
Styles — Dataset styles

Description Syntax Remarks and examples Also see

Description
The purpose of this entry is to familiarize you with the four styles in which mi data can be stored.

Syntax
There are four dataset styles available for storing mi data:

wide

mlong

flong

flongsep

Remarks and examples
Remarks are presented under the following headings:

The four styles
Style wide
Style flong
Style mlong
Style flongsep
How we constructed this example

Using mi system variables
Advice for using flongsep

The four styles
We have highly artificial data, which we will first describe verbally and then show to you in each of

the styles. The original data have two observations on two variables:

a b

1 2
4 .

Variable b has a missing value. We have two imputed values for b, namely, 4.5 and 5.5. There will
also be a third variable, c, in our dataset, where c = a + b.

1



Styles — Dataset styles 2

Thus, in the jargon of mi, we have 𝑀 = 2 imputations, and the datasets 𝑚 = 0, 𝑚 = 1, and 𝑚 = 2

are

m=0: a b c

1 2 3
4 . .

m=1: a b c

1 2 3
4 4.5 8.5

m=2: a b c

1 2 3
4 5.5 9.5

Continuing with jargon, a is a regular variable, b is an imputed variable, and c is a passive variable.

Style wide

The above data have been stored in miproto.dta in the wide style.

. use https://www.stata-press.com/data/r19/miproto
(mi prototype)
. list

a b c _1_b _2_b _1_c _2_c _mi_miss

1. 1 2 3 2 2 3 3 0
2. 4 . . 4.5 5.5 8.5 9.5 1

There is no significance to the order in which the variables appear.

On the left, under variables a, b, and c, you can see the original data.

The imputed values for b appear under the variables named 1 b and 2 b; 𝑚 = 1 appears under

1 b, and𝑚 = 2 appears under 2 b. Note that in the first observation, the observed value of b is simply
repeated in 1 b and 2 b. In the second observation, however, 1 b and 2 b show the replacement

values for the missing value of b.

The passive values for c appear under the variables named 1 c and 2 c in the same way that the

imputed values appeared under the variables named 1 b and 2 b.

Finally, one extra variable appears: mi miss. This is an example of an mi system variable. You are

never to change mi system variables; they take care of themselves. The wide style has only one system

variable. mi miss contains 0 for complete observations and 1 for incomplete observations.



Styles — Dataset styles 3

Style flong

Let’s convert this dataset to style flong:

. mi convert flong, clear

. list, separator(2)

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2

3. 1 2 3 . 1 1
4. 4 4.5 8.5 . 1 2

5. 1 2 3 . 2 1
6. 4 5.5 9.5 . 2 2

We listed these data with a separator line after every two rows so that they would be easier to under-

stand. Ignore the mi system variables and focus on variables a, b, and c. Observations 1 and 2 contain
𝑚 = 0; observations 3 and 4 contain 𝑚 = 1; observations 5 and 6 contain 𝑚 = 2.

We will now explain the system variables, but you do not need to remember this.

1. We again see mi miss, just as we did in the wide style. It marks the incomplete observations
in 𝑚 = 0. It contains missing in 𝑚 > 0.

2. mi m records 𝑚. The first two observations are 𝑚 = 0; the next two, 𝑚 = 1; and the last

two, 𝑚 = 2.

3. mi id records an arbitrarily coded observation-identification variable. It is 1 and 2 in 𝑚 = 0,

and then repeats in 𝑚 = 1 and 𝑚 = 2. Observations mi id = 1 correspond to each other for

all 𝑚. The same applies to mi id = 2.

Warning: Do not use mi id as your own ID variable. You might look one time, see that a

particular observation has mi id = 8, and look a little later, and see that the observation has

changed from mi id = 8 to mi id = 5. mi id belongs to mi. If you want your own ID

variable, make your own. All that is true of mi id is that, at any instant, it uniquely identifies,

and ties together, the observations.

There is no significance to the order of the variables or, for that matter, to the order of the observations.

Style mlong

Let’s convert this dataset to the mlong style:

. mi convert mlong, clear

. list

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2
3. 4 4.5 8.5 . 1 2
4. 4 5.5 9.5 . 2 2



Styles — Dataset styles 4

This listing will be easier to read if we add some carefully chosen blank lines:

a b c _mi_miss _mi_m _mi_id

1. 1 2 3 0 0 1
2. 4 . . 1 0 2

3. 4 4.5 8.5 . 1 2

4. 4 5.5 9.5 . 2 2

The mlong style is just like flong except that the complete observations—observations for which

mi miss = 0 in 𝑚 = 0—are omitted in 𝑚 > 0.

Observations 1 and 2 are the original, 𝑚 = 0 data.

Observation 3 is the 𝑚 = 1 replacement observation for observation 2.

Observation 4 is the 𝑚 = 2 replacement observation for observation 2.

Style flongsep

Let’s look at these data in the flongsep style:

. mi convert flongsep example, clear
(files example.dta _1_example.dta _2_example.dta created)
. list

a b c _mi_miss _mi_id

1. 1 2 3 0 1
2. 4 . . 1 2

The flongsep style stores 𝑚 = 0, 𝑚 = 1, and 𝑚 = 2 in separate files. When we converted to the

flongsep style, we had to specify a name for these files, and we chose example. This resulted in 𝑚 = 0

being stored in example.dta, 𝑚 = 1 being stored in 1 example.dta, and 𝑚 = 2 being stored in

2 example.dta.

In the listing above, we see the original, 𝑚 = 0 data.

After conversion, 𝑚 = 0 (example.dta) was left in memory. When working with flongsep data,

you always work with 𝑚 = 0 in memory. Nothing can stop us, however, from taking a brief peek:

. save example, replace
file example.dta saved
. use _1_example, clear
(mi prototype)
. list

a b c _mi_id

1. 1 2 3 1
2. 4 4.5 8.5 2

There are the data for 𝑚 = 1. As previously, system variable mi id ties together observations. In the

𝑚 = 1 data, however, mi miss is not repeated.



Styles — Dataset styles 5

Let’s now look at 2 example.dta:

. use _2_example, clear
(mi prototype)
. list

a b c _mi_id

1. 1 2 3 1
2. 4 5.5 9.5 2

And there are the data for 𝑚 = 2.

We have an aside, but an important one. Review the commands we just gave, stripped of their output:

. mi convert flongsep example, clear

. list

. save example, replace

. use _1_example, clear

. list

. use _2_example, clear

. list

What we want you to notice is the line save example, replace. After converting to flongsep, for

some reason we felt obligated to save the dataset. We will explain below. Now look farther down the

history. After using 1 example.dta, we did not feel obligated to resave that dataset before using

2 example.dta. We will explain that below, too.

The flongsep style data are a matched set of datasets. You work with the 𝑚 = 0 dataset in memory.

It is your responsibility to save that dataset. Sometimes mi will have already saved the dataset for you.

That was true here after mi convert, but it is impossible for you to know that in general, and it is your

responsibility to save the dataset just as you would save any other dataset.

The 𝑚 > 0 datasets, # name.dta, are mi’s responsibility. We do not have to concern ourselves

with saving them. Obviously, it was not necessary to save them here because we had just used the data

and made no changes. The point is that, in general, the 𝑚 > 0 datasets are not our responsibility. The

𝑚 = 0 dataset, however, is our responsibility.

We are done with the demonstration:

. drop _all

. mi erase example

How we constructed this example

You might be curious as to how we constructed miproto.dta. Here is what we did:
. drop _all
. input a b

a b
1. 1 2
2. 4 .
3. end

. mi set wide

. mi set M = 2
(2 imputations added; M = 2)



Styles — Dataset styles 6

. mi register regular a

. mi register imputed b

. replace _1_b = 4.5 in 2
(1 real change made)
. replace _2_b = 5.5 in 2
(1 real change made)
. mi passive: generate c = a + b
m=0:
(1 missing value generated)
m=1:
m=2:
. order a b c _1_b _2_b _1_c _2_c _mi_miss

Using mi system variables
You can use mi’s system variables to make some tasks easier. For instance, if you wanted to know

the overall number of complete and incomplete observations, you could type

. tabulate _mi_miss

because in all styles, the mi miss variable is created in 𝑚 = 0 containing 0 if complete and 1 if

incomplete.

If you wanted to know the summary statistics for weight in 𝑚 = 1, the general solution is

. mi xeq 1: summarize weight

If you were using wide data, however, you could instead type

. summarize _1_weight

If you were using flong data, you could type

. summarize weight if _mi_m==1

If you were using mlong data, you could type

. summarize weight if (_mi_m==0 & !_mi_miss) | _mi_m==1

Well, that last is not so convenient.

What is convenient to do directly depends on the style you are using. Remember, however, you can

always switch between styles by using mi convert (see [MI] mi convert). If you were using mlong

data and wanted to compare summary statistics of the weight variable in the original data and in all

imputations, you could type

. mi convert wide

. summarize *weight

Advice for using flongsep
Use the flongsep style when your data are too big to fit into any of the other styles. If you already

have flongsep data, you can try to convert it to another style. If you get the error “no room to add more

observations” or “no room to add more variables”, then you need to increase the amount of memory Stata

is allowed to use (see [D] memory) or resign yourself to using the flongsep style.

https://www.stata.com/manuals/mimiconvert.pdf#mimiconvert
https://www.stata.com/manuals/dmemory.pdf#dmemory


Styles — Dataset styles 7

There is nothing wrongwith the flongsep style except that you need to learn some new habits. Usually,

in Stata, you work with a copy of the data in memory, and the changes you make are not reflected in the

underlying disk file until and unless you explicitly save the data. If you want to change the name of the

data, you merely save them in a file of a different name. None of that is true when working with flongsep

data. Flongsep data are a collection of datasets; you work with the one corresponding to 𝑚 = 0 in

memory, and mi handles keeping the others in sync. As you make changes, the datasets on disk change.

Think of the collection of datasets as having one name. That name is established when the flongsep

data are created. There are three ways that can happen. You might start with a non-mi dataset in memory

and mi set it; you might import a dataset into Stata and the result be flongsep; or you might convert

another mi dataset to flongsep. Here are all the corresponding commands:

. mi set flongsep name (1)

. mi import flongsep name (2)

. mi import nhanes1 name

. mi convert flongsep name (3)

In each command, you specify a name and that name becomes the name of the flongsep dataset

collection. In particular, name.dta becomes 𝑚 = 0, 1 name.dta becomes 𝑚 = 1, 2 name.dta
becomes 𝑚 = 2, and so on. You use flongsep data by typing use name, just as you would any other

dataset. As we said, you work with 𝑚 = 0 in memory and mi handles the rest.

Flongsep data are stored in the current (working) directory. Learn about pwd to find out where you

are and about cd to change that; see [D] cd.

As you work with flongsep data, it is your responsibility to save name.dta almost as it would be with
any Stata dataset. The difference is that mi might and probably has saved name.dta along the way with-

out mentioning the fact, and mi has doubtlessly updated the # name.dta datasets, too. Nevertheless,

it is still your responsibility to save name.dta when you are done because you do not know whether mi
has saved name.dta recently enough. It is not your responsibility to worry about # name.dta.

It is a wonderful feature of Stata that you can usuallyworkwith a dataset inmemorywithoutmodifying

the original copy on disk except when you intend to update it. It is an unpleasant feature of flongsep that

the same is not true. We therefore recommend working with a copy of the data, and mi provides an mi
copy command (see [MI] mi copy) for just that purpose:

. mi copy newname

With flongsep data in memory, when you type mi copy newname, the current flongsep files are saved
in their existing name (this is one case where you are not responsible for saving name.dta), and then

the files are copied to newname, meaning that 𝑚 = 0 is copied to newname.dta, 𝑚 = 1 is copied to

1 newname.dta, and so on. You are nowworkingwith the same data, but with the new name newname.

As you work, you may reach a point where you would like to save the data collection under name and

continue working with newname. Do the following:

. mi copy name, replace

. use newname

https://www.stata.com/manuals/dcd.pdf#dcd
https://www.stata.com/manuals/mimicopy.pdf#mimicopy


Styles — Dataset styles 8

When you are done for the day, if you want your data saved, do not forget to save them by using mi
copy. It is also a good idea to erase the flongsep newname dataset collection:

. mi copy name, replace

. mi erase newname

By the way, name.dta, 1 name.dta, . . . are just ordinary Stata datasets. By using general (non-mi)
Stata commands, you can look at them and even make changes to them. Be careful about doing the latter;

see [MI] Technical.

See [MI] mi copy to learn more about mi copy.

Also see
[MI] Intro — Introduction to mi

[MI] mi copy — Copy mi flongsep data

[MI] mi erase — Erase mi datasets

[MI] Technical — Details for programmers

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/mitechnical.pdf#miTechnical
https://www.stata.com/manuals/mimicopy.pdf#mimicopy
https://www.stata.com/manuals/miintro.pdf#miIntro
https://www.stata.com/manuals/mimicopy.pdf#mimicopy
https://www.stata.com/manuals/mimierase.pdf#mimierase
https://www.stata.com/manuals/mitechnical.pdf#miTechnical
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

