STATA PROGRAMMING REFERENCE
MANUAL

RELEASE 18

‘gr N
I 2

A Stata Press Publication
StataCorp LLC
College Station, Texas

\é\?’\ ® Copyright (¢) 1985-2023 StataCorp LLC
‘{J"’“\(Y[Al rights reserved
g Jﬁ/‘ Version 18

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845

ISBN-10: 1-59718-393-8
ISBN-13: 978-1-59718-393-2

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored
in a retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or
otherwise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions
of a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but
not limited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make
improvements and/or changes in the product(s) and the program(s) described in this manual at any time and without
notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
DVD, CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright @ 1979 by Consumers Union of U.S.,
Inc., Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ Stata Press, Mata, MATQ and NetCourse are registered trademarks of StataCorp LLC.

Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
NetCourseNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2023. Stata 18. Statistical software. StataCorp LLC.
The suggested citation for this manual is

StataCorp. 2023. Stata 18 Programming Reference Manual. College Station, TX: Stata Press.

www.stata.com

https://www.stata.com

Contents

Intro ... Introduction to programming manual
AULOMALION . o ettt et e e e e e Automation
break .. e Suppress Break key
byable Make programs byable
CAPLUTE .« .ottt et ettt ettt e e e e e e e Capture return code
ChaT . Characteristics
ClaSS ot e Class programming
class exitl Exit class-member program and return result
classutil Class programming utility
COMIMEIIES .+ & v e vttt et et e e e e e e e e e e e e ee s Add comments to programs
CONMIIM .. o Argument verification
COMEIMUE . o ottt ettt et e e e e e e e e e e e e e e e et e Break out of loops
(&S 113y P Return c-class values
—datasignaturei i Determine whether data have changed
#AelIMIt .. e Change delimiter
Dialog programmingouiintnetninn i Dialog programming
discard Drop automatically loaded programs
display ... Display strings and values of scalar expressions
CICIUITL .« .ttt ettt et e e e e e et e e e e e e Post the estimation results
BITOT « ottt ettt e e e e ettt et Display generic error message and exit
estat programming Controlling estat after community-contributed commands
ESHMALES o v vt ettt e Manage estimation results
Estimation command How to program an estimation command
BXIl ottt e Exit from a program or do-file
file .o Read and write text and binary files
File formats .dta i Description of .dta file format
File formats .dtas Description of Stata frameset (.dtas) file format
findfile e Find file in path
foreach Loop over items
forvalues Loop over consecutive values
frame postt Post results to dataset in another frame
fvexpand Expand factor varlists
GELOKEI .ot Low-level parsing
H20 intro Introduction to integration with H20
P if programming command
include Include commands from file
Java Intro Introduction to Java in Stata
Java Integrationttt Java integration for Stata
Java plugin Introduction to Java plugins
Java utilities e Java utilities
Javacall .. e Call a Java plugin

W N =

17
21
57
59
64
66
72
74

88
91
93
159
160

171
188
203
207
211
217

219
238
239
240
242
251
255
258

259
264

265
268

271
272
280
282
284

ii Contents
levelsof ... e Distinct levels of a variable 288
TNACTO & et et ettt e et e e e e e e e e Macro definition and manipulation 292
MACTO LISES .ottt e Manipulate lists 315
MAKECIIS .« o et vttt et e e e e e e Constrained estimation 319
mark ... e Mark observations for inclusion 325
matlist ... Display a matrix and control its format 332
MATIX ottt e e Introduction to matrix commands 344
MATTX ACCUML « vttt ettt e e e e et e e e e Form cross-product matrices 348
matrix define Matrix definition, operators, and functions 358
matrix dissimilarity, Compute similarity or dissimilarity measures 375
matrix eigenvalues, Eigenvalues of nonsymmetric matrices 380
MATX ZEL .« vttt ettt et et e e e e e Access system matrices 383
matrix mkmat L Convert variables to matrix and vice versa 386
matrix rowjoinbyname Join rows while matching on column names 391
MALTTX TOWNAMES .« ¢ v v ev e et ettt e e et e e e e Name rows and columns 394
MALTIX SCOT@ .+ . vttt ettt et ettt e e e eieenne Score data from coefficient vectors 400
Matrix SVA ..ot e Singular value decomposition 403
matrix symeigen Eigenvalues and eigenvectors of symmetric matrices 406
matrix utility ... List, rename, and drop matrices 409
1) PP Pause until key is pressed 412
NOPIESEIVE OPLION .« . vttt ittt ettt e e e e e et e e nopreserve option 413
NUMLISE .. Parse numeric lists 414
PAUSE ettt et e Program debugging command 417
PIUgIn . Load a plugin 420
postiile ... e Post results in Stata dataset 422
—predict Obtain predictions, residuals, etc., after estimation programming command 426
PIESEIVE ottt et e et e e e e Preserve and restore data 428
PIOZIAM ottt e et e e e e Define and manipulate programs 432
Program Propertiesc..eeeueneenenenen.. Properties of user-defined programs 437
Project Manageriii i Organize Stata files 442
PyStata intro Introduction to using Python and Stata together 448
PyStata integrationt e Call Python from Stata 449
PyStata module Python package pystata to call Stata from Python 465
quietly ... Quietly and noisily perform Stata command 466
B 110 o o Preserve stored results 470
15y 0 P Return stored results 473
—rmeoll L Remove collinear variables 483
TINISE oot ettt e e e e e e e e e e e e e e e Return messages 487
CTODUSE ottt e Robust variance estimates 488
SCAlAr L Scalar variables 512
1) T P Create and manipulate sersets 519
set locale_functionsciiiiiiin... Specify default locale for functions 528
set locale_ui Specify a localization package for the user interface 529
set sortmethod Specify a sort method 531
SEt SOTINESLALE . .o v vttt e e e Set the state of sort’s randomizer 534
signestimationsample Determine whether the estimation sample has changed 537
Sl ot Pause for a specified time 540
SICL L Stata Markup and Control Language 541

Contents iii

SOTEPICSCIVE . o v vt vt et ettt e e e e e et e e et et e et Sort within programs 565
)4 01 PP Parse Stata syntax 569
SYSAIT .« vttt e Query and set system directories 585
12104 3] o P Display tables 590
timer Time sections of code by recording and reporting time spent 601
tOKENIZE . oot Divide strings into tokens 603
18217 Debug Stata programs 605
unab .. Unabbreviate variable list 611
unabemd ... Unabbreviate command name 614
varabbrev Control variable abbreviation 615
A ZS5 1:3 () Version control 616
VIBWSOUICE .« v vttt et et et e e e e e e e e e e e e et e View source code 621
While o e Looping 622
window programmingoeeeenenenn.. Programming menus and windows 625
window fopen Display open/save dialog box 626
WINAOW MANAZE ..ottt et Manage window characteristics 628
WINAOW MENU .ottt ettt e e ettt Create menus 633
window push Copy command into History window 641
WINAOW StOPDOX .ottt et e Display message box 642
GlOSSATY .« o\ vttt et e ettt e e e e e 644

Subject and author INAEXot e 649

Combined subject table of contents for programming

This is the complete contents for this manual by subject. References to inserts from other Stata
manuals that we feel would be of interest to programmers are also included.

Data manipulation and management

Functions and expressions Dates and times

Strings Multiple datasets in memory
Utilities

Basic utilities Internet

Error messages Data types and memory

Stored results Advanced utilities

Matrix commands

Basics Other
Programming Mata
Programming
Basics Projects
Program control Advanced programming commands
Parsing and program arguments Special-interest programming commands
Console output File formats
Commonly used programming commands Mata
Debugging

Automated document and report creation

Interface features

Data manipulation and management

Functions and expressions

(U]

(Ul

[FN]
(D]

[FN]
[FN]
[FN]
[FN]
[FN]
[FN]
[FN]
[FN]

Strings
[U]
(U]
(U]
[D]

Section 12.4.2.1 Unicode string functions
Chapter 13 Functions and expressions
Date and time functionsttt e
BEEIL o ettt et e e e Extensions to generate
Mathematical functionsttt e
Matrix fUnCtionsSttt e
Programming functionsttt e
Random-number functionso it
Selecting time-span functionsttt
Statistical fUNCHONSot e e e e
String funCtions ot e
Trigonometric funCtionsttt e e

Section 12.4 Strings
Section 12.4.2 Handling Unicode strings
Chapter 24 e Working with strings
Data typesci i Quick reference for data types

iv Combined subject table of contents for programming

[FNI]
(D]

String funCtionst e
UNICOAE oottt e e Unicode utilities

Dates and times

(ul
(U]
(D]
(D]
(D]
[D]
(D]
(D]
[D]
(D]
(D]

Section 12.5.3 .. . Date and time formats
Chapter 25 Working with dates and times
beal ... Business calendar file manipulation
Datetimec.oiiiiiiiiiii. Date and time values and variables
Datetime business calendars Business calendars
Datetime business calendars creation Business calendars creation
Datetime conversionc.c..oon... Converting strings to Stata dates
Datetime display formats Display formats for dates and times
Datetime durations Obtaining and working with durations
Datetime relative dates Obtaining dates and date information from other dates

Datetime values from other software . Date and time conversion from other software

Multiple datasets in memory

(D]
(D]
(D]
(D]
(D]
[D]
(D]
(D]
[D]
(D]
(D]
[D]
(D]
(D]
(D]
(D]
(D]
[D]
(D]

Utilities

fralias Alias variables from linked frames
frame change Change identity of current (working) frame
frame Copy ..o vii Make a copy of a frame
frame createiiiiii e Create a new frame
frame drop Drop frames from memory
frame prefix The frame prefix command
frame put Copy selected variables or observations to a new frame
frame pwf L. Display name of current (working) frame
frame rename Rename existing frame
fTAMES .ttt Data frames
frames describe Describe frames in memory or in a file
frames dir L., Display names of all frames in memory
frames INtrov ot Introduction to frames
frames 1esett Drop all frames from memory
frames Save Save a set of frames on disk
frames USeoeuiininii i Load a set of frames from disk
frget .o Copy variables from linked frame
frlink .o Link frames
frunalias Change storage type of alias variables

Basic utilities

[GS]
(ul
(Ul
(Ul
[R]
(D]
[R]
[R]
[R]
[R]

Chapter 13 (GSM, GSU, GSW) Using the Do-file Editor—automating Stata
Chapter 4 Stata’s help and search facilities
Chapter 15 i Saving and printing output—Ilog files
Chapter 16 Do-files
about ... Display information about your Stata
DY Repeat Stata command on subsets of the data
ClS Clear Results window
copyright Display copyright information
do o Execute commands from a file
doeditot Edit do-files and other text files

Combined subject table of contents for programming v

[R]
[R]
[R]
[R]
(D]
[R]
[R]
[R]
[BAYES]
[R]
(D]
[R]
(D]

BXI 4ttt e e e Exit Stata
el o Display help in Stata
level ... Set default confidence level
l0g o Echo copy of session to file
ObS o Increase the number of observations in a dataset
POSEEST © vt Postestimation Selector
HIOVIEW ottt e Review previous commands
search o, Search Stata documentation and other resources
setclevel Set default credible level
translate Print and translate logs
unicode translate il Translate files to Unicode
£ (P View files and logs
zipfile Compress and uncompress files and directories in zip archive format

Error messages

(Ul
(P]
[R]
[P]

Chapter 8 Error messages and return codes
13 10 Display generic error message and exit
Error messagesiiiiiiiiin. Error messages and return codes
TINISE o et e et e et e e e e e e e e e e e e Return messages

Stored results

(U]
(Ul
(ul
(U]
[P]
(P]
[R]
[R]
[R]
[R]
[R]
[R]
[R]
[R]
[R]
[R]
[R]
(P]
[P]
[R]

Internet

(Ul
[R]
(D]
(D]
[R]
[R]
[R]
[R]

Section 13.5 i Accessing coefficients and standard errors
Section 18.8 Accessing results calculated by other programs
Section 189 Accessing results calculated by estimation commands
Section 18.10 ...t Storing results
13 (10 o Return c-class values
153100V o s PP Post the estimation results
ESHMALES « v vttt s et Save and manipulate estimation results
estimates describe Describe estimation results
estimates for Repeat postestimation command across models
EStMALES NOES .« v v vttt ettt e ieeennn Add notes to estimation results
estimates replayeniiiin i Redisplay estimation results
EStIMALES SAVE .« vttt Save and use estimation results
estimates selected i Show selected coefficients
EStMALES StALS . .ottt e Model-selection statistics
esStimates StOreouuveuneunenneennen.. Store and restore estimation results
estimates table i i Compare estimation results
estimates title Set title for estimation results
B 1110y o Preserve stored results
U111) P Return stored results
Stored results Stored results
Chapter 29 Using the Internet to keep up to date
adoupdate, Update community-contributed packages
checksum Calculate checksum of file
COPY « e ettt e e e e e Copy file from disk or URL
net Install and manage community-contributed additions from the Internet
net search Search the Internet for installable packages

1515 (o J OO Control Internet connections
8] e e e e Stata Journal installation instructions

vi

Combined subject table of contents for programming

[R]
[R]
[D]

88 et e e e Install and uninstall packages from SSC
UPAAte .ot e Check for official updates
USE ettt et e e e e e e e e e e Load Stata dataset

Data types and memory

(U]
(Ul
(ul
(Ul
(Ul
(ul
(D]
(D]
(D]
(D]
(D]

Chapter 6 e Managing memory
Section 12.2.2 .. e Numeric storage types
Section 12.4 Strings
Section 12.4.2 . . Handling Unicode strings
Section 13.12 Precision and problems therein
Chapter 24 e Working with strings
COMPIESS « e et ettt e e e e e ettt e e eeans Compress data in memory
Data typesoi i Quick reference for data types
1001S) 10107 o 20 PP Memory management
Missing valuesc.ooiiiiiia... Quick reference for missing values
TECASE .+ vttt e et e e Change storage type of variable

Advanced utilities

(D]
(D]
(D]
(D]
(D]
[D]
(P]
(D]
[R]
(P]
(D]
[P]
(D]
(P]
[D]
(D]
(D]
[R]
[R]
(P]
(D]
(R]
[R]
[R]
[R]
[R]
[P]
(P]
[R]
[R]
[R]
[R]
[P]

ASSCIL vt e e e e Verify truth of claim
ASSEItNeSted . ..ot e Verify variables nested
Cd o Change directory
changeeol Convert end-of-line characters of text file
checksum Calculate checksum of file
COPY et ettt e e Copy file from disk or URL
_datasignature Determine whether data have changed
datasignaturec.iieeenen..,. Determine whether data have changed
Ab e Launch dialog
Dialog programmingc. .ot Dialog programming
AIr Display filenames
discard Drop automatically loaded programs
BIASE e v vt te et e e e e e e e e e Erase a disk file
file ..o Read and write text and binary files
filefilter il Convert ASCII or binary patterns in a file
hexdump Display hexadecimal report on file
MKAIT . Create directory
1T P The —more— message
QUETY ot ettt e e e e e e e e e e s Display system parameters
quietly ... Quietly and noisily perform Stata command
TAIT e e Remove directory
] Overview of system parameters
set cformat il Format settings for coefficient tables
set_defaults Reset system parameters to original Stata defaults
set emptycells Set what to do with empty cells in interactions
R A T P Control iteration settings
set locale_functions, Specify default locale for functions
set locale_ui Specify a localization package for the user interface
SELINZ ottt Set which random-number generator (RNG) to use
set rngstream Specify the stream for the stream random-number generator
setseed ... Specify random-number seed and state
set showbaselevels Display settings for coefficient tables

set sortmethod Specify a sort method

Combined subject table of contents for programming vii

(P]
(D]
[P]
(P]
(P]
[D]
(D]
(D]
(D]
(D]
(D]
(D]
(D]
(D]
(D]
(D]
[R]

Set SOItrNgStatevuvninenn e Set the state of sort’s randomizer
shell ... Temporarily invoke operating system
signestimationsample Determine whether the estimation sample has changed
SIMCL ..o Stata Markup and Control Language
SYSAIT ot Query and set system directories
1817 5PN Display contents of a file
unicode collator Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
unicode encoding il Unicode encoding utilities
unicode locale Unicode locale utilities
Ve Manage variable lists
vlicreateol Create and modify user-defined variable lists
vidrop ... Drop variable lists or variables from variable lists
VISt oo List contents of variable lists
virebuild Rebuild variable lists
VI Set o Set system-defined variable lists
which ... Display location of an ado-file

Matrix commands

Basics

(U] Chapter 14 ... Matrix expressions
[P] matlist o Display a matrix and control its format
[P] MATIX &ttt et e e Introduction to matrix commands
[P] matrix define Matrix definition, operators, and functions
[P] matrix utility List, rename, and drop matrices
Programming

[P] EIELUITL .« ottt ittt e e e e e e et et e e Post the estimation results
[P] MALTiX ACCUM . oottt ettt ittt Form cross-product matrices
[P] matrix rowjoinbyname Join rows while matching on column names
[P] MALTIX TOWNAMES &« o v v e ve et ee e e e e e e Name rows and columns
[P] MALIIX SCOT® .« oottt et et e e e e e e eeeaenn Score data from coefficient vectors
[R] Ml e Maximum likelihood estimation
M] Mata Reference Manual it
Other

[P] MAKECNS .« ot vttt et e e Constrained estimation
[P] matrix dissimilarity Compute similarity or dissimilarity measures
[P] matrix eigenvalues Eigenvalues of nonsymmetric matrices
[P] MALTIX ZEL oottt et e Access system matrices
[P] matrix mkmat Convert variables to matrix and vice versa
[P] Matrix SVA . ..ot Singular value decomposition
[P] matrix symeigen Eigenvalues and eigenvectors of symmetric matrices
Mata

[D] putmataiie... Put Stata variables into Mata and vice versa
M] Mata Reference Manualt

viii Combined subject table of contents for programming

Programming

Basics

(Ul Chapter 18 Programming Stata
(U] Section 18.3 ... Macros
[ul Section 1811 ... Ado-files
[P] COMMENLS .ttt vttt et e et Add comments to programs
[P] fvexpand Expand factor varlists
[P] MACTO .\ttt it ettt e e e Macro definition and manipulation
[P] 024073 2 Define and manipulate programs
[P] 10) Return stored results

Program control

(Ul
[P]
(P]
[P]
[P]
(P]
[P]
[P]
(P]

Section 18.11.1 .. . Version
CAPLUIE .« o v ettt ettt e e e et e e e e e e e Capture return code
CONLIMUE . ottt ettt et e e ettt e et e et Break out of loops
CITOT . vt vttt ettt et e Display generic error message and exit
foreach Loop over items
forvalues Loop over consecutive values
¥ P if programming command
VETSION .« vttt et et e et e e e e e e e e e Version control
While . Looping

Parsing and program arguments

(Ul
[P]
(P]
(P]
[P]
(P]
(P]

Section 18.4 .. Program arguments
CONfIrM . oot e Argument verification
gettoKen Low-level parsing
levelsof ... Distinct levels of a variable
NUMIISE .« e Parse numeric lists
SYIEAX + e ettt e e et e e e e e e Parse Stata syntax
tOKENIZE . oottt Divide strings into tokens

Console output

(U]
[P]
(P]
(P]
[P]
(D]

Section 12.4.2 ... Handling Unicode strings
Dialog programmingeuieniriininineaenen.. Dialog programming
display Display strings and values of scalar expressions
smel L. Stata Markup and Control Language
11074] o PPN Display tables
UNICOAE .ttt ettt e et e e e e e Unicode utilities

Commonly used programming commands

(P]
[P]
[P]
[R]
[P]
[P]
(P]
[P]
[P]

byable Make programs byable
#delimit e Change delimiter
BXIE ottt e Exit from a program or do-file
fvrevar i Factor-variables operator programming command
mark ... Mark observations for inclusion
10T 18 1 QP Introduction to matrix commands
110) PP Pause until key is pressed
NOPIESEIVE OPLION ..ottt ettt e nopreserve option

PIESEIVE . vttt ettt et e e e e Preserve and restore data

Combined subject table of contents for programming ix

[P] quietly ... Quietly and noisily perform Stata command
[P SCalar ... Scalar variables
[P] smel Lo Stata Markup and Control Language
[P] SOTEPIESEIVE v v vttt et et et et et e e et e Sort within programs
[P] timer Time sections of code by recording and reporting time spent
[TS] (STeVAr Time-series operator programming command
Debugging

[P] PAUSE ot vttt et e Program debugging command
[P] timer Time sections of code by recording and reporting time spent
[P] [rACE . ..o Debug Stata programs

Advanced programming commands

(U]
[RPT]
[RPT]
(P]
[P]
[P]
(M-2]
[P]
[P]
(P]
[M-5]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[P]
(P]
(P]
[P]
[P]
(P]
[P]
[RPT]
[P]
[P]
[P]
[P]
[P]
(P]
[M-5]
[P]
(P]
[RPT]
[R]
[M-5]
[M-5]
[M-5]

Section 12.4.2.5 Sorting strings containing Unicode characters
Appendix for putdocx ool Appendix for putdocx entries
Appendix for putpdf Appendix for putpdf entries
AUtOmMAtiON .. oottt e Automation
break Suppress Break key
Char Characteristics
class ... Object-oriented programming (classes)
ClaSS oo Class programming
class exit ... Exit class-member program and return result
classutil Class programming utility
—docXF() Generate Office Open XML (.docx) file
docx2pdf ... Convert a Word (.docx) document to a PDF file
Dynamic documents intro Introduction to dynamic documents
Dynamic tags ..ottt Dynamic tags for text files
dyndoc Convert dynamic Markdown document to HTML or Word (.docx) document
Ayntextouvuvin e Process Stata dynamic tags in text file
estat programming Controlling estat after community-contributed commands
—ESHIMALES .+ vttt et Manage estimation results
Estimation command How to program an estimation command
file ... Read and write text and binary files
findfile e Find file in path
frame postc. i Post results to dataset in another frame
H20 intro i Introduction to integration with H20
html2docx Convert an HTML file to a Word (.docx) document
include Include commands from file
Java integration Java integration for Stata
Javaintro Introduction to Java in Stata
Java plugin Introduction to Java plugins
Java utilitiesot e Java utilities
Javacall Call a Java plugin
LinearProgram()ttt Linear programming
TNACTO + v v ettt et et e e et e Macro definition and manipulation
MAacro TISES . ..ottt Manipulate lists
markdown .. Convert Markdown document to HTML file or Word (.docx) document
Ml e Maximum likelihood estimation
MOPUMIZE() vt vttt et e e e e e e e et e et Model optimization
OPHIMIZE() ettt e e e e e e e e e e Function optimization

PAf* () Create a PDF file

x Combined subject table of contents for programming

(P]
(P]
[P]
(P]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
(D]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[P]
[P]
(P]
[M-5]
(P]
(P]
[P]
[P]
(D]
[P]
(P]
(D]
(D]
(P]
(P]
[M-5]

PIUgIN L Load a plugin
postfile ... Post results in Stata dataset
—predict . Obtain predictions, residuals, etc., after estimation programming command
program propertiese.eeiana.... Properties of user-defined programs
putdocx begin Create an Office Open XML (.docx) file
putdocx collect .. Add a table from a collection to an Office Open XML (.docx) file
putdocx intro Introduction to generating Office Open XML (.docx) files
putdocx pagebreak Add breaks to an Office Open XML (.docx) file
putdocx paragraph Add text or images to an Office Open XML (.docx) file
putdocx table Add tables to an Office Open XML (.docx) file
putexcel Export results to an Excel file
putexcel advanced Export results to an Excel file using advanced syntax
putmataiiiiiaaa... Put Stata variables into Mata and vice versa
putpdf begin Create a PDF file
putpdf collect Add a table from a collection to a PDF file
putpdf intro Introduction to generating PDF files
putpdf pagebreak i Add breaks to a PDF file
putpdf paragraph Add text or images to a PDF file
putpdf table Add tables to a PDF file
PyStata intro Introduction to using Python and Stata together
PyStata integration i Call Python from Stata
PyStata module Python package pystata to call Stata from Python
Quadrature() ..ot ti e e Numerical integration
B 1110y o Preserve stored results
—rmeoll L Remove collinear variables
ZTODUSE o Robust variance estimates
SBISCL vttt et e e Create and manipulate sersets
SNAPShOt . ..o Save and restore data snapshots
unab ... Unabbreviate variable list
unabemd ... Unabbreviate command name
unicode collator Language-specific Unicode collators
unicode convertfile Low-level file conversion between encodings
varabbrev Control variable abbreviation
VIBWSOUICE « .o ettt et ettt e e e e e e e e e e e e e e e View source code
XIO) e e e Excel file I/O class

Special-interest programming commands

[R]
MV]
MV]
[R]

[P]
M1l
[ST]
[SVY]
M1l
[TS]

Projects
[P]

DStat . Report bootstrap results
cluster programming subroutines Add cluster-analysis routines
cluster programming utilities Cluster-analysis programming utilities
fvrevar L. Factor-variables operator programming command
matrix dissimilarity Compute similarity or dissimilarity measures
miselect i, Programmer’s alternative to mi extract
SEES et Survival analysis subroutines for programmers
svymarkout .. Mark observations for exclusion on the basis of survey characteristics
Technical i Details for programmers
ESTEVAL .ot i ettt e Time-series operator programming command

Project Manager Organize Stata files

Combined subject table of contents for programming xi

File formats

[P]
[P]
(D]
(D]

Mata
M]

File formats .dta Description of .dta file format
File formats .dtas Description of Stata frameset (.dtas) file format
unicode convertfile Low-level file conversion between encodings
unicode translate i Translate files to Unicode

Mata Reference Manual e

Automated document and report creation

(Ul

[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]
[RPT]

Chapter 21 ... e Creating reports
Appendix for putdocx Appendix for putdocx entries
Appendix for putpdf i Appendix for putpdf entries
Intro Introduction to reporting manual
docx2pdfl Convert a Word (.docx) document to a PDF file
Dynamic documents intro Introduction to dynamic documents
Dynamic tagsoiiiiiiiii i Dynamic tags for text files
dyndoc Convert dynamic Markdown document to HTML or Word (.docx) document
AYNtext .. .ovnvt e Process Stata dynamic tags in text file
html2docx Convert an HTML file to a Word (.docx) document
markdown .. Convert Markdown document to HTML file or Word (.docx) document
putdocx begin Create an Office Open XML (.docx) file
putdocx collect .. Add a table from a collection to an Office Open XML (.docx) file
putdocx intro Introduction to generating Office Open XML (.docx) files
putdocx pagebreak Add breaks to an Office Open XML (.docx) file
putdocx paragraph Add text or images to an Office Open XML (.docx) file
putdocx table Add tables to an Office Open XML (.docx) file
putexcel Export results to an Excel file
putexcel advanced Export results to an Excel file using advanced syntax
putpdf begin Create a PDF file
putpdf collect Add a table from a collection to a PDF file
putpdf intro L L Introduction to generating PDF files
putpdf pagebreak Add breaks to a PDF file
putpdf paragrapho ... Add text or images to a PDF file
putpdf table Add tables to a PDF file
S dOCX vttt Format settings for blocks of text

Interface features

[GS]
[GS]
[GS]
[GS]
[GS]
[GS]
[GS]
(P]

[R]

[D]

Chapter 1 (GSM, GSU, GSW) Introducing Stata—sample session
Chapter 2 (GSM, GSU, GSW) The Stata user interface
Chapter 3 (GSM, GSU, GSW) i Using the Viewer
Chapter 6 (GSM, GSU, GSW) i Using the Data Editor
Chapter 7 (GSM, GSU, GSW)t Using the Variables Manager
Chapter 13 (GSM, GSU, GSW) Using the Do-file Editor—automating Stata
Chapter 15 (GSM, GSU, GSW) e Editing graphs
Dialog programmingoeueneriintnenenanan.. Dialog programming
doedit ... Edit do-files and other text files
edit .. e Browse or edit data with Data Editor

xii Combined subject table of contents for programming

[P] set locale_ui Specify a localization package for the user interface
[P] SlEED it Pause for a specified time
[P] smel .o Stata Markup and Control Language
[D] unicode locale Unicode locale utilities
[D] Varmanage Manage variable labels, formats, and other properties
[P] VIEWSOUICE . . v ottt et et et e e et et e ettt et et e aens View source code
[P] window fopen i Display open/save dialog box
[P] window manageiiiiiiiiiiin.. Manage window characteristics
[P] WINAOW MENU ..ottt ittt et et e et Create menus
[P] window programming Programming menus and windows
[P] window pusho L. Copy command into History window

[P] window stopboxo Display message box

Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT] Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[EFN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual
[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual

xiii

Title

Intro — Introduction to programming manual

Description

In this manual, you will find

e matrix-manipulation commands, which are available from the Stata command line and
for ado-programming (for advanced matrix functions and a complete matrix programming
language, see the Mata Reference Manual),

e commands for programming Stata, and
e commands and discussions of interest to programmers.
This manual is referred to as [P] in cross-references and is organized alphabetically.

If you are new to Stata’s programming commands, we recommend that you first read the chapter
about programming Stata in [U] 18 Programming Stata. After you read that chapter, we recommend
that you read the following sections from this manual:

[P] program Define and manipulate programs
[P] sortpreserve Sorting within programs

[P] byable Making programs byable

[P] macro Macro definition and manipulation

You should also see the Combined subject table of contents for programming, which immediately
follows the table of contents.

We also recommend the Stata NetCourses. Our current offerings of Stata programming NetCourses
include

NC-151 Introduction to Stata programming
NC-152 Writing Your Own Stata Commands

To learn more about NetCourses and view the current offerings, visit https://www.stata.com/netcourse/.

Stata also offers classroom and web-based training courses. Visit
https://www.stata.com/training/classroom-and-web/ for details.

To learn about writing your own maximum-likelihood estimation commands, read the book
Maximum Likelihood Estimation with Stata. Other Stata Press titles can be found at https://www.stata-
press.com.

References
Baum, C. F. 2016. An Introduction to Stata Programming. 2nd ed. College Station, TX: Stata Press.

Pitblado, J. S., B. P. Poi, and W. W. Gould. 2024. Maximum Likelihood Estimation with Stata. 5th ed. College
Station, TX: Stata Press.

Also see

[U] 18 Programming Stata
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual

https://www.stata.com/netcourse/
https://www.stata.com/training/classroom-and-web
https://www.stata-press.com/books/maximum-likelihood-estimation-stata
https://www.stata-press.com
https://www.stata-press.com
http://www.stata-press.com/books/introduction-stata-programming/
http://www.stata-press.com/books/maximum-likelihood-estimation-stata/

Title

Automation — Automation

Description

Automation (formerly known as OLE Automation) is a communication mechanism between Microsoft
Windows applications. It provides an infrastructure whereby Windows applications (automation clients)
can access and manipulate functions and properties implemented in another application (automation
server). A Stata Automation object exposes internal Stata methods and properties so that Windows
programmers can write automation clients to directly use the services provided by Stata.

Remarks and examples

A Stata Automation object is most useful for situations that require the greatest flexibility to
interact with Stata from community-contributed applications. A Stata Automation object enables users
to directly access Stata macros, scalars, stored results, and dataset information in ways besides the
usual log files.

For documentation on using a Stata Automation object, see https://www.stata.com/automation/.

Note that the standard Stata end-user license agreement (EULA) does not permit Stata to be used
as an embedded engine in a production setting. If you wish to use Stata in such a manner, please
contact StataCorp at service @stata.com.

Also see
[P] plugin — Load a plugin

https://www.stata.com/automation/

Title

break — Suppress Break key

Description Syntax Remarks and examples Also see

Description

nobreak temporarily turns off recognition of the Break key. It is seldom used. break temporarily
reestablishes recognition of the Break key within a nobreak block. It is even more seldom used.

Syntax

nobreak stata_command
break stata_command

Typical usage is

nobreak {

capture noisily break ...

Remarks and examples
Stata commands honor the Break key. This honoring is automatic and, for the most part, requires
no special code, as long as you follow these guidelines:
1. Obtain names for new variables from tempvar; see [U] 18.7.1 Temporary variables.

2. Obtain names for other memory aggregates, such as scalars and matrices, from tempname; see
[U] 18.7.2 Temporary scalars and matrices.

3. If you need to temporarily change the user’s data, use preserve to save it first; see [U] 18.6 Tem-
porarily destroying the data in memory.

4. Obtain names for temporary files from tempfile; see [U] 18.7.3 Temporary files.

If you follow these guidelines, your program will be robust to the user pressing Break because Stata
itself will be able to put things back as they were.

Still, sometimes a program must commit to executing a group of commands that, if Break were
honored in the midst of the group, would leave the user’s data in an intermediate, undefined state.
nobreak is for those instances.

4 break — Suppress Break key

> Example 1

You are writing a program and following all the guidelines listed above. In particular, you are
using temporary variables. At a point in your program, however, you wish to list the first five
values of the temporary variable. You would like, temporarily, to give the variable a pretty name, so
you temporarily rename it. If the user were to press Break during the period, the variable would be
renamed; however, Stata would not know to drop it, and it would be left behind in the user’s data.
You wish to avoid this. In the code fragment below, ‘myv’ is the temporary variable:

nobreak {
rename ‘myv’ Result
list Result in 1/5
rename Result ‘myv’

}

It would not be appropriate to code the fragment as

nobreak rename ‘myv’ Result
nobreak list Result in 1/5
nobreak rename Result ‘myv’

because the user might press Break during the periods between the commands.

Also see
[P] capture — Capture return code
[P] continue — Break out of loops
[P] quietly — Quietly and noisily perform Stata command
[P] varabbrev — Control variable abbreviation
[U] 9 The Break key

Title

byable — Make programs byable

Description Syntax Option Remarks and examples Also see

Description

Most Stata commands allow the use of the by prefix; see [D] by. For example, the syntax diagram
for the regress command could be presented as

[by varlist :] regress ...
This entry describes the writing of programs (ado-files) so that they will allow the use of Stata’s

by varlist: prefix; see [D] by. If you take no special actions and write the program myprog, then by
varlist: cannot be used with it:

. by foreign: myprog
myprog may not be combined with by
r(190);
By reading this entry, you will learn how to modify your program so that by does work with it:
. by foreign: myprog

-> foreign = Domestic
(output for first by-group appears)

-> foreign = Foreign
(output for first by-group appears)

Syntax
program [@fine} program_name
[» ... byable (;ecall[s @eader] | onecall) .. }
Option

byable (recall[, noheader] | onecall) specifies that the program is to allow the by prefix to
be used with it and specifies the style in which the program is coded.

There are two supported styles, known as byable(recall) and byable(onecall).
byable(recall) programs are usually—not always—easier to write and byable(onecall)
programs are usually—not always—{faster.

byable(recall) programs are executed repeatedly, once per by group. byable(onecall)
programs are executed only once and it is the program’s responsibility to handle the implications
of the by prefix if it is specified.

byable(recall, noheader) programs are distinguished from byable(recall) programs in
that by will not display a by-group header before each calling of the program.

byable(onecall) programs are required to handle the by...: prefix themselves, including
displaying the header should they wish that. See Remarks and examples for details.

5

6 byable — Make programs byable

Remarks and examples

Remarks are presented under the following headings:

byable(recall) programs

Using sort in byable(recall) programs

Byable estimation commands

byable(onecall) programs

Using sort in byable(onecall) programs
Combining byable(onecall) with byable(recall)
The by-group header

If you have not read [P] sortpreserve, please do so.

Programs that are written to be used with by varlist: are said to be “byable”. Byable programs
do not require the use of by varlist:; they merely allow it. There are two ways that programs can
be made byable, known as byable(recall) and byable(onecall).

byable(recall) is easy to use and is sufficient for programs that report the results of calculation
(class-1 programs as defined in [P] sortpreserve). byable(recall) is the method most commonly
used to make programs byable.

byable(onecall) is more work to program and is intended for use in all other cases (class-2
and class-3 programs as defined in [P] sortpreserve).

byable(recall) programs

Say that you already have written a program (ado-file) and that it works; it merely does not allow
by. If your program reports the results of calculations (such as summarize, regress, and most of
the other statistical commands), then probably all you have to do to make your program byable is
add the byable(recall) option to its program statement. For instance, if your program statement
currently reads

program myprog, rclass sortpreserve
end

change it to read

program myprog, rclass sortpreserve byable(recall)

end

The only change you should need to make is to add byable(recall) to the program statement.
Adding byable(recall) will be the only change required if

e Your program leaves behind no newly created variables. Your program might create temporary
variables in the midst of calculation, but it must not leave behind new variables for the user.
If your program has a generate() option, for instance, some extra effort will be required.

e Your program uses marksample or mark to restrict itself to the relevant subsample of the
data. If your program does not use marksample or mark, some extra effort will be required.

Here is how byable(recall) works: if your program is invoked with a by varlist: prefix, your
program will be executed K times, where K is the number of by-groups formed by the by-variables.
Each time your program is executed, marksample will know to mark out the observations that are
not being used in the current by-group.

byable — Make programs byable 7

Therein is the reason for the two guidelines on when you need to include only byable(recall)
to make by varlist: work:

e If your program creates permanent, new variables, then it will create those variables when
it is executed for the first by-group, meaning that those variables will already exist when it
is executed for the second by-group, causing your program to issue an error message.

e If your program does not use marksample to identify the relevant subsample of the data,
then each time it is executed, it will use too many observations—it will not honor the
by-group—and will produce incorrect results.

There are ways around both problems, and here is more than you need:
function _by () takes no arguments; returns 0 when program is not being by’d;

returns 1 when program is being by’d.

function _byindex () takes no arguments; returns 1 when program is not being by’d;
returns 1, 2, ... when by’d and 1st call, 2nd call,
function _bylastcall() takes no arguments; returns 1 when program is not being by’d

and is being called with the last by-group; returns O otherwise.

function _byn1 () takes no arguments; returns the beginning observation number of
the by-group currently being executed; returns 1 if _by ()==0.
The value returned by _byn1 () is valid only if the data have
not been re-sorted since the original call to the by program.

function _byn2() takes no arguments; returns the ending observation number of the
by-group currently being executed; returns 1 if _by ()==0. The
value returned by _byn2() is valid only if the data have not
been re-sorted since the original call to by program.

macro ¢

_byindex’ contains nothing when program is not being by’d; contains name
of temporary variable when program is being by’d: variable contains
1, 2, ... for each observation in data and recorded value indicates
to which by-group each observation belongs.

(4

macro ‘_byvars’ contains nothing when program is not being by’d;
contains names of the actual by-variables otherwise.

4

macro ‘_byrc0’ contains “, rc0” if the rcO option is specified; contains

nothing otherwise.

So let’s consider the problems one at a time, beginning with the second problem. Your program
does not use marksample, and we will assume that your program has good reason for not doing so,
because the easy fix would be to use marksample. Still, your program must somehow be determining
which observations to use, and we will assume that you are creating a ‘touse’ temporary variable
containing 0 if the observation is to be omitted from the analysis and 1 if it is to be used. Somewhere,
early in your program, you are setting the ‘touse’ variable. Right after that, make the following
addition (shown in bold):

program ..., ... byable(recall)
it _byO {
quietly replace ‘touse’ = 0 if ¢_byindex’ != _byindex()
}
end

The fix is easy: you ask if you are being by’d and, if so, you set ‘touse’ to 0 in all observations for
which the value of ‘byindex’ is not equal to the by-group you are currently considering, namely,
_byindex ().

8 byable — Make programs byable

The first problem is also easy to fix. Say that your program has a generate(newvar) option.
Your code must therefore contain

program ..., ...
ié."‘generate’" 1= £
}

end o

Change the program to read

program ..., ... byable(recall)
if."‘generate’" !="" g _bylastcall() {
) R

o R

_bylastcall() will be 1 (meaning true) whenever your program is not being by’d and, when it is
being by’d, whenever the program is being executed for the last by-group. The result is that the new
variable will be created containing only the values for the last by-group, but with a few exceptions,
that is how all of Stata works. Alternatives are discussed under byable (onecall).

All the other macros and functions that are available are for creating special effects and are rarely
used in byable(recall) programs.

Using sort in byable(recall) programs

You may use sort freely within byable(recall) programs, and in fact, you can use any other
Stata command you wish; there are simply no issues. You may even use sortpreserve to restore
the sort order at the conclusion of your program; see [P] sortpreserve.

We will discuss the issue of sort in depth just to convince you that there is nothing with which
you must be concerned.

When a byable(recall) program receives control and is being by’d, the data are guaranteed to
be sorted by ¢ _byvars’ only when _byindex() = 1—only on the first call. If the program re-sorts
the data, the data will remain re-sorted on the second and subsequent calls, even if sortpreserve
is specified. This may sound like a problem, but it is not. sortpreserve is not being ignored; the
data will be restored to their original order after the final call to your program. Let’s go through the
two cases: either your program uses sort or it does not.

1. If your program needs to use sort, it will probably need a different sort order for each
by-group. For instance, a typical program that uses sort will include lines such as

sort ‘touse’ ‘id’ ...

and so move the relevant sample to the top of the dataset. This byable(recall) program
makes no reference to the ‘ _byvars’ themselves, nor does it do anything differently when
the by prefix is specified and when it is not. That is typical; byable (recall) programs
rarely find it necessary to refer to the ‘_byvars’ directly.

In any case, because this program is sorting the data explicitly every time it is called (and we
know it must be because byable (recall) programs are executed once for each by-group),
there is no reason for Stata to waste its time restoring a sort order that will just be undone
anyway. The original sort order needs to be reestablished only after the final call.

byable — Make programs byable 9

2. The other alternative is that the program does not use sort. Then it is free to exploit that the
data are sorted on ‘_byvars’. Because the data will be sorted on the first call, the program
does no sorts, so the data will be sorted on the second call, and so on. byable(recall)
programs rarely exploit the sort order, but the program is free to do so.

Byable estimation commands

Estimation commands are natural candidates for the byable (recall) approach. There is, however,
one issue that requires special attention. Estimation commands really have two syntaxes: one at the
time of estimation,

[prefix—command: | estcmd varlist ... |, estimation_options replay_options |
and another for redisplaying results:
estcmd | , replay_options |

With estimation commands, by is not allowed when results are redisplayed. We must arrange for this
in our program, and that is easy enough. The general outline for an estimation command is

program estcmd, ...
if replay() {
if "‘e(emd)’"!="estcmd" error 301
syntax [, replay_options]

}

else {
syntax ... [, estimation_options replay_options]
.. . estimation logic. . .

}

.. .display logic. . .

and to this, we make the changes shown in bold:

program estcmd, ... byable(recall)
if replay() {
if "‘e(emd)’"!="estcmd" error 301
if _by() error 190
syntax [, replay_options]

}

else {
syntax ... [, estimation_options replay_options]
. . . estimation logic. . .

}

.. .display logic. . .
In addition to adding byable(recall), we add the line

if _by() error 190

in the case where we have been asked to redisplay results. If we are being by’d (if _by () is true),
then we issue error 190 (request may not be combined with by).

10 byable — Make programs byable

byable(onecall) programs

byable(onecall) requires more work to use. We strongly recommend using byable (recall)
whenever possible.

The main use of byable(onecall) is to create programs such as generate and egen, which
allow the by prefix but operate on all the data and create a new variable containing results for all the
different by-groups.

byable(onecall) programs are, as the name implies, executed only once. The byable (onecall)
program is responsible for handling all the issues concerning the by, and it is expected to do that by
using

function _by () takes no arguments
returns 0 when program is not being by’d
returns 1 when program is being by’d

macro ‘_byvars’ contains nothing when program is not being by’d
contains names of the actual by-variables otherwise
macro ‘_byrc0’ contains nothing or “rc0”

contains “, rc0” if by’s rcO option was specified

In byable (onecall) programs, you are responsible for everything, including the output of by-group
headers if you want them.

The typical candidates for byable(onecall) are programs that do something special and odd
with the by-variables. We offer the following guidelines:

1. Ignore that you are going to make your program byable when you first write it. Instead,
include a by() option in your program. Because your program cannot be coded using
byable(recall), you already know that the by-variables are entangled with the logic of
your routine. Make your program work before worrying about making it byable.

2. Now go back and modify your program. Include byable(onecall) on the program
statement line. Remove by(varlist) from your syntax statement, and immediately after
the syntax statement, add the line

local by "‘_byvars’"

3. Test your program. If it worked before, it will still work now. To use the by () option, you
put the by varlist: prefix out front.

4. Ignore the macro ‘_byrcO’. Byable programs rarely do anything different when the user
specifies by’s rcO option.

Using sort in byable(onecall) programs

You may use sort freely within byable (onecall) programs. You may even use sortpreserve
to restore the sort order at the conclusion of your program.

When a byable(onecall) program receives control and is being by’d, the data are guaranteed
to be sorted by ‘_byvars’.

byable — Make programs byable 11

Combining byable(onecall) with byable(recall)

byable(onecall) can be used as an interface to other byable programs. Let’s pretend that you
are writing a command—we will call it switcher—that calls one of two other commands based
perhaps on some aspect of what the user typed or, perhaps, based on what was previously estimated.
The rule by which switcher decides to call one or the other does not matter for this discussion; what
is important is that switcher switches between what we will call progl and prog2. progl and
prog2 might be actual Stata commands, Stata commands that you have written, or even subroutines
of switcher.

We will further imagine that prog1 and prog?2 have been implemented using the byable (recall)
method and that we now want switcher to allow the by prefix, too. The easy way to do that is

program switcher, byable(onecall)
if _by(O {
local by "by ‘_byvars’ ‘_byrcO’:"

}

if (whatever makes us decide in favor of progl) {
‘by’ progl ‘0’

}

else ‘by’ prog2 ‘0’

end

switcher works by re-creating the by varlist: prefix in front of progl or prog?2 if by was specified.
switcher will be executed only once, even if by was specified. progl and prog2 will be executed
repeatedly.

In the above outline, it is not important that progl and prog2 were implemented using the
byable(recall) method. They could just as well be implemented using byable (onecall), and
switcher would change not at all.

The by-group header
Usually, when you use a command with by, a header is produced above each by-group:

. by foreign: summarize mpg weight

-> foreign = Domestic

(output for first by-group appears)

-> foreign = Foreign
(output for first by-group appears)

The by-group header does not always appear:

. by foreign: generate new = sum(mpg)

When you write your own programs, the header will appear by default if you use byable(recall)
and will not appear if you use byable (onecall).

If you want the header and use byable(onecall), you will have to write the code to output it.

12 byable — Make programs byable

If you do not want the header and use byable(recall), you can specify byable(recall,
noheader):

program ..., ... byable(recall, noheader)

end

Also see

[P] program — Define and manipulate programs
[P] sortpreserve — Sort within programs

[D] by — Repeat Stata command on subsets of the data

Title

capture — Capture return code

Description Syntax Remarks and examples Reference
Also see

Description

capture executes command, suppressing all its output (including error messages, if any) and
issuing a return code of zero. The actual return code generated by command is stored in the built-in
scalar _rc.

capture can be combined with {3} to produce capture blocks, which suppress output for the block
of commands. See the technical note following example 6 for more information.

Syntax

capture [] command

capture {
stata_commands

}

Remarks and examples

capture is useful in do-files and programs because their execution terminates when a command
issues a nonzero return code. Preceding sensitive commands with the word capture allows the
do-file or program to continue despite errors. Also do-files and programs can be made to respond
appropriately to any situation by conditioning their remaining actions on the contents of the scalar
_rc.

> Example 1

You will never have cause to use capture interactively, but an interactive experiment will
demonstrate what capture does:

. drop _all

. list myvar
no variables defined
r(111);

. capture list myvar

. display _rc
111

13

14 capture — Capture return code

When we said 1ist myvar, we were told that we had no variables defined and got a return code of
111. When we said capture 1ist myvar, we got no output and a zero return code. First, you should
wonder what happened to the message “no variables defined”. capture suppressed that message. It
suppresses all output produced by the command it is capturing. Next we see no return code message,
so the return code was zero. We already know that typing 1ist myvar generates a return code of
111, so capture suppressed that, too.

capture places the return code in the built-in scalar _rc. When we display the value of this
scalar, we see that it is 111.

N

> Example 2

Now that we know what capture does, let’s put it to use. capture is used in programs and
do-files. Sometimes you will write programs that do not care about the outcome of a Stata command.
You may want to ensure, for instance, that some variable does not exist in the dataset. You could do
so by including capture drop result.

If result exists, it is now gone. If it did not exist, drop did nothing, and its nonzero return
code and the error message have been intercepted. The program (or do-file) continues in any case.
If you have written a program that creates a variable named result, it would be good practice to
begin such a program with capture drop result. This way, you could use the program repeatedly
without having to worry whether the result variable already exists.

d

Q Technical note

When combining capture and drop, never say something like capture drop varl var2 var3.
Remember that Stata commands do either exactly what you say or nothing at all. We might think
that our command would be guaranteed to eliminate varl, var2, and var3 from the data if they
exist. It is not. Imagine that var3 did not exist in the data. drop would then do nothing. It would
not drop varl and var2. To achieve the desired result, we must give three commands:

capture drop varl
capture drop var2
capture drop var3

> Example 3

Here is another example of using capture to dispose of nonzero return codes: When using do-files
to define programs, it is common to begin the definition with capture program drop progname and
then put program progname. This way, you can rerun the do-file to load or reload the program.

N

> Example 4

Let’s consider programs whose behavior is contingent upon the outcome of some command. You
write a program and want to ensure that the first argument (the macro ¢17) is interpreted as a new
variable. If it is not, you want to issue an error message:

capture — Capture return code 15

capture confirm new variable ‘1’

if _rc!=0 {
display "‘1’ already exists"
exit _rc

}

(program continues. . .)

You use the confirm command to determine if the variable already exists and then condition your
error message on whether confirm thinks ‘1’ can be a new variable. We did not have to go to
the trouble here. confirm would have automatically issued the appropriate error message, and its
nonzero return code would have stopped the program anyway.

4

> Example 5

As before, you write a program and want to ensure that the first argument is interpreted as a new
variable. This time, however, if it is not, you want to use the name _answer in place of the name
specified by the user:

capture confirm new variable ‘1’
if _rc!'=0 {

local 1 _answer

confirm new variable ‘1’

}

(program continues. . .)

> Example 6

There may be instances where you want to capture the return code but not the output. You do that
by combining capture with noisily. For instance, we might change our program to read

capture noisily confirm new variable ‘1’
if _rc!=0 {
local 1 _answer
display "I’1l use _answer"
}
(program continues. . .)

13

confirm will generate some message such as “...already exists”, and then we will follow that

message with “T’ll use _answer”.

N

Q Technical note
capture can be combined with {} to produce capture blocks. Consider the following:

capture {
confirm var ‘1’
confirm integer number €2’
confirm number €3’

}

if _rc!'=0 {
display "Syntax is variable integer number"
exit 198

}

(program continues. . .)

16 capture — Capture return code

If any of the commands in the capture block fail, the subsequent commands in the block are aborted,
but the program continues with the if statement.

Capture blocks can be used to intercept the Break key, as in

capture {
stata_commands
}
if _re==1 {
Break key cleanup code
exit 1
¥

(program continues. . .)

Remember that Break always generates a return code of 1. There is no reason, however, to restrict
the execution of the cleanup code to Break only. Our program might fail for some other reason,
such as insufficient room to add a new variable, and we would still want to engage in the cleanup
operations. A better version would read

capture {
stata_commands
¥
if _rc!'=0 {
local oldrc = _rc
Break key and error cleanup code
exit ‘oldrc’
¥

(program continues. . .)

Q Technical note

If, in our program above, the stata_commands included an exit or an exit O, the program would
terminate and return 0. Neither the cleanup nor the program continues code would be executed. If
stata_commands included an exit 198, or any other exit that sets a nonzero return code, however,
the program would not exit. capture would catch the nonzero return code, and execution would
continue with the cleanup code.

a

Reference
Newson, R. B. 2017. Stata tip 127: Use capture noisily groups. Stata Journal 17: 511-514.

Also see
[P] break — Suppress Break key
[P] confirm — Argument verification
[P] quietly — Quietly and noisily perform Stata command

[U] 18.2 Relationship between a program and a do-file

http://www.stata-journal.com/article.html?article=pr0066

Title

char — Characteristics

Description Syntax Option Remarks and examples Also see

Description

The dataset itself and each variable within the dataset have associated with them a set of
characteristics. Characteristics are named and referred to as varname [charname] , where varname is
the name of a variable or _dta. The characteristics contain text. Characteristics are stored with the
dataset in the Stata-format .dta dataset, so they are recalled whenever the dataset is loaded.

Characteristics are sometimes used in Stata programs to store additional metadata for variables.
See [U] 12.8 Characteristics for more details.

Syntax
Define characteristics

char [define] evarname [charname] [["}text["]]

List characteristics

char list [evarname[[charname}]]

Rename characteristics

char rename oldvar newvar [, replace}

Also related is

{local|global} mname: char evarnamel|charname]

evarname is a variable name or _dta and charname is a characteristic name. In the syntax diagrams,
distinguish carefully between [], which you type, and [], which indicates that the element is
optional.

Option

replace (for use only with char rename) specifies that if characteristics of the same name already
exist, they are to be replaced. replace is a seldom-used, low-level, programmer’s option.

char rename oldvar newvar moves all characteristics of oldvar to newvar, leaving oldvar with
none and newvar with all the characteristics oldvar previously had. char rename oldvar newvar
moves the characteristics, but only if newvar has no characteristics with the same name. Otherwise,
char rename produces the error message that newvar[whatever] already exists.

17

18 char — Characteristics

Remarks and examples
We begin by showing how the commands work mechanically and then continue to demonstrate
the commands in more realistic situations.
char define sets and clears characteristics, although there is no reason to type define:

. char _dtalone] this is char named one of _dta

. char _dta[two] this is char named two of _dta

. char mpglone] this is char named one of mpg
. char mpg[two] "this is char named two of mpg"

. char mpglthree] "this is char named three of mpg"

Whether we include the double quotes does not matter. You clear a characteristic by defining it to be
nothing:

. char mpg[three]

char list is used to list existing characteristics; it is typically used for debugging:

. char list
_dta[two] : this is char named two of _dta
_dtal[one] : this is char named one of _dta
mpg [two] ¢ this is char named two of mpg
mpg [one] : this is char named omne of mpg
. char list _dtal]
_dtal[two] : this is char named two of _dta
_dta[onel : this is char named one of _dta
. char list mpgl]
mpg [two] ¢ this is char named two of mpg
mpg [one] : this is char named one of mpg

. char list mpg[one]
mpg [one] ¢ this is char named one of mpg

The order may surprise you—it is the way it is because of how Stata’s memory-management routines
work—but it does not matter.
char rename moves all the characteristics associated with oldvar to newvar:

. char rename mpg weight

. char list
_dta[two] : this is char named two of _dta
_dta[one] : this is char named one of _dta
weight [two] ¢ this is char named two of mpg
weight [one] : this is char named one of mpg
. char rename weight mpg // put it back

The contents of specific characteristics may be obtained in the same way as local macros by
referring to the characteristic name between left and right single quotes; see [U] 12.8 Characteristics.
. display "‘mpglone]’"
this is char named one of mpg

. display "‘_dtal]’"
two one

Referring to a nonexisting characteristic returns a null string:

. display "the value is | ‘mpg[three]’|"
the value is ||

char — Characteristics 19

How to program with characteristics

> Example 1

You are writing a program that requires the value of the variable recording “instance” (first time,
second time, etc.). You want your command to have an option ins (varname), but after the user has
specified the variable once, you want your program to remember it in the future, even across sessions.
An outline of your program is

program ...

end

> Example 2

version 18.0
syntax ... [, ... ins(varname) ...]
.i.f. neéipgit==nn {

local ins "‘_dtal[Instance]’"
}
confirm variable ‘ins’
char _dtal[Instance] : ‘ins’

You write a program, and among other things, it changes the contents of one of the variables in
the user’s data. You worry about the user pressing Break while the program is in the midst of the
change, so you correctly decide to construct the replaced values in a temporary variable and, only
at the conclusion, drop the user’s original variable and replace it with the new one. In this example,
macro ‘uservar’ contains the name of the user’s original variable. Macro ‘newvar’ contains the

name of the temporary variable that will ultimately replace it.

The following issues arise when you duplicate the original variable: you want the new variable to
have the same variable label, the same value label, the same format, and the same characteristics.

program ...

end

version 18.0
tempvar newvar
(code creating ‘newvar’)

local varlab : variable label ‘uservar’
local vallab : value label ‘uservar’
local format : format ‘uservar’

label var ‘newvar’ "‘varlab’"

label values ‘newvar’ ‘vallab’

format ‘newvar’ ‘format’

char rename ‘uservar’ ‘newvar’

drop ‘uservar’

rename ‘newvar’ ‘uservar’

You are supposed to notice the char rename command included to move the characteristics originally
attached to ‘uservar’ to ‘newvar’. See [P] macro, [D] label, and [D] format for information on
the commands preceding the char rename command.

20 char — Characteristics

This code is almost perfect, but if you are really concerned about the user pressing Break, there
is a potential problem. What happens if the user presses Break between the char rename and the
final rename? The last three lines would be better written as

nobreak {
char rename ‘uservar’ ‘newvar’
drop ‘uservar’
rename ‘newvar’ ‘uservar’

}

Now even if the user presses Break during these last three lines, it will be ignored; see [P] break.

d

Also see
[P] macro — Macro definition and manipulation
[D] notes — Place notes in data
[U] 12.8 Characteristics
[U] 18.3.6 Macro functions
[U] 18.3.13 Referring to characteristics

Title

class — Class programming

Description Remarks and examples Also see

Description

Stata’s two programming languages, ado and Mata, each support object-oriented programming. This
manual entry explains object-oriented programming in ado. Most users interested in object-oriented

programming will wish to do the programming in Mata. See [M-2] class to learn about object-oriented
programming in Mata.

Ado classes are a programming feature of Stata that are especially useful for dealing with graphics
and GUI problems, although their use need not be restricted to those topics. Ado class programming
is an advanced programming topic and will not be useful to most programmers.

Remarks and examples

Remarks are presented under the following headings:

1. Introduction
2. Definitions
2.1 Class definition
2.2 Class instance
2.3 Class context
3. Version control
4. Member variables
4.1 Types
4.2 Default initialization
4.3 Specifying initialization
4.4 Specifying initialization 2, .new
4.5 Another way of declaring
4.6 Scope
4.7 Adding dynamically
4.8 Advanced initialization, .oncopy
4.9 Advanced cleanup, destructors
5. Inheritance
. Member programs’ return values
7. Assignment
7.1 Type matching
7.2 Arrays and array elements
7.3 lvalues and rvalues
7.4 Assignment of reference
8. Built-ins
8.1 Built-in functions
8.2 Built-in modifiers
9. Prefix operators
10. Using object values
11. Object destruction
12. Advanced topics
12.1 Keys
12.2 Unames
12.3 Arrays of member variables
Appendix A. Finding, loading, and clearing class definitions
Appendix B. Jargon

(=)

21

22 class — Class programming

Appendix C. Syntax diagrams
Appendix C.1 Class declaration
Appendix C.2 Assignment
Appendix C.3 Macro substitution
Appendix C.4 Quick summary of built-ins

1. Introduction

A class is a collection of member variables and member programs. The member programs of a
class manipulate or make calculations based on the member variables. Classes are defined in .class
files. For instance, we might define the class coordinate in the file coordinate.class:

begin coordinate.class

version 18.0
class coordinate {

double x
N double y
program .set

args x y

x = ‘x’

y = ty)

end

end coordinate.class

The above file does not create anything. It merely defines the concept of a “coordinate”. Now that
the file exists, however, you could create a “scalar” variable of type coordinate by typing

.coord = .coordinate.new

.coord is called an instance of coordinate; it contains .coord.x (a particular x coordinate)
and .coord.y (a particular y coordinate). Because we did not specify otherwise, .coord.x and
.coord.y contain missing values, but we could reset .coord to contain (1,2) by typing

.coord.x =1
.coord.y = 2

Here we can do that more conveniently by typing

.coord.set 1 2

because coordinate.class provides a member program called .set that allows us to set the
member variables. There is nothing especially useful about .set; we wrote it mainly to emphasize
that classes could, in fact, contain member programs. Our coordinate.class definition would be
nearly as good if we deleted the .set program. Classes are not required to have member programs,
but they may.

If we typed

.coord2 = .coordinate.new
.coord2.set 2 4

we would now have a second instance of a coordinate, this one named .coord2, which would
contain (2,4).

class — Class programming 23

Now consider another class, 1ine.class:

begin line.class

version 18.0
class line {
coordinate cO
coordinate cl
}
program .set
args x0 yO x1 yi
.cO.set ‘x0’ ‘y0’
.cl.set ‘x1’ ‘y1°’
end
program .length
class exit sqrt((‘.cO.y’-‘.cl.y’)"2 + (‘.c0.x’-‘.cl1.x’)"2)
end
program .midpoint
local cx = (‘.c0.x’ + ‘.cl.x’)/2
local cy = (“.cO.y’ + “.cl.y’)/2
tempname b
.‘b’=.coordinate.new
.‘b’.set ‘cx’ ‘cy’
class exit .‘b’
end

end line.class

Like coordinate.class, line.class has two member variables—named .cO and .cl1—but
rather than being numbers, .cO and .cl are coordinates as we have previously defined the term.
Thus the full list of the member variables for 1ine.class is

.c0 first coordinate
.c0.x x value (a double)
.cO.y y value (a double)
.cl second coordinate
.cl.x x value (a double)
.cl.y y value (a double)
If we typed
.1i = .line.new

we would have a 1ine named .1i in which

.1i.cO0 first coordinate of line .1i
.1i.c0.x x value (a double)

.1i.cO.y y value (a double)

Jli.cl second coordinate of line .1i
di.cl.x x value (a double)

Jdli.cl.y y value (a double)

What are the values of these variables? Because we did not specify otherwise, .1i.cO and .1i.cl
will receive default values for their type, coordinate. That defaultis (.,.) because we did not specify
otherwise when we defined 1ines or coordinates. Therefore, the default values are (.,.) and (.,.),
and we have a missing line.

As with coordinate, we included the member function .set to make setting the line easier. We
can type

li.set 1 22 4

and we will have a line going from (1,2) to (2,4).

24 class — Class programming

line.class contains the following member programs:

.set program to set .cO and .c1l

.c0.set program to set .cO

.cl.set program to set .cl

.length program to return length of line

.midpoint program to return coordinate of midpoint of line

.set, .length, and .midpoint came from line.class. .cO.set and .cl.set came from
coordinate.class.

Member program .length returns the length of the line.
.len = .li.length

would create . len containing the result of .1i.length. The result of running the program .length
on the object .1i. .length returns a double, and therefore, .1len will be a double.

.midpoint returns the midpoint of a line.
.mid = .li.midpoint

would create .mid containing the result of .1li.midpoint, the result of running the program
.midpoint on the object .1i. .midpoint returns a coordinate, and therefore, .mid will be a
coordinate.

2. Definitions

2.1 Class definition

Class classname is defined in file classname . class. The definition does not create any instances
of the class.

The classname . class file has three parts:

begin classname.class

version ... // Part 1: version statement
class classname { // Part 2: declaration of member variables

}

program ... // Part 3: code for member programs

end
program ...

end

end classname.class

2.2 Class instance

To create a “variable” name of type classname, you type

.name = .classname.new

class — Class programming 25

After that, .name is variously called an identifier, class variable, class instance, object, object
instance, or sometimes just an instance. Call it what you will, the above creates new .name—or
replaces existing .name—to contain the result of an application of the definition of classname. And,
just as with any variable, you can have many different variables with many different names all the
same type.

.name is called a first-level or top-level identifier. .namel .name?2 is called a second-level identifier,
and so on. Assignment into top-level identifiers is allowed if the identifier does not already exist or
if the identifier exists and is of type classname. If the top-level identifier already exists and is of a
different type, you must drop the identifier first and then re-create it; see 11. Object destruction.

Consider the assignment

.namel .name2 = .classname.new

The above statement is allowed if . namel already exists and if . name?2 is declared, in .namel’s class
definition, to be of type classname. In that case, .namel .name2 previously contained a classname
instance and now contains a classname instance, the difference being that the old contents were
discarded and replaced with the new ones. The same rule applies to third-level and higher identifiers.

Classes, and class instances, may also contain member programs. Member programs are identified
in the same way as class variables. .namel .name2 might refer to a member variable or to a member
program.

2.3 Class context

When a class program executes, it executes in the context of the current instance. For example,
consider the instance creation

.mycoord = .coordinate.new

and recall that coordinate.class provides member program .set, which reads

program .set
args x y
‘X’
ly)
end

Assume that we type “.mycoord.set 2 4”. When .set executes, it executes in the context of
.mycoord. In the program, the references to .x and .y are assumed to be to .mycoord.x and
.mycoord.y. If we typed “.other.set”, the references would be to .other.x and .other.y.

Look at the statement “.x = ‘x’” in .set. Pretend that ‘x’ is 2 so that, after macro substitution,
the statement reads “.x = 2”. Is this a statement that the first-level identifier .x is to be set to 2?
No, it is a statement that .impliedcontext.x is to be set to 2. The same would be true whether .x
appeared to the right of the equal sign or anywhere else in the program.

The rules for resolving things like .x and .y are actually more complicated. They are resolved to
the implied context if they exist in the implied context, and otherwise they are interpreted to be in
the global context. Hence, in the above examples, .x and .y were interpreted as being references to
.impliedcontext.x and .impliedcontext.y because .x and .y existed in .impliedcontext. If, however,
our program made a reference to .c, that would be assumed to be in the global context (that is, to
be just .c), because there is no .c in the implied context. This is discussed at length in 9. Prefix
operators.

If a member program calls a regular program—a regular ado-file—that program will also run in
the same class context; for example, if .set included the lines

26 class — Class programming

move_to_right
x = r(x)
-y =y
and program move_to_right.ado had lines in it referring to .x and .y, they would be interpreted

as .impliedcontext.x and .impliedcontext.y.

In all programs—member programs or ado-files—we can explicitly control whether we want
identifiers in the implied context or globally with the .Local and .Global prefixes; see 9. Prefix
operators.

3. Version control

The first thing that should appear in a .class file is a version statement; see [P] version. For
example, coordinate.class reads

begin coordinate.class —————

version 18.0
[class statement defining member variables omitted]
program .set

args x y
x = ‘x?
.y = cy)

end

end coordinate.class —

The version 18.0 at the top of the file specifies not only that, when the class definition is read, it
be interpreted according to version 18.0 syntax, but also that when each of the member programs runs,
it be interpreted according to version 18.0. Thus you do not need to include a version statement
inside the definition of each member program, although you may if you want that one program to
run according to the syntax of a different version of Stata.

Including the version statement at the top, however, is of vital importance. Stata is under continual
development, and so is the class subsystem. Syntax and features can change. Including the version
command ensures that your class will continue to work as you intended.

4. Member variables

4.1 Types

The second thing that appears in a .class file is the definition of the member variables. We have
seen two examples:

begin coordinate.class —————

version 18.0

class coordinate {
double x
double y

¥

[member programs omitted |

end coordinate.class —

and

class — Class programming 27

begin line.class ————

version 18.0
class line {
coordinate cO
coordinate cl
¥

[member programs omitted]

end line.class —

In the first example, the member variables are .x and .y, and in the second, .cO and .c1. In the
first example, the member variables are of type double, and in the second, of type coordinate,
another class.

The member variables may be of type

double double-precision scalar numeric value, which
includes missing values ., .a, ..., and .z
string scalar string value, with minimum length O ("")

and maximum length the same as for macros,
in other words, long

The class string type is different from Stata’s str# and strL
types. It can hold much longer string values than can the str#
type, but not as long of string values as the strL type.
Additionally, unlike strLs, class strings cannot contain binary 0.

classname other classes, excluding the class being defined
array array containing any of the fypes, including other arrays

A class definition might read

begin todolist.class ————

version 18.0
class todolist {

double n /I number of elements in list
string name // who the list is for

array list // the list itself

actions x // things that have been done

end todolist.class —

In the above, actions is a class, not a primitive type. Somewhere else, we have written ac-
tions.class, which defines what we mean by actions.

arrays are not typed when they are declared. An array is not an array of doubles or an array of
strings or an array of coordinates; rather, each array element is separately typed at run time, so
an array may turn out to be an array of doubles or an array of strings or an array of coordinates,
or it may turn out that its first element is a double, its second element is a string, its third element
is a coordinate, its fourth element is something else, and so on.

Similarly, arrays are not declared to be of a predetermined size. The size is automatically
determined at run time according to how the array is used. Also arrays can be sparse. The first
element of an array might be a double, its fourth element a coordinate, and its second and third
elements left undefined. There is no inefficiency associated with this. Later, a value might be assigned
to the fifth element of the array, thus extending it, or a value might be assigned to the second and
third elements, thus filling in the gaps.

28 class — Class programming

4.2 Default initialization

When an instance of a class is created, the member variables are filled in as follows:

double . (missing value)

string "

classname as specified by class definition

array empty, an array with no elements yet defined

4.3 Specifying initialization

You may specify in classname.class the initial values for member variables. To do this, you
type an equal sign after the identifier, and then you type the initial value. For example,

begin todolist.class —

version 18.0
class todolist {

double n =0

string name = "nobody"

array list = {"show second syntax", "mark as done"}
actions x = .actions.new arguments

end todolist.class —
The initialization rules are as follows:

double membervarname = . ..
After the equal sign, you may type any number or expression. To initialize the member
variable with a missing value (., .a, .b, ..., .z), you must enclose the missing value in
parentheses. Examples include

double n = 0

double a = (.)
double b = (.b)
double z = (2+3)/sqrt(5)

Alternatively, after the equal sign, you may specify the identifier of a member variable to
be copied or program to be run as long as the member variable is a double or the program
returns a double. If a member program is specified that requires arguments, they must be
specified following the identifier. Examples include

double n = .clearcount
double a .gammavalue 4 5 2
double b .color.cvalue, color(green)

The identifiers are interpreted in terms of the global context, not the class context being
defined. Thus .clearcount, .gammavalue, and .color.cvalue must exist in the global
context.

string membervarname = . ..
After the equal sign, you type the initial value for the member variable enclosed in quotes,
which may be either simple (" and ") or compound (‘" and "’). Examples include

string name = "nobody"
string s = ‘"quotes "inside" strings"’

string a = ""

class — Class programming 29

You may also specify a string expression, but you must enclose it in parentheses. For
example,

string name = ("no" + "body")

string b (char(11))

Or you may specify the identifier of a member variable to be copied or a member program
to be run, as long as the member variable is a string or the program returns a string.
If a member program is specified that requires arguments, they must be specified following
the identifier. Examples include

string n = .defaultname
string a = .recapitalize "john smith"
string b = .names.defaults, category(null)

The identifiers are interpreted in terms of the global context, not the class context being
defined. Thus .defaultname, .recapitalize, and .names.defaults must exist in the
global context.

array membervarname = {...}
After the equal sign, you type the set of elements in braces ({ and }), with each element
separated from the next by a comma.

If an element is enclosed in quotes (simple or compound), the corresponding array element
is defined to be string with the contents specified.

If an element is a literal number excluding ., .a, ..., and .z, the corresponding array
element is defined to be double and filled in with the number specified.

If an element is enclosed in parentheses, what appears inside the parentheses is evaluated
as an expression. If the expression evaluates to a string, the corresponding array element is
defined to be string and the result is filled in. If the expression evaluates to a number,
the corresponding array element is defined to be double and the result is filled in. Missing
values may be assigned to array elements by being enclosed in parentheses.

An element that begins with a period is interpreted as an object identifier in the global
context. That object may be a member variable or a member program. The corresponding
array element is defined to be of the same type as the specified member variable or of the
same type as the member program returns. If a member program is specified that requires
arguments, the arguments must be specified following the identifier, but the entire syntactical
elements must be enclosed in square brackets ([and]).

If the element is nothing, the corresponding array element is left undefined.
Examples include
array mixed = {1, 2, "three", 4}

array els = {.box.new, , .table.new}
array rad = {[.box.new 2 3], , .table.new}

Note the double commas in the last two initializations. The second element is left undefined.
Some programmers would code

array els {.box.new, /*nothing+*/, .table.new}
array rad = {[.box.new 2 3], /*nothing*/, .table.new}

to emphasize the null initialization.

30 class — Class programming

classname membervarname = . ..
After the equal sign, you specify the identifier of a member variable to be copied or a
member program to be run, as long as the member variable is of type classname or the
member program returns something of type classname. If a member program is specified
that requires arguments, they must be specified following the identifier. In either case, the
identifier will be interpreted in the global context. Examples include

box myboxl = .box.new
box mybox2 = .box.new 2 4 7 8, tilted

All the types can be initialized by copying other member variables or by running other member
programs. These other member variables and member programs must be defined in the global context
and not the class context. In such cases, each initialization value or program is, in fact, copied or
run only once—at the time the class definition is read—and the values are recorded for future use.
This makes initialization fast. This also means, however, that

e If, in a class definition called, say, border.class, you defined a member variable that was
initialized by .box.new, and if .box.new counted how many times it is run, then even if
you were to create 1,000 instances of border, you would discover that .box.new was run
only once. If .box.new changed what it returned over time (perhaps because of a change
in some state of the system being implemented), the initial values would not change when
a new border object was created.

e If, in border.class, you were to define a member variable that is initialized as .sys-
tem.curvals.no_of_widgets, which we will assume is another member variable, then even
if .system.curvals.no_of_widgets were changed, the new instances of border.class
would always have the same value—the value of .system.curvals.no_of_widgets
current at the time border.class was read.

In both of the above examples, the method just described—the prerecorded assignment method of
specifying initial values—would be inadequate. The method just described is suitable for specifying
constant initial values only.

4.4 Specifying initialization 2, .new

Another way to specify how member variables are to be initialized is to define a .new program
within the class.

To create a new instance of a class, you type

. name =. classname.new

.new is, in fact, a member program of classname; it is just one that is built in, and you do not have
to define it to use it. The built-in .new allocates the memory for the instance and fills in the default
or specified initial values for the member variables. If you define a .new, your .new will be run after
the built-in .new finishes its work.

For example, our example coordinate.class could be improved by adding a .new member
program:

class — Class programming 31

begin coordinate.class

version 18.0
class coordinate {

double x
N double y
program .new
if "eQom 1= nn {
.set ‘0’
}
end
program .set
args x y
x = ‘x’
2y =y

end

end coordinate.class

With this addition, we could type
.coord = .coordinate.new
.coord.set 2 4

or we could type

.coord = .coordinate.new 2 4

We have arranged .new to take arguments—optional ones here—that specify where the new point
is to be located. We wrote the code so that .new calls .set, although we could just as well have
written the code so that the lines in .set appeared in .new and then deleted the .set program. In
fact, the two-part construction can be desirable because then we have a function that will reset the
contents of an existing class as well.

In any case, by defining your own .new, you can arrange for any sort of complicated initialization
of the class, and that initialization can be a function of arguments specified if that is necessary.

The .new program need not return anything; see 6. Member programs’ return values.

.new programs are not restricted just to filling in initial values. They are programs that you
can code however you wish. .new is run every time a new instance of a class is created with one
exception: when an instance is created as a member of another instance (in which case, the results
are prerecorded).

4.5 Another way of declaring

In addition to the syntax
type name [= initialization]
where fype is one of double, string, classname, or array, there is an alternative syntax that reads
name = initialization

That is, you may omit specifying type when you specify how the member variable is to be initialized
because, then, the type of the member variable can be inferred from the initialization.

32 class — Class programming

4.6 Scope

In the examples we have seen so far, the member variables are unique to the instance. For example,
if we have

.coordl = .coordinate.new
.coord2 = .coordinate.new

then the member variables of .coordl have nothing to do with the member variables of .coord2.
If we were to change .coordl.x, then .coord2.x would remain unchanged.

Classes can also have variables that are shared across all instances of the class. Consider

begin coordinate2.class

version 18.0
class coordinate2 {
classwide:
double x_origin =
double y_origin = 0

|
o

instancespecific:
double x = 0
double y = 0

end coordinate2.class

In this class definition, .x and .y are as they were in coordinate.class—they are unique to
the instance. .x_origin and .y_origin, however, are shared across all instances of the class. That
is, if we were to type

.ac = .coordinate2.new
.bc .coordinate2.new

there would be only one copy of .x_origin and of .y_origin. If we changed .x_origin in .ac,
.ac.x_origin = 2

we would find that .bc.x_origin had similarly been changed. That is because .ac.x_origin and
.bc.x_origin are, in fact, the same variable.

The effects of initialization are a little different for classwide variables. In coordinate2.class,
we specified that .origin_x and .origin_y both be initialized as 0, and so they were when we typed
“.ac = .coordinate2.new”, creating the first instance of the class. After that, however, .origin_x
and .origin_y will never be reinitialized because they need not be re-created, being shared. (That
is not exactly accurate because, once the last instance of a coordinate2 has been destroyed, the
variables will need to be reinitialized the next time a new first instance of coordinate?2 is created.)

Classwide variables, just as with instance-specific variables, can be of any type. We can define

begin supercoordinate.class

version 18.0
class supercoordinate {
classwide:
coordinate origin
instancespecific:
coordinate pt

end supercoordinate.class

The qualifiers classwide: and instancespecific: are used to designate the scope of the
member variables that follow. When neither is specified, instancespecific: is assumed.

class — Class programming 33

4.7 Adding dynamically

Once an instance of a class exists, you can add new (instance-specific) member variables to it.
The syntax for doing this is

name .Declare attribute_declaration

where name is the identifier of an instance and attribute_declaration is any valid attribute declaration
such as

double varname
string varname
array varname
classname varname

and, on top of that, we can include = and initializer information as defined in 4.3 Specifying
initialization above.

For example, we might start with
.coord = .coordinate.new

and discover that there is some extra information that we would like to carry around with the particular
instance .coord. Here we want to carry around some color information that we will use later, and
we have at our fingertips color.class, which defines what we mean by color. We can type

.coord.Declare color mycolor
or even
.coord.Declare color mycolor = .color.new, color(default)

to cause the new class instance to be initialized the way we want. After that command, .coord now
contains .coord.color and whatever third-level or higher identifiers color provides. We can still
invoke the member programs of coordinate on .coord, and to them, .coord will look just like a
coordinate because they will know nothing about the extra information (although if they were to
make a copy of .coord, then the copy would include the extra information). We can use the extra
information in our main program and even in subroutines that we write.

Q Technical note

Just as with the declaration of member variables inside the class {3} statement, you can omit
specifying the type when you specify the initialization. In the above, the following would also be
allowed:

.coord.Declare mycolor = .color.new, color(default)

34 class — Class programming

4.8 Advanced initialization, .oncopy

Advanced initialization is an advanced concept, and we need concern ourselves with it only when
our class is storing references to items outside the class system. In such cases, the class system knows
nothing about these items other than their names. We must manage the contents of these items.

Assume that our coordinates class was storing not scalar coordinates but rather the names of Stata
variables that contained coordinates. When we create a copy of such a class,

.coord = .coordinate.new 2 4
.coordcopy = .coord

.coordcopy will contain copies of the names of the variables holding the coordinates, but the
variables themselves will not be copied. To be consistent with how all other objects are treated, we
may prefer that the contents of the variables be copied to new variables.

As with .new we can define an .oncopy member program that will be run after the default copy
operation has been completed. We will probably need to refer to the source object of the copy with
the built-in .oncopy_src, which returns a key to the source object.

Let’s write the beginnings of a coordinate class that uses Stata variables to store vectors of
coordinates.

begin varcoordinate.class

version 18.0
class varcoordinate {

classwide:
n=20
instancespecific:
string x
string y
program .new
.nextnames
if "eQom 1= nn {
.set ‘0’
end
program .set
args x y
replace ‘.x’ = ‘x’
replace ‘.y’> = ‘y’
end
program .nextnames
.n=‘n’ +1
.x = "__varcorrd_vname_‘.n’"
.n=‘n’ +1
.y = "__varcorrd_vname_°‘.n’"
generate ‘.x’ = .
generate ‘.y’ = .
end
program .oncopy
.nextnames
.set ‘.‘.oncopy_src’.x’ ¢.‘.oncopy_src’.y’

end

end varcoordinate.class

This class is more complicated than what we have seen before. We are going to use our own
unique variable names to store the x- and y-coordinate variables. To ensure that we do not try to
reuse the same name, we number these variables by using the classwide counting variable .n. Every

class — Class programming 35

time a new instance is created, unique x- and y-coordinate variables are created and filled in with
missing. This work is done by .nextnames.

The .set looks similar to the one from .varcoordinates except that now we are holding
variable names in ‘.x’ and ‘.y’, and we use replace to store the values from the specified variables
into our coordinate variables.

The .oncopy member function creates unique names to hold the variables, using .nextnames,
and then copies the contents of the coordinate variables from the source object, using .set.

Now, when we type
.coordcopy = .coord

the x- and y-coordinate variables in .coordcopy will be different variables from those in .coord
with copies of their values.

The varcoordinate class does not yet do anything interesting, and other than the example in
the following section, we will not develop it further.
4.9 Advanced cleanup, destructors
We rarely need to concern ourselves with objects being removed when they are deleted or replaced.
When we type

.a = .classname .new
.b .classname .new
.a =.b

the last command causes the original object, .a, to be destroyed and replaces it with .b. The class
system handles this task, which is usually all we want done. An exception is objects that are holding
onto items outside the class system, such as the coordinate variables in our destructor class.

When we need to perform actions before the system deletes an object, we write a .destructor
member program in the class file. The .destructor for our varcoordinate class is particularly
simple; it drops the coordinate variables.

begin varcoordinate.class -- destructor
program .destructor
capture drop ¢.x’
capture drop ‘.y’
end
end varcoordinate.class -- destructor

5. Inheritance

One class definition can inherit from other class definitions. This is done by including the
inherit (classnamelist) option:

begin newclassname .class

version 18.0
class newclassname {

}, inherit(classnamelist)
program ...

end

end newclassname .class

36 class — Class programming

newclassname inherits the member variables and member programs from classnamelist. In general,
classnamelist contains one class name. When classnamelist contains more than one class name, that
is called multiple inheritance.

To be precise, newclassname inherits all the member variables from the classes specified ex-
cept those that are explicitly defined in newclassname, in which case the definition provided in
newclassname . class takes precedence. It is considered bad style to name member variables that
conflict.

For multiple inheritance, it is possible that, although a member variable is not defined in newclass-
name, it is defined in more than one of the “parents” (classnamelist). Then it will be the definition
in the rightmost parent that is operative. This too is to be avoided, because it almost always results
in programs’ breaking.

newclassname also inherits all the member programs from the classes specified. Here name conflicts
are not considered bad style, and in fact, redefinition of member programs is one of the primary
reasons to use inheritance.

newclassname inherits all the programs from classnamelist—even those with names in common—
and a way is provided to specify which of the programs you wish to run. For single inheritance,
if member program .zifl is defined in both classes, then .zif1 is taken as the instruction to run
.zif1 as defined in newclassname, and .Super.zifl is taken as the instruction to run .zifl as
defined in the parent.

For multiple inheritance, .zif1 is taken as the instruction to run .zif1 as defined in newclassname,
and .Super (classname) .zifl is taken as the instruction to run .zifl as defined in the parent
classname.

A good reason to use inheritance is to “steal” a class and to modify it to suit your purposes.
Pretend that you have alreadyexists.class and from that you want to make alternative.class,
something that is much like alreadyexists.class—so much like it that it could be used wherever
alreadyexists.class is used—but it does one thing a little differently. Perhaps you are writing a
graphics system, and alreadyexists.class defines everything about the little circles used to mark
points on a graph, and now you want to create alternate.class that does the same, but this time
for solid circles. Hence, there is only one member program of alreadyexists.class that you want
to change: how to draw the symbol.

In any case, we will assume that alternative.class is to be identical to alreadyexists.class,
except that it has changed or improved member function .zifl. In such a circumstance, it would
not be uncommon to create

begin alternative.class

version 18.0

class alternative {

}, inherit(alreadyexists)
program .zifl

end

end alternative.class

Moreover, in writing .zifl, you might well call .Super.zifl so that the old .zifl performed its
tasks, and all you had to do was code what was extra (filling in the circles, say). In the example
above, we added no member variables to the class.

class — Class programming 37

Perhaps the new .zif1 needs a new member variable—a double—and let’s call it . sizeofresult.
Then we might code

begin alternative.class ———

version 18.0
class alternative {
double sizeofresult
}, inherit(alreadyexists)
program .zifl

end

end alternative.class ——

Now let’s consider initialization of the new variable, .sizeofresult. Perhaps having it initialized
as missing is adequate. Then our code above is adequate. Suppose that we want to initialize it to 5.
Then we could include an initializer statement. Perhaps we need something more complicated that
must be handled in a .new. In this final case, we must call the inherited classes’ .new programs by
using the .Super modifier:

begin alternative.class —————

version 18.0
class alternative {
double sizeofresult
}, inherit(alreadyexists)
program .new

.Super .new

end
program .zifl

end

end alternative.class —

6. Member programs’ return values

Member programs may optionally return “values”, and those can be doubles, strings, arrays,
or class instances. These return values can be used in assignment, and thus you can code

.len = .li.length
.coord3 = .li.midpoint

Just because a member program returns something, it does not mean it has to be consumed. The
programs .1i.length and .1li.midpoint can still be executed directly,

.li.length
.1i.midpoint

and then the return value is ignored. (.midpoint and .length are member programs that we included
in line.class. .length returns a double, and .midpoint returns a coordinate.)

You cause member programs to return values by using the class exit command; see [P] class
exit.

Do not confuse returned values with return codes, which all Stata programs set, even member
programs. Member programs exit when they execute.

38 class — Class programming

Condition

Returned value Return code

class exit with arguments
class exit without arguments
exit without arguments

exit with arguments

error

command having error

as specified
nothing
nothing
nothing
nothing
nothing

0

0

0

as specified
as specified
as appropriate

Any of the preceding are valid ways of exiting a member program, although the last is perhaps
best avoided. class exit without arguments has the same effect as exit without arguments; it does

not matter which you code.

If a member program returns nothing, the result is as if it returned string containing "" (nothing).

Member programs may also return values in r (), e (), and s (), just like regular programs. Using
class exit to return a class result does not prevent member programs from also being r-class,

e-class, or s-class.

7. Assignment

Consider .coord defined

.coord = .coordinate.new

That is an example of assignment. A new instance of class coordinate is created and assigned

to .coord. In the same way,

.coord2 = .coord

is another example of assignment. A copy of .coord is made and assigned to .coord2.

Assignment is not allowed just with top-level names. The following are also valid examples of

assignment:

.coord.x = 2

.1i.cO = .coord

1li.cO0.x = 2+2

.todo.name = "Jane Smith"
.todo.n = 2

.todo.list[1] "Turn in report"
.todo.list[2] = .1i.cO

In each case, what appears on the right is evaluated, and a copy is put into the specified place.
Assignment based on the returned value of a program is also allowed, so the following are also valid:

.coord.x = .li.length
.1i.cO = .li.midpoint

.length and .midpoint are member programs of line.class, and .1i is an instance of line. In
the first example, .1i.length returns a double, and that double is assigned to .coord.x. In the
second example, .1i.midpoint returns a coordinate, and that coordinate is assigned to 1i.cO.

Also allowed would be

.todo.list[3] = .color.cvalue, color(green)
.todo.list = {"Turn in report", .1li.cO, [.color.cvalue, color(green)]l}

class — Class programming 39

In both examples, the result of running .color.cvalue, color(green) is assigned to the third
array element of .todo.list.

7.1 Type matching

All the examples above are valid because either a new identifier is being created or the identifier
previously existed and was of the same type as the identifier being assigned.

For example, the following would be invalid:

2 // valid so far . ..
"new" // ... invalid

.newthing
.newthing

The first line is valid because .newthing did not previously exist. After the first assignment, however,
.newthing did exist and was of type double. That caused the second assignment to be invalid, the
error being “type mismatch”; r(109).

The following are also invalid:

.coord.x = .li.midpoint
.1i.cO0 = .li.length

They are invalid because .1i.midpoint returns a coordinate, and .coord.x is a double, and
because .1i.length returns a double, and .1i.cO is a coordinate.

7.2 Arrays and array elements

The statements

.todo.list[1]
.todo.list[2]
.todo.list[3]

"Turn in report"
.1i.cO
.color.cvalue, color(green)

and
.todo.list = {"Turn in report", .1li.cO, [.color.cvalue, color(green)]l}

do not have the same effect. The first set of statements reassigns elements 1, 2, and 3 and leaves any
other defined elements unchanged. The second statement replaces the entire array with an array that
has only elements 1, 2, and 3 defined.

After an element has been assigned, it may be unassigned (cleared) using .Arrdropel. For
example, to unassign .todo.list[1], you would type

.todo.list[1].Arrdropel

Clearing an element does not affect the other elements of the array. In the above example,
.todo.list[2] and .todo.list[3] continue to exist.

New and existing elements may be assigned and reassigned freely, except that if an array element
already exists, it may be reassigned only to something of the same type.

.todo.list[2] .coordinate[2]

would be allowed, but

.todo.list[2] "Clear the coordinate"

40 class — Class programming

would not be allowed because .todo.list[2] is a coordinate and "Clear the coordinate"
is a string. If you wish to reassign an array element to a different type, you first drop the existing
array element and then assign it.

.todo.list[2].Arrdropel
.todo.list[2] = "Clear the coordinate"

7.3 Ivalues and rvalues
Notwithstanding everything that has been said, the syntax for assignment is
lvalue = rvalue
lvalue stands for what may appear to the left of the equal sign, and rvalue stands for what may
appear to the right.

The syntax for specifying an Ivalue is

Jid[.id]. . .]]
where id is either a name or name [exp], the latter being the syntax for specifying an array element,

and exp must evaluate to a number; if exp evaluates to a noninteger number, it is truncated.

Also an lvalue must be assignable, meaning that /value cannot refer to a member program; that
is, an id element of lvalue cannot be a program name. (In an rvalue, if a program name is specified,
it must be in the last id.)

The syntax for specifying an rvalue is any of the following:

" [string] "
en [string] "o
#
exp
(exp)
.id[.id[. ..]] [program_arguments]
{3
{el[,el[yeos }]}
The last two syntaxes concern assignment to arrays, and e/ may be any of the following:
nothing
" [string] "
cn [string] "
#
(exp)
Jd[Lid[...]]

[.id[.id[. .]] [program_arguments }]

Let’s consider each of the syntaxes for an rvalue in turn:

" [string} "and ¢" [string] "
If the rvalue begins with a double quote (simple or compound), a string containing string
will be returned. string may be long—up to the length of a macro.

class — Class programming 41

If the rvalue is a number excluding missing values ., .a, ..., and .z, a double equal to
the number specified will be returned.

exp and (exp)
If the rvalue is an expression, the expression will be evaluated and the result returned. A
double will be returned if the expression returns a numeric result and a string will be
returned if expression returns a string. Expressions returning matrices are not allowed.

The expression need not be enclosed in parentheses if the expression does not begin with
simple or compound double quotes and does not begin with a period followed by nothing
or a letter. In the cases just mentioned, the expression must be enclosed in parentheses. All
expressions may be enclosed in parentheses.

An implication of the above is that missing value literals must be enclosed in parentheses:
lvalue = (.).

.id[. id[. .]] [progmm_arguments]
If the rvalue begins with a period, it is interpreted as an object reference. The object is
evaluated and returned. .id [.id [.. H may refer to a member variable or a member program.

If .id [id[. . H refers to a member variable, the value of the variable will be returned.

If .id[.id[. ..]] refers to a member program, the program will be executed and the result
returned. If the member program returns nothing, a string containing "" (nothing) will be
returned.

If .id[.id [.]] refers to a member program, arguments may be specified following the
program name.

{} and {el[,el[,...]]}
If the rvalue begins with an open brace, an array will be returned.
If the rvalue is {}, an empty array will be returned.
If the rvalue is {el [, el [,. ..]] }, an array containing the specified elements will be returned.
If an el is nothing, the corresponding array element will be left undefined.

If an el is " [string] "or ‘" [string] "> the corresponding array element will be defined as a
string containing string.

If an el is # excluding missing values ., .a, ..., .z, the corresponding array element will
be defined as a double containing the number specified.

If an el is (exp), the expression is evaluated, and the corresponding array element will
be defined as a double if the expression returns a numeric result or as a string if the
expression returns a string. Expressions returning matrices are not allowed.

If an el is .id[.id[. . H or [.id[.id[. . H [progmm_arguments]], the object is evaluated,
and the corresponding array element will be defined according to what was returned. If the
object is a member program and arguments need to be specified, the e/ must be enclosed in
square brackets.

Recursive array definitions are not allowed.

Finally, in 4.3 Specifying initialization—where we discussed member variable initialization—what
actually appears to the right of the equal sign is an rvalue, and everything just said applies. The
previous discussion was incomplete.

42 class — Class programming

7.4 Assignment of reference

Consider two different identifiers, .a.b.c and .d.e, that are of the same type. For example,
perhaps both are doubles or both are coordinates. When you type

.a.b.c = .d.e
the result is to copy the values of .d.e into .a.b.c. If you type
.a.b.c.ref = .d.e.ref

the result is to make .a.b.c and .d.e be the same object. That is, if you were later to change some
element of .d.e, the corresponding element of .a.b.c would change, and vice versa.

To understand this, think of member values as each being written on an index card. Each instance
of a class has its own collection of cards (assuming no classwide variables). When you type

.a.b.c.ref = .d.e.ref

the card for .a.b.c is removed and a note is substituted that says to use the card for .d.e. Thus
both .a.b.c and .d.e become literally the same object.

More than one object can share references. If we were now to code
.i.ref = .a.b.c.ref
or
.i.ref = .d.e.ref

the result would be the same: .i would also share the already-shared object.

We now have .a.b.c, .d.e, and .i all being the same object. Say that we want to make .d.e
into its own unique object again. We type

.d.e.ref = anything evaluating to the right type not ending in .ref

We could, for instance, type any of the following:

.d.e.ref = .classname.new
.d.e.ref = .j.k
.d.e.ref = .d.e

All the above will make .d.e unique because what is returned on the right is a copy. The last of
the three examples is intriguing because it results in .d.e not changing its values but becoming once
again unique.

8. Built-ins

.new and .ref are examples of built-in member programs that are included in every class. There
are other built-ins as well.

Built-ins may be used on any object except programs and other built-ins. Let . B refer to a built-in.
Then

o If .a.b.myprog refers to a program, .a.b.myprog.B is an error (and, in fact,
.a.b.myprog.anything is also an error).

e .a.b.B.anything is an error.

class — Class programming 43

Built-ins come in two forms: built-in functions and built-in modifiers. Built-in functions return
information about the class or class instance on which they operate but do not modify the class or
class instance. Built-in modifiers might return something—in general they do not—but they modify
(change) the class or class instance.

Except for .new (and that was covered in 4.4 Specitying initialization 2, .new), built-ins may not
be redefined.

8.1 Built-in functions

In the documentation below, object refers to the context of the built-in function. For example, if
.a.b.F is how the built-in function .F was invoked, then .a.b is the object on which it operates.

The built-in functions are

.new
returns a new instance of object. .new may be used whether the object is a class name or an
instance, although it is most usually used with a class name. For example, if coordinate
is a class, .coordinate.new returns a new instance of coordinate.

If .new is used with an instance, a new instance of the class of the object is returned; the
current instance is not modified. For example, if .a.b is an instance of coordinate, then
.a.b.new does exactly what .coordinate.new would do; .a.b is not modified in any
way.

If you define your own .new program, it is run after the built-in .new is run.

.copy
returns a new instance—a copy—of object, which must be an instance. .copy returns a
new object that is a copy of the original.

.ref
returns a reference to the object. See 7.4 Assignment of reference.

.objtype
returns a string indicating the type of object. Returned is one of "double", "string",
"array", or "classname".

.isa
returns a string indicating the category of object. Returned is one of "double", "string",
"array", "class", or "classtype". "classtype" is returned when object is a class
definition; "class" is returned when the object is an instance of a class (sic).

.classname

returns a string indicating the name of the class. Returned is "classname" or, if object is
of type double, string, or array, returned is "".

.isofclass classname
returns a double. Returns 1 if object is of class type classname and 0O otherwise. To be of
a class type, object must be an instance of classname, inherited from the class classname,
or inherited from a class that inherits anywhere along its inheritance path from classname.

.objkey
returns a string that can be used to reference an object outside the implied context. See
12.1 Keys.

.uname
returns a string that can be used as a name throughout Stata that corresponds to the object.
See 12.2 Unames.

44 class — Class programming

.ref_n
returns a double. Returned is the total number of identifiers sharing object. Returned is 1
if the object is unshared. See 7.4 Assignment of reference.

.arrnels
returns a double. .arrnels is for use with arrays; it returns the largest index of the array
that has been assigned data. If object is not an array, it returns an error.

.arrindexof "string"
returns a double. .arrindexof is for use with arrays; it searches the array for the
first element equal to string and returns the index of that element. If string is not found,
.arrindexof returns 0. If object is not an array, it returns an error.

.classmv
returns an array containing the .refs of each classwide member variable in object. See
12.3 Arrays of member variables.

.instancemv
returns an array containing the .refs of each instance-specific member variable in object.
See 12.3 Arrays of member variables.

.dynamicmv
returns an array containing the .refs of each dynamically allocated member variable in
object. See 12.3 Arrays of member variables.

.superclass
returns an array containing the .refs of each of the classes from which the specified
object inherited. See 12.3 Arrays of member variables.

8.2 Built-in modifiers

Modifiers are built-ins that change the object to which they are applied. All built-in modifiers have
names beginning with a capital letter. The built-in modifiers are

.Declare declarator
returns nothing. .Declare may be used only when object is a class instance. .Declare
adds the specified new member variable to the class instance. See 4.7 Adding dynamically.

.Arrdropel #
returns nothing. .Arrdropel may be used only with array elements. .Arrdropel drops
the specified array element, making it as if it was never defined. .arrnels is, of course,
updated. See 7.2 Arrays and array elements.

.Arrdropall
returns nothing. .Arrdropall may be used only with arrays. .Arrdropall drops all
elements of an array. .Arrdropall is the same as .arrayname = {}. If object is not an
array, .Arrdropall returns an error.

.Arrpop
returns nothing. .Arrpop may be used only with arrays. .Arrpop finds the top element
of an array (largest index) and removes it from the array. To access the top element before
popping, use .arraynamel®.arrayname.arrnels’]. If object is not an array, .Arrpop
returns an error.

.Arrpush "string"
returns nothing. .Arrpush may be used only with arrays. .Arrpush pushes string onto the
end of the array, where end is defined as .arrnels+-1. If object is not an array, .Arrpush
returns an error.

class — Class programming 45

9. Prefix operators

There are three prefix operators:

.Global
.Local
.Super

Prefix operators determine how object names such as .a, .a.b, .a.b.c, ...are resolved.

Consider a program invoked by typing .alpha.myprog. In program .myprog, any lines such as
.a =.b

are interpreted according to the implied context, if that is possible. .a is interpreted to mean .alpha.a
if .a exists in .alpha; otherwise, it is taken to mean .a in the global context, meaning that it is
taken to mean just .a. Similarly, .b is taken to mean .alpha.b if .b exists in .alpha; otherwise,
it is taken to mean .b.

What if .myprog wants .a to be interpreted in the global context even if .a exists in .alpha?
Then the code would read

.Global.a = .b

If instead .myprog wanted .b to be interpreted in the global context (and .a to be interpreted in
the implied context), the code would read

.a = .Global.b

Obviously, if the program wanted both to be interpreted in the global context, the code would read

.Global.a = .Global.b

.Local is the reverse of .Global: it ensures that the object reference is interpreted in the implied
context. .Local is rarely specified because the local context is searched first, but if there is a
circumstance where you wish to be certain that the object is not found in the global context, you may
specify its reference preceded by .Local. Understand, however, that if the object is not found, an
error will result, so you would need to precede commands containing such references with capture;
see [P] capture.

In fact, if it is used at all, .Local is nearly always used in a macro-substitution context—something
discussed in the next section—where errors are suppressed and where nothing is substituted when
errors occur. Thus in advanced code, if you were trying to determine whether member variable
.addedvar exists in the local context, you could code

if "‘Local.addedvar.objtype’" == ""
/* it does not exist */
¥
else {
/* it does */
}

The .Super prefix is used only in front of program names and concerns inheritance when one
program occults another. This was discussed in 5. Inheritance.

46 class — Class programming

10. Using object values

We have discussed definition and assignment of objects, but we have not yet discussed how you
might use class objects in a program. How do you refer to their values in a program? How do you
find out what a value is, skip some code if the value is one thing, and loop if it is another?

The most common way to refer to objects (and the returned results of member programs) is through
macro substitution; for example,

local x = ¢.1i.c0.x’
local clr "‘.color.cvalue, color(green)’"
scalar len = ‘.coord.length’

forvalues i=1(1)‘.todo.n’ {
Mysub "‘todo.list[¢i’]’"
}

When a class object is quoted, its printable form is substituted. This is defined as

Object type Printable form

string contents of the string

double number printed using %18.0g, spaces stripped
array nothing

classname nothing or, if member program .macroexpand

is defined, then string or double returned

Any object may be quoted, including programs. If the program takes arguments, they are included
inside the quotes:

scalar len = ‘.coord.length’
local clr "‘.color.cvalue, color(green)’"

If the quoted reference results in an error, the error message is suppressed, and nothing is substituted.

Similarly, if a class instance is quoted—or a program returning a class instance is quoted—nothing
is substituted. That is, nothing is substituted, assuming that the member program .macroexpand has
not been defined for the class, as is usually the case. If .macroexpand has been defined, however, it
is executed, and what macroexpand returns—which may be a string or a double—is substituted.

For example, say that we wanted to make all objects of type coordinate substitute (#,#) when
they were quoted. In the class definition for coordinate, we could define .macroexpand,

class — Class programming 47

begin coordinate.class

version 18.0

class coordinate {
[declaration of member variables omitted |

}

[definitions of class programs omitted]

program .macroexpand
local tosub : display "(" ‘.x’> "," ‘.y> ")"
class exit "‘tosub’"

end

end coordinate.class

and now coordinates will be substituted. Say that .mycoord is a coordinate currently set to
(2,3). If we did not include .macroexpand in the coordinate.class file, typing

. “.mycoord’...
would not be an error but would merely result in

Having defined .macroexpand, it will result in
(2,3,

A .macroexpand member function is intended as a utility for returning the printable form of a class
instance and nothing more. In fact, the class system prevents unintended corruption of class-member
variables by making a copy, returning the printable form, and then destroying the copy. These steps
ensure that implicitly calling .macroexpand has no side effects on the class instance.

11. Object destruction

To create an instance of a class, you type
.name = .classname.new [arguments]

To destroy the resulting object and thus release the memory associated with it, you type
classutil drop .name

(See [P] classutil for more information on the classutil command.) You can drop only top-level
instances. Objects deeper than that are dropped when the higher-level object containing them is
dropped, and classes are automatically dropped when the last instance of the class is dropped.

Also any top-level object named with a name obtained from tempname—see [P] macro—is
automatically dropped when the program concludes. Even so, tempname objects may be returned by
class exit. The following is valid:

program .tension
tempname a b
.‘a’ = .bubble.new
.‘b’> = .bubble.new
[

class exit .‘a’

end

48 class — Class programming

The program creates two new class instances of bubbles in the global context, both with temporary
names. We can be assured that .‘a’ and . ‘b’ are global because the names ‘a’ and ‘b’ were
obtained from tempname and therefore cannot already exist in whatever context in which .tension
runs. Therefore, when the program ends, .‘a’ and . ‘b’ will be automatically dropped. Even so,
.tension can return . ‘a’. It can do that because, at the time class exit is executed, the program
has not yet concluded and . ‘a’ still exists. You can even code

program .tension
tempname a b
Lfa’ .bubble.new
. ‘b? .bubble.new

class exit .‘a’.ref
end

and that also will return .a and, in fact, will be faster because no extra copy will be made. This form
is recommended when returning an object stored in a temporary name. Do not, however, add .refs
on the end of “real” (nontemporary) objects being returned because then you would be returning not
just the same values as in the real object but the object itself.

You can clear the entire class system by typing discard; see [P] discard. There is no classutil
drop —all command: Stata’s graphics system also uses the class system, and dropping all the class
definitions and instances would cause graph difficulty. discard also clears all open graphs, so the
disappearance of class definitions and instances causes graph no difficulty.

During the development of class-based systems, you should type discard whenever you make a
change to any part of the system, no matter how minor or how certain you are that no instances of
the definition modified yet exist.

12. Advanced topics

12.1 Keys

The .objkey built-in function returns a string called a key that can be used to reference the
object as an rvalue but not as an Ivalue. This would typically be used in

local k = ‘.a.b.objkey’
or
.c.k = .a.b.objkey

where .c.k is a string. Thus the keys stored could be then used as follows:

.d = .‘k’.x meaning to assign .a.b.x to .d
.d=.‘%c.k’.x (same)

local z = ¢.‘k’.x’ meaning to put value of .a.b.x in ‘z’
local z = ‘.‘.c.k’.x’ (same)

It does not matter if the key is stored in a macro or a string member variable—it can be used
equally well—and you always use the key by macro quoting.

A key is a special string that stands for the object. Why not, you wonder, simply type .a.b rather
than . “.c.k’ or . ‘k’? The answer has to do with implied context.

class — Class programming 49

Pretend that .myvar.bin.myprogram runs .myprogram. Obviously, it runs .myprogram in the
context .myvar.bin. Thus .myprogram can include lines such as

.x =5

and that is understood to mean that .myvar.bin.x is to be set to 5. .myprogram, however, might
also include a line that reads

¢

.Global.utility.setup ‘.x.objkey’

Here .myprogram is calling a utility that runs in a different context (namely, .utility), but
myprogram needs to pass .x—of whatever type it might be—to the utility as an argument. Perhaps
.x is a coordinate, and .utility.setup expects to receive the identifier of a coordinate
as its argument. .myprogram, however, does not know that .myvar.bin.x is the full name of
.x, which is what .utility.setup will need, so .myprogram passes ‘.x.objkey’. Program
.utility.setup can use what it receives as its argument just as if it contained .myvar.bin.x,
except that .utility.setup cannot use that received reference on the left-hand side of an assignment.

If myprogram needed to pass to .utility.setup a reference to the entire implied context
(.myvar.bin), the line would read

¢

.Global.utility.setup ‘.objkey’

because .objkey by itself means to return the key of the implied context.

12.2 Unames

The built-in function .uname returns a name that can be used throughout Stata that uniquely
corresponds to the object. The mapping is one way. Unames can be obtained for objects, but the
original object’s name cannot be obtained from the uname.

Pretend that you have object .a.b.c, and you wish to obtain a name you can associate with that
object because you want to create a variable in the current dataset, or a value label, or whatever else,
to go along with the object. Later, you want to be able to reobtain that name from the object’s name.
.a.b.c.uname will provide that name. The name will be ugly, but it will be unique. The name is
not temporary: you must drop whatever you create with the name later.

Unames are, in fact, based on the object’s .ref. That is, consider two objects, .a.b.c and .d.e,
and pretend that they refer to the same data; that is, you have previously executed

.a.b.c.ref = .d.e.ref
or
.d.e.ref = .a.b.c.ref

Then .a.b.c.uname will equal .d.e.uname. The names returned are unique to the data being
recorded, not the identifiers used to arrive to the data.

As an example of use, within Stata’s graphics system sersets are used to hold the data behind a
graph; see [P] serset. An overall graph might consist of several graphs. In the object nesting for a
graph, each individual graph has its own object holding a serset for its use. The individual objects,
however, are shared when the same serset will work for two or more graphs, so that the same data
are not recorded again and again. That is accomplished by simply setting their .refs equal. Much
later in the graphics code, when that code is writing a graph out to disk for saving, it needs to figure
out which sersets need to be saved, and it does not wish to write shared sersets out multiple times.
Stata finds out what sersets are shared by looking at their unames and, in fact, uses the unames to
help it keep track of which sersets go with which graph.

50 class — Class programming

12.3 Arrays of member variables

Note: The following functions are of little use in class programming. They are of use to those
writing utilities to describe the contents of the class system, such as the features documented in
[P] classutil.

The built-in functions .classmv, .instancemv, and .dynamicmv each return an array containing
the .refs of each classwide, instance-specific, and dynamically declared member variables. These
array elements may be used as either Ivalues or rvalues.

.superclass also returns an array containing .refs, these being references to the classes from
which the current object inherited. These array elements may be used as rvalues but should not be
used as lvalues because they refer to underlying class definitions themselves.

.classmv, .instancemv, .dynamicmv, and .superclass, although documented as built-in
functions, are not really functions, but instead are built-in member variables. This means that, unlike
built-in functions, their references may be followed by other built-in functions, and it is not an error
to type, for instance,

.li.instancemv.arrnels ...

and it would be odd (but allowed) to type
.myarray = .li.instancemv

It would be odd simply because there is no reason to copy them because you can use them in place.

Each of the above member functions are a little sloppy in that they return nothing (produce an
error) if there are no classwide, instance-specific, and dynamically declared member variables, or no
inherited classes. This sloppiness has to do with system efficiency, and the proper way to work around
the sloppiness is to obtain the number of elements in each array as 0¢.classmv.arrnels’, 0¢.in-
stancemv.arrnels’, 0‘.dynamicmv.arrnels’, and O‘.superclass.arrnels’. If an array does
not exist, then nothing will be substituted, and you will still be left with the result 0.

For example, assume that .my.c is of type coordinate2, defined as

begin coordinate2.class

version 18.0
class coordinate2 {
classwide:

double x_origin = 0
double y_origin = 0
instancespecific:
double x = 0
double y = 0
}
end coordinate2.class
Then

referring to ... is equivalent to referring to ...
.my.c.classmv[1] .my.c.c.x_origin
.my.c.classmv[2] .my.c.c.y_origin
.my.c.instancemv[1] .my.c.cC.X
.my.c.instancemv[2] .my.c.c.y

class — Class programming 51

If any member variables were added dynamically using .Dynamic, they could equally well be
accessed via .my.c.dynamicmv[] or their names. Either of the above could be used on the left or
right of an assignment.

If coordinate2.class inherited from another class (it does not), referring to .coor-
dinate2.superclass[1] would be equivalent to referring to the inherited class; .coordi-
nate2.superclass[1] .new, for instance, would be allowed.

These “functions” are mainly of interest to those writing utilities to act on class instances as a
general structure.

Appendix A. Finding, loading, and clearing class definitions

The definition for class xyz is located in file xyz.class.

Stata looks for xyz.class along the ado-path in the same way that it looks for ado-files; see
[U] 17.5 Where does Stata look for ado-files? and see [P] sysdir.

Class definitions are loaded automatically, as they are needed, and are cleared from memory as
they fall into disuse.

When you type discard, all class definitions and all existing instances of classes are dropped;
see [P] discard.

Appendix B. Jargon

built-in: a member program that is automatically defined, such as .new. A built-in function is a
member program that returns a result without changing the object on which it was run. A built-in
modifier is a member program that changes the object on which it was run and might return a
result as well.

class: a name for which there is a class definition. If we say that coordinate is a class, then
coordinate . class is the name of the file that contains its definition.

class instance: a “variable”; a specific, named copy (instance) of a class with its member values filled
in; an identifier that is defined to be of type classname.

classwide variable: a member variable that is shared by all instances of a class. Its alternative is an
instance-specific variable.

inheritance: the ability to define a class in terms of one (single inheritance) or more (multiple
inheritance) existing classes. The existing class is typically called the base or super class, and by
default, the new class inherits all the member variables and member programs of the base class.

identifier: the name by which an object is identified, such as .mybox or .mybox.x.

implied context: the instance on which a member program is run. For example, in .a.b.myprog,
.a.b is the implied context, and any references to, say, .x within the program, are first assumed
to, in fact, be references to .a.b.x.

instance: a class instance.

instance-specific variable: a member variable that is unique to each instance of a class; each instance
has its own copy of the member variable. Its alternative is a classwide variable.

Ivalue: an identifier that may appear to the left of the = assignment operator.
member program: a program that is a member of a class or of an instance.

member variable: a variable that is a member of a class or of an instance.

52 class — Class programming

object: a class or an instance; this is usually a synonym for an instance, but in formal syntax
definitions, if something is said to be allowed to be used with an object, that means it may be
used with a class or with an instance.

polymorphism: when a system allows the same program name to invoke different programs according
to the class of the object. For example, .draw might invoke one program when used on a star
object, .mystar.draw, and a different program when used on a box object, .mybox.draw.

reference: most often the word is used according to its English-language definition, but a .ref
reference can be used to obtain the data associated with an object. If two identifiers have the same
reference, then they are the same object.

return value: what an object returns, which might be of type double, string, array, or classname.
Generally, return value is used in discussions of member programs, but all objects have a return
value; they typically return a copy of themselves.

rvalue: an identifier that may appear to the right of the = assignment operator.

scope: how it is determined to what object an identifier references. .a.b might be interpreted in the
global context and literally mean .a.b, or it might be interpreted in an implied context to mean
.impliedcontext.a.b.

shared object: an object to which two or more different identifiers refer.

type: the type of a member variable or of a return value, which is double, string, array, or
classnam.

Appendix C. Syntax diagrams

Appendix C.1 Class declaration

class [newclassname] {
[classwide:
[type mvname [= rvalue] |
[mvname = rvalue|
[...]
[instancespecific:]
[type mvname [= rvalue] |
[mvname = rvalue |
[..]
} [, inherit(classnamelist)|

where
mvname stands for member variable name;

rvalue is defined in Appendix C.2 Assignment; and

type is {classname double | string | array }

class — Class programming 53

The .Declare built-in may be used to add a member variable to an existing class instance,

.id[.id[...]] .Declare type newmvname [= rvalue]
.id[.id[...]1] .Declare newmvname = rvalue

where id is {name | name Lexp] }, the latter being how you refer to an array element; exp must
evaluate to a number. If exp evaluates to a noninteger number, it is truncated.

Appendix C.2 Assignment

lvalue = rvalue
Ivalue .ref = Ilvalue.ref (sic)
Ivalue .ref = rvalue

where

value is .id[.id|...] |

rvalue is
" [string] "
en [string] "
#
exp
(exp)
Jd|.id[...]]
[.id[.ia’[. .. H } .pgmname [pgm_arguments]

[.id[.id[. ..]] } .Super[(classname)] . pgmname [pgm_arguments]
{3
{el [,el [,H}
When exp evaluates to a string, the result will contain at most 2045 characters and will be terminated
early if it contains a binary 0.

The last two syntaxes concern assignment to arrays; e/ may be

nothing
" [string] "

en [string] "o

#

(exp)

dd[Lid[...]]

[.id[.id[.]]] .pgmname

[[.id[.id[. .]] } .pgmname [pgm_arguments]]

[[.id[.id[. .]] } .Super[(classname)] . pgmname [pgm_arguments]]

id is {name | name Lexp] } the latter being how you refer to an array element; exp must evaluate to
a number. If exp evaluates to a noninteger number, it is truncated.

54 class — Class programming

Appendix C.3 Macro substitution

Values of member variables or values returned by member programs can be substituted in any
Stata command line in any context using macro quoting. The syntax is

Stadd]d L))

Ll d) .

.pgmname’ . ..

¢ .pgmname pgm_arguments’ . . .

[-id[.id[...]]]
[-id[.id[...]]]

[.id[.id[...]]] -Super [(classname) | .pgmname” ..
[ial id]..]]]

. . Super[(classname)] .pgmname pgm_arguments’ . . .

Nested substitutions are allowed. For example,

... ¢. ‘“tmpname’.x’...

L fref? L.

In the above, perhaps local tmpname was obtained from tempname (see [P] macro), and perhaps
local ref contains ¢ ¢.myobj.cvalue’’.

When a class object is quoted, its printable form is substituted. This is defined as

Object type Printable form

string contents of the string

double number printed using %18.0g, spaces stripped
array nothing

classname nothing or, if member program .macroexpand

is defined, then string or double returned

If the quoted reference results in an error, the error message is suppressed and nothing is substituted.

Appendix C.4 Quick summary of built-ins

Built-ins come in two forms: 1) built-in functions—built-ins that return a result but do not change
the object on which they are run, and 2) built-in modifiers—built-ins that might return a result but
more importantly modify the object on which they are run.

class — Class programming 55

Built-in functions (may be used as rvalues)

.object . id
.instance . copy
.instance .ref
.object.objtype

.object.isa

.object.classname
.object.isofclass classname

.object.objkey

.object .uname

.object.ref _n
.array.arrnels
.array.arrindexof "string"
.object.classmv
.object.instancemv
.object.dynamicmv

.object.superclass

Built-in modifiers

.instance .Declare declarator

.array[exp] . Arrdropel #

.array.Arrpop

.array.Arrpush "string"

creates new instance of .object
makes a copy of .instance
for use in assignment by reference

CLENNT3

returns “double”, “string”, “array”, or “classname”

CLENNT3 CLENNT3

returns “double”, “string”, “array”, “class”, or
“classtype”

returns “classname” or “”
returns 1 if .object is of class type classname

returns a string that can be used to refer to an object outside
the implied context

returns a string that can be used as name throughout Stata;
name corresponds to .object’s .ref.

returns number (double) of total number of identifiers sharing
object

returns number (double) corresponding to largest index of the
array assigned

searches array for first element equal to string and
returns the index (double) of element or returns O

returns array containing the .refs of each classwide
member of .object

returns array containing the .refs of each instance-specific
member of .object

returns array containing the .refs of each dynamically
added member of .object

returns array containing the .refs of each of the classes
from which .object inherited

returns nothing; adds member variable to instance;
see Appendix C.1 Class declaration

returns nothing; drops the specified array element
returns nothing; finds the top element and removes it
returns nothing; adds string to end of array

56 class — Class programming

Also see
[P] class exit — Exit class-member program and return result
[P] classutil — Class programming utility
[P] sysdir — Query and set system directories
[M-2] class — Object-oriented programming (classes)
[U] 17.5 Where does Stata look for ado-files?

Title

class exit — Exit class-member program and return result

Description Syntax Remarks and examples Also see

Description

class exit exits a class-member program and optionally returns the specified result.

class exit may be used only from class-member programs; see [P] class.

Syntax

class exit [rvalue]

where rvalue is
" [string] "

‘n [string] "o

#

exp

(exp)

.id[.id[.. }] [pmgram_arguments]
{3

Lel el ,...]]}

See [P] class for more information on rvalues.

Remarks and examples

Do not confuse returned values with return codes, which all Stata programs set, including member
programs. Member programs exit when they execute.

Condition Returned value Return code
class exit with arguments as specified 0

class exit without arguments nothing 0

exit without arguments nothing 0

exit with arguments nothing as specified
error nothing as specified
command having error nothing as appropriate

Any of the preceding are valid ways of exiting a member program, although the last is perhaps
best avoided. class exit without arguments has the same effect as exit without arguments; it does
not matter which you use.

57

58 class exit — Exit class-member program and return result

Examples

class exit sqrt((f.c0.y1’-¢.c1.y0°)"2 + (‘.c0.y1’-‘.cl1.y0’)"2)

class exit "¢

myresult’"
class exit (.)

class exit "true"

class exit { ‘one’, ‘two’}
class exit .coord

class exit .coord.x

tempname a

[4

class exit .‘a’

Warning: Distinguish carefully between “class exit .a” and “class exit (.a)”. The first
returns a copy of the instance .a. The second returns a double equal to the extended missing value
.a.

Also see

[P] class — Class programming
[P] exit — Exit from a program or do-file

[M-2] class — Object-oriented programming (classes)

Title

classutil — Class programming utility
Description Syntax Options for classutil describe
Options for classutil dir Option for classutil which Remarks and examples
Stored results Also see
Description

If you have not yet read [P] class, please do so. classutil stands outside the class system and
provides utilities for examining and manipulating what it contains.

classutil drop drops the specified top-level class instances from memory. To drop all class
objects, type discard; see [P] discard.

classutil describe displays a description of an object.
classutil dir displays a list of all defined objects.
classutil cdir displays a directory of all classes available.

classutil which lists which .class file corresponds to the class specified.

Syntax
Drop class instances from memory

classutil drop instance [instance [H

Describe object

classutil describe object [, recurse gewok]

List all defined objects

classutil dir [pattern} [, all getail]

Display directory of available classes

classutil cdir [pattern]

List .class file corresponding to classname
classutil which classname [s all]
where
object, instance, and classname may be specified with or without a leading period.
instance and object are as defined in [P] class: object is an instance or a classname.

pattern is as allowed with the strmatch() function: * means that O or more characters go
here, and 7 means that exactly one character goes here.

Command cutil is a synonym for classutil.

collect is allowed with classutil describe, classutil dir, and classutil cdir; see [U] 11.1.10 Prefix
commands.

59

60 classutil — Class programming utility

Options for classutil describe

recurse specifies that classutil describe be repeated on any class instances or definitions that
occur within the specified object. Consider the case where you type classutil describe .myobj
and .myobj contains .myobj.cO, which is a coordinate. Without the recurse option, you will
be informed that .myobj.cO is a coordinate, and classutil describe will stop right there.

With the recurse option, you will be informed that .myobj.cO is a coordinate, and then
classutil describe will proceed to describe .myobj.cO, just as if you had typed “classutil
describe .myobj.cO0”. If .myobj.cO itself includes classes or class instances, they too will be
described.

newok is relevant only when describing a class, although it is allowed—and ignored—at other times.
newok allows classes to be described even when no instances of the class exist.

When asked to describe a class, Stata needs to access information about that class, and Stata
knows the details about a class only when one or more instances of the class exist. If there are
no instances, Stata is stuck—it does not know anything other than a class of that name exists.
newok specifies that, in such a circumstance, Stata may temporarily create an instance of the class
by using .new. If Stata is not allowed to do this, then Stata cannot describe the class. The only
reason you are being asked to specify newok is that in some complicated systems, running .new
can have side effects, although in most complicated and well-written systems, that will not be the
case.

Options for classutil dir

all specifies that class definitions (classes) be listed, as well as top-level instances.

detail specifies that a more detailed description of each of the top-level objects be provided. The
default is simply to list the names of the objects in tabular form.

Option for classutil which

all specifies that classutil which list all files along the search path with the specified name, not
just the first one (the one Stata will use).

Remarks and examples

Remarks are presented under the following headings:

classutil drop
classutil describe
classutil dir
classutil cdir
classutil which

classutil drop

classutil drop may be used only with top-level instances, meaning objects other than classes
having names with no dots other than the leading dot. If .mycoord is of type coordinate (or of
type double), it would be allowed to drop .mycoord but not coordinate (or double). Thus each
of the following would be valid, assuming that each is not a class definition:

classutil — Class programming utility 61

. classutil drop .this
. classutil drop .mycolor
. classutil drop .this .mycolor

The following would be invalid, assuming that coordinate is a class:

. classutil drop coordinate

There is no need to drop classes because they are automatically dropped when the last instance of
them is dropped.

The following would not be allowed because they are not top-level objects:

. classutil drop .this.that
. classutil drop .mycolor.color.rgb[1]

Second-, third-, and higher-level objects are dropped when the top-level objects containing them are
dropped.

In all the examples above, we have shown objects identified with leading periods, as is typical.
The period may, however, be omitted.

classutil drop this mycolor

Q Technical note

Stata’s graphics are implemented using classes. If you have a graph displayed, be careful not to
drop objects that are not yours. If you drop a system object, Stata will not crash, but graph may
produce some strange error messages. If you are starting a development project, it is best to discard
(see [P] discard) before starting—that will eliminate all objects and clear any graphs. This way, the

only objects defined will be the objects you have created.
a

classutil describe

classutil describe presents a description of the object specified. The object may be a class
or an instance and may be of any depth. The following are all valid:

. classutil describe coordinate

. classutil describe .this

. classutil describe .color.rgb

. classutil describe .color.rgbl[1]

The object may be specified with or without a leading period; it makes no difference.
Also see above the descriptions of the recurse and newok options. The following would also be

allowed:

. classutil describe coordinate, newok
. classutil describe line, recurse
. classutil describe line, recurse newok

62 classutil — Class programming utility

classutil dir

classutil dir lists all top-level instances currently defined. Note the emphasis on instances:
class definitions (classes) are not listed. classutil dir, all will list all objects, including the class
definitions.

If the detail option is specified, a more detailed description is presented, but it is still less
detailed than that provided by classutil describe.

pattern, if specified, is as defined for Stata’s strmatch() function: * means that 0 or more
characters go here, and 7 means that exactly one character goes here. If pattern is specified, only
top-level instances or objects matching the pattern will be listed. Examples include
. classutil dir
. classutil dir, detail
. classutil dir, detail all

. classutil dir c*
. classutil dir *_g, detail

classutil cdir

classutil cdir lists the available classes. Without arguments, all classes are listed. If pattern
is specified, only classes matching the pattern are listed:

. classutil cdir

. classutil cdir cx*

. classutil cdir coord*

. classutil cdir *_g

. classutil cdir color_7_7_x%

pattern is as defined for Stata’s strmatch() function: * means that O or more characters go here,
and 7 means that exactly one character goes here.

classutil cdir obtains the list by searching for *. class files along the ado-path; see [P] sysdir.

classutil which

classutil which identifies the .class file associated with class classname and displays lines
from the file that begin with *!. For example,

. classutil which mycolortype
C:\ado\personal\mycolortype.class
*! version 1.0.1

. classutil which badclass
file "badclass.class" not found
r(601);

classutil which searches in the standard way for the .class files, that is, by looking for them
along the ado-path; see [P] sysdir.

classutil — Class programming utility 63

With the all option, classutil which lists all files along the search path with the specified
name, not just the first one found (the one Stata would use):

. classutil which mycolortype, all

C:\ado\personal\mycolortype.class
*! version 1.0.1

C:\ado\plus\m\mycolortype.class
*! version 1.0.0

x! lines have to do with versioning. * is one of Stata’s comment markers, so *! lines are comment
lines. *! is a convention that some programmers use to record version or author information. If there
are no *! lines, then only the filename is listed.

Stored results

classutil drop returns nothing.

classutil describe returns macro r(type) containing double, string, classname, or array
and returns r(bitype) containing the same, except that if r(type)=="classname", r(bitype)
contains class or instance, depending on whether the object is the definition or an instance of the
class.

classutil cdir returns in macro r(list) the names of the available classes matching the
pattern specified. The names will not be preceded by a period.

classutil dir returns in macro r(list) the names of the top-level instances matching the
pattern specified as currently defined in memory. The names will be preceded by a period if the
corresponding object is an instance and will be unadorned if the corresponding object is a class
definition.

classutil which without the all option returns in r (fn) the name of the file found; the name
is not enclosed in quotes. With the all option, classutil which returns in r(fn) the names of
all the files found, listed one after the other and each enclosed in quotes.

Also see

[P] class — Class programming

Title

comments — Add comments to programs

Description Remarks and examples Also see

Description

This entry provides a quick reference for how to specify comments in programs. See [U] 16.1.2 Com-
ments and blank lines in do-files for more details.

Remarks and examples

Comments may be added to programs in three ways:
e begin the line with *;
e begin the comment with //; or
e place the comment between /* and */ delimiters.
Here are examples of each:

* a sample analysis job

version 18.0

use census

/* obtain the summary statistics */

tabulate region // there are 4 regions in this dataset
summarize marriage

* a sample analysis job

version 18.0

use /* obtain the summary statistics */ census
tabulate region

// there are 4 regions in this dataset
summarize marriage

The comment indicator * may be used only at the beginning of a line, but it does have the
advantage that it can be used interactively. * indicates that the line is to be ignored. The * comment
indicator may not be used within Mata.

The // comment indicator may be used at the beginning or at the end of a line. However, if the
// indicator is at the end of a line, it must be preceded by one or more blanks. That is, you cannot
type the following:

tabulate region// there are 4 regions in this dataset
// indicates that the rest of the line is to be ignored.

The /* and */ comment delimiter has the advantage that it may be used in the middle of a line,
but it is more cumbersome to type than the other two comment indicators. What appears inside /*
*/ is ignored.

64

comments — Add comments to programs 65

Q Technical note

There is a fourth comment indicator, ///, that instructs Stata to view from /// to the end of a
line as a comment and to join the next line with the current line. For example,

args a /// input parameter for a
b /// input parameter for b
c // input parameter for c

is equivalent to

args a b ¢

/// is one way to make long lines more readable:

replace final_result = ///
sqrt(first_side”2 + second_side"2) ///
if type == "rectangle"

Another popular method is

replace final_result = /*
/ sqrt(first_side”2 + second_side”2) /
*/ if type == "rectangle"

Like the // comment indicator, the /// indicator must be preceded by one or more blanks.

Also see
[P] #delimit — Change delimiter
[U] 16.1.2 Comments and blank lines in do-files
[U] 18.11.2 Comments and long lines in ado-files

Title

confirm — Argument verification

Description Syntax Option Remarks and examples Also see
Description
confirm verifies that the arguments following confirm ... are of the claimed type and issues

the appropriate error message and nonzero return code if they are not.

confirm is useful in do-files and programs when you do not want to bother issuing your own
error message. confirm can also be combined with capture to detect and handle error conditions
before they arise; see [P] capture.
Syntax

confirm existence string

confirm [new] file filename
confirm [numeric |string|date]| format string

confirm [new] frame name

confirm names names

confirm [integer] number string

confirm matrix string

confirm scalar string

confirm [new | numeric|string|str#|alias| lype] variable varlist [R gact]

where fype is {byte |int | long|float |double | str#|strL }

Option

exact specifies that a match be declared only if the names specified in varlist match. By default,
names that are abbreviations of variables are considered to be a match.

Remarks and examples

Remarks are presented under the following headings:

confirm existence
confirm file
confirm format
confirm frame
confirm names
confirm number
confirm matrix
confirm scalar
confirm variable

66

confirm — Argument verification 67

confirm existence

confirm existence displays the message “ ’’ found where something expected” and produces
a return code of 6 if string does not exist.

confirm file

confirm file verifies that filename exists and is readable and issues the appropriate error message
and return code if not.

confirm new file verifies that filename does not exist and that filename could be opened for
writing, and issues the appropriate error message and return code if not.

The possible error messages and return codes are

Message Return code

found where filename expected 7
file not found 601
file already exists 602
file could not be opened 603

Return codes of 7 and 603 are possible for both confirm file and confirm new file. For
confirm new file, a return code of 603 indicates that the filename is invalid, the specified directory
does not exist, or the directory permissions do not allow you to create a new file. For instance, even
if filename does not exist, confirm new file newdir\newfile will generate an error if newdir does
not exist and if you do not have permissions to create a file in newdir. confirm new file filename
will fail if you do not have adequate permissions to create a new file in the current working directory.

confirm format

confirm format verifies that string is a valid variable display format. It produces the message
’string’ found where format expected
with a return code of 7 if the format is not valid. It produces the message
>’ found where format expected

with a return code of 7 if the format is empty.

confirm numeric format specifies that the argument must be a valid numeric format. Valid
numeric formats are general, fixed, and exponential. If not, it produces a return code of 7 and the
message
’string’ found where numeric format expected
or

>’ found where numeric format expected

if string is empty.

68 confirm — Argument verification

confirm string format specifies that the argument must be a valid string format. If not, it
produces a return code of 7 and the message

’string’ found where string format expected

or
’? found where string format expected
if string is empty.
confirm date format specifies that the argument must be a valid date format. If not, it produces

a return code of 7 and the message

’string’ found where date format expected
or

’? found where date format expected

if string is empty.

confirm frame

confirm frame verifies that name is a frame (see [D] frames). It produces the message

frame name not found

with a return code of 111 if a frame named name does not exist.

confirm new frame verifies that name is valid to be used as the name of a frame and that a frame
with that name does not already exist. The possible messages and return codes are the following:

Message Return code
found where frame name expected 7
frame already defined 110
invalid name 198

confirm names

confirm names verifies that the argument or arguments are valid names according to Stata’s
naming conventions. It produces the message

{name | nothing} invalid name

with a return code of 7 if the names are not valid.

confirm — Argument verification 69

confirm number

confirm number verifies that the argument can be interpreted as a number, such as 1, 5.2, -5.2,
or 2.5e+10. It produces the message

{string | nothing} found where number expected

with a return code of 7 if not.

confirm integer number specifies that the argument must be an integer, such as 1 or 2.5e+10,
but not 5.2 or —5.2. If not, it produces a return code of 7 and a slight variation on the message above:

{string ‘ nothing} found where integer expected

confirm matrix

confirm matrix verifies that string is a matrix. It produces the message
matrix string not found

with a return code of 111 if string is not a matrix.

confirm scalar

confirm scalar verifies that string is a scalar. It produces the message
scalar string not found

with a return code of 111 if string is not a scalar.

confirm variable

confirm variable verifies that varlist can be interpreted as an existing varlist of any types of
variables. If not, the appropriate error message and nonzero return code are returned:

Message Return code
_ found where numeric variable expected 7
__ found where string variable expected 7
_ found where str# variable expected 7
_ found where strL variable expected 7
__ found where alias variable expected 7
no variables defined 111
variable __ not found 111
__ invalid name 198

confirm numeric variable specifies that all the variables are numeric. If the variable exists but
is not numeric, Stata displays the message

’varname’ found where numeric variable expected

70 confirm — Argument verification

or
’? found where numeric variable expected

with a return code of 7 if varlist is not specified.

confirm string variable specifies that all the variables are strings, meaning str# or strL. If
the variable exists but is not a string variable, Stata displays the message

’varname’ found where string variable expected
or
>’ found where string variable expected

with a return code of 7 if varlist is not specified.

confirm str# variable specifies that all the variables are str#, such as str10 or str42, but
are not strLs.

confirm alias variable specifies that all the variables were created by fralias add. If the
variable exists but was not created by fralias add, Stata displays the message

’varname’ found where alias variable expected

confirm type variable specifies that all variables are of the indicated storage type. For example,
confirm int variable myvar, confirm float variable myvar thatvar, or confirm strL
variable blobvar. As with confirm string variable, the appropriate message and return code
of 7 are possible. When there is an alias variable in varlist, the linked variable’s storage type is
checked.

confirm new variable verifies that varlist can be interpreted as a new varlist. The possible
messages and return codes are

Message Return code
found where varname expected 7
already defined 110
invalid name 198

> Example 1

confirm is a cheap way to include minimal syntax checking in your programs. For instance, you
have written a program that is supposed to take a one-integer argument. Although you do not have to
include any syntax checking at all—the program will probably fail with some error if the argument
is incorrect—it is safer to add one line at the top of the program:

confirm integer number ‘1°

Now if the first argument is not an integer, you will get a reasonable error message, and the program
will stop automatically.

N

confirm — Argument verification 71

> Example 2

More sophisticated programs often combine the confirm and capture commands. For instance,
ttest has a complex syntax: if the user types ttest var=5, it tests that the mean of var is 5
using one set of formulas, and if the user types ttest var=var2, it tests equality of means by
using another set of formulas. Whether there is a number or a variable to the right of the equal sign
determines which set of formulas ttest uses. This choice was done by

capture confirm number ‘exp’

if _re==0 {
(code for test against a constant)
exit

}

(code for test of two variables)

Also see
[P] capture — Capture return code

[D] fralias — Alias variables from linked frames

Title

continue — Break out of loops

Description Syntax Option Remarks and examples Also see

Description

The continue command within a foreach, forvalues, or while loop breaks execution of the
current loop iteration and skips the remaining commands within the loop. Execution resumes at the top
of the loop unless the break option is specified, in which case execution resumes with the command
following the looping command. See [P] foreach, [P] forvalues, and [P] while for a discussion of the
looping commands.

Syntax

continue [, bleak}

Option

break indicates that the loop is to be exited. The default is to skip the remaining steps of the current
iteration and to resume loop execution again at the top of the loop.

Remarks and examples

We illustrate continue with the forvalues command, but it can be used in the same way with
the foreach and while commands.

> Example 1

The following forvalues loop lists the odd and even numbers from one to four:

. forvalues x = 1(1)4 {

2 if mod(‘x’,2) {
3 display "‘x’ is odd"
4. }
5. else {
6 display "‘x’ is even"
7. }
8. }
1 is odd
2 is even
3 is odd

4 is even

72

continue — Break out of loops 73

It could be coded using the continue command instead of else:

. forvalues x = 1(1)4 {

2. if mod(‘x’,2) {
3 display "‘x’ is odd"
4. continue
5. }
6. display "‘x’ is even"
7.}
1 is odd
2 is even
3 is odd
4 is even

When continue is executed, any remaining statements that exist in the loop are ignored. Execution
continues at the top of the loop where, here, forvalues sets the next value of ‘x’, compares that
with 4, and then perhaps begins the loop again.

d

> Example 2

continue, break causes execution of the loop to stop; it prematurely exits the loop.

. forvalues x = 6/1000 {

2. if mod(‘x’,2)==0 & mod(‘x’,3)==0 & mod(‘x’,5)==0 {

3. display "The least common multiple of 2, 3, and 5 is ‘x’"
4. continue, break

5. }

6. }

The least common multiple of 2, 3, and 5 is 30

Although the forvalues loop was scheduled to go over the values 6—1,000, the continue, break
statement forced it to stop after 30.

4

Also see
[P] foreach — Loop over items
[P] forvalues — Loop over consecutive values
[P] while — Looping
[P] exit — Exit from a program or do-file
[P] if — if programming command

[U] 18 Programming Stata

Title

creturn — Return c-class values

Description Menu Syntax Remarks and examples Also see

Description

Stata’s c-class, c(), contains the values of system parameters and settings, along with certain
constants such as the value of pi. c() values may be referred to but may not be assigned.

Menu

Data > Other utilities > List constants and system parameters

Syntax

creturn list

Remarks and examples

The c-class values are presented under the following headings:

System values
Directories and paths
System limits
Numerical and string limits
Current dataset
Memory settings
Output settings
Interface settings
Graphics settings
Network settings
Update settings
Trace (program debugging) settings
Mata settings

Java settings
LAPACK settings
putdocx settings
putpdt settings
Python settings

RNG settings

sort settings

Unicode settings
Other settings

Other system values

There may be other c-class values that have been added since the printing of this manual. Type
help creturn for up-to-date information.

74

creturn — Return c-class values 75

System values

c(current_date) returns the current date as a string in the format "dd Mon yyyy", where dd is
the day of the month (if day is less than 10, a space and one digit are used); Mon is one of Jan,
Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, or Dec; and yyyy is the four-digit year.

Examples:

1 Jan 2003
26 Mar 2007
28 Jan 2013

c(current_time) returns the current time as a string in the format "hh:mm:ss", where hh is the
hour 00-23, mm is the minute 00-59, and ss is the second 00-59.

Examples:
09:42:55
13:02:01
21:15:59

c(rmsg_time) returns a numeric scalar equal to the elapsed time last reported as a result of set
rmsg on; see [P] rmsg.

c(stata_version) returns a numeric scalar equal to the version of Stata that you are running. In
Stata 18, this number is 18; in Stata 18.1, 18.1; and in Stata 19, 19. This is the version of Stata
that you are running, not the version being mimicked by the version command.

c(version) returns a numeric scalar equal to the version currently set by the version command,
see [P] version.

c(userversion) returns a numeric scalar equal to the user version currently set by the version
command; see [P] version.

c(dyndoc_version) returns a numeric scalar equal to the current version of dynamic documents
Stata understands how to convert. Stata can convert any dynamic document with a version less than
or equal to c(dyndoc_version). The dynamic document version is set by the <<dd_version>>
tag within the document.

c(born_date) returns a string in the same format as c (current_date) containing the date of the
Stata executable that you are running; see [R] update.

c(edition) returns a string containing "BE", according to the version of Stata that you are running.
c(edition) == "BE" for Stata/MP and Stata/SE, as well as for Stata/BE. Think of c(edition)
== "BE" as meaning “BE or better”, so Stata/BE and all higher editions of Stata are considered
to be “BE”.

c(edition_real) returns a string containing "BE", "SE", or "MP", according to the version of Stata
that you are running. c(edition_real) == "BE" for Stata/BE. c(edition_real) == "SE" for
Stata/SE. c(edition_real) == "MP" for Stata/MP.

c(bit) returns a numeric scalar equal to 64 if you are using a 64-bit version of Stata and 32 if you
are using a 32-bit version of Stata. You would only see c(bit) == 32 if you were using an older
version of Stata; all modern Stata executables are 64-bit.

c(SE) returns a numeric scalar equal to 1 if you are running Stata/SE or Stata/MP and returns O
otherwise. Think of c (SE) == 1 as meaning “SE or better”, so Stata/SE and Stata/MP both return 1.

c(MP) returns a numeric scalar equal to 1 if you are running Stata/MP and 0 otherwise.

c(processors) returns a numeric scalar equal to the number of processors/cores that Stata/MP is
currently set to use. It returns 1 if you are not running Stata/MP.

76 creturn — Return c-class values

c(processors_lic) returns a numeric scalar equal to the number of processors/cores that your
Stata/MP license allows. It returns 1 if you are not running Stata/MP.

c(processors_mach) returns a numeric scalar equal to the number of processors/cores that your
computer has if you are running Stata/MP. It returns missing value (.) if you are not running
Stata/MP.

c(processors_max) returns a numeric scalar equal to the maximum number of processors/cores
that Stata/MP could use, which is equal to the minimum of c(processors_lic) and
c(processors_mach). It returns 1 if you are not running Stata/MP.

c(mode) returns a string containing "" or "batch", depending on whether Stata was invoked in
interactive mode (the usual case) or batch mode (using, perhaps, the -b option of Stata for Unix).

c(console) returns a string containing "" or "console", depending on whether you are running a
windowed version of Stata or Stata(console).

c(os) returns a string containing "Mac0SX", "Unix", or "Windows", depending on the operating
system that you are using. The list of alternatives, although complete as of the date of this writing,
may not be complete.

c(osdtl) returns an additional string, depending on the operating system, that provides the release
number or other details about the operating system. c(osdtl) is often "".

c(hostname) returns a string containing the name of the host machine.

c(machine_type) returns a string that describes the hardware platform, such as "PC", "PC (64-bit
x86-64)", or "Mac (Apple Silicon)".

c(byteorder) returns a string containing "lohi" or "hilo", depending on the byte order of the
hardware. Consider a two-byte integer. On some computers, the most significant byte is written
first, so x’0001° (meaning the byte 00 followed by 01) would mean the number 1. Such computers
are designated "hilo". Other computers write the least-significant byte first, so x’0001” would be
256, and 1 would be x’0100’. Such computers are designated "1lohi'.

c(username) returns the user ID (provided by the operating system) of the user currently using Stata.

Directories and paths
Note: The directory paths returned below usually end in a directory separator, so if you wish to
construct the full path name of file abc.def in directory c(...), you code
.‘c(...)’abc.def. ..

and not
.‘c(...)?/abc.def. ..

If c(...) returns a directory name that does not end in a directory separator, a special note of the
fact is made.

c(sysdir_stata) returns a string containing the name of the directory in which Stata is installed.
More technically, c(sysdir_stata) returns the STATA directory as defined by sysdir; see
[P] sysdir.
Example: C:\Program Files\Statal8/
The above example contains no typographical errors. Under Windows, the directory name will
end in forward slash. That is so you can code things such as ‘c(sysdir_stata)’‘filename’.

If c(sysdir_stata) ended in backslash, Stata’s macro expander would interpret the backslash
as an escape character and so not expand ‘filename’.

creturn — Return c-class values 77

c(sysdir_base) returns a string containing the name of the directory in which the original official
ado-files that were shipped with Stata were installed.

Example: C:\Program Files\Statal8\ado\base/

c(sysdir_site) returns a string containing the name of the directory in which community-contributed
additions may be installed for sitewide use. More technically, c(sysdir_site) returns the SITE
directory as defined by sysdir; see [P] sysdir.

Example: C:\Program Files\Statal8\ado\site/

c(sysdir_plus) returns a string containing the name of the directory in which additions written
by others may be installed for personal use. More technically, c (sysdir_plus) returns the PLUS
directory, as defined by sysdir; see [P] sysdir.

Example: C:\ado\plus/

c(sysdir_personal) returns a string containing the name of the directory in which additions
written by you may be installed. More technically, c(sysdir_personal) returns the PERSONAL
directory, as defined by sysdir; see [P] sysdir.

Example: C:\ado\personal/

c(sysdir_oldplace) identifies another directory in which community-contributed ado-files might
be installed. c(sysdir_oldplace) maintains compatibility with very ancient versions of Stata.

c(tmpdir) returns a string containing the name of the directory used by Stata for temporary files.
Example: /tmp

c(adopath) returns a string containing the directories that are to be searched when Stata is attempting to
locate an ado-file. The path elements are separated by a semicolon (;), and the elements themselves
may be directory names, "." to indicate the current directory, or sysdir references.

Example: BASE;SITE; . ; PERSONAL ; PLUS; OLDPLACE
c(pwd) returns a string containing the current (working) directory.
Example: C:\data

Notice that c (pwd) does not end in a directory separator, so in a program, to save the name of the
file abc.def prefixed by the current directory (for example, because you were about to change
directories and still wanted to refer to the file), you would code

local file "‘c(pwd)’/abc.def"

or

local file "‘c(pwd)’‘c(dirsep)’abc.def"

The second form is preferred if you want to construct “pretty” filenames, but the first form is
acceptable because Stata understands a forward slash (/) as a directory separator.

c(dirsep) returns a string containing "/".
Example: /

For Windows operating systems, a forward slash (/) is returned rather than a backslash (\). Stata
for Windows understands both, but in programs, use of the forward slash is recommended because
the backslash can interfere with Stata’s interpretation of macro expansion characters. Do not be
concerned if the result of your code is a mix of backslash and forward slash characters, such as
\a\b/myfile.dta; Stata will understand it just as it would understand /a/b/myfile.dta or
\a\b\myfile.dta.

78 creturn — Return c-class values

System limits

c(max_N_theory) returns a numeric scalar reporting the maximum number of observations allowed.

c(max_N_theory) reports the maximum number of observations that Stata can process if it has
enough memory. This is usually 2,147,483,619 for Stata/SE and Stata/BE and is 1,099,511,627,775
for Stata/MP.

c(max_k_theory) returns a numeric scalar reporting the maximum number of variables allowed. If
you have Stata/MP or Stata/SE, you can change this number with set maxvar; see [D] memory.

c(max_width_theory) returns the theoretical maximum width allowed. The width of a dataset is
defined as the sum of the byte lengths of its individual variables. If you had a dataset with two
int variables, three floats, one double, and a str20 variable, the width of the dataset would
be 2 X 2+ 3 X 4+ 8 + 20 = 44 bytes.

c(max_matdim) returns the maximum row or column dimension for Stata matrices. This dimension
is 65,534 for Stata/MP, 11,000 for Stata/SE, and 800 for Stata/BE.

c(max_it_cvars) returns a numeric scalar reporting the maximum number of continuous variables
allowed in an interaction.

c(max_it_fvars) returns a numeric scalar reporting the maximum number of factor variables
allowed in an interaction.

c(max_macrolen) and c(macrolen) each return a numeric scalar reporting the maximum length
of macros. c(max_macrolen) and c(macrolen) may not be equal under Stata/MP or Stata/SE
but will be equal for Stata/BE. For Stata/MP or Stata/SE, macrolen is set according to maxvar:
the length is long enough to hold a macro referring to every variable in the dataset.

c(charlen) returns a numeric scalar reporting the maximum length of a characteristic.

c(max_cmdlen) and c(cmdlen) each return a numeric scalar reporting the maximum length of a
Stata command. c(max_cmdlen) and c(cmdlen) may not be equal under Stata/MP or Stata/SE
but will be equal for Stata/BE. For Stata/MP or Stata/SE, cmdlen is set according to maxvar: the
length is long enough to hold a command referring to every variable in the dataset.

c(namelenbyte) returns a numeric scalar equal to 128, which is the current maximum length in
bytes of names in Stata.

c(namelenchar) returns a numeric scalar equal to 32, which is the current maximum length in
Unicode characters of names in Stata.

c(eqlen) returns the maximum length that Stata allows for equation names.

Numerical and string limits

c(mindouble), c(maxdouble), and c(epsdouble) each return a numeric scalar. c (mindouble)
is the negative number furthest from O that can be stored in the 8-byte double storage type.
c(maxdouble) is the largest positive number that can be stored in a double. c(epsdouble) is
the smallest nonzero, positive number (epsilon) that, when added to 1 and stored as a double,
does not equal 1.

c(smallestdouble) returns a numeric scalar containing the smallest full-precision double that is
bigger than zero. There are smaller positive values that can be stored; these are denormalized
numbers. Denormalized numbers do not have full precision.

c(minfloat), c(maxfloat), and c(epsfloat) each return a numeric scalar that reports for the
4-byte float storage type what c (mindouble), c(maxdouble), and c(epsdouble) report for
double.

creturn — Return c-class values 79

c(minlong) and c(maxlong) return scalars reporting the negative number furthest from 0 and the
largest positive number that can be stored in the 4-byte, integer long storage type. There is no
c(epslong), but if there were, it would return 1.

c(minint) and c(maxint) return scalars reporting the negative number furthest from O and the
largest positive number that can be stored in the 2-byte, integer int storage type.

c(minbyte) and c(maxbyte) return scalars reporting the negative number furthest from 0 and the
largest positive number that can be stored in the 1-byte, integer byte storage type.

c(maxstrvarlen) returns the longest str# string storage type allowed, which is 2,045. Do not
confuse c (maxstrvarlen) with c(macrolen). c(maxstrvarlen) corresponds to string variables
stored in the data.

c(maxstrlvarlen) returns the length of the longest string that can be stored in a strL, which is
2,000,000,000.

c(maxvlabellen) returns the maximum length for one value label string, which is 32,000.

Current dataset
c(frame) returns a string containing the name of the current frame; see [D] frames intro.

c(N) returns a numeric scalar equal to _N, the number of observations in the dataset in memory. In
an expression, it makes no difference whether you refer to _N or c(N). However, when used in
expressions with the by prefix, c(N) does not change with the by-group like _N.

The advantage of c(N) is in nonexpression contexts. Say that you are calling a subroutine, mysub,
which takes as an argument the number of observations in the dataset. Then you could code
local nobs = _N
mysub ‘nobs’

or

mysub ‘c(N)’

The second requires less typing.

c(k) returns a numeric scalar equal to the number of variables in the dataset in memory. c (k) is
equal to r(k), which is returned by describe.

c(width) returns a numeric scalar equal to the width, in bytes, of the dataset in memory. If you had
a dataset with two int variables, three floats, one double, and a str20 variable, the width of
the dataset would be 2 * 2 4 3 x4 + 8 4+ 20 = 44 bytes. c(width) is equal to r (width), which
is returned by describe.

c(changed) returns a numeric scalar equal to O if the dataset in memory has not changed since
it was last saved and 1 otherwise. c (changed) is equal to r(changed), which is returned by
describe.

c(filename) returns a string containing the filename last specified with a use or save, such as
"C:\Data\auto.dta". c(filename) is equal to $S_FN.

c(filedate) returns a string containing the date and time the file in c(filename) was last saved,
such as "7 Jul 2020 13:51". c(filedate) is equal to $S_FNDATE.

80 creturn — Return c-class values

Memory settings
c(memory) returns a numeric scalar reporting the amount of memory, in bytes, currently allocated
by Stata.

c(maxvar) returns a numeric scalar reporting the maximum number of variables currently allowed in
a dataset, as set by set maxvar if you are running Stata/MP or Stata/SE. For Stata/BE, c (maxvar)
is a constant.

c(niceness) returns a numeric scalar recording how soon Stata gives back unused segments to the
operating system.

c(min_memory) returns a numeric scalar recording the minimum value to which memory can be
reduced when its memory is unused.

c(max_memory) returns a numeric scalar recording the maximum amount of memory that Stata may
allocate.

c(segmentsize) returns a numeric scalar recording the size of the segments in which memory is
allocated.

c(adosize) returns a numeric scalar equal to the current set adosize setting.

c(max_preservemem) returns a numeric scalar recording the maximum amount of memory that
preserve may use to store datasets in memory before reverting to disk storage, as set by set
max_preservemen if you are running Stata/MP. Otherwise, c (max_preservemem) returns system
missing value.

Output settings

c(more) returns a string containing "on" or "off", according to the current set more setting.
c(rmsg) returns a string containing "on" or "off", according to the current set rmsg setting.
c(dp) returns a string containing "period" or "comma", according to the current set dp setting.
c(linesize) returns a numeric scalar equal to the current set linesize setting.

c(pagesize) returns a numeric scalar equal to the current set pagesize setting.

c(logtype) returns a string containing "smcl" or "text", according to the current
set logtype setting.

c(logmsg) returns a string containing "on" or "off", according to the current set logmsg setting.

c(noisily) returns a numeric scalar equal to O if output is being suppressed and 1 if output is
being displayed; see [P] quietly.

c(notifyuser) (Mac only) returns a string containing "on" or "off", according to the current set
notifyuser setting.

c(playsnd) (Mac only) returns a string containing "on" or "off", according to the current set
playsnd setting.

c(include_bitmap) (Mac only) returns a string containing "on" or "off", according to the current
set include_bitmap setting.

c(iterlog) returns a string containing "on" or "off", according to the current set iterlog
setting.

c(level) returns a numeric scalar equal to the current set level setting.

c(clevel) returns a numeric scalar equal to the current set clevel setting.

creturn — Return c-class values 81

c(showbaselevels) returns a string containing "", "on", "off", or "all", according to the current
set showbaselevels setting. See [R] set showbaselevels.

c(showemptycells) returns a string containing "", "on", or "off", according to the current set
showemptycells setting. See [R] set showbaselevels.

c(showomitted) returns a string containing "", "on", or "off", according to the current set
showomitted setting. See [R] set showbaselevels.

c(fvlabel) returns a string containing "on" or "off", according to the current set fvlabel
setting. See [R] set showbaselevels.

c(fvwrap) returns a numeric scalar equal to the current set fvwrap setting. See [R] set showbase-
levels.

c(fvwrapon) returns a string containing "word" or "width", according to the current set fvwrapon
setting. See [R] set showbaselevels.

c(lstretch) returns a string containing "", "on", or "off", according to the current set 1lstretch
setting.

c(cformat) returns a string containing the current set cformat setting. See [R] set cformat.
c(sformat) returns a string containing the current set sformat setting. See [R] set cformat.
c(pformat) returns a string containing the current set pformat setting. See [R] set cformat.

c(coeftabresults) returns a string containing "on" or "off", according to the current set
coeftabresults setting.

c(dots) returns a string containing "on" or "off", according to the current set dots setting.

c(collect_label) returns a string containing "default" or the filename with labels set to be used
as default labels in tables. See [TABLES] set collect_label.

c(collect_style) returns a string containing "default" or the filename with styles set to be used
as default styles in tables created by collect. See [TABLES] set collect_style.

c(table_style) returns a string containing "table" or the filename with styles set to be used as
default styles in tables created by table. See [TABLES] set table_style.

c(etable_style) returns a string containing "etable" or the filename with styles set to be used
as default styles in tables created by etable. See [TABLES] set etable_style.

c(dtable_style) returns a string containing "dtable" or the filename with styles set to be used
as default styles in tables created by dtable. See [TABLES] set dtable_style.

c(collect_warn) returns a string containing "on" or "off", according to the current set col-
lect_warn setting.

Interface settings

c(dockable) (Windows only) returns a string containing "on" or "off", according to the current
set dockable setting.

c(locksplitters) (Windows only) returns a string containing "on" or "off", according to the
current set locksplitters setting.

c(pinnable) (Windows only) returns a string containing "on" or "off", according to the current
set pinnable setting.

c(taskbargroups) (Windows only) returns a string containing "on" or "off", according to the
current set taskbargroups setting.

82 creturn — Return c-class values

c(doublebuffer) (Windows only) returns a string containing "on" or "off", according to the
current set doublebuffer setting.

c(reventries) returns a numeric scalar containing the maximum number of commands stored by
the History window.

c(fastscroll) (Unix and Windows only) returns a string containing "on" or "off", according to
the current set fastscroll setting.

c(revkeyboard) (Mac only) returns a string containing "on" or "off", according to the current
set revkeyboard setting.

c(varkeyboard) (Mac only) returns a string containing "on" or "off", according to the current
set varkeyboard setting.

c(smoothfonts) (Mac only) returns a string containing "on" or "off", according to the current
set smoothfonts setting.

c(linegap) returns a numeric scalar equal to the current set linegap setting. If set linegap is
irrelevant under the version of Stata that you are running, c(linegap) returns a system missing
value.

c(scrollbufsize) returns a numeric scalar equal to the current set scrollbufsize setting. If set
scrollbufsize is irrelevant under the version of Stata that you are running, c(scrollbufsize)
returns a system missing value.

c (maxdb) returns a numeric scalar containing the maximum number of dialog boxes whose contents
are remembered from one invocation to the next during a session; see [R] db.

Graphics settings
c(graphics) returns a string containing "on" or "off", according to the current set graphics
setting.

c(autotabgraphs) (Windows only) returns a string containing "on" or "off", according to the
current set autotabgraphs setting.

c(scheme) returns the name of the current set scheme setting.

c(printcolor) returns "automatic", "asis", "gs1", "gs2", or "gs3", according to the current
set printcolor setting.

c(copycolor) (Mac and Windows only) returns "automatic", "asis", "gs1", "gs2", or "gs3",
according to the current set copycolor setting.

c (maxbezierpath) (Mac only) returns a numeric scalar containing the maximum number of lines that
can be added to a Bézier path when rendering a Stata graph to a screen; see set maxbezierpath.

c(min_graphsize) returns a numeric scalar containing the minimum number of inches for a Stata
graph.

c(max_graphsize) returns a numeric scalar containing the maximum number of inches for a Stata
graph.

creturn — Return c-class values 83

Network settings
c(httpproxy) returns a string containing "on" or "off", according to the current set httpproxy
setting.

c(httpproxyhost) returns a string containing the name of the proxy host or "" if no proxy host
is set. c(httpproxyhost) is relevant only if c(httpproxy) = "on".

c(httpproxyport) returns a numeric scalar equal to the proxy port number. c (httpproxyport)
is relevant only if c(httpproxy) = "on".

c(httpproxyauth) returns a string containing "on" or "off", according to the current set
httpproxyauth setting. c(httpproxyauth) is relevant only if c(httpproxy) = "on".

c(httpproxyuser) returns a string containing the name of the proxy user, if one is set, or ""
otherwise. c (httpproxyuser) isrelevant only if c (httpproxyauth) = "on" and c (httpproxy)
= "on".

c(httpproxypw) returns a string containing "x" if a password is set or "" otherwise.
c(httpproxypw) is relevant only if c(httpproxyauth) = "on" and c(httpproxy) = "on".

Update settings
c(update_query) (Mac and Windows only) returns a string containing "on" or "off", according
to the current set update_query setting.

c(update_interval) (Mac and Windows only) returns a numeric scalar containing the current set
update_interval setting.

c(update_prompt) (Mac and Windows only) returns a string containing "on" or "off", according
to the current set update_prompt setting.

Trace (program debugging) settings

c(trace) returns a string containing "on" or "off", according to the current set trace setting.
c(tracedepth) returns a numeric scalar reporting the current set tracedepth setting.

c(tracesep) returns a string containing "on" or "off", according to the current set tracesep
setting.

c(traceindent) returns a string containing "on" or "off", according to the current set tra-
ceindent setting.

c(traceexpand) returns a string containing "on" or "off", according to the current set trace-
expand setting.

c(tracenumber) returns a string containing "on" or "off", according to the current set tra-

cenumber setting.

c(tracehilite) returns a string containing "pattern", according to the current set tracehilite
setting.

84 creturn — Return c-class values

Mata settings

c(matastrict) returns a string containing "on" or "off", according to the current set matastrict
setting.

c(matalnum) returns a string containing "on" or "off", according to the current set matalnum
setting.

c(mataoptimize) returns a string containing "on" or "off", according to the current set mataop-
timize setting.

c(matafavor) returns a string containing "space" or "speed", according to the current set
matafavor setting.

c(matacache) returns a numeric scalar containing the maximum amount of memory, in kilobytes,
that may be consumed before Mata starts looking to drop autoloaded functions that are not currently
being used.

c(matalibs) returns a string containing the names in order of the .mlib libraries to be searched;
see [M-1] How.

c(matamofirst) returns a string containing "on" or "off", according to the current set mata-
mofirst setting.

c(matasolvetol) returns a numeric scalar containing . or #, according to the current set mata-
solvetol setting.

Java settings

c(java_heapmax) returns a string containing the maximum amount of heap memory allocated for
the Java Virtual Machine, according to the current java set heapmax setting.

c(java_home) returns a string containing the path to the Java Development Kit, according to the
current java set home setting.

LAPACK settings

c(lapack_mkl1) returns a string containing "on" or "off", according to the current set lapack_mkl
setting.

c(lapack_mkl_cnr) returns a string containing the conditional numerical reproducibility mode for
Intel MKL LAPACK routines, according to the current set lapack_mkl_cnr setting.

putdocx settings

c(docx_hardbreak) returns a string containing "on" or "off", according to the current set
docx_hardbreak setting.

c(docx_paramode) returns a string containing "on" or "off", according to the current set
docx_paramode setting.

c(docx_maxtable) returns a numeric scalar reporting the maximum number of tables allowed in
putdocx.

creturn — Return c-class values 85

putpdf settings

c(pdf _maxtable) returns a numeric scalar reporting the maximum number of tables allowed in
putpdf.

Python settings

c(python_exec) returns a string containing the path to a Python executable, according to the current
python set exec setting.

c(python_userpath) returns a string containing the list of paths to be searched for user’s own
Python modules, according to the current python set userpath setting.

RNG settings

c(rng) returns a string containing the current set rng setting. This controls which random-number
generator Stata will use. Possible values are "mt64", which specifies to always use the 64-bit
Mersenne Twister random-number generator; "mt64s", which specifies to always use the 64-bit
Mersenne Twister stream random-number generator; "kiss32", which specifies to always use the
32-bit KISS (keep it simple stupid) random-number generator; or "default", which specifies to
let Stata choose between these random-number generators based on version control. Stata’s default
random-number generator in the absence of version control and with set rng default is the
64-bit Mersenne Twister. See [R] set rng.

c(rng_current) returns a string containing the random-number generator currently in effect, that
is, "mt64", "mt64s", or "kiss32", depending on the current set rng setting. If set rng is
currently set to "default", then c(rng_current) depends on the current user version. See
[P] version.

c(rngstate) returns a string containing the current state of the runiform() random-number
generator. You can initialize the state of the random-number generator with set seed, and you
can restore the state of the random-number generator to a saved state with set rngstate. See
[R] set seed.

c(rngseed_mt64s) returns the seed last set for the stream random-number generator (mt64s). See
[R] set rngstream.

c(rngstream) returns the current stream of the stream random-number generator (mt64s). See
[R] set rngstream.

sort settings

c(sortmethod) returns a string containing the current set sortmethod setting. Possible values are
"fsort", which specifies to always use the fast modified quicksort with a three-way partition
and insertion sort when the problem size becomes small; "gsort", which specifies to always use
the standard quicksort algorithm; and "default", which specifies to let Stata choose between
these sort methods based on version control. Stata’s default sort method in the absence of version
control and with set sortmethod default is the fast modified quicksort. If user version is set
prior to 17 by specifying the version in a do-file or interactively, the standard quicksort algorithm
will become the default.

c(sort_current) returns either "fsort" or "gsort" to designate which sort method is to be used
based on both the setting of set sortmethod and the current setting of user version.

86 creturn — Return c-class values

c(sortrngstate) returns a string containing the current state of sort’s prerandomizer (or jumbler)
that preorders the observations prior to sorting to ensure high performance in the sorting. You can
initialize the state of the jumbler or restore its state using set sortrngstate.

Unicode settings
c(locale_ui) returns a string containing the locale that specifies the localization package for the
user interface. See [P] set locale_ui.

c(locale_functions) returns a string containing the default locale for string functions. See [P] set
locale_functions.

c(locale_icudflt) returns a string containing the default ICU locale. See [U] 12.4.2.4 Locales in
Unicode.

Other settings
c(type) returns a string containing "float" or "double", according to the current set type
setting.
c(maxiter) returns a numeric scalar equal to the current set maxiter setting.

c(searchdefault) returns a string containing "local", "net", or "all", according to the current
searchdefault setting.

c(varabbrev) returns a string containing "on" or "off", according to the current set varabbrev
setting.

c(emptycells) returns a string containing "keep" or "drop", according to the current set
emptycells setting.

c(fvtrack) returns a string containing "term" or "factor", according to the current set fvtrack
setting.

c(fvbase) returns a string containing "on" or "off", according to the current set fvbase setting.

c(haverdir) (Windows only) returns a string containing the name of the directory that you specified
to contain the Haver databases; see set haverdir in [D] import haver.

c(kmp_blocktime) returns a numeric scalar equal to the number of milliseconds for which a thread
waits before sleeping or going into a suspended state when it is idle, according to the current set
kmp_blocktime setting.

c(odbcmgr) (Mac and Unix only) returns a string containing "iodbc" or "unixodbc", according
to the current set odbcmgr setting.

c(odbcdriver) returns a string containing "unicode" or "ansi", according to the current set
odbcdriver setting.

c(fredkey) returns the current API key, according to the current set fredkey setting.

c(collect_double) returns a string containing "on" or "off", according to the current set
collect_double setting.

c(dtascomplevel) returns the compression level to be used by frames save, according to the
current set dtascomplevel setting.

c(reshape_favor) returns a string containing "memory" or "favor", according to the current set
reshape_favor setting.

creturn — Return c-class values 87

c(doeditbackup) returns a string containing "on" or "off", according to the current set doed-
itbackup setting.

Other system values

c(pi) returns a numerical scalar equal to _pi, the value of the ratio of the circumference to the
diameter of a circle. In an expression context, it makes no difference whether you use c(pi) or
_pi. c(pi), however, may be used (enclosed in single quotes) in other contexts.

c(alpha) returns a string containing "abcdef ghi..".

c (ALPHA) returns a string containing "ABCDEFGHI..".

c(Mons) returns a string containing "Jan Feb Mar Apr M..".

c(Months) returns a string containing "January February ..".

c(Wdays) returns a string containing "Sun Mon Tue Wed T..".

c(Weekdays) returns a string containing "Sunday Monday Tue..".

c(obs_t) returns a string equal to the optimal data type for storing _n. This allows you to code

generate ‘c(obs_t)’ index = _n

and know that index will go from 1 to _N without roundoff errors and without wasting any space.

c(rc) returns a numerical scalar equal to _rc, the value set by the capture command. In an
expression context, it makes no difference whether you use c(rc) or _rc. c(rc), however, may
be used (enclosed in single quotes) in other contexts. This is less important than it sounds because
you could just as easily type ‘=_rc’.

Also see

[P] return — Return stored results
[R] query — Display system parameters

[R] set — Overview of system parameters

Title

_datasignature — Determine whether data have changed

Description Syntax Options Remarks and examples
Stored results Reference Also see
Description

_datasignature calculates, displays, and stores in r (_datasignature) checksums of the data,
forming a signature. A signature might be

162:11(12321) : 2725060400:4007406597

The signature can be stored and later used to determine whether the data have changed.

Syntax
_datasignature [varlist] [zf] [in] [, options]
options Description
fast perform calculation in machine-dependent way
esample restrict to estimation sample
nonames do not include checksum for variable names
nodefault treat empty varlist as null
Options

fast specifies that the checksum calculation be made in a faster, less computationally intensive, and
machine-dependent way. With this option, _datasignature runs faster on all computers and can
run in less than one-third of the time on some computers. The result can be compared with other
fast computations made on the same computer, and computers of the same make, but not across
computers of different makes. See Remarks and examples below.

esample specifies that the checksum be calculated on the data for which e(sample) = 1. Coding

_datasignature ‘varlist’, esample

or
_datasignature ‘varlist’ if e(sample)

produces the same result. The former is a little quicker. If the esample option is specified, if

exp may not be specified.

nonames specifies that the variable-names checksum in the signature be omitted. Rather than the sig-
nature being 74:12(71728):2814604011:3381794779, it would be 74:12:2814604011:3381794779.
This option is useful when you do not care about the names or you know that the names have
changed, such as when using temporary variables.

88

_datasignature — Determine whether data have changed 89

nodefault specifies that when varlist is not specified, it be taken to mean no variables rather than
all variables in the dataset. Thus you may code

_datasignature ‘modelvars’, nodefault

and obtain desired results even if ‘modelvars’ expands to nothing.

Remarks and examples

For an introduction to data signatures, see [D] datasignature. To briefly summarize:

e A signature is a short string that is calculated from a dataset, such as
74:12(71728):3831085005:1395876116. If a dataset has the same signature at two different
times, then it is highly likely that the data have not changed. If a dataset has a different
signature, then it is certain that the data have changed.

e An example data signature is 74:12(71728):3831085005:1395876116. The components are
a. 74, the number of observations;
b. 12, the number of variables;

c. 71728, a checksum function of the variable names and the order in which they
occur; and

d. 3831085005 and 1395876116, checksum functions of the values of the variables,
calculated two different ways.

e Signatures are functions of
a. the number of observations and number of variables in the data;
b. the values of the variables;
c. the names of the variables;

d. the order in which the variables occur in the dataset if varlist is not specified, or
in varlist if it is; and

e. the storage types of the variables.

If any of these change, the signature changes. The signature is not a function of
the sort order of the data. The signature is not a function of variable labels, value
labels, contents of characteristics, and the like.

Programs sometimes need to verify that they are running on the same data at two different times.
This verification is especially common with estimation commands, where the estimation is performed
by one command and postestimation analyses by another. To ensure that the data have not changed,
one obtains the signature at the time of estimation and then compares that with the signature obtained
when the postestimation command is run. See [P] signestimationsample for an example.

If you are producing signatures for use within a Stata session—signatures that will not be written
to disk and thus cannot possibly be transferred to different computers—specify _datasignature’s
fast option. On some computers, —_datasignature can run in less than one-third of the time if
this option is specified.

_datasignature, fast is faster for two reasons: 1) the option uses a less computationally
intensive algorithm and 2) the computation is made in a machine-dependent way. The first affects
the quality of the signature, and the second does not.

90 _datasignature — Determine whether data have changed

Remember that signatures have two checksums for the data. When fast is specified, a different,
inferior algorithm is substituted for the second checksum. In the fast case, the second signature is
not conditionally independent of the first and thus does not provide 48 bits of additional information;
it probably provides around 24 bits. The default second checksum calculation was selected to catch
problems that the first calculation does not catch. In the fast case, the second checksum does not
have that property. These details make the fast signature sound markedly inferior. Nevertheless, the
first checksum calculation, which is used both in the default and the fast cases, is good, and when
_datasignature was written, we considered using only the first calculation in both cases. We believe
that, for within-session testing, where one does not have to guard against changes produced by an
intelligent enemy who may be trying to fool you, the first checksum alone is adequate. The inferior
second checksum we include in the fast case provides more protection than we think necessary.

The second difference has nothing to do with quality. Modern computers come in two types: those
that record least-significant bytes (LSBs) first and those that record most-significant bytes (MSBs) first.
Intel-based computers, for instance, are usually LSB, whereas Sun computers are MSB.

By default, _datasignature makes the checksum calculation in an LSB way, even on MSB
computers. MSB computers must therefore go to extra work to emulate the LSB calculation, and so
_datasignature runs slower on them.

When you specify fast, _datasignature calculates the checksum the native way. The checksum
is every bit as good, but the checksum produced will be different on MSB computers. If you merely
store the signature in memory for use later in the session, however, that does not matter.

Stored results

_datasignature stores the following in r():

Macros
r(datasignature) the signature

Reference
Gould, W. W. 2006. Stata tip 35: Detecting whether data have changed. Stata Journal 6: 428-429.

Also see

[D] datasignature — Determine whether data have changed
[P] signestimationsample — Determine whether the estimation sample has changed
[D] compare — Compare two variables

[D] ¢f — Compare two datasets

http://www.stata-journal.com/article.html?article=dm0024

Title

#delimit — Change delimiter

Description Syntax Remarks and examples Also see

Description

The #delimit command resets the character that marks the end of a command. It can be used
only in do-files or ado-files.

Syntax

#delimit { cr | ; }

Remarks and examples

#delimit (pronounced pound-delimit) is a Stata preprocessor command. #commands do not
generate a return code, nor do they generate ordinary Stata errors. The only error message associated
with #commands is “unrecognized #command”.

Commands given from the console are always executed when you press the Enter, or Return, key.
#delimit cannot be used interactively, so you cannot change Stata’s interactive behavior.

Commands in a do-file, however, may be delimited with a carriage return or a semicolon. When a
do-file begins, the delimiter is a carriage return. The command ‘#delimit ;’ changes the delimiter
to a semicolon. To restore the carriage return delimiter inside a file, use #delimit cr.

When a do-file begins execution, the delimiter is automatically set to carriage return, even if it
was called from another do-file that set the delimiter to semicolon. Also, the current do-file need not
worry about restoring the delimiter to what it was because Stata will do that automatically.

> Example 1
/%
When the do-file begins, the delimiter is carriage return:
*/
use basedata, clear
/%
The last command loaded our data.
Let’s now change the delimiter:
*/
#delimit ;
summarize sex
salary ;
/%
Because the delimiter is semicolon, it does not matter that our
command took two lines.
We can change the delimiter back:
*/

91

92 #delimit — Change delimiter

#delimit cr

summarize sex salary

/%
Now our lines once again end on return. The semicolon delimiter
is often used when loading programs:

*/

capture program drop fix

program fix
confirm var ‘1’

#delimit ;
replace ‘1’ = . if salary>=. | salary==0 |
hours>=. | hours==0 ;
#delimit cr
end
fix varl
fix var2

Q Technical note

Just because you have long lines does not mean that you must change the delimiter to semicolon.
Stata does not care that the line is long. There are also other ways to indicate that more than one

physical line is one logical line. One popular choice is ///:

replace ‘1’ = . if salary>=. | salary==0 | ///
hours>=. | hours==

See [P] comments.

Also see

[P] comments — Add comments to programs
[U] 16.1.3 Long lines in do-files
[U] 18.11.2 Comments and long lines in ado-files

Title

Dialog programming — Dialog programming

Description Remarks and examples Also see

Description

Dialog-box programs—also called dialog resource files—allow you to define the appearance of a
dialog box, specify how its controls work when the user fills it in (such as hiding or disabling specific
controls), and specify the ultimate action to be taken (such as running a Stata command) when the
user clicks on OK or Submit.

Remarks and examples

Remarks are presented under the following headings:

1. Introduction
2. Concepts
2.1 Organization of the .dlg file
2.2 Positions, sizes, and the DEFINE command
2.3 Default values
2.4 Memory (recollection)
2.5 I-actions and member functions
2.6 U-actions and communication options
2.7 The distinction between i-actions and u-actions
2.8 Error and consistency checking
3. Commands
3.1 VERSION
3.2 INCLUDE
3.3 DEFINE
3.4 POSITION
3.5 LIST
3.6 DIALOG
3.6.1 CHECKBOX on/off input control
3.6.2 RADIO on/off input control
3.6.3 SPINNER numeric input control
3.6.4 EDIT string input control
3.6.5 VARLIST and VARNAME string input controls
3.6.6 FILE string input control
3.6.7 LISTBOX list input control
3.6.8 COMBOBOX list input control
3.6.9 BUTTON special input control
3.6.10 TEXT static control
3.6.11 TEXTBOX static control
3.6.12 GROUPBOX static control
3.6.13 FRAME static control
3.6.14 COLOR input control
3.6.15 EXP expression input control
3.6.16 HLINK hyperlink input control
3.6.17 TREEVIEW tree input control
3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons
3.8 HELP and RESET helper buttons
3.9 Special dialog directives
4. SCRIPT
5. PROGRAM
5.1 Concepts
5.1.1 Vnames

93

94 Dialog programming — Dialog programming

5.1.2 Enames
5.1.3 rstrings: cmdstring and optstring
5.1.4 Adding to an rstring
5.2 Flow-control commands
521 if
5.2.2 while
5.2.3 call
5.2.4 exit
5.2.5 close
5.3 Error-checking and presentation commands
5.3.1 require
5.3.2 stopbox
5.4 Command-construction commands
5.4.1 by
5.4.2 bysort
5.4.3 put
5.4.4 varlist
5.4.5 itexp
5.4.6 inrange
5.4.7 weight
5.4.8 beginoptions and endoptions
5.4.8.1 option
5.4.8.2 optionarg
5.5 Command-execution commands
5.5.1 stata
5.5.2 clear
5.6 Special scripts and programs
6. Properties
7. Child dialogs
7.1 Referencing the parent
8. Example

Appendix A: Jargon
Appendix B: Class definition of dialog boxes
Appendix C: Interface guidelines for dialog boxes

Frequently asked questions

1. Introduction

At a programming level, the purpose of a dialog box is to produce a Stata command to be executed.
Along the way, it hopefully provides the user with an intuitive and consistent experience—that is
your job as a dialog-box programmer—but the ultimate output will be

list mpg weight or
regress mpg weight if foreign or
append using myfile

or whatever other Stata command is appropriate. Dialog boxes are limited to executing one Stata
command, but that does not limit what you can do with them because that Stata command can be
an ado-file. (Actually, there is another way around the one-command limit, which we will discuss in
5.1.3 rstrings: cmdstring and optstring.)

This ultimate result is called the dialog box’s u-action.

The u-action of the dialog box is determined by the code you write, called dialog code, which
you store in a .dlg file. The name of the .dlg file is important because it determines the name of
the dialog box. When a user types

. db regress

Dialog programming — Dialog programming 95

regress.dlg is executed. Stata finds the file the same way it finds ado-files—by looking along
the ado-path; see [P] sysdir. regress.dlg runs regress commands because of the dialog code that
appears inside the regress.dlg file. regress.dlg could just as well execute probit commands
or even merge commands if the code were written differently.

.d1g files describe
1. how the dialogs look,
2. how the input controls of the dialogs interact with each other, and
3. how the u-action is constructed from the user’s input.

Items 1 and 2 determine how intuitive and consistent the user finds the dialog. Item 3 determines
what the dialog box does. Item 2 determines whether some fields are disabled or hidden so that they
cannot be mistakenly filled in until the user clicks on something, checks something, or fills in a
certain result.

2. Concepts

A dialog box is composed of many elements called controls, including static text, edit fields, and
checkboxes. Input controls are those that the user fills in, such as checkboxes and text-entry fields.
Static controls are fixed text and lines that appear on the dialog box but that the user cannot change.
See Appendix A below for definitions of the various types of controls as well as other related jargon.

In the jargon we use, a dialog box is composed of dialogs, and dialogs are composed of controls.
When a dialog box contains multiple dialogs, only one dialog is shown at a time. Here access to the
dialogs is made possible through small tabs. Clicking on the tab associated with a dialog makes that
dialog active.

The dialog box may contain the helper buttons Help (shown as a small button with a question
mark on it) and Reset (shown as a small button with an R on it). These buttons appear in the dialog
box—not the individual dialogs—so in a multiple-dialog dialog box, they appear regardless of the
dialog (tab) selected.

The Help helper button displays a help file associated with the dialog box.

The Reset helper button resets the dialog box to its initial state. Each time a user invokes a
particular dialog box, it will remember the values last set for its controls. The reset button allows the
user to restore the default values for all controls in the dialog box.

The dialog box may also include the u-action buttons OK, Submit, Copy, and Cancel. Like
the helper buttons, u-action buttons appear in the dialog box—not the individual dialogs—so in a
multiple-dialog dialog box, they appear regardless of the dialog (tab) selected.

The OK u-action button constructs the u-action, sends it to Stata for execution, and closes the
dialog box.

The Submit u-action button constructs the u-action, sends it to Stata for execution, and leaves the
dialog box open.

The Copy u-action button constructs the u-action, sends it to the clipboard, and leaves the dialog
box open.

The Cancel u-action button closes the dialog box without constructing the u-action.

A dialog box does not have to include all of these u-action buttons, but it needs at least one.

96 Dialog programming — Dialog programming

Thus the nesting is

Dialog box, which contains

Dialog 1, which contains
input controls and static controls

Dialog 2, which is optional and which, if defined, contains
input controls and static controls

[. ..]

Helper buttons, which are optional and which, if defined, contain
[Help button]
[Reset button]

U-action buttons, which contain
[OK button]
[Submit button]
[Copy button]
[Cancel button]

Said differently,

1. a dialog box must have at least one dialog, must have one set of u-action buttons, and may
have helper buttons;

2. a dialog must have at least one control and may have many controls; and

3. the u-action buttons may include any of OK, Submit, Copy, and Cancel and must include
at least one of them.

Here is a simple .d1g file that will execute the kappa command, although it does not allow if
exp and in range:

BEGIN mykappa.dlg

/] ———mm—mmm set version number and define size of box ---------
VERSION 18.0
POSITION . . 290 200
// define a dialog ---------
DIALOG main, label("kappa - Interrater agreement")
BEGIN

TEXT tx_var 10 10 270 ., label("frequency variables:")

VARLIST vl_var @ +20 @ ., label("frequencies")
END
// define the u-action and helper buttons ---------
0K okl, label("OK")

CANCEL canl, label("Cancel")

SUBMIT subil, label("Submit")

COPY copyl,

HELP hlpi, view("help kappa")

RESET resl

// define how to assemble u-action ---------
PROGRAM command

BEGIN

put "kappa "
varlist main.vl_var
END

END mykappa.dlg

Dialog programming — Dialog programming

97

2.1 Organization of the .dlg file

A .d1lg file consists of seven parts, some of which are optional:

BEGIN

VERSION 18.0

POSITION .

DEFINE .

LIST .

DIALOG .
BEGIN

FILE .
BUTTON .

CHECKBOX .
COMBOBOX .

EDIT .

LISTBOX .

RADIO .

SPINNER .
VARLIST .
VARNAME .

FRAME .

GROUPBOX .

TEXT .

END

repeat DIALOG .

SCRIPT .
BEGIN

END
PROGRAM .
BEGIN

END

0K . . .
CANCEL .
SUBMIT .
HELP .

RESET .

PROGRAM command

BEGIN

END

dialogboxname . d1g:
Part 1: version number
Part 2: set size of dialog box

Part 3, optional: common definitions
Part 4: dialog definitions

... which contain input controls

... and static controls

. BEGIN. . . END as necessary

Part 5, optional: i-action definitions
... usually done as scripts

... but sometimes as programs

Part 6: u-action and helper button definitions

Part 7: u-action definition

END

dialogboxname .d1g

The VERSION statement must appear at the top; the other parts may appear in any order.

I-actions, mentioned in Part 5, are intermediate actions, such as hiding or showing, disabling or
enabling a control, or opening the Viewer to display something, etc., while leaving the dialog up and
waiting for the user to fill in more or press a u-action button.

2.2 Positions, sizes, and the DEFINE command

Part of specifying how a dialog appears is defining where things go and how big they are.

Positions are indicated by a pair of numbers, x and y. They are measured in pixels and are
interpreted as being measured from the top-left corner: x is how far to the right, and y is how far

down.

98 Dialog programming — Dialog programming

Sizes are similarly indicated by a pair of numbers, xsize and ysize. They, too, are measured in
pixels and indicate the size starting at the top-left corner of the object.

Any command that needs a position or a size always takes all four numbers—position and size—
and you must specify all four. In addition to each element being allowed to be a number, some extra
codes are allowed. A position or size element is defined as

any unsigned integer number, such as 0, 1, 10, 200,

. (period) meaning the context-specific default value for this position or size element. . is
allowed only with heights of controls (heights are measured from the top down) and for
the initial position of a dialog box.

@ means the previous value for this position or size element. If @ is used for an x or a y,
then the x or y from the preceding command will be used. If @ is used for an xsize or a
ysize, then the previous xsize or ysize will be used.

+# means a positive offset from the last value (meaning to the right or down or bigger). If
+10 is used for x, the result will be 10 pixels to the right of the previous position. If +10
is used for a ysize, it means 10 pixels taller.

-# means a negative offset from the last value (meaning to the left or up or smaller). If =10
is used for y, the result will be 10 pixels above the previous position. If =10 is used for
a xsize, it means 10 pixels narrower.

name means the value last recorded for name by the DEFINE command.
The DEFINE command has the syntax
DEFINE name { .|#|+#|-#|0x|@y|@xsize |@ysize }

and may appear anywhere in your dialog code, even inside the BEGIN/END of DIALOG. Anywhere
you need to specify a position or size element, you can use a name defined by DEFINE.

The first four possibilities for defining name have the obvious meaning: . means the default, #
means the number specified, +# means a positive offset, and -# means a negative offset. The other
four possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and ysize values,
with “previous” meaning previous to the time the DEFINE command was issued.

2.3 Default values

You can also load input controls with initial, or default, values. For instance, perhaps, as a default,
you want one checkbox checked and another unchecked, and you want an edit field filled in with
“Default title”.

The syntax of the CHECKBOX command, which creates checkboxes, is
CHECKBOX ... [, ... default(defrumval) ... |

In checkboxes, the default() option specifies how the box is to be filled in initially, and 1
corresponds to checked and O to unchecked.

The syntax of EDIT, which creates edit fields, is
EDIT ... [» ... default(defstrval) ...]
In edit fields, default () specifies what the box will contain initially.

Dialog programming — Dialog programming 99

Wherever defnumval appears in a syntax diagram, you may type

defnumval Definition

meaning the number specified
literal # same as #

c (name) value of c(name); see [P]| creturn
r (name) value of r(name); see [P] return
e (name) value of e(name); see [P] ereturn
s (name) value of s(name); see [P] return
global name value of global macro $name

Wherever defstrval appears in a syntax diagram, you may type

defstrval Definition

string meaning the string specified
literal string same as string

c (name) contents of c(name); see [P] creturn
r (name) contents of r(name); see [P] return
e (name) contents of e (name); see [P] ereturn
s (name) contents of s (name); see [P] return
char varname [charname] value of characteristic; see [P] char
global name contents of global macro $name

Note: If string is enclosed in double quotes (simple or compound), the first set of quotes
is stripped.
List and combo boxes present the user with a list of items from which to choose. In dialog-box

jargon, rather than having initial or default values, the boxes are said to be populated. The syntax for
creating a list-box input control is

LISTBOX ... [, ... contents(conspec) ...]
Wherever a conspec appears in a syntax diagram, you may type

list listname
populates the box with the specified list, which you create separately by using the LIST command.
LIST has the following syntax:

LIST
BEGIN
item to appear
item to appear
END
matrix

populates the box with the names of all matrices currently defined in Stata.

vector
populates the box with the names of all 1 X k and k x 1 matrices currently defined in Stata.

row
populates the box with the names of all 1 X k matrices currently defined in Stata.

100 Dialog programming — Dialog programming

column
populates the box with the names of all k X 1 matrices currently defined in Stata.

square
populates the box with the names of all k X k matrices currently defined in Stata.

scalar
populates the box with the names of all scalars currently defined in Stata.

constraint
populates the box with the names of all constraints currently defined in Stata.

estimates
populates the box with the names of all saved estimates currently defined in Stata.

char varname [charname]
populates the box with the elements of the characteristic varname [charname], parsed on spaces.

e (name)
populates the box with the elements of e(name), parsed on spaces.

global
populates the box with the names of all global macros currently defined in Stata.

valuelabels
populates the box with the names of all values labels currently defined in Stata.

Predefined lists for use with Stata graphics:

Predefined lists Definition

symbols list of marker symbols

symbolsizes list of marker symbol sizes

colors list of colors

intensity list of fill intensities

clockpos list of clock positions

linepatterns list of line patterns

linewidths list of line widths

connecttypes list of line connecting types

textsizes list of text sizes

justification list of horizontal text justifications
alignment list of vertical text alignments

margin list of margins

tickpos list of axis-tick positions

angles list of angles; usually used for axis labels
compass list of compass directions

yesno list containing Default, Yes, and No; usually accompanied

by a user-defined values list

Dialog programming — Dialog programming 101

2.4 Memory (recollection)

All input control commands have a default() or contents() option that specifies how the
control is to be filled in, for example,

CHECKBOX ... [, ... default(defnumval) ... |

In this command, if defnumval evaluates to 0, the checkbox is initially unchecked; otherwise, it
is checked. If default () is not specified, the box is initially unchecked.

Dialogs remember how they were last filled in during a session, so the next time the user invokes
the dialog box that contains this CHECKBOX command, the default () option will be ignored and the
checkbox will be as the user last left it. That is, the setting will be remembered unless you specify
the input control’s nomemory option.

CHECKBOX ... [, ... default(defnumval) nomemory ... }

nomemory specifies that the dialog-box manager not remember between invocations how the control
is filled in; it will always reset it to the default, whether that default is explicitly specified or implied.

Whether or not you specify nomemory, explicit or implicit defaults are also restored when the user
presses the Reset helper button.

The contents of dialog boxes are only remembered during a session, not between them. Within a
session, the discard command causes Stata to forget the contents of all dialog boxes.

The issues of initialization and memory are in fact more complicated than they first appear.
Consider a list box. A list box might be populated with the currently saved estimates. If the dialog
box containing this list box is closed and reopened, the available estimates may have changed. So
list boxes are always repopulated according to the instructions given. Even so, list boxes remember
the choice that was made. If that choice is still among the possibilities, that choice will be the one
selected unless nomemory is specified; otherwise, the choice goes back to being the default—the first
choice in the list of alternatives.

The same issues arise with combo boxes, and that is why some controls have the default ()
option and others have contents (). default () is used once, and after that, memory is substituted
(unless nomemory is specified). contents() is always used—nomemory or not—but the choice
made is remembered (unless nomemory is specified).

2.5 l-actions and member functions

I-actions—intermediate actions—refer to all actions taken in producing the u-action. An i-action
might disable or hide controls when another control is checked or unchecked, although there are
many other possibilities. [-actions are always optional.

I-actions are invoked by on*() options—those that begin with the letters “on”. For instance, the
syntax for the CHECKBOX command—the command for defining a checkbox control—is

CHECKBOX controlname ... [, ... onclickon(iaction) onclickoff (iaction) ...]

onclickon() is the i-action to be taken when the checkbox is checked, and onclickoff () is
the i-action for when the checkbox is unchecked. You do not have to fill in the onclickon() and
onclickoff () options—the checkbox will work fine taking no i-actions—but you may fill them in
if you want, say, to disable or to enable other controls when this control is checked. For instance,
you might code

CHECKBOX sw2 ..., onclickon(d2.sw3.show) onclickoff(d2.sw3.hide) ...

102 Dialog programming — Dialog programming

d2.sw3 refers to the control named sw3 in the dialog d2 (for instance, the control we just defined
is named sw2). hide and show are called member functions. hide is the member function that hides
a control, and show is its inverse. Controls have other member functions as well; what member
functions are available is documented with the command that creates the specific control.

Many commands have on*() options that allow you to specify i-actions. When iaction appears
in a syntax diagram, you can specify

. (period)
Do nothing; take no action. This is the default if you do not specify the on*() option.

gaction dialogname . controlname . memberfunction [arguments]
Execute the specified memberfunction on the specified control, where memberfunction may be

{hide | show|disable | enable | setposition|something_else Larguments] }

All controls provide the memberfunctions hide, show, disable, enable, and setposition, and
some controls make other, special memberfunctions available.

hide specifies that the control disappear from view (if it has not already done so). show specifies
that it reappear (if it is not already visible).

disable specifies that the control be disabled (if it is not already). enable specifies that it be
enabled (if it is not already).

setposition specifies the new position and size of a control. setposition requires arguments
in the form of x y xsize ysize. A dot can be used with any of the four arguments to mean the
current value.

Sometimes arguments may require quotes. For instance, CHECKBOX provides a special member-
function

setlabel string

which sets the text shown next to the checkbox, so you might specify onclickon(’"gaction
main.robust.setlabel "Robust VCE""’). Anytime a string is required, you must place quotes
around it if that string contains a space. When you specify an iaction inside the parentheses of an
option, it is easier to leave the quotes off unless they are required. If quotes are required, you must
enclose the entire contents of the option in compound double quotes as in the example above.

dialogname . controlname . memberfunction [arguments]
Same as gaction; the gaction is optional.

action memberfunction [arguments]
Same as gaction currentdialog.currentcontrol . memberfunction; executes the specified member-
function on the current control.

view fopic
Display fopic in viewer; see [R] view.

script scriptname
Execute the specified script. A script is a set of lines, each specifying an iaction. So if you wanted
to disable three things, gaction would be insufficient. You would instead define a script containing
the three gaction lines.

program programname
Execute the specified dialog-box program. Programs can do more than scripts because they provide
if-statement flow of control (among other things), but they are more difficult to write; typically,
the extra capabilities are not needed when specifying i-actions.

2.6

Dialog programming — Dialog programming 103

create STRING | DOUBLE | BOOLEAN propertyname
Creates a new instance of a dialog property. See 6. Properties for details.

create PSTRING | PDOUBLE | PBOOLEAN propertyname
Creates a new instance of a persistent dialog property. See 6. Properties for details.

create CHILD dialogname [AS referencename] [, nomodal allowsubmit allowcopy}
Creates a new instance of a child dialog. By default, the reference name will be the name of the
dialog unless otherwise specified. See 7. Child dialogs for details.

U-actions and communication options

Remember that the ultimate goal of a dialog box is to construct a u-action—a Stata command to
be executed. What that command is depends on how the user fills in the dialog box.

You construct the command by writing a dialog-box program, also known as a PROGRAM. You
arrange that the program be invoked by specifying the uaction() option allowed with the OK,
SUBMIT, CANCEL, and COPY u-action buttons. For instance, the syntax of OK is

0K ... [, ... uaction(pgmname) target (target) ... }

pgmname is the name of the dialog program you write, and target () specifies how the command
constructed by pgmname is to be executed. Usually, you will simply want Stata to execute the
command, which could be coded target (stata), but because that is the default, most programmers
omit the target () option altogether.

The dialog-box program you write accesses the information the user has filled in and outputs the
Stata command to be executed. Without going into details, the program might say to construct the
command by outputting the word regress, followed by the varlist the user specified in the varlist
field of the first dialog, and followed by if exp, getting the expression from what the user filled in
an edit field of the second dialog.

Dialogs and input controls are named, and in your dialog-box program, when you want to refer
to what a user has filled in, you refer to dialogname .inputcontrolname. dialogname was determined
when you coded the DIALOG command to create the dialog

DIALOG dialogname ...

and inputcontrolname was determined when you coded the input-control command to create the input
control, for instance,

CHECKBOX inputcontrolname . ..

The details are discussed in 5. PROGRAM, but do not get lost in the details. Think first about
coding how the dialogs look and second about how to translate what the user specifies into the
u-action.

On the various commands that specify how dialogs look, you can specify an option that will
make writing the u-action program easier: the communication option option (), which communicates
something about the control to the u-action program, is allowed with every control. For instance, on
the CHECKBOX command, you could code

CHECKBOX ..., ... option(robust)

When you wrote your dialog-box PROGRAM, you would find it easier to associate the robust
option in the command you are constructing with this checkbox. Communication options never alter
how a control looks or works: they just make extra information available to the PROGRAM and make
writing the u-action routine easier.

104 Dialog programming — Dialog programming

Do not worry much about communication options when writing your dialog. Wait until you are
writing the corresponding u-action program. Then it will be obvious what communication options
you should have specified, and you can go back and specify them.

2.7 The distinction between i-actions and u-actions

In this documentation, we distinguish between i-actions and u-actions, but if you read carefully,
you will realize that the distinction is more syntactical than real. One way we have distinguished
i-actions from u-actions is to note that only u-actions can run Stata commands. In fact, i-actions can
also run Stata commands; you just code them differently. In the vast majority of dialog boxes, you
will not do this.

Nevertheless, if you were writing a dialog box to edit a Stata graph, you might construct your
dialog box so that it contained no u-actions and only i-actions. Some of those i-actions might invoke
Stata commands.

As you already know, i-actions can invoke PROGRAMs, and PROGRAMs serve two purposes: coding
of i-actions and coding of u-actions. PROGRAMs themselves, however, have the ability to submit
commands to Stata, and therein lies the key. I-actions can invoke PROGRAMs, and PROGRAMs can
invoke Stata commands. How this is done is discussed in 5.1.3 rstrings: cmdstring and optstring and
5.5 Command-execution commands.

We recommend that you not program i-actions and u-actions that are virtually indistinguishable
except in rare, special circumstances. Users expect to fill in a dialog box and to be given the opportunity
to click on OK or Submit before anything too severe happens.

2.8 Error and consistency checking

In filling in the dialogs you construct, the user might make errors. One alternative is simply to
ignore that possibility and let Stata complain when it executes the u-action command you construct.
Even in well-written dialog boxes, most errors should be handled this way because discovering all
the problems would require rewriting the entire logic of the Stata command.

Nevertheless, you will want to catch easy-to-detect errors while the dialog is still open and the
user can easily fix them. Errors come in two forms: An outright error would be typing a number in
an edit field that is supposed to contain a variable name. A consistency error would be checking two
checkboxes that are, logically speaking, mutually exclusive.

You will want to handle most consistency errors at the dialog level, either by design (if two
checkboxes are mutually exclusive, perhaps the information should be collected as radio buttons) or
by i-actions (disabling or even hiding some fields depending on what has been filled in). The latter
was discussed in 2.5 I-actions and member functions.

Outright errors can be detected and handled in dialog-box programs and are usually detected
and handled in the u-action program. For instance, in your dialog-box program, you can assert that
dialogname . inputcontrolname must be filled in and pop up a custom error message if it is not, or
the program code can be written so that an automatically generated error message is presented. You
will find that all input-control commands have an error () option; for example,

VARLIST ... [, ... error(string) ...]

The error () string provides the text to describe the control when the dialog-box manager presents
an error. For instance, if we specified

VARLIST ... [, ... error(dependent variable) ...]

Dialog programming — Dialog programming 105

the dialog-box manager might use that information later to construct the error message “dependent
variable must be specified”.

If you do not specify the error() option, the dialog-box manager will use what was specified
in the label(); otherwise, "" is used. The label() option specifies the text that usually appears
near the control describing it to the user, but label () will do double duty so that you only need to
specify error () when the two strings need to differ.

3. Commands

3.1 VERSION

3.2

Syntax
VERSION #[##} [valid_operating_systems}

Description
VERSION specifies how the commands that follow are to be interpreted.

Remarks

VERSION must appear first in the .dlg file (it may be preceded by comments). In the current
version of Stata, it should read VERSION 18 or VERSION 18.0. It makes no difference; both mean
the same thing.

Optionally, VERSION can specify one or more valid operating systems. Accepted values are
WINDOWS, MACINTOSH, and UNIX. If none of these are specified, all are assumed.

Including VERSION at the top is of vital importance. Stata is under continual development, so
syntax and features can change. Including VERSION is how you ensure that your dialog box will
continue to work as you intended.

INCLUDE

Syntax
INCLUDE includefilename

where includefilename refers to includefilename .idlg and must be specified without the suffix and
without a path.

Description

INCLUDE reads and processes the lines from includefilename . id1g just as if they were part of the
current file being read. INCLUDE may appear in both .dlg and .id1lg files.

Remarks

The name of the file is specified without a file suffix and without a path. .idlg files are searched
for along the ado-path, as are .d1g files.

INCLUDE may appear anywhere in the dialog code and may appear in both .d1lg and .idlg files;
include files may INCLUDE other include files. Files may contain multiple INCLUDEs. The maximum
nesting depth is 10.

3.3

3.4

106 Dialog programming — Dialog programming

DEFINE

Syntax
DEFINE name { .|#|+#|-#|@x|@y|@xsize|,@ysize }

Description

DEFINE creates name, which may be used in other commands wherever a position or size element
is required.

Remarks

The first four possibilities for defining name— ., #, +#, and -#—specify default, number specified,
positive offset, and negative offset.

The other four possibilities—@x, @y, @xsize, and @ysize—refer to the previous x, y, xsize, and
ysize values, with “previous” meaning previous to the time the DEFINE command is issued, not at
the time name is used.

POSITION

Syntax
POSITION x y xsize ysize

Description

POSITION is used to set the location and size of the dialog box. x and y refer to the upper-left-hand
corner of the dialog box. xsize and ysize refer to the width and height of the dialog box.

Remarks

The positions x and y may each be specified as ., and Stata will determine where the dialog box
will be displayed; this is recommended.

xsize and ysize may not be specified as . because they specify the overall size of the dialog box.
You can discover the size by experimentation. If you specify a size that is too small, some elements
will flow off the dialog box. If you specify a size that is too large, there will be large amounts of
white space on the right and bottom of the dialog box. Good initial values for xsize and ysize are
400 and 300.

POSITION may be specified anywhere in the dialog code outside BEGIN ... END blocks. It does
not matter where it is specified because the entire .dlg file is processed before the dialog box is
displayed.

Dialog programming — Dialog programming 107

3.5 LIST

Syntax

LIST newlistname
BEGIN
item
item

END

Description

LIST creates a named list for populating list and combo boxes.

Example

LIST choices
BEGIN
Statistics
Graphics
Data management
END

DIALOG ...
BEGIN

LISTBOX ... , ... contents(choices) ...

END

3.6 DIALOG

Syntax

DIALOG newdialogname [, title(" string") tabtitle(" string") }
BEGIN
{ control definition statements | INCLUDE | DEFINE }

END

Description

DIALOG defines a dialog. Every .d1lg file should define at least one dialog. Only control definition
statements, INCLUDE, and DEFINE are allowed between BEGIN and END.

Options
title("string") defines the text to be displayed in the dialog’s title bar.

tabtitle("string") defines the text to be displayed on the dialog’s tab. Dialogs are tabbed if more
than one dialog is defined. When a user clicks on the tab, the dialog becomes visible and active.
If only one dialog is specified, the contents of tabtitle() are irrelevant.

108 Dialog programming — Dialog programming

Member functions
settabtitle string sets tab title to string
settitle string sets overall dialog box title to string

settitle may be called as a member function of any dialog tab, but it is more appropriate to
call it as a member function of the dialog box. This is accomplished by calling it in the local scope
of the dialog.

Example:

settitle "sort - Sort data"
3.6.1 CHECKBOX on/off input control

Syntax
CHECKBOX newcontrolname x y xsize ysize [, label ("string") error ("string")
default (defnumval) nomemory groupbox onclickon (iaction) onclickoff (iaction)

option(optionname) tooltip("string")]

Member functions

setlabel string sets text to string

setoff unchecks checkbox

seton checks checkbox

setoption optionname associates optionname with the value of the checkbox

setdefault value sets the default value for the checkbox; this does not change the
selected state

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, 0 or 1, depending on whether the box is checked.

Description

CHECKBOX defines a checkbox control, which indicates an option that is either on or off.

Options

label ("string") specifies the text to be displayed next to the control. You should specify text that
clearly implies two opposite states so that it is obvious what happens when the checkbox is checked
or unchecked.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defnumval) specifies whether the box is checked or unchecked initially; it will be unchecked
if defnumval evaluates to 0, and it will be checked otherwise. If default() is not specified,
default (0) is assumed.

Dialog programming — Dialog programming 109

nomemory specifies that the checkbox not remember how it was filled in between invocations.

groupbox makes this checkbox control also a group box into which other controls can be placed to
emphasize that they are related. The group box is just an outline; it does not cause the controls
“inside” to be disabled or hidden or in any other way act differently than they would if they were
outside the group box. On some platforms, radio buttons have precedence over checkbox group
boxes. You may place radio buttons within a checkbox group box, but do not place a checkbox
group box within a group of radio buttons. If you do, you may not be able to click on the checkbox
control on some platforms.

onclickon (iaction) and onclickoff (iaction) specify the i-actions to be invoked when the checkbox
is clicked on or off. This could be used, for instance, to hide, show, disable, or enable other input
controls. The default i-action is to do nothing. The onclickon() or onclickoff () i-action will
be invoked the first time the checkbox is displayed.

option(optionname) is a communication option that associates optionname with the value of the
checkbox.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

CHECKBOX robust 10 10 100 ., label(Robust VCE)

3.6.2 RADIO on/off input control

Syntax
RADIO newcontrolname x y xsize ysize [, [iirst |middle |Qst} label ("string")

error ("string") default(defnumval) nomemory onclickon (iaction)

onclickoff (iaction) option(optionname) tooltip("string")]

Member functions

setlabel string sets text to string

seton checks the radio button and unchecks any other buttons in the group

setoption optionname associates optionname with the value of the radio

setdefault value sets the default value for the radio; this does not change the
selected state

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, 0 or 1, depending on whether the button is checked.

110 Dialog programming — Dialog programming

Description

RADIO defines a radio button control in a radio-button group. Radio buttons are used in groups of
two or more to select mutually exclusive, but related, choices when the number of choices is small.
Selecting one radio button automatically unselects the others in its group.

Options

first, middle, and last specify whether this radio button is the first, a middle, or the last member
of a group. There must be one first and one last. There can be zero or more middle members.
middle is the default if no option is specified.

label ("string") specifies the text to be displayed next to the control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defnumval) specifies whether the radio button is to start as selected or unselected; it will
be unselected if defnumval evaluates to 0 and will be selected otherwise. If default() is not
specified, default (0) is assumed unless first is also specified, in which case default (1) is
assumed. It is considered bad style to use anything other than the first button as the default, so
this option is rarely specified.

nomemory specifies that the radio button not remember how it was filled in between invocations.

onclickon (iaction) and onclickoff (iaction) specify that i-action be invoked when the radio button
is clicked on or clicked off. This could be used, for instance, to hide, show, disable, or enable other
input controls. The default i-action is to do nothing. The onclickon() i-action will be invoked
the first time the radio button is displayed if it is selected.

option(optionname) is a communication option that associates optionname with the value of the
radio button.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

RADIO r1 10 10 100 ., first 1label("First choice")
RADIO r2 @ +20 @ ., middle label("Second choice")
RADIO r3 @ +20 @ ., middle label("Third choice")
RADIO r4 @ +20 @ ., last label("Last choice")

3.6.3 SPINNER numeric input control

Syntax
SPINNER newcontrolname x y xsize ysize [, label ("string") error ("string")
default (defnumval) nomemory min(defnumval) max(defnumval) onchange (iaction)

option(optionname) tooltip("string")]

Dialog programming — Dialog programming 111

Member functions

setvalue value sets the actual value of the spinner to value
setrange min# max# sets the range of the spinner to min# max#
setoption optionname associates optionname with the value of the spinner

setdefault # sets the default of the spinner to #; this does not change the value
shown in the spinner control.
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns numeric, the value of the spinner.

Description

SPINNER defines a spinner, which displays an edit field that accepts an integer number, which the
user may either increase or decrease by clicking on an up or down arrow.

Options

label ("string") specifies a description for the control, but it does not display the label next to the
spinner. If you want to label the spinner, you must use a TEXT static control.

error ("string") specifies the text to be displayed in describing this field to the user in automatically
generated error boxes.

default (defnumval) specifies the initial integer value of the spinner. If not specified, min() is
assumed, and if that is not specified, 0 is assumed.

nomemory specifies that the spinner not remember how it was filled in between invocations.

min (defnumval) and max (defnumval) set the minimum and maximum integer values of the spinner.
min(0) and max(100) are the defaults.

onchange (iaction) specifies the i-action to be invoked when the spinner is changed. The default
i-action is to do nothing. The onchange () i-action will be invoked the first time the spinner is
displayed.

option(optionname) is a communication option that associates optionname with the value of the
spinner.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

SPINNER level 10 10 60 ., label(Sig. level) min(5) max(100) ///
default(c(level)) option(level)

112 Dialog programming — Dialog programming

3.6.4 EDIT string input control

Syntax
EDIT newcontrolname x y xsize ysize [, label ("string") error ("string")
default (defstrval) nomemory max(#) numonly password onchange (iaction)

option(optionname) tooltip("string")]

Member functions

setlabel string sets the label for the edit field

setvalue strvalue sets the value shown in the edit field

append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field

smartinsert string inserts string at the current cursor position in the edit field with
leading and trailing spaces around it

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change
what is displayed

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

EDIT defines an edit field. An edit field is a box into which the user may enter text or in which
the user may edit text; the width of the box does not limit how much text can be entered.

Options

label ("string") specifies a description for the control, but it does not display the label next to the
edit field. If you want to label the edit field, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field is not to remember how it was filled in between invocations.
max (#) specifies the maximum number of characters that may be entered into the edit field.

numonly specifies that the edit field be able to contain only a period, numeric characters 0 through
9, and - (minus).

password specifies that the characters entered into the edit field be shown on the screen as asterisks
or bullets, depending on the operating system.

Dialog programming — Dialog programming 113

onchange (iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange () i-action will be invoked the first
time the edit field is displayed.

option (optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
TEXT tlab 10 10 200 ., label("Title")
EDIT title Q@ +20 Q ., label("title")

3.6.5 VARLIST and VARNAME string input controls

Syntax
{ VARLIST |VARNAME } newcontrolname x y xsize ysize |, label("string")

error("string") default(defstrval) nomemory fv ts option(optionname)

tooltip("string") }

Member functions

setlabel string sets the label for the varlist edit field

setvalue strvalue sets the value shown in the varlist edit field

append string appends string to the value in the varlist edit field

prepend string prepends string to the value of the varlist edit field

insert string inserts string at the current cursor position of the varlist edit field

smartinsert string inserts string at the current cursor position in the varlist edit field
with leading and trailing spaces around it

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change
what is displayed

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the varlist edit field.

Description

VARLIST and VARNAME are special cases of an edit field. VARLIST provides an edit field into which
one or more Stata variable names may be entered (along with standard Stata varlist abbreviations),
and VARNAME provides an edit field into which one Stata variable name may be entered (with standard
Stata varname abbreviations allowed).

114 Dialog programming — Dialog programming

Options

label ("string") specifies a description for the control, but does not display the label next to the
varlist edit field. If you want to label the control, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.
fv specifies that the control add a factor-variable dialog button.
ts specifies that the control add a time-series-operated variable dialog button.

option (optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
TEXT dvlab 10 10 200 ., label("Dependent variable")
VARNAME depvar @ +20 @ ., label("dep. var")
TEXT ivlab @ +30 @ ., label("Independent variables")

VARLIST idepvars @ +20 @ label("ind. vars.")

3.6.6 FILE string input control

Syntax
FILE newcontrolname x y xsize ysize [, label ("string") error ("string")

default (defstrval) nomemory buttonwidth(#) dialogtitle(string) save

multiselect directory filter(string) onchange (iaction) option(optionname)

tooltip("string") }

Member functions

setlabel string sets the label shown on the edit button

setvalue strvalue sets the value shown in the edit field

append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not change
what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Dialog programming — Dialog programming 115

Returned values for use in PROGRAM
Returns string, the contents of the edit field (the file chosen).

Description

FILE is a special edit field with a button on the right for selecting a filename. When the user
clicks on the button, a file dialog is displayed. If the user selects a filename and clicks on OK, that
filename is put into the edit field. The user may alternatively type a filename into the edit field.

Options
label("string") specifies the text to appear on the button. The default is ("Browse ...").

error("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defstrval) specifies the default contents of the edit field. If not specified, default ("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

buttonwidth (#) specifies the width in pixels of the button. The default is buttonwidth(80). The
overall size specified in xsize includes the button.

dialogtitle(string) is the title to show on the file dialog when you click on the file button.

save specifies that the file dialog allow the user to choose a filename for saving rather than one for
opening.

multiselect specifies that the file dialog allow the user to select multiple filenames rather than only
one filename.

directory specifies that the file dialog select a directory rather than a filename. If specified, any
nonrelevant options will be ignored.

filter(string) consists of pairs of descriptions and wildcard file selection strings separated by “|”,
such as

filter("Stata Graphs|*.gph|All Files|*.x")

onchange (iaction) specifies an i-action to be invoked when the user changes the chosen file. The
default i-action is to do nothing. The onchange () i-action will be invoked the first time the file
chooser is displayed.

option(optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

FILE fname 10 10 300 ., error("Filename to open") label("Browse ...")

116 Dialog programming — Dialog programming

3.6.7 LISTBOX list input control

Syntax
LISTBOX newcontrolname x y Xxsize ysize [, label ("string") error ("string")
nomemory contents(conspec) values (listname) default (defstrval)

ondblclick (iaction) [onselchange(iaction) | onselchangelist (listname)]

option(optionname) tooltip("string")]

Member functions

setlabel string sets the label for the list box

setvalue strvalue sets the currently selected item

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the list

setdefault string sets the default value for the list box; this does not change
what is displayed

repopulate causes the associated contents list to rebuild itself and then
updates the control with the new values from that list

forceselchange forces an onselchange event to occur

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the text of the item chosen, or, if values (listname) is specified, the text from the
corresponding element of listname.

Description

LISTBOX defines a list box control. Like radio buttons, a list box allows the user to make a selection
from a number of mutually exclusive, but related, choices. A list box control is more appropriate
when the number of choices is large.

Options
label ("string") specifies a description for the control but does not display the label next to the
control. If you want to label the list box, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

nomemory specifies that the list box not remember the item selected between invocations.

contents (conspec) specifies the items to be shown in the list box. If contents () is not specified,
the list box will be empty.

values (listname) specifies the list (see 3.5 LIST) for which the values of contents () should match
one to one. When the user chooses the kth element from contents (), the kth element of listname
will be returned. If the lists do not match one to one, extra elements of listname are ignored, and
extra elements of contents () return themselves.

Dialog programming — Dialog programming 117

default (defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the
first item is the default.

ondblclick(iaction) specifies the i-action to be invoked when an item in the list is double clicked.
The double-clicked item is selected before the iaction is invoked.

onselchange (iaction) and onselchangelist (listname) are alternatives. They specify the i-action
to be invoked when a selection in the list changes.

onselchange (iaction) performs the same i-action, regardless of which element of the list was
chosen.

onselchangelist (listname) specifies a vector of iactions that should match one to one with
contents (). If the user selects the kth element of contents(), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there are
too few elements, the last element will be invoked for the extra elements of contents().

option(optionname) is a communication option that associates optionname with the element chosen
from the list.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

LIST ourlist
BEGIN
Good
Common or average
Poor
END

DIALOG .
BEGIN

TEXT ourlab 10 10 200 ., label("Pick a rating")
LISTBOX rating @ +20 150 200, contents(ourlist)

END

3.6.8 COMBOBOX list input control

Syntax
COMBOBOX newcontrolname x y xsize ysize [, label ("string") error ("string")
[regular | dropdown | dropdownlist] default (defstrval) nomemory
contents (conspec) values (listhame) append

[onselchange (iaction) | onselchangelist (listname)] option (optionname)

tooltip("string") }

118 Dialog programming — Dialog programming

Member functions

setlabel string sets the label for the combo box

setvalue strvalue in the case of regular and drop-down combo boxes, sets the value
of the edit field; in the case of a dropdownlist, sets the
currently selected item

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the list

setdefault string sets the default value for the combo box; this does not change
what is displayed or selected

repopulate causes the associated contents list to rebuild itself and then
updates the control with the new values from that list

forceselchange forces an onselchange event to occur

settooltip string sets the tooltip text to string

Also, except for drop-down lists (option dropdownlist specified), the following member functions
are also available:

append string appends string to the value in the edit field
prepend string prepends string to the value of the edit field
insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it

The standard member functions hide, show, disable, enable, and setposition are also always
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

COMBOBOX defines regular combo boxes, drop-down combo boxes, and drop-down-list combo
boxes. By default, COMBOBOX creates a regular combo box; it creates a drop-down combo box if the
dropdown option is specified, and it creates a drop-down-list combo box if the dropdownlist option
is specified.

A regular combo box contains an edit field and a visible list box. The user may make a selection
from the list box, which is entered into the edit field, or type in the edit field. Multiple selections are
allowed using the append option. Regular combo boxes are useful for allowing multiple selections
from the list as well as for allowing the user to type in an item not in the list.

A drop-down combo box contains an edit field and a list box that appears when the control is
clicked on. The user may make a selection from the list box, which is entered into the edit field,
or type in the edit field. The control has the same functionality and options as a regular combo box
but requires less space. Multiple selections are allowed using the append option. Drop-down combo
boxes may be cumbersome to use if the number of choices is large, so use them only when the
number of choices is small or when space is limited.

A drop-down-list combo box contains a list box that displays only the current selection. Clicking
on the control displays the entire list box, allowing the user to make a selection without typing in
the edit field; the user chooses among the given alternatives. Drop-down-list combo boxes should be
used only when the number of choices is small or when space is limited.

Dialog programming — Dialog programming 119

Options

label ("string") specifies a description for the control but does not display the label next to the
combo box. If you want to label a combo box, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

regular, dropdown, and dropdownlist specify the type of combo box to be created.
If regular is specified, a regular combo box is created. regular is the default.
If dropdown is specified, a drop-down combo box is created.
If dropdownlist is specified, a drop-down-list combo box is created.

default (defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed. If dropdownlist is specified, the first item is the default.

nomemory specifies that the combo box not remember the item selected between invocations. Even
for drop-down lists—where there is no default () —combo boxes remember previous selections
by default.

contents (conspec) specifies the items to be shown in the list box from which the user may choose.
If contents () is not specified, the list box will be empty.

values (listname) specifies the list (see 3.5 LIST) for which the values of contents () should match
one to one. When the user chooses the kth element from contents (), the kth element of listname
is copied into the edit field. If the lists do not match one to one, extra elements of listname are
ignored, and extra elements of contents() return themselves.

append specifies that selections made from the combo box’s list box be appended to the contents of
the combo box’s edit field. By default, selections replace the contents of the edit field. append is
not allowed if dropdownlist is also specified.

onselchange (iaction) and onselchangelist (listname) are alternatives that specify the i-action
to be invoked when a selection in the list changes.

onselchange (iaction) performs the same i-action, regardless of the element of the list that was
chosen.

onselchangelist (listname) specifies a vector of iactions that should match one to one with
contents (). If the user selects the kth element of contents(), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there
are too few elements, the last element will be invoked for the extra elements of contents().
onselchangelist () should not be specified with dropdown.

option (optionname) is a communication option that associates optionname with the element chosen
from the list.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

120 Dialog programming — Dialog programming

Example

LIST namelist
BEGIN
John
Sue
Frank
END
DIALOG .
BEGIN

TEXT ourlab 10 10 200 ., label("Pick one or more names")
COMBOBOX names @ +20 150 200, contents(namelist) append

END

3.6.9 BUTTON special input control

Syntax

BUTTON newcontrolname x y xsize ysize [, label ("string") error ("string")

onpush (iaction) tooltip("string")]

Member functions

setlabel string sets the label for the button
setfocus causes the control to obtain keyboard focus
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

BUTTON creates a push button that performs instantaneous actions. Push buttons do not indicate a
state, such as on or off, and do not return anything for use by the u-action PROGRAM. Buttons are
used to invoke i-actions.

Options

label ("string") specifies the text to display on the button. You should specify text that contains
verbs that describe the action to perform.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

onpush (iaction) specifies the i-action to be invoked when the button is clicked on. If onpush() is
not specified, the button does nothing.

Dialog programming — Dialog programming 121

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example
BUTTON help 10 10 80 ., label("Help") onpush("view help example")

3.6.10 TEXT static control

Syntax

TEXT newcontrolname x y xsize ysize [, label ("string") [1eft | center | right]]

Member functions

setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description
TEXT displays text.

Options
label ("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

Example

TEXT dvlab 10 10 200 ., label("Dependent variable")

3.6.11 TEXTBOX static control

Syntax
TEXTBOX newcontrolname x y xsize ysize [, label ("string") [1eft | center | right}]

Member functions
setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

122 Dialog programming — Dialog programming

Returned values for use in PROGRAM

None.

Description
TEXTBOX displays multiline text.

Options
label ("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

Example
TEXTBOX tx_note 10 10 200 45, label("Note ...")

3.6.12 GROUPBOX static control

Syntax
GROUPBOX newcontrolname x y xsize ysize [, label("string”)]

Member functions

setlabel string sets the text shown above the group box

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

GROUPBOX displays a frame (an outline) with text displayed above it. Group boxes are used for
grouping related controls together. The grouped controls are sometimes said to be inside the group
box, but there is no meaning to that other than the visual effect.

Options
label("string") specifies the text to be shown at the top of the group box.

Example
GROUPBOX weights 10 10 300 200, label("Weight type")
RADIO wi . . . , . . . label(fweight) first . . .
RADIO w2 . . . , . . . label(aweight) . . .
RADIO w3 . . . , . . . label(pweight) . . .
RADIO w4 . . . , . label(iweight) last . . .

Dialog programming — Dialog programming 123

3.6.13 FRAME static control

Syntax

FRAME newcontrolname x y xsize ysize [, ;abel("string")}

Member functions
There are no special member functions provided.

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description
FRAME displays a frame (an outline).

Options

label ("string") specifies the label for the frame, which is not used in any way, but some programmers
use it to record comments documenting the purpose of the frame.

Remarks

The distinction between a frame and a group box with no label is that a frame draws its outline
using the entire dimensions of the control. A group box draws its outline a few pixels offset from the
top of the control, whether there is a label or not. A frame is useful for horizontal alignment with
other controls.

Example
FRAME box 10 10 300 200

RADIO wi . . . , . . label(fweight) first . . .
RADIO w2 . . . , . label(aweight) . . .
RADIO w3 . . . , . . label(pweight) . . .
RADIO w4 . . . , . label(iweight) last . . .

3.6.14 COLOR input control

Syntax
COLOR newcontrolname x y xsize ysize [, label ("string") error ("string")

default (rghvalue) nomemory onchange (iaction) option(optionname)

tooltip("string") }

124 Dialog programming — Dialog programming

Member functions

setvalue rgbvalue sets the rgb value of the color selector
setoption optionname associates optionname with the selected color

setdefault rgbvalue sets the default rgb value of the color selector; this does not
change the selected color

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns rgbvalue of the selected color as a string.

Description

COLOR defines a button to access a color selector. The button shows the color that is currently
selected.

Options

label("string") specifies a description for the control, but it does not display the label next to the
button. If you want to label the color control, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (rgbvalue) specifies the default color of the color control. If not specified, default (255
0 0) is assumed.

nomemory specifies that the color control not remember the set color between invocations.

onchange (iaction) specifies the i-action to be invoked when the color is changed. The default i-action
is to do nothing. Note that the onchange () i-action will be invoked the first time the color control
is displayed.

option (optionname) is a communication option that associates optionname with the selected color.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

COLOR box_color 10 10 40 ., default(0 O 0)

3.6.15 EXP expression input control

Syntax
EXP newcontrolname x y xsize ysize [, label ("string") error ("string")

default (defstrval) nomemory onchange (iaction) option(optionname)

tooltip("string") }

Dialog programming — Dialog programming 125

Member functions

setlabel string sets the label for the button

setvalue strvalue sets the value shown in the edit field

append string appends string to the value in the edit field

prepend string prepends string to the value of the edit field

insert string inserts string at the current cursor position of the edit field
smartinsert string inserts string at the current cursor position in the edit field

with leading and trailing spaces around it
setoption optionname associates optionname with the contents of the edit field

setdefault string sets the default value for the edit field; this does not
change what is displayed
settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the contents of the edit field.

Description

EXP defines an expression control that consists of an edit field and a button for launching the
Expression Builder.

Options
label ("string") specifies the text for labeling the button.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

default (defstrval) specifies the default contents of the edit field. If not specified, default("") is
assumed.

nomemory specifies that the edit field not remember how it was filled in between invocations.

onchange (iaction) specifies the i-action to be invoked when the contents of the edit field are changed.
The default i-action is to do nothing. Note that the onchange () i-action will be invoked the first
time the expression control is displayed.

option (optionname) is a communication option that associates optionname with the contents of the
edit field.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Example

TEXT tlab 10 10 200 ., label("Expression:")
EXP exp @ +20 @ ., label("Expression")

126 Dialog programming — Dialog programming

3.6.16 HLINK hyperlink input control

Syntax
HLINK newcontrolname x y xsize ysize [, label ("string") [left | center | right]

onpush (iaction)]

Member functions
setlabel string sets the text shown

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

None.

Description

HLINK creates a hyperlink that performs instantaneous actions. Hyperlinks do not indicate a state,
such as on or off, and do not return anything for use by the u-action PROGRAM. Hyperlinks are used
to invoke i-actions.

Options
label ("string") specifies the text to be shown.

left, center, and right are alternatives that specify the horizontal alignment of the text with
respect to x. left is the default.

onpush (iaction) specifies the i-action to be invoked when the hyperlink is clicked on. If onpush()
is not specified, the hyperlink does nothing.

Example

HLINK help 10 10 80 ., label("Help") onpush("view help example")

3.6.17 TREEVIEW tree input control

Syntax
TREEVIEW newcontrolname x y xsize ysize [, label ("string") error ("string")
nomemory contents(conspec) values (listname) default (defstrval)

ondblclick (iaction) [onselchange (iaction) | onselchangelist (listname)

option(optionname) tooltip("string")]

Dialog programming — Dialog programming 127

Member functions

setlabel string sets the label for the tree

setvalue strvalue sets the currently selected item

setfocus causes the control to obtain keyboard focus

setoption optionname associates optionname with the element chosen from the tree
setdefault string sets the default value for the tree; this does not change what is displayed
forceselchange forces an onselchange event to occur

settooltip string sets the tooltip text to string

The standard member functions hide, show, disable, enable, and setposition are also
provided.

Returned values for use in PROGRAM

Returns string, the text of the item chosen, or, if values (listname) is specified, the text from the
corresponding element of listname.

Description

TREEVIEW defines a tree control, which is used to display a hierarchical view of labeled items. A
tree view allows the user to select from several mutually exclusive but related choices. By clicking
on an item, the user can expand or collapse the associated list of subitems.

Options

label("string") specifies a description for the control but does not display the label next to the
control. If you want to label a tree view, you must use a TEXT static control.

error ("string") specifies the text to be displayed describing this field to the user in automatically
generated error boxes.

nomemory specifies that the control not remember the item selected between invocations.

contents (conspec) specifies the items to be shown in the control. If contents() is not specified,
the tree view control will be empty.

values (listname) specifies the list (see 3.5 LIST) for which the values of contents () should match
one to one. When the user chooses the kth element from contents (), the kth element of listname
will be returned. If the lists do not match one to one, extra elements of listname are ignored, and
extra elements of contents () return themselves.

default (defstrval) specifies the default selection. If not specified, or if defstrval does not exist, the
first item is the default.

ondblclick(iaction) specifies the i-action to be invoked when an item in the control is double
clicked. The double-clicked item is selected before the iaction is invoked.

onselchange (iaction) and onselchangelist (listname) are alternatives. They specify the i-action
to be invoked when a selection in the control changes.

onselchange (iaction) performs the same i-action, regardless of which element of the control
was chosen.

onselchangelist (listname) specifies a vector of iactions that should match one to one with
contents (). If the user selects the kth element of contents (), the kth i-action from listname
is invoked. See 3.5 LIST for information on creating listname. If the elements of listname do not
match one to one with the elements of contents(), extra elements are ignored, and if there are
too few elements, the last element will be invoked for the extra elements of contents().

128 Dialog programming — Dialog programming

option (optionname) is a communication option that associates optionname with the element chosen
from the tree view control.

tooltip("string") specifies the text to be displayed as a tip or hint when the user hovers over the
control with the mouse.

Organize data

TREEVIEW represents a hierarchical view of information where each item may have a number of
subitems. Items (nodes) in the tree view can be expanded or collapsed to show or hide subitems. For
example,

Root 1
SubItem A
SubItem A1l
SubItem A2
SubItem B
Root 2
SubItem C

The parent—child relationship data are stored in a content list. Each item in the list represents a
node of the tree. The string labeling each item contains two parts. The first part encloses a nonnegative
integer in square brackets to denote the level or depth of each node. The second part following the
square brackets is the content shown in the tree.

Example

LIST ourcontentlist
BEGIN
[0]JRoot 1
[1]SubItem A
[2]SubItem A1
[2]SubItem A2
[1]SubItem B
[0]Root 2
[1]SubItem C

END
DIALOG .
BEGIN
TEXT ourlab 10 10 200 ., label("Pick an item")
TREEVIEW ourtree @ +20 150 200, contents(ourcontentlist)
END

3.7 OK, SUBMIT, CANCEL, and COPY u-action buttons

Syntax
{ OK | SUBMIT | COPY } newbuttonname [, label("string") uaction(programname)

target (target)]

CANCEL newbuttonname [, label(”string")]

Dialog programming — Dialog programming 129

Description

0K, CANCEL, SUBMIT, and COPY define buttons that, when clicked on, invoke a u-action. At least
one of the buttons should be defined (or the dialog will have no associated u-action); only one of
each button may be defined; and usually, good style dictates defining all four.

OK executes programname, removes the dialog box from the screen, and submits the resulting
command produced by programname to target. If no other buttons are defined, clicking on the close
icon of the dialog box does the same thing.

SUBMIT executes programname, leaves the dialog box on the screen, and submits the resulting
command produced by programname to target.

CANCEL removes the dialog from the screen and does nothing. If this button is defined, clicking
on the close icon of the dialog box does the same thing.

COPY executes programname, leaves the dialog box on the screen, and copies the resulting command
produced by programname to target. By default, the target is the clipboard.

You do not specify the location or size of these controls. They will be placed in the dialog box
where the user would expect to see them.

Options

label("string") defines the text to appear on the button. The default 1abel() is OK, Submit, and
Cancel for each individual button.

uaction(programname) specifies the PROGRAM to be executed. uaction(command) is the default.

target (farget) defines what is to be done with the resulting string (command) produced by
programname. The alternatives are

target (stata): The command is to be executed by Stata. This is the default.

target (stata hidden): The command is to be executed by Stata, but the command itself is not to
appear in the Results window. The output from the command will appear normally. This option
may change in the future and should be avoided when possible.

target (cmdwin): The command is to be placed in the Command window so that the user can
edit it and then press Enter to submit it.

target (clipboard): The command is to be placed on the clipboard so that the user can paste it
into the desired editor.

Example

0K ok1

CANCEL canil
SUBMIT subl
COPY copyl

3.8 HELP and RESET helper buttons

Syntax

HELP newbuttonname [, view(“viewertopic”)]

RESET newbuttonname

130 Dialog programming — Dialog programming

Description

HELP defines a button that, when clicked on, presents viewertopic in the Viewer. viewertopic is
typically specified as "view helpfile".

RESET defines a button that, when clicked on, resets the values of the controls in the dialog box to
their initial state, just as if the dialog box were invoked for the first time. Each time a user invokes
a dialog box, its controls will be filled in with the values the user last entered. RESET restores the
control values to their defaults.

You do not specify the location, size, or appearance of these controls. They will be placed in the
lower-left corner of the dialog box. The HELP button will have a question mark on it, and the RESET
button will have an R on it.

Option

view("viewertopic") specifies the topic to appear in the Viewer when the user clicks on the button.
The default is view("help contents").

Example

HELP hlpl, view("help mycommand")
RESET resl

3.9 Special dialog directives

Syntax
{ MODAL | SYNCHRONOUS_ONLY }

Description
MODAL instructs the dialog to have modal behavior.

SYNCHRONQUS_ONLY allows the dialog to invoke stata hidden immediate at special times during
the initialization process. See 5.5.1 stata for more information on this topic.

4. SCRIPT
Syntax
SCRIPT newscriptname
BEGIN
iaction
END

where iaction is

action memberfunction

gaction dialogname . controlname .memberfunction

Dialog programming — Dialog programming 131

dialogname . controlname . memberfunction
script scriptname
view topic

program programname

See 2.5 I-actions and member functions for more information on iactions.

Description

SCRIPT defines the newscriptname, which in turn defines a compound i-action. I-actions are
invoked by the on *() options of the input controls. When a script is invoked, the lines are executed
sequentially, and any errors are ignored.

Remarks

CHECKBOX provides onclickon (iaction) and onclickoff (iaction) options. Let’s focus on the
onclickon (iaction) option. If you wanted to take just one action when the box was checked—say,
disabling d1.s2—you could code

CHECKBOX . . . , . . . onclickon(dl.s2.disable)

If you wanted to take two actions, say, disabling d1.s3 as well, you would have to use a SCRIPT.
On the CHECKBOX command, you would code

CHECKBOX . . . , . . . onclickon(script buttonsoff)

and then somewhere else in the .d1lg file (it does not matter where), you would code

SCRIPT buttonsoff
BEGIN
dl.s2.disable
dl.s3.disable
END

5. PROGRAM

Syntax

PROGRAM programname
BEGIN
[program_line | INCLUDE]

]

END

Description

PROGRAM defines a dialog program. Dialog programs are used to describe complicated i-actions
and to implement u-actions.

132 Dialog programming — Dialog programming

Remarks

Dialog programs are used to describe complicated i-actions when flow control (if/then) is necessary
or when you wish to create heavyweight i-actions that are like u-actions because they invoke Stata
commands; otherwise, you should use a SCRIPT. Used this way, programs are invoked when the
specified iaction is program programname in an on*() option of an input control command; for
instance, you could code

CHECKBOX . , . . . onclickon(program complicated)

or use a SCRIPT:

CHECKBOX . . . , . . . onclickon(script multi)

SCRIPT multi
BEGIN

program complicated
END

The primary use of dialog programs, however, is to implement u-actions. The program constructs
and returns a string, which the dialog-box manager will then interpret as a Stata command. The
program is invoked by the uaction() options of OK and SUBMIT; for instance,

0K ..., . . . uaction(program command)

The u-action program is nearly always named command because, if the uaction() option is not
specified, command is assumed. The u-action program may, however, be named as you please.

Here is an example of a dialog program being used to implement an i-action with if/then flow
control:

PROGRAM testprog
BEGIN
if sample.cbl & sample.cb2 {
call sample.txtl.disable
}
if !(sample.cbl & sample.cb2) {
call sample.txtl.enable

3
END

Here is an example of a dialog program being used to implement the u-action:

PROGRAM command
BEGIN
put "mycmd "
varlist main.vars // varlist [main.vars] would make optional
ifexp main.if
inrange main.obsl main.obs2
beginoptions
option options.detail
optionarg options.title
endoptions
END

Using programs to implement heavyweight i-actions is much like implementing u-actions, except
the program might not be a function of the input controls, and you must explicitly code the stata
command to execute what is constructed. Here is an example of a dialog program being used to
implement a heavyweight i-action:

Dialog programming — Dialog programming 133

PROGRAM heavyweight
BEGIN
put "myeditcmd, resume"
stata
END

5.1 Concepts

5.1.1 Vnames

Vname stands for value name and refers to the “value” of a control. Vnames are of the form
dialogname.controlname; for example, d2.s2 and d2.1list would be vnames if input controls s2
and 1list were defined in DIALOG d2:

DIALOG d2 .
BEGIN

CHECKBOX s2 .
EDIT list .

END

A vname can be numeric or string depending on the control to which it corresponds. For CHECKBOX,
it was documented under “Returned value for use in PROGRAM” that CHECKBOX “returns numeric, O
or 1, depending on whether box is checked”, so d2.s2 is a numeric. For the EDIT input control, it
was documented that EDIT returns a string representing the contents of the edit field, so d2.1ist is
a string.

Different words are sometimes used to describe whether vname is numeric or string, including
vname is numeric

vrame is string

vname is a numeric control

vhame is a string control

vname returns a numeric result

vhame returns a string result

In a program, you may not assign values to vnames; you may only examine their values and, for
u-action (and heavyweight i-action) programs, output them. Thus dialog programs are pretty relaxed
about types. You can ask whether d2.s2 is true or d2.1ist is true, even though d2.1ist is a string.
For a string, it is true if it is not "". Numeric vnames are true if the numeric result is not 0.

5.1.2 Enames
Enames are an extension of vnames. An ename is defined as

vname
or (vname vname . . . vname)
radio(dialogname controlname . . . controlname)

134 Dialog programming — Dialog programming

or () returns the vname of the first in the list that is true (filled in). For instance, the varlist u-
action dialog-programming command “outputs” a varlist (see 5.1.3 rstrings: cmdstring and optstring).
If you knew that the varlist was in either control d1.field1 or d1.field2 and knew that both could
not be filled in, you might code

varlist or(dl.fieldl dil.field2)

which would have the same effect as

if d1.fieldl {
varlist dl.fieldl

}

if (!dl.fieldl) & d2.field2 {
varlist d2.field2

}

radio() is for dealing with radio buttons. Remember that each radio button is a separate control,
and yet, in the set, we know that exactly one is clicked on. radio finds the clicked one. Typing

option radio(dl bl b2 b3 b4)

would be equivalent to typing

option or(dl.bl di.b2 di1.b3 di1.b4)

which would be equivalent to typing

option di1.b2

assuming that the second radio button is selected. (The option command outputs the option corre-
sponding to a control.)

5.1.3 rstrings: cmdstring and optstring

Rstrings, cmdstring and optstring, are relevant only in u-action and heavyweight i-action
programs.

The purpose of a u-action program is to build and return a string, which Stata will ultimately
execute. To do that, dialog programs have an rstring to which the dialog-programming commands
implicitly contribute. For example,

put "kappa"

would add “kappa” (without the quotes) to the end of the rstring currently under construction, known as
the current rstring. Usually, the current rstring is cmdstring, but within a beginoptions/endoptions
block, the current rstring is switched to optstring;:
beginoptions
put "kappa"
endoptions

The above would add “kappa” (without the quotes) to optstring.

When the program concludes, the cmdstring and the optstring are put together—separated by
a comma—and that is the command Stata will execute. In any case, any command that can be used
outside beginoptions/endoptions can be used inside them, and the only difference is the rstring
to which the output is directed. Thus if our entire u-action program read

Dialog programming — Dialog programming 135

PROGRAM command
BEGIN
put "kappa"
beginoptions
put "kappa"
endoptions
END

the result would be to execute the command “kappa, kappa”.

The difference between a u-action program and a heavyweight i-action program is that you must,
in your program, specify that the constructed command be executed. You do this with the stata
command. The stata command can also be used in u-action programs if you wish to execute more
than one Stata command:

PROGRAM command

BEGIN
put, efc. // construct first command
stata // execute first command
clear // clear cmdstring and optstring
put, efc. // construct second command
// execution will be automatic
END

5.1.4 Adding to an rstring

When adding to an rstring, be aware of some rules in using spaces. Call A the rstring and B the
string being added (say ‘“kappa”). The following rules apply:

1. If A does not end in a space and B does not begin with a space, the two strings are joined
to form “AB”. If A is “this” and B is “that”, the result is “thisthat”.

2. If A ends in one or more spaces and B does not begin with a space, the spaces at the end
of A are removed, one space is added, and B is joined to form “rightstrip(A) B”. If A is
“this ” and B is “that”, the result is “this that”.

3. If A does not end in a space and B begins with one or more spaces, the spaces at the
beginning of B are ignored and treated as if there is one space, and the two strings are
joined to form “A leftstrip(B)”. If A is “this” and B is “ that”, the result is “this that”.

4. If A ends in one or more spaces and B begins with one or more spaces, the spaces at the
end of A are removed, the spaces at the beginning of B are ignored, and the two strings are
joined with one space in between to form “rightstrip(A) leftstrip(B)”. If A is “this ” and B
is “ that”, the result is “this that”.

These rules ensure that multiple spaces do not end up in the resulting string so that the string will
look better and more like what a user might have typed.
When string literals are put, they are nearly always put with a trailing space

put "kappa

to ensure that they do not join up with whatever is put next. If what is put next has a leading space,
that space will be ignored.

136 Dialog programming — Dialog programming

5.2 Flow-control commands

5.2.1 if

Syntax
if ifexp {
) e

or
if ifexp {

}
else {

}

where ifexp may be

ifexp Meaning

(ifexp) order of evaluation

Vifexp logical not

ifexp | ifexp logical or

ifexp & ifexp logical and

vname true if vname is not 0 and not ""
vname.booleanfunction true if vname.booleanfunction evaluates to true
_rc see 5.5 Command-execution commands
_stbusy true if Stata is busy

H(vname) true if vname is hidden or disabled
default (vname) true if vname is its default value

Note the recursive definition: An ifexp may be substituted into itself to produce more complicated
expressions, such as ((!d1.s1) & d1.s2) | d1.s3.isdefault().

Dialog programming — Dialog programming 137

Also note that the order of evaluation is left to right; use parentheses.

booleanfunction Meaning

isdefault() true if the value of vaname is its default value

isenabled() true if vname is enabled

isnumlist () true if the value of vrname is a numlist

isvisible() true if vname is visible

isvalidname () true if the value of vname is a valid Stata name

isvarname () true if the value of vname is the name of a variable in the

current dataset

iseq(argument) true if the value of vrname is equal to argument

isneq (argument) true if the value of vrname is not equal to argument

isgt (argument) true if the value of vname is greater than argument

isge (argument) true if the value of vname is greater than or equal to argument

islt (argument) true if the value of vrname is less than argument

isle (argument) true if the value of vname is less than or equal to argument

isNumlistEQ(argument) true if every value of vname is equal to argument, where
vname may be a numlist

isNumlistLT (argument) true if every value of vname is less than argument, where
vname may be a numlist

isNumlistLE (argument) true if every value of vname is less than or equal to argument,
where vname may be a numlist

isNumlistGT (argument) true if every value of vname is greater than argument, where
vname may be a numlist

isNumlistGE (argument) true if every value of vname is greater than or equal to argument,

where vname may be a numlist

isNumlistInRange(arg;,args) true if every value of vname is in between arg; and args inclusive,
where vname may be a numlist

startswith(argument) true if the value of vname starts with argument
endswith (argument) true if the value of vname ends with argument
contains (argument) true if the value of vname contains argument

iseqignorecase (argument) true if the value of vname is equal to argument ignoring case

An argument can be a dialog control, a dialog property, or a literal. If the argument is a literal it can
be either string or numeric, depending on the type of control the booleanfunction references. String
controls require that literals be quoted, and numeric controls require that literals not be quoted.

Description

if executes the code inside the braces if ifexp evaluates to true and skips it otherwise. When an
else has been specified, the code within its braces will be executed if ifexp evaluates to false. if
commands may be nested.

Example

if di.vl.isvisible() {
put "thing=" di.vil
}
else {
put "thing=" di.v2
}

138 Dialog programming — Dialog programming

5.2.2 while

Syntax

while condition {

}

where condition may be

condition Meaning
(condition) order of evaluation
! condition logical not
condition | condition logical or
condition & condition logical and
Description

A while loop is for circumstances where you want to do the same thing repeatedly. It is controlled
by a counter. For a while loop to execute correctly, you must do the following:

1. Initialize a start value for the counter before the loop.

2. Specify a condition that tests the value of the counter against its expected final value such
that the logical condition evaluates to false and the loop is forced to end at some point.

3. Specify a command that modifies the value of the counter inside the loop.

Example

PROGRAM testprog
call create DOUBLE i
call create ARRAY testlist
while(i.is1t(10)) {
call i.withvalue testlist.Arrpush @
call i.increment

END

Dialog programming — Dialog programming 139

5.2.3 call

Syntax

call iaction

where iaction is

action memberfunction

gaction dialogname.controlname . memberfunction
dialogname . controlname . memberfunction

script scriptname

view topic

program programname

iaction “action memberfunctionname” is invalid in u-action programs because there is no concept
of a current control.

Description

call executes the specified iaction. If an iaction is not specified, gaction is assumed.

Example
PROGRAM testprog
BEGIN
if sample.cbl & sample.cb2 {
call gaction sample.txtl.disable
}
if !(sample.cbl & sample.cb2) {
call gaction sample.txtl.enable
}
END
5.2.4 exit
Syntax
exit [#}

where # > 0. The following exit codes have special meaning:

Definition
0 exit without error
>0 exit with error

101 program exited because of a missing required object

140 Dialog programming — Dialog programming

Description

exit causes the program to exit and, optionally, to return #.

3

exit without an argument is equivalent to
optstring will be sent to Stata for execution.

‘exit 0”. In u-action programs, the cmdstring,

exit #, # > 0, indicates an error. In u-action programs, the cmdstring, optstring will not
be executed. exit 101 has special meaning. When a u-action program exits, Stata checks the exit
code for that program and, if it is 101, presents an error box stating that the user forgot to fill in a
required element of the dialog box.

Example
if !sample.varl {
exit 101
}
5.2.5 close
Syntax
close
Description

close causes the dialog box to close.

5.3 Error-checking and presentation commands

5.3.1 require

Syntax
require ename [ename [. H

where each ename must be string.

Description
require does nothing on each ename that is disabled or hidden.

For other enames, require requires that the controls specified not be empty ("") and produces
a stop-box error message such as “dependent variable must be defined” for any that are empty. The
“dependent variable” part of the message will be obtained from the control’s error () option or, if
that was not specified, from the control’s 1abel() option; if that was not specified, a generic error
message will be displayed.

Example

require main.grpvar

Dialog programming — Dialog programming 141

5.3.2 stopbox

Syntax
stopbox {stop|note|rusure} ["linel" ["line2" ["line3" ["line4"|]]]

Description
stopbox displays a message box containing up to four lines of text. Three types are available:

stop: Displays a message box in which there is only one button, OK, which means that the
user must accept that he or she made an error and correct it. The program will exit
after stopbox stop.

note: Displays a message box in which there is only one button, OK, which confirms that the
user has read the message. The program will continue after stopbox note.

rusure: Displays a message box in which there are two buttons, Yes and No. The program will
continue if the user clicks on Yes or exit if the user clicks on No.

Also see [P] window stopbox for more information.

Example

stopbox stop "Nothing has been selected"

5.4 Command-construction commands

The command-construction commands are
by
bysort
put
varlist
ifexp
inrange
weight
beginoptions/option/optionarg/endoptions
allowxi/xi
clear

Most correspond to the part of Stata syntax for which they are named:

by varlist: cmd\wﬂmt[#} Pn][wwmhd[, qnwnﬂ

put corresponds to cmd (although it is useful for other things as well), and allowxi/xi corresponds
to putting xi: in front of the entire command; see [R] xi.

The command-construction commands (with the exception of xi) build cmdstring and optstring
in the order the commands are executed (see 5.1.3 rstrings: cmdstring and optstring), so you should
issue them in the same order they are used in Stata syntax.

142 Dialog programming — Dialog programming

Added to the syntax diagrams that follow is a new header:
Use of option() communication.

This refers to the option() option on the input control definition, such as CHECKBOX and EDIT;
see 2.6 U-actions and communication options.

5.4.1 by

Syntax
by ename
where ename must contain a string and should refer to a VARNAME, VARLIST, or EDIT control.

Use of option() communication: None.

Description

by adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, by outputs
“by varlist:”, followed by a blank, obtaining a varlist from ename.

Example
by d2.by

5.4.2 bysort

Syntax
bysort ename

where ename must contain a string and should probably refer to a VARNAME, VARLIST, or EDIT
control.

Use of option() communication: None.

Description

bysort adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise,
bysort outputs “by varlist, sort :”, followed by a blank, obtaining a varlist from ename.
Example

bysort d2.by

Dialog programming — Dialog programming 143

5.4.3 put

Syntax
put [%fmt} putel [[%ﬁm] putel [H

where putel may be
wn
"string"
vhame
/hidden vname
/on vname

/program programname

The word “output” means “add to the current result” in what follows. The put directives are
defined as

"" and "string"
Outputs the fixed text specified.

vname
Outputs the value of the control.

/hidden vname
Outputs the value of the control, even if it is hidden or disabled.

/on vname
Outputs nothing if vname==0. vname must be numeric and should be the result of a CHECKBOX or
RADIO control. /on outputs the text from the control’s option() option. Also see 5.4.8.1 option
for an alternative using the option command.

/program programname
Outputs the cmdstring, optstring returned by programname.

If any vname is disabled or hidden and not preceded by /hidden, put outputs nothing.

If the directive is preceded by Y% fint, the specified % fint is always used to format the result.
Otherwise, string results are displayed as is, and numeric results are displayed in %10.0g format and
stripped of resulting leading and trailing blanks. See [D] format.

Use of option() communication: See /on above.

Description

put adds to the current rstring (outputs) what is specified.

Remarks

put "string" is often used to add the Stata command to the current rstring. When used in that
way, the right way to code is

put "commandname "
Note the trailing blank on commandname; see 5.1.4 Adding to an rstring.

put displays nothing if any element specified is hidden or disabled. For instance,

put "thing=" di.vl

144 Dialog programming — Dialog programming

will output nothing (not even "thing=") if d1.v1 is hidden or disabled. This saves you from having
to code

if 'H(d1.v1) {
put "thing=" di.vil
}

5.4.4 varlist

Syntax
varlist el [el []]
where an el is ename or [ename] (brackets significant).
Each ename must be string and should be the result from a VARLIST, VARNAME, or EDIT control.
If ename is not enclosed in brackets, it must not be hidden or disabled.

Use of option() communication: None.

Description

varlist considers it an error if any of the specified enames that are not enclosed in brackets are
hidden or disabled or empty (contain "").

In these cases, varlist displays a stop-message box indicating that the varlist must be filled in and
exits the program.

varlist adds nothing to the current rstring if any of the specified enames that are enclosed in
brackets are hidden or disabled.

Otherwise, varlist outputs with leading and trailing blanks the contents of each ename that is
not hidden, is not disabled, and does not contain "".

Remarks

varlist is most often used to output the varlist of a Stata command, such as

varlist main.depvar [main .indepvars]

varlist can also be used for other purposes. You might code

if di.vl {
put " exog("
varlist d2.v1
pllt u) n

¥

although coding

optionarg d2.vl

would be an easier way to achieve the same effect.

Dialog programming — Dialog programming 145

5.4.5 ifexp

Syntax

ifexp ename

where ename must be a string control.

Use of option() communication: None.

Description

ifexp adds nothing to the current rstring if ename is hidden, disabled, or empty. Otherwise, output
is “if exp”, with spaces added before and after.

Example
if d2.if

5.4.6 inrange

Syntax
inrange ename_I ename_2
where ename_I and ename_2 must be numeric controls.

Use of option() communication: None.

Description

If ename_1 is hidden or disabled, results are as if ename_1 were not hidden and contained 1.
If ename_2 is hidden or disabled, results are as if ename_1 were not hidden and contained _N, the
number of observations in the dataset.

If ename_I1==1 and ename_2==_N, nothing is output (added to the current rstring).

Otherwise, “in range” is output with spaces added before and after, with the range obtained from
ename_1 and ename_2.

Example

inrange d2.inl d2.in2

5.4.7 weight

Syntax
weight ename_t ename_e

where ename_t may be a string or numeric control and must have had option() filled in with a
weight type (one of weight, fweight, aweight, pweight, or iweight), and ename_e must be a
string evaluating to the weight expression or variable name.

Use of option() communication: ename_t must have option() filled in the weight type.

146 Dialog programming — Dialog programming

Description

weight adds nothing to the current rstring if ename_t or ename_e are hidden, disabled, or empty.
Otherwise, output is [weighttype=exp] with leading and trailing blanks.

Remarks
weight is typically used as

weight radio(dl wl w2 . . . wk) dl.wexp
where d1.wl, d1.w2, . . ., d1.wk are radio buttons, which could be defined as
DIALOG 41 .
BEGIN
RADIO wil . . s . label(fweight) first .
RADIO w2 . . , . label(aweight) .
RADIO w3 . . s . label(pweight) .
RADIO w4 . . s . label(iweight) last .

END
Not all weight types need to be offered. If a command offers only one kind of weight, you do not
need to use radio buttons. You could code

weight di.wt dl.wexp

where d1.wt was defined as
CHECKBOX wt . . . , . . . label(fweight) .

5.4.8 beginoptions and endoptions

Syntax

beginoptions
any dialog-programming command except beginoptions

endoptions

Use of option() communication: None.

Description

beginoptions/endoptions indicates that you wish what is enclosed to be treated as Stata options
in constructing cmdstring, optstring.

The current rstring is, by default, cmdstring. beginoptions changes the current rstring to
optstring. endoptions changes it back to cmdstring. So there are two strings being built. When
the dialog program exits normally, if there is anything in optstring, trailing spaces are removed
from cmdstring, a comma and a space are added, the contents of optstring are added, and all
that is returned. Thus a dialog program can have many beginoptions/endoptions blocks, but all
the options will appear at the end of the cmdstring.

The command-construction commands option and optionarg are documented below because
they usually appear inside a beginoptions/endoptions block, but they can be used outside
beginoptions/endoptions blocks, too. Also all the other command-construction commands can
be used inside a beginoptions/endoptions block, and using put is particularly common.

Dialog programming — Dialog programming 147

5.4.8.1 option

Syntax
option ename [ename [. H

where ename must be a numeric control with 0 indicating that the option is not desired.

Use of option() communication: option() specifies the name of the option.

Description

option adds nothing to the current rstring if any of the enames specified are hidden or disabled.
Otherwise, for each ename specified, if ename is not equal to 0, the contents of its option() are
displayed.

Remarks

option is an easy way to output switch options such as noconstant and detail. You simply
code

option dil.sw

where you have previously defined

CHECKBOX sw . . . , option(detail) . . .

Here detail will be output if the user checked the box.

5.4.8.2 optionarg

Syntax
optionarg [style] ename Hstyle] ename [. H

where each ename may be a numeric or string control and style is

style Meaning

/asis do not quote
/quoted do quote

/oquoted quote if necessary

% fimt for use with numeric

Use of option() communication: option() specifies the name of the option.

Description

optionarg adds nothing to the current rstring if any of the enames specified are hidden or disabled.
Otherwise, for each ename specified, if ename is not equal to "", the ename’s option() is output,
followed by “(”, the ename’s contents, and “)” with blanks added before and after.

148 Dialog programming — Dialog programming

Remarks

optionarg is an easy way to output single-argument options such as title() or level(); for
example,

optionarg /oquoted dil.ttl

if ! dil.level.isdefault() {
optionarg dil.level
}

where you have previously defined

EDIT ttl . . ., . . . label(title)
SPINNER level . . . , . . . label(level)

5.5 Command-execution commands

Commands are executed automatically when a program is invoked by an input control’s uaction()
option. Programs so invoked are called u-action programs. No command is executed when a program
is invoked by an input control’s iaction() option. Programs so invoked are called i-action programs.

The stata and clear commands are for use if
1. you want to write a u-action program that executes more than one Stata command, or

2. you want to write an i-action program that executes one or more Stata commands (also
known as heavyweight i-action programs).

5.5.1 stata

Syntax

stata
stata hidden |immediate|queue]

Use of option() communication: None.

Description

stata executes the current cmdstring, optstring and displays the command in the Results
window before execution, just as if the user had typed it.

stata hidden executes the current cmdstring, optstring but does not display the command
in the Results window before execution. stata hidden may optionally be called with either of two
modifiers: queue or immediate. If neither modifier is specified, immediate is implied.

immediate causes the command to execute at once, waits for the command to finish, and sets _rc
to contain the return code. Because the command is to be executed immediately, the dialog engine
will complain if Stata is not idle.

queue causes the command to be placed into the command buffer, allowing it to be executed as
soon as Stata becomes idle. The behavior of stata and stata hidden queue are identical except
that stata hidden queue does not echo the command.

Dialog programming — Dialog programming 149

Important notes about stata hidden immediate

A unique situation can occur when stata hidden immediate is used in an initialization script or
program. Stata dialogs are considered asynchronous, meaning that Stata dialogs can be loaded through
the menu and help systems even when Stata is busy processing an ado program. Because stata
hidden immediate relies on ado processing and because ado processing is synchronous, dialogs that
call stata hidden immediate during initialization can only be used synchronously. That means
these types of dialogs cannot be loaded while Stata is busy processing other tasks. Because of this,
the dialog must be notified that it is special in this regard. This is done by placing the dialog directive
SYNCHRONOUS_ONLY in the dialog box program just after the VERSION statement.

SYNCHRONQUS_ONLY performs one other important function. Dialogs that are launched by using
the db command cause Stata to become busy and remain busy until the dialog is completely loaded.
After all, db is an ado program, and until the dialog loads and db subsequently exits execution, Stata
is busy. The SYNCHRONOUS_ONLY directive lets the dialog engine know that executing stata hidden
immediate during initialization routines is allowed even when the dialog is launched with an ado
program.

5.5.2 clear

Syntax

clear [curstring| cmdstring | optstring]

Use of option() communication: None.

Description

clear is seldom used and is typically specified without arguments. clear clears (resets to "")
the specified return string or, if it is specified without arguments, clears cmdstring and optstring.
If curstring is specified, clear clears the current return string, which is cmdstring by default or
optstring within a beginoptions/endoptions block.

5.6 Special scripts and programs

Sometimes, it may be useful to have a script or program run automatically, either just before
dialog-box controls are created or just after. The following scripts and programs are special, and when
they are defined, they run automatically.

Name Function

PREINIT_SCRIPT script that runs before any dialog box controls are created
PREINIT_PROGRAM program that runs before any dialog box controls are created
POSTINIT_SCRIPT script that runs after all dialog box controls are created
POSTINIT_PROGRAM program that runs after all dialog box controls are created
PREINIT shortcut for PREINIT_SCRIPT

POSTINIT shortcut for POSTINIT_SCRIPT

ON_DOTPROMPT program that runs when Stata returns from executing an

interactive command; ON_DOTPROMPT program should
never call the dialog system’s stata command, because that
would result in infinite recursion

150 Dialog programming — Dialog programming

Often it is desirable to encapsulate individual dialog tabs into .idlg files, particularly when a
dialog tab is used in many different dialog boxes. In those circumstances, a dialog tab can use its own
initialization script or program. The following naming conventions are used to define these scripts
and programs.

Name Function

tabname_PREINIT_SCRIPT
tabname_PREINIT_PROGRAM

script that runs before controls on dialog tabname are created
program that runs before controls on dialog tabname are created

tabname_POSTINIT_SCRIPT
tabname_POSTINIT_PROGRAM

script that runs after controls on dialog fabname are created
program that runs after controls on dialog tabname are created

shortcut for rabname_PREINIT_SCRIPT
shortcut for rabname_POSTINIT_SCRIPT

tabname_PREINIT
tabname_POSTINIT

The order of execution for dialog initialization is as follows:
1. Execute PREINIT script or program for the dialog box.

2. Execute PREINIT scripts and programs for each dialog tab using the order in which the tabs

are created.
3. Create all controls for the entire dialog box.

Execute POSTINIT scripts and programs for each dialog tab using the order in which the
tabs are created.

5. Execute POSTINIT script or program for the dialog box.

6. Properties

Properties are used to store information that is useful for dialog box programming. Properties may
be of type STRING, DOUBLE, or BOOLEAN and do not have a visual representation on the dialog box.
Special variants of these basic types are available. These variants, PSTRING, PDOUBLE, and PBOOLEAN,
are considered persistent and are identical to their counterparts. The contents of these persistent types
do not get destroyed when a dialog is reset. Usually, the base types should be used. Application of
the persistent types should be reserved for special circumstances. See create for information about
creating new instances of a property.

Member functions

STRING

DOUBLE

propertyname .
propertyname .
propertyname .
propertyname .
propertyname .
propertyname .
propertyname .
propertyname .
propertyname .

propertyname .
propertyname .

setvalue strvalue

setstring strvalue; synonym for .setvalue
append strvalue

tokenize classArrayName

tokenizeOnStr classArrayName strvalue
tokenizeOnChars classArrayName strvalue
expandNumlist

storeDialogClassName
storeClsArrayToQuotedStr classArrayName

setvalue value
increment

Dialog programming — Dialog programming 151

propertyname .decrement

propertyname .add value

propertyname . subtract value

propertyname .multiply value

propertyname .divide value

propertyname . storeClsArraySize classArrayName

BOOLEAN propertyname . settrue
propertyname .setfalse
propertyname . storeCls0bjectExists objectName

Special definitions

strvalue Definition

"string" quoted string literal

literal string same as string

c (name) contents of c(name); see [P] creturn

r (name) contents of r(name); see [P] return

e (name) contents of e (name); see [P] ereturn

s (name) contents of s (name); see [P] return

char varname [charname] value of characteristic; see [P] char

global name contents of global macro $name

class objectName contents of a class system object; object name may be a

fully qualified object name, or it may be given in the scope of
the dialog box

value Definition

a numeric literal

literal # same as #

c (name) value of c(name); see [P] creturn

r (name) value of r(name); see [P] return

e (name) value of e (name); see [P] ereturn

s (name) value of s(name); see [P] return

global name value of global macro $name

class objectName contents of a class system object. The object name may be a

fully qualified object name or it may be given in the scope of
the dialog box.

7. Child dialogs

Syntax

create CHILD dialogname [AS referenceName] [, nomodal allowsubmit

allowcopy message (string)]

152 Dialog programming — Dialog programming

Member functions
settitle string sets the title text of the child dialog box

setExitString string informs the child where to save the command string when the OK or
Submit button is clicked on

setOkAction string informs the child that it is to invoke a specific action in the parent
when the 0K button is clicked on and the child exits

setSubmitAction string informs the child that it is to invoke a specific action in the parent
when the Submit button is clicked on

setExitAction string informs the child that it is to invoke a specific action in the parent when
the OK or Submit button is clicked on; note that setExitAction has
the same effect as calling both setOkAction and setSubmitAction
with the same argument

create property allows the parent to create properties in the child; see 6. Properties
callthru gaction allows the parent to call global actions in the context of the child
Description

Child dialogs are dialogs that are spawned by another dialog. These dialogs form a relationship
where the initial dialog is referred to as the parent and all dialogs spawned from that parent are
referred to as its children. In most circumstances, the children collect information and return that
information to the parent for later use. Unless AS referencename has been specified, children are
referenced through the dialogname.

Options
nomodal suppresses the default modal behavior of a child dialog unless the MODAL directive was
specifically used inside the child dialog resource file.

allowsubmit allows for the use of the Submit button on the dialog box. By default, the Submit
button is removed if it has been declared in the child dialog resource file.

allowcopy allows for the use of the Copy button on the dialog box. By default, the Copy button is
removed if it has been declared in the child dialog resource file.

message (string) specifies that string be passed to the child dialog box, where it can be referenced
from STRING property named —_MESSAGE.

7.1 Referencing the parent

While it is normally not necessary, it is sometimes useful for a child dialog box to give special
instructions or information to its parent. All child dialog boxes contain a special object named PARENT,
which can be used with a member program named callthru. PARENT.callthru can be used to
call any intermediate action in the context of the parent dialog box.

Dialog programming — Dialog programming 153

8. Example

The following example will execute the summarize command. In addition to the copy below, a
copy can be found among the Stata distribution materials. You can type

. which sumexample.dlg

to find out where it is.

sumexample.dlg
// sumexample
// version 1.0.0

VERSION 18.0

POSITION . . 320 200
DIALOG main, title("Example simple summarize dialog") tabtitle("Main")
BEGIN
TEXT lab 10 10 300 ., label("Variables to summarize:")
VARLIST vars @ +20 Q@ ., label("Variables to sum")
END
DIALOG options, tabtitle("Options")
BEGIN
CHECKBOX detail 10 10 300 . 11/

label("Show detailed statistics") ///

option("detail"™) ///

onclickoff(‘"options.status.setlabel "(detail is off)""’) ///
onclickon(‘"gaction options.status.setlabel "(detail is on)""’)

TEXT status @ +20 d - 11/

label("This label won’t be seen")
BUTTON btnhide @ +30 200 - 11/

label("Hide other controls") push("script hidethem")
BUTTON btnshow @ +30 @ 11/

label("Show other controls") push("script showthem")
BUTTON btngrey @ +30 e . 11/

label("Disable other controls") push("script disablethem")
BUTTON btnnorm @ +30 d - 11/

label("Enable other controls") push("script enablethem")
END

SCRIPT hidethem

BEGIN
gaction main.lab.hide
main.vars.hide
options.detail.hide
options.status.hide

END

SCRIPT showthem

BEGIN
main.lab.show
main.vars.show
options.detail.show
options.status.show

END

SCRIPT disablethem

BEGIN
main.lab.disable
main.vars.disable
options.detail.disable
options.status.disable

END

154 Dialog programming — Dialog programming

SCRIPT enablethem

BEGIN
main.lab.enable
main.vars.enable
options.detail.enable
options.status.enable

END
0K ok1l, label("Ok")
CANCEL canil

SUBMIT subl
HELP hlpl, view("help summarize")

RESET resl
PROGRAM command
BEGIN

put "summarize"
varlist main.vars /* varlist [main.vars] to make it optional */
beginoptions
option options.detail
endoptions
END

sumexample.dlg

Appendix A: Jargon

action: See i-action and u-action.
browser: See file chooser.

button: A type of input control; a button causes an i-action to occur when it is clicked on. Also see
u-action buttons, helper buttons, and radio buttons.

checkbox: A type of numeric input control; the user may either check or uncheck what is presented;
suitable for obtaining yes/no responses. A checkbox has value O or 1, depending on whether the
item is checked.

combo box: A type of string input control that has an edit field at the top and a list box underneath.
Combo boxes come in three types:

A regular combo box has an edit field and a list below it. The user may choose from the list or
type into the edit field.

A drop-down combo box also has an edit field and a list, but only the edit field shows. The user
can click to expose the list. The user may choose from the list or type in the edit field.

A drop-down-list combo box is more like a list box. An edit field is displayed. The list is hidden,
and the user can click to expose the list, but the user can only choose elements from the list; he
or she cannot type in the edit field.

control: See input control and static control.
control status: Whether a control (input or static) is disabled or enabled, hidden or shown.

dialog(s): The main components of a dialog box in that the dialogs contain all the controls except
for the u-action buttons.

dialog box: Something that pops up onto the screen that the user fills in; when the user clicks on an
action button, the dialog box causes something to happen (namely, Stata to execute a command).

A dialog box is made up of one or more dialogs, u-action buttons, and a title bar.

Dialog programming — Dialog programming 155

If the dialog box contains more than one dialog, only one of the dialogs shows at a time, which
one being determined by the tab selected.

dialog program: See PROGRAM.

disabled and enabled: A control that is disabled is visually grayed out; otherwise, it is enabled. The
user cannot modify disabled input controls. Also see hidden and exposed.

.dlg file: The file containing the code defining a dialog box and its actions. If the file is named
xyz.dlg, the dialog box is said to be named xyz.

dlg-program: The entire contents of a .d1lg file; the code defining a dialog box and its actions.
edit field: A type of string input control; a box in which the user may type text.

enabled and disabled: See disabled and enabled.

exposed and hidden: See hidden and exposed.

file browser: See file chooser.

file chooser: A type of string input control; presents a list of files from which the user may choose
one or type a filename.

frame: A type of static control; a rectangle drawn around a group of controls.

group box: A type of static control; a rectangle drawn around a group of controls with descriptive
text at the top.

helper buttons: The buttons Help and Reset. When Help is clicked on, the help topic for the dialog
box is displayed. When Reset is clicked on, the control values of the dialog box are reset to their
defaults.

hidden and exposed: A control that is removed from the screen is said to be hidden; otherwise, it is
exposed. Hidden input controls cannot be manipulated by the user. A control would also not be
shown when it is contained in a dialog that does not have its tab selected in a multidialog dialog
box; in this case, it may be invisible, but whether it is hidden or exposed is another matter. Also
see disabled and enabled.

i-action: An intermediate action usually caused by the interaction of a user with an input control,
such as hiding or showing and disabling or enabling other controls; opening the Viewer to display
something; or executing a SCRIPT or a PROGRAM.

input control: A screen element that the user fills in or sets. Controls include checkboxes, buttons,
radio buttons, edit fields, spinners, file choosers, etc. Input controls have (set) values, which can
be string, numeric, or special. These values reflect how the user has “filled in” the control. Input
controls are said to be string or numeric depending on the type of result they obtain (and how
they store it).

Also see static control.
label or title: See title or label.
list: A programming concept; a vector of elements.

list box: A type of string input control; presents a list of items from which the user may choose. A
list box has (sets) a string value.

numeric input control: An input control that returns a numeric value associated with it.

position: Where something is located, measured from the top left by how far to the right it is (x)
and how far down it is (y).

156 Dialog programming — Dialog programming

PROGRAM: A programming concept dealing with the implementation of dialogs. PROGRAMs may
be used to implement i-actions or u-actions. Also see SCRIPT.

radio buttons: A set of numeric input controls, each a button, of which only one may be selected
at a time; suitable for obtaining categorical responses. Each radio button in the set has (sets) a
numeric value, 0 or 1, depending on which button is selected. Only one in the set will be 1.

SCRIPT: A programming concept dealing with the implementation of dialogs. An array of i-actions
to be executed one after the other; errors that occur do not stop subsequent actions from being
attempted. Also see PROGRAM.

size: How large something is, measured from its top-left corner, as a width (xsize) and height (ysize).
Height is measured from the top down.

spinner: A type of numeric input control; presents a numeric value that the user may increase or
decrease over a range. A spinner has (sets) a numeric value.

static control: A screen element similar to an input control, except that the end user cannot interact
with it. Static controls include static text and lines drawn around controls visually to group them
together (group boxes and frames). Also see control and input control.

static text: A static control specifying text to be placed on a dialog.
string input control: An input control that returns a string value associated with it.

tabs: The small labels at the top of each dialog (when there is more than one dialog associated with
the dialog box) and on which the user clicks to select the dialog to be filled in.

title or label: The fixed text that appears above or on objects such as dialog boxes and buttons.
Controls are usually said to be labeled, whereas dialog boxes are said to be titled.

u-action: What a dialog box causes to happen after the user has filled it in and clicked on a u-action
(ultimate action) button. The point of a dialog box is to result in a u-action.

u-action buttons: The buttons 0K, Submit, Cancel, and Copy; clicking on one causes the ultimate
action (u-action) associated with the button to occur and, perhaps, the dialog box to close.

varlist or varname control: A type of string input control; an edit field that also accepts input from
the Variables window. This control also contains a combo-box-style list of the variables. A varlist
or varname control has (sets) a string value.

Appendix B: Class definition of dialog boxes

Dialog boxes are implemented in terms of class programming; see [P] class.

The top-level class instance of a dialog box defined in dialogbox.dlg is .dialogbox_dlg. Dialogs
and controls are nested within that, so .dialoghox_dlg.dialogname would refer to a dialog, and
.dialogbox_dlg.dialogname . controlname would refer to a control in the dialog.

.dialogbox_d1g .dialogname . controlname .value is the current value of the control, which will
be either a string or a double. You must not change this value.

The member functions of the controls are implemented as member functions of .dialog-
box_dlg.dialogname . controlname and may be called in the standard way.

Dialog programming — Dialog programming 157

Appendix C: Interface guidelines for dialog boxes

One of Stata’s strengths is its strong support for cross-platform use—datasets and programs are
completely compatible across platforms. This includes dialogs written in the dialog-programming
language. Although Mac, Windows, and X Windows share many common graphical user-interface
elements and concepts, they all vary slightly in their appearance and implementation. This variation
makes it difficult to design dialogs that look and behave the same across all platforms. Dialogs should
look pleasant on screen to enhance their usability, and achieving this goal often means being platform
specific when laying out controls. This often leads to undesirable results on other platforms.

The dialog-programming language was written with this in mind, and dialogs that appear and
behave the same across multiple operating systems and appear pleasant can be created by following
some simple guidelines.

Use default heights where applicable: Varying vertical-size requirements of controls across different
operating systems can cause a dialog that appears properly on one platform to display controls
that overlap one another on another platform. Using the default ysize of . takes these variations
into account and allows for much easier placement and alignment of controls. Some controls (list
boxes, regular combo boxes, group boxes, and frames) still require their ysize to be specified
because their vertical size determines how much information they can reveal.

Use all horizontal space available: Different platforms use different types of fonts to display text
labels and control values. These variations can cause some control labels to be truncated (or even
word wrapped) if their xsize is not large enough for a platform’s system font. To prevent this from
happening, specify an xsize that is as large as possible. For each column of controls, specify the
entire column width for each control’s xsize, even for controls where it is obviously unnecessary.
This reduces the chances of a control’s label being truncated on another platform and also allows
you to make changes to the label without constantly having to adjust the xsize. If your control
barely fits into the space allocated to it, consider making your dialog slightly larger.

Use the appropriate alignment for static text controls: The variations in system fonts also make it
difficult to horizontally align static text controls with other controls. Placing a static text control
next to an edit field may look good on one platform but show up with too much space between
the controls on another or even show up truncated.

One solution is to place static text controls above controls that have an edit field and make the
static text control as wide as possible. This gives more room for the static text control and makes
it easier to left-justify it with other controls.

When placing a static text control to the left of a control is more appropriate (such as From: and
To: edit fields), use right-alignment rather than the default left-alignment. The two controls will
then be equally spaced apart on all platforms. Again be sure to make the static text control slightly
wider than necessary—do not try to left-justify a right-aligned static text control with controls
above and below it because it may not appear left-justified on other platforms or may even be
truncated.

Do not crowd controls: Without making your dialog box unnecessarily large, use all the space that is
available. Organize related controls close together, and put some distance between unrelated ones.
Do not overload users with lots of controls in one dialog. If necessary, group controls in separate
dialogs. Most importantly, be consistent in how you layout controls.

All vertical size and spacing of controls involves multiples of 10 pixels: The default ysize for most
controls is 20 pixels. Related controls are typically spaced 10 pixels apart, and unrelated ones are
at least 20 pixels apart.

Use the appropriate control for the job: Checkboxes have two states: on or off. A radio-button
group consisting of two radio buttons similarly has two states. A checkbox is appropriate when the

158 Dialog programming — Dialog programming

action taken is either on or off or easy to infer (for example, Use constant). A two-radio-button
group is appropriate when the opposite state cannot be inferred (for example, Display graph and
Display table).

Radio-button groups should contain at least two radio buttons and no more than about seven. If
you need more choices, consider using a drop-down-list combo box or, if the number of choices is
greater than about 12, a list box. If you require a control that allows multiple selections, consider
a regular combo box or drop-down combo box. Drop-down combo boxes can be cumbersome to
use if the number of choices is great, so use a regular combo box unless space is limited.

Understand control precedence for mouse clicks: Because of the limited size of dialogs, you may
want to place several controls within the same area and hide and show them as necessary. It is also
useful to place controls within other controls, such as group boxes and frames, for organizational
and presentational purposes. However, the order of creation and placement and size of controls
can affect which controls receive mouse clicks first or whether they receive them at all.

The control where this can be problematic is the radio button. On some platforms, the space
occupied by a group of radio buttons is not the space occupied by the individual radio buttons.
It is inclusive to the space occupied by the radio button that is closest to the top-left corner of
the dialog, the widest radio button, and the bottommost radio button. To prevent a group of radio
buttons from preventing mouse clicks being received by other controls, Stata gives precedence to
all other controls except for group boxes and frames. The order of precedence for controls that
can receive mouse clicks is the following: first, all controls other than radio buttons and checkbox
group boxes, then radio buttons, then checkbox group boxes.

If you intend to place two or more groups of radio buttons in the same area and show and hide
them as necessary, be sure that when you hide the radio buttons from a group, you hide all radio
buttons from a group. The radio-button group with precedence over other groups will continue to
have precedence as long as any of its radio buttons are visible. Mouse clicks in the space occupied
by nonvisible radio buttons in a group with precedence will not pass through to any other groups
occupying the same space.

It is always safe to place controls within frames, group boxes, and checkbox group boxes because
all other controls take precedence over those controls.

In practice, you should never hide a radio button from a group without hiding the rest of the radio
buttons from the group. Consider simply disabling the radio button or buttons instead. It is also
not a good idea to hide or show radio buttons from different groups to make them appear that
they are from the same group. That simply will not work on some platforms and is generally a
bad idea, anyway.

Radio buttons have precedence over checkbox group boxes. You may place radio buttons within
a checkbox group box, but do not place a checkbox group box within the space occupied by a
group of radio buttons. If you do, you may not be able to click on the checkbox control on some
platforms.

Frequently asked questions

See dialog programming FAQs on the Stata website.

Also see
[P] window programming — Programming menus and windows
[R] db — Launch dialog

https://www.stata.com/support/faqs/lang/#dialog

Title

discard — Drop automatically loaded programs

Description Syntax Remarks and examples Also see

Description

discard drops all automatically loaded programs (see [U] 17.2 What is an ado-file?); clears
e(), r(O, and s stored results (see [P] return); eliminates information stored by the most recent
estimation command and any other saved estimation results (see [P] ereturn); closes any open graphs
and drops all sersets (see [P] serset); clears all class definitions and instances (see [P] classutil); clears
all business calendars (see [D] Datetime business calendars); and closes all dialogs and clears their
remembered contents (see [P] Dialog programming).

In short, discard causes Stata to forget everything current without forgetting anything important,
such as the data in memory.

Syntax

discard

Remarks and examples

Use discard to debug ado-files. Making a change to an ado-file will not cause Stata to update
its internal copy of the changed program. discard clears all automatically loaded programs from
memory, forcing Stata to refresh its internal copies with the versions residing on disk.

Also all of Stata’s estimation commands can display their previous output when the command
is typed without arguments. They achieve this by storing information on the problem in memory.
predict (see [R] predict) calculates various statistics (predictions, residuals, influence statistics, etc.),
estat vce (see [R] estat vce) shows the covariance matrix, lincom (see [R] lincom) calculates linear
combinations of estimated coefficients, and test and testnl (see [R] test and [R] testnl) perform
hypotheses tests, all using that stored information. discard eliminates that information, making it
appear as if you never fit the model.

Also see
[D] clear — Clear memory
[P] class — Class programming
[P] classutil — Class programming utility
[P] Dialog programming — Dialog programming
[U] 17 Ado-files

159

Title

display — Display strings and values of scalar expressions

Description Syntax Remarks and examples Also see

Description

display displays strings and values of scalar expressions. display produces output from the
programs that you write.

Interactively, display can be used as a substitute for a hand calculator; see [R] display. You can
type things such as display 2+2.

Syntax
display [display_directive [display_directive [} }]
where display_directive is

"double-quoted string"

“"compound double-quoted string"’
[%ﬁnl] [=]exp

as {text | txt |result | error | iﬂut}
in smcl

_asis

—_skip(#)

_column (#)

gewline[#]

—continue

—dup (#)

_request (macname)

_char (#)

160

display — Display strings and values of scalar expressions 161

Remarks and examples

Remarks are presented under the following headings:

Introduction

Styles

display used with quietly and noisily
Columns

display and SMCL

Displaying variable names

Obtaining input from the terminal

Introduction

Interactively, display can be used as a substitute for a hand calculator; see [R] display. You can
type things such as display 2+2.

display’s display_directives are used in do-files and programs to produce formatted output. The
directives are

"double-quoted string" displays the string without the quotes

¢"compound double-quoted string"’ displays the string without the outer quotes;
allows embedded quotes

[%fmt] [=]exp
as style

in smcl
_asis
_skip(#)
_column (#)
—newline
_newline(#)
_continue
—_dup (#)

_request (macname)

_char (#)

allows results to be formatted;
see [U] 12.5 Formats: Controlling how data are displayed

sets the style (“color”) for the directives that follow;
there may be more than one as style per display

switches from _asis mode to smcl mode

switches from smcl mode to _asis mode

skips # columns

skips to the #th column

goes to a new line

skips # lines

suppresses automatic newline at end of display command
repeats the next directive # times

accepts input from the console and places
it into the macro macname

displays the character for ASCII and extended ASCII code #,
where # > 127 is treated as a Latinl-encoded character
and will be converted to the corresponding UTF-8 character

displays one blank between two directives

places no blanks between two directives

162 display — Display strings and values of scalar expressions

> Example 1

Here is a nonsense program called silly that illustrates the directives:

. program list silly

silly:
1. set obs 10
2. gen myvar=runiform()
3. di as text _dup(59) "-"
4. di "hello, world"
5. di %~569s "This is centered"
6. di "myvar[1] = " as result myvar[1]
7. di _col(10) "myvar[1] = " myvar[1] _skip(10) "myvar[2] = " myvar[2]
8. di "myvar[1]/myvar[2] = " %5.4f myvar[1]/myvar[2]
9. di "This" _newline _col(5) "That" _newline _col(10) "What"
10. di ‘"She said, "Hello""’
11. di substr("abcI can do string expressionsXYZ",4,27)
12. di _char(65) _char(83) _char(67) _char(73) _char(73)
13. di _dup(59) "-" " (good-bye)"

Here is the result of running it:

. silly
Number of observations (_N) was O, now 10

hello, world
This is centered
myvar [1] = .13698408

myvar[1] = .13698408 myvar [2] = .64322066
myvar [1]/myvar[2] = 0.2130
This
That
What

She said, "Hello"
I can do string expressions
ASCII

(good-bye)

Styles

Stata has four styles: text (synonym txt), result, error, and input. Typically, these styles
are rendered in terms of color,
text = black

result = black and bold
error = red
input = black and bold

or, at least, that is the default in the Results window when the window has a white background. On
a black background, the defaults are

text = green
result = yellow
error = red

input = white

display — Display strings and values of scalar expressions 163

In any case, users can reset the styles by selecting Edit > Preferences > General Preferences in
Windows or Unix(GUI) or by selecting Preferences > General Preferences in Mac.

The display directives as text, as result, as error, and as input allow you, the programmer,
to specify in which rendition subsequent items in the display statement are to be displayed. So if
a piece of your program reads

quietly summarize mpg
display as text "mean of mpg = " as result r(mean)

what might be displayed is

mean of mpg = 21.432432

where, above, our use of boldface for the 21.432432 is to emphasize that it would be displayed
differently from the “mean of mpg =" part. In the Results window, if we had a black background,
the “mean of mpg =" part would be in green and the 21.432432 would be in yellow.

You can switch back and forth among styles within a display statement and between display
statements. Here is how we recommend using the styles:

as result should be used to display things that depend on the data being used. For statistical output,
think of what would happen if the names of the dataset remained the same but all the data changed.
Clearly, calculated results would change. That is what should be displayed as result.

as text should be used to display the text around the results. Again think of the experiment where
you change the data but not the names. Anything that would not change should be displayed as
text. This will include not just the names but also table lines and borders, variable labels, etc.

as error should be reserved for displaying error messages. as error is special in that it not only
displays the message as an error (probably meaning that the message is displayed in red) but also
forces the message to display, even if output is being suppressed. (There are two commands for
suppressing output: quietly and capture. quietly will not suppress as error messages but
capture will, the idea being that capture, because it captures the return code, is anticipating
errors and will take the appropriate action.)

as input should never be used unless you are creating a special effect. as input (white on a black
background) is reserved for what the user types, and the output your program is producing is by
definition not being typed by the user. Stata uses as input when it displays what the user types.

display used with quietly and noisily
display’s output will be suppressed by quietly at the appropriate times. Consider the following:

. program list examplel

examplel:
1. di "hello there"

. examplel
hello there

. quietly examplel

164 display — Display strings and values of scalar expressions

The output was suppressed because the program was run quietly. Messages displayed as error,
however, are considered error messages and are always displayed:

. program list example2

example2:
1. di as error "hello there"

. example2
hello there

. quietly example2
hello there

Even though the program was run quietly, the message as error was displayed. Error messages
should always be displayed as error so that they will always be displayed at the terminal.

Programs often have parts of their code buried in capture or quietly blocks. displays inside
such blocks produce no output:

. program list example3

example3:
1. quietly {
2. display "hello there"
3.}

. example3

If the display had included as error, the text would have been displayed, but only error output
should be displayed that way. For regular output, the solution is to precede the display with noisily:

. program list example4

example4:
1. quietly {
2. noisily display "hello there"
3.}

. example4d

hello there

This method also allows Stata to correctly treat a quietly specified by the caller:

. quietly exampled

Despite its name, noisily does not really guarantee that the output will be shown—it restores the
output only if output would have been allowed at the instant the program was called.

For more information on noisily and quietly, see [P] quietly.

Columns

display can move only forward and downward. The directives that take a numeric argument
allow only nonnegative integer arguments. It is not possible to back up to make an insertion in the
output.

display — Display strings and values of scalar expressions 165

. program list cont

cont:
1. di "Stuff" _column(9) "More Stuff"
2. di "Stuff" _continue
3. di _column(9) "More Stuff"

. cont

Stuff More Stuff
Stuff More Stuff

display and SMCL

Stata Markup and Control Language (SMCL) is Stata’s output formatter, and all Stata output passes
through SMCL. See [P] smcl for a description. All the features of SMCL are available to display and
so motivate you to turn to the SMCL section of this manual.

In our opening silly example, we included the line

di as text _dup(59) "-"

That line would have better read

di as text "{hline 59}"

The first display produces this:

and the second produces this:

It was not display that produced that solid line—display just displayed the characters {hline
59}. Output of Stata, however, passes through SMCL, and SMCL interprets what it hears. When SMCL
heard {hline 593}, SMCL drew a horizontal line 59 characters wide.

SMCL has many other capabilities, including creating clickable links in your output that, when you
click on them, can even execute other Stata commands.

If you carefully review the SMCL documentation, you will discover many overlap in the capabilities
of SMCL and display that will lead you to wonder whether you should use display’s capabilities
or SMCL’s. For instance, in the section above, we demonstrated the use of display’s _column()
feature to skip forward to a column. If you read the SMCL documentation, you will discover that
SMCL has a similar feature, {col}. You can type

display "Stuff" _column(9) "More Stuff"

or you can type
display "Stuff{col 9}More Stuff"
So, which should you type? The answer is that it makes no difference and that when you use

display’s —column() directive, display just outputs the corresponding SMCL {col} directive for
you. This rule generalizes beyond _column(). For instance,

display as text "hello"

and

display "{text}hello"

are equivalent. There is, however, one important place where display and SMCL are different:

display as error "error message"

166 display — Display strings and values of scalar expressions

is not the same as

display "{error}error message"

Use display as error. The SMCL {error} directive sets the rendition to that of errors, but it
does not tell Stata that the message is to be displayed, even if output is otherwise being suppressed.
display as error both sets the rendition and tells Stata to override output suppression if that is
relevant.

Q Technical note

All Stata output passes through SMCL, and one side effect of that is that open and close brace
characters, { and }, are treated oddly by display. Try the following:

display as text "{1, 2, 3}"
{1, 2, 3}

The result is just as you expect. Now try

display as text "{result}"

The result will be to display nothing because {result} is a SMCL directive. The first displayed
something, even though it contained braces, because {1, 2, 3} is not a SMCL directive.

You want to be careful when displaying something that might itself contain braces. You can do
that by using display’s _asis directive. Once you specify _asis, whatever follows in the display
will be displayed exactly as it is, without SMCL interpretation:

display as text _asis "{result}"
{result}

You can switch back to allowing SMCL interpretation within the line by using the in smcl directive:

display as text _asis "{result}" in smcl "is a {bf:smcl} directive"
{result} is a smecl directive

Every display command in your program starts off in SMCL mode.

Displaying variable names

Let’s assume that a program we are writing is to produce a table that looks like this:

Variable | Obs Mean Std. dev. Min Max
mpg 74 21.2973 5.785503 12 41

weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

Putting out the header in our program is easy enough:

di as text " Variable {c |} Obs" /*
*/ _col(37) "Mean Std. dev. Min Max"
di as text "{hline 13}{c +}{hline 53}"

We use the SMCL directive {hline} to draw the horizontal line, and we use the SMCL characters
{c |} and {c +} to output the vertical bar and the “plus” sign where the lines cross.

Now let’s turn to putting out the rest of the table. Variable names can be of unequal length and
can even be long. If we are not careful, we might end up putting out something that looks like this:

display — Display strings and values of scalar expressions 167

Variable | Obs Mean Std. dev. Min Max
|
miles_per_gallon | 74 21.2973 5.785503 12 41
weight | 74 3019.459 777.1936 1760 4840
displacement | 74 197.2973 91.83722 79 425

If it were not for the too-long variable name, we could avoid the problem by displaying our lines
with something like this:

display as text %12s "‘vname’" " {c |}" /*
/ as result /
*/ %8.0g ‘n’> " " /x
*/ %9.0g ‘mean’ " " %9.0g ‘sd’ /%
*/ %9.0g ‘min’ " " %9.0g ‘max’

What we are imagining here is that we write a subroutine to display a line of output and that the
display line above appears in that subroutine:

program output_line
args vname n mean sd min max

display as text %12s "‘vname’" " {c |}" /*
/ as result /
/ %8.0g tpr n /
*/ %9.0g ‘mean’ " " %9.0g ‘sd’> " " /x
*/ %9.0g ‘min’ " " %9.0g ‘max’

end

In our main routine, we would calculate results and then just call output_line with the variable
name and results to be displayed. This subroutine would be sufficient to produce the following output:

Variable | Obs Mean Std. dev. Min Max
|
miles_per_gallon | 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

The short variable name weight would be spaced over because we specified the %12s format. The
right way to handle the miles_per_gallon variable is to display its abbreviation with Stata’s
abbrev () function:

program output_line
args vname n mean sd min max
display as text %12s abbrev("‘vname’",12) " {c [}" /*
/ as result /

/ %S-Og ln) n " /
*/ %9.0g ‘mean’ " " %9.0g ‘sd’ "o /%
*/ %9.0g ‘min’ " " %9.0g ‘max’

end

With this improved subroutine, we would get the following output:

Variable Obs Mean Std. dev. Min Max
miles_per_~n 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

The point of this is to persuade you to learn about and use Stata’s abbrev() function.
abbrev(" ‘vname’",12) returns ‘vname’ abbreviated to 12 characters.

168 display — Display strings and values of scalar expressions

If we now wanted to modify our program to produce the following output,

Variable Obs Mean Std. dev. Min Max
miles_per_~n 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

all we would need to do is add a display at the end of the main routine that reads

di as text "{hline 13}{c BT}{hline 53}"

Note the use of {c BT}. The characters that we use to draw lines in and around tables are summarized
in [P] smcl.

Q Technical note

Much of the output of Stata’s official commands and of community-contributed commands is
formatted to look good in a Results window that is 80 display columns wide. If you write a Stata
program that you want to share with others, we recommend that you design it such that its output
will fit in an 80-column-wide Results window. The abbrev () function described above is useful for
abbreviating variable names such that output tables fit within 80 columns.

Your program can determine the current width of the Results window by checking the value of
c(linesize). Some Stata commands, such as official estimation commands that output a coefficient
table, use the value of c(linesize) to determine by how much, if at all, they need to abbreviate
variable names.

We can modify the output_line program above to respect c (linesize). For every column the
Results window is wider than 80, we can allow our variable name abbreviation to be one character
longer. If the Results window is 100 or more columns wide, we may not need to abbreviate variable
names at all, because the maximum length of a variable name is 32 characters, and we were already
able to display 12 characters of the variable name at a line size of 80. Note that if your variable
names contain Unicode characters, some of those characters may occupy two display columns. See
[U] 12.4.2.2 Displaying Unicode characters.

program output_line
args vname n mean sd min max
if (c(linesize) >= 100)

ne

local abname = vname’"

else if (c(linesize) > 80)
local abname = abbrev("‘vname’", 12+(c(linesize)-80))

else
local abname = abbrev("‘vname’", 12)

local abname = abbrev("‘vname’",12)

display as text %12s "‘abname’" " c |" /*
/ as result /
x/ %8.0g ‘n’> " " /*
*/ %9.0g ‘mean’ " " 9.0g ‘sd> " " /x
*/ %9.0g ‘min’ " " %9.0g ‘max’

end

display — Display strings and values of scalar expressions 169

Q Technical note

Let’s now consider outputting the table in the form

Variable Obs Mean Std. dev. Min Max
miles_per_-m 74 21.2973 5.785503 12 41
weight 74 3019.459 777.1936 1760 4840
displacement 74 197.2973 91.83722 79 425

where the boldfaced entries are clickable and, if you click on them, the result is to execute summarize
followed by the variable name. We assume that you have already read [P] smecl and so know that
the relevant SMCL directive to create the link is {stata}, but continue reading even if you have not
read [P] smcl.

The obvious fix to our subroutine would be simply to add the {stata} directive, although to do
that we will have to store abbrev (" ‘vname’",12) in a macro so that we can refer to it:

program output_line
args vname n mean sd min max
local abname = abbrev("‘vname’,12)
display as text %12s "{stata summarize ‘vname’:‘abname’}" /*

x/ " {c [} /

/ as result /

/ %S'Og (n) n n /

/ %9.0g ‘mean’ " " %9.0g ‘sd’> " " /
*/ %9.0g ‘min’ " " %9.0g ‘max’

end

The SMCL directive {stata summarize ‘vname’: ‘abname’} says to display ‘abname’ as clickable,
and, if the user clicks on it, to execute summarize ‘vname’. We used the abbreviated name to display
and the unabbreviated name in the command.

The one problem with this fix is that our table will not align correctly because display does not
know that “{stata summarize ‘vname’:‘abname’}” displays only ‘abname’. To display, the
string looks long and is not going to fit into a %12s field. The solution to that problem is

program output_line
args vname n mean sd min max
local abname = abbrev("‘vname’,12)
display as text "{ralign 12:{stata summarize ‘vname’:‘abname’}}" /*

/ " e 1" /

/ as result /

/ %S.Og ‘n) n n /

*/ %9.0g ‘mean’ " " %9.0g ‘sd’ o /x
*/ %9.0g ‘min’ " " %9.0g ‘max’

end

The SMCL {ralign #:fext} macro right-aligns fext in a field 12 wide and so is equivalent to %12s.
The text that we are asking be aligned is “{stata summarize ‘vname’:‘abname’l}”, but SMCL
understands that the only displayable part of the string is ‘abname’ and so will align it correctly.

If we wanted to duplicate the effect of a %-12s format by using SMCL, we would use
{lalign 12:text}.
a

170 display — Display strings and values of scalar expressions

Obtaining input from the terminal

display’s _request (macname) option accepts input from the console and places it into the
macro macname. For example,

. display "What is Y? " _request(yval)
What is Y? i don’t know

. display "$yval"
i don’t know

If yval had to be a number, the code fragment to obtain it might be

global yval "junk"

capture confirm number $yval

while _rc!=0 {
display "What is Y? " _request(yval)
capture confirm number $yval

}
You will typically want to store such input into a local macro. Local macros have names that
really begin with a ‘_:

local yval "junk"

capture confirm number ‘yval’

while _rc!=0 {
display "What is Y? " _request(_yval)
capture confirm number ‘yval’

Also see

[P] capture — Capture return code

[P] quietly — Quietly and noisily perform Stata command
[P] return — Return stored results

[P] smcl — Stata Markup and Control Language

[D] list — List values of variables

[D] outfile — Export dataset in text format

[U] 12.5 Formats: Controlling how data are displayed
[U] 18 Programming Stata

Title

ereturn — Post the estimation results

Description Syntax Options Remarks and examples Stored results Also see

Description

ereturn local, ereturn scalar, and ereturn matrix set the e () macros, scalars, and matrices
other than b, V, and Cns returned by estimation commands. See [P] return for more discussion on
returning results.

ereturn clear clears the e() stored results.

ereturn list lists the names and values of the macros and scalars stored in e (), and the names
and sizes of the matrices stored in e() by the last estimation command.

ereturn post clears all existing e-class results and stores the coefficient vector (b), variance—
covariance matrix (V), and constraint matrix (Cns) in Stata’s system areas, making available all the
postestimation features described in [U] 20 Estimation and postestimation commands. b, V, and
Cns are optional for ereturn post; some commands (such as factor; see [MV] factor) do not have
a b, V, or Cns but do set the estimation sample, e (sample), and properties, e (properties). You
must use ereturn post before setting other e () macros, scalars, and matrices.

ereturn repost changes the b, V, or Cns matrix (allowed only after estimation commands that
posted their results with ereturn post) or changes the declared estimation sample or e (properties).
The specified matrices cease to exist after post or repost; they are moved into Stata’s system areas.
The resulting b, V, and Cns matrices in Stata’s system areas can be retrieved by reference to e (b),
e(V), and e(Cns). ereturn post and repost deal with only the coefficient and variance—covariance
matrices, whereas ereturn matrix is used to store other matrices associated with the estimation
command.

ereturn display displays or redisplays the coefficient table corresponding to results that have
been previously posted using ereturn post or repost.

For a discussion of posting results with constraint matrices (Cns in the syntax diagram above),
see [P] makecns, but only after reading this entry.

171

172 ereturn — Post the estimation results

Syntax
Set macro returned by estimation command

ereturn local name ... (see [P] macro)

Set scalar returned by estimation command

ereturn scalar name = exp

Set matrix returned by estimation command

ereturn @I‘lx name [= } matname [,» COpy]

Clear e() stored results

ereturn clear

List e() stored results

ereturn list [, all]

Store coefficient vector and variance—covariance matrix into e()
ereturn post [b [V [Cns]] } [weight} [, depname (string) obs(#) dof (#)

esample (varname) properties(string) buildfvinfo findomitted]

Change coefficient vector and variance—covariance matrix
ereturn repost [b = b] [V = V] [Cns = Cns] [weight] [, esample (varname)

properties(string) buildfvinfo findomitted rename resize]

Display coefficient table

ereturn display [, eform(string) first neq(#) plus level (#) display_()pti(ms}

where name is the name of the macro, scalar, or matrix that will be returned in e (name) by the
estimation program; matname is the name of an existing matrix; b is a 1 X p coefficient vector
(matrix); V is a p X p covariance matrix; and Cns is a ¢ X (p + 1) constraint matrix.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

ereturn — Post the estimation results 173

Options

copy specified with ereturn matrix indicates that the matrix is to be copied; that is, the original
matrix should be left in place.

all specifies that hidden and historical stored results be listed along with the usual stored results. This
option is seldom used. See Using hidden and historical stored results and Programming hidden
and historical stored results under Remarks and examples of [P] return for more information.
These sections are written in terms of return 1ist, but everything said there applies equally to
ereturn list.

depname (string) specified with ereturn post supplies a name that should be that of the dependent
variable but can be anything; that name is stored and added to the appropriate place on the output
whenever ereturn display is executed.

obs (#) specified with ereturn post supplies the number of observations on which the estimation
was performed; that number is stored in e (N).

dof (#) specified with ereturn post supplies the number of (denominator) degrees of freedom
that is to be used with ¢ and F’ statistics and is stored in e(df_r). This number is used in
calculating significance levels and confidence intervals by ereturn display and by subsequent
test commands performed on the posted results. If the option is not specified, normal (Z) and
x?2 statistics are used.

esample (varname) specified with ereturn post or ereturn repost gives the name of the 0/1
variable indicating the observations involved in the estimation. The variable is removed from the
dataset but is available for use as e (sample); see [U] 20.7 Specifying the estimation subsample.
If the esample() option is not specified with ereturn post, it is set to all zeros (meaning no
estimation sample). See [P] mark for details of the marksample command that can help create
varname.

properties(string) specified with ereturn post or ereturn repost sets the e(properties)
macro. By default, e (properties) is set to b V if properties() is not specified.

buildfvinfo specified with ereturn post or ereturn repost computes the H matrix that
postestimation commands contrast, margins, and pwcompare use for determining estimable
functions.

findomitted specified with ereturn post or ereturn repost adds the omit operator o. to
variables in the column names corresponding to zero-valued diagonal elements of e(V). This
option is generally unnecessary but is useful when _rmcoll is not used before estimation.

rename is allowed only with the b = b syntax of ereturn repost and tells Stata to use the names
obtained from the specified b matrix as the labels for both the b and V estimation matrices. These
labels are subsequently used in the output produced by ereturn display.

resize is allowed only with ereturn repost and tells Stata that the replacements b, V, and Cns
have a different number of elements than the originals. This option implies rename.

eform(string) specified with ereturn display indicates that the exponentiated form of the coeffi-
cients is to be output and that reporting of the constant is to be suppressed. string is used to label
the exponentiated coefficients; see [R] eform_option.

first requests that Stata display only the first equation and make it appear as if only one equation
were estimated.

neq (#) requests that Stata display only the first # equations and make it appear as if only # equations
were estimated.

174 ereturn — Post the estimation results

plus changes the bottom separation line produced by ereturn display to have a + symbol at the
position of the dividing line between variable names and results. This is useful if you plan on
adding more output to the table.

level(#), an option of ereturn display, specifies the confidence level, as a percentage, of
confidence intervals for the estimated parameters; see [U] 20.8 Specifying the width of confidence
intervals.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Estimation-class programs
Setting individual estimation results
Posting estimation coefficient and variance—covariance matrices
Single-equation models
Multiple-equation models
Single-equation models masquerading as multiple-equation models
Setting the estimation sample
Setting estimation-result properties
Reposting results
Minor details: The depname() and dof() options

For a summary of the ereturn command, see [P] return.

Estimation-class programs

After any estimation command, you can obtain individual coefficients and standard errors by using
_bl[] and _se[] (see [U] 13.5 Accessing coefficients and standard errors); list the coefficients by
using matrix list e(b); list the variance—covariance matrix of the estimators by using matrix
list e(V) or in a table by using estat vce (see [R] estat vce); obtain the linear prediction
and its standard error by using predict (see [R] predict); and test linear hypotheses about the
coefficients by using test (see [R] test). Other important information from an estimation command
can be obtained from the stored e () results. (For example, the estimation command name is stored in
e(cmd). The dependent variable name is stored in e (depvar).) The e() results from an estimation
command can be listed by using the ereturn 1ist command. All of these features are summarized
in [U] 20 Estimation and postestimation commands.

If you decide to write your own estimation command, your command can share all of these features
as well. This is accomplished by posting the results you calculate to Stata. The basic outline of an
estimation command is

program myest, eclass

version 18.0

if lreplay() {
syntax whatever [, whatever Level(cilevel)]
marksample touse // see [P] mark
perform any other parsing of the user’s estimation request;
local depn "dependent variable name"
local nobs = number of observations in estimation
tempname b V
produce coefficient vector ‘b’ and variance—covariance matrix ‘V’
ereturn post ‘b’ ‘V’, obs(‘nobs’) depname(‘depn’) esample(‘touse’)

ereturn — Post the estimation results 175

ereturn local depvar "‘depn’"
store whatever else you want in e ()

ereturn local cmd "myest" // set e(cmd) last
}
else { // replay

if "‘e(cmd)’"!="myest" error 301

syntax [, Level(cilevel)]
}

output any header above the coefficient table;
ereturn display, level(‘level’)
end

We will not discuss here how the estimates are formed; see [P] matrix for an example of programming
linear regression, and see [R] ml for examples of programming maximum likelihood estimators.
However the estimates are formed, our interest is in posting those results to Stata.

When programming estimation commands, remember to declare them as estimation commands by
including the eclass option of program; see [U] 18 Programming Stata. If you do not declare
your program to be eclass, Stata will produce an error if you use ereturn local, ereturn
scalar, or ereturn matrix in your program. For more information about storing program results,
see [P] return.

The estimation program definition statement—program myest, eclass—should also have included
a properties() option, but we omitted it because 1) it is not necessary and 2) you might confuse
it with ereturn’s properties() option.

There are two sets of properties associated with estimation commands: program properties and
estimation-result properties. The first are set by the properties() option of the program definition
statement. The second are set by ereturn’s properties() option. The first tell Stata’s prefix
commands, such as stepwise and svy, whether they should work with this new estimation command.
The second tell Stata’s postestimation commands, such as predict and test, whether they should
work after this new estimation command.

The first is discussed in [P] program properties. The second will be discussed below.

Q Technical note

Notice the use of the replay() function in our estimation program example. This function is
not like other Stata functions; see [FN] Programming functions. replay() simply returns 1 if the
command line is empty or begins with a comma, and 0 otherwise. More simply: replay() indicates
whether the command is an initial call to the estimation program (replay () returns 0) or a call to
redisplay past estimation results (replay() returns 1).

In fact,
if !replay() {
is equivalent to

if trim(¢"€0’"?) == "v | substr(trim(‘"‘O""),1,1) == " 0 {

but is easier to read. -

The ereturn local, ereturn scalar, ereturn matrix, ereturn clear, and ereturn list
commands are discussed in Setting individual estimation results. The ereturn post, ereturn
repost, and ereturn display commands are discussed in Posting estimation coefficient and
variance—covariance matrices.

176 ereturn — Post the estimation results

Setting individual estimation results

Stata’s estimation commands store the command name in the returned macro e(cmd) and store
the name of the dependent variable in e(depvar). Other macros and scalars are also stored. For
example, the estimation sample size is stored in the returned scalar e (N). The model and residual
degrees of freedom are stored in e(df _m) and e(df_r).

These e() macro and scalar results are stored using the ereturn local and ereturn scalar
commands. Matrices may be stored using the ereturn matrix command. The coefficient vector
e(b) and variance—covariance matrix e(V), however, are handled differently and are stored using
only the ereturn post and ereturn repost commands, which are discussed in the next section.

> Example 1

Assume that we are programming an estimation command called xyz and that we have the dependent
variable in ‘depname’, the estimation sample size in ‘nobs’, and other important information stored
in other local macros and scalars. We also wish to store an auxiliary estimation matrix that our
program has created called lam into the stored matrix e(lambda). We would store these results by
using commands such as the following in our estimation program:

ereturn local depvar "‘depname’"
ereturn scalar N = ‘nobs’
ereturn matrix lambda lam

ereturn local cmd "xyz" N

The matrix given to the ereturn matrix command is removed, and the new e () matrix is then
made available. For instance, in this example, we have the line

ereturn matrix lambda lam

After this line has executed, the matrix lam is no longer available for use, but you can instead refer
to the newly created e (lambda) matrix.

The e () results from an estimation command can be viewed using the ereturn list command.

> Example 2

We regress automobile weight on length and engine displacement by using the auto dataset.

. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress weight length displ

Source SS df MS Number of obs = 74

F(2, 71) = 480.99

Model 41063449.8 2 20531724.9 Prob > F = 0.0000
Residual 3030728.55 71 42686.3176 R-squared = 0.9313

Adj R-squared = 0.9293

Total 44094178.4 73 604029.841 Root MSE = 206.61

weight | Coefficient Std. err. t P>|t| [95% conf. intervall]
length 22.91788 1.974431 11.61 0.000 18.98097 26.85478
displacement 2.932772 .4787094 6.13 0.000 1.978252 3.887291
_cons -1866.181 297.7349 -6.27 0.000 -2459.847 -1272.514

ereturn — Post the estimation results 177

. ereturn list

scalars:
e() 74
e(df_m) = 2
e(df_r) 71
e(F) = 480.9907735088096
e(r2) .9312669232040125
e(rmse) = 206.6066736285298
e(mss) 41063449.82964133
e(rss) = 3030728.548737053
e(r2_a) = .9293307801956748
e(11) = -497.9506459758983
e(11_0) = -597.0190609278627
e(rank) 3
macros:
e(cmdline) "regress weight length displ"
e(title) "Linear regression"
e(marginsok) "XB default"
e(vce) "ols"
e(depvar) "weight"
e(cmd) "regress"
e(properties) "b V"
e(predict) "regres_p"
e(model) "ols"
e(estat_cmd) "regress_estat"
matrices:
e(b) 1x3
e (V) 3x3
e(beta) 1x2
functions:
e(sample)

In addition to listing all the e() results after an estimation command, you can access individual

e () results.

. display "The command is: ‘e(cmd)’"

The command is: regress

. display "The adjusted R-squared is: ‘e(r2_a)’"
The adjusted R-squared is: .9293307801956748

. display "The residual sums-of-squares is:

‘e(rss)’"

The residual sums-of-squares is: 3030728.548737053

. matrix list e(V)
symmetric e(V)[3,3]

length displacement
3.8983761
-.78935643
-576.89342

length
displacement
_cons

. matrix list e(b)
e(p)[1,3]

length displacement
2.9327718

yi 22.917876

-cons

.22916272

103.13249 88646.064

_cons

-1866.1807

For more information on referring to e () results, see [P] return.

N

The reference manuals’ entries for Stata’s estimation commands have a Stored results section
describing the e() results that are returned by the command. If you are writing an estimation
command, we recommend that you store the same kind of estimation results by using the same

178 ereturn — Post the estimation results

naming convention as Stata’s estimation commands. This is important if you want postestimation
commands to work after your estimation command. See [U] 20 Estimation and postestimation
commands and [P] return for details.

When programming your estimation command, you will want to issue either an ereturn clear
command or an ereturn post command before you store any estimation results. The ereturn
clear command clears all e () results. The ereturn post command, which is discussed in the next
section, first clears all previous e() results and then performs the post.

We recommend that you postpone clearing past estimation results and setting new e () results until
late in your program. If an error occurs early in your program, the last successful estimation results
will remain intact. The best place in your estimation program to set the e () results is after all other
calculations have been completed and before estimation results are displayed.

We also recommend that you store the command name in e (cmd) as your last act of storing results.
This ensures that if e (cmd) is present, then all the other estimation results were successfully stored.
Postestimation commands assume that if e (cmd) is present, then the estimation command completed
successfully and all expected results were stored. If you stored e(cmd) early in your estimation
command and the user pressed Break before the remaining e () results were stored, postestimation
commands operating on the partial results will probably produce an error.

Posting estimation coefficient and variance—covariance matrices

The most important estimation results are the coefficient vector b and the variance—covariance
matrix V. Because these two matrices are at the heart of most estimation commands, for increased
command execution speed, Stata handles these matrices in a special way. The ereturn post, ereturn
repost, and ereturn display commands work on these matrices. The ereturn matrix command
discussed in the last section cannot be used to store or to post the b and V matrices.

Single-equation models

Before posting, the coefficient vector is stored as a 1 X p matrix and the corresponding variance—
covariance matrix as a p X p matrix. The names bordering the coefficient matrix and those bordering
the variance—covariance matrix play an important role. First, they must be the same. Second, it is
these names that tell Stata how the results link to Stata’s other features.

Estimation results come in two forms: those for single-equation models and those for multiple-
equation models. The absence or presence of equation names in the names bordering the matrix (see
[P] matrix rownames) tells Stata which form it is.

> Example 3

For instance, consider
. use https://www.stata-press.com/data/r18/auto
(1978 automobile data)

. regress price weight mpg
(output omitted)

. matrix b = e(b)
. matrix V = e(V)
. matrix list b

b[1,3]
weight mpg _cons
yl 1.7465592 -49.512221 1946.0687

ereturn — Post the estimation results 179

. matrix list V
symmetric V[3,3]
weight mpg _cons
weight .41133468
mpg 44.601659 7422.863
_cons -2191.9032 -292759.82 12938766

If these were our estimation results, they would correspond to a single-equation model because the
names bordering the matrices have no equation names. Here we post these results:

. ereturn post b V

. ereturn display

Coefficient Std. err. z P>|z| [95% conf. intervall]

weight 1.746559 .6413538 2.72 0.006 .4895288 3.003589
mpg -49.51222 86.15604 -0.57 0.566 -218.375 119.3505
_cons 1946.069 3597.05 0.54 0.588 -5104.019 8996.156

Once the results have been posted, anytime the ereturn display command is executed, Stata
will redisplay the coefficient table. Moreover, all of Stata’s other postestimation features work. For
instance,

. test weight
(1) weight =0

chi2(1) = 7.42
Prob > chi2 = 0.0065
. test weight=mpg/50
(1) weight - .02*mpg = 0
chi2(1) = 4.69
Prob > chi2 = 0.0303

If the user were to type predict pred, then predict would create a new variable based on
1.746559 weight — 49.51222 mpg + 1946.069

except that it would carry out the calculation by using the full, double-precision values of the
coefficients. All determinations are made by Stata on the basis of the names bordering the posted
matrices. q

Multiple-equation models

If the matrices posted using the ereturn post or ereturn repost commands have more than
one equation name, the estimation command is treated as a multiple-equation model.

> Example 4

Consider the following two matrices before posting:

. matrix list b

b[1,6]
price: price: price: displacem~t: displacem~t:
weight mpg _cons weight foreign
yi 1.7417059 -50.31993 1977.9249 .09341608 -35.124241
displacem~t:
_cons

yl -74.326413

180 ereturn — Post the estimation results

. matrix list V

symmetric V[6,6]

price: price: price: displacem~t:
weight mpg _cons weight
price:weight .38775906
price:mpg 41.645165 6930.8263
price:_cons -2057.7522 -273353.75 12116943
displacement:weight .00030351 -.01074361 -.68762197 .00005432
displacement:foreign -.18390487 -30.6065 1207.129 .05342871
displacement:_cons -.86175743 41.539129 1936.6875 -.1798972
displacem~t: displacem~t:
foreign _cons
displacement:foreign 152.20821
displacement:_cons -206.57691 625.79842

The row and column names of the matrices include equation names. Here we post these matrices to
Stata and then use the posted results:

. ereturn post b V

. ereturn display

Coefficient Std. err. z P>|z| [95% conf. intervall]
price

weight 1.741706 .622703 2.80 0.005 .5212304 2.962181
mpg -50.31993 83.25158 -0.60 0.546 -213.49 112.8502
_cons 1977.925 3480.94 0.57 0.570 -4844.592 8800.442

displacement
weight .0934161 .0073701 12.67 0.000 .0789709 .1078612
foreign -35.12424 12.33727 -2.85 0.004 -59.30484 -10.94364
_cons -74.32641 25.01596 -2.97 0.003 -123.3568 -25.29603

. test [pricelweight

(1) [pricelweight = 0
chi2(1) = 7.82
Prob > chi2 = 0.0052

. test weight
(1) [pricelweight = 0

(2) [displacement]weight = 0
chi2(2) = 164.51
Prob > chi2 = 0.0000

Stata determined that this was a multiple-equation model because equation names were present. All
of Stata’s equation-name features (such as those available with the test command) are then made
available. The user could type predict pred to obtain linear predictions of the [price] equation
(because predict defaults to the first equation) or type predict pred, equation(displ) to obtain
predictions of the [displ] equation:

.0934161 weight — 35.12424 foreign — 74.32641

ereturn — Post the estimation results 181

Single-equation models masquerading as multiple-equation models

> Example 5

Sometimes, it may be convenient to program a single-equation model as if it were a multiple-equation
model. This occurs when there are ancillary parameters. Think of linear regression: in addition to
the parameter estimates, there is s, which is an estimate of o, the standard error of the residual.
This can be calculated on the side in that you can calculate b = (X’X)~'X’y independently of s
and then calculate s given b. Pretend that were not the case—think of a straightforward maximum
likelihood calculation where s is just one more parameter (in most models, ancillary parameters and
the coefficients must be solved for jointly). The right thing to do would be to give s its own equation:

. matrix list b

bl1,4]
price: price: price: _anc:
weight mpg _cons sigma
yl 1.7465592 -49.512221 1946.0687 2514

. matrix list V

symmetric V[4,4]
price: price: price: _anc:
weight mpg _cons sigma
price:weight .41133468
price:mpg 44.601659 7422.863
price:_cons -2191.9032 -292759.82 12938766

_anc:sigma 0 0 0 810000
. ereturn post b V

. ereturn display

Coefficient Std. err. z P>|z| [95% conf. intervall
price
weight 1.746559 .6413538 2.72 0.006 .4895288 3.003589
mpg -49.51222 86.15604 -0.57 0.566 -218.375 119.3505
_cons 1946.069 3597.05 0.54 0.588 -5104.019 8996.156
_anc
sigma 2514 900 2.79 0.005 750.0324 4277 .968

Now consider the alternative, which would be simply to add s to the estimated parameters without
equation names:

. matrix list b
bl1,4]

weight mpg _cons sigma
yi 1.7465592 -49.512221 1946.0687 2514
. matrix list V

symmetric V[4,4]
weight mpg _cons sigma
weight .41133468
mpg 44.601659 7422.863
_cons -2191.9032 -292759.82 12938766
sigma 0 0 0 810000

. ereturn post b V

182 ereturn — Post the estimation results

. ereturn display

Coefficient Std. err. z P>|z| [95% conf. intervall]

weight 1.746559 .6413538 2.72 0.006 .4895288 3.003589
mpg -49.51222 86.15604 -0.57 0.566 -218.375 119.3505
_cons 1946.069 3597.05 0.54 0.588 -5104.019 8996.156
sigma 2514 900 2.79 0.005 750.0324 4277 .968

This second solution is inferior because, if the user typed predict pred, then predict would
attempt to form the linear combination:

1.746559 weight — 49.51222 mpg + 1946.069 + 2514 sigma

There are only two possibilities, and neither is good: either sigma does not exist in the dataset— which
is to be hoped—and predict produces the error message “variable sigma not found”, or something
called sigma does exist, and predict goes on to form this meaningless combination.

N

On the other hand, if the parameter estimates are separated from the ancillary parameter (which
could be parameters) by the equation names, the user can type predict pred, equation(price) to
obtain a meaningful result. Moreover, the user can omit equation(price) partly because predict
(and Stata’s other postestimation commands) defaults to the first equation.

We recommend that ancillary parameters be collected together and given their own equation and
that the equation be called _anc.

Setting the estimation sample

In our previous examples, we did not indicate the estimation sample as specified with the esam-
ple(varname) option. In general, you provide this either with your initial ereturn post command
or with a subsequent ereturn repost command. Some postestimation commands automatically
restrict themselves to the estimation sample, and if you do not provide this information, they will
complain that there are no observations; see [U] 20.7 Specifying the estimation subsample. Also,
users of your estimation command expect to use if e(sample) successfully in commands that they
execute after your estimation command.

> Example 6

Returning to our first example:

. ereturn post b V

. ereturn display

(output omitted)
. summarize price if e(sample)
Variable Obs Mean Std. dev. Min Max
price 0

does not produce what the user expects. Specifying the estimation sample with the esample () option
of ereturn post produces the expected result:

ereturn — Post the estimation results 183

. ereturn post b V, esample(estsamp)

. ereturn display

(output omitted)
. summarize price if e(sample)
Variable | Obs Mean Std. dev. Min Max
price | 74 6165.257 2949.496 3291 15906

4

The marksample command (see [P] mark) is a useful programming command that aids in creating
and setting up an estimation sample indicator variable, such as estsamp.

Setting estimation-result properties

The properties() option of ereturn post and repost allows you to set e (properties). By
default, ereturn post sets e (properties) to b V when you supply a b and V argument. If you
supply the b, but not the V, it defaults to b. If you do not supply the b and V, it defaults to being
empty. Using the properties() option, you can augment or override the default setting. You are
also free to use ereturn local to set e(properties).

e(properties) is used as a signal to postestimation commands. A b in e(properties) is a
signal that the e (b) returned matrix can be interpreted as a coefficient vector. A V in e (properties)
indicates that e (V) can be interpreted as a VCE matrix. An e (properties) containing eigen indicates
that the estimation command has placed eigenvalues in e (Ev) and eigenvectors in e (L). A command,
such as screeplot (see [MV] screeplot), that plots the eigenvalues and can be used as a postestimation
command looks to see if eigen is found in e (properties). If so, it then looks for e (Ev) to contain
the eigenvalues.

> Example 7

We demonstrate by interactively posting a b vector without posting a V matrix. Even without a
V matrix, the available information provided by b is used appropriately.
. use https://www.stata-press.com/data/r18/auto, clear
(1978 automobile data)
. matrix b=(2,-1)
. matrix colnames b = turn trunk
. ereturn post b

. ereturn display

Coefficient
turn 2
trunk -1

. predict myxb, xb

184 ereturn — Post the estimation results

. list turn trunk myxb in 1/4

turn trunk myxb

1. 40 11 69
2. 40 11 69
3. 35 12 58
4. 40 16 64

The estimation table produced by ereturn display omits the standard errors, tests, and confidence
intervals because they rely on having a VCE matrix. predict with the xb option produces the linear
predictions. If you tried to use the stdp option of predict, you would get an error message indicating
that the requested action was not valid. q

The has_eprop() programmer’s function is useful for determining if e (properties) contains
a particular property; see [FN] Programming functions.

Q Technical note

Do not confuse the properties set with the properties() option of ereturn post and ereturn
repost, which are placed in e(properties) and used by postestimation commands, with the
properties() option of the program command; see [P] program. The properties set by program
indicate to other programs before the command is executed that certain features have been implemented,
for example, the svyr property indicates to the svy prefix command that the requirements to use the
vce(linearized) variance estimation method have been satisfied. On the other hand, the properties
set by ereturn are for use after the program has run and may depend on the data and options of

the program.
a

Reposting results

In certain programming situations, only a small part of a previous estimation result needs to be
altered. ereturn repost allows us to change five parts of an estimation result that was previously
posted with ereturn post. We can change the coefficient vector, the variance—covariance matrix, and
the declared estimation sample by using the esample () option; we can change the declared properties
by using the properties() option; and we can change the variable names for the coefficients by
using the rename option. A programmer might, for instance, simply replace the variance—covariance
matrix provided by a previous ereturn post with a robust covariance matrix to create a new
estimation result.

Sometimes a programmer might preserve the data, make major alterations to the data (using
drop, reshape, etc.) to perform needed computations, post the estimation results, and then finally
restore the data. Here, when ereturn post is called, the correct estimation sample indicator
variable is unavailable. ereturn repost with the esample () option allows us to set the estimation
sample without changing the rest of our posted estimation results.

ereturn — Post the estimation results 185

> Example 8

For example, inside an estimation command program, we might have

ereturn post b V

ereturn repost, esample(estsamp)

Q Technical note

ereturn repost may be called only from within a program that has been declared an estimation
class program by using the eclass option of the program statement. The same is not true of ereturn
post. We believe that the only legitimate uses of ereturn repost are in a programming context.
ereturn post, on the other hand, may be important for some non—e-class programming situations.
a

Minor details: The depname() and dof() options

Single-equation models may have one dependent variable; in those that do, you should specify the
identity of this one dependent variable in the depname () option with ereturn post. The result is
simply to add a little more labeling to the output.

If you do not specify the dof (#) option at the time of posting or set e(df_r) equal to the
degrees of freedom, normal (Z) statistics will be used to calculate significance levels and confidence
intervals on subsequent ereturn display output. If you do specify dof (#) or set e(df_r) equal
to #, ¢ statistics with # degrees of freedom will be used. Similarly, if you did not specify dof (#)
or set e(df_r), any subsequent test commands will present a x? statistic; if you specify dof (#)
or set e(df _r), subsequent test commands will use the F' statistic with # denominator degrees of
freedom.

> Example 9

Let’s add the dependent variable name and degrees of freedom to example 3.

. ereturn post b V, depname(price) dof(71)
. ereturn display

price | Coefficient Std. err. t P>|t| [95% conf. intervall
weight 1.746559 .6413538 2.72 0.008 .467736 3.025382

mpg -49.51222 86.15604 -0.57 0.567 -221.3025 122.278
_cons 1946.069 3597.05 0.54 0.590 -5226.245 9118.382

Note the addition of the word price at the top of the table. This was produced because of the
depname (price) option specification. Also ¢ statistics were used instead of normal (Z) statistics
because the dof (71) option was specified. q

186 ereturn — Post the estimation results

Stored results

ereturn post stores the following in e():

Scalars

e(N) number of observations

e(df_r) degrees of freedom, if specified
Macros

e (wtype) weight type

e (wexp) weight expression

e(properties) estimation properties; typically b V
Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(\) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

ereturn repost stores the following in e ():

Macros

e(wtype) weight type

e (wexp) weight expression

e(properties) estimation properties; typically b V
Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(\) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

With ereturn post, all previously stored estimation results—e () items—are removed. ereturn
repost, however, does not remove previously stored estimation results. ereturn clear removes
the current e () results.

ereturn display stores the following in r():

Scalars
r(level) confidence level of confidence intervals

Macros
r(label#) label on the # coefficient, such as (base), (omitted), (empty), or (constrained)
r(table) information from the coefficient table (see below)

r(table) contains the following information for each coefficient:

b coefficient value

se standard error

t/z test statistic for coefficient

pvalue observed significance level for t/z

11 lower limit of confidence interval

ul upper limit of confidence interval

daf degrees of freedom associated with coefficient
crit critical value associated with t/z

eform indicator for exponentiated coefficients

ereturn — Post the estimation results 187

Also see
[P] _estimates — Manage estimation results
[P] return — Return stored results
[R] estimates — Save and manipulate estimation results
[U] 18 Programming Stata
[U] 18.9 Accessing results calculated by estimation commands
[U] 18.10.2 Storing results in e()

[U] 20 Estimation and postestimation commands

Title

error — Display generic error message and exit

Description Syntax Remarks and examples Also see

Description

error displays the most generic form of the error message associated with expression and sets
the return code to the evaluation of the expression. If expression evaluates to 0, error does nothing.
Otherwise, the nonzero return code will force an exit from the program or capture block in which
it occurs. error sets the return code to 197 if there is an error in using error itself.

Syntax

error exp

Remarks and examples

Remarks are presented under the following headings:

Introduction
Summary
Other messages

Introduction

error is used in two ways inside programs. In the first case, you want to display a standard error
message so that users can look up your message by using search:

if (‘nvals’>100) error 134

According to [R] search, return code 134 is associated with the message “too many values”. During
program development, you can verify that by typing the error command interactively:
. error 134

too many values
r(134);

Below we list the individual return codes so that you can select the appropriate one for use with
error in your programs.

error is also used when you have processed a block of code in a capture block, suppressing all
output. If anything has gone wrong, you want to display the error message associated with whatever
the problem was:

capture {
code continues

¥

local rc=_rc preserve return code from capture

cleanup code

error ‘rc’ present error message and exit if necessary

code could continue

Usually, one hopes that the return code will be zero so that error does nothing.

188

error — Display generic error message and exit 189

You can interrogate the built-in variable _rc to determine the type of error that occurred and then
take the appropriate action. Also see [U] 16.1.4 Error handling in do-files.

The return codes are numerically grouped, which is a feature that you may find useful when you
are writing programs. The groups are

Return codes Meaning

1-99 sundry “minor” errors
100-199 syntax errors
300-399 failure to find previously stored result
400-499 statistical problems
500-599 matrix-manipulation errors
600-699 file errors
700-799 operating-system errors
900-999 insufficient-memory errors
1000—-1999 system-limit-exceeded errors
2000-2999 nonerrors (continuation of 400-499)
3000-3999 Mata run-time errors; see [M-2] Errors for codes
4000-4999 class system errors
7100-7199 Python run-time errors; see Error codes in [P] PyStata integration

9000-9999 system-failure errors

Summary

1. You pressed Break. This is not considered an error.

2. connection timed out -- see help r(2) for troubleshooting
An Internet connection has timed out. This can happen when the initial attempt to make a connection over the
Internet has not succeeded within a certain time limit. You can change the time limit that Stata uses under this
condition by typing set timeoutl #seconds. Or, the initial connection was successful, but a subsequent attempt
to send or receive data over the Internet has timed out.

3. no dataset in use
You attempted to perform a command requiring data and have no data in memory.

4. no; dataset in memory has changed since last saved
You attempted to perform a command that would substantively alter or destroy the data, and the data have not
been saved, at least since the data were last changed. If you wish to continue anyway, add the clear option to
the end of the command. Otherwise, save the data first.

5. not sorted
master data not sorted
using data not sorted
The observations of the data are not in the order required. To solve the problem, use sort to sort the data then
reissue the command; see [D] sort.

In the second and third cases, both the dataset in memory and the dataset on disk must be sorted by the variables
specified in the varlist of merge before they can be merged. merge automatically sorts the datasets for you, unless
you specify the sorted option. You specified sorted, but your dataset is not sorted on the variables in varlist.
Do not specify sorted.

6. Return code from confirm existence when string does not exist.

7. ¢’ found where _____ expected
You are using a program that is using the confirm command to verify that what you typed makes sense. The
messages indicate what you typed and what the program expected to find instead of what you typed.

9. assertion is false
no action taken
Return code and message from assert when the assertion is false; see [D] assert.
¢«

Or, you were using mvencode and requested that Stata change ‘.’ to # in the specified varlist, but # already
existed in the varlist, so Stata refused; see [D] mvencode.

190 error — Display generic error message and exit

18.

100.

101.

102.

103.

104.

106.

107.

108.

109.

110.

you must start with an empty dataset

The command (for example, infile) requires that no data be in memory—you must drop —all first. You are
probably using infile to append additional data to the data in memory. Instead, save the data in memory, drop
—all, infile the new data, and then append the previously saved data; see [D] append.

varlist required

= exp required

using required

by() option required

Certain commands require a varlist or another element of the language. The message specifies the required item
that was missing from the command you gave. See the command’s syntax diagram. For example, merge requires
using to be specified; perhaps you meant to type append. Or, ranksum requires a by () option; see [R] ranksum.

varlist not allowed

weights not allowed

in range not allowed

if not allowed

= exp not allowed

using not allowed

Certain commands do not allow an if qualifier or other elements of the language. The message specifies which
item in the command is not allowed. See the command’s syntax diagram. For example, append does not allow a
varlist; perhaps you meant to type merge.

too few variables specified
The command requires more variables than you specified. For instance, stack requires at least two variables. See
the syntax diagram for the command.

too many variables specified
The command does not allow as many variables as you specified. For example, tabulate takes only one or two
variables. See the syntax diagram for the command.

nothing to input
You gave the input command with no varlist. Stata will input onto the end of the dataset, but there is no existing
dataset here. You must specify the variable names on the input command.

variable is in master but _______ in using data

You have attempted to append two datasets, but there is a string or numeric mismatch for one of the variables. The
first blank is filled in with a variable name, and the second and third blanks are filled in with a storage type (byte,
int, long, float, double, str#, or strL). You could specify append’s force option to ignore the mismatch.
If the str# type is in the master data, the using variable would then be treated as if it contained "". If the str#
type is in the using data, the using variable would then be treated as if it contained numeric missing value.

key variable ______ is strL in using data

You have attempted to merge two datasets, but one of the key variables is a strL. The blank is filled in with
the variable name. The key variables—the variables on which observations are matched—can be str#, but they
cannot be strLs.

not possible with numeric variable
You have requested something that is logically impossible with a numeric variable, such as encoding it. Perhaps
you meant another variable or typed encode when you meant decode.

not possible with string variable
You have requested something that is logically impossible with a string variable, such as decoding it. Perhaps you
meant another variable or typed decode when you meant encode.

type mismatch
In an expression, you attempted to combine a string and numeric subexpression in a logically impossible way. For
instance, you attempted to subtract a string from a number or you attempted to take the substring of a number.

_ already defined

A variable or a value label has already been defined, and you attempted to redefine it. This occurs most often
with generate. If you really intend to replace the values, use replace. If you intend to replace a value label,
specify the replace option with the label define command. If you are attempting to alter an existing label,
specify the add or modify option with the label define command.

error — Display generic error message and exit 191

111.

119.

120.

not found
no variables defined
The variable does not exist. You may have mistyped the variable’s name.

variables out of order

You specified a varlist containing varnamel-varname2, yet varnamel occurs after varname2. Reverse the order of
the variables if you did not make some other typographical error. Remember, varnamel-varname?2 is taken by
Stata to mean varnamel, varname2, and all the variables in dataset order in between. Type describe to see the
order of the variables in your dataset.

not found in using data
You specified a varlist with merge, but the variables on which you wish to merge are not found in the using
dataset, so the merge is not possible.

ambiguous abbreviation
You typed an ambiguous abbreviation for a variable in your data. The abbreviation could refer to more than one
variable. Use a nonambiguous abbreviation, or if you intend all the variables implied by the ambiguous abbreviation,
append a ‘*’ to the end of the abbreviation.

statement out of context
This is the generic form of this message; more likely, you will see messages such as “may not streset after . . .
You have attempted to do something that, in this context, is not allowed or does not make sense.

2

invalid %format
You specified an invalid % fmz; see [U] 12.5 Formats: Controlling how data are displayed.

Return codes 121-127 are errors that might occur when you specify a numlist. For details about numlist, see
[U] 11.1.8 numlist.

121.
122.
123.
124.
125.
126.
127.
130.

131.

132.

133.

134.

invalid numlist

invalid numlist has too few elements

invalid numlist has too many elements

invalid numlist has elements out of order

invalid numlist has elements outside of allowed range
invalid numlist has noninteger elements

invalid numlist has missing values

expression too long

too many SUMs

In the first case, you specified an expression that is too long for Stata to process—the expression contains more
than 249 pairs of nested parentheses or more than 800 dyadic operators. Break the expression into smaller parts.
In the second case, the expression contains more than 5 sum() functions. This expression, too, will have to be
broken into smaller parts.

not possible with test
You requested a test of a hypothesis that is nonlinear in the variables. test tests only linear hypotheses. Use
testnl.

too many ’(’ or ’[’
too many ’)’ or ’]’
You specified an expression with unbalanced parentheses or brackets.

unknown function ()

You specified a function that is unknown to Stata; see Stata Functions Reference Manual. Or you may have
meant to subscript a variable and accidentally used parentheses rather than square brackets; see [U] 13.7 Explicit
subscripting.

too many values

1) You attempted to encode a string variable that takes on more than 65,536 unique values. 2) You attempted
to tabulate a variable or pair of variables that take on too many values. If you specified two variables, try
interchanging them. 3) You issued a graph command using the by option. The by-variable takes on too many
different values to construct a readable chart.

192 error — Display generic error message and exit

135.

140.

141.

145.

147.

148.

149.

151.

152.

153.

161.

162.

170.

175.

180.

181.

182.

not possible with weighted data
You attempted to predict something other than the prediction or residual, but the underlying model was weighted.
Stata cannot calculate the statistic you requested using weighted data.

repeated categorical variable in term

At least one of the terms in your anova model or test statement has a repeated categorical variable, such as
reg#div#reg. Either you forgot to specify that the variable is continuous or the second occurrence of the variable
iS unnecessary.

repeated term
In the list of terms in your anova model or test statement is a duplicate of another term, although perhaps
ordered differently. For instance, X#A#X and A#X#X. Remove the repeated term.

term contains more than 8 variables
One of the terms in your anova model test statement contains more than eight variables. Stata cannot fit such
models.

term not in model
Your test command refers to a term that was not contained in your anova model.

too few categories
You attempted to run a command that required specifying the number of groups, and the number specified was too
small. For instance, you attempted to run the brier command and specified group (#), where # is less than 2.

too many categories
You attempted to fit an mprobit or slogit model with a dependent variable that takes on more than 30 categories.

non r-class program may not set r()
Perhaps you specified return local in your program but forgot to declare the program rclass in the program
define statement.

non e-class program may not set e()
Perhaps you specified estimates local in your program but forgot to declare the program eclass in the program
define statement.

non s-class program may not set s()
Perhaps you specified sreturn local in your program but forgot to declare the program sclass in the program
define statement.

ado-file has commands outside of program define ...end

All commands in ado-files must be part of Stata programs. That is, all commands must be between a program
define that begins a program definition and an end that concludes a program definition. The command you typed
automatically loaded an ado-file that violates this rule.

ado-file does not define command
xyz.ado is supposed to define xyz and, perhaps, subroutines for use by xyz, in which case file xyz.ado did not
define anything named xyz.

unable to chdir
(Unix and Mac.) cd was unable to change to the directory you typed because it does not exist, it is protected, or
it is not a directory.

factor level out of range
You specified an invalid value for the level of a factor variable.

invalid attempt to modify label

You are attempting to modify the contents of an existing value label by using the label define command. If you
mean to completely replace the existing label, specify the replace option with the label define command. If
you wish to modify the existing label, be sure to specify either the add option or the modify option on the label
define command. add lets you add new entries but not change existing ones, and modify lets you do both. You
will get this error if you specify add and then attempt to modify an existing entry. Then edit the command and
substitute modify for the add option.

may not label strings
You attempted to assign a value label to a string variable, which makes no sense.

not labeled
The indicated variable has no value label, yet your request requires a labeled variable. You may, for instance, be
attempting to decode a numeric variable.

error — Display generic error message and exit 193

184.

190.

191.

196.

197.

198.

199.

301.

302.

303.

304.

305.

310.

options and may not be combined
For instance, you issued the regress command and tried to specify both the beta and the vce(cluster clustvar)
options.

request may not be combined with by

Certain commands may not be combined with by, and you constructed such a combination. See the syntax diagram
for the command.

in may not be combined with by

in may never be combined with by. Use if instead; see [U] 11.5 by varlist: construct.

request may not be combined with by() option
Certain commands may not be combined with the by () option, and you constructed such a combination. See the
syntax diagram for the command.

in may not be combined with by
in may never be combined with by. Use if instead; see [U] 11.5 by varlist: construct.

could not restore sort order because variables were dropped
You ran an ado-file program that has an error, and the program dropped the temporary marker variables that allow
the sort order to be restored.

invalid syntax
This error is produced by syntax and other parsing commands when there is a syntax error in the use of the
command itself rather than in what is being parsed.

invalid syntax
option _______ incorrectly specified
option ___ not allowed
invalid
range invalid
invalid obs no
invalid filename
invalid varname
— invalid name
multiple by’s not allowed
found where number expected
on or off required
All items in this list indicate invalid syntax. These errors are often, but not always, due to typographical errors.
Stata attempts to provide you with as much information as it can. Review the syntax diagram for the designated
command.

In giving the message “invalid syntax”, Stata is not helpful. Errors in specifying expressions often result in this
message.

unrecognized command
Stata failed to recognize the command, program, or ado-file name, probably because of a typographical or abbreviation
error.

last estimates not found
You typed an estimation command, such as regress, without arguments or attempted to perform a test or typed
predict, but there were no previous estimation results.

last test not found
You have requested the redisplay of a previous test, yet you have not run a test previously.

equation not found

You referred to a coefficient or stored result corresponding to an equation or outcome that cannot be found. For
instance, you estimated an mlogit model and the outcome variable took on the values 1, 3, and 4. You referred
to [2] -b[var] when perhaps you meant [#2]_b[var] or [3]_b[var].

ml model not found
You have used mleval, mlsum, or mlmatsum without having first used the other m1 commands to define the model.

ml model not found

Same as 304.

not possible because object(s) in use
This can occur with mata describe and mata drop and indicates that the objects referred to cannot be described
or eliminated because an earlier iteration of Mata is currently using them.

194 error — Display generic error message and exit

321.

322.

399.

401.

402.

404.

406.

407.

409.

411.

412.

416.

420.

421.

422.

430.

requested action not valid after most recent estimation command
This message can be produced by predict or test and indicates that the requested action cannot be performed.

something that should be true of your estimation results is not
This error is used by prefix commands and postestimation commands to indicate that the estimation command
returned an unexpected result and that the prefix or postestimation command does not know how to proceed.

may not drop constant
You issued a logistic or logit command and the constant was dropped. Your model may be underidentified;
try removing one or more of the independent variables.

may not use noninteger frequency weights

You specified an fweight frequency weight with noninteger weights, telling Stata that your weights are to be
treated as replication counts. Stata encountered a weight that was not an integer, so your request made no sense.
You probably meant to specify aweight analytic weights; see [U] 11.1.6 weight.

negative weights encountered

negative weights not allowed

You specified a variable that contains negative values as the weighting variable, so your request made no sense.
Perhaps you meant to specify another variable.

not possible with pweighted data

You requested a statistic that Stata cannot calculate with pweighted data, either because of a shortcoming in Stata
or because the statistics of the problem have not been worked out. For example, perhaps you requested the standard
error of the Kaplan—Meier survival curve, and you had previously specified pweight when you stset your data
(a case where no one has worked out the statistics).

not possible with analytic weights
You specified a command that does not allow analytic weights. See the syntax diagram for the command to see
which types of weights are allowed.

weights must be the same for all observations in a group

weights not constant for same observation across repeated variables

For some commands, weights must be the same for all observations in a group for statistical or computational
reasons. For the anova command with the repeated() option, weights must be constant for an observation across
the repeated variables.

no variance
You were using lnskewO or bcskewO, for instance, but the exp that you specified has no variance.

nonpositive values encountered
has negative values
time variable has negative values
For instance, you have used ztest and specified a negative value for the standard deviation in option sd().
Or perhaps you were using ltable and specified a time variable that has negative values.

redundant or inconsistent constraints

For instance, you are estimating a constrained model with mlogit. Among the constraints specified is at least one
that is redundant or inconsistent. A redundant constraint might constrain a coefficient to be zero that some other
constraint also constrains to be zero. An inconsistent constraint might constrain a coefficient to be 1 that some
other constraint constrains to be zero. List the constraints, find the offender, and then reissue the mlogit command
omitting it.

missing values encountered
You specified a variable with missing values in a place where Stata does not allow missing values.

groups found, 2 required
You used a command (such as ttest), and the grouping variable you specified does not take on two unique values.

could not determine between-subject error term; use bse() option
You specified the repeated() option to anova, but Stata could not automatically determine certain terms that are
needed in the calculation; see [R] anova.

could not determine between-subject basic unit; use bseunit() option
You specified the repeated() option to anova, but Stata could not automatically determine certain terms that are
needed in the calculation; see [R] anova.

convergence not achieved
You have estimated a maximum likelihood model, and Stata’s maximization procedure failed to converge to a
solution; see [R] Maximize. Check if the model is identified.

error — Display generic error message and exit 195

450.

451.

452.

459.

460.

461.

462.

463.

464.

465.

466.

467.

471.

480.

481.

482.

491.

is not a 0/1 variable
invalid number of successes
invalid success probability

takes on___ values, not 2
You have used a command, such as bitest, that requires the variable take on only the values 0, 1, or missing,
but the variable you specified does not meet that restriction. (You can also get this message from, for example,
bitesti, when you specify a number of successes greater than the number of observations or a probability not
between 0 and 1.)

invalid values for time variable
For instance, you specified mytime as a time variable, and mytime contains noninteger values.

invalid values for factor variable
You specified a variable that does not meet the factor-variable restrictions. Factor variables are assumed to take on
only nonnegative integer values.

something that should be true of your data is not

data have changed since estimation

This is the generic form of this message; more likely, you will see messages such as “y must be between O and
1” or “x not positive”. You have attempted to do something that, given your data, does not make sense.

¢

fpc must be >= 0
There is a problem with your fpc variable; see [SVY] svyset.

fpc for all observations within a stratum must be the same
There is a problem with your fpc variable; see [SVY] svyset.

fpc must be <= 1 if a rate, or >= no. sampled PSUs per stratum if PSU totals
There is a problem with your fpc variable; see [SVY] svyset.

sum of weights equals zero
sum of weights for subpopulation equals zero
When weights sum to zero, the requested statistic cannot be computed.

poststratum weights must be constant within poststrata
You have svyset your data and specified the poststrata() and postweight () options. The variable containing
poststratum population sizes must be constant within each poststratum to be valid.

poststratum weights must be >= 0
You have svyset your data and specified the postweight() option. Poststratum population sizes cannot be
negative.

standardization weights must be constant within standard strata
You are using the mean, proportion, or ratio command, and you specified the stdweight () option. The weight
variable for standardization must be constant within each standard stratum.

standardization weights must be >= 0
You are using the mean, proportion, or ratio command, and you specified the stdweight() option. The
standardization weights cannot be negative.

esample() invalid
This concerns ereturn post. The varname variable specified by the esample(varname) option must contain
exclusively 0 and 1 values (never, for instance, 2 or missing). varname contains invalid values.

starting values invalid or some RHS variables have missing values
You were using nl and specified starting values that were infeasible, or you have missing values for some of your
independent variables.

equation/system not identified
cannot calculate derivatives
You were using reg3, for instance, and the system that you have specified is not identified.

You specified an nl fen for which derivatives cannot be calculated.

nonpositive value(s) among —_, cannot log transform
You specified an 1nlsq option in nl that attempts to take the log of a nonpositive value.

could not find feasible values

You are using ml and it could not find starting values for which the likelihood function could be evaluated. You
could try using ml search with the repeat() option to randomly try more values, or you could use ml init to
specify valid starting values.

196 error — Display generic error message and exit

498.

499.

501.

503.

504.

505.

506.

507.

508.

509.

601.

602.

603.

604.

606.

various messages
The statistical problem described in the message has occurred. The code 498 is not helpful, but the message is
supposed to be. Return code 498 is reserved for messages that are unique to a particular situation.

various messages
The statistical problem described in the message has occurred. The code 499 is not helpful, but the message is
supposed to be. Return code 499 is reserved for messages that are unique to a particular situation.

matrix operation not found
You have issued an unknown matrix subcommand or used matrix define with a function or operator that is
unknown to Stata.

conformability error

You have issued a matrix command attempting to combine two matrices that are not conformable, for example,
multiplying a 3x2 matrix by a 3x3 matrix. You will also get this message if you attempt an operation that requires
a square matrix and the matrix is not square.

matrix has missing values
This return code is now infrequently used because, beginning with version 8, Stata now permits missing values in
matrices.

matrix not symmetric

You have issued a matrix command that can be performed only on a symmetric matrix, and your matrix is not
symmetric. While fixing their code, programmers are requested to admire our choice of the “symmetric” number
505—it is symmetric about the zero—for this error.

matrix not positive definite
You have issued a matrix command that can be performed only on a positive-definite matrix, and your matrix is
not positive definite.

name conflict
You have issued a matrix post command, and the variance—covariance matrix of the estimators does not have
the same row and column names, or if it does, those names are not the same as for the coefficient vector.

matrix has zero values

matrix has zero values on diagonal

matrix has zero or negative values

matrix has zero or negative values on diagonal

A matrix is being used or produced that has zero or negative values where it should not. For instance, you used
the matrix sweep() function, but the matrix had zero values on the diagonal.

matrix operators that return matrices not allowed in this context

Expressions returning nonmatrices, such as those in generate and replace, may use matrix functions returning
scalars, such as trace(A), but may not include subexpressions evaluating to matrices, such as trace (A+B), which
requires evaluating the matrix expression A + B. (Such subexpressions are allowed in the context of expressions
returning matrices, such as those in matrix.)

file _ not found

The filename you specified cannot be found. Perhaps you mistyped the name, or it may be on another CD or
directory. If you are a Mac user, perhaps you had an unintentional blank at the beginning or ending of your
filename when it was created. In Finder, click on the file to blacken the name. If you see anything other than a
thin, even space on each side of the name, rename the file to eliminate the leading and trailing space characters.

file ____ already exists
You attempted to write over a file that already exists. Stata will never let you do this accidentally. If you really
intend to overwrite the previous file, reissue the last command, specifying the replace option.

file ______ could not be opened

The file, although found, could not be opened. Check to see if it is currently open in another application or, if it
is a file on your network, it is being used by another person. If it is not in use, check to see if the file is in a
directory where you are allowed to create files.

log file already open
You attempted to open a log file when one is already open. Perhaps you forgot that you have the file open or
forgot to close it.

no log file open
You have attempted to close, turn on, or turn off logging when no log file was open. Perhaps you forgot to
open the log file.

error — Display generic error message and exit 197

607.

608.

609.

610.

611.

612.

613.

614.

616.

621.

622.

no cmdlog file open
You have attempted to close, turn on, or turn off logging when no cmdlog file was open. Perhaps you forgot
to open the cmdlog file.

file is read-only; cannot be modified or erased
The operating system has the file marked as read-only, meaning that changes cannot be made.

file xp format
The designated file is stored in an unsupported cross-product format.

file _____ not Stata format
The designated file is not a Stata-format file. This occurs most often with use, append, and merge. You probably
typed the wrong filename.

record too long

You have attempted to process a record that exceeds 524,275 characters by using formatted infile (that is, infile
with a dictionary). When reading formatted data, records may not exceed this maximum. If the records are not
formatted, you can read these data by using the standard infile command (that is, without a dictionary). There
is no maximum record length for unformatted data.

unexpected end of file
You used infile with a dictionary, and the file containing the dictionary ended before the ‘}’ character. Perhaps
you forgot to type the closing brace, or perhaps you are missing a hard return at the end of your file. You may

also get this message if you issued the command #delimit ; in a do-file and then subsequently forgot to use °;
before the ‘end’ statement.

file does not contain dictionary

You used infile with a dictionary, yet the file you specified does not begin with the word ‘dictionary’. Perhaps
you are attempting to infile data without using a dictionary and forgot to specify the varlist on the infile
command. Or you forgot to include the word dictionary at the top of the dictionary file or typed DICTIONARY
in uppercase.

dictionary invalid

You used infile with a dictionary, and the file appears to contain a dictionary. Nevertheless, you have made some
error in specifying the dictionary, and Stata does not understand your intentions. The contents of the dictionary are
listed on the screen, and the last line is the line that gave rise to the problem.

wrong number of values in checksum file
The checksum file being used to verify integrity of another file does not contain values in the expected checksum
format.

already preserved
You specified preserve, but you have already preserved the data.

nothing to restore
You issued the restore command, but you have not previously specified preserve.

Return codes 630-696 are all messages that you might receive when executing any command with a file over the

network.

631. host not found

632. web filename not supported in this context

633. may not write files over Internet

639. file transmission error (checksums do not match)

640. package file too long

641. package file invalid

651. may not seek past end of file
may not seek in write-append file
You may not seek past the end of a file; if your desire is to increase the file’s length, you must seek to the end
and then write.

660. proxy host not found

The host name specified as a proxy server cannot be mapped to an IP address. Type query to determine the host
you have set.

198 error — Display generic error message and exit

662.

663.

665.
667.
668.
669.
670.
671.
672.

673.
674.
675.
676.
6717.

678.
681.
682.

683.

688.
691.

692.
693.

proxy server refused request to send
Stata was able to contact the proxy server, but the proxy server refused to send data back to Stata. The proxy host
or port specified may be incorrect. Type query to determine your settings.

remote connection to proxy failed -- see help r(663) for troubleshooting

Although you have set a proxy server, it is not responding to Stata. The likely problems are that you specified
the wrong port, you specified the wrong host, or the proxy server is down. Type query to determine the host and
port that you have set.

could not set socket nonblocking
wrong version winsock.dll

could not find a valid winsock.dll
invalid URL

invalid network port number
unknown network protocol

server refused to send file

If your computer is on a network, then more than likely your computer is behind a firewall. To get Internet access
from within Stata, you will have to contact your network administrator and get the network proxy address and port.
Once you have the proxy information, open Stata, and in your Stata menu bar click on Prefs and then General
Preferences. Under the Internet Prefs tab, check the box labeled Use HTTP Proxy and fill in the appropriate IP
and port settings. If you have to enter a username and password to get Internet access, check the box labeled Use
HTTP Proxy Authorization and fill in your username and password.

If your proxy information is entered into Stata correctly and you are still having troubles updating Stata, make
sure that your firewall is caching the Stata website correctly. Sometimes at large corporate sites, there are firewalls
and caching proxy servers that can interfere with some of the download operations of Stata. The error 672 in
Stata is “server refused to send file”, which can come if the proxy server is caching information locally and not
directly forwarding the packets on to our web server. Ask your network administrators if they can trace whether
your update requests from Stata are making it to our web server or if they are stopping at your firewall.

authorization required by server
unexpected response from server
server reported server error
server refused request to send

remote connection failed -- see help r(677) for troubleshooting
You requested that something be done over the web, but Stata could not contact the specified host. Perhaps the
host is down; try again later.

If all your web access results in this message, perhaps your network connection is via a proxy server. If it is, you
must tell Stata. Contact your system administrator and ask for the name and port of the “http proxy server”. See
https://www.stata.com/support/tech-support/contact/ for Stata contact information.

could not open local network socket
too many open files

could not connect to odbc dsn
This typically occurs because of incorrect permissions, such as a bad User Name or Password. Use set debug
on to display the actual error message generated by the ODBC driver.

could not fetch variable in odbc table
This error usually occurs when a requested variable is not found in the current ODBC data table. Other scenarios
can generate this error, however, so use set debug on to display the error message generated by the ODBC driver.

file is corrupt

I/0 error
A filesystem error occurred during input or output. This typically indicates a hardware or operating system failure,
although it is possible that the disk was merely full and this state was misinterpreted as an I/O error.

file I/0 error on read

file I/0 error on write

https://www.stata.com/support/tech-support/contact/

error — Display generic error message and exit 199

694.

695.

696.
699.

702.
703.
791.
900.

901.

902.

903.

907.

909.

910.

912.

913.

914.

915.

could not rename file
The file is in a directory that is marked by the operating system as read-only, and therefore files in that directory
cannot be modified.

could not copy file
You tried to perform an update swap but Stata could not make a backup copy of the Stata executable, so the
update was not performed.

is temporarily unavailable

insufficient disk space
You ran out of disk space while writing a file to disk. The file is now closed and is probably erased. Review your
operating system documentation to determine how to proceed.

op. sys. refused to start new process
op. sys. refused to open pipe
system administrator will not allow you to change this setting

no room to add more variables
Stata just attempted to exceed the maximum number of variables allowed. If you are using Stata/SE or Stata/MP,
you can reset this maximum number; see [D] memory. For Stata/BE, the maximum number is fixed at 2,048.

no room to add more observations
Stata just attempted to exceed the maximum number of observations allowed. This maximum number is
1,099,511,627,775 for Stata/MP and 2,147,483,619 for Stata/SE and Stata/BE.

no room to add more variables because of width
Width refers to the number of bytes required to store a single observation; it is the sum of the widths of the
individual variables. You just attempted to exceed the maximum width. Try typing compress; see [D] compress.

no room to promote variable (e.g., change int to float) because of width
Width refers to the number of bytes required to store a single observation; it is the sum of the widths of the
individual variables. You just attempted to exceed the maximum width. Try typing compress; see [D] compress.

maxvar too small
You have attempted to use an interaction with too many levels or attempted to fit a model with too many variables.
You need to increase maxvar. Use set maxvar; see [D] memory.

If you are using factor variables and included an interaction that has numerous missing cells, either increase maxvar
or set emptycells drop to reduce the required matrix size; see [R] set emptycells.

If you are using factor variables, you might have accidentally treated a continuous variable as a categorical, resulting
in lots of categories. Use the c. operator on such variables.

op. sys. refuses to provide memory

The message above can vary.

Stata was unable to allocate more memory, either because the operating system refused or because of Stata’s
max_memory setting (see [D] memory). The message will provide the details.

value too small
You attempted to change the size of memory but specified values for memory, maximum observations, maximum
width, or maximum variables that are too small. Stata wants to allocate a minimum of 300 K.

value too large
You attempted to change the size of memory but specified values for memory, maximum observations, maximum
width, or maximum variables that are too large.

op. sys. refuses to provide sufficient memory

The message above can vary.

You attempted to set segmentsize, and the operating system was unable to provide sufficient memory. The
message will provide the details.

op. sys. refused to allow Stata to open a temporary file

To honor your request for memory, Stata needed to open a temporary disk file, and the operating system said that
it could not do so. This most often occurs under Unix, and then the text of the error message provided more
information on how to repair the problem.

unable to allocate matrix
You have attempted to create a matrix with too many rows or columns or attempted to fit a model with too many
variables.

200 error — Display generic error message and exit

916.

920.

950.

1000.

1001.

1002.

1003.

1004.

1400.

2000.

2001.

3000—

You are using Stata/BE which supports matrices with up to 800 rows or columns. See limits for how many more
rows and columns Stata/SE and Stata/MP can support.

If you are using factor variables and included an interaction that has lots of missing cells, try set emptycells
drop to reduce the required matrix size; see help set emptycells.

If you are using factor variables, you might have accidentally treated a continuous variable as a categorical, resulting
in lots of categories. Use the c. operator on such variables.

unable to allocate matrix
You have attempted to create a matrix with too many rows or columns or attempted to fit a model with too many
variables.

Assuming that you are not playing with set max_memory, your system administrator froze the max_memory setting
at its current value. Contact your system administrator if you need to change this setting.

If you are using factor variables and included an interaction that has lots of missing cells, try set emptycells
drop to reduce the required matrix size; see help set emptycells.

If you are using factor variables, you might have accidentally treated a continuous variable as a categorical, resulting
in lots of categories. Use the c. operator on such variables.

too many macros

You specified a line containing recursive macro substitutions. An example of single-level recursion is referring to
"$this" when $this contains "$that" and $that contains "result". The result of evaluating "$this" is to
produce "result". Double-level recursion would be when $this contains "$that" and $that contains "$what"
and $what contains "result". Error 920 arises when the recursion level is greater than 20.

Error 920 also arises if macro substitution would result in text longer than the maximum number of characters
allowed in a macro. See [R] Limits.

insufficient memory
There is insufficient memory to fulfill the request. Type discard, press Return, and try the command again. If
that fails, consider dropping value labels, variable labels, or macros.

system limit exceeded - see manual
See [R] Limits.

too many values

You have attempted to create a table that has too many rows or columns. For a one-way table, the maximum
number of rows is 12,000 for Stata/MP and Stata/SE and 3,000 for Stata/BE. For a two-way table, the maximum
number of rows and columns is 1,200 by 80 for Stata/MP and Stata/SE and 300 by 20 for Stata/BE. Thus tabulate
y x may not result in too many values even if tabulate x y does.

too many by variables
The number of by variables exceeded 32,766 for Stata/MP or Stata/SE, or 2,048 for Stata/BE. You cannot exceed
these maximums.

too many options
The number of options specified exceeded 256. You cannot exceed this maximum.

command too long

You attempted to issue a Stata command in a do-file, ado-file, or program, and the command exceeded 264,408
characters for Stata/BE. For Stata/MP and Stata/SE, the limit is 33*c(max_k_theory) + 216, which for the default
setting of 5,000 is 165,216.

numerical overflow

You have attempted something that, in the midst of the necessary calculations, has resulted in something too large
for Stata to deal with accurately. Most commonly, this is an attempt to estimate a model (say, with regress) with
too many effective observations. This effective number could be reached with far fewer observations if you were
running a frequency-weighted model.

no observations
You have requested some statistical calculation and there are no observations on which to perform it. Perhaps you
specified if or in and inadvertently filtered all the data.

insufficient observations
You have requested some statistical calculation, and although there are some observations, the number is not
sufficient to carry out your request.

3999. Mata run-time errors; see [M-2] Errors for codes.

error — Display generic error message and exit 201

4000—-4999. Class system errors; see [P] class for information on the class system.
7100-7199. Python run-time errors; see Error codes in [P] PyStata integration.

9xxx. Various messages, all indicating an unexpected system failure. You should never see such a message. If one occurs,
save your data, and exit Stata immediately. Please email tech-support@stata.com to report the problem.

Other messages

no observations

insufficient observations

You have requested something when there are either no observations or insufficient observations in memory to
carry forth your request.

(___ not found)
You referred to the indicated value name in an expression, and no such value label existed. A missing value was
substituted.

(eof before end of obs)

infile was reading your data and encountered the end-of-file marker before it had completed reading the current
observation. Missing values are filled in for the remaining variables. This message indicates that the dataset may
contain more or fewer variables than you expected.

(_—__ missing values generated)
The command created the indicated number of missing values. Missing values occur when a mathematical operation
is performed on a missing value or when a mathematical operation is infeasible.

(file — not found)
You specified the replace option on a command, yet no such file was found. The file was saved anyway.

(variable was , now to accommodate using data’s values)

Occurs during append or merge when there is a type mismatch between the data in memory and the data on
disk. The first blank is filled in with a variable name, and the second and third blanks with a storage type (byte,
int, long, float, double, or str#, or strL). For instance, you might receive the message “variable myvar was
str5, now strL to accommodate using data’s values”. This means that myvar is of type strb in the master dataset
and of type strL in the using dataset.

(label __ already defined)

Occurs during append or merge. The using dataset has a label definition for one of its variables. A label with
the same name exists in the master dataset. Thus you are warned that the label already exists, and the previous
definition (the one from the master dataset) is retained.

(note: hascons false)
You specified the hascons option on regress, yet an examination of the data revealed that there is no effective
constant in your varlist. Stata added a constant to your regression.

real changes made
You used replace. This is the actual number of changes made to your data, not counting observations that already
contained the replaced value.

was now

Occurs during replace, append, or merge. The first blank is filled in with a variable name, and the second and
third blanks are filled in with a numeric storage type (byte, int, long, float, or double). For instance, you
might receive the message “myvar was byte now float”. Stata automatically promoted myvar to a float to prevent
truncation.

202 error — Display generic error message and exit

Also see
[P] break — Suppress Break key

[P] capture — Capture return code

[P] exit — Exit from a program or do-file

[R] search — Search Stata documentation and other resources
[U] 16.1.4 Error handling in do-files

Title

estat programming — Controlling estat after community-contributed commands

Description Remarks and examples Also see

Description

Programmers of estimation commands can customize how estat works after their commands. If
you want to use only the standard estat subcommands, ic, summarize, and vce, you do not need
to do anything; see [R] estat. Stata will automatically handle those cases.

Remarks and examples

Remarks are presented under the following headings:

Standard subcommands
Adding subcommands to estat
Overriding standard behavior of a subcommand

Standard subcommands

For estat to work, your estimation command must be implemented as an e-class program, and
it must store its name in e(cmd).

estat vce requires that the covariance matrix be stored in e (V), and estat summarize requires
that the estimation sample be marked by the function e (sample). Both requirements can be met by
using ereturn post with the esample() option in your program; see [P] ereturn.

Finally, estat ic requires that your program store the final log likelihood in e(11) and the
sample size in e (N). If your program also stores the log likelihood of the null (constant only) model
in e(11_0), it will appear in the output of estat ic, as well.

Adding subcommands to estat

To add new features (subcommands) to estat for use after a particular estimation command, you
write a handler, which is nothing more than an ado-file command. The standard is to name the new
command cmd_estat, where cmd is the name of the corresponding estimation command. For instance,
the handler that provides the special estat features after regress is named regress_estat, and
the handler that provides the special features after pca is named pca_estat.

Next you must let estat know about your new handler, which you do by filling in e (estat_cmd)
in the corresponding estimation command. For example, in the code that implements pca is the line

ereturn local estat_cmd "pca_estat"
Finally, you must write cmd_estat. The syntax of estat is

estat subcmd ...
When the estat command is invoked, the first and only thing it does is call ‘e(estat_cmd)’ if
‘e(estat_cmd)’ exists. This way, your handler can even do something special in the standard cases,

if that is necessary. We will get to that, but in the meantime, understand that the handler receives
just what estat received, which is exactly what the user typed. The outline for a handler is

203

204 estat programming — Controlling estat after community-contributed commands

begin cmd_estat.ado

program cmd_estat, rclass
version 18.0

if "‘e(emd)’" !'= "cmd" {
error 301

}

gettoken subcmd rest : O, parse(" ,")

if "‘subcmd’"=="first_special_subcmd" {
First_special _subcmd ‘rest’

}

else if "‘subcmd’"=="second_special_subcmd" {
Second_special_subcmd ‘rest’

}

else {
estat_default ‘0’

}

return add
end

program First_special_subcmd, rclass
syntax ...
end

program Second_special_subcmd, rclass
syntax ...

end

end cmd_estat.ado
The ideas underlying the above outline are simple:
1. You check that e (cmd) matches cmd.

2. You isolate the subcmd that the user typed and then see if it is one of the special cases that you
wish to handle.

3. If subcmd is a special case, you call the code you wrote to handle it.
4. If subcmd is not a special case, you let Stata’s estat_default handle it.

When you check for the special cases, those special cases can be new subcmds that you wish to add,
or they can be standard subcmds whose default behavior you wish to override.

> Example 1

Suppose that we have written the estimation command myreg and want the estat subcommands
fit and sens to work after it, in addition to the standard subcommands. Moreover, we want to be
able to abbreviate sens as se or sen. The following code fragment illustrates the structure of our
myreg_estat handler program:

estat programming — Controlling estat after community-contributed commands

205

program

end

program

end

program

end

myreg_estat, rclass
version 18.0

gettoken subcmd rest : O , parse(", ")
local 1lsubcmd= length("‘subcmd’")
if "‘subcmd’" == "fit" {
Fit ‘rest’
}
else if "‘subcmd’" == substr("sens",1,max(2,
Sens ‘rest’
}
else {
estat_default ‘0’
}

return add

Fit, rclass
syntax ...

Sens, rclass
syntax ...

begin myreg_estat.ado

‘1subcmd’)) {

Say that we issue the command

estat sen, myoption("Circus peanuts")

end myreg_estat.ado

The only way that the above differs from the standard outline is the complication we added to
handle the abbreviation of subcmd sens. Rather than asking if " ‘subcmd’"=="sens", we asked if
"‘subcmd’ "==substr("sens",1,max(2, ‘lsubcmd’)), where ‘lsubcmd’ was previously filled
in with length(" ‘subcmd’").

Overriding standard behavior of a subcommand

N

Occasionally, you may want to override the behavior of a subcommand normally handled by
estat_default. This is accomplished by providing a local handler. Consider, for example, summa-—
rize after pca. The standard way of invoking estat summarize is not appropriate here—estat
summarize extracts the list of variables to be summarized from e(b). This does not work after
pca. Here the varlist has to be extracted from the column names of the correlation or covariance
matrix e (C). This varlist is transferred to estat summarize (or more directly to estat_summ) as
the argument of the standard estat_summ program.

program Summarize

syntax [, *]
tempname C
matrix ‘C’ = e(C)

end

estat_summ

‘:colnames ‘C’’, ‘options’

206 estat programming — Controlling estat after community-contributed commands

You add the local handler by inserting an additional switch in cmd_estat to ensure that the
summarize subcommand is not handled by the default handler estat_default. As a detail, we
have to make sure that the minimal abbreviation is summarize.

begin pca_estat.ado

program pca_estat, rclass
version 18.0

gettoken subcmd rest : 0 , parse(", ")

local lsubcmd= length("‘subcmd’")

if ‘"‘subcmd’"’ == substr("summarize", 1, max(2, ‘lsubcmd’)) {
Summarize ‘rest’

}

else {
estat_default ‘0’

}

return add
end

program Summarize
syntax ...

end

end pca_estat.ado

Also see

[R] estat — Postestimation statistics

Title

_estimates — Manage estimation results

Description Syntax Options Remarks and examples Stored results Also see
Description

_estimates hold, _estimates unhold, _estimates dir, _estimates clear, and
_estimates drop provide a low-level mechanism for setting aside and later restoring up to 300
estimation results.

_estimates hold moves, or copies if the copy option is specified, all information associated with
the last estimation command into holdname. If holdname is a temporary name, it will automatically
be deleted when you exit from the current program.

_estimates unhold restores the information from the estimation command previously moved
into holdname and eliminates holdname.

_estimates dir lists the holdnames under which estimation results are currently held.

_estimates clear eliminates all set aside results. Also, if the restore option is specified when
the estimates are held, those estimates will be automatically restored when the program concludes. It
is not necessary to perform an _estimates unhold in that case.

_estimates drop eliminates the estimation results stored under the specified holdnames.

_estimates is a programmer’s command designed to be used within programs. estimates is
a user’s command to manage multiple estimation results. estimates uses _estimates to hold
and unhold results, and it adds features such as model-selection indices and looping over results.
Postestimation commands, such as suest and 1lrtest, assume that estimation results are stored using
estimates rather than _estimates.

Syntax
Move estimation results into holdname

—estimates hold holdname [, copy restore nullok varname (newvar)]

Restore estimation results

_estimates unhold holdname [s not]

List names holding estimation results

—estimates dir

Eliminate estimation results

—estimates clear

Eliminate specified estimation results

_estimates drop { holdnames | —_all }

where holdname is the name under which estimation results will be held.

207

208 _estimates — Manage estimation results

Options

copy requests that all information associated with the last estimation command be copied into
holdname. By default, it is moved, meaning that the estimation results temporarily disappear. The
default action is faster and uses less memory.

restore requests that the information in holdname be automatically restored when the program ends,
regardless of whether that occurred because the program exited normally, the user pressed Break,
or there was an error.

nullok specifies that it is valid to store null results. After restoring a null result, no estimation results
are active.

varname (newvar) specifies the variable name under which esample () will be held. If varname ()
is not specified, holdname is used. If the variable already exists in the data, an error message is
shown. This variable is visible to users. If it is dropped, _estimates unhold will not be able to
restore the estimation sample e (sample) and sets e (sample) to 1.

not specifies that the previous _estimates hold, restore request for automatic restoration be
canceled. The previously held estimation results are discarded from memory without restoration,
now or later.

Remarks and examples

_estimates hold and _estimates unhold are typically used in programs and ado-files, although
they can be used interactively. After fitting, say, a regression by using regress, you can replay the
regression by typing regress without arguments, and you can obtain predicted values with predict,
and the like; see [U] 20 Estimation and postestimation commands. This is because Stata stored
information associated with the regression in what we will call the “last estimation results”. The last
estimation results include the coefficient vector and the variance—covariance matrix, as well as the
other e() stored results.

When you type _estimates hold myreg, Stata moves the last estimation results to a holding
area named myreg. After issuing this command, you can no longer replay the regression, calculate
predicted values, etc. From Stata’s point of view, the estimates are gone. When you type _estimates
unhold myreg, however, Stata moves the estimates back. You can once again type regress without
arguments, calculate predicted values, and everything else just as if the last estimation results were
never disturbed.

If you instead type _estimates hold myreg, copy, Stata copies, rather than moves, the results,
meaning that you can still redisplay results. Obviously, you hold estimates because you want to fit
some other model and then get these estimates back, so generally, holding by moving works as well
as holding by copying. Sometimes, however, you may want to hold by copy so that you can modify
the estimates in memory and still retrieve the original.

_estimates — Manage estimation results 209

> Example 1

You could run a regression, hold the results, run another regression, and then unhold the original
results. One method you could use is

regress y x1 x2 x3 (fit first model)

_estimates hold modell (and hold on to it)

regress y x1 x2 x3 x4 (fit the second model)
_estimates hold model2 (and hold on to it, too)

use newdata (use another dataset)
_estimates unhold modell (get the first model)

predict yhatl (predict using first regression)
_estimates unhold model2 (get the second model)
predict yhat2 (predict using second regression)

You are not limited to doing this with regression; you can do this with any estimation command.

d

Q Technical note

Warning: Holding estimation results can tie up considerable amounts of memory, depending on the
kind of model and the number of variables in it. This is why there is a limit of 300 held estimation
results.

a

_estimates dir, _estimates drop, and _estimates clear are utilities associated with
_estimates hold and _estimates unhold. _estimates dir lists the names of held estima-
tion results. _estimates drop drops held estimation results. _estimates clear is equivalent to
_estimates drop _all.

Q Technical note

Despite our interactive example, _estimates hold and _estimates unhold are typically used
inside programs. For instance, linktest fits a model of the dependent variable, the prediction, and
the prediction squared and shows the result. Yet when it is over, the user’s original model remains
as the last estimation result just as if no intervening model had been estimated. 1linktest does this
by holding the original model, performing its task, and then restoring the original model.

In addition to moving Stata’s last estimation result matrices, e (b) and e(V), _estimates hold
and _estimates unhold also move the other e() results. When you hold the current estimates,
e(b), e(V), e(cmd), e(depvar), and the other e () results disappear. When you unhold them, they
are restored.

To avoid naming conflicts, we recommend that estimates be held under a name created by tempvar
or tempname; see [P] macro. Thus the code fragment is

tempvar est

_estimates hold ‘est’
(code including new estimation)
_estimates unhold ‘est’

210 _estimates — Manage estimation results

Estimates held under a temporary name will automatically be discarded when the program ends.
You can also specify _estimates hold’s restore option when you hold the estimates, and then
the held estimates will be restored when the program ends, too.

Stored results
_estimates hold removes the estimation results—e () items.
_estimates unhold restores the previously held e () results.
_estimates clear permanently removes all held e() results.

_estimates dir returns the names of the held estimation results in the local r (names), separated
by single spaces.

_estimates dir also returns r(varnames), which has the corresponding variable names for
esample().

Also see
[P] makecns — Constrained estimation
[P] mark — Mark observations for inclusion
[P] matrix — Introduction to matrix commands
[P] matrix rownames — Name rows and columns
[P] return — Return stored results
[R] estimates — Save and manipulate estimation results
[R] ml — Maximum likelihood estimation
[R] Stored results — Stored results
[U] 13.5 Accessing coefficients and standard errors
[U] 18 Programming Stata

[U] 20 Estimation and postestimation commands

Title

Estimation command — How to program an estimation command

Description Remarks and examples References Also see

Description

Information on programming estimation commands is given in The Stata Blog. Below, we reproduce
the blog Programming an estimation command in Stata: A map to posted entries (updated 23 February
2018) (Drukker 2016a).

Remarks and examples

I have posted a series of entries about programming an estimation command in Stata. They are
best read in order. The comprehensive list below allows you to read them from first to last at your
own pace.

L.

Programming estimators in Stata: Why you should

To help you write Stata commands that people want to use, I illustrate how Stata syntax is
predictable and give an overview of the estimation—postestimation structure that you will want
to emulate in your programs.

Programming an estimation command in Stata: Where to store your stuff

I discuss the difference between scripts and commands, and I introduce some essential pro-
gramming concepts and constructions that I use to write the scripts and commands.

Programming an estimation command in Stata: Global macros versus local macros

I discuss a pair of examples that illustrate the differences between global macros and local
macros.

Programming an estimation command in Stata: A first ado-command

I discuss the code for a simple estimation command to focus on the details of how to implement
an estimation command. The command that I discuss estimates the mean by the sample average.
I begin by reviewing the formulas and a do-file that implements them. I subsequently introduce
ado-file programming and discuss two versions of the command. Along the way, I illustrate
some of the postestimation features that work after the command.

. Programming an estimation command in Stata: Using Stata matrix commands and functions to

compute OLS objects

I present the formulas for computing the ordinary least-squares (OLS) estimator, and I discuss some
do-file implementations of them. I discuss the formulas and the computation of independence-
based standard errors, robust standard errors, and cluster—robust standard errors. I introduce
the Stata matrix commands and matrix functions that I use in ado-commands that I discuss in
upcoming posts.

Programming an estimation command in Stata: A first command for OLS

I show how to write a Stata estimation command that implements the OLS estimator by explaining
the code.

211

https://blog.stata.com
https://blog.stata.com/2016/01/15/programming-an-estimation-command-in-stata-a-map-to-posted-entries/
https://blog.stata.com/2016/01/15/programming-an-estimation-command-in-stata-a-map-to-posted-entries/
https://blog.stata.com/2015/10/20/programming-estimators-in-stata-why-you-should/
https://blog.stata.com/2015/10/27/programing-an-estimation-command-in-stata-where-to-store-your-stuff/
https://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
https://blog.stata.com/2015/11/10/programming-an-estimation-command-in-stata-a-first-ado-command/
https://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
https://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
https://blog.stata.com/2015/11/19/programming-an-estimation-command-in-stata-a-first-command-for-ols/

212

Estimation command — How to program an estimation command

10.

11.

12.

13.

14.

15.

. Programming an estimation command in Stata: A better OLS command

I use the syntax command to improve the command that implements the OLS estimator that I
discussed in Programming an estimation command in Stata: A first command for OLS. I show
how to require that all variables be numeric variables and how to make the command accept
time-series—operated variables.

. Programming an estimation command in Stata: Allowing for sample restrictions and factor

variables

I modify the OLS command discussed in Programming an estimation command in Stata: A
better OLS command to allow for sample restrictions, to handle missing values, to allow for
factor variables, and to deal with perfectly collinear variables.

. Programming an estimation command in Stata: Allowing for options

I make three improvements to the command that implements the OLS estimator that I discussed
in Programming an estimation command in Stata: Allowing for sample restrictions and factor
variables. First, I allow the user to request a robust estimator of the variance—covariance of the
estimator. Second, I allow the user to suppress the constant term. Third, I store the residual
degrees of freedom in e(df_r) so that test will use the ¢ or F' distribution instead of the
normal or x2 distribution to compute the p-value of Wald tests.

Programming an estimation command in Stata: Using a subroutine to parse a complex option

I make two improvements to the command that implements the OLS estimator that I discussed
in Programming an estimation command in Stata: Allowing for options. First, I add an option
for a cluster—robust estimator of the variance—covariance of the estimator (VCE). Second, I
make the command accept the modern syntax for either a robust or a cluster—robust estimator
of the VCE. In the process, I use subroutines in my ado-program to facilitate the parsing, and
I discuss some advanced parsing tricks.

Programming an estimation command in Stata: Mata 101

I introduce Mata, the matrix programming language that is part of Stata.

Programming an estimation command in Stata: Mata functions

I show how to write a function in Mata, the matrix programming language that is part of Stata.
Programming an estimation command in Stata: A first ado-command using Mata

I discuss a sequence of ado-commands that use Mata to estimate the mean of a variable. The
commands illustrate a general structure for Stata—Mata programs.

Programming an estimation command in Stata: Computing OLS objects in Mata

I present the formulas for computing the OLS estimator and show how to compute them in
Mata. This post is a Mata version of Programming an estimation command in Stata: Using
Stata matrix commands and functions to compute OLS objects. I discuss the formulas and the
computation of independence-based standard errors, robust standard errors, and cluster—robust
standard errors.

Programming an estimation command in Stata: An OLS command using Mata

I discuss a command that computes OLS results in Mata, paying special attention to the structure
of Stata programs that use Mata work functions.

https://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-command/
https://blog.stata.com/2015/11/19/programming-an-estimation-command-in-stata-a-first-command-for-ols/
https://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
https://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
https://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-command/
https://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-command/
https://blog.stata.com/2015/12/01/programming-an-estimation-command-in-stata-allowing-for-options/
https://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
https://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
https://blog.stata.com/2015/12/08/programming-an-estimation-command-in-stata-using-a-subroutine-to-parse-a-complex-option/
https://blog.stata.com/2015/12/01/programming-an-estimation-command-in-stata-allowing-for-options/
https://blog.stata.com/2015/12/15/programming-an-estimation-command-in-stata-mata-101/
https://blog.stata.com/2015/12/22/programming-an-estimation-command-in-stata-mata-functions/
https://blog.stata.com/2015/12/29/programming-an-estimation-command-in-stata-a-first-ado-command-using-mata/
https://blog.stata.com/2016/01/05/programming-an-estimation-command-in-stata-computing-ols-objects-in-mata/
https://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
https://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
https://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-ols-command-using-mata/

Estimation command — How to program an estimation command 213

16.

17.

18.

19.

20.

21.

22.

23.

Programming an estimation command in Stata: Adding robust and cluster—robust VCEs to our
Mata-based OLS command

I show how to use the undocumented command _vce_parse to parse the options for robust
or cluster—robust estimators of the VCE. I then discuss myregress12.ado, which performs its
computations in Mata and computes an independent and identically distributed based, a robust,
or a cluster—robust estimator of the VCE.

Programming an estimation command in Stata: A review of nonlinear optimization using Mata

I review the theory behind nonlinear optimization and get some practice in Mata programming
by implementing an optimizer in Mata. This post is designed to help you develop your Mata
programming skills and to improve your understanding of how the Mata optimization suites
optimize() and moptimize () work.

Programming an estimation command in Stata: Using optimize() to estimate Poisson parameters

I show how to use optimize () in Mata to maximize a Poisson log-likelihood function and to
obtain estimators of the VCE based on independent and identically dependent observations or
on robust methods.

Programming an estimation command in Stata: A poisson command using Mata

I discuss mypoissonl, which computes Poisson-regression results in Mata. The code in my-
poissonl.ado is remarkably similar to the code in myregress11.ado, which computes OLS
results in Mata, as I discussed in Programming an estimation command in Stata: An OLS
command using Mata.

Programming an estimation command in Stata: Handling factor variables in optimize()

I discuss a method for handling factor variables when performing nonlinear optimization using
optimize (). After illustrating the issue caused by factor variables, I present a method and
apply it to an example using optimize().

Programming an estimation command in Stata: Handling factor variables in a poisson command
using Mata

mypoisson2.ado handles factor variables and computes its Poisson-regression results in Mata.
I discuss the code for mypoisson2.ado, which I obtained by adding the method for handling
factor variables discussed in Programming an estimation command in Stata: Handling factor
variables in optimize() to mypoissonl.ado, discussed in Programming an estimation command
in Stata: A poisson command using Mata.

Programming an estimation command in Stata: Allowing for robust or cluster—robust standard
errors in a poisson command using Mata

mypoisson3.ado adds options for a robust or a cluster—robust estimator of the VCE to
mypoisson2.ado, which I discussed in Programming an estimation command in Stata: Handling
factor variables in a poisson command using Mata. mypoisson3.ado parses the vce () option
using the techniques I discussed in Programming an estimation command in Stata: Adding robust
and cluster—robust VCEs to our Mata-based OLS command. I show how to use optimize () to
compute the robust or cluster—robust VCE.

Programming an estimation command in Stata: Adding analytical derivatives to a poisson
command using Mata

Using analytically computed derivatives can greatly reduce the time required to solve a nonlinear
estimation problem. I show how to use analytically computed derivatives with optimize (),
and I discuss mypoisson4.ado, which uses these analytically computed derivatives. Only a
few lines of mypoisson4.ado differ from the code for mypoisson3.ado, which I discussed in

https://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
https://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
https://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
https://blog.stata.com/2016/01/28/programming-an-estimation-command-in-stata-using-optimize-to-estimate-poisson-parameters/
https://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-command-using-mata/
https://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-ols-command-using-mata/
https://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-ols-command-using-mata/
https://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-variables-in-optimize/
https://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-variables-in-optimize/
https://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-variables-in-optimize/
https://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
https://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
https://blog.stata.com/2016/03/02/programming-an-estimation-command-in-stata-adding-analytical-derivatives-to-a-poisson-command-using-mata/
https://blog.stata.com/2016/03/02/programming-an-estimation-command-in-stata-adding-analytical-derivatives-to-a-poisson-command-using-mata/

214

Estimation command — How to program an estimation command

24.

25.

26.

27.

28.

29.

30.

31.

Programming an estimation command in Stata: Allowing for robust or cluster—robust standard
errors in a poisson command using Mata.

Programming an estimation command in Stata: Making predict work

I make predict work after mypoisson5b by writing an ado-command that computes the predictions
and by having mypoisson5 store the name of this new ado-command in e (predict).

Programming an estimation command in Stata: Certifying your command

Before you use or distribute your estimation command, you should verify that it produces correct
results and write a do-file that certifies that it does so. I discuss the processes of verifying
and certifying an estimation command, and I present some techniques for writing a do-file that
certifies mypoissonb, which I discussed in previous posts.

Programming an estimation command in Stata: Nonlinear least-squares estimators

I want to write ado-commands to estimate the parameters of an exponential conditional mean
model and probit conditional mean model by nonlinear least squares. Before I can write these
commands, I need to show how to trick optimize() into performing the Gauss—Newton
algorithm and apply this trick to these two problems.

Programming an estimation command in Stata: Consolidating your code

I write ado-commands that estimate the parameters of an exponential conditional mean model
and a probit conditional mean model by nonlinear least squares, using the methods that I
discussed in Programming an estimation command in Stata: Nonlinear least-squares estimators.
These commands will either share lots of code or repeat lots of code, because they are so
similar. It is almost always better to share code than to repeat code. Shared code only needs to
be changed in one place to add a feature or to fix a problem; repeated code must be changed
everywhere. I introduce Mata libraries to share Mata functions across ado-commands, and I
introduce wrapper commands to share ado-code.

Programming an estimation command in Stata: Writing an estat postestimation command

estat commands display statistics after estimation. Many of these statistics are diagnostics
or tests used to evaluate model specification. Some statistics are available after all estimation
commands; others are command specific. I illustrate how estat commands work and then
show how to write a command-specific estat command for the mypoisson command that I
have been developing.

Programming an estimation command in Stata: Preparing to write a plugin

Writing a function in another language (like C, C++, or Java) that Stata calls is known as
writing a plugin for Stata or as writing a dynamic-link library (DLL) for Stata. I discuss the
tradeoffs of writing a plugin or DLL, and I discuss a simple program whose calculations I will
replace with plugins in posts 30-32.

Programming an estimation command in Stata: Writing a C plugin

I write a plugin in C that implements the calculations performed by mymean_work() in
mymeanll.ado, discussed in Programming an estimation command in Stata: Preparing to write
a plugin. I discuss the plugin code and how to compile it on a Mac, Windows, and Linux.

Programming an estimation command in Stata: Writing a C++ plugin

I write a plugin in C++ that implements the calculations performed by mymean_work() in
mymeanl1l.ado, discussed in Programming an estimation command in Stata: Preparing to write
a plugin. I discuss the plugin code and how to compile it on a Mac, Windows, and Linux.

https://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
https://blog.stata.com/2016/03/17/programming-an-estimation-command-in-stata-making-predict-work/
https://blog.stata.com/2016/03/31/programming-an-estimation-command-in-stata-certifying-your-command/
https://blog.stata.com/2016/05/12/programming-an-estimation-command-in-stata-nonlinear-least-squares-estimators/
https://blog.stata.com/2016/05/18/programming-an-estimation-command-in-stata-consolidating-your-code/
https://blog.stata.com/2016/05/12/programming-an-estimation-command-in-stata-nonlinear-least-squares-estimators/
https://blog.stata.com/2016/10/20/programming-an-estimation-command-in-stata-writing-an-estat-postestimation-command/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/20/programming-an-estimation-command-in-stata-writing-a-c-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/22/programming-an-estimation-command-in-stata-writing-a-c-plugin-2/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/

Estimation command — How to program an estimation command 215

32. Programming an estimation command in Stata: Writing a Java plugin

I write a plugin in Java that implements the calculations performed by mymean_work() in
mymeanl1.ado, discussed in Programming an estimation command in Stata: Preparing to write
a plugin. I discuss the plugin code and how to compile it using command-line tools that are
compatible across platforms.

References

Drukker, D. M. 2015a. Programming an estimation command in Stata: A better OLS command. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-
command/.

——. 2015b. Programming an estimation command in Stata: A first ado-command. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2015/11/10/programming-an-estimation-command-in-stata-a-first-ado-command/.

——. 2015c. Programming an estimation command in Stata: A first ado-command using Mata. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2015/12/29/programming-an-estimation-command-in-stata-a-first-ado-
command-using-mata/.

——. 2015d. Programming an estimation command in Stata: A first command for OLS. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2015/11/19/programming-an-estimation-command-in-stata-a-first-command-for-ols/.

—— 2015e. Programming an estimation command in Stata: Allowing for options. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2015/12/01/programming-an-estimation-command-in-stata-allowing-for-options/.

——. 2015f. Programming an estimation command in Stata: Allowing for sample restrictions and factor variables.
The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2015/11/25/programming-an-estimation-command-in-
stata-allowing-for-sample-restrictions-and-factor-variables/.

—. 2015g. Programming an estimation command in Stata: Global macros versus local macros. The Stata Blog: Not
Elsewhere Classified. http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-
versus-local-macros/.

—— 2015h. Programming an estimation command in Stata: Mata 101. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/12/15/programming-an-estimation-command-in-stata-mata-101/.

——. 2015i. Programming an estimation command in Stata: Mata functions. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/12/22/programming-an-estimation-command-in-stata-mata-functions/.

——. 2015j. Programming an estimation command in Stata: Using a subroutine to parse a complex option. The
Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2015/12/08/programming-an-estimation-command-in-stata-
using-a-subroutine-to-parse-a-complex-option/.

——. 2015k. Programming an estimation command in Stata: Using Stata matrix commands and functions to compute
OLS objects. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2015/11/17/programming-an-estimation-
command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/.

——. 2015]. Programming an estimation command in Stata: Where to store your stuff. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2015/10/27/programing-an-estimation-command-in-stata-where-to-store-your-stuff/.

——. 2015m. Programming estimators in Stata: Why you should. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/10/20/programming-estimators-in-stata-why-you-should/.

——. 2016a. Programming an estimation command in Stata: A map to posted entries (updated 23 February 2018).
The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/01/15/programming-an-estimation-command-in-
stata-a-map-to-posted-entries/.

——. 2016b. Programming an estimation command in Stata: A poisson command using Mata. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-
command-using-mata/.

——. 2016c. Programming an estimation command in Stata: A review of nonlinear optimization using Mata. The
Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-
a-review-of-nonlinear-optimization-using-mata/.

——. 2016d. Programming an estimation command in Stata: Adding analytical derivatives to a poisson command
using Mata. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/03/02/programming-an-estimation-
command-in-stata-adding-analytical-derivatives-to-a-poisson-command-using-mata/.

https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
http://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-command/
http://blog.stata.com/2015/11/24/programming-an-estimation-command-in-stata-a-better-ols-command/
http://blog.stata.com/2015/11/10/programming-an-estimation-command-in-stata-a-first-ado-command/
http://blog.stata.com/2015/12/29/programming-an-estimation-command-in-stata-a-first-ado-command-using-mata/
http://blog.stata.com/2015/12/29/programming-an-estimation-command-in-stata-a-first-ado-command-using-mata/
http://blog.stata.com/2015/11/19/programming-an-estimation-command-in-stata-a-first-command-for-ols/
http://blog.stata.com/2015/12/01/programming-an-estimation-command-in-stata-allowing-for-options/
http://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
http://blog.stata.com/2015/11/25/programming-an-estimation-command-in-stata-allowing-for-sample-restrictions-and-factor-variables/
http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
http://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
http://blog.stata.com/2015/12/15/programming-an-estimation-command-in-stata-mata-101/
http://blog.stata.com/2015/12/22/programming-an-estimation-command-in-stata-mata-functions/
http://blog.stata.com/2015/12/08/programming-an-estimation-command-in-stata-using-a-subroutine-to-parse-a-complex-option/
http://blog.stata.com/2015/12/08/programming-an-estimation-command-in-stata-using-a-subroutine-to-parse-a-complex-option/
http://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
http://blog.stata.com/2015/11/17/programming-an-estimation-command-in-stata-using-stata-matrix-commands-and-functions-to-compute-ols-objects/
http://blog.stata.com/2015/10/27/programing-an-estimation-command-in-stata-where-to-store-your-stuff/
http://blog.stata.com/2015/10/20/programming-estimators-in-stata-why-you-should/
http://blog.stata.com/2015/10/20/programming-estimators-in-stata-why-you-should/
http://blog.stata.com/2016/01/15/programming-an-estimation-command-in-stata-a-map-to-posted-entries/
http://blog.stata.com/2016/01/15/programming-an-estimation-command-in-stata-a-map-to-posted-entries/
http://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-command-using-mata/
http://blog.stata.com/2016/02/02/programming-an-estimation-command-in-stata-a-poisson-command-using-mata/
http://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
http://blog.stata.com/2016/01/26/programming-an-estimation-command-in-stata-a-review-of-nonlinear-optimization-using-mata/
http://blog.stata.com/2016/03/02/programming-an-estimation-command-in-stata-adding-analytical-derivatives-to-a-poisson-command-using-mata/
http://blog.stata.com/2016/03/02/programming-an-estimation-command-in-stata-adding-analytical-derivatives-to-a-poisson-command-using-mata/

216 Estimation command — How to program an estimation command

——. 2016e. Programming an estimation command in Stata: Adding robust and cluster—robust VCEs to our Mata-
based OLS command. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/01/19/programming-an-
estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/.

——. 2016f. Programming an estimation command in Stata: Allowing for robust or cluster—robust standard errors in
a poisson command using Mata. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-
standard-errors-in-a-poisson-command-using-mata/.

——. 2016g. Programming an estimation command in Stata: An OLS command using Mata. The Stata
Blog: Not Elsewhere Classified. http://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-
ols-command-using-mata/.

——. 2016h. Programming an estimation command in Stata: Certifying your command. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2016/03/3 1/programming-an-estimation-command-in-stata-certifying-your-command/.

——. 2016i. Programming an estimation command in Stata: Computing OLS objects in Mata. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2016/01/05/programming-an-estimation-command-in-stata-computing-
ols-objects-in-mata/.

—— 2016j. Programming an estimation command in Stata: Consolidating your code. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2016/05/18/programming-an-estimation-command-in-stata-consolidating-your-code/.

——. 2016k. Programming an estimation command in Stata: Handling factor variables in a poisson command
using Mata. The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/02/17/programming-an-estimation-
command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/.

——. 2016l. Programming an estimation command in Stata: Handling factor variables in optimize(). The Stata Blog: Not
Elsewhere Classified. http://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-
variables-in-optimize/.

——. 2016m. Programming an estimation command in Stata: Making predict work. The Stata Blog: Not Elsewhere
Classified. http://blog.stata.com/2016/03/17/programming-an-estimation-command-in-stata-making-predict-work/.

——. 2016n. Programming an estimation command in Stata: Nonlinear least-squares estimators. The Stata Blog: Not
Elsewhere Classified. http://blog.stata.com/2016/05/12/programming-an-estimation-command-in-stata-nonlinear-least-
squares-estimators/.

——. 20160. Programming an estimation command in Stata: Using optimize() to estimate Poisson parameters.

The Stata Blog: Not Elsewhere Classified. http://blog.stata.com/2016/01/28/programming-an-estimation-command-in-
stata-using-optimize-to-estimate-poisson-parameters/.

——. 2016p. Programming an estimation command in Stata: Writing an estat postestimation command. The Stata Blog:
Not Elsewhere Classified. http://blog.stata.com/2016/10/20/programming-an-estimation-command-in-stata-writing-an-
estat-postestimation-command/.

——. 2018a. Programming an estimation command in Stata: Preparing to write a plugin. The Stata Blog: Not Else-
where Classified. https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-
a-plugin/.

——. 2018b. Programming an estimation command in Stata: Writing a C plugin. The Stata Blog: Not Elsewhere
Classified. https://blog.stata.com/2018/02/20/programming-an-estimation-command-in-stata-writing-a-c-plugin/.

——. 2018c. Programming an estimation command in Stata: Writing a C++ plugin. The Stata Blog: Not Elsewhere
Classified. https://blog.stata.com/2018/02/22/programming-an-estimation-command-in-stata-writing-a-c-plugin-2/.

——. 2018d. Programming an estimation command in Stata: Writing a Java plugin. The Stata Blog: Not Elsewhere
Classified. https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/.

Also see
[U] 18 Programming Stata

[U] 20 Estimation and postestimation commands

http://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
http://blog.stata.com/2016/01/19/programming-an-estimation-command-in-stata-adding-robust-and-cluster-robust-vces-to-our-mata-based-ols-command/
http://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
http://blog.stata.com/2016/02/23/programming-an-estimation-command-in-stata-allowing-for-robust-or-clusterrobust-standard-errors-in-a-poisson-command-using-mata/
http://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-ols-command-using-mata/
http://blog.stata.com/2016/01/12/programming-an-estimation-command-in-stata-an-ols-command-using-mata/
http://blog.stata.com/2016/03/31/programming-an-estimation-command-in-stata-certifying-your-command/
http://blog.stata.com/2016/01/05/programming-an-estimation-command-in-stata-computing-ols-objects-in-mata/
http://blog.stata.com/2016/01/05/programming-an-estimation-command-in-stata-computing-ols-objects-in-mata/
http://blog.stata.com/2016/05/18/programming-an-estimation-command-in-stata-consolidating-your-code/
http://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
http://blog.stata.com/2016/02/17/programming-an-estimation-command-in-stata-handling-factor-variables-in-a-poisson-command-using-mata/
http://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-variables-in-optimize/
http://blog.stata.com/2016/02/09/programming-an-estimation-command-in-stata-handling-factor-variables-in-optimize/
http://blog.stata.com/2016/03/17/programming-an-estimation-command-in-stata-making-predict-work/
http://blog.stata.com/2016/05/12/programming-an-estimation-command-in-stata-nonlinear-least-squares-estimators/
http://blog.stata.com/2016/05/12/programming-an-estimation-command-in-stata-nonlinear-least-squares-estimators/
http://blog.stata.com/2016/01/28/programming-an-estimation-command-in-stata-using-optimize-to-estimate-poisson-parameters/
http://blog.stata.com/2016/01/28/programming-an-estimation-command-in-stata-using-optimize-to-estimate-poisson-parameters/
http://blog.stata.com/2016/10/20/programming-an-estimation-command-in-stata-writing-an-estat-postestimation-command/
http://blog.stata.com/2016/10/20/programming-an-estimation-command-in-stata-writing-an-estat-postestimation-command/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/20/programming-an-estimation-command-in-stata-writing-a-c-plugin/
https://blog.stata.com/2018/02/22/programming-an-estimation-command-in-stata-writing-a-c-plugin-2/
https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/

Title

exit — Exit from a program or do-file

Description Syntax Options Remarks and examples Also see

Description

exit, when typed from the keyboard, causes Stata to terminate processing and returns control
to the operating system. If the dataset in memory has changed since the last save command, you
must specify the clear option before Stata will let you leave. Use of the command in this way is
discussed in [R] exit.

More generally, exit causes Stata to terminate the current process and returns control to the
calling process. The return code is set to the value of the expression or to zero if no expression is
specified. Thus exit can be used to exit a program or do-file and return control to Stata. With an
option, exit can even be used to exit Stata from a program or do-file. Such use of exit is the
subject of this entry.

Syntax

exit [[=}exp] [, clear STATA]

Options
clear permits you to exit, even if the current dataset has not been saved.

STATA exits Stata and returns control to the operating system, even when given from a do-file or
program. The STATA option is implied when exit is issued from the keyboard.

Remarks and examples

exit can be used at the terminal, from do-files, or from programs. From the terminal, it allows
you to leave Stata. Given from a do-file or program without the STATA option, it causes the do-file
or program to terminate and return control to the calling process, which might be the keyboard or
another do-file or program.

Caution should be used if exit is included to break execution within a loop. A more suitable
command is continue or continue, break; see [P] continue. continue is used to explicitly break
execution of the current loop iteration with execution resuming at the top of the loop unless the
break option is specified, in which case execution resumes with the command following the looping
command.

When using exit to force termination of a program or do-file, you may specify an expression
following the exit, and the resulting value of that expression will be used to set the return code.
Not specifying an expression is equivalent to specifying exit 0.

217

218 exit — Exit from a program or do-file

> Example 1

Here is a useless program that will tell you whether a variable exists:

. program check

1. capture confirm variable ‘1’

2. if _rc!=0 {

3. display "‘1’ not found"

4. exit

5. }

6. display "The variable ‘1’ exists."
7. end

. check median_age
The variable median_age exists.

. check age
age not found

exit did not close Stata and cause a return to the operating system; it instead terminated the program.

N

> Example 2

You type exit from the keyboard to leave Stata and return to the operating system. If the dataset
in memory has changed since the last time it was saved, however, Stata will refuse. At that point,
you can either save the data and then exit or type exit, clear:

. exit
no; dataset in memory has changed since last saved
r(4);

. exit, clear

(Operating system prompts you for next command)

Q Technical note

You can also exit Stata and return to the operating system from a do-file or program by including
the line exit, STATA in your do-file or program. To return to the operating system regardless of
whether the dataset in memory has changed, you include the line exit, STATA clear.

a

Also see
[P] capture — Capture return code
[P] class exit — Exit class-member program and return result
[P] continue — Break out of loops
[P] error — Display generic error message and exit
[R] Error messages — Error messages and return codes
[R] exit — Exit Stata

Title

file — Read and write text and binary files

Description Syntax Options Remarks and examples
Stored results Reference Also see
Description

file is a programmer’s command and should not be confused with import delimited (see
[D] import delimited), infile (see [D] infile (free format) or [D] infile (fixed format)), and infix
(see [D] infix (fixed format)), which are the usual ways that data are brought into Stata. £ile allows
programmers to read and write both text and binary files, so file could be used to write a program
to input data in some complicated situation, but that would be an arduous undertaking.

Files are referred to by a file handle. When you open a file, you specify the file handle that you
want to use; for example, in

. file open myfile using example.txt, write

myfile is the file handle for the file named example.txt. From that point on, you refer to the file
by its handle. Thus

. file write myfile "this is a test" _n
would write the line “this is a test” (without the quotes) followed by a new line into the file, and
. file close myfile

would then close the file. You may have multiple files open at the same time, and you may access
them in any order.

219

220 file — Read and write text and binary files

Syntax
Open file

file open handle using filename , {;ead|grite | read grite}

[[text |binary| [replace|append]| all]

Read file

file read handle [specs]

Write to file

file write handle [specs]

Change current location in file

file seek handle { query|tof |eof |#}

Set byte order of binary file

file set handle byteorder { hilo|lohi|1]2}

Close file
file close { handle | —all }

List file type, status, and name of handle

file query

where specs for text output is

"string" or ‘"string"’

(exp) (parentheses are required)

% fimt Cexp) (see [D] format about % fint)
_skip(#)

—column (#)

_newline [(#)}

_char (#) (0 < # < 255)

—tab[(#)]

_page[(#)]

—dup (#)

file — Read and write text and binary files

221

specs for text input is localmacroname,

specs for binary output is

#{8l4}z (exp)

%{4]2[1}b[s|u] (exp)

Ytts "text" (1 < # < max_macrolen)
Yifts “Mtext"’

Ti#s (exp)

and specs for binary input is

%{8l4}z scalarname
%{4]2[1}b[s|u] scalarname
I#s localmacroname (1 £ # < max_macrolen)

collect is allowed with file query, file read, and file seek; see [U] 11.1.10 Prefix commands.

Options

read, write, or read write is required; they specify how the file is to be opened. If the file is

opened read, you can later use file read but not file write; if the file is opened write, you
can later use file write but not file read. If the file is opened read write, you can then
use both.

read write is more flexible, but most programmers open files purely read or purely write
because that is all that is necessary; it is safer and it is faster.

When a file is opened read, the file must already exist, or an error message will be issued. The
file is positioned at the top (tof), so the first file read reads at the beginning of the file. Both
local files and files over the net may be opened for read.

When a file is opened write and the replace or append option is not specified, the file must
not exist, or an error message will be issued. The file is positioned at the top (tof), so the first
file write writes at the beginning of the file. Net files may not be opened for write.

When a file is opened write and the replace option is also specified, it does not matter whether
the file already exists; the existing file, if any, is erased beforehand.

When a file is opened write and the append option is also specified, it also does not matter
whether the file already exists; the file will be reopened or created if necessary. The file will be
positioned at the append point, meaning that if the file existed, the first file write will write at
the first byte past the end of the previous file; if there was no previous file, file write begins
writing at the first byte in the file. file seek may not be used with write append files.

When a file is opened read write, it also does not matter whether the file exists. If the file
exists, it is reopened. If the file does not exist, a new file is created. Regardless, the file will be
positioned at the top of the file. You can use file seek to seek to the end of the file or wherever
else you desire. Net files may not be opened for read write.

Before opening a file, you can determine whether it exists by using confirm file; see [P] confirm.

222 file — Read and write text and binary files

text and binary determine how the file is to be treated once it is opened. text is the default.
With text, files are assumed to be composed of lines of characters, with each line ending in
a line-end character. The character varies across operating systems, being line feed under Unix,
carriage return under Mac, and carriage return/line feed under Windows. file understands all the
ways that lines might end when reading and assumes that lines are to end in the usual way for
the computer being used when writing.

The alternative to text is binary, meaning that the file is to be viewed merely as a stream of
bytes. With binary, there is an issue of byte order; consider the number 1 written as a 2-byte
integer. On some computers (called hilo), it is written as “00 017, and on other computers (called
lohi), it is written as “01 00” (with the least significant byte written first). There are similar issues
for 4-byte integers, 4-byte floats, and 8-byte floats.

file assumes that the bytes are ordered in the way natural to the computer being used. file
set can be used to vary this assumption. file set can be issued immediately after file open,
or later, or repeatedly.

replace and append are allowed only when the file is opened for write (which does not include
read write). They determine what is to be done if the file already exists. The default is to issue
an error message and not open the file. See the description of the options read, write, and read
write above for more details.

all is allowed when the file is opened for write or for read write. It specifies that, if the file
needs to be created, the permissions on the file are to be set so that it is readable by everybody.

Text output specifications

"string" and ¢"string"’ write string into the file, without the surrounding quotes.

(exp) evaluates the expression exp and writes the result into the file. If the result is numeric, it is
written with a %10.0g format, but with leading and trailing spaces removed. If exp evaluates to a
string, the resulting string is written, with no extra leading or trailing blanks.

%fmt (exp) evaluates expression exp and writes the result with the specified % fint. If exp evaluates to
a string, % fimt must be a string format, and, correspondingly, if exp evaluates to a real, a numeric
format must be specified. Do not confuse Stata’s standard display formats with the binary formats
%b and %z described elsewhere in this entry. file write here allows Stata’s display formats
described in [D] format and allows the centering extensions (for example, %~20s) described in
[P] display.

_skip(#) inserts # blanks into the file. If # < 0, nothing is written; # < 0 is not considered an
error.

_column(#) writes enough blanks to skip forward to column # of the line; if # refers to a prior
column, nothing is displayed. The first column of a line is numbered 1. Referring to a column
less than 1 is not considered an error; nothing is displayed then.

_newline[(#)], which may be abbreviated _n[(#)}, outputs one end-of-line character if # is not
specified or outputs the specified number of end-of-line characters. The end-of-line character varies
according to your operating system, being line feed under Unix, carriage return under Mac, and
the two characters carriage return/line feed under Windows. If # < 0, no end-of-line character is
output.

_char (#) outputs one ASCI character, being the one given by the ASCII code # specified. # must
be between 0 and 255, inclusive.

_tab[(#)}outputs one tab character if # is not specified or outputs the specified number of tab
characters. Coding _tab is equivalent to coding _char (9).

file — Read and write text and binary files 223

_page [(#)]outputs one page feed character if # is not specified or outputs the specified number of
page feed characters. Coding _page is equivalent to coding _char(12). The page feed character
is often called Control-L.

_dup (#) specified that the next directive is to be executed (duplicated) # times. # must be greater
than or equal to 0. If # is equal to zero, the next element is not displayed.

Remarks and examples

Remarks are presented under the following headings:

Use of file

Use of file with tempfiles

Writing text files

Reading text files

Use of seek when writing or reading text files

Writing and reading binary files

Writing binary files

Reading binary files

Use of seek when writing or reading binary files

Appendix A.1 Useful commands and functions for use with file
Appendix A.2 Actions of binary output formats with out-of-range values

Use of file

file provides low-level access to file I/0O. You open the file, use file read or file write
repeatedly to read or write the file, and then close the file with file close:

file open ...

.f-ille read or file write...
.f'i'le read or file write...
;f.i.le close ...

Do not forget to close the file. Open files tie up system resources. Also, for files opened for
writing, the contents of the file probably will not be fully written until you close the file.

Typing file close _all will close all open files, and the clear all command (see [D] clear)
closes all files as well. These commands, however, should not be included in programs that you write;
they are included to allow the user to reset Stata when programmers have been sloppy.

If you use file handles obtained from tempname (see [P] macro), the file will be automatically
closed when the ado-file terminates:

tempname myfile
file open ‘myfile’ using ...

This is the only case when not closing the file is appropriate. Use of temporary names for file
handles offers considerable advantages because programs can be stopped because of errors or because
the user presses Break.

224 file — Read and write text and binary files

Use of file with tempfiles

In the rare event that you file open a tempfile, you must obtain the handle from tempname;
see [P] macro. Temporary files are automatically deleted when the ado- or do-file ends. If the file is
erased before it is closed, significant problems are possible. Using a tempname will guarantee that
the file is properly closed beforehand:

tempname myfile
tempfile tfile
file open ‘myfile’ using "‘tfile’" ...

Writing text files

This is easy to do:

file open handle using filename, write text
file write handle ...

file close handle

The syntax of file write is similar to that of display; see [P] display. The significant difference
is that expressions must be bound in parentheses. In display, you can code

display 2+2

but using file write, you must code

file write handle (2+2)

The other important difference between file write and display is that display assumes you
want the end-of-line character output at the end of each display (and display provides _continue
for use when you do not want this), but file write assumes you want an end-of-line character only
when you specify it. Thus rather than coding “file write handle (2+2)”, you probably want to
code

file write handle (2+2) _n

Because Stata outputs end-of-line characters only where you specify, coding

file write handle "first part is " (2+2) _n

has the same effect as coding

file write handle "first part is "

file write handle (2+2) _n

file — Read and write text and binary files 225

or even

file write handle "first part is "
file write handle (2+2)
file write handle _n

There is no limit to the line length that file write can write because, as far as file write
is concerned, _n is just another character. The _col (#) directive, however, will lose count if you
write lines of more than 2,147,483,646 characters (—col(#) skips forward to the specified column).
In general, we recommend that you do not write lines longer than 165,199 characters because reading
lines longer than that is more difficult using file read.

We say that _n is just another character, but we should say character or characters. _n outputs
the appropriate end-of-line character for your operating system, meaning the two-character carriage
return followed by line feed under Windows, the one-character carriage return under Mac, and the
one-character line feed under Unix.

Reading text files

The commands for reading text files are similar to those for writing them:

file open handle using filename, read text
file read handle localmacroname

file close handle

The file read command has one syntax:

file read handle localmacroname

One line is read from the file, and it is put in localmacroname. For instance, to read a line from
the file myfile and put it in the local macro line, you code

file read myfile line

Thereafter in your code, you can refer to ‘line’ to obtain the contents of the line just read. The
following program will do a reasonable job of displaying the contents of the file, putting line numbers
in front of the lines:

program ltype
version 18.0
local O ‘"using ‘0°"’
syntax using/
tempname fh
local linenum = 0O
file open ‘fh’ using ‘"‘using’"’, read
file read ‘fh’ line
while r(eof)==0 {
local linenum = ‘linenum’ + 1
display %4.0f ‘linenum’ _asis ‘" ‘macval(line)’"’
file read ‘fh’ line
}
file close ‘fh’
end

226 file — Read and write text and binary files

In the program above, we used tempname to obtain a temporary name for the file handle. Doing
that, we ensure that the file will be closed, even if the user presses Break while our program is
displaying lines, and so never executes file close ‘fh’. In fact, our file close ‘fh’ line is
unnecessary.

We also used r (eof) to determine when the file ends. file read sets r (eof) to contain O before
end of file and 1 once end of file is encountered; see Stored results below.

We included _asis in the display in case the file contained braces or SMCL commands. These
would be interpreted, and we wanted to suppress that interpretation so that 1type would display lines
exactly as written in the file; see [P] smcl. We also used the macval() macro function to obtain
what was in ‘line’ without recursively expanding the contents of line.

Use of seek when writing or reading text files

You may use file seek when reading or writing text files, although, in fact, it is seldom used,
except with read write files, and even then, it is seldom used with text files.

See Use of seek when writing or reading binary files below for a description of file seek—seek
works the same way with both text and binary files—and then bear the following in mind:

e The # in “file seek handle #’ refers to byte position, not line number. “file seek handle 5
means to seek to the fifth byte of the file, not the fifth line.

e When calculating byte offsets by hand, remember that the end-of-line character is 1 byte under
Mac and Unix but is 2 bytes under Windows.

e Rewriting a line of an text file works as expected only if the new and old lines are of the same
length.

Writing and reading binary files

Consider whether you wish to read this section. There are many potential pitfalls associated with
binary files, and, at least in theory, a poorly written binary-I/O program can cause Stata to crash.

Binary files are made up of binary elements, of which Stata can understand the following:

Element Corresponding format

single- and multiple-character strings %1s and %#s

signed and unsigned 1-byte binary integers %1b, %1bs, and %1bu
signed and unsigned 2-byte binary integers %2b, %2bs, and %2bu
signed and unsigned 4-byte binary integers %4b, %4bs, and %4bu
4-byte IEEE floating-point numbers %4z

8-byte IEEE floating-point numbers %8z

The differences between all of these types are only of interpretation. For instance, the decimal
number 72, stored as a 1-byte binary integer, also represents the character H. If a file contained the
1-byte integer 72 and you were to read the byte by using the format %1s, you would get back the
character “H”, and if a file contained the character “H” and you were to read the byte by using
the format %1bu, you would get back the number 72; 72 and H are indistinguishable in that they
represent the same bit pattern. Whether that bit pattern represents 72 or H depends on the format
you use, meaning the interpretation you give to the field.

file — Read and write text and binary files 227

Similar equivalence relations hold between the other elements. A binary file is nothing more
than a sequence of unsigned 1-byte integers, where those integers are sometimes given different
interpretations or are grouped and given an interpretation. In fact, all you need is the format %1bu to
read or write anything. The other formats, however, make programming more convenient.

Missing
Format Length Type Minimum Maximum values?
%1bu 1 unsigned byte 0 255 no
%1bs 1 signed byte —127 127 no
%1b 1 Stata byte —127 100 yes
%2bu 2 unsigned short int 0 65,535 no
%2bs 2 signed short int —32,767 32,767 no
%2b 2 Stata int —32,767 32,740 yes
%4bu 4 unsigned int 0 4,294,967,295 no
%#4bs 4 signed int —2,147,483,647 2,147,483,647 no
%4b 4 Stata long —2,147,483,647 2,147,483,620 yes
%4z 4 float —10% 103 yes
%8z 8 double —10%07 10397 yes

When you write a binary file, you must decide on the format that you will use for every element
that you will write. When you read a binary file, you must know ahead of time the format that was
used for each element.

Writing binary files
As with text files, you open the file, write repeatedly, and then close the file:

file open handle using filename, write binary
file write handle ...

file close handle

The file write command may include the following elements:

%w{8|4}z (exp)

%{4[2]1}b[s|u] Cexp)

%ts "text" (1 < # < max_macrolen)
h#s “Mtext"?

WHs (exp)

For instance, to write “test file” followed by 2, 2 + 2, and 3 X 2 represented in its various forms,
you could code

. file write handle 9s "test file" %8z (2) %4b (2+2) %ibu (3*2)

or

. file write handle 9s "test file"
. file write handle %8z (2) %4b (2+2) %1lbu (3%*2)

228 file — Read and write text and binary files

or even

. file write handle 79s "test file"
. file write handle %8z (2)
. file write handle %4b (2+2) %1bu (3%2)

etc.

You write strings with the %#s format and numbers with the %b or %z formats. Concerning strings,
the # in %#s should be greater than or equal to the length of the string to be written in bytes. If # is
too small, only that many characters of the string will be written. Thus

. file write handle /4s "test file"

would write “test” into the file and leave the file positioned at the fifth byte. There is nothing wrong
with coding that (the “test” can be read back easily enough), but this is probably not what you
intended to write.

Also concerning strings, you can output string literals—just enclose the string in quotes—or you
can output the results of string expressions. Expressions, as for using file write to output text files,
must be enclosed in parentheses:

. file write handle %4s (substr(a,2,6))

The following program will output a user-specified matrix to a user-specified file; the syntax of
the command being implemented is

mymatoutl matname using filename [, replace]

and the code is

program mymatoutl
version 18.0
gettoken mname O : O
syntax using/ [, replacel
local r = rowsof (‘mname’)
local ¢ = colsof(‘mname’)
tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary
file write ‘hdl’ %2b (‘r’) %2b (‘c’?)
forvalues i=1(1) ‘r’ {
forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,‘j’])
}
}
file close ‘hdl’
end

A significant problem with mymatout1 is that, if we wrote a matrix on our Unix computer (an
Intel-based computer) and copied the file to a SPARC-based computer, we would discover that we
could not read the file. Intel computers write multiple-byte numbers with the least-significant byte
first; SPARC-based computers write the most-significant byte first. Who knows what your computer
does? Thus even though there is general agreement across computers on how numbers and characters
are written, this byte-ordering difference is enough to stop binary files.

file can handle this problem for you, but you have to insert a little code. The recommended
procedure is this: before writing any numbers in the file, write a field saying which byte order
this computer uses (see byteorder () in [FN] Programming functions). Later, when we write the
command to read the file, it will read the ordering that we recorded. We will then tell £ile which

file — Read and write text and binary files 229

byte ordering the file is using, and file itself will reorder the bytes if that is necessary. There
are other ways that we could handle this—such as always writing in a known byte order—but the
recommended procedure is better because it is, on average, faster. Most files are read on the same
computer that wrote them, and thus the computer wastes no time rearranging bytes then.

The improved version of mymatout1 is

program mymatout2
version 18.0
gettoken mname O : O
syntax using/ [, replacel
local r = rowsof (‘mname’)
local ¢ = colsof (‘mname’)
tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary
/* new x/ file write ‘hdl’ %1b (byteorder())
file write ‘hdl’ %2b (‘r’) %2b (‘c’)
forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,“j’])
}
}
file close ‘hdl’
end

byteorder () returns 1 if the machine is hilo and 2 if lohi, but all that matters is that it is small
enough to fit in a byte. The important thing is that we write this number using %1b, about which
there is no byte-ordering disagreement. What we do with this number we will deal with later.

The second significant problem with our program is that it does not write a signature. Binary files
are difficult to tell apart: they all look like binary junk. It is important that we include some sort
of marker at the top saying who wrote this file and in what format it was written. That is called a
signature. The signature that we will use is

mymatout 1.0.0

We will write that 14-byte-long string first thing in the file so that later, when we write mymatin,
we can read the string and verify that it contains what we expect. Signature lines should always
contain a generic identity (mymatout here) along with a version number, which we can change if we
modify the output program to change the output format. This way, the wrong input program cannot
be used with a more up-to-date file format.

230 file — Read and write text and binary files

Our improved program is

program mymatout3
version 18.0
gettoken mname O : O
syntax using/ [, replace]
local r = rowsof (‘mname’)
local ¢ = colsof (‘mname’)
tempname hdl
file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary
/* new x/ file write ‘hdl’ %14s "mymatout 1.0.0"
file write ‘hdl’ %1b (byteorder())
file write ‘hdl’ %2b (‘r’) %2b (‘c’)
forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,“j’])
}
}
file close ‘hdl’
end

This program works well. After we wrote the corresponding input routine (see Reading binary
files below), however, we noticed that our restored matrices lacked their original row and column
names, which led to a final round of changes:

program mymatouté4
version 18.0
gettoken mname O : O
syntax using/ [, replacel

local r = rowsof (‘mname’)

local ¢ = colsof(‘mname’)

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, ‘replace’ write binary
/* changed */ file write ‘hdl’ %14s "mymatout 1.0.1"

file write ‘hdl’ %1b (byteorder())
file write ‘hdl’ %2b (‘r’) %2b (‘c’)

/* new */ local names : rownames ‘mname’
/* new */ local len : length local names
/* new */ file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’
/* new */ local names : colnames ‘mname’
/* new x/ local len : length local names
/* new */ file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’

forvalues i=1(1)‘r’ {
forvalues j=1(1)°‘c’ {
file write ‘hdl’ %8z (‘mname’[‘i’,“j’])
}
}
file close ‘hdl’
end

In this version, we added the lines necessary to write the row and column names into the file. We
write the row names by coding

local names : rownames ‘mname’
local len : length local names
file write ‘hdl’ %4b (‘len’) %‘len’s ‘"‘names’"’

and we similarly write the column names. The interesting thing here is that we need to write a string
into our binary file for which the length of the string varies. One solution would be

file write ‘hdl’ %165199s ‘" ‘mname’"’

file — Read and write text and binary files 231

but that would be inefficient because, in general, the names are much shorter than 165,199 bytes.
The solution is to obtain the length of the string to be written and then write the length into the file.
In the above code, macro ‘len’ contains the length, we write ‘len’ as a 4-byte integer, and then
we write the string using a % ‘len’s format. Consider what happens when ‘len’ is, say, 50. We
write 50 into the file, and then we write the string using a %50s format. Later, when we read back
the file, we can reverse this process, reading the length and then using the appropriate format.

We also changed the signature from “mymatout 1.0.0” to “mymatout 1.0.1” because the file format
changed. Making that change ensures that an old read program does not attempt to read a more
modern format (and so produce incorrect results).

Q Technical note

You may write strings using %#s formats that are narrower than, equal to, or wider than the length
of the string being written. When the format is too narrow, only that many characters of the string
are written. When the format and string are of the same width, the entire string is written. When the
format is wider than the string, the entire string is written, and then the excess positions in the file
are filled with binary zeros.

Binary zeros are special in strings because binary denotes the end of the string. Thus when you
read back the string, even if it was written in a field that was too wide, it will appear exactly as it
appeared originally.

a

Reading binary files
You read binary files just as you wrote them,

file open handle using filename, read binary
file read handle ...

file close handle

When reading them, you must be careful to specify the same formats as you did when you wrote
the file.

The program that will read the matrices written by mymatout1, presented below, has the syntax

mymatinl matname filename

232 file — Read and write text and binary files

and the code is

program mymatinl
version 18.0
gettoken mname O : O
syntax using/

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, read binary
tempname val

file read ‘hdl’ %2b ‘val’

local r = ‘val’

file read ‘hdl’ %2b ‘val’

local ¢ = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)

forvalues i=1(1) ‘r’ {
forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,¢j’] = ‘val’
}
}
file close ‘hdl’
end

When file read reads numeric values, they are always stored into scalars (see [P] scalar), and
you specify the name of the scalar directly after the binary numeric format. Here we are using the
scalar named ‘val’, where ‘val’ is a name that we obtained from tempname. We could just as
well have used a fixed name, say, myscalar, so the first file read would read

file read ‘hdl’ %2b myscalar

and we would similarly substitute myscalar everywhere ‘val’ appears, but that would make our
program less elegant. If the user had previously stored a value under the name myscalar, our values
would replace it.

In the second version of mymatout, we included the byte order. The correspondingly improved
version of mymatin is

program mymatin2
version 18.0
gettoken mname 0 : O
syntax using/

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, read binary
tempname val
/* new */ file read ‘hdl’ %1b ‘val’
/* new */ local border = ‘val’
/* new x/ file set ‘hdl’ byteorder ‘border’
file read ‘hdl’ %2b ‘val’
local r = ‘val’
file read ‘hdl’ %2b ‘val’
local ¢ = ‘val’
matrix ‘mname’ = J(‘r’, ‘c’, 0)

forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,¢j’] = ‘val’
}
}
file close ‘hdl’
end

file — Read and write text and binary files 233

We simply read back the value we recorded and then file set it. We cannot directly file set
handle byteorder ‘val’ because ‘val’ is a scalar, and the syntax for file set byteorder is

file set handle byteorder {hilo|lohi|1|2}

That is, file set is willing to see a number (1 and hilo mean the same thing, as do 2 and lohi),
but that number must be a literal (the character 1 or 2), so we had to copy ‘val’ into a macro before
we could use it. Once we set the byte order, however, we could from then on depend on file to
reorder the bytes for us should that be necessary.

In the third version of mymatout, we added a signature. In the modification below, we read the
signature by using a %14s format. Strings are copied into local macros, and we must specify the
name of the local macro following the format:

program mymatin3d
version 18.0

gettoken mname O : O
syntax using/

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, read binary
/* new x/ file read ‘hdl’ %14s signature
/* new x/ if "‘signature’" != "mymatout 1.0.0" {
/* new x/ disp as err "file not mymatout 1.0.0"
/* new */ exit 610
/* new */ }

tempname val

file read ‘hdl’ %1b ‘val’

local border = ‘val’

file set ‘hdl’ byteorder ‘border’

file read ‘hdl’ %2b ‘val’

local r = ‘val’

file read ‘hdl’ %2b ‘val’

local ¢ = ‘val’

matrix ‘mname’ = J(‘r’, ‘c’, 0)

forvalues i=1(1)‘r’ {
forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,¢j’] = ‘val’
}
}
file close ‘hdl’
end

In the fourth and final version, we wrote the row and column names. We wrote the names by first
preceding them with a 4-byte integer recording their width:

234 file — Read and write text and binary files

program mymatin4
version 18.0
gettoken mname O : O
syntax using/

tempname hdl

file open ‘hdl’ using ‘"‘using’"’, read binary
file read ‘hdl’ %14s signature
/* changed */ if "‘signature’" != "mymatout 1.0.1" {
/* changed */ disp as err "file not mymatout 1.0.1"
exit 610
}

tempname val

file read ‘hdl’ %1b ‘val’

local border = ‘val’

file set ‘hdl’ byteorder ‘border’

file read ‘hdl’ %2b ‘val’

local r = ‘val’
file read ‘hdl’ %2b ‘val’
local ¢ = ‘val’
matrix ‘mname’ = J(‘r’, ‘c’, 0)
/* new */ file read ‘hdl’ %4b ‘val’
/* new */ local len = ‘val’
/* new */ file read ‘hdl’ %‘len’s names
/* new */ matrix rownames ‘mname’ = ‘names’
/* new */ file read ‘hdl’ %4b ‘val’
/* new */ local len = ‘val’
/* new */ file read ‘hdl’ %‘len’s names
/* new */ matrix colnames ‘mname’ = ‘names’

forvalues i=1(1) ‘r’ {
forvalues j=1(1)‘c’ {
file read ‘hdl’ %8z ‘val’
matrix ‘mname’[‘i’,‘j’] = ‘val’
}
}
file close ‘hdl’
end

Use of seek when writing or reading binary files

Nearly all I/O programs are written without using file seek. file seek changes your location
in the file. Ordinarily, you start at the beginning of the file and proceed sequentially through the
bytes. file seek lets you back up or skip ahead.

file seek handle query actually does not change your location in the file; it merely returns in
scalar r(loc) the current position, with the first byte in the file being numbered 0, the second 1,
and so on. In fact, all the file seek commands return r(loc), but file seek query is unique
because that is all it does.

file seek handle tof moves to the beginning (top) of the file. This is useful with read files
when you want to read the file again, but you can seek to tof even with write files and, of course,
with read write files. (Concerning read files: you can seek to top, or any point, before or after
the end-of-file condition is raised.)

file seek handle eof moves to the end of the file. This is useful only with write files (or read
write files) but may be used with read files, too.

file — Read and write text and binary files 235

file seek handle # moves to the specified position. # is measured in bytes from the beginning
of the file and is in the same units as reported in r(loc). ‘file seek handle 0’ is equivalent to
‘file seek handle tof’.

Q Technical note

When a file is opened write append, you may not use file seek. If you need to seek in the

file, open the file read write instead.
Q

Appendix A.1 Useful commands and functions for use with file

e When opening a file read write or write append, file’s actions differ depending upon
whether the file already exists. confirm file (see [P] confirm) can tell you whether a file
exists; use it before opening the file.

e To obtain the length of strings when writing binary files, use the macro function length:

local length : length local mystr
file write handle %,‘length’s ‘" ‘mystr’"’

See Macro functions for parsing in [P] macro for details.

e To write portable binary files, we recommend writing in natural byte order and recording
the byte order in the file. Then the file can be read by reading the byte order and setting it:

Writing:

file write handle %1b (byteorder())

Reading:
tempname mysca
file read handle %1b ‘mysca’
local b_order = ‘mysca’
file set handle byteorder ‘b_order’

The byteorder () function returns 1 or 2, depending on whether the computer being used
records data in hilo or lohi format. See [FN] Programming functions.

Appendix A.2 Actions of binary output formats with out-of-range values

Say that you write the number 2,137 with a %1b format. What value will you later get back when
you read the field with a %1b format? Here the answer is ., Stata’s missing value, because the %1b
format is a variation of %1bs that supports Stata’s missing value. If you wrote 2,137 with %1bs, it
would read back as 127; if you wrote it with %1bu, it would read back as 255.

In general, in the Stata variation, missing values are supported, and numbers outside the range are
written as missing. In the remaining formats, the minimum or maximum is written as

236 file — Read and write text and binary files

Value written when value is ...

Format Min value Max value Too small Too large
%1bu 0 255 0 255
%1bs —127 127 —127 127
%1b —127 100 . .
%2bu 0 65,535 0 65,535
%2bs —32,767 32,767 —32,767 32,767
%2b —32,767 32,740 . .
%#4bu 0 4,294,967,295 0 4,294,967,295
%4bs —2,147,483,647 2,147,483,647 —2,147,483,647 2,147,483,647
%4b —2,147,483,647 2,147,483,620 . .
%Az —10% 10%® . .
%8z —103°7 10397 . .

In the above table, if you write a missing value, take that as writing a value larger than the
maximum allowed for the type.

If you write a noninteger value with an integer format, the result will be truncated to an integer.
For example, writing 124.75 with a %2b format is the same as writing 124.

Stored results

file read stores the following in r():

Scalars
r(eof) 1 on end of file, 0 otherwise
Macros
r(status) (if text file) win line read; line ended in cr-If
mac line read; line ended in cr
unix line read; line ended in If
split line read; line was too long and so split
none line read; line was not terminated
eof line not read because of end of file

r(status) = split indicates that c (macrolen) —1(33maxvar+199 for Stata/MP and Stata/SE, 165,199
for Stata/BE) characters of the line were returned and that the next file read will pick up where
the last read left off.

r(status) = none indicates that the entire line was returned, that no line-end character was found,
and that the next file read will return r(status) = eof.

If r(status) = eof (r(eof) = 1), then the local macro into which the line was read contains "".
The local macro containing "", however, does not imply end of file because the line might simply
have been empty.

file — Read and write text and binary files 237

file seek stores the following in r():
Scalars

r(loc) current position of the file
file query stores the following in r():

Scalars
r(N) number of open files

Reference

Slaymaker, E. 2005. Using the file command to produce formatted output for other applications. Stata Journal 5:
239-247.

Also see

[P] display — Display strings and values of scalar expressions
[D] filefilter — Convert ASCII or binary patterns in a file

[D] hexdump — Display hexadecimal report on file

[D] import — Overview of importing data into Stata

[D] import delimited — Import and export delimited text data
[D] infix (fixed format) — Import text data in fixed format
[M-4] IO — I/O functions

http://www.stata-journal.com/article.html?article=dm0015

Title

File formats .dta — Description of .dta file format

Description Also see

Description

Stata’s .dta datasets record data in a way generalized to work across computers that do not
agree on how data are recorded. Thus the same dataset may be used, without translation, on different
computers (Windows, Unix, and Mac computers). Given a computer, datasets are divided into two
categories: native-format and foreign-format datasets. Stata uses the following two rules:

R1. On any computer, Stata knows how to write only native-format datasets.

R2. On all computers, Stata can read foreign-format as well as native-format datasets.
Rules R1 and R2 ensure that Stata users need not be concerned with dataset formats.

Stata is also continually being updated, and these updates sometimes require that changes be made
to how Stata records .dta datasets. Stata can read older formats, but whenever it writes a dataset, it
writes in the modern format. For up-to-date documentation on the Stata .dta file format, type help
dta. The system help file contains all the details a programmer will need.

Also see
[D] save — Save Stata dataset
[D] use — Load Stata dataset
[D] sysuse — Use shipped dataset
[D] webuse — Use dataset from Stata website

[U] 1.2.2 Example datasets

238

Title

File formats .dtas — Description of Stata frameset (.dtas) file format

Description Also see

Description

A Stata frameset file, or .dtas file, stores a set of frames. A .dtas file is essentially a collection
of Stata datasets (.dta) with some additional bookkeeping information. A .dtas file is saved by
frames save, which internally calls Stata’s zipfile command to compress files for all frames being
saved. For up-to-date documentation on the Stata .dtas file format, type help dtas. The system
help file contains all the details a programmer needs to write code to read and write .dtas files.

Also see

[P] File formats .dta — Description of .dta file format
[D] frames describe — Describe frames in memory or in a file
[D] frames save — Save a set of frames on disk

[D] frames use — Load a set of frames from disk

239

Title

findfile — Find file in path

Description Syntax Options Remarks and examples Stored results Also see

Description
findfile looks for a file along a specified path and, if the file is found, displays the fully qualified
name and returns the name in r (£n). If the file is not found, the file-not-found error, r(601), is issued.

Unless told otherwise, findfile looks along the ado-path, the same path that Stata uses for
searching for ado-files, help files, etc.

In programming contexts, findfile is usually preceded by quietly; see [P] quietly.

Syntax
findfile filename [, path(path) nodescend all]

where filename and path may optionally be enclosed in quotes, and the default is to look over the
ado-path if option path() is not specified.

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

path(path) specifies the path over which findfile is to search. Not specifying this option is
equivalent to specifying path(‘" ‘c(adopath)’"’).

If specified, path should be a list of directory (folder) names separated by semicolons; for example,

path(‘".;~/bin;"~/data/my data";~"’)
path(‘".;\bin;"\data\my data";~"’)

The individual directory names may be enclosed in quotes, but if any are, remember to enclose
the entire path argument in compound quotes.

Also any of the directory names may be specified as STATA, BASE, SITE, PLUS, PERSONAL, or
OLDPLACE, which are indirect references to directories recorded by sysdir (see [P] sysdir):

path(BASE;SITE; . ; PERSONAL; PLUS)
path(\bin:SITE;.; PERSONAL; PLUS)
path(‘"\bin;.;"\data\my data";PERSONAL;PLUS"’)
path(‘".; ‘c(adopath)’"’)

nodescend specifies that findfile not follow Stata’s normal practice of searching in letter subdi-

rectories of directories in the path, as well as in the directories themselves. nodescend is rarely
specified, and, if it is specified, path() would usually be specified, too.

240

findfile — Find file in path 241

all specifies that all files along the path with the specified name are to be found and then listed
and stored in r(fn). When all is not specified, the default is to stop the search when the first
instance of the specified name is found.

When all is specified, the fully qualified names of the files found are returned in r(fn), listed
one after the other, and each enclosed in quotes. Thus when all is specified, if you later need
to quote the returned list, you must use compound double quotes. Also remember that findfile
issues a file-not-found error if no files are found. If you wish to suppress that and want r(£fn)
returned containing nothing, precede findfile with capture; see [P] capture. Thus the typical
usage of findfile, all is

. capture findfile filename, all
. local filelist ‘"‘r(fn)’"’

Remarks and examples

findfile is not a utility to search everywhere for a file that you have lost. findfile is for use
in those rare ado-files that use prerecorded datasets and for which you wish to place the datasets
along the ado-path, along with the ado-file itself.

For instance, Stata’s icd9 command performs a mapping, and that mapping is in fact stored
in a dataset containing original values and mapped values. Thus along with icd9.ado is dataset
icd9_cod.dta, and that dataset is stored along the ado-path, too. Users of icd9 know nothing
about the dataset. In icd9.ado, the icd9_cod.dta is merged with the data in memory. The code
fragment that does that reads

. quietly findfile icd9_cod.dta
. merge ... using ‘"‘r(fn)’"’

It would not have been possible to code

. merge ... using icd9_cod.dta

because icd9_cod.dta is not in the current directory.

Stored results

findfile stores the following in r():

Macros
r(fn) (all not specified) name of the file found; name not enclosed in quotes
(all specified) names of the files found, listed one after the other, each enclosed in quotes
Also see

[P] sysdir — Query and set system directories
[P] unabemd — Unabbreviate command name
[D] sysuse — Use shipped dataset

[R] which — Display location of an ado-file

Title

foreach — Loop over items

Description Syntax Remarks and examples References
Also see

Description

foreach repeatedly sets local macro Iname to each element of the list and executes the commands
enclosed in braces. The loop is executed zero or more times; it is executed zero times if the list is
null or empty. Also see [P] forvalues, which is the fastest way to loop over consecutive values, such
as looping over numbers from 1 to k.

foreach /name in list {...} allows a general list. Elements are separated from each other by one
or more blanks.

foreach /name of local list {...} and foreach Iname of global list {...} obtain the list
from the indicated place. This method of using foreach produces the fastest executing code.

foreach Iname of varlist list {...}, foreach [name of newlist list {...}, and foreach
Iname of numlist list {...} are much like foreach lname in list {. ..}, except that the list is given
the appropriate interpretation. For instance,

foreach x in mpg weight-turn {
}

has two elements, mpg and weight-turn, so the loop will be executed twice.

foreach x of varlist mpg weight-turn {
}

has four elements, mpg, weight, length, and turn, because list was given the interpretation of a
varlist.

foreach lname of varlist list {...} gives list the interpretation of a varlist. The list is expanded
according to standard variable abbreviation rules, and the existence of the variables is confirmed.

foreach Iname of newlist list {...} indicates that the /ist is to be interpreted as new variable
names; see [U] 11.4.2 Lists of new variables. A check is performed to see that the named variables
could be created, but they are not automatically created.

foreach lname of numlist [list {...} indicates a number list and allows standard number-list
notation; see [U] 11.1.8 numlist.

242

foreach — Loop over items 243

Syntax

foreach Iname {in | of listtype} list {
commands referring to ‘Iname’

}

Allowed are
foreach lname in any_list {
foreach lname of local Imacname {
foreach Iname of global gmacname {
foreach [name of varlist varlist {
foreach Iname of newlist newvarlist {

foreach lname of numlist numlist {

Braces must be specified with foreach, and
1. the open brace must appear on the same line as foreach,;

2. nothing may follow the open brace except, of course, comments; the first command to be
executed must appear on a new line;

3. the close brace must appear on a line by itself.

Remarks and examples

Remarks are presented under the following headings:

Introduction

foreach ... of local and foreach ... of global
foreach ... of varlist

foreach ... of newlist

foreach ... of numlist

Use of foreach with continue
The unprocessed list elements

Introduction
foreach has many forms, but it is just one command, and what it means is
foreach value of a list of things, set x equal to each and {

execute these instructions once per value
and in the loop we can refer to ‘x’ to refer to the value

244 foreach — Loop over items

and this is coded

foreach x ... {
}

We use the name x for illustration; you may use whatever name you like. The list itself can come
from a variety of places and can be given a variety of interpretations, but foreach x in is easiest
to understand:

foreach x in a b mpg 2 3 2.2 {
P S

}

The list is a, b, mpg, 2, 3, and 2.2, and appears right in the command. In some programming
instances, you might know the list ahead of time, but often what you know is that you want to do the
loop for each value of the list contained in a macro, for instance, ‘varlist’. Then you could code

foreach x in ‘varlist’ {
(4 J
X’ ...

}

but your code will execute more quickly if you code

foreach x of local varlist {
fx? ...

}

Both work, but the second is quicker to execute. In the first, Stata has to expand the macro and
substitute it into the command line, whereupon foreach must then pull back the elements one at a
time and store them. In the second, all of that is already done, and foreach can just grab the local
macro varlist.

The two forms we have just shown,

foreach x in ... {
x? ...
¥
and
foreach x of local ... {
x? ...
}

are the two ways foreach is most commonly used. The other forms are for special occasions.

In the event that you have something that you want to be given the interpretation of a varlist,
newvarlist, or numlist before it is interpreted as a list, you can code

foreach x of varlist mpg weight-turn g% {
X7 ...

}

or

foreach x of newlist id valuesl-values9 {
X7 ...

}

foreach — Loop over items 245

or
foreach x of numlist 1/3 5 6/10 {
‘x? ...
}
Just as with foreach x in ..., you put the list right on the command line, and, if you have the list

in a macro, you can put ‘macroname’ on the command line.

If you have the list in a macro, you have no alternative but to code ‘macroname’; there is no
special foreach x of local macroname variant for varlist, newvarlist, and numlist because, in those
cases, foreach x of local macroname itself is probably sufficient. If you have the list in a macro,
then how did it get there? Well, it probably was something that the user typed and that your program
has already parsed. Then the list has already been expanded, and treating the list as a general list is
adequate; it need not be given the special interpretation again, at least as far as foreach is concerned.

> Example 1: Using foreach, interactively

foreach is generally used in programs, but it may be used interactively, and for illustration we
will use it that way. Three files are appended to the dataset in memory. The dataset currently in
memory and each of the three files has only one string observation.

. list

X
1. data in memory

. foreach file in this.dta that.dta theother.dta {

2. append using "‘file’"
3.}
. list
X
1. data in memory
2. data from this.dta

3. data from that.dta
4. data from theother.dta

Quotes may be used to allow elements with blanks.

. foreach name in "Annette Fett" "Ashley Poole" "Marsha Martinez" {
2. display length("‘name’") " characters long -- ‘name’"
3.}

12 characters long -- Annette Fett
12 characters long -- Ashley Poole
15 characters long -- Marsha Martinez

foreach ... of local and foreach ... of global

foreach Ilname of local Imacname obtains the blank-separated list (which may contain quotes)
from local macro Imacname. For example,

foreach file of local flist {

}

246 foreach — Loop over items

produces the same results as typing

foreach file in ‘flist’ {

¥
except that foreach file of local flist is faster, uses less memory, and allows the list to be
modified in the body of the loop.

If the contents of f1ist are modified in the body of foreach file in ‘flist’, foreach will
not notice, and the original list will be used. The contents of £1ist may, however, be modified in
foreach file of local flist, but only to add new elements onto the end.

foreach lname of global gmacname is the same as foreach Iname in $gmacname, with the
same three caveats as to speed, memory use, and modification in the loop body.

> Example 2: Looping over the elements of local and global macros

. local grains "rice wheat flax"

. foreach x of local grains {
2. display "‘x’"
3.}
rice
wheat
flax

. global money "Dollar Lira Pound"

. foreach y of global money {
2. display "‘y’"
3.}

Dollar

Lira

Pound

d

foreach ... of varlist

foreach Iname of varlist varlist allows specifying an existing variable list.

foreach — Loop over items 247

> Example 3: Looping over existing variables

. foreach var of varlist pri-rep t* {

2. quietly summarize ‘var’
3. summarize ‘var’ if ‘var’ > r(mean)
4.}
Variable Obs Mean Std. dev. Min Max
price 22 9814.364 3022.929 6229 15906
Variable Obs Mean Std. dev. Min Max
mpg 31 26.67742 4.628802 22 41
Variable Obs Mean Std. dev. Min Max
rep78 29 4.37931 .493804 4 5
Variable Obs Mean Std. dev. Min Max
trunk 40 17.1 2.351214 14 23
Variable Obs Mean Std. dev. Min Max
turn 41 43.07317 2.412367 40 51 q

foreach Iname of varlist varlist can be useful interactively but is rarely used in programming
contexts. You can code

syntax [varlist]
foreach var of varlist ‘varlist’ {

}
but that is not as efficient as coding

syntax [varlist]
foreach var of local varlist {

}

because ‘varlist’ has already been expanded by the syntax command according to the macro
rules.

Q Technical note

syntax [varlist]
foreach var of local varlist {

}
is also preferable to

syntax [varlist]
tokenize ‘varlist’
while ll‘l)" != nn {

macro shift

248 foreach — Loop over items

or

syntax [varlist] ...
tokenize ‘varlist’
local i =1

Whlle Il((i))" != nn {

local i = ‘i’ + 1
}
because it is not only more readable but also faster.

foreach ... of newlist

newlist signifies to foreach that the list is composed of new variables. foreach verifies that
the list contains valid new variable names, but it does not create the variables. For instance,

. foreach var of newlist z1-z4 {
2. generate ‘var’ = runiform()

3.}

would create variables z1, z2, z3, and z4.

foreach ... of numlist

foreach Iname of numlist numlist provides a method of looping through a list of numbers.
Standard number-list notation is allowed; see [U] 11.1.8 numlist. For instance,

. foreach num of numlist 1/4 8 103 {
2. display ‘num’
3.}

W N

o

103
If you wish to loop over many equally spaced values, do not code, for instance,
foreach x in 1/1000 {
}
Instead, code

forvalues x = 1/1000 {

}

foreach must store the list of elements, whereas forvalues obtains the elements one at a time by
calculation; see [P] forvalues.

foreach — Loop over items 249

Use of foreach with continue

The Iname in foreach is defined only in the loop body. If you code

foreach x ... {
// loop body, ‘x’ is defined
}
// ‘x’ is now undefined, meaning it contains ""
‘x’ is defined only within the loop body, which is the case even if you use continue, break (see
[P] continue) to exit the loop early:

foreach x ... {

if ... {
continue, break
}
¥

// ‘x’ is still undefined, even if continue, break is executed
If you later need the value of ‘x’, code
foreach x ... {
if ... {
local lastx
continue, break

cne "
x>"

}

}
// ‘lastx’ defined

The unprocessed list elements

The macro ‘ferest()’ may be used in the body of the foreach loop to obtain the unprocessed
list elements.

> Example 4
. foreach x in alpha "one two" three four {
2. display
3. display " x is [‘x’ "™
4. display ‘"ferest() is |‘ferest()’|"’
5. }

x is |alphal
ferest() is |"one two" three four|

x is |one twol
ferest() is |three four|

x is |three]
ferest() is |fourl

x is |fourl
ferest() is || q

250 foreach — Loop over items

‘ferest ()’ is available only within the body of the loop; outside that, ‘ferest ()’ evaluates to
" Thus you might code
foreach x ... {
if ... o{
local lastx ‘"‘x’"’
local rest ‘"‘ferest()’"’
continue, break
}
}

// ‘lastx’ and ‘rest’ are defined

References

Canette, 1. 2014. Using resampling methods to detect influential points. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/.

Cox, N. J. 2020. Speaking Stata: Loops, again and again. Stata Journal 20: 999-1015.
——. 2021a. Erratum: Speaking Stata: Loops, again and again. Stata Journal 21: 555.
——. 2021b. Speaking Stata: Loops in parallel. Stata Journal 21: 1047-1064.

Also see
[P] continue — Break out of loops
[P] forvalues — Loop over consecutive values
[P] if — if programming command
[P] levelsof — Distinct levels of a variable
[P] while — Looping
[U] 18 Programming Stata
[U] 18.3 Macros

http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
http://blog.stata.com/2014/05/08/using-resampling-methods-to-detect-influential-points/
https://doi.org/10.1177/1536867X20976340
https://doi.org/10.1177/1536867X211025839
https://doi.org/10.1177/1536867X211063415

Title

forvalues — Loop over consecutive values

Description Syntax Remarks and examples References Also see

Description

forvalues repeatedly sets local macro [name to each element of range and executes the commands
enclosed in braces. The loop is executed zero or more times.

Syntax

forvalues lname = range {
Stata commands referring to ‘Iname’

}
where range is
#1 (Bg) #o meaning #; to #o in steps of #4
#1/#o meaning #; to #o in steps of 1
#1 #; to #o meaning #; to #o in steps of # — #;
o Ho meaning #, to #o in steps of #, — #;
The loop is executed as long as calculated values of ‘lname’ are < #,, assuming that #5 > 0.
Braces must be specified with forvalues, and

1. the open brace must appear on the same line as forvalues;

2. nothing may follow the open brace except, of course, comments; the first command to be
executed must appear on a new line;

3. the close brace must appear on a line by itself.

Remarks and examples

forvalues is the fastest way to execute a block of code for different numeric values of Iname.

> Example 1

With forvalues lname = #, (#4)#2, the loop is executed zero or more times, once for lname =
#,, once for Iname = #, + #4, once for lname = #, + #; + #4, and so on, as long as [name < #o
(assuming #4 is positive) or as long as lname > #o (assuming #4 is negative). Specifying #4 as O is

an error.
. forvalues i = 1(1)5 {
2. display ‘i’
3.}

O W N

251

252 forvalues — Loop over consecutive values

lists the numbers 1-5, stepping by 1, whereas

. forvalues i = 10(-2)1 {
2. display ‘i’
3.}

0

1
8
6
4
2

lists the numbers starting from 10, stepping down by 2 until it reaches 2. It stops at 2 instead of at
1 or 0.

. forvalues i = 1(1)1 {
2. display ‘i’
3.}

displays 1, whereas
. forvalues i = 1(1)0 {
2. display ‘i’

3.}
displays nothing.
d

forvalues Iname = #;/#5 is the same as using forvalues lname = #; (1)#5. Using / does not
allow counting backward.

> Example 2
. forvalues i = 1/3 {
2. display ‘i’
3.}
1
2
3

lists the three values from 1 to 3, but

. forvalues i = 3/1 {

2. display ‘i’
3.}
lists nothing because using this form of the forvalues command allows incrementing only by 1.

N

The forvalues lname = #1 #; to #5 and forvalues lname = #, #; : #5 forms of the forvalues
command are equivalent to computing #; = #, — #; and then using the forvalues lname = #, (#4) #2
form of the command.

forvalues — Loop over consecutive values 253

> Example 3

. forvalues i = 5 10 : 25 {
2. display ‘i’
3.}

5

10

15

20

25

. forvalues i = 25 20 to 5 {
2. display ‘i’
3.}

25

20

15

10

5

O Technical note
It is not legal syntax to type

. scalar x = 3

. forvalues i = 1(1)‘x’ {
2. local x = ‘x’ + 1
3. display ‘i’
4. }

forvalues requires literal numbers. Using macros, as shown in the following technical note, is
allowed.

a

Q Technical note

The values of the loop bounds are determined once and for all the first time the loop is executed.
Changing the loop bounds will have no effect. For instance,

. local n 3

. forvalues i = 1(1)‘n’ {

2. local n = ‘n’ + 1
3. display ‘i’
4.}

1

2

3

will not create an infinite loop. With ‘n’ originally equal to 3, the loop will be performed three
times.

254 forvalues — Loop over consecutive values

Similarly, modifying the loop counter will not affect forvalues’ subsequent behavior. For instance,

. forvalues i = 1(1)3 {
2. display "Top of loop i = ‘i’"
3. local i = ‘i’ * 4
4. display "After change i = ‘i’"
5.}
Top of loop
After change
Top of loop
After change
Top of loop
After change

L O S =
=W 00N

will still execute three times, setting ‘i’ to 1, 2, and 3 at the beginning of each iteration.

References

Cox, N. J. 2010. Stata tip 85: Looping over nonintegers. Stata Journal 10: 160-163.
——. 2020. Speaking Stata: Loops, again and again. Stata Journal 20: 999-1015.
—. 2021a. Erratum: Speaking Stata: Loops, again and again. Stata Journal 21: 555.
——. 2021b. Speaking Stata: Loops in parallel. Stata Journal 21: 1047-1064.

Drukker, D. M. 2015. Monte Carlo simulations using Stata. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/.

Huber, C. 2014. How to create animated graphics using Stata. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/.

Also see
[P] continue — Break out of loops
[P] foreach — Loop over items
[P] if — if programming command
[P] while — Looping
[U] 18 Programming Stata
[U] 18.3 Macros

http://www.stata-journal.com/article.html?article=pr0051
https://doi.org/10.1177/1536867X20976340
https://doi.org/10.1177/1536867X211025839
https://doi.org/10.1177/1536867X211063415
http://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
http://blog.stata.com/2015/10/06/monte-carlo-simulations-using-stata/
http://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/
http://blog.stata.com/2014/03/24/how-to-create-animated-graphics-using-stata/

Title

frame post — Post results to dataset in another frame

Description Syntax Remarks and examples Also see

Description

These commands are utilities to assist Stata programmers in performing Monte Carlo-type exper-
iments. They are similar to Stata’s postfile facilities (see [P] postfile) but operate on a dataset in
a frame in memory rather than on disk.

frame create declares the variable names and frame name of a new Stata frame where results
will be stored.

frame post adds a new observation to the dataset in the declared frame.

After you have posted all the observations you wish to the declared frame, you should save the
data in it to disk; see [D] save.

These commands manipulate the data in the new frame without disturbing the data in memory in
the current frame.

Syntax

Create new frame with specified variables for use with frame post

frame create newframename newvarlist

Add new observation to declared frame

frame post framename (exp) (exp) ... (exp)

Remarks and examples

The typical use of the frame post command is

tempname memhold
frame create ‘memhold’ ...
while ... {

frame post ‘memhold’ ...
save ...

In our example, we obtain the new frame name from Stata’s temporary name facility (see
[P] macro). We recommend that newframename usually be obtained from tempname. This ensures
that your program can be nested within any other program and ensures that the memory used by frame
post is freed if anything goes wrong. You can of course substitute a hard-coded newframename for
some programming situations.

255

256 frame post — Post results to dataset in another frame

Because frame create accepts a newvarlist, storage types may be interspersed, so you could
have

frame create ‘memhold’ a b str20 c double(d e f)

Note that frame create allows strL as a variable storage type, unlike [P] postfile.

> Example 1

We wish to write a program to collect means and variances from 10,000 randomly constructed
100-observation samples of lognormal data and save the results in results.dta. Suppose that we
are evaluating the coverage of the 95%, ¢-based confidence interval when applied to lognormal data.
As background, we can obtain a 100-observation lognormal sample by typing

drop _all
set obs 100
generate z = exp(rnormal())

We can obtain the mean and standard deviation by typing

summarize z

Moreover, summarize stores the sample mean in r(mean) and variance in r(Var). It is those two
values we wish to collect. Our program is

program lnsim
version 18.0
tempname sim
frame create ‘sim’ mean var

quietly {
forvalues i = 1/10000 {
drop _all
set obs 100
generate z = exp(rnormal())
summarize z
frame post ‘sim’ (r(mean)) (r(Var))
}
}

frame ‘sim’: save results.dta
end

The frame create command creates a new frame with a temporary name (‘sim’); mean and var are
the names to be given to the two variables that will contain the information we collect. Because two
variable names were specified on the frame create line, two expressions must be specified following
frame post. Here the expressions are simply r(mean) and r(Var). If we had wanted, however, to
store the mean divided by the standard deviation and the standard deviation, we could have typed

frame post ‘sim’ (r(mean)/r(sd)) (r(sd))

There is no need for a command to conclude the simulation. When the dataset in frame ‘sim’
has everything in it we wish to have in it, we can either switch to frame ‘sim’ to do what we wish
with the data or save it to disk to examine later. Here we saved the new data in frame ‘sim’ to a file
named results.dta.

frame post — Post results to dataset in another frame 257

. set seed 12345

. lnsim
file results.dta saved

. use results, clear
. describe

Contains data from results.dta

Observations: 10,000
Variables: 2 23 Mar 2023 17:19
Variable Storage Display Value
name type format label Variable label
mean float %9.0g
var float %9.0g
Sorted by:

We set the random-number seed to an arbitrary value, 12345, so that this example would be reproducible.

N

Also see
[P] postfile — Post results in Stata dataset
[D] frames intro — Introduction to frames
[D] frames — Data frames
[D] frame create — Create a new frame

[R] simulate — Monte Carlo simulations

Title

fvexpand — Expand factor varlists

Description Syntax Remarks and examples Stored results Also see

Description

fvexpand expands a factor varlist to the corresponding expanded, specific varlist. varlist may be
general or specific and even may already be expanded.

Syntax
fvexpand [varlist} [zf} [m]

varlist may contain factor variables and time-series operators; see [U] 11.4.3 Factor variables and [U] 11.4.4 Time-series
varlists.

collect is allowed; see [U] 11.1.10 Prefix commands.

Remarks and examples
An example of a general factor varlist is mpg i.foreign. The corresponding specific factor varlist
would be mpg i (0 1)b0.foreign if foreign took on the values 0 and 1 in the data.

A specific factor varlist is specific with respect to a given problem, which is to say, a given dataset
and subsample. The specific varlist identifies the values taken on by factor variables and the base.

Factor varlist mpg 1(0 1)bO.foreign is specific. The same varlist could be written as mpg
iOb.foreign il.foreign, so that is specific, too. The first is unexpanded and specific. The second
is expanded and specific.

fvexpand takes a general or specific (expanded or unexpanded) factor varlist, along with an
optional if or in, and returns a fully expanded, specific varlist.

Stored results

fvexpand stores the following in r():

Macros
r(varlist) the expanded, specific varlist
r(fvops) true if varlist contains factor variables
r(tsops) true if varlist contains time-series operators
Also see

[R] fvrevar — Factor-variables operator programming command
[U] 11.4.3 Factor variables

258

Title

gettoken — Low-level parsing

Description Syntax Options Remarks and examples Reference
Also see

Description

gettoken is a low-level parsing command designed for programmers who wish to parse input for
themselves. The syntax command (see [P] syntax) is an easier-to-use, high-level parsing command.

gettoken obtains the next token from the macro emname3 and stores it in the macro emnamel.
If macro emname? is specified, the rest of the string from emname3 is stored in the emname2 macro.
emnamel and emname3, or emname2 and emname3, may be the same name. The first token is
determined based on the parsing characters pchars, which default to a space if not specified.

Syntax
gettoken emnamel [emnameZ] : emname3 [, parse("pchars") quotes

qed (Imacname) match (Imacname) bind]

where pchars are the parsing characters, Imacname is a local macro name, and emname is described
in the following table:

emname 1s ... Refers to a ...

macroname local macro

(local) macroname local macro

(global) macroname global macro
Options

parse("pchars") specifies the parsing characters. If parse() is not specified, parse(" ") is
assumed, meaning tokens are identified by blanks.

quotes specifies that the outside quotes are not to be stripped in what is stored in emnamel. This
option has no effect on what is stored in emname2 because it always retains outside quotes. quotes
is a rarely specified option; usually you want the quotes stripped. You would not want the quotes
stripped if you wanted to make a perfect copy of the contents of the original macro for parsing
at a later time.

qged (Imacname) specifies a local macroname that is to be filled in with 1 or 0 according to whether
the returned token was enclosed in quotes in the original string. ged() does not change how
parsing is done; it merely returns more information.

match (Imacname) specifies that parentheses be matched in determining the token. The outer level of
parentheses, if any, are removed before the token is stored in emnamel. The local macro Imacname
is set to “(” if parentheses were found; otherwise, it is set to an empty string.

259

260 gettoken — Low-level parsing

bind specifies that expressions within parentheses and those within brackets are to be bound together,
even when not parsing on () and [].

Remarks and examples

Often we apply gettoken to the macro ‘0’ (see [U] 18.4.6 Parsing nonstandard syntax), as in
gettoken first : O

which obtains the first token (with spaces as token delimiters) from ‘0’ and leaves ‘0’ unchanged.
Or, alternatively,

gettoken first 0 : O
which obtains the first token from ‘0’ and saves the rest back in 0.

> Example 1

Even though gettoken is typically used as a programming command, we demonstrate its use
interactively:
. local str "cat+dog mouse++horse"
. gettoken left : str

. display ‘"‘left’"’
cat+dog

. display ‘"‘str’"’
cat+dog mouse++horse
. gettoken left str : str, parse(" +")

. display ‘"‘left’"’
cat

. display ‘"‘str’"’
+dog mouse++horse
. gettoken next str : str, parse(" +")

. display ‘"‘next’"’
+

. display ‘"‘str’"’
dog mouse++horse

Both global and local variables may be used with gettoken. Strings with nested quotes are also

allowed, and the quotes option may be specified if desired. For more information on compound
double quotes, see [U] 18.3.5 Double quotes.

. global weird ‘"‘""some" strings"’ are ‘"within "strings""’"’
. gettoken (local)left (global)right : (global)weird

. display ‘"‘left’"’

"some" strings

. display ‘"$right"’

are ‘"within "strings""’

. gettoken left (global)right : (global)weird , quotes
. display ‘"‘left’"’

“n "Some" Strings")

. display ‘"$right"’

are ‘"within "strings""’

The match() option is illustrated below.

gettoken — Low-level parsing 261

. local pstr "(a (b c)) ((de f) gh)"
. gettoken left right : pstr

. display ‘"‘left’"’
(a

. display ‘"‘right’"’
(b c)) ((def)gh)

. gettoken left right : pstr , match(parns)
. display ‘"‘left’"’

a (b c)
. display ‘"‘right’"’
((def)gh)

. display ‘"‘parns’"’

> Example 2

One use of gettoken is to process two-word commands. For example, mycmd list does one
thing and mycmd generate does another. We wish to obtain the word following mycmd, examine it,
and call the appropriate subroutine with a perfect copy of what followed.

program mycmd

version 18.0
gettoken subcmd O : O

if "‘subcmd’" == "list" {
mycmd_1 ‘0°

}

else if "‘subcmd’" == "generate" {
mycmd_g ‘0’

}

else error 199

end

program mycmd_1

end

program mycmd_g

end
d
> Example 3
Suppose that we wish to create a general prefix command with the syntax
newemd ... : stata_command
where . .. represents some possibly complicated syntax. We want to split this entire command line at

the colon, making a perfect copy of what precedes the colon, which will be parsed by our program,
and what follows the colon, which will be passed along to stata_command.

262 gettoken — Low-level parsing

program newcmd, properties(prefix)
version 18.0

gettoken part O : 0, parse(" :") quotes
while ‘ll‘part)ll) != ||:l| & ‘"‘part}") != nn {
local left ‘"‘left’ ‘part’"’
gettoken part O : O, parse(" :") quotes
}

(“left’ now contains what followed newcmd up to the colon)
(€0’ now contains what followed the colon)

end

Notice the use of the quotes option. We also used compound double quotes when accessing
‘part’ and ‘left’ because these macros might contain embedded quotation marks.

d

Q Technical note

We strongly encourage you to specify space as one of your parsing characters. For instance, with
the last example, you may have been tempted to use gettoken but to parse only on colon instead
of on colon and space, as in

gettoken left O : 0, parse(":") quotes
gettoken colon O : O, parse(":")

and thereby avoid the while loop. This is not guaranteed to work for two reasons. First, if the length
of the string up to the colon is large, then you run the risk of having it truncated. Second, if ‘left’
begins with a quotation mark, then the result will not be what you expect.

Our recommendation is always to specify a space as one of your parsing characters and to grow
your desired macro as demonstrated in our last example.

a
Q Technical note
If one of the parsing characters specified is the equal sign, for example, parse("= "), then not
only the equal sign is treated as one token but also Stata’s equality operator, ==. For instance, parsing
A‘y=x if Z== " results in the tokens A‘y?” “=?” “X”’ “if”’ 4427” 46==’$’ and 6&3’?'
a
Reference

Cox, N. J. 2021. Speaking Stata: Loops in parallel. Stata Journal 21: 1047-1064.

https://doi.org/10.1177/1536867X211063415

gettoken — Low-level parsing 263

Also see
[P] syntax — Parse Stata syntax
[P] tokenize — Divide strings into tokens
[P] while — Looping
[M-5] invtokens() — Concatenate string rowvector into string scalar
[M-5] tokenget() — Advanced parsing
[M-5] tokens() — Obtain tokens from string
[U] 18 Programming Stata

Title

H20 intro — Introduction to integration with H20

Description

H20 is a scalable and distributed machine learning and predictive analytics platform. You can read
more about H20 at http://docs.h20.ai/.

We have been experimenting with connecting to H20 from official Stata. Typically, we keep such
experiments in-house until either we fully flesh them out into something we release to users or we
shelve them because they do not work out the way we wanted or our priorities have changed.

We think H20 is an interesting platform, and we want both our users and ourselves to be able to
explore connecting to it from Stata. So, we are giving our users early access to our work, and we
welcome any feedback. In addition to the connection we have enabled from official Stata, we expect
to release some community-contributed packages, and we hope users will do the same.

The documentation for this experimental connection is available at
https://www.stata.com/h20/h2018/

The main command used to interact with H20 is _h2oframe. Notice the underscore; this signifies
that the command is intended more for programmatic use. For the most part, it does not return output
or helpful error messages, and its syntax is intended more for programmers than end users. It can
be used as an engine for wrappers that provide user-friendly output, error messages, and the like.
What _h2oframe does provide is access to H20 along with stored results based on the actions that
it performs.

Syntax and features are subject to change. Keep in mind that when _h2oframe provides access
to a given feature of H20, that feature is an H20 feature. Though it is accessed by a Stata command,
what it does is up to H20 and is outside of Stata.

264

http://docs.h2o.ai/
https://www.stata.com/h2o/h2o18/

Title

if — if programming command

Description Syntax Remarks and examples Reference Also see

Description

The if command (not to be confused with the if qualifier; see [U] 11.1.3 if exp) evaluates exp. If
the result is true (nonzero), the commands inside the braces are executed. If the result is false (zero),
those statements are ignored, and the statement (or statements if enclosed in braces) following the
else is executed.

Syntax

if exp { or if exp single_command
multiple_commands

}

which, in either case, may be followed by

else { or else single_command
multiple_commands

}

If you put braces following the if or else,
1. the open brace must appear on the same line as the if or else;

2. nothing may follow the open brace except, of course, comments; the first command to be
executed must appear on a new line;

3. the close brace must appear on a line by itself.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Avoid single-line if and else with ++ and -- macro expansion

Introduction

The if command is intended for use inside programs and do-files; see [U] 18.3.4 Macros and
expressions for examples of its use.

265

266 if — if programming command

> Example 1

Do not confuse the if command with the if qualifier. Typing if (age>21) summarize age will
summarize all the observations on age if the first observation on age is greater than 21. Otherwise,
it will do nothing. Typing summarize age if age>21, on the other hand, summarizes all the
observations on age that are greater than 21.

d

> Example 2

if is typically used in do-files and programs. For instance, let’s write a program to calculate the
Tukey (1977, 90-91) “power” function of a variable, x:

. program power

if ‘2°>0 {

generate z=‘1’"¢2’

label variable z "‘1°°‘2°"
}
else if €2’==0 {

generate z=log(‘1’)

label variable z "log(‘1’)"

}
else {
generate z=-(‘1""(2?))
label variable z "-‘1’"(‘2’)"
}
end

This program takes two arguments. The first argument is the name of an existing variable, x.
The second argument is a number, which we will call n. The program creates the new variable z. If
n>0,zisz" if n =0, z is logz; and if n < 0, z is —z™. No matter which path the program
follows through the code, it labels the variable appropriately:

. power age 2

. describe z

Variable Storage Display Value
name type format label Variable label
z float %9.0g age™2

Q Technical note

If the expression refers to any variables, their values in the first observation are used unless explicit
subscripts are specified.
a

Avoid single-line if and else with ++ and -- macro expansion

Do not use the single-line forms of if and else—do not omit the braces—when the action
includes the ‘++’ or ‘--’ macro-expansion operators. For instance, do not code

if (...) somecommand ‘++i’

if — if programming command 267

Code instead,
if (...) {

somecommand ‘++1i’

}

In the first example, i will be incremented regardless of whether the condition is true or false
because macro expansion occurs before the line is interpreted. In the second example, if the condition
is false, the line inside the braces will not be macro expanded and so i will not be incremented.

The same applies to the else statement; do not code

else somecommand ‘++i’

Code instead,

else {
somecommand ‘++1i’

}

Q Technical note

What was just said also applies to macro-induced execution of class programs that have side
effects. Consider

if (...) somecommand °.clspgm.getnext’

Class-member program .getnext would execute regardless of whether the condition were true or
false. Here code

if (..) {
somecommand ‘.clspgm.getnext’

}

Understand that the problem arises only when macro substitution causes the invocation of the class
program. There would be nothing wrong with coding

if (...) ‘.clspgm.getnext’

Reference
Tukey, J. W. 1977. Exploratory Data Analysis. Reading, MA: Addison—Wesley.

Also see
[P] continue — Break out of loops
[P] foreach — Loop over items
[P] forvalues — Loop over consecutive values
[P] while — Looping
[U] 18 Programming Stata

Title

include — Include commands from file

Description Syntax Option Remarks and examples
Also see

Description

include is a variation on do and run that causes Stata to execute the commands stored in the
specified file as if they were entered from the keyboard. include is for advanced programming to
share common definitions among several do-files. include may also be used in Mata to create a
library of routines with shared concepts.

Syntax
include filename [, @path]

If filename is specified without an extension, .do is assumed.

Option

adopath indicates to search Stata’s system directories for filename if it is not found in the default
location.

Remarks and examples

Remarks are presented under the following headings:

Use with do-files
Use with Mata
Warning

Use with do-files

include can be used in advanced programming situations where you have several do-files among
which you wish to share common definitions. include differs from do and run in that any local
macros (changed settings, etc.) created by executing the file are not dropped or reset when execution
of the file concludes. Rather, results are as if the commands in filename appeared in the session or
file that included filename.

Say that you have do-files stepl.do, step2.do, and step3.do that perform a data management
task. You want the do-files to include a common definition of the local macros ‘inname’ and
‘outname’, which are, respectively, the names of the files to be read and created. One way to do
this is

268

include — Include commands from file 269

begin stepl.do

include common.doh

end stepl.do

begin step2.do

include common.doh

end step2.do

begin step3.do

include common.doh

end step3.do

begin common.doh

local inname "inputdata.dta"
local outname "outputdata.dta"

end common.doh

Presumably, files stepl.do, step2.do, and step3.do include lines such as
. use ‘inname’, clear
and
. save ‘outname’, replace
Our use of the .doh suffix in naming file common.doh is not a typo. We called the file .doh to
emphasize that it is a header for do-files, but you can name the file as you wish, including common.do.

You could call the file common.do, but you could not use the do command to run it because the
local macros that the file defines would automatically be dropped when the file finished executing;
thus in stepl.do, step2.do, and step3.do, the macros would be undefined.

Use with Mata

include is sometimes used in advanced Mata situations where you are creating a library of
routines with shared concepts:

begin inpivot.mata

version 18.0
include limits.matah

mata:
real matrix inpivot(real matrix X)
{
real matrix yi, yz
real scalar n
if (rows(X)>‘MAXDIM’ | cols(X)>‘MAXDIM’) {
errprintf ("inpivot: matrix too large\n")
exit (1000)
}
}
end

end inpivot.mata

270 include — Include commands from file

begin limits.matah

local MAXDIM 800

end limits.matah

Presumably, many .mata files include 1imits.matah.

Warning

Do not use command include in the body of a Stata program:
program ...
include ...
end

include will not be executed, as you might have hoped, when the program is compiled. Instead,
include will be stored in your program and executed every time your program runs. The result will
be the same as if the lines had been included at compile time, but the execution will be slower.

Also see
[R] do — Execute commands from a file
[R] doedit — Edit do-files and other text files

Title

Java intro — Introduction to Java in Stata

Description Also see

Description

Access to the Java platform in Stata comes in two forms, Java integration and Java plugins.

Java integration is a drop-in environment similar to JShell, where Java code can be executed
directly in Stata. This allows Java code to be invoked and executed interactively, in do-files, and in
ado-files. Note that JShell is a console application available in Java Development Kit version 9 and
later that allows for interactive Java programming and prototyping. While Stata’s implementation is
similar to JShell, it is by design not the same.

Java plugins are Java programs that must be compiled and bundled into a Java Archive file. These
files are invoked using the javacall command, which requires that a special method be defined that
serves as an entry point for the plugin. For details about the signature of this method, see [P] javacall.

Whether you use Java integration or Java plugins, Stata provides Java packages to facilitate
communication between the Java platform and Stata; refer to Java-Stata API Specification for details.

Also see [P] Java utilities for system information for your Java environment.

Also see
[P] Java integration — Java integration for Stata
[P] Java plugin — Introduction to Java plugins
[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

271

https://www.stata.com/java/api18

Title

Java integration — Java integration for Stata

Description Syntax Option Remarks and examples Also see

Description

java creates an instance of a Java environment for executing Java code within Stata. In this
environment, Java code does not need to be compiled or bundled into a Java Archive (JAR) file. This
allows Java code to be executed interactively, in do-files, and in ado-files. Stata’s datasets, matrices,
macros, scalars, and more can be accessed using the Java-Stata API Specification.

java[:] creates a Java environment in which Java code can be executed in a Read-Evaluate-
Print-Loop environment, similar to JShell in Java 9 and later versions.

java: istmt executes one Java simple statement or several simple statements separated by semi-
colons.

java clear clears all instances of the Java environment. This means that the global environment
and all environments associated with ado-files will be destroyed.

Syntax

Syntax is presented under the following headings:

Calling Java from Stata
Instance commands

Calling Java from Stata

Enter Java environment

java [varlist} [sz] [H’l} [, shared(keyname)] [}

Execute Java simple statements

java [varlist} [lf] [zn} [, shared(keyname)]: istmt

Clear all instances of the Java environment

java clear

A colon (:) tells the Java instances to exit the interactive mode if an error is encountered.

istmt is either one Java simple statement or several simple statements separated by semicolons.

272

https://www.stata.com/java/api18

Java integration — Java integration for Stata 273

Instance commands

The following commands can be issued inside the Java environment:

Exit the Java session

end

Show help information about the rest of the Java instance commands
/help
Set or display the class-path for the environment. When called without an argument, the current

class-path will be displayed. The class-path must be set before calling anything depending on it;
otherwise, you must call /reset.

/cp [jar_file|path |

Read a Java file, and execute the source in Stata’s Java environment

/open file| path

Show all imported packages

/imports

Reset the instance as if it were completely new

/reset

Show all active and inactive variables

/vars

Show all method declarations and unresolved references if they exist

/methods

Show all type declarations and unresolved references if they exist

/types

Show all source snippets given in the current Java environment

/list

Option

shared (keyname) specifies that a shareable instance of Java, named keyname, be invoked. This
allows you to share an instance across ado-files. keyname must be a valid Stata name.

274 Java integration — Java integration for Stata

Remarks and examples

Remarks are presented under the following headings:
How the environment works
Invoking Java interactively
Executing Java in a do-file
Executing Java in an ado-file
Executing Java files
Stata Function Interface examples
Using JAR dependencies

How the environment works

java provides utilities for integrating Java with Stata. java creates an instance of the Java
environment that allows you to execute Java code interactively or in do-files and ado-files.

The java environment has different behavior based on how it is used. When used interactively
or in do-files, class definitions and instance variables share a global instance of the environment.
So a class defined in a do-file can also be referenced interactively or from another do-file. On the
other hand, class definitions and instance variables that are defined in ado-files get their own unique
instance of the environment by default. The shared() option can be used to override that default
behavior. By limiting the scope of the environment associated with ado-files, you can make each
ado-file behave autonomously without worry of class definitions and instance variables colliding in
other ado-files.

Each java environment automatically imports java.util.*, java.io.*, com.stata.sfi.*,
and com.stata.sfi.util* when initialized. Other packages can be imported in the usual way by
using import statements in your code.

For information on Java versions supported by this integration, see [P] Java utilities.

Invoking Java interactively

To invoke Java interactively, you must type either java or java:. Including a colon tells the Java
instances to exit the interactive mode if an error is encountered.

When you execute single statements, a semicolon at the end of the statement is optional. When
you execute multiple or complex statements, semicolons are required to delimit the statements.

Below, we demonstrate the two syntaxes:

. java

java (type end to exit and /help for help)

I
[ure

java> int x =
x ==>1

java> int y = 2; x + y;
y ==> 2

$1 ==> 3

java> end

You may have noticed $1 ==> 3 in the output. When you execute a statement that returns some
value without assigning it to a result, it will store the value in a temporary variable for you. You can
access those variables by their names, for example, int z = $1 + 2.

To exit your interactive session, type end. This will exit your session; however, it will not get rid
of your work. If you go back into Java, you will be able to access your work. Let’s try going back
into our environment and looking at the variables we have set.

Java integration — Java integration for Stata 275

. java

java (type emd to exit and /help for help)

int x = 1

int y = 2

int $1 = 3
java> end

java> /vars
|
|
I

You can also enter interactive mode for a single statement with the syntax java: istmt, for example,
java: /vars.

If you wish to reset your environment, you can type java: /reset to reset that instance.
Alternatively, you can type java clear to clear all Java instances you have, including the ones in
ado-files you may have loaded.

Executing Java in a do-file

Java code and Stata code can be executed in the same do-file. To do this, wrap your Java code in
java[:] and end, similar to Python and Mata.

For example, we have the following do-file that calculates the mean of two Stata macros:

begin java_exl.do ————

local x = 10
local y = 2
java:

double mean = (‘x’ + ‘y’) / 2;
Macro.setLocal("mean", String.valueOf(mean));
end

di ‘mean’

end java_exl.do ——

First, we define two local macros in Stata, x and y. Inside the Java block, we do basic arithmetic
to compute the mean of the two local macros. Then, we use the Stata Function Interface package to
set the value of the new mean macro in Stata. Macro substitution is a convenient way to pass values
from Stata to Java.

Below, we run this do-file:

. do java_exl
. local x = 10
. local y = 2
. java:

java (type emd to exit and /help for help)
java> double mean = (‘x’ + ‘y’)/2;
mean ==> 6.0

java> Macro.setLocal("mean", String.valueOf (mean));

$2 ==> 0
java> end

. di ‘mean’
6

end of do-file

Executing Java in do-files uses the same Java instance as the Command window. We call this the
global instance. That means anything you do in this do-file will carry over to the Command window
and other do-files.

https://www.stata.com/java/api18/com/stata/sfi/package-summary.html

276 Java integration — Java integration for Stata

Executing Java in an ado-file

Unlike do-files, ado-files will get their own instance of Java. This means that anything you do
with Java in an ado-file is bound to it by default. However, if you use the shared() option, you
will be able to access the same instance across multiple ado-files.

Java blocks may be placed in an ado-file but must be placed outside the ado program itself.
Functions defined in the java block may be called from the ado-file using the java: istmt syntax.

For example, we have the following ado-file that prints the value of x:

begin java_program.ado
program java_program

version 17

java: printX();
end

java:
int x = 123;
void printX() {
System.out.println("x: " + x);

end

end java_program.ado

To run this program in Stata, we simply type

. java_program
x: 123

After running java_program.ado, if we type java: x in the Command window, we will not
see a value of 123. This is because x is defined only in the context of the ado-file it was defined in.
If you ran the example shown in Invoking Java interactively, then x would be 1; otherwise, it will
not be defined.

Executing Java files

Executing Java files in Stata is a little bit different from the traditional way, in which you would
normally include dependencies and have a single entry point. With the Java integration, we allow you
to run any Java file as if it were passed in line by line into the environment; Stata will search along
the ado-path for the specified file. This could mean you simply define classes to use, or you could
even set up a dependency in your class-path and do real work in your Java file.

Let’s take this example that defines a class called Addition, which takes two arguments in its
constructor and can return the sum of the two.

Java integration — Java integration for Stata 277

begin Addition. java
class Addition {

int x, y;

public Addition(int x, int y) {
this.x = x;
this.y = y;

public int result() {
return x + y;

}

@0verride
public String toString() {
return "Addition{" +
"yg=" 4+ x +
", y=|| +y o+

)}J;

end Addition. java

Below, we will open and use our new class:

. java:

java (type emd to exit and /help for help)
java> /open Addition.java

java> Addition addition = new Addition(4, 6);
addition ==> Addition{x=4, y=6}

java> int sum = addition.result();
sum ==> 10

java> end

Notice that the Addition class was declared in the file, but by running this file with /open, we
declare it in whatever scope calls it. In our case, running /open in the Command window results in
the Addition class being defined in the global instance.

Stata Function Interface examples

Integrating Java code with Stata requires use of the Java-Stata API Specification. This package
provides tools to interact with Stata’s datasets, matrices, macros, scalars, and more.

https://www.stata.com/java/api18

278 Java integration — Java integration for Stata

For example, if we want to print a list of all the variables in Stata in auto.dta, we can type

. sysuse auto, clear
(1978 automobile data)

. java:

java (type emd to exit and /help for help)
java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 12

java> for (int v = 1; v <= parsedVariables; v++) {
> /* Get the real index of parsed vars for varlist support */
LoD int varIndex = Data.mapParsedVarIndex(v);
o> System.out.println(Data.getVarName (varIndex)) ;
o> }

make

price

mpg

rep78

headroom

trunk

weight

length

turn

displacement

gear_ratio

foreign

java> end

To interpret varlist, if, and in qualifiers, we can make use of a few notable functions in the
com.stata.sfi.Data class.

To interpret varlist, we must first get a count of the variables set to be used in the environ-
ment. For this, we use Data.getParsedVarCount (). From there, we create an association between
variables 1 through NN in the environment and their location in the dataset as a whole. We can
use Data.mapParsedVarIndex(v), with v being the 1-based index starting with the first vari-
able you passed into the environment with varlist. For example, if you call java mpg price:,
Data.mapParsedVarIndex (1) will return the index in the dataset where the mpg variable is located,
which would be 3. Alternatively, Data.mapParsedVarIndex(2) will return the index in the dataset
where the price variable is located, which would be 2. We need this function because any of the
functions in com.stata.sfi.Data that take an index as an argument refer to the entire dataset. For
example:

. java mpg price:

java (type emd to exit and /help for help)
java> int parsedVariables = Data.getParsedVarCount();
parsedVariables ==> 2

java> for (int v = 1; v <= parsedVariables; v++) {

> int varIndex = Data.mapParsedVarIndex(v);
LoD SFIToolkit.displayln(Data.getVarName (varIndex));
S }

mpg

price

java> end

Java integration — Java integration for Stata 279

To interpret if, use the Data.isParsedIfTrue(int obs) method. If it returns false, you should
not process the observation.

To interpret in, use the Data.getObsParsedInl() and Data.getObsParsedIn2() methods.
For example, if you type java in 10/50:, then the return values of Data.getObsParsedIni ()
and Data.getObsParsedIn2() will be 10 and 50, respectively. From there, you can set up a loop
to iterate over only those observations, like so:

. sysuse auto, clear
. java in 1/50:
java> long obsStart = Data.getObsParsedInl();
java> long obsEnd = Data.getObsParsedIn2();
java> for (long i = obsStart; i <= obsEnd; i++)
L .
>
java> end

Using JAR dependencies

To set up dependencies in the environment’s class-path, you will use the /cp instance command.
Say you have a JAR file named myjar. jar in your ado-path. You can run the instance command
/cp myjar. jar to include it in the class-path. After you include it, you may run code that uses
that dependency. There is one caveat. If you try to run code that uses the dependency before adding
it to the class-path, the class loader will try to load your nonexistent dependency and will require
a /reset to reload it. Alternatively, you may provide an absolute path or a path relative to your
current Stata working directory to search for dependencies.

Q Technical note

Note that the Stata version statement affects only the Stata command interpreter and does not
affect the execution or behavior of the Java Virtual Machine.
a

Also see

[P] Java intro — Introduction to Java in Stata
[P] Java plugin — Introduction to Java plugins
[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

Title

Java plugin — Introduction to Java plugins

Description Remarks and examples References Also see

Description

Java plugins are Java programs that you can call from Stata. When called from Stata, a Java plugin
can interact with Stata’s datasets, matrices, macros, scalars, and more. Programmers familiar with
Java can use Java’s extensive language features. There are also many third-party libraries available.
If you are not an experienced Java programmer and you intend to implement a Java plugin, you
should start by learning Java. Once you become a proficient Java programmer, writing a Java plugin
for Stata should be relatively easy.

If you are interested in writing plugins for Stata in another language such as C or C++, see
[P] plugin.

Also see [P] Java utilities for system information for your Java environment.

Remarks and examples

A Java plugin is called or executed using Stata’s javacall command. For a Java plugin to be
useful, it needs to have access to a set of Stata’s core features. Stata provides Java packages that
allow plugins to interact with Stata; refer to Java-Stata API Specification for details. When compiling
your Java plugin to use these features, the sfi-api. jar file needs to be added to the class path of
your Java compiler. This file is located in utilities/jar/, which can be found in the directory
where Stata was installed.

Once Java source code has been compiled, a Java plugin can be executed from Stata by bundling
your plugin in a JAR file and then placing the JAR file in Stata’s ado-path. See [P] javacall for examples
and additional details about loading plugins.

Java plugins can be redistributed just like any other Stata program. To redistribute your Java plugin
through Stata’s net command, you must bundle your compiled program into a JAR file because
net copies .class files as text instead of binary. Additionally, you should always write a Stata
ado-program as a wrapper to javacall to parse your syntax.

A typical Java standalone program has an entry point through a main() method, which looks like
this:

static void main(String[] args)
To call a Java plugin from Stata, you must define a similar entry point. However, there are two
important distinctions. First, you may name your method whatever you like, as long as it conforms

to standard Java naming requirements. Second, your method must have a return type of int instead
of void. Here is an example of a valid method signature that Stata can call:

static int mymethod(String[] args)

Let’s assume that mymethod () exists and that the compiled Java files have been placed in an
appropriate location. To call mymethod (), we use Stata’s javacall command. javacall allows
you to invoke any static method in the class path if that method follows the correct signature as
described above. For details on class-path behavior, see [P] javacall.

280

https://www.stata.com/java/api18

Java plugin — Introduction to Java plugins 281

References

Crow, K. 2017a. Working with Java plugins (Part 1). The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2017/10/11/working-with-java-plugins-part-1/.

——. 2017b. Working with Java plugins (Part 2). The Stata Blog: Not Elsewhere Classified.
https://blog.stata.com/2017/10/24/working-with-java-plugins-part-2/.

Drukker, D. M. 2018a. Programming an estimation command in Stata: Preparing to write a plugin. The Stata Blog:
Not Elsewhere Classified. https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-
to-write-a-plugin/.

——. 2018b. Programming an estimation command in Stata: Writing a Java plugin. The Stata Blog: Not Elsewhere
Classified. https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/.

Also see
[P] Java intro — Introduction to Java in Stata
[P] Java integration — Java integration for Stata
[P] Java utilities — Java utilities

[P] javacall — Call a Java plugin

https://blog.stata.com/2017/10/11/working-with-java-plugins-part-1/
https://blog.stata.com/2017/10/11/working-with-java-plugins-part-1/
https://blog.stata.com/2017/10/24/working-with-java-plugins-part-2/
https://blog.stata.com/2017/10/24/working-with-java-plugins-part-2/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/15/programming-an-estimation-command-in-stata-preparing-to-write-a-plugin/
https://blog.stata.com/2018/02/23/programming-an-estimation-command-in-stata-writing-a-java-plugin/

Title

Java utilities — Java utilities

Description Syntax Remarks and examples Also see

Description

java query shows settings and system information for the Java environment. Some system
information is only available after the Java Virtual Machine (JVM) has been initialized.

java set home sets the path to the JvM—a Java Development Kit (JDK) is required for Java
integration.

java set heapmax sets the maximum amount of heap memory allocated for the JVM.

java initialize manually initializes the JVM. Manual initialization is not typically used because
the JVM initializes automatically when it is required. Once the JVM has been initialized, it cannot be
uninitialized within a Stata session.

For details about creating Java plugins in Stata, see [P] Java plugin.

Syntax
List Java environment settings and system information

java query

Initialize the Java Virtual Machine

java initialize

Set the path to the Java Development Kit
java set home default|"path_to_java_home_dir"

set java_home is a synonym for java set home.

Set the amount of heap memory for the Java Virtual Machine
java set heapmax default | size

set java_heapmax is a synonym for java set heapmax.

size is #[m | g], and the default unit is m.

Remarks and examples

Stata requires a JDK for some functionality. The JDK redistributed with Stata is based on source
code from the OpenJDK and is licensed under the terms of the GPL v2 with Classpath Exception. This
version of Stata contains build 17.0.10-LTS acquired from Azul Systems.

282

https://openjdk.java.net/legal/gplv2+ce.html

Java utilities — Java utilities 283

Sometimes, it may be necessary to use and maintain your own version of the JDK. For example,
some institutions require that frequent security patches be applied to the JDK to maintain security
compliance. For these situations, using java set home will tell Stata to use your JDK instead of the
JDK that is distributed with Stata. When replacing the default JDK, we recommend that only long-term
support (LTS) versions be used. The minimum Java version supported by this version of Stata is
release 17. For developers who wish to redistribute a Java plugin, we recommend that they compile
their code to target release 17.

Also see
[P] Java intro — Introduction to Java in Stata
[P] Java integration — Java integration for Stata
[P] Java plugin — Introduction to Java plugins

[P] javacall — Call a Java plugin

Title

javacall — Call a Java plugin

Description Syntax Options Remarks and examples Also see

Description

javacall calls a Java plugin by invoking a static method. The method to be called must be
implemented with a specific Java signature in the following form:

static int java_method_name(String[] args)

javacall requires class to be a fully qualified name that includes the class’s package specification.
For example, to call a method named methodl from class Class1, which was part of package
com.mydomain and packaged in myjarfile. jar, the following command would be used:

. javacall com.mydomain.Classl methodl, jars(myjarfile.jar)

javacall can parse a varlist, along with if and in qualifiers. The Data class in the Java-Stata
API Specification has methods for interpreting those parsed values.

Syntax

javacall class method [varlisl} [lf] [zn] , {jars(jar_files) | classpath(classpath) }
[args (arg_list)]

Options

jars (jar—files) specifies the JAR files to be added to the class path. jar_files may be one JAR file or
a list of JAR files separated either by spaces or by semicolons. Stata will search along the ado-path
for the specified JAR files and add them to the Java class path for the plugin. Either jars() or
classpath() must be specified.

classpath(classpath) specifies the class path to use. classpath may be a single class path or multiple
paths specified using a platform-specific Java class path. On Windows, multiple paths are separated
by semicolons. On Mac and Unix, multiple paths are separated by colons. Either jars() or
classpath() must be specified.

This option is provided as a convenience for use during the development process. For example,
a developer might use this option to set the class path to the directory where their compiler is
generating .class files, allowing newly compiled code to be tested quickly without the need to
build a JAR file. After the development process is complete, a JAR file should be created, and the
jars() option should be used instead.

args (args_list) specifies the args_list that will be passed to the Java method as a string array. If
args () is not specified, the array will be empty.

284

https://www.stata.com/java/api18/com/stata/sfi/Data.html
https://www.stata.com/java/api18
https://www.stata.com/java/api18

javacall — Call a Java plugin 285

Remarks and examples

Each Java plugin uses its own instance of the class loader, allowing the currently loaded plugin
to be discarded and a new version of the plugin to be loaded. Because each plugin uses a separate
instance of the class loader, dependencies are not shared globally. A plugin developer can bundle their
plugin with any third-party dependencies using a single JAR file, or dependencies may be distributed
in multiple JAR files. Plugin isolation occurs because the jars() option allows each plugin to use a
unique set of JAR files.

> Example 1

Consider two variables needing to store integers too large to be held accurately in a double or a
long, so instead they are stored as strings. If we needed to subtract the values in one variable from
another, we could write a plugin using Java’s Biglnteger class. The following code shows how we
could perform the task:

/* Java class begins here */
import java.math.Biglnteger;
import com.stata.sfi.x*;
public class MyClass {
/* Define the static method with the correct signature */
public static int sub_string_vals(String[] args) {
long nobsl = Data.getObsParsedIni() ;
long nobs2 = Data.getObsParsedIn2() ;
BigInteger bl, b2 ;
if (Data.getParsedVarCount() != 2) {
SFIToolkit.error("Exactly two variables must be specified\n")
return(198) ;
}
if (args.length != 1) {
SFIToolkit.error("New variable name not specified\n") ;
return(198) ;
}

if (Data.addVarStr(args[0], 10)!=0) {
SFIToolkit.errorln("Unable to create new variable " + args[0]) ;
return(198) ;

}

// get the real indexes of the varlist
int mapvl = Data.mapParsedVarIndex(1) ;
int mapv2 = Data.mapParsedVarIndex(2) ;
int resv = Data.getVarIndex(args[0]) ;

if (!Data.isVarTypeStr(mapvl) || !Data.isVarTypeStr(mapv2)) {
SFIToolkit.error("Both variables must be strings\n") ;
return(198) ;

}

for(long obs=nobsl; obs<=nobs2; obs++) {
// Loop over the observations
if (!'Data.isParsedIfTrue(obs)) continue ;
// skip any observations omitted from an [if] condition
try {

bl = new BigInteger(Data.getStr(mapvl, obs)) ;

b2 = new BigInteger(Data.getStr(mapv2, obs)) ;
Data.storeStr(resv, obs, bl.subtract(b2).toString()) ;
¥
catch (NumberFormatException e) { }
}
return(0) ;

}
}

/* Java class ends here */

javacall — Call a Java plugin

Consider the following data, containing two string variables with four observations:

. input str20 bigl str20 big2
29811231010193176 29811231010193168
42981123101023696 42981123101023669

-98121437010116560 -98121437010116589

1000 999

end

. list
bigl big2
1. 29811231010193176 29811231010193168
2. 42981123101023696 42981123101023669
3. -98121437010116560 -98121437010116589
4. 1000 999

Next we call the Java method using javacall. The two variables to subtract are passed in as a
varlist, and the name of the new variable is passed in as a single argument using the args () option.

. javacall MyClass sub_string_vals bigl big2, args(resultl) jars(test.jar)

. list
bigl big2 resultl
1. 29811231010193176 29811231010193168 8
2. 42981123101023696 42981123101023669 27
3. -98121437010116560 -98121437010116589 29
4. 1000 999 1

Normally, a program should be used as a wrapper for javacall; see [U] 18 Programming Stata.
For example,

program subtract_str

version 18.0

syntax varlist [if] [in], result(string)

confirm new variable ‘result’

javacall MyClass sub_string_vals ‘varlist’ ‘if’
args(‘result’) jars(test.jar)

end

. subtract_str bigl big2, result(bigres)

. list
bigl big2 Dbigres
1. 29811231010193176 29811231010193168 8
2. 42981123101023696 42981123101023669 27
3. -98121437010116560 -98121437010116589 29
4. 1000 999 1

javacall — Call a Java plugin 287

Also see
[P] Java intro — Introduction to Java in Stata
[P] Java integration — Java integration for Stata
[P] Java plugin — Introduction to Java plugins

[P] Java utilities — Java utilities

Title

levelsof — Distinct levels of a variable

Description Syntax Options Remarks and examples
Stored results Acknowledgments References Also see
Description

levelsof displays a sorted list of the distinct values of varname.

Syntax

levelsof varname [lf] [ln] [, options]

options Description

clean display string values without compound double quotes

local (macname) insert the list of values in the local macro macname

missing include missing values of varname in calculation

separate (s