
ca — Simple correspondence analysis

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
ca performs a simple correspondence analysis (CA) and optionally creates a biplot of two categorical

variables or multiple crossed variables. camat is similar to ca but is for use with a matrix containing

cross-tabulations or other nonnegative values with strictly positive margins.

Quick start
Simple correspondence analysis of two categorical variables

Correspondence analysis of the cross-tabulation with rows catvar1 and columns catvar2
ca catvar1 catvar2

Also produce the correspondence analysis biplot

ca catvar1 catvar2, plot

Increase the number of dimensions from 2 to 3

ca catvar1 catvar2, dimensions(3)

Use row and column principal coordinate normalization

ca catvar1 catvar2, normalize(principal)

Simple correspondence analysis with crossed (stacked) variables

Correspondence analysis of the cross-tabulation of rows catvar1 and crossed columns mycol from the

crossed variables catvar2 and catvar3
ca catvar1 (mycol: catvar2 catvar3)

Same as above, but display compact tables and produce the correspondence analysis biplot

ca catvar1 (mycol: catvar2 catvar3), compact plot

Simple correspondence analysis of a matrix

Correspondence analysis of the cross-tabulations contained in matrix M
camat M

Also produce the correspondence analysis biplot

camat M, plot
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Menu
ca
Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis (CA)

camat
Statistics > Multivariate analysis > Correspondence analysis > Two-way correspondence analysis of a matrix

Syntax
Simple correspondence analysis of two categorical variables

ca rowvar colvar [ if ] [ in ] [weight ] [ , options ]

Simple correspondence analysis with crossed (stacked) variables

ca row spec col spec [ if ] [ in ] [weight ] [ , options ]

Simple correspondence analysis of an 𝑛𝑟 × 𝑛𝑐 matrix

camat matname [ , options ]

where spec = varname | (newvar : varlist)

and matname is an 𝑛𝑟 × 𝑛𝑐 matrix with 𝑛𝑟, 𝑛𝑐 ≥ 2.

https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxweight
https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxweight
https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxoptions
https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxoptions
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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options Description

Model 2

dimensions(#) number of dimensions (factors, axes); default is dim(2)
normalize(nopts) normalization of row and column coordinates

rowsupp(matname𝑟) matrix of supplementary rows

colsupp(matname𝑐) matrix of supplementary columns

rowname(string) label for rows

colname(string) label for columns

missing treat missing values as ordinary values (ca only)

Codes (ca only)
report(variables) report coding of crossing variables

report(crossed) report coding of crossed variables

report(all) report coding of crossing and crossed variables

length(min) use minimal length unique codes of crossing variables

length(#) use # as coding length of crossing variables

Reporting

ddimensions(#) number of singular values to be displayed; default is ddim(.)
norowpoints suppress table with row category statistics

nocolpoints suppress table with column category statistics

compact display tables in a compact format

plot plot the row and column coordinates

maxlength(#) maximum number of characters for labels; default is maxlength(12)

nopts Description

symmetric symmetric coordinates (canonical); the default
standard row and column standard coordinates

row row principal, column standard coordinates

column column principal, row standard coordinates

principal row and column principal coordinates

# power 0 ≤ # ≤ 1 for row coordinates; seldom used

bayesboot, bootstrap, by, collect, jackknife, rolling, and statsby are allowed with ca; see [U] 11.1.10 Prefix

commands. However, bootstrap and jackknife results should be interpreted with caution; identification of the ca
parameters involves data-dependent restrictions, possibly leading to badly biased and overdispersed estimates (Milan and
Whittaker 1995).

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
fweights, aweights, and iweights are allowed with ca; see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/mvca.pdf#mvcaSyntaxnopts
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/rjackknife.pdf#rjackknife
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options

� � �
Model 2 �

dimensions(#) specifies the number of dimensions (= factors = axes) to be extracted. The default

is dimensions(2). If you specify dimensions(1), the row and column categories are placed on

one dimension. # should be strictly smaller than the number of rows and the number of columns,

counting only the active rows and columns, excluding supplementary rows and columns (see options

rowsupp() and colsupp()).

CA is a hierarchical method, so extracting more dimensions does not affect the coordinates and de-

composition of inertia of dimensions already included. The percentages of inertia accounting for the

dimensions are in decreasing order as indicated by singular values. The first dimension accounts for

the most inertia, followed by the second dimension, and then the third dimension, etc.

normalize(nopts) specifies the normalization method, that is, how the row and column coordinates are

obtained from the singular vectors and singular values of the matrix of standardized residuals. See

Normalization and interpretation of correspondence analysis in Remarks and examples for a discus-

sion of these different normalization methods.

symmetric, the default, distributes the inertia equally over rows and columns, treating the rows

and columns symmetrically. The symmetric normalization is also known as the standard, or

canonical, normalization. This is the most common normalization when making a biplot.

normalize(symmetric) is equivalent to normalize(0.5). canonical is a synonym for

symmetric.

standard specifies that row and column coordinates should be in standard form (singular vectors

divided by the square root of mass). This normalizationmethod is not equivalent to normalize(#)
for any #.

row specifies principal row coordinates and standard column coordinates. This option should be

chosen if you want to compare row categories. Similarity of column categories should not be

interpreted. The biplot interpretation of the relationship between row and column categories is

appropriate. normalize(row) is equivalent to normalize(1).

column specifies principal column coordinates and standard row coordinates. This option should

be chosen if you want to compare column categories. Similarity of row categories should not be

interpreted. The biplot interpretation of the relationship between row and column categories is

appropriate. normalize(column) is equivalent to normalize(0).

principal is the normalization to choose if you want to make comparisons among the row categories

and among the column categories. In this normalization, comparing row and column points is not

appropriate. Thus a biplot in this normalization is best avoided. In the principal normalization,

the row and column coordinates are obtained from the left and right singular vectors, multiplied

by the singular values. This normalization method is not equivalent to normalize(#) for any #.

#, 0 ≤ # ≤ 1, is seldom used; it specifies that the row coordinates are obtained as the left singular

vectors multiplied by the singular values to the power #, whereas the column coordinates equal the

right singular vectors multiplied by the singular values to the power 1 − #.

rowsupp(matname𝑟) specifies amatrix of supplementary rows. matname𝑟 should have𝑛𝑐 columns. The

row names of matname𝑟 are used for labeling. Supplementary rows do not affect the computation of

the dimensions and the decomposition of inertia. They are, however, included in the plots and in

the table with statistics of the row points. Because supplementary points do not contribute to the

dimensions, their entries under the column labeled contrib are left blank.

https://www.stata.com/manuals/mvca.pdf#mvcaOptionsrowsupp()
https://www.stata.com/manuals/mvca.pdf#mvcaOptionscolsupp()
https://www.stata.com/manuals/mvca.pdf#mvcaRemarksandexamplesNormalizationandinterpretationofcorrespondenceanalysis
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colsupp(matname𝑐) specifies a matrix of supplementary columns. matname𝑐 should have 𝑛𝑟 rows.

The column names of matname𝑐 are used for labeling. Supplementary columns do not affect the

computation of the dimensions and the decomposition of inertia. They are, however, included in

the plots and in the table with statistics of the column points. Because supplementary points do not

contribute to the dimensions, their entries under the column labeled contrib are left blank.

rowname(string) specifies a label to refer to the rows of the matrix. The default is rowname(rowvar)
for ca and rowname(rows) for camat.

colname(string) specifies a label to refer to the columns of thematrix. The default is colname(colvar)
for ca and colname(columns) for camat.

missing, allowed only with ca, treats missing values of rowvar and colvar as ordinary categories to be

included in the analysis. Observations with missing values are omitted from the analysis by default.

� � �
Codes �

report(opt) displays coding information for the crossing variables, crossed variables, or both.

report() is ignored if you do not specify at least one crossed variable.

report(variables) displays the coding schemes of the crossing variables, that is, the variables

used to define the crossed variables.

report(crossed) displays a table explaining the value labels of the crossed variables.

report(all) displays the codings of the crossing and crossed variables.

length(opt) specifies the coding length of crossing variables.

length(min) specifies that the minimal-length unique codes of crossing variables be used.

length(#) specifies that the coding length # of crossing variables be used, where #must be between

4 and 32.

� � �
Reporting �

ddimensions(#) specifies the number of singular values to be displayed. The default is ddimensions(.),
meaning all.

norowpoints suppresses the table with row point (category) statistics.

nocolpoints suppresses the table with column point (category) statistics.

compact specifies that the table with point statistics be displayed multiplied by 1,000 as proposed by

Greenacre (2017), enabling the display of more columns without wrapping output. The compact

tables can be displayed without wrapping for models with two dimensions at line size 79 and with

three dimensions at line size 99.

plot displays a plot of the row and column coordinates in two dimensions. With row principal nor-

malization, only the row points are plotted. With column principal normalization, only the column

points are plotted. In the other normalizations, both row and column points are plotted. You can use

cabiplot directly if you need another selection of points to be plotted or if you want to otherwise

refine the plot; see [MV] ca postestimation plots.

maxlength(#) specifies the maximum number of characters for row and column labels in plots. The

default is maxlength(12).

Note: The reporting options may be specified during estimation or replay.

https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/u12.pdf#u12.4Strings
https://www.stata.com/manuals/mvcapostestimationplots.pdf#mvcapostestimationplots
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Remarks and examples
Remarks are presented under the following headings:

Introduction
A first example
How many dimensions?
Statistics on the points
Normalization and interpretation of correspondence analysis
Plotting the points
Supplementary points
Matrix input
Crossed variables

Introduction
Correspondence analysis (CA) offers a geometric representation of the rows and columns of a two-way

frequency table that is helpful in understanding the similarities between the categories of variables and

the association between the variables. CA is formally equivalent to various other geometric approaches,

including dual scaling, reciprocal averaging, and canonical correlation analysis of contingency tables

(Greenacre 1984, chap. 4). For an informal introduction to CA and related metric approaches, see Weller

and Romney (1990). Greenacre (2017) provides a much more thorough introduction with few mathe-

matical prerequisites. More advanced treatments are given by Greenacre (1984) and Gower and Hand

(1996).

In some respects, CA can be thought of as an analogue to principal components for nominal variables.

It is also possible to interpret CA in reciprocal averaging (Greenacre 1984, 96–102; Cox and Cox 2001,

193–200), in optimal scaling (Greenacre 1984, 102–108), and in canonical correlations (Greenacre 1984,

108–116; Gower and Hand 1996, 183–185). Scaling refers to the assignment of scores to the categories

of the row and column variables. Different criteria for the assignment of scores have been proposed,

generally with different solutions. If the aim is to maximize the correlation between the scored row and

column, the problem can be formulated in terms of CA. The optimal scores are the coordinates on the first

dimension. The coordinates on the second and subsequent dimensions maximize the correlation between

row and column scores subject to orthogonality constraints. See also [MV] ca postestimation.

A first example

Example 1: A well-known correspondence analysis example
We illustrate CAwith an example of smoking behavior by different ranks of personnel. This example

is often used in the CA literature (for example, Greenacre 1984, 55; Greenacre 2017, 66), so you have

probably encountered these (artificial) data before. By using these familiar data, we make it easier to

relate the literature on CA to the output of the ca command.

https://www.stata.com/manuals/mvcapostestimation.pdf#mvcapostestimation
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. use https://www.stata-press.com/data/r19/ca_smoking

. tabulate rank smoking
Smoking intensity

Rank None Light Medium Heavy Total

Senior_mngr 4 2 3 2 11
Junior_mngr 4 3 7 4 18
Senior_empl 25 10 12 4 51
Junior_empl 18 24 33 13 88

Secretary 10 6 7 2 25

Total 61 45 62 25 193

ca displays the results of a CA on two categorical variables in a multipanel format.

. ca rank smoking
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality %inert Coord Sqcorr Contrib

rank
Senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
Senior empl 0.264 1.000 0.450 0.728 0.999 0.512
Junior empl 0.456 1.000 0.308 -0.446 0.942 0.331

Secretary 0.130 0.999 0.071 0.385 0.865 0.070

smoking
None 0.316 1.000 0.577 0.752 0.994 0.654

Light 0.233 0.984 0.083 -0.190 0.327 0.031
Medium 0.321 0.983 0.148 -0.375 0.982 0.166
Heavy 0.130 0.995 0.192 -0.562 0.684 0.150
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Dimension_2
Categories Coord Sqcorr Contrib

rank
Senior mngr 0.612 0.800 0.214
Junior mngr 0.769 0.465 0.551
Senior empl 0.034 0.001 0.003
Junior empl -0.183 0.058 0.152

Secretary -0.249 0.133 0.081

smoking
None 0.096 0.006 0.029

Light -0.446 0.657 0.463
Medium -0.023 0.001 0.002
Heavy 0.625 0.310 0.506

The order in which we specify the variables is mostly immaterial. The first variable (rank) is also
called the row variable, and the second (smoking) is the column variable. This ordering is important
only as far as the interpretation of some options and some labeling of output are concerned. For instance,

the option norowpoints suppresses the table with row points, that is, the categories of rank. ca requires
two integer-valued variables. The rankings of the categories and the actual values used to code categories

are not important. Thus, rank may be coded 1, 2, 3, 4, 5, or 0, 1, 4, 9, 16, or −2, −1, 0, 1, 2; it does not

matter. We do suggest assigning value labels to the variables to improve the interpretability of tables and

plots.

Correspondence analysis seeks to offer a low-dimensional representation describing how the row and

column categories contribute to the inertia in a table. ca reports Pearson’s test of independence, just like
tabulatewith the chi2 option. Inertia is Pearson’s𝜒2 statistic divided by the sample size, 16.44/193 =
0.0852. Pearson’s 𝜒2 test has significance level 𝑝 = 0.1718, casting doubt on any association between

rows and columns. Still, given the prominence of this example in the CA literature, we will continue.

The first panel produced by ca displays the decomposition of total inertia in orthogonal dimen-

sions—analogous to the decomposition of the total variance in principal component analysis (see

[MV] pca). The first dimension accounts for 87.76% of the inertia; the second dimension accounts for

11.76% of the inertia. Because the dimensions are orthogonal, we may add the contributions of the two

dimensions and say that the two leading dimensions account for 87.76%+11.76% = 99.52% of the total

inertia. A two-dimensional representation seems in order. The remaining output is discussed later.

How many dimensions?

Example 2: Specifying the number of dimensions
In the first example with the smoking data, we displayed coordinates and statistics for a two-

dimensional approximation of the rows and columns. This is the default. We can specify more or fewer

dimensions with the option dimensions(). The maximum number is min(𝑛𝑟 − 1, 𝑛𝑐 − 1). At this
maximum, the 𝜒2 distances between the rows and columns are exactly represented by CA; 100% of the

inertia is accounted for. This is called the saturated model; the fitted values of the CA model equal the

observed correspondence table.

https://www.stata.com/manuals/mvpca.pdf#mvpca
https://www.stata.com/manuals/mvca.pdf#mvcaRemarksandexamplesex_ca_smokingorg
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The minimum number of dimensions is one; the model with zero dimensions would be a model of

independence of the rows and columns. With one dimension, the rows and columns of the table are

identified by points on a line, with distance on the line approximating the 𝜒2 distance in the table, and a

biplot is no longer feasible.

. ca rank smoking, dim(1)
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 1
4 active columns Expl. inertia (%) = 87.76

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality %inert Coord Sqcorr Contrib

rank
Senior mngr 0.057 0.092 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.526 0.139 -0.495 0.526 0.084
Senior empl 0.264 0.999 0.450 0.728 0.999 0.512
Junior empl 0.456 0.942 0.308 -0.446 0.942 0.331

Secretary 0.130 0.865 0.071 0.385 0.865 0.070

smoking
None 0.316 0.994 0.577 0.752 0.994 0.654

Light 0.233 0.327 0.083 -0.190 0.327 0.031
Medium 0.321 0.982 0.148 -0.375 0.982 0.166
Heavy 0.130 0.684 0.192 -0.562 0.684 0.150

The first panel produced by ca does not depend on the number of dimensions extracted; thus, we will
always see all singular values and the percentage of inertia explained by the associated dimensions. In

the second panel, the only thing that depends on the number of dimensions is the overall quality of the

approximation. The overall quality is the sum of the quality scores on the extracted dimensions and so

increases with the number of extracted dimensions. The higher the quality, the better the 𝜒2 distances

with other rows (columns) are represented by the extracted number of dimensions. In a saturated model,

the overall quality is 1 for each row and column category.

So, how many dimensions should we retain? It is common for researchers to extract the minimum

number of dimensions in a CA to explain at least 90% of the inertia, analogous to similar heuristic rules on

the number of components in principal component analysis. We could probably also search for a scree,

the number of dimensions where the singular values flatten out (see [MV] screeplot). A screeplot of

the singular values can be obtained by typing

. screeplot e(Sv)

where e(Sv) is the name where ca has stored the singular values.

https://www.stata.com/manuals/mvscreeplot.pdf#mvscreeplot
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Statistics on the points

Example 3: A more compact table of row and column statistics
We now turn our attention to the second panel. The overall section of the panel lists the following

statistics:

• The mass of the category, that is, the proportion in the marginal distribution. The masses of all

categories of a variable add up to 1.

• The quality of the approximation for a category, expressed as a number between 0 (very bad)

and 1 (perfect). In a saturated model, quality is 1.

• The percentage of inertia contained in the category. Categories are divided through by the total

inertia; the inertias of the categories of a variable add up to 100%.

For each of the dimensions, the panel lists the following:

• The coordinate of the category.

• The squared residuals between the profile and the categories. The sum of the squared residuals

over the dimensions adds up to the quality of the approximation for the category.

• The contributionmade by the categories to the dimensions. These add up to 1 over all categories

of a variable.

The table with point statistics becomes pretty large, especially with more than two dimensions. ca
can also list the second panel in a more compact form, saving space by multiplying all entries by 1,000;

see Greenacre (2017).

. ca rank smoking, dim(2) compact
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
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Statistics for row and column categories in symmetric norm. (x 1000)
Overall Dimension 1 Dimension 2

Categories Mass Qualt %inert Coord Sqcor Contr Coord Sqcor Contr

rank
Senior mngr 57 893 31 126 92 3 612 800 214
Junior mngr 93 991 139 -495 526 84 769 465 551
Senior empl 264 1000 450 728 999 512 34 1 3
Junior empl 456 1000 308 -446 942 331 -183 58 152

Secretary 130 999 71 385 865 70 -249 133 81

smoking
None 316 1000 577 752 994 654 96 6 29

Light 233 984 83 -190 327 31 -446 657 463
Medium 321 983 148 -375 982 166 -23 1 2
Heavy 130 995 192 -562 684 150 625 310 506

Normalization and interpretation of correspondence analysis
The normalizationmethod used in CAdetermines whether and how the similarity of the row categories,

the similarity of the column categories, and the relationship (association) between the row and column

variables can be interpreted in terms of the row and column coordinates and the origin of the plot.

How does one compare row points—provided that the normalization method allows such a compar-

ison? Formally, the Euclidean distance between the row points approximates the 𝜒2 distances between

the corresponding row profiles. Thus in the biplot, row categories mapped close together have similar

row profiles; that is, the distributions on the column variable are similar. Row categories mapped widely

apart have dissimilar row profiles. Moreover, the Euclidean distance between a row point and the origin

approximates the 𝜒2 distance from the row profile and the row centroid, so it indicates how different a

category is from the population.

An analogous interpretation applies to column points.

For the association between the row and column variables: in the CA biplot, you should not interpret

the distance between a row point 𝑟 and a column point 𝑐 as the relationship of 𝑟 and 𝑐. Instead, think in
terms of the vectors origin to 𝑟 (OR) and origin to 𝑐 (OC). Remember that CAdecomposes scaled deviations
𝑑(𝑟, 𝑐) from independence and 𝑑(𝑟, 𝑐) is approximated by the inner product of OR and OC. The larger the
absolute value of 𝑑(𝑟, 𝑐), the stronger the association between 𝑟 and 𝑐. In geometric terms, 𝑑(𝑟, 𝑐) can
be written as the product of the length of OR, the length of OC, and the cosine of the angle between OR

and OC.

What does this mean? First, consider the effects of the angle. The association in (𝑟, 𝑐) is strongly
positive if OR and OC point in roughly the same direction; the frequency of (𝑟, 𝑐) is much higher than
expected under independence, so 𝑟 tends to flock together with 𝑐—if the points 𝑟 and 𝑐 are close to-
gether. Similarly, the association is strongly negative if OR and OC point in opposite directions. Here

the frequency of (𝑟, 𝑐) is much lower than expected under independence, so 𝑟 and 𝑐 are unlikely to oc-
cur simultaneously. Finally, if OR and OC are roughly orthogonal (angle = ±90), the deviation from

independence is small.

Second, the association of 𝑟 and 𝑐 increases with the lengths of OR and OC. Points far from the origin

tend to have large associations. If a category is mapped close to the origin, all its associations with

categories of the other variable are small: its distribution resembles the marginal distribution.
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Here are the interpretations enabled by the main normalization methods as specified in the

normalize() option.

Normalization Similarity Similarity Association

method row cat. column cat. row vs. column

symmetric No No Yes

principal Yes Yes No

row Yes No Yes

column No Yes Yes

If we say that a comparison between row categories or between column categories is not possible, we

really mean that the 𝜒2 distance between row profiles or column profiles is actually approximated by a

weighted Euclidean distance between the respective plots in which the weights depend on the inertia of

the dimensions rather than on the standard Euclidean distance.

You may want to do a CA in principal normalization to study the relationship between the categories

of a variable and do a CA in symmetric normalization to study the association of the row and column

categories.

Plotting the points

Example 4: A correspondence biplot
In our discussion of normalizations, we stated that CA offers simple geometric interpretations to the

similarity of categories and the association of the variables. We may specify the option plot with ca
during estimation or during replay.

. ca, norowpoints nocolpoints plot
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
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The options norowpoints and nocolpoints suppress the large tables of statistics for the rows and

columns. If we did not request the plot during estimation, we can still obtain it with the cabiplot
postestimation command. Unlike requesting the plot at estimation time, cabiplot allows us to fine-

tune the plot; see [MV] ca postestimation plots.

The horizontal dimension seems to distinguish smokers from nonsmokers, whereas the vertical di-

mensions can be interpreted as intensity of smoking. Because the orientations from the origin to None
and from the origin to Senior empl are so close, we conclude that senior employees tend not to smoke.
Similarly, junior managers tend to be heavy smokers, and junior employees tend to be medium smokers.

Supplementary points
Auseful feature of CA is the ability to locate supplementary rows and columns in the space generated

by the “active” rows and columns (see Greenacre [1984, 70–74]; Greenacre [2017, chap. 12], for an

extensive discussion). Think of supplementary rows and columns as having mass 0; therefore, supple-

mentary points do not influence the approximating space—their contribution values are zero.

Example 5: Supplementary rows and columns
In our example, we want to include the national distribution of smoking intensity as a supplementary

row.

ca requires that we define the supplementary row distributions as rows of amatrix. In this example, we

have only one supplementary row, with the percentages of the smoking categories in a national sample.

The matrix should have one row per supplementary row category and as many columns as there are active

columns. We define the row name to obtain appropriately labeled output.

. matrix S_row = (42, 29, 20, 9)

. matrix rowname S_row = National

Before we show the CA analysis with the supplementary row, we also include two supplementary

columns for the rank distribution of alcoholic beverage drinkers and nondrinkers. It will be interesting

to see where smoking is located relative to drinking and nondrinking.

https://www.stata.com/manuals/mvcapostestimationplots.pdf#mvcapostestimationplots
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. matrix S_col = ( 0, 11 \
> 1, 19 \
> 5, 44 \
> 10, 78 \
> 7, 18)
. matrix colnames S_col = Nondrink Drink

We now invoke ca, specifying the names of the matrices with supplementary rows and columns with
the options rowsupp() and colsupp().

. ca rank smoking, rowsupp(S_row) colsupp(S_col) plot
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active + 1 supplementary rows Number of dim. = 2
4 active + 2 supplementary columns Expl. inertia (%) = 99.51

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
Statistics for row and column categories in symmetric normalization

Overall Dimension_1
Categories Mass Quality %inert Coord Sqcorr Contrib

rank
Senior mngr 0.057 0.893 0.031 0.126 0.092 0.003
Junior mngr 0.093 0.991 0.139 -0.495 0.526 0.084
Senior empl 0.264 1.000 0.450 0.728 0.999 0.512
Junior empl 0.456 1.000 0.308 -0.446 0.942 0.331

Secretary 0.130 0.999 0.071 0.385 0.865 0.070

suppl_rows
National 0.518 0.761 0.644 0.494 0.631

smoking
None 0.316 1.000 0.577 0.752 0.994 0.654

Light 0.233 0.984 0.083 -0.190 0.327 0.031
Medium 0.321 0.983 0.148 -0.375 0.982 0.166
Heavy 0.130 0.995 0.192 -0.562 0.684 0.150

suppl_cols
Nondrink 0.119 0.439 0.460 0.220 0.040

Drink 0.881 0.838 0.095 -0.082 0.202
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Dimension_2
Categories Coord Sqcorr Contrib

rank
Senior mngr 0.612 0.800 0.214
Junior mngr 0.769 0.465 0.551
Senior empl 0.034 0.001 0.003
Junior empl -0.183 0.058 0.152

Secretary -0.249 0.133 0.081

suppl_rows
National -0.372 0.131

smoking
None 0.096 0.006 0.029

Light -0.446 0.657 0.463
Medium -0.023 0.001 0.002
Heavy 0.625 0.310 0.506

suppl_cols
Nondrink -1.144 0.398

Drink 0.241 0.636
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The first panel and the information about the five active rows and the four active columns have not

changed—the approximating space is fully determined by the active rows and columns and is indepen-

dent of the location of the supplementary rows and columns.

The table with statistics for the row and column categories now also contains entries for the supple-

mentary rows and columns. The contrib entries for the supplementary points are blank. Supplementary
points do not “contribute to” the location of the dimensions—their contribution is 0.000, but displaying

blanks makes the point more clearly. All other columns for the supplementary points are informative.

The inertia of supplementary points is the 𝜒2 distance to the respective centroid. The coordinates of

supplementary points are obtained by applying the transition equations of the CA. Correlations of the

supplementary profiles with the dimensions are also well defined. Finally, we may consider the quality

of the two-dimensional approximation for the supplementary points. These are lower than for the active

points, which will be the case in most applications—the active points exercise influence on the dimen-

sions to improve their quality, whereas the supplementary points simply have to accept the dimensions

as determined by the active points.
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If we look at the biplot, the supplementary points are shown along with the active points. We may

interpret the supplementary points just like the active points. Secretaries are close to the national sample

in terms of smoking. Drinking alcohol is closer to the smoking categories than to nonsmoking, indicat-

ing that alcohol consumption and smoking are similar behaviors—but concluding that the same people

smoke and drink is not possible because we do not have three-way data.

Matrix input

Example 6: Correspondence analysis of a frequency table
If we want to do a CA of a published two-way frequency table, we typically do not have immediate

access to the data in the form of a dataset. We could enter the data with frequency weights.

. input rank smoking freq
1. 1 1 4
2. 1 2 2
3. 1 3 3
(output omitted )

19. 5 3 7
20. 5 4 2
21. end

. label define vl_rank 1 ”Senior_mngr” ...

. label value rank vl_rank

. label define vl_smoke 1 ”None” ...

. label value smoke vl_smoke

. ca rank smoking [fw=freq]
(output omitted )

Or we may enter the data as a matrix and use camat. First, we enter the frequency matrix with proper
column and row names and then list the matrix for verification.

. matrix F = (4,2,3,2 \ 4,3,7,4 \ 25,10,12,4 \ 18,24,33,13 \ 10,6,7,2)

. matrix colnames F = None Light Medium Heavy

. matrix rownames F = Senior_mngr Junior_mngr Senior_empl Junior_empl Secretary

. matlist F, border

None Light Medium Heavy

Senior_mngr 4 2 3 2
Junior_mngr 4 3 7 4
Senior_empl 25 10 12 4
Junior_empl 18 24 33 13

Secretary 10 6 7 2

We can use camat on F to obtain the same results as from the raw data. We use the compact option

for a more compact table.
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. camat F, compact
Correspondence analysis Number of obs = 193

Pearson chi2(12) = 16.44
Prob > chi2 = 0.1718
Total inertia = 0.0852

5 active rows Number of dim. = 2
4 active columns Expl. inertia (%) = 99.51

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2734211 .0747591 14.43 87.76 87.76
Dim 2 .1000859 .0100172 1.93 11.76 99.51
Dim 3 .0203365 .0004136 0.08 0.49 100.00

Total .0851899 16.44 100
Statistics for row and column categories in symmetric norm. (x 1000)

Overall Dimension 1 Dimension 2
Categories Mass Qualt %inert Coord Sqcor Contr Coord Sqcor Contr

rows
Senior mngr 57 893 31 126 92 3 612 800 214
Junior mngr 93 991 139 -495 526 84 769 465 551
Senior empl 264 1000 450 728 999 512 34 1 3
Junior empl 456 1000 308 -446 942 331 -183 58 152

Secretary 130 999 71 385 865 70 -249 133 81

columns
None 316 1000 577 752 994 654 96 6 29

Light 233 984 83 -190 327 31 -446 657 463
Medium 321 983 148 -375 982 166 -23 1 2
Heavy 130 995 192 -562 684 150 625 310 506

Example 7: Correspondence analysis of nonfrequency data
The command camatmay also be used for a CAof nonfrequency data. The data should be nonnegative,

with strictly positive margins. An example are the compositional data on the distribution of government

R&D funds over 11 areas in five European countries in 1989; the data are listed in Greenacre (1993, 82).

The expenditures are scaled to 1,000 within country, to focus the analysis on the intranational distribution

policies. Moreover, with absolute expenditures, small countries, such as The Netherlands, would have

been negligible in the analysis.

We enter the data as a Stata matrix. The command matrix input allows us to input row entries

separated by blanks, rather than by commas; rows are separated by the backward slash (\).

. matrix input RandD = (
> 18 19 14 14 6 \
> 12 34 4 15 31 \
> 44 33 36 58 25 \
> 37 88 67 101 40 \
> 42 20 36 28 43 \
> 90 156 107 224 176 \
> 28 50 59 88 28 \
> 165 299 120 303 407 \
> 48 128 147 62 103 \
> 484 127 342 70 28 \
> 32 46 68 37 113)

https://www.stata.com/manuals/pmatrixdefine.pdf#pmatrixdefine
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. matrix colnames RandD = Britain West_Germany France Italy Netherlands

. matrix rownames RandD = Earth_exploration Pollution Human_health
> Energy Agriculture Industry Space University
> Nonoriented Defense Other

We perform a CA, suppressing the voluminous row- and column-point statistics. We want to show a

biplot, and therefore we select symmetric normalization.

. camat RandD, dim(2) norm(symm) rowname(Source) colname(Country) norowpoints
> nocolpoints plot
Correspondence analysis Number of obs = 5,000

Pearson chi2(40) = 1321.55
Prob > chi2 = 0.0000
Total inertia = 0.2643

11 active rows Number of dim. = 2
5 active columns Expl. inertia (%) = 89.08

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .448735 .2013631 1006.82 76.18 76.18
Dim 2 .1846219 .0340852 170.43 12.90 89.08
Dim 3 .1448003 .0209671 104.84 7.93 97.01
Dim 4 .0888532 .0078949 39.47 2.99 100.00

Total .2643103 1321.55 100
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The two dimensions account for 89% of the inertia in this example, justifying an interpretation of the

biplot. Let us focus on the position of The Netherlands. The orientation of The Netherlands from the ori-

gin is in the same direction as the orientation of pollution and university from the origin, indicating that

The Netherlands spends more on academic research and on research to reduce environmental pollution

than the average country. Earth exploration and human health are in the opposite direction, indicating

investments much lower than average in these areas. Industry and agriculture are approximately orthog-

onal to the orientation of The Netherlands, indicating average investments by The Netherlands in these

areas. Britain and France have big military investments, whereas Germany and Italy have more of an

industrial orientation.
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Technical note
The interpretation of the biplot is not fully in line with what we easily see in the row and column

profiles—surprisingly, Greenacre does not seem to feel the need to comment on this. Why is this the

case? The clue is in the statistics we did not show. Although the two dimensions account for 90% of the

total inertia, this does not mean that all rows and columns are approximated to this extent. There are some

row and column categories that are not well described in two dimensions. For instance, the quality of the

Source categories Nonoriented, Agriculture, and Earth exploration are only 0.063, 0.545, and
0.584, respectively, indicating that these rows are poorly represented in a two-dimensional space. The

quality of West Germany is also rather low at 0.577. Adding a third dimension improves the quality of the

category Nonoriented but hardly affects the other two problematic categories. This effect can be seen

only from the squared correlations between the third dimension and the profiles of the row and column

categories—these correlations are small for all categories but Nonoriented. Thus, Nonoriented does
not seem to really belong with the other categories and should probably be omitted from the analysis.

Crossed variables
ca can include interactions between variables in the analysis; variables that contain interactions are

called crossed or stacked variables, whereas the variables that make them up are the crossing or stacking

variables.

Example 8: Correspondence analysis with crossed variables
We illustrate crossed variables with ca by using the ISSP (1993), which explores attitudes toward

science and the environment. We are interested in whether responses to itemAdiffer with education and

gender. The item asks for a response to the statement “We believe too often in science, and not enough

in feelings or faith,” with a 1 indicating strong agreement and a 5 indicating strong disagreement. We

are interested in how education and gender influence response. We cross the variables sex and edu into
one demographic variable labeled Demo to explore this question.

. use https://www.stata-press.com/data/r19/issp93
(Selection from ISSP (1993))
. tabulate A edu
Too much science, not

enough feelings & Education (6 categories)
faith Primary i Primary c Secondary Secondary Total

Agree strongly 7 59 29 11 119
Agree 15 155 84 27 322

Neither agree nor dis 7 84 65 18 204
Disagree 8 68 54 26 178

Disagree strongly 1 12 10 12 48

Total 38 378 242 94 871
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Too much science, not Education (6
enough feelings & categories)

faith Tertiary Tertiary Total

Agree strongly 5 8 119
Agree 20 21 322

Neither agree nor dis 11 19 204
Disagree 8 14 178

Disagree strongly 5 8 48

Total 49 70 871

We notice immediately the long labels for variable A and on edu. We replace these labels with short

labels that can be abbreviated, so that in our analysis we will easily be able to identify categories. We

use the length(2) option to ca to ensure that labels from each of the crossing variables are restricted to

two characters.

. label define response 1 ”++” 2 ”+” 3 ”+/-” 4 ”-” 5 ”--”

. label values A response

. label define education 1 ”-pri” 2 ”pri” 3 ”-sec” 4 ”sec” 5 ”-ter” 6 ”ter”

. label values edu education

. ca A (Demo: sex edu), norowpoints nocolpoints length(2) plot norm(symmetric)
Correspondence analysis Number of obs = 871

Pearson chi2(44) = 72.52
Prob > chi2 = 0.0043
Total inertia = 0.0833

5 active rows Number of dim. = 2
12 active columns Expl. inertia (%) = 80.17

Singular Principal Cumul.
Dimension value inertia chi2 Percent percent

Dim 1 .2108455 .0444558 38.72 53.39 53.39
Dim 2 .14932 .0222965 19.42 26.78 80.17
Dim 3 .1009876 .0101985 8.88 12.25 92.42
Dim 4 .0794696 .0063154 5.50 7.58 100.00

Total .0832662 72.52 100
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We see clearly that the responses of the males vary more widely than those of the females. Strong

agreement with item A is most closely associated with females with little education, and strong dis-

agreement is most closely associated with males with a secondary or tertiary education. Educated males

are more closely associated with a negative response than educated females are, and females with little

education are more closely associated with a positive response than males with little education are.

Stored results
Let 𝑟 be the number of rows, 𝑐 be the number of columns, and 𝑓 be the number of retained dimensions.

ca and camat store the following in e():
Scalars

e(N) number of observations

e(f) number of dimensions (factors, axes); maximum of min(𝑟 − 1, 𝑐 − 1)
e(inertia) total inertia = e(X2)/e(N)
e(pinertia) inertia explained by e(f) dimensions
e(X2) 𝜒2 statistic

e(X2 df) degrees of freedom (𝑟 − 1)(𝑐 − 1)
e(X2 p) 𝑝-value for e(X2)

Macros

e(cmd) ca (even for camat)
e(cmdline) command as typed

e(Rcrossvars) row crossing variable names (ca only)
e(Ccrossvars) column crossing variable names (ca only)
e(varlist) the row and column variable names (ca only)
e(wtype) weight type (ca only)
e(wexp) weight expression (ca only)
e(title) title in estimation output

e(ca data) variables or crossed
e(Cname) name for columns

e(Rname) name for rows

e(norm) normalization method

e(sv unique) 1 if the singular values are unique, 0 otherwise
e(properties) nob noV eigen
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(Ccoding) column categories (1 × 𝑐) (ca only)
e(Rcoding) row categories (1 × 𝑟) (ca only)
e(GSC) column statistics (𝑐 × 3(1 + 𝑓))
e(GSR) row statistics (𝑟 × 3(1 + 𝑓))
e(TC) normalized column coordinates (𝑐 × 𝑓)
e(TR) normalized row coordinates (𝑟 × 𝑓)
e(Sv) singular values (1 × 𝑓)
e(C) column coordinates (𝑐 × 𝑓)
e(R) row coordinates (𝑟 × 𝑓)
e(c) column mass (margin) (𝑐 × 1)
e(r) row mass (margin) (𝑟 × 1)
e(P) analyzed matrix (𝑟 × 𝑐)
e(GSC supp) supplementary column statistics

e(GSR supp) supplementary row statistics

e(PC supp) principal coordinates supplementary column points

e(PR supp) principal coordinates supplementary row points

e(TC supp) normalized coordinates supplementary column points

e(TR supp) normalized coordinates supplementary row points
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Functions

e(sample) marks estimation sample (ca only)

Methods and formulas
Our presentation of simple CA follows that of Greenacre (1984, 83–125); see also Blasius and

Greenacre (1994) and Rencher and Christensen (2012, 565–580). See Greenacre and Blasius (1994) for a

concise presentation of CA from a computational perspective. Simple CA seeks a geometric representation

of the rows and column of a (two mode) matrix with nonnegative entries in a common low-dimensional

space so that 𝜒2 distances between the rows and between the columns are well approximated by the

Euclidean distances in the common space.

LetN be an 𝐼 ×𝐽matrix with nonnegative entries and strictly positive margins. Nmay be frequencies

of a two-way cross-tabulation, but this is not assumed in most of CA. Let 𝑛 = 𝑁++ be the overall sum of

𝑁𝑖𝑗 (“number of observations”). Define the correspondence table as the matrix P where 𝑃𝑖𝑗 = 𝑁𝑖𝑗/𝑛,
so the overall sum of 𝑃𝑖𝑗 is 𝑃++ = 1. Let r = P1 be the row margins, also known as the row masses,

with elements 𝑟𝑖 > 0. Similarly, c = P′1 contains the column margins, or column masses, with elements

𝑐𝑗 > 0.

CA is defined in terms of the generalized singular value decomposition (GSVD) of P−rc′ with respect

to the inner products normed by D−1
𝑟 and D−1

𝑐 , where D𝑟 = diag(r) and D𝑐 = diag(c). The GSVD can

be expressed in terms of the orthonormal (or standard) SVD of the standardized residuals

Z = D
− 1

2𝑟 (P − rc′)D− 1
2𝑐 with elements 𝑍𝑖𝑗 =

𝑃𝑖𝑗 − 𝑟𝑖𝑐𝑗
√𝑟𝑖𝑐𝑗

Denote by Z = R𝚲C′ the SVD of Z with R′R = C′C = I and 𝚲 a diagonal matrix with singular values

in decreasing order. ca displays a warning message if Z has common singular values.

The total principal inertia of the correspondence table P is defined as 𝜒2/𝑛 = ∑𝑖,𝑗 𝑍2
𝑖𝑗, where 𝜒2 is

Pearson’s 𝜒2 statistic. We can express the inertia of P in terms of the singular values of Z:

inertia = 1
𝑛

𝜒2 =
min(𝐼−1,𝐽−1)

∑
𝑘=1

𝜆2
𝑘

The inertia accounted for by 𝑑 dimensions is ∑𝑑
𝑘=1 𝜆2

𝑘. The fraction of inertia accounted for (explained)

by the 𝑑 dimensions is defined as

explained inertia =
∑𝑑

𝑘=1 𝜆2
𝑘

∑min(𝐼−1,𝐽−1)
𝑘=1 𝜆2

𝑘

Principal row (�̃�𝑖𝑘) and principal column (𝐶𝑗𝑘) coordinates are defined as

�̃�𝑖𝑘 = 𝑅𝑖𝑘𝜆𝑘√ 𝑟𝑖
= (D− 1

2𝑟 R𝚲)𝑖𝑘 𝐶𝑗𝑘 =
𝐶𝑗𝑘𝜆𝑘
√ 𝑐𝑗

= (D− 1
2𝑐 C𝚲)𝑗𝑘

The 𝛼-normalized row and column coordinates are defined as

𝑅(𝛼)
𝑖𝑘 =

𝑅𝑖𝑘𝜆𝛼
𝑘√ 𝑟𝑖

𝐶(𝛼)
𝑗𝑘 =

𝐶𝑗𝑘𝜆1−𝛼
𝑘√ 𝑐𝑗
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The row principal coordinates are obtained with 𝛼 = 1. The column principal coordinates are obtained

with 𝛼 = 0. The symmetric coordinates are obtained with 𝛼 = 1/2.
Decomposition of inertia by rows (In(𝑟)) and by columns (In(𝑐)) is defined as

In
(𝑟)
𝑖 =

𝐽
∑
𝑗=1

𝑍2
𝑖𝑗 In

(𝑐)
𝑗 =

𝐼
∑
𝑖=1

𝑍2
𝑖𝑗

Quality of subspace approximations for the row and column categories are defined as

𝑄(𝑟)
𝑖 = 𝑟𝑖

In
(𝑟)
𝑖

𝑑
∑
𝑘=1

�̃�2
𝑖𝑘 𝑄(𝑐)

𝑗 =
𝑐𝑗

In
(𝑐)
𝑗

𝑑
∑
𝑘=1

𝐶2
𝑗𝑘

If 𝑑 = min(𝐼 − 1, 𝐽 − 1), the quality index satisfies 𝑄(𝑟)
𝑖 = 𝑄(𝑐)

𝑗 = 1.

CA provides several diagnostics for a more detailed analysis of inertia: what do the categories con-

tribute to the inertia explained by the dimensions, and what do the dimensions contribute to the inertia

explained for the categories?

The relative contributions of row 𝑖 (𝐺(𝑟)
𝑖𝑘 ) and of column 𝑗 (𝐺(𝑐)

𝑗𝑘 ) to the inertia of principal dimension

𝑘 are defined as

𝐺(𝑟)
𝑖𝑘 = 𝑟𝑖�̃�2

𝑖𝑘
𝜆2

𝑘
𝐺(𝑐)

𝑗𝑘 =
𝑐𝑗𝐶2

𝑗𝑘

𝜆2
𝑘

𝐺(𝑟)
+𝑘 = 𝐺(𝑐)

+𝑘 = 1.

The correlations 𝐻(𝑟)
𝑖𝑘 of the 𝑖th row profile and 𝑘th principal row dimension and, analogously, 𝐻(𝑐)

𝑗𝑘
for columns are

𝐻(𝑟)
𝑖𝑘 = 𝑟𝑖

In
(𝑟)
𝑖

�̃�2
𝑖𝑘 𝐻(𝑐)

𝑗𝑘 =
𝑐𝑗

In
(𝑐)
𝑗

𝐶2
𝑗𝑘

We now define the quantities returned by the estat subcommands after ca. The row profiles are

U = D−1
𝑟 P. The 𝜒2 distance between rows 𝑖1 and 𝑖2 of P is defined as the Mahalanobis distance between

the respective row profiles U𝑖1
and U𝑖2

with respect to D𝑐,

(U𝑖1
− U𝑖2

)D−1
𝑐 (U𝑖1

− U𝑖2
)′

The column profiles and the 𝜒2 distances between columns are defined analogously. The 𝜒2 distances

for the approximated correspondence table are defined analogously in terms of ̂P.
The fitted or reconstructed values ̂𝑃𝑖𝑗 are

̂𝑃𝑖𝑗 = 𝑟𝑖𝑐𝑗 (1 + 𝜆−1
𝑘

𝑑
∑
𝑘=1

�̃�𝑖𝑘𝐶𝑗𝑘)
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