
gettoken — Low-level parsing

Description Syntax Options Remarks and examples Reference Also see

Description
gettoken is a low-level parsing command designed for programmers who wish to parse input for

themselves. The syntax command (see [P] syntax) is an easier-to-use, high-level parsing command.

gettoken obtains the next token from the macro emname3 and stores it in the macro emname1.

If macro emname2 is specified, the rest of the string from emname3 is stored in the emname2 macro.

emname1 and emname3, or emname2 and emname3, may be the same name. The first token is determined

based on the parsing characters pchars, which default to a space if not specified.

Syntax
gettoken emname1 [emname2] :emname3 [, parse(”pchars”) quotes

qed(lmacname) match(lmacname) bind]

where pchars are the parsing characters, lmacname is a local macro name, and emname is described in

the following table:

emname is . . . Refers to a . . .

macroname local macro

(local) macroname local macro

(global) macroname global macro

Options
parse(”pchars”) specifies the parsing characters. If parse() is not specified, parse(” ”) is assumed,

meaning tokens are identified by blanks.

quotes specifies that the outside quotes are not to be stripped in what is stored in emname1. This option

has no effect on what is stored in emname2 because it always retains outside quotes. quotes is a

rarely specified option; usually you want the quotes stripped. You would not want the quotes stripped

if you wanted to make a perfect copy of the contents of the original macro for parsing at a later time.

qed(lmacname) specifies a local macroname that is to be filled in with 1 or 0 according to whether the

returned token was enclosed in quotes in the original string. qed() does not change how parsing is

done; it merely returns more information.

match(lmacname) specifies that parentheses be matched in determining the token. The outer level of

parentheses, if any, are removed before the token is stored in emname1. The local macro lmacname

is set to “(” if parentheses were found; otherwise, it is set to an empty string.

bind specifies that expressions within parentheses and those within brackets are to be bound together,

even when not parsing on () and [].

1

https://www.stata.com/manuals/psyntax.pdf#psyntax

gettoken — Low-level parsing 2

Remarks and examples
Often we apply gettoken to the macro ‘0’ (see [U] 18.4.6 Parsing nonstandard syntax), as in

gettoken first : 0

which obtains the first token (with spaces as token delimiters) from ‘0’ and leaves ‘0’ unchanged. Or,

alternatively,

gettoken first 0 : 0

which obtains the first token from ‘0’ and saves the rest back in ‘0’.

Example 1
Even though gettoken is typically used as a programming command, we demonstrate its use inter-

actively:

. local str ”cat+dog mouse++horse”

. gettoken left : str

. display ‘”‘left’”’
cat+dog
. display ‘”‘str’”’
cat+dog mouse++horse
. gettoken left str : str, parse(” +”)
. display ‘”‘left’”’
cat
. display ‘”‘str’”’
+dog mouse++horse
. gettoken next str : str, parse(” +”)
. display ‘”‘next’”’
+
. display ‘”‘str’”’
dog mouse++horse

Both global and local variables may be used with gettoken. Strings with nested quotes are also

allowed, and the quotes option may be specified if desired. For more information on compound double

quotes, see [U] 18.3.5 Double quotes.

. global weird ‘”‘””some” strings”’ are ‘”within ”strings””’”’

. gettoken (local)left (global)right : (global)weird

. display ‘”‘left’”’
”some” strings
. display ‘”$right”’
are ‘”within ”strings””’

. gettoken left (global)right : (global)weird , quotes

. display ‘”‘left’”’
‘””some” strings”’
. display ‘”$right”’
are ‘”within ”strings””’

https://www.stata.com/manuals/u18.pdf#u18.4.6Parsingnonstandardsyntax
https://www.stata.com/manuals/u18.pdf#u18.3.5Doublequotes

gettoken — Low-level parsing 3

The match() option is illustrated below.

. local pstr ”(a (b c)) ((d e f) g h)”

. gettoken left right : pstr

. display ‘”‘left’”’
(a
. display ‘”‘right’”’
(b c)) ((d e f) g h)

. gettoken left right : pstr , match(parns)

. display ‘”‘left’”’
a (b c)
. display ‘”‘right’”’
((d e f) g h)

. display ‘”‘parns’”’
(

Example 2
One use of gettoken is to process two-word commands. For example, mycmd list does one thing

and mycmd generate does another. We wish to obtain the word following mycmd, examine it, and call

the appropriate subroutine with a perfect copy of what followed.

program mycmd
version 19.5 // (or version 19 if you do not have StataNow)
gettoken subcmd 0 : 0
if ”‘subcmd’” == ”list” {

mycmd_l ‘0’
}
else if ”‘subcmd’” == ”generate” {

mycmd_g ‘0’
}
else error 199

end

program mycmd_l
...

end

program mycmd_g
...

end

Example 3
Suppose that we wish to create a general prefix command with the syntax

newcmd ... : stata_command

where ... represents some possibly complicated syntax. We want to split this entire command line at

the colon, making a perfect copy of what precedes the colon, which will be parsed by our program, and

what follows the colon, which will be passed along to stata command.

gettoken — Low-level parsing 4

program newcmd, properties(prefix)
version 19.5 // (or version 19 if you do not have StataNow)
gettoken part 0 : 0, parse(” :”) quotes
while ‘”‘part’”’ != ”:” & ‘”‘part’”’ != ”” {

local left ‘”‘left’ ‘part’”’
gettoken part 0 : 0, parse(” :”) quotes

}

(‘left’ now contains what followed newcmd up to the colon)
(‘0’ now contains what followed the colon)
...

end

Notice the use of the quotes option. We also used compound double quotes when accessing ‘part’
and ‘left’ because these macros might contain embedded quotation marks.

Technical note
We strongly encourage you to specify space as one of your parsing characters. For instance, with the

last example, you may have been tempted to use gettoken but to parse only on colon instead of on colon

and space, as in

gettoken left 0 : 0, parse(”:”) quotes
gettoken colon 0 : 0, parse(”:”)

and thereby avoid the while loop. This is not guaranteed to work for two reasons. First, if the length of

the string up to the colon is large, then you run the risk of having it truncated. Second, if ‘left’ begins

with a quotation mark, then the result will not be what you expect.

Our recommendation is always to specify a space as one of your parsing characters and to grow your

desired macro as demonstrated in our last example.

Technical note
If one of the parsing characters specified is the equal sign, for example, parse(”= ”), then not only

the equal sign is treated as one token but also Stata’s equality operator, ==. For instance, parsing “y=x
if z==3” results in the tokens “y”, “=”, “x”, “if”, “z”, “==”, and “3”.

Reference
Cox, N. J. 2021. Speaking Stata: Loops in parallel. Stata Journal 21: 1047–1064.

https://doi.org/10.1177/1536867X211063415

gettoken — Low-level parsing 5

Also see
[P] syntax — Parse Stata syntax

[P] tokenize — Divide strings into tokens

[P] while — Looping

[M-5] invtokens() — Concatenate string rowvector into string scalar

[M-5] tokenget() —Advanced parsing

[M-5] tokens() — Obtain tokens from string

[U] 18 Programming Stata

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/psyntax.pdf#psyntax
https://www.stata.com/manuals/ptokenize.pdf#ptokenize
https://www.stata.com/manuals/pwhile.pdf#pwhile
https://www.stata.com/manuals/m-5invtokens.pdf#m-5invtokens()
https://www.stata.com/manuals/m-5tokenget.pdf#m-5tokenget()
https://www.stata.com/manuals/m-5tokens.pdf#m-5tokens()
https://www.stata.com/manuals/u18.pdf#u18ProgrammingStata
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

