
discrim lda — Linear discriminant analysis

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
discrim lda performs linear discriminant analysis. See [MV] discrim for other discrimination com-

mands.

If you want canonical linear discriminant results displayed, see [MV] candisc.

Quick start
Linear discriminant analysis of v1, v2, v3, and v4 for groups defined by catvar

discrim lda v1 v2 v3 v4, group(catvar)

Same as above, but use prior probabilities proportional to group size

discrim lda v1 v2 v3 v4, group(catvar) priors(proportional)

Display the leave-one-out and the resubstitution classification tables

discrim lda v1 v2 v3 v4, group(catvar) lootable

Same as above, but suppress the resubstitution classification table

discrim lda v1 v2 v3 v4, group(catvar) lootable notable

Menu
Statistics > Multivariate analysis > Discriminant analysis > Linear (LDA)
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Syntax
discrim lda varlist [ if ] [ in ] [weight ], group(groupvar) [ options ]

options Description

Model
∗ group(groupvar) variable specifying the groups

priors(priors) group prior probabilities

ties(ties) how ties in classification are to be handled

Reporting

notable suppress resubstitution classification table

lootable display leave-one-out classification table

priors Description

equal equal prior probabilities; the default

proportional group-size-proportional prior probabilities

matname row or column vector containing the group prior probabilities

matrix exp matrix expression providing a row or column vector of the group
prior probabilities

ties Description

missing ties in group classification produce missing values; the default

random ties in group classification are broken randomly

first ties in group classification are set to the first tied group

∗group() is required.

collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

group(groupvar) is required and specifies the name of the grouping variable. groupvar must be a

numeric variable.

priors(priors) specifies the prior probabilities for group membership. The following priors are al-

lowed:

priors(equal) specifies equal prior probabilities. This is the default.

priors(proportional) specifies group-size-proportional prior probabilities.

priors(matname) specifies a row or column vector containing the group prior probabilities.

priors(matrix exp) specifies a matrix expression providing a row or column vector of the group

prior probabilities.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaSyntaxweight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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ties(ties) specifies how ties in group classification will be handled. The following ties are allowed:

ties(missing) specifies that ties in group classification produce missing values. This is the default.

ties(random) specifies that ties in group classification are broken randomly.

ties(first) specifies that ties in group classification are set to the first tied group.

� � �
Reporting �

notable suppresses the computation and display of the resubstitution classification table.

lootable displays the leave-one-out classification table.

Remarks and examples
discrim lda computes the same things as candisc, but candisc displays more information. The

same information can be displayed after discrim lda by using the estat suite of commands; see

[MV] discrim lda postestimation.

Remarks are presented under the following headings:

Introduction
Descriptive LDA
Predictive LDA
A classic example

Introduction
Linear discriminant analysis (LDA) was developed by different researchers, Fisher (1936) and Ma-

halanobis (1936), starting with different approaches to the problem of discriminating between groups.

Kshirsagar and Arseven (1975), Green (1979), and Williams (1982) demonstrate the mathematical rela-

tionship between Fisher’s linear discriminant functions and the classification functions from the Maha-

lanobis approach to LDA; see Rencher (1998, 239).

Fisher’s approach to LDA forms the basis of descriptive LDA but can be used for predictive LDA. The

Mahalanobis approach to LDA more naturally handles predictive LDA, allowing for prior probabilities

and producing estimates of the posterior probabilities. The Mahalanobis approach to LDA also extends

to quadratic discriminant analysis (QDA); see [MV] discrim qda.

Descriptive LDA
Fisher (1936) approached linear discriminant analysis by seeking the linear combination of the dis-

criminating variables that provides maximal separation between the groups (originally two groups, but

later extended to multiple groups). Maximal separation of groups is determined from an eigen analysis

ofW−1B, where B is the between-group sum-of-squares and cross-products (SSCP) matrix, andW is the

within-group SSCPmatrix. The eigenvalues and eigenvectors ofW−1B provide what are called Fisher’s

linear discriminant functions.

The first linear discriminant function is the eigenvector associated with the largest eigenvalue. This

first discriminant function provides a linear transformation of the original discriminating variables into

one dimension that has maximal separation between group means. The eigenvector associated with the

https://www.stata.com/manuals/mvcandisc.pdf#mvcandisc
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimqda.pdf#mvdiscrimqda
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second-largest eigenvalue is the second linear discriminant function and provides a dimension uncorre-

lated with (but usually not orthogonal to) the first discriminant function. The second discriminant func-

tion provides the maximal separation of groups in a second dimension. The third discriminant function

provides the maximum separation of groups in a third dimension.

Example 1
Two groups measured on two variables illustrate Fisher’s approach to linear discriminant analysis.

. use https://www.stata-press.com/data/r19/twogroup
(Two groups)
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Splitting the two groups on the basis of y or x alone would leave a great deal of overlap between the

groups. By eye it appears that a line with a slope of about−1 could be positioned between the two groups

with only a few of the observations falling on the wrong side of the line.

Fisher’s approach to LDA helps us find the best separating line.

. discrim lda y x, group(group) notable

discrim lda computes the information needed for both a predictive and descriptive linear discrim-

inant analysis. We requested notable, which suppressed the display of the resubstitution classification
table. We will examine this feature of discrim lda when we discuss predictive LDA. The descriptive

features of LDA are available through postestimation commands.

. estat loadings, unstandardized
Canonical discriminant function coefficients

function1

y .0862145
x .0994392

_cons -6.35128

Fisher’s linear discriminant functions provide the basis for what are called the canonical discrimi-

nant functions; see Methods and formulas. The canonical discriminant function coefficients are also

called unstandardized loadings because they apply to the unstandardized discriminating variables (x and

y). Because we have only two groups, there is only one discriminant function. From the coefficients or

loadings of this discriminant function, we obtain a one-dimensional projection of the data that gives max-

imal separation between the two groups relative to the spread within the groups. The estat loadings

https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaMethodsandformulas
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postestimation command displayed these loadings; see [MV] discrim lda postestimation. After estat
loadings, the unstandardized loadings are available in matrix r(L unstd). We take these values and

determine the equation of the separating line between the groups and a line perpendicular to the separating

line.

The unstandardized canonical discriminant function coefficients indicate that

0 = 0.0862145y + 0.0994392x − 6.35128

which in standard y = 𝑚x + 𝑏 form is

y = −1.1534x + 73.6684

which is the dividing line for classifying observations into the two groups for this LDA. A line perpen-

dicular to this dividing line has slope −1/ − 1.153 = 0.867. The following graph shows the data with

this dividing line and a perpendicular projection line.
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Another way of thinking about the discriminant function is that it projects the data from the original

two dimensions down to one dimension—the line perpendicular to the dividing line. Classifications are

based on which side of the separating line the observations fall.

Researchers often wish to know which of the discriminating variables is most important or helpful in

discriminating between the groups. They want to examine the standardized loadings—the loadings that

apply to standardized variables.

. estat loadings, standardized
Standardized canonical discriminant function coefficients

function1

y .7798206
x 1.057076

These coefficients or loadings apply to x and y that have been standardized using the pooled within-

group covariance matrix. The loading for x is larger than that for y, indicating that it contributes more to
the discrimination between the groups. Look back at the scatterplot to see that there is more separation

between the groups in the x dimension than the y dimension. See [MV] discrim lda postestimation for

more details of the estat loadings command.

https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
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Some researchers prefer to examine what are called structure coefficients.

. estat structure
Canonical structure

function1

y .3146309
x .7138982

The estat structure command provides structure coefficients, which measure the correlation be-

tween each discriminating variable and the discriminant function; see [MV] discrim lda postestimation.

Here the canonical structure coefficient for x is larger than that for y, leading to the same conclusion

as with standardized loadings. There is disagreement in the literature concerning the use of canonical

structure coefficients versus standardized loadings; see Rencher and Christensen (2012, 300–301) and

Huberty (1994, 262–264).

In addition to loading and structure coefficients, there are other descriptive LDA features available after

discrim lda. These include canonical correlations and tests of the canonical correlations, classification
functions, scree plots, loading plots, score plots, and various group summaries; see [MV] discrim lda

postestimation.

If your main interest is in descriptive LDA, you may find the candisc command of interest; see

[MV] candisc. discrim lda and candisc differ only in their default output. discrim lda shows clas-

sification tables. candisc shows canonical correlations, standardized coefficients (loadings), structure

coefficients, and more. All the features found in [MV] discrim lda postestimation are available for both

commands.

Predictive LDA
Another approach to linear discriminant analysis starts with the assumption that the observations from

each group are multivariate normal with the groups having equal covariancematrices but different means.

Mahalanobis (1936) distance plays an important role in this approach. An observation with unknown

group membership is classified as belonging to the group with smallest Mahalanobis distance between

the observation and group mean. Classification functions for classifying observations of unknown group

membership can also be derived from this approach to LDA and formulas for the posterior probability of

group membership are available.

As shown in Methods and formulas, Mahalanobis distance can be viewed as a transformation fol-

lowed by Euclidean distance. Group membership is assigned based on the Euclidean distance in this

transformed space.

https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvcandisc.pdf#mvcandisc
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaMethodsandformulas
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Example 2
We illustrate theMahalanobis transformation and show some of the features of predictive discriminant

analysis with a simple three-group example dataset named threegroup.dta.
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These three groups appear to have similar covariance structure—showing a positive correlation be-

tween x and y. There is some overlap of the three groups, but general identification of the groups does
not appear difficult by human eye.

If we were to apply Euclidean distance for classifying this untransformed data, we would misclassify

some observations that clearly should not be misclassified when judged by eye. For example, in the

graph above, the observations from group 3 that have y values below 40 (found in the lower left of the

group 3 cloud of points) are closer in Euclidean distance to the center of group 1.

The following graph shows the Mahalanobis-transformed data.
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Mahalanobis transformed data

With the transformed data, using Euclidean distance between observations and group means works

well.
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Now let’s see how well discrim lda can distinguish between the groups. By default, a resubstitution

classification table is presented. The rows correspond to the known group and the columns to the group-

ing as assigned by the discrim model. The word resubstitution is used because the same observations

that built the model are being classified by the model.

. discrim lda y x, group(group)
Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True group 1 2 3 Total

1 93 4 3 100
93.00 4.00 3.00 100.00

2 3 97 0 100
3.00 97.00 0.00 100.00

3 3 0 97 100
3.00 0.00 97.00 100.00

Total 99 101 100 300
33.00 33.67 33.33 100.00

Priors 0.3333 0.3333 0.3333

For these 300 observations, group 1 had 93 observations correctly classified, 4 observations misclassi-

fied into group 2, and 3 observations misclassified into group 3. Group 2 had 3 observations misclassified

into group 1 and 97 observations correctly classified. Group 3 had 3 observationsmisclassified into group

1 and 97 observations correctly classified.

Generally, resubstitution classification tables give an overly optimistic view of how well you would

classify an unknown observation. Leave-one-out (LOO) classification tables provide a more realistic

assessment for classification success. With this 300-observation dataset, the LOO classification table

gives the same results. We could see the LOO classification table by requesting it at estimation, by

requesting it at replay, or by using the estat classtable command.
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We now list the misclassified observations.

. estat list, varlist misclassified

Data Classification Probabilities

Obs y x True Class. 1 2 3

19 49 37 1 3 * 0.2559 0.0000 0.7441
29 49 57 1 2 * 0.4245 0.5750 0.0005
47 49 37 1 3 * 0.2559 0.0000 0.7441
55 24 45 1 2 * 0.4428 0.5572 0.0000
70 48 61 1 2 * 0.0661 0.9339 0.0000

74 49 58 1 2 * 0.3041 0.6957 0.0003
92 37 22 1 3 * 0.3969 0.0000 0.6031

143 27 45 2 1 * 0.6262 0.3738 0.0000
161 39 49 2 1 * 0.8026 0.1973 0.0001
185 49 54 2 1 * 0.7782 0.2187 0.0030

238 48 44 3 1 * 0.8982 0.0017 0.1001
268 50 44 3 1 * 0.7523 0.0009 0.2469
278 36 31 3 1 * 0.9739 0.0000 0.0261

* indicates misclassified observations

The posterior probabilities for each displayed observation for each of the three groups is presented

along with the true group and the classified group. The observation number is also shown. We added

the discriminating variables x and y to the list with the varlist option. By default, estat list would

list all the observations. The misclassified option restricts the list to those observations that were

misclassified.

With predict we could generate classification variables, posterior probabilities, Mahalanobis

squared distances from observations to group means, classification function scores (seeMethods and for-

mulas), andmore. Fifteen estat commands provide more predictive and descriptive tools after discrim
lda; see [MV] discrim lda postestimation.

A classic example
We use the iris data from Fisher’s (1936) pioneering LDA article to demonstrate the discrim lda

command.

Example 3
Fisher obtained the iris data from Anderson (1935). The data consist of four features measured on

50 samples from each of three iris species. The four features are the length and width of the sepal and

petal. The three species are Iris setosa, Iris versicolor, and Iris virginica. Morrison (2005, app. B.2) is a

modern source of the data.

. use https://www.stata-press.com/data/r19/iris
(Iris data)

https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaMethodsandformulas
https://www.stata.com/manuals/mvdiscrimlda.pdf#mvdiscrimldaMethodsandformulas
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
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Running discrim lda produces the resubstitution classification table.

. discrim lda seplen sepwid petlen petwid, group(iris)
Linear discriminant analysis
Resubstitution classification summary

Key

Number
Percent

Classified
True iris Setosa Versicolor Virginica Total

Setosa 50 0 0 50
100.00 0.00 0.00 100.00

Versicolor 0 48 2 50
0.00 96.00 4.00 100.00

Virginica 0 1 49 50
0.00 2.00 98.00 100.00

Total 50 49 51 150
33.33 32.67 34.00 100.00

Priors 0.3333 0.3333 0.3333

One Iris virginica observation was misclassified as a versicolor, two Iris versicolor observations

were misclassified as virginica, and no Iris setosa observations were misclassified in our resubstitution

classification.

Which observations were misclassified?

. estat list, misclassified

Classification Probabilities

Obs True Class. Setosa Versicolor Virginica

71 Versicol Virginic * 0.0000 0.2532 0.7468
84 Versicol Virginic * 0.0000 0.1434 0.8566

134 Virginic Versicol * 0.0000 0.7294 0.2706

* indicates misclassified observations

Postestimation command estat list shows that observations 71, 84, and 134 were misclassified

and shows the estimated posterior probabilities for the three species for the misclassified observations.

We now examine the canonical discriminant functions for this LDA. The number of discriminant func-

tions will be one fewer than the number of groups or will be the number of discriminating variables,

whichever is less. With four discriminating variables and three species, we will have two discriminant

functions. estat loadings displays the discriminant coefficients or loadings.
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. estat loadings, unstandardized standardized
Canonical discriminant function coefficients

function1 function2

seplen -.8293776 -.0241021
sepwid -1.534473 -2.164521
petlen 2.201212 .9319212
petwid 2.81046 -2.839188
_cons -2.105106 6.661473

Standardized canonical discriminant function coefficients
function1 function2

seplen -.4269548 -.0124075
sepwid -.5212417 -.7352613
petlen .9472572 .4010378
petwid .5751608 -.5810399

We requested the display of both unstandardized and standardized loadings. The two unstandardized

discriminant functions provide linear combinations of the seplen, sepwid, petlen, and petwid dis-

criminating variables—producing two new dimensions. The standardized canonical discriminant func-

tion coefficients indicate the relative importance and relationship between the discriminating variables

and the discriminant functions. The first discriminant function compares seplen and sepwid, which
have negative standardized coefficients, to petlen and petwid, which have positive standardized coef-
ficients. The second discriminant function appears to be contrasting the two width variables from the two

length variables, though this is not as distinct of a difference as found in the first discriminant function

because the seplen variable in the second standardized discriminant function is close to zero.

Understanding the composition of the discriminant functions is aided by plotting the coefficients.

loadingplot graphs the discriminant function coefficients (loadings); see [MV] discrim lda postesti-

mation and [MV] scoreplot.

. loadingplot
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We now show a scatterplot of our three species projected onto the two dimensions of our discriminant

solution. The scoreplot command takes care of most of the graphing details for us; see [MV] discrim

lda postestimation and [MV] scoreplot. However, by default, scoreplot uses the full value labels

for the three iris species and the resulting graph is busy. The iris dataset has two label languages

predefined. The default label language has the full value labels. The other predefined label language

https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvscoreplot.pdf#mvscoreplot
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
https://www.stata.com/manuals/mvscoreplot.pdf#mvscoreplot
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is called oneletter, and it uses a one-letter code as value labels for the three iris species. The label
language command will switch between these two label languages; see [D] label language. We also use

the msymbol(i) graph option so that the points will not be displayed—only the one-letter value labels

will be displayed for each observation.

. label language oneletter

. scoreplot, msymbol(i)
> note(”S = Iris setosa, C = Iris versicolor, V = Iris virginica”)
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Discriminant function scores

The Iris setosa are well separated from the other two species. Iris versicolor and Iris virginica show

some overlap.

See example 1 of [MV] discrim estat and examples 6, 7, and 8, of [MV] discrim lda postestimation

for more examples of what can be produced after discrim lda for this iris dataset.

https://www.stata.com/manuals/dlabellanguage.pdf#dlabellanguage
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestatRemarksandexamplesex1_discrimestat
https://www.stata.com/manuals/mvdiscrimestat.pdf#mvdiscrimestat
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimationRemarksandexamplesex6_discrimldap
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimationRemarksandexamplesex7_discrimldap
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimationRemarksandexamplesex8_discrimldap
https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
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Stored results
discrim lda stores the following in e():
Scalars

e(N) number of observations

e(N groups) number of groups

e(k) number of discriminating variables

e(f) number of nonzero eigenvalues

Macros

e(cmd) discrim
e(subcmd) lda
e(cmdline) command as typed

e(groupvar) name of group variable

e(grouplabels) labels for the groups

e(varlist) discriminating variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(ties) how ties are to be handled

e(properties) nob noV eigen
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(groupcounts) number of observations for each group

e(grouppriors) prior probabilities for each group

e(groupvalues) numeric value for each group

e(means) group means on discriminating variables

e(SSCP W) pooled within-group SSCPmatrix

e(SSCP B) between-groups SSCPmatrix

e(SSCP T) total SSCPmatrix

e(SSCP W#) within-group SSCPmatrix for group #

e(W eigvals) eigenvalues of e(SSCP W)
e(W eigvecs) eigenvectors of e(SSCP W)
e(S) pooled within-group covariance matrix

e(Sinv) inverse of e(S)
e(sqrtSinv) Cholesky (square root) of e(Sinv)
e(Ev) eigenvalues ofW−1B
e(L raw) eigenvectors ofW−1B
e(L unstd) unstandardized canonical discriminant function coefficients

e(L std) within-group standardized canonical discriminant function coefficients

e(L totalstd) total-sample standardized canonical discriminant function coefficients

e(C) classification coefficients

e(cmeans) unstandardized canonical discriminant functions evaluated at group means

e(canstruct) canonical structure matrix

e(candisc stat) canonical discriminant analysis statistics

Functions

e(sample) marks estimation sample

Methods and formulas
Methods and formulas are presented under the following headings:

Predictive LDA
Descriptive LDA
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Predictive LDA
Let 𝑔 be the number of groups, 𝑛𝑖 the number of observations for group 𝑖, and 𝑞𝑖 the prior probability

for group 𝑖. Let x denote an observationmeasured on 𝑝 discriminating variables. For consistency with the
discriminant analysis literature, xwill be a column vector, though it corresponds to a row in your dataset.

Let 𝑓𝑖(x) represent the density function for group 𝑖, and let 𝑃(x|𝐺𝑖) denote the probability of observing
x conditional on belonging to group 𝑖. Denote the posterior probability of group 𝑖 given observation x as
𝑃(𝐺𝑖|x). With Bayes’s theorem, we have

𝑃(𝐺𝑖|x) = 𝑞𝑖𝑓𝑖(x)
∑𝑔

𝑗=1 𝑞𝑗𝑓𝑗(x)

Substituting 𝑃(x|𝐺𝑖) for 𝑓𝑖(x), we have

𝑃(𝐺𝑖|x) = 𝑞𝑖𝑃(x|𝐺𝑖)
∑𝑔

𝑗=1 𝑞𝑗𝑃(x|𝐺𝑗)

LDA assumes that the groups are multivariate normal with equal covariance matrices. Let S denote the

pooled within-group sample covariance matrix and x𝑖 denote the sample mean of group 𝑖. The x𝑖 are

returned as the columns of the e(means)matrix. The squaredMahalanobis distance between observation

x and x𝑖 is

𝐷2
𝑖 = (x − x𝑖)′S−1(x − x𝑖)

Plugging these sample estimates into the multivariate normal density gives

𝑃(x|𝐺𝑖) = (2𝜋)−𝑝/2|S|−1/2𝑒−𝐷2
𝑖 /2

Substituting this into the formula for 𝑃(𝐺𝑖|x) and simplifying gives

𝑃(𝐺𝑖|x) = 𝑞𝑖𝑒−𝐷2
𝑖 /2

∑𝑔
𝑗=1 𝑞𝑗𝑒−𝐷2

𝑗 /2

as the LDA posterior probability of observation x belonging to group 𝑖.
Computation of Mahalanobis distance can be broken down into two steps. Step one: transform the

data by using the Mahalanobis transformation. Step two: compute the Euclidean distance of the trans-

formed data.

Let L be the Cholesky factorization of S−1 such that S−1 = L′L and L is lower triangular. L is

returned in matrix e(sqrtSinv). Squared Mahalanobis distance can be expressed in terms of L.

𝐷2
𝑖 = (x − x𝑖)′S−1(x − x𝑖)

= (x − x𝑖)′L′L(x − x𝑖)
= (Lx − Lx𝑖)′(Lx − Lx𝑖)
= (z − z𝑖)′(z − z𝑖)

which is the squared Euclidean distance between z and z𝑖. We call z = Lx the Mahalanobis transforma-

tion.

The squared Mahalanobis distance between group means is produced by estat grdistances; see
[MV] discrim lda postestimation.

https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
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Classification functions can be derived from the Mahalanobis formulation for LDA; see Rencher

and Christensen (2012, 315–316) and Huberty (1994, 59). Let 𝐿𝑖(x) denote the linear classification

function for the 𝑖th group applied to observation x. 𝐿𝑖(x) = c′
𝑖x + 𝑐𝑖0, where c𝑖 = x′

𝑖S
−1 and

𝑐𝑖0 = −(1/2)x′
𝑖S

−1x𝑖 + ln(𝑞𝑖). The 𝑔 linear classification functions are returned as the columns of

matrix e(C) and through the estat classfunction command; see [MV] discrim lda postestimation.

An observation can be classified based on largest posterior probability or based on largest classification

function score.

Descriptive LDA
As with predictive LDA, let 𝑔 be the number groups, 𝑛𝑖 the number of training (sample) observations

for group 𝑖, 𝑝 the number of discriminating variables, and𝑁 = ∑𝑔
𝑖=1 𝑛𝑖 the total number of observations.

Also, let W be the within-group sums-of-squares and cross-products (SSCP) matrix and let B be the

between-groups SSCPmatrix. Fisher’s (1936) linear discriminant functions are based on the eigenvalues

and eigenvectors ofW−1B.

There are 𝑠 = min(𝑔 − 1, 𝑝) nonzero eigenvalues ofW−1B. Let 𝜆1, 𝜆2, . . . , 𝜆𝑠 denote the 𝑠 eigen-

values in decreasing order. The eigenvalues are returned in e(Ev). Let v1, v2, . . . , v𝑠 denote the cor-

responding eigenvectors. Rencher and Christensen (2012, 289) outlines the approach for obtaining the

eigenvalues and eigenvectors of the nonsymmetricW−1B matrix. BecauseW−1B is nonsymmetric, the

resulting eigenvectors are not orthogonal but merely uncorrelated; see Rencher and Christensen (2012,

289). A matrix with the v𝑖 as columns is returned in e(L raw). The phrase raw coefficients is used by

Klecka (1980, 22) to describe the v vectors.

Any constant multiple of the eigenvector v𝑖 is still an eigenvector of W−1B associated with eigen-

value 𝜆𝑖. Typically, vu𝑖 = v𝑖
√

𝑁 − 𝑔 are used as the eigenvectors (discriminant functions) and are

called unstandardized canonical discriminant functions because they correspond to the unstandardized

discriminating variables. An extra element is added to the bottom of the vu vectors for the constant,

so that if the vu vectors are applied as linear combinations of the discriminating variables, the resulting

variables have mean zero; see Klecka (1980, 21–23). A matrix with the vu𝑖 as columns is returned in

e(L unstd).

The means of the discriminating variables for each group are returned as the columns of the matrix

e(means). These group means multiplied by the unstandardized discriminant-function coefficients, vu𝑖,

produce what are called group means on canonical variables and are returned in the matrix e(cmeans)
and displayed with the command estat grmeans, canonical.

Standardized discriminant functions are obtained as vs𝑖 = v𝑖√𝑊𝑖𝑖. The 𝑖th raw eigenvector is stan-

dardized by the square root of the 𝑖th diagonal element of theWmatrix. These within-group standardized

discriminant functions are used in assessing the importance and relationship of the original discriminating

variables to the discriminant functions. Amatrix with the vs𝑖 as columns is returned in e(L std).

Let T denote the total sample SSCP matrix. Total-sample standardized discriminant functions are

computed as vt𝑖 = v𝑖√𝑇𝑖𝑖(𝑁 − 𝑔)/(𝑁 − 1). A matrix with the vt𝑖 as columns is returned in

e(L totalstd). There is debate as to which of vs and vt should be used for interpretation; see Mueller

and Cozad (1988), Nordlund and Nagel (1991), and Mueller and Cozad (1993).

The estat loadings command displays e(L unstd), e(L std), and e(L totalstd); see

[MV] discrim lda postestimation.

https://www.stata.com/manuals/mvdiscrimldapostestimation.pdf#mvdiscrimldapostestimation
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The canonical structure matrix measures the correlation between the discriminating variables and the

discriminant function and is returned in matrix e(canstruct). The canonical structure matrix is equal
to WV with the 𝑖th row divided by √𝑊𝑖𝑖, where V contains the v𝑖 eigenvectors as columns. Rencher

and Christensen (2012, 300) warns against the use of structure coefficients for interpretation, but Huberty

(1994, 262–264) contends otherwise.

The returned matrix e(candisc stat) contains columns for the information shown by estat
canontest, including the eigenvalues, canonical correlations, proportion of variance, cumulative pro-

portion of variance, likelihood-ratio test statistics, and the corresponding 𝐹 tests, degrees of freedom,

and 𝑝-values. See [MV] canon.

As noted in the Introduction section of Remarks and examples, Kshirsagar andArseven (1975), Green

(1979), and Williams (1982) demonstrate the mathematical relationship between Fisher’s linear discrim-

inant functions (the basis for descriptive LDA) and the classification functions from the Mahalanobis

approach to LDA (the basis for predictive LDA); see Rencher (1998, 239).
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Also see
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[MV] discrim — Discriminant analysis

[MV] candisc — Canonical linear discriminant analysis

[U] 20 Estimation and postestimation commands
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