
Title stata.com

ftof — Passing functions to functions

Description Syntax Remarks and examples Also see

Description

Functions can receive other functions as arguments.

Below is described (1) how to call a function that receives a function as an argument and (2) how
to write a function that receives a function as an argument.

Syntax

example(. . ., &somefunction(), . . .)

where example() is coded

function example(. . ., f, . . .)
{

. . .
(*f)(. . .)
. . .

}

Remarks and examples stata.com

Remarks are presented under the following headings:

Passing functions to functions
Writing functions that receive functions, the simplified convention
Passing built-in functions

Passing functions to functions

Someone has written a program that receives a function as an argument. We will imagine that function
is

real scalar fderiv(function(), x)

and that fderiv() numerically evaluates the derivative of function() at x. The documentation for
fderiv() tells you to write a function that takes one argument and returns the evaluation of the
function at that argument, such as

real scalar expratio(real scalar x)
{

return(exp(x)/exp(-x))
}

1

http://stata.com
http://stata.com

2 ftof — Passing functions to functions

To call fderiv() and have it evaluate the derivative of expratio() at 3, you code

fderiv(&expratio(), 3)

To pass a function to a function, you code & in front of the function’s name and () after. Coding
&expratio() passes the address of the function expratio() to fderiv().

Writing functions that receive functions, the simplified convention

To receive a function, you include a variable among the program arguments to receive the function—we
will use f—and you then code (*f)(. . .) to call the passed function. The code for fderiv() might
read

function fderiv(f, x)
{

return(((*f)(x+1e-6) - (*f)(x)) / 1e-6)
}

or, if you prefer to be explicit about your declarations,

real scalar fderiv(pointer scalar f, real scalar x)
{

return(((*f)(x+1e-6) - (*f)(x)) / 1e-6)
}

or, if you prefer to be even more explicit:

real scalar fderiv(pointer(real scalar function) scalar f,
real scalar x)

{
return(((*f)(x+1e-6) - (*f)(x)) / 1e-6)

}

In any case, using pointers, you type (*f)(. . .) to execute the function passed. See [M-2] pointers
for more information.

Aside: the function fderiv() would work but, because of the formula it uses, would return very
inaccurate results.

Passing built-in functions

You cannot pass built-in functions to other functions. For instance, [M-5] exp() is built in, which is
revealed by [M-3] mata which:

: mata which exp()
exp(): built-in

Not all official functions are built in. Many are implemented in Mata as library functions, but exp()
is built in and coding &exp() will result in an error. If you wanted to pass exp() to a function,
create your own version of it

: function myexp(x) return(exp(x))

and then pass &myexp().

http://www.stata.com/manuals/m-2pointers.pdf#m-2pointers
http://www.stata.com/manuals/m-5exp.pdf#m-5exp()
http://www.stata.com/manuals/m-3matawhich.pdf#m-3matawhich

ftof — Passing functions to functions 3

Also see
[M-2] intro — Language definition

http://www.stata.com/manuals/m-2intro.pdf#m-2intro

