and ”’) are
allowed; see [U] 18.3.5 Double quotes. If the string has embedded quotes, compound double quotes are

needed.

tempvar assigns names to the specified local macro names that may be used as temporary variable

names in a dataset. When the program or do-file concludes, any variables with these assigned names are

dropped.

tempname assigns names to the specified local macro names that may be used as temporary local

macro, scalar, matrix, or frame names. When the program or do-file concludes, any local macros, scalars,

matrices, or frames with these assigned names are dropped.

tempfile assigns names to the specified local macro names that may be used as names for temporary

files. When the program or do-file concludes, any datasets created with these assigned names are erased.

macro manipulates global and local macros.

See [U] 18.3 Macros for information on macro substitution.

Syntax
global mname [= exp | :macro fcn | ”[string]” | ‘”[string]”’]

local lclname [= exp | :macro fcn | ”[string]” | ‘”[string]”’]

tempvar lclname [lclname [. . .]]

tempname lclname [lclname [. . .]]

tempfile lclname [lclname [. . .]]

local { ++lclname | –lclname }

macro dir

macro drop {mname [mname [. . .]] |mname* | all }

macro list [mname [mname [. . .]] | all]

macro shift [#]

[. . .]‘expansion optr’[. . .]

1

https://www.stata.com/manuals/u18.pdf#u18.3.5Doublequotes
https://www.stata.com/manuals/u18.pdf#u18.3Macros
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxmacro_fcn
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/pmacro.pdf#pmacroSyntaxmacro_fcn

macro — Macro definition and manipulation 2

where expansion optr is

lclname | ++lclname | lclname++ | –lclname | lclname– | =exp |

:macro fcn | .class directive | macval(lclname)

and where macro fcn is any of the following:

Macro function for extracting program properties

properties command

Macro function for extracting program results class

results command

Macro functions for extracting data attributes

{ type | format | value label | variable label } varname

data label

sortedby

label { valuelabelname | (varname) } { maxlength | # [#2] } [, strict]

constraint { # | dir }

char { varname[] | varname[charname]} or char { dta[] | dta[charname] }

Macro functions for extracting attributes of alias variables

isalias varname

type varname

aliasframe varname

aliaslinkname varname

aliasvarname varname

Macro function for naming variables

permname suggested name [, length(#)]

Macro functions for filenames and file paths

adosubdir [”]filename[”]

dir [”]dirname[”] { files | dirs | other}[”]pattern[”] [, nofail respectcase]

sysdir [STATA | BASE | SITE | PLUS | PERSONAL | dirname]

Macro function for accessing operating-system parameters

environment name

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions

macro — Macro definition and manipulation 3

Macro functions for names of stored results

e(scalars | macros | matrices | functions)

r(scalars | macros | matrices | functions)

s(macros)

all { globals | scalars | matrices } [”pattern”]

all { numeric | string } scalars [”pattern”]

Macro function for formatting results

display display directive

Macro function for manipulating lists

list macrolist directive

Macro functions related to matrices

{ rownames | colnames | rowfullnames | colfullnames } matname [, quoted]

{ roweq | coleq } matname [, quoted]

{ rownumb | colnumb | roweqnumb | coleqnumb } matname string

{ rownfreeparms | colnfreeparms | rownlfs | colnlfs } matname

{ rowsof | colsof | rowvarlist | colvarlist } matname

{ rowlfnames | collfnames } matname [, quoted]

Macro function related to time-series operators

tsnorm string [, varname]

Macro function for copying a macro

copy { local | global } mname

Macro functions for parsing

word { count | # of } string

piece #piece number #length of pieces of [‘]”string”[’] [, nobreak]

strlen{ local | global } mname

ustrlen{ local | global } mname

udstrlen{ local | global } mname

subinstr { global mname2 | local lclname2 }

{ ”from” | ‘”from”’ } { ”to” | ‘”to”’ }

[, all count(global mname3 | local lclname3) word]

https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pmacrolists.pdf#pmacrolists

macro — Macro definition and manipulation 4

Remarks and examples
Remarks are presented under the following headings:

Formal definition of a macro
Global and local macro names
Macro assignment
Macro functions
Macro function for extracting program properties
Macro function for extracting program results class
Macro functions for extracting data attributes
Macro functions for extracting attributes of alias variables
Macro function for naming variables
Macro functions for filenames and file paths
Macro function for accessing operating-system parameters
Macro functions for names of stored results
Macro function for formatting results
Macro function for manipulating lists
Macro functions related to matrices
Macro function related to time-series operators
Macro function for copying a macro
Macro functions for parsing
Macro expansion operators and function
The tempvar, tempname, and tempfile commands

Temporary variables
Temporary scalars and matrices
Temporary files

Manipulation of macros
Macros as arguments

Macros are a tool used in programming Stata, and this entry assumes that you have read [U] 18 Pro-

gramming Stata and especially [U] 18.3 Macros. This entry concerns advanced issues not previously

covered.

Formal definition of a macro
Amacro has a macro name and macro contents. Everywhere a punctuated macro name appears in a

command—punctuation is defined below—the macro contents are substituted for the macro name.

Macros come in two types, global and local. Macro names are up to 32 characters long for global

macros and up to 31 characters long for local macros. The contents of global macros are defined with the

global command and those of local macros with the local command. Global macros, once defined, are

available anywhere in Stata. Local macros exist solely within the program or do-file in which they are

defined. If that program or do-file calls another program or do-file, the local macros previously defined

temporarily cease to exist, and their existence is reestablished when the calling program regains control.

When a program or do-file ends, its local macros are permanently deleted.

To substitute the macro contents of a global macro name, the macro name is typed (punctuated) with

a dollar sign ($) in front. To substitute the macro contents of a local macro name, the macro name is

typed (punctuated) with surrounding left and right single quotes (‘’). In either case, braces ({ }) can be
used to clarify meaning and to form nested constructions. When the contents of an undefined macro are

substituted, the macro name and punctuation are removed, and nothing is substituted in its place.

https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/u18.pdf#u18.3Macros

macro — Macro definition and manipulation 5

For example,

The input . . . is equivalent to . . .

global a ”myvar”
generate $a = oldvar generate myvar = oldvar
generate a = oldvar generate a = oldvar

local a ”myvar”
generate ‘a’ = oldvar generate myvar = oldvar
generate a = oldvar generate a = oldvar

global a ”newvar”
global i = 2
generate ai = oldvar generate newvar2 = oldvar

local a ”newvar”
local i = 2
generate ‘a’‘i’ = oldvar generate newvar2 = oldvar

global b1 ”newvar”
global i=1
generate ${b$i} = oldvar generate newvar = oldvar

local b1 ”newvar”
local i=1
generate ‘b‘i” = oldvar generate newvar = oldvar

global b1 ”newvar”
global a ”b”
global i = 1
generate ${$a$i} = oldvar generate newvar = oldvar

local b1 ”newvar”
local a ”b”
local i = 1
generate “a’‘i” = oldvar generate newvar = oldvar

Global and local macro names
What we say next is an exceedingly fine point: global macro names that begin with an underscore are

really local macros; this is why local macro names can have only 31 characters. The local command is

formally defined as equivalent to global . Thus the following are equivalent:

local x global x
local i=1 global i=1
local name ”Bill” global name ”Bill”
local fmt : format myvar global fmt : format myvar
local 3 ‘2’ global 3 $ 2

tempvar is formally defined as equivalent to local name : tempvar for each name specified after

tempvar. Thus
tempvar a b c

is equivalent to

local a : tempvar
local b : tempvar
local c : tempvar

macro — Macro definition and manipulation 6

which in turn is equivalent to

global _a : tempvar
global _b : tempvar
global _c : tempvar

tempfile is defined similarly.

Macro assignment
When you type

. local name ”something”

or

. local name ‘”something”’

something becomes the contents of the macro. The compound double quotes (‘” and ”’) are needed
when something itself contains quotation marks. In fact, if the string is anything more complex than

a single word, it is safest to enclose the string in compound quotes (‘” ”’). The outermost compound

quotes will be stripped, and all that remains will be assigned to name. Note that any embedded macro

references in something are expanded before assignment to name whether or not compound quotes are

used.

When you type

. local name = something

something is evaluated as an expression, and the result becomes the contents of the macro. Note the

presence and lack of the equal sign. That is, if you type

. local problem ”2+2”

. local result = 2+2

then problem contains 2+2, whereas result contains 4.

Finally, when you type

. local name : something

something is interpreted as a macro function. (Note the colon rather than nothing or the equal sign.) Of

course, all of this applies to global as well as to local.

local ++lclname, or local –lclname, is used to increment, or decrement, lclname. For instance,

typing

. local ++x

is equivalent to typing

. local x = ‘x’ + 1

macro — Macro definition and manipulation 7

Macro functions
Macro functions are of the form

. local mname : ...

For instance,

. local x : type mpg

. local y : sortedby

. local z : display %9.4f sqrt(2)

We document the macro functions below. Macro functions are typically used in programs, but you can

experiment with them interactively. For instance, if you are unsure what ‘local x : type mpg’ does,
you could type

. local x : type mpg

. display ”‘x’”
int

Macro function for extracting program properties
properties command

returns the properties declared for command; see [P] program properties.

Macro function for extracting program results class
results command

returns the results class—nclass, eclass, rclass, or sclass—declared for command; see [P] pro-

gram.

Macro functions for extracting data attributes
type varname

returns the storage type of varname, which might be int, long, float, double, str1, str2, etc. If
varname is an alias variable, type returns the storage type of the linked variable or unknown if the

linked variable cannot be found.

format varname

returns the display format associated with varname, for instance, %9.0g or %12s.

value label varname

returns the name of the value label associated with varname, which might be “ ” (meaning no label),

or, for example, make, meaning that the value label’s name is make.

variable label varname

returns the variable label associated with varname, which might be “ ” (meaning no label), or, for

example, Repair Record 1978.

data label
returns the dataset label associated with the dataset currently in memory, which might be “ ” (meaning

no label), or, for example, 1978 automobile data. See [D] label.

https://www.stata.com/manuals/pprogramproperties.pdf#pprogramproperties
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pglossary.pdf#pGlossaryalias
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dlabel.pdf#dlabel

macro — Macro definition and manipulation 8

sortedby
returns the names of the variables by which the data in memory are currently sorted, which might be

“ ” (meaning not sorted), or, for example, foreign mpg, meaning that the data are in the order of the

variable foreign, and, within that, in the order of mpg (the order that would be obtained from the

Stata command sort foreign mpg). See [D] sort.

label valuelabelname { maxlength | # [#2] } [, strict]
returns the label value of # in valuelabelname. For instance, label forlab 1 might return Foreign
cars if forlabwere the name of a value label and 1mapped to “Foreign cars”. If 1 did not correspond

to any mapping within the value label, or if the value label forlab were not defined, 1 (the # itself)

would be returned.

#2 optionally specifies the maximum length of the label to be returned. If label forlab 1 would

return Foreign cars, then label forlab 1 6 would return Foreig.

maxlength specifies that, rather than looking up a number in a value label, label return themaximum

length of the labelings. For instance, if value label yesno mapped 0 to no and 1 to yes, then its

maxlength would be 3 because yes is the longest label and it has three characters.

strict specifies that nothing is to be returned if there is no value label for #.

label (varname) { maxlength | # [#2] } [, strict]
works exactly as the above, except that rather than specifying the valuelabelname directly, you indi-

rectly specify it. The value label name associated with varname is used, if there is one. If not, it is

treated just as if valuelabelname were undefined, and the number itself is returned.

constraint { # | dir }
gives information on constraints.

constraint # puts constraint # in mname or returns “ ” if constraint # is not defined. constraint #

for # < 0 is an error.

constraint dir returns an unsorted numerical list of those constraints that are currently defined.

For example,

. constraint 1 price = weight

. constraint 2 mpg > 20

. local myname : constraint 2

. macro list _myname
_myname: mpg > 20
. local aname : constraint dir
. macro list _aname
_aname: 2 1

char { varname[] | varname[charname]} or char { dta[] | dta[charname]}
returns information on the characteristics of a dataset; see [P] char. For instance,

. sysuse auto
(1978 automobile data)
. char mpg[one] ”this”
. char mpg[two] ”that”
. local x : char mpg[one]
. di ”‘x’”
this
. local x : char mpg[nosuch]
. di ”‘x’”

https://www.stata.com/manuals/dsort.pdf#dsort
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/pchar.pdf#pchar

macro — Macro definition and manipulation 9

. local x : char mpg[]

. di ”‘x’”
two one

Macro functions for extracting attributes of alias variables
In the following setup, we link the default frame to a target frame and create alias variables using

this linkage. Specifically, we create a new frame named target, then populate it with the auto data and
a new variable id that uniquely identifies the observations. In the current frame named default, we
set the observations, create a variable named id that identifies observations in the target frame, then

use frlink and id to create a link to frame target, naming the linking variable link. Finally, we use
fralias add and the linking variable link to create alias variables that are linked to frame target.
With option prefix(l), the names of the new alias variables are l make and l headroom.

. frame create target

. frame target {

. quietly sysuse auto

. generate id = _n

. }

. set obs 74
Number of observations (_N) was 0, now 74.
. generate id = _n
. frlink 1:1 id, frame(target) generate(link)
(all observations in frame default matched)
. fralias add make headroom, from(link) prefix(l_)
(2 variables aliased from linked frame)

isalias varname

returns 1 when varname is an alias variable, 0 otherwise.

. local x : isalias l_make

. display ”‘x’”
1
. local x : isalias l_headroom
. display ”‘x’”
1
. local x : isalias link
. display ”‘x’”
0

type varname

returns the storage type of the variable that varname is linked to, when varname is an alias variable.

If the linked variable cannot be found, then type returns unknown.

. local x : type l_make

. display ”‘x’”
str18
. local x : type l_headroom
. display ”‘x’”
float
. * break the link
. rename link junk

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

macro — Macro definition and manipulation 10

. local x : type l_make

. display ”‘x’”
unknown
. * restore the link
. rename junk link

aliasframe varname

returns the name of the frame that varname is linked to. If varname is not an alias variable, or the

linking variable cannot be found, then aliasframe returns an empty string.

. local x : aliasframe l_make

. display ”‘x’”
target
. * break the link
. rename link junk
. local x : aliasframe l_make
. display ”‘x’”

. * restore the link

. rename junk link

aliaslinkname varname

returns the name of the linking variable that was used to create varname. If varname is not an alias

variable, then aliaslinkname returns an empty string.

. local x : aliaslinkname l_make

. display ”‘x’”
link

aliasvarname varname

returns the name of the variable that varname is linked to. If varname is not an alias variable, then

aliasvarname returns an empty string.

. local x : aliasvarname l_make

. display ”‘x’”
make
. local x : aliasvarname l_headroom
. display ”‘x’”
headroom

Macro function for naming variables
permname suggested name [, length(#)]

returns a valid new variable name based on suggested name in mname, where suggested namemust

follow naming conventions but may be too long or correspond to an already existing variable.

length(#) specifies the maximum length of the returned variable name, which must be between 8

and 32. length(32) is the default. For instance,

. local myname : permname foreign

. macro list _myname
_myname: foreign1
.local aname : permname displacement, length(8)
. macro list _aname
_aname: displace

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists

macro — Macro definition and manipulation 11

Macro functions for filenames and file paths
adosubdir [”]filename[”]

puts inmname the subdirectory in which Stata would search for this file along the ado-path. Typically,

the directory name would be the first letter of filename. However, certain files may result in a different

name depending on their extension.

dir [”]dirname[”] { files | dirs | other } [”]pattern[”] [, nofail respectcase]
puts in mname the specified files, directories, or entries that are neither files nor directories, from

directory dirname and matching pattern pattern, where the pattern matching is defined by Stata’s

strmatch(𝑠1,𝑠2) function; see [FN] String functions. The quotes in the command are optional

but recommended, and they are nearly always required surrounding pattern. The returned string will

contain each of the names, separated one from the other by spaces and each enclosed in double quotes.

If mname is subsequently used in a quoted context, it must be enclosed in compound double quotes:

‘”‘mname’”’.

The nofail option specifies that if the directory contains too many filenames to fit into a macro,

rather than issuing an error message, the filenames that fit into mname should be returned. nofail
should rarely, if ever, be specified.

In Windows only, the respectcase option specifies that dir respect the case of filenames when

performing matches. Unlike other operating systems, Windows has, by default, case-insensitive file-

names. respectcase is ignored in operating systems other than Windows.

For example,

local list : dir . files ”*”makes a list of all regular files in the current directory. In listmight

be returned ”subjects.dta” ”step1.do” ”step2.do” ”reest.ado”.

local list : dir . files ”s*”, respectcase in Windows makes a list of all regular files in the

current directory that begin with a lowercase “s”. The case of characters in the filenames is preserved.

InWindows, without the respectcase option, all filenames would be converted to lowercase before

being compared with pattern and possibly returned.

local list : dir . dirs ”*” makes a list of all subdirectories of the current directory. In list
might be returned ”notes” ”subpanel”.

local list : dir . other ”*” makes a list of all things that are neither regular files nor directories.

These files rarely occur and might be, for instance, Unix device drivers.

local list : dir ”\mydir\data” files ”*” makes a list of all regular files that are to be found

in \mydir\data. Returned might be ”example.dta” ”make.do” ”analyze.do”.

It is the names of the files that are returned, not their full path names.

local list : dir ”subdir” files ”*” makes a list of all regular files that are to be found in

subdir of the current directory.

sysdir [STATA | BASE | SITE | PLUS | PERSONAL]
returns the various Stata system directory paths; see [P] sysdir. The path is returned with a trailing

separator; for example, sysdir STATA might return D:\PROGRAMS\STATA\.

sysdir dirname

returns dirname. This function is used to code local x : sysdir ‘dir’, where ‘dir’ might contain

the name of a directory specified by a user or a keyword, such as STATA or BASE. The appropriate
directory name will be returned. The path is returned with a trailing separator.

https://www.stata.com/manuals/u11.pdf#u11.6Filenamingconventions
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrmatch()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
https://www.stata.com/manuals/psysdir.pdf#psysdir

macro — Macro definition and manipulation 12

Macro function for accessing operating-system parameters
environment name

returns the contents of the operating system’s environment variable named name, or “ ” if name is

undefined.

Macro functions for names of stored results
e(scalars | macros | matrices | functions)

returns the names of all the stored results in e() of the specified type, with the names listed one after

the other and separated by one space. For instance, e(scalars) might return N ll 0 ll df m chi2
r2 p, meaning that scalar stored results e(N), e(ll 0), . . . exist.

r(scalars | macros | matrices | functions)
returns the names of all the stored results in r() of the specified type.

s(macros)
returns the names of all the stored results in s() of type macro, which is the only type that exists

within s().

all { globals | scalars | matrices } [”pattern”]
puts in mname the specified globals, scalars, or matrices that match the pattern, where the pattern

matching is defined by Stata’s strmatch(𝑠1,𝑠2) function; see [FN] String functions.

all { numeric | string } scalars [”pattern”]
puts inmname the specified numeric or string scalars that match the pattern, where the pattern match-

ing is defined by Stata’s strmatch(𝑠1,𝑠2) function; see [FN] String functions.

Macro function for formatting results
display display directive

returns the results from the display command. The display function is the display command,

except that the output is rerouted to a macro rather than to the screen.

You can use all the features of display that make sense. That is, you may not set styles with as style

because macros do not have colors, you may not use continue to suppress going to a new line on

the real display (it is not being displayed), you may not use newline (for the same reason), and you

may not use request to obtain input from the console (because input and output have nothing to do

with macro definition). Everything else works. See [P] display.

Example:

local x : display %9.4f sqrt(2)

Macro function for manipulating lists
list macrolist directive

fills in mname with the macrolist directive, which specifies one of many available commands or

operators for working with macros that contain lists; see [P] macro lists.

https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrmatch()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctionsstrmatch()
https://www.stata.com/manuals/fnstringfunctions.pdf#fnStringfunctions
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pmacrolists.pdf#pmacrolists
https://www.stata.com/manuals/pmacrolists.pdf#pmacrolists

macro — Macro definition and manipulation 13

Macro functions related to matrices
In understanding the functions below, remember that the fullname of a matrix row or column is defined

as eqname:name. For instance, fullname might be outcome:weight, and then the eqname is outcome
and the name is weight. Or the fullnamemight be gnp:L.cpi, and then the eqname is gnp and the name

is L.cpi. Or the fullnamemight be mpg, in which case the eqname is “ ” and the name is mpg. Or the full-
name might be gnp:1.south#1.smsa, and then the eqname is gnp and the name is 1.south#1.smsa.
For more information, see [P] matrix define.

rownames matname [, quoted]
returns the names of the rows of matname, listed one after another and separated by one space. As

many names are listed as there are rows of matname. quoted specifies that row names be enclosed

in double quotes.

colnames matname [, quoted]
is like rownames but returns the names of the columns.

rowfullnames matname [, quoted]
returns the full names of the rows of matname, listed one after another and separated by one space.

As many full names are listed as there are rows of matname. quoted specifies that full names be

enclosed in double quotes.

colfullnames matname [, quoted]
is like rowfullnames but returns the full names of the columns.

roweq matname [, quoted]
returns the equation names of the columns of matname, listed one after another and separated by one

space. As many names are listed as there are columns of matname. If the eqname of a column is

blank, (underscore) is substituted. Thus roweq might return “Poor Poor Poor Average Average
Average” for one matrix and “ ” for another. quoted specifies that equation names be

enclosed in double quotes.

coleq matname [, quoted]
is like roweq but returns the equation names of the columns.

rownumb matname string

returns the row number of matname that matches string.

colnumb matname string

is like rownumb but returns the column number of matname.

roweqnumb matname string

returns the row equation number of matname that matches string.

coleqnumb matname string

is like roweqnumb but returns the column equation number of matname.

rownfreeparms matname

returns the number of free parameters in rows of matname.

colnfreeparms matname

returns the number of free parameters in columns of matname.

rownlfs matname

returns the number of linear forms among the rows of matname.

colnlfs matname

returns the number of linear forms among the columns of matname.

https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine

macro — Macro definition and manipulation 14

rowsof matname

returns the number of rows of matname.

colsof matname

returns the number of columns of matname.

rowvarlist matname

returns the variable list corresponding to the rows of matname.

colvarlist matname

returns the variable list corresponding to the columns of matname.

rowlfnames matname [, quoted]
returns the list of names corresponding to the linear forms in the rows of matname.

collfnames matname [, quoted]
returns the list of names corresponding to the linear forms in the columns of matname.

In all cases, matname may be either a Stata matrix name or a matrix stored in e() or r(), such as e(b)
or e(V).

Macro function related to time-series operators
tsnorm string

returns the canonical form of string when string is interpreted as a time-series operator. For instance,

if string is ldl, then L2D is returned, or if string is l.ldl, then L3D is returned. If string is nothing,

“ ” is returned.

tsnorm string, varname
returns the canonical form of string when string is interpreted as a time-series–operated variable. For

instance, if string is ldl.gnp, then L2D.gnp is returned, or if string is l.ldl.gnp, then L3D.gnp is

returned. If string is just a variable name, then the variable name is returned.

Macro function for copying a macro
copy { local | global } mname

returns a copy of the contents of mname, or an empty string if mname is undefined.

Macro functions for parsing
word count string

returns the number of tokens in string. A token is a word (characters separated by spaces) or set of

words enclosed in quotes. Do not enclose string in double quotes because word count will return 1.

word # of string

returns the #th token of string. Do not enclose string in double quotes.

piece #1 #2 of ”string”[, nobreak]
returns a piece of string. This macro function provides a smart method of breaking a string into

pieces of roughly the specified display columns. #1 specifies which piece to obtain. #2 specifies the

maximum number of display columns of each piece. Each piece is built trying to fill to the maximum

number of display columns without breaking in the middle of a word. However, when a word takes

more display columns than #2, the word will be split unless nobreak is specified. nobreak specifies

that words not be broken, even if that would result in a string being displayed in more than #2 columns.

https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

macro — Macro definition and manipulation 15

Compound double quotes may be used around string andmust be usedwhen string itself might contain

double quotes.

strlen { local | global } mname

returns the length of the contents of mname in bytes. If mname is undefined, then 0 is returned. For

instance,

. constraint 1 price = weight

. local myname : constraint 1

. macro list _myname
_myname price = weight
. local lmyname : strlen local myname
. macro list _lmyname
_lmyname: 14

ustrlen { local | global } mname

returns the length of the contents of mname in Unicode characters. If mname is undefined, then 0 is

returned.

udstrlen { local | global } mname

returns the length of the contents of mname in display columns. If mname is undefined, then 0 is

returned.

subinstr local mname ”from” ”to”
returns the contents of mname, with the first occurrence of “from” changed to “to”.

subinstr local mname ”from” ”to”, all
does the same thing but changes all occurrences of “from” to “to”.

subinstr local mname ”from” ”to”, word
returns the contents of mname, with the first occurrence of the word “from” changed to “to”. A word

is defined as a space-separated token or a token at the beginning or end of the string.

subinstr local mname ”from” ”to”, all word
does the same thing but changes all occurrences of the word “from” to “to”.

subinstr global mname . . .

is the same as the above but obtains the original string from the global macro $mname rather than from

the local macro mname.

subinstr . . . global mname . . ., . . . count({global | local} mname2)
in addition to the usual, places a count of the number of substitutions in the specified global or in local

macro mname2.

Example 1
. local string ”a or b or c or d”
. global newstr : subinstr local string ”c” ”sand”
. display ”$newstr”
a or b or sand or d
. local string2 : subinstr global newstr ”or” ”and”, all count(local n)
. display ”‘string2’”
a and b and sand and d
. display ”‘n’”
3
. local string3: subinstr local string2 ”and” ”x”, all word

https://www.stata.com/manuals/u12.pdf#u12.4.2.2DisplayingUnicodecharacters

macro — Macro definition and manipulation 16

. display ”‘string3’”
a x b x sand x d

The “and” in “sand” was not replaced by “x” because the word option was specified.

Macro expansion operators and function
There are five macro expansion operators that may be used within references to local (not global)

macros.

‘lclname++’ and ‘++lclname’ provide inline incrementation of local macro lclname. For example,

. local x 5

. display ”‘x++’”
5
. display ”‘x’”
6

++ can be place before lclname, in which case lclname is incremented before ‘lclname’ is evaluated.

. local x 5

. display ”‘++x’”
6
. display ”‘x’”
6

‘lclname–’ and ‘–lclname’ provide inline decrementation of local macro lclname.

‘=exp’ provides inline access to Stata’s expression evaluator. The Stata expression exp is evaluated and

the result substituted. For example,

. local alpha = 0.05

. regress mpg weight, level(‘=100*(1-‘alpha’)’)

‘:macro fcn’ provides inline access to Stata’s macro functions. ‘:macro fcn’ evaluates to the results

of the macro function macro fcn. For example,

. format ‘:format gear_ratio’ headroom

will set the display format of headroom to that of gear ratio, which was obtained via the macro

function format.

‘.class directive’ provides inline access to class-object values. See [P] class for details.

The macro expansion function ‘macval(name)’ expands local macro name but not any macros con-

tained within name. For instance, if name contained “example ‘of’ macval”, ‘name’ would expand

to “example macval” (assuming that ‘of’ is not defined), whereas ‘macval(name)’ would expand to

“example ‘of’ macval”. The ‘of’ would be left just as it is.

https://www.stata.com/manuals/pclass.pdf#pclass

macro — Macro definition and manipulation 17

Technical note
To store an unexpanded macro within another macro, use “ \” to prevent macro expansion. This is

useful when defining a formula with elements that will be substituted later in the program. To save the

formula sqrt(‘A’ + 1), where ‘A’ is a macro you would like to fill in later, you would use the command

. local formula sqrt(\‘A’ + 1)

which would produce

. macro list _formula
_formula: sqrt(‘A’ + 1)

Because the statement \‘A’ was used, it prevented Stata from expanding the macro ‘A’ when it stored

it in the macro ‘formula’.

Now you can fill in the macro ‘A’ with different statements and have this be reflected when you call

‘formula’.

. local A 2^3

. display ”formula ‘formula’: ” ‘formula’
formula sqrt(2^3 + 1): 3
. local A log10((‘A’ + 2)^3)
. display ”formula ‘formula’: ” ‘formula’
formula sqrt(log10((2^3 + 2)^3) + 1): 2

The tempvar, tempname, and tempfile commands
The tempvar, tempname, and tempfile commands create names that may be used for temporary

variables, temporary scalars and matrices, and temporary files. A temporary element exists while the

program or do-file is running but, once it concludes, automatically ceases to exist.

Temporary variables
You are writing a program, and in the middle of it you need to calculate a new variable equal to

var12 + var22 for use in the calculation. You might be tempted to write

(code omitted)
generate sumsq = var1^2 + var2^2
(code continues)
(code uses sumsq in subsequent calculations)
drop sumsq

This would be a poor idea. First, users of your program might already have a variable called sumsq, and
if they did, your programwould break at the generate statement with the error “sumsq already defined”.

Second, your program in the subsequent code might call some other program, and perhaps that program

also attempts (poorly) to create the variable sumsq. Third, even if nothing goes wrong, if users press

Break after your code executes generate but before drop, you would confuse them by leaving behind

the sumsq variable.

macro — Macro definition and manipulation 18

The way around these problems is to use temporary variables. Your code should read

(code omitted)
tempvar sumsq
generate ‘sumsq’ = var1^2 + var2^2
(code continues)
(code uses ‘sumsq’ in subsequent calculations)
(you do not bother to drop ‘sumsq’)

The tempvar sumsq command creates a local macro called sumsq and stores in it a name that is different

from any name currently in the data. Subsequently, you then use ‘sumsq’ with single quotes around it

rather than sumsq in your calculation, so that rather than naming your temporary variable sumsq, you
are naming it whatever Stata wants you to name it. With that small change, your program works just as

before.

Another advantage of temporary variables is that you do not have to drop them—Stata will do that for

you when your program terminates, regardless of the reason for the termination. If a user presses Break

after the generate, your program is stopped, the temporary variables are dropped, and things really are

just as if the user had never run your program.

Technical note
What do these temporary variable names assigned by Stata look like? It should not matter to you;

however they look, they are guaranteed to be unique (tempvar will not hand out the same name to more

than one concurrently executing program). Nevertheless, to satisfy your curiosity,

. tempvar var1 var2

. display ”‘var1’ ‘var2’”
__000009 __00000A

Although we reveal the style of the names created by tempvar, you should not depend on this style. All
that is important is that

• The names are unique; they differ from one call to the next.

• You should not prefix or suffix them with additional characters.

• Stata keeps track of any names created by tempvar and, when the program or do-file ends, searches

the data for those names. Any variables found with those names are automatically dropped. This

happens regardless of whether your program ends with an error.

Temporary scalars and matrices
tempname is the equivalent of tempvar for obtaining names for scalars and matrices. This use is

explained, with examples, in [P] scalar.

Technical note
The temporary names created by tempname look just like those created by tempvar. The same cau-

tions and features apply to tempname as tempvar:

• The names are unique; they differ from one call to the next.

• You should not prefix or suffix them with additional characters.

https://www.stata.com/manuals/pscalar.pdf#pscalar

macro — Macro definition and manipulation 19

• Stata keeps track of any names created by tempname and, when the program or do-file ends, searches

for scalars or matrices with those names. Any scalars or matrices so found are automatically dropped;

see [P] scalar. This happens regardless of whether your program ends with an error.

Temporary files
tempfile is the equivalent of tempvar for obtaining names for disk files. Before getting into that,

let’s discuss how you should not use tempfile. Sometimes, in the midst of your program, you will find

it necessary to destroy the user’s data to obtain your desired result. You do not want to change the data,

but it cannot be helped, and therefore you would like to arrange things so that the user’s original data are

restored at the conclusion of your program.

You might then be tempted to save the user’s data in a (temporary) file, do your damage, and then

restore the data. You can do this, but it is complicated, because you then have to worry about the user

pressing Break after you have stored the data and done the damage but have not yet restored the data.

Working with capture (see [P] capture), you can program all of this, but you do not have to. Stata’s

preserve command (see [P] preserve) will handle saving and restoring the user’s data, regardless of

how your program ends.

Still, there may be times when you need temporary files. For example,

(code omitted)
preserve // preserve user’s data
keep var1 var2 xvar
save master, replace
drop var2
save part1, replace
use master, clear
drop var1
rename var2 var1
append using part1
erase master.dta
erase part1.dta
(code continues)

This is poor code, even though it does use preserve so that, regardless of how this code concludes,

the user’s original data will be restored. It is poor because datasets called master.dta and part1.dta
might already exist, and, if they do, this program will replace the user’s (presumably valuable) data. It

is also poor because, if the user presses Break before both (temporary) datasets are erased, they will be

left behind to consume (presumably valuable) disk space.

Here is how the code should read:

(code omitted)
preserve // preserve user’s data
keep var1 var2 xvar
tempfile master part1 // declare temporary files
save ”‘master’”
drop var2
save ”‘part1’”
use ”‘master’”, clear
drop var1
rename var2 var1
append using ”‘part1’”
(code continues; temporary files are not erased)

https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/pcapture.pdf#pcapture
https://www.stata.com/manuals/ppreserve.pdf#ppreserve

macro — Macro definition and manipulation 20

In this version, Stata was asked to provide the names of temporary files in local macros named master
and part1. We then put single quotes around master and part1 wherever we referred to them so that,

rather than using the names master and part1, we used the names Stata handed us. At the end of

our program, we no longer bother to erase the temporary files. Because Stata gave us the temporary

filenames, it knows that they are temporary and erases them for us if our program completes, has an

error, or the user presses Break.

Technical note
What do the temporary filenames look like? Again it should not matter to you, but for the curious,

. tempfile file1 file2

. display ”‘file1’ ‘file2’”
/tmp/St13310.0001 /tmp/St13310.0002

We were using the Unix version of Stata; had we been using the Windows version, the last line might

read

. display ”‘file1’ ‘file2’”
C:\WIN\TEMP\ST_0a00000c.tmp C:\WIN\TEMP\ST_00000d.tmp

Under Windows, Stata uses the environment variable TEMP to determine where temporary files are to

be located. This variable is typically set in your autoexec.bat file. Ours is set to C:\WIN\TEMP. If the
variable is not defined, Stata places temporary files in your current directory.

Under Unix, Stata uses the environment variable TMPDIR to determine where temporary files are to

be located. If the variable is not defined, Stata locates temporary files in /tmp.

Although we reveal the style of the names created by tempfile, just as with tempvar, you should not
depend on it. tempfile produces names the operating system finds pleasing, and all that is important is

that

• The names are unique; they differ from one call to the next.

• You should assume that they are so long that you cannot prefix or suffix them with additional charac-

ters and make use of them.

• Stata keeps track of any names created by tempfile, and, when your program or do-file ends, looks

for files with those names. Any files found are automatically erased. This happens regardless of

whether your program ends with an error.

Manipulation of macros
macro dir and macro list list the names and contents of all defined macros; both do the same thing:

. macro list
S_FNDATE: 13 Apr 2024 17:45
S_FN: C:\Program Files\Stata19\ado\base/a/auto.dta
tofname: str18
S_level: 95
F1: help advice;
F2: describe;
F7: save
F8: use
S_MACH: PC (64-bit x86-64)
S_OS: Windows
S_OSDTL: 64-bit

macro — Macro definition and manipulation 21

S_StataSE: SE
S_StataMP: MP
S_ADO: BASE;SITE;.;PERSONAL;PLUS;OLDPLACE
_file2: C:\WIN\Temp\ST_0a00000d.tmp
_file1: C:\WIN\Temp\ST_0a00000c.tmp
_var2: __00000A
_var1: __000009
_str3: a x b x sand x d
_dl: Employee Data
_lbl: Employee name
_vl: sexlbl
_fmt: %9.0g

macro drop eliminates macros frommemory, although it is rarely used because most macros are local

and automatically disappear when the program ends. Macros can also be eliminated by defining their

contents to be nothing using global or local, but macro drop is more convenient.

Typing macro drop base* drops all global macros whose names begin with base.

Typing macro drop all eliminates all macros except system macros—those with names that begin

with “S ”.

Typing macro drop S * does not drop all system macros that begin with “S ”. It leaves certain

macros in place that should not be casually deleted.

Example 2
. macro drop _var* _lbl tofname _fmt
. macro list
S_FNDATE: 13 Apr 2024 17:45
S_FN: C:\Program Files\Stata19\ado\base/a/auto.dta
S_level: 95
F1: help advice;
F2: describe;
F7: save
F8: use
S_MACH: PC (64-bit x86-64)
S_OS: Windows
S_OSDTL: 64-bit
S_StataSE: SE
S_StataMP: MP
S_ADO: BASE;SITE;.;PERSONAL;PLUS;OLDPLACE
_file2: C:\WIN\Temp\ST_0a00000d.tmp
_file1: C:\WIN\Temp\ST_0a00000c.tmp
_str3: a x b x sand x d
_dl: Employee Data
_vl: sexlbl
. macro drop _all
. macro list
S_FNDATE: 13 Apr 2024 17:45
S_FN: C:\Program Files\Stata19\ado\base/a/auto.dta
S_level: 95
S_MACH: PC (64-bit x86-64)
S_OS: Windows
S_OSDTL: 64-bits
S_StataSE: SE
S_StataMP: MP
S_ADO: BASE;SITE;.;PERSONAL;PLUS;OLDPLACE
. macro drop S_*

macro — Macro definition and manipulation 22

. macro list
S_level: 95
S_MACH: PC (64-bit x86-64)
S_OS: Windows
S_OSDTL: 64-bit
S_StataSE: SE
S_StataMP: MP
S_ADO: BASE;SITE;.;PERSONAL;PLUS;OLDPLACE

Technical note
Stata usually requires that you explicitly drop something before redefining it. For instance, before

redefining a value label with the label define command or redefining a program with the program
define command, you must type label drop or program drop. This way, you are protected from

accidentally replacing something that might require considerable effort to reproduce.

Macros, however, may be redefined freely. It is not necessary to drop a macro before redefining it.

Macros typically consist of short strings that could be easily reproduced if necessary. The inconvenience

of the protection is not justified by the small benefit.

Macros as arguments
Sometimes programs have in a macro a list of things—numbers, variable names, etc.—that you wish

to access one at a time. For instance, after parsing (see [U] 18.4 Program arguments), you might have

in the local macro ‘varlist’ a list of variable names. The tokenize command (see [P] tokenize) will

take any macro containing a list and assign the elements to local macros named ‘1’, ‘2’, and so on.

That is, if ‘varlist’ contained “mpg weight displ”, then coding
tokenize ‘varlist’

will make ‘1’ contain “mpg”, ‘2’ contain “weight”, ‘3’ contain “displ”, and ‘4’ contain “ ” (noth-

ing). The empty fourth macro marks the end of the list.

macro shift can be used to work through these elements one at a time in constructs like

while ”‘1’” != ”” {
do something based on ‘1’
macro shift

}

macro shift discards ‘1’, shifts ‘2’ to ‘1’, ‘3’ to ‘2’, and so on. For instance, in our example, after

the first macro shift, ‘1’ will contain “weight”, ‘2’ will contain “displ”, and ‘3’ will contain “ ”

(nothing).

It is better to avoid macro shift and instead code

local i = 1
while ”‘‘i’’” != ”” {

do something based on ‘‘i’’
local i = ‘i’ + 1

}

This second approach has the advantage that it is faster. Also what is in ‘1’, ‘2’, . . . remains unchanged

so that you can pass through the list multiple times without resetting it (coding “tokenize ‘varlist’”
again).

https://www.stata.com/manuals/u18.pdf#u18.4Programarguments
https://www.stata.com/manuals/ptokenize.pdf#ptokenize

macro — Macro definition and manipulation 23

It is even better to avoid tokenize and the numbered macros altogether and to instead loop over the

variables in ‘varlist’ directly:

foreach var of local varlist {
do something based on ‘var’

}

This is easier to understand and executes even more quickly; see [P] foreach.

macro shift # performs multiple macro shifts, or if # is 0, none at all. That is, macro shift 2 is

equivalent to two macro shift commands. macro shift 0 does nothing.

Also see [P] macro lists for other list-processing commands.

References
Buis, M. L. 2015. Stata tip 124: Passing temporary variables to subprograms. Stata Journal 15: 597–598.

Cox, N. J. 2020. Stata tip 138: Local macros have local scope. Stata Journal 20: 499–503.

Also see
[P] char — Characteristics

[P] creturn — Return c-class values

[P] display — Display strings and values of scalar expressions

[P] gettoken — Low-level parsing

[P] macro lists — Manipulate lists

[P] matrix — Introduction to matrix commands

[P] numlist — Parse numeric lists

[P] preserve — Preserve and restore data

[P] program — Define and manipulate programs

[P] return — Return stored results

[P] scalar — Scalar variables

[P] syntax — Parse Stata syntax

[P] tokenize — Divide strings into tokens

[D] fralias —Alias variables from linked frames

[D] frlink — Link frames

[M-5] st global() — Obtain strings from and put strings into global macros

[M-5] st local() — Obtain strings from and put strings into Stata macros

[U] 12.8 Characteristics

[U] 18 Programming Stata

[U] 18.3 Macros

Stata Functions Reference Manual

https://www.stata.com/manuals/pforeach.pdf#pforeach
https://www.stata.com/manuals/pmacrolists.pdf#pmacrolists
https://www.stata-journal.com/article.html?article=pr0061
https://doi.org/10.1177/1536867X20931028
https://www.stata.com/manuals/pchar.pdf#pchar
https://www.stata.com/manuals/pcreturn.pdf#pcreturn
https://www.stata.com/manuals/pdisplay.pdf#pdisplay
https://www.stata.com/manuals/pgettoken.pdf#pgettoken
https://www.stata.com/manuals/pmacrolists.pdf#pmacrolists
https://www.stata.com/manuals/pmatrix.pdf#pmatrix
https://www.stata.com/manuals/pnumlist.pdf#pnumlist
https://www.stata.com/manuals/ppreserve.pdf#ppreserve
https://www.stata.com/manuals/pprogram.pdf#pprogram
https://www.stata.com/manuals/preturn.pdf#preturn
https://www.stata.com/manuals/pscalar.pdf#pscalar
https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/ptokenize.pdf#ptokenize
https://www.stata.com/manuals/dfralias.pdf#dfralias
https://www.stata.com/manuals/dfrlink.pdf#dfrlink
https://www.stata.com/manuals/m-5st_global.pdf#m-5st_global()
https://www.stata.com/manuals/m-5st_local.pdf#m-5st_local()
https://www.stata.com/manuals/u12.pdf#u12.8Characteristics
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/manuals/u18.pdf#u18.3Macros
https://www.stata.com/manuals/fnfn.pdf#fnfnFunctions

macro — Macro definition and manipulation 24

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

