
sqrtlasso — Square-root lasso for prediction and model selection

Description Quick start Menu Syntax Options
Remarks and examples Stored results Methods and formulas References Also see

Description
sqrtlasso selects covariates and fits linear models using square-root lasso. Results from sqrtlasso

can be used for prediction and model selection. Results from sqrtlasso are typically similar to results

from lasso.

sqrtlasso saves but does not display estimated coefficients. The [LASSO] lasso postestimation

commands can be used to generate predictions, report coefficients, and display measures of fit.

For an introduction to lasso, see [LASSO] Lasso intro.

Quick start
Fit a linear model for y1, and select covariates from x1 to x100 using cross-validation (CV)

sqrtlasso y x1-x100

Same as above, but force x1 and x2 to be in the model while square-root lasso selects from x3 to x100
sqrtlasso y (x1 x2) x3-x100

Set a random-number seed for reproducibility

sqrtlasso y x1-x100, rseed(1234)

Calculate the CV function beyond the CV minimum to get the full coefficient paths, knots, etc.

sqrtlasso y x1-x100, selection(cv, alllambdas)

Menu
Statistics > Lasso > Square-root lasso

Syntax
sqrtlasso depvar [(alwaysvars)] othervars [if] [in] [weight] [, options]

alwaysvars are variables that are always included in the model.

othervars are variables that sqrtlasso will choose to include in or exclude from the model.

1

https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoSyntaxweight

sqrtlasso — Square-root lasso for prediction and model selection 2

options Description

Model

noconstant suppress constant term

selection(sel method) selection method to select a value of the square-root
lasso penalty parameter 𝜆∗ from the set of possible 𝜆’s

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

cluster(clustvar) specify cluster variable clustvar

Optimization

[no]log display or suppress an iteration log

rseed(#) set random-number seed

grid(#g [, ratio(#) min(#)]) specify the set of possible 𝜆’s using a logarithmic grid with
#g grid points

stop(#) tolerance for stopping the iteration over the 𝜆 grid early

cvtolerance(#) tolerance for identification of the CV function minimum

bictolerance(#) tolerance for identification of the BIC function minimum

tolerance(#) convergence tolerance for coefficients based on their values

dtolerance(#) convergence tolerance for coefficients based on deviance

penaltywt(matname) programmer’s option for specifying a vector of weights for
the coefficients in the penalty term

sel method Description

cv [, cv opts] select 𝜆∗ using CV; the default

plugin [, plugin opts] select 𝜆∗ using a plugin iterative formula

bic [, bic opts] select 𝜆∗ using BIC function

none do not select 𝜆∗

cv opts Description

folds(#) use # folds for CV

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the CV function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

serule use the one-standard-error rule to select 𝜆∗

stopok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the CV function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the CV function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

plugin opts Description

heteroskedastic assume model errors are heteroskedastic; the default

homoskedastic assume model errors are homoskedastic

https://www.stata.com/manuals/lassolasso.pdf#lassolassoSyntaxselmethod
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoSyntaxcv
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoSyntaxplug
https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoSyntaxbic

sqrtlasso — Square-root lasso for prediction and model selection 3

bic opts Description

alllambdas fit models for all 𝜆’s in the grid or until the stop(#) tolerance is reached;
by default, the BIC function is calculated sequentially by 𝜆, and estimation
stops when a minimum is identified

stopok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was reached at 𝜆stop, set the selected 𝜆∗ to be
𝜆stop; the default

strict do not select 𝜆∗ when the BIC function does not have an identified minimum;
this is a stricter alternative to the default stopok

gridminok when the BIC function does not have an identified minimum and the stop(#)
stopping criterion for 𝜆 was not reached, set the selected 𝜆∗ to be the
minimum of the 𝜆 grid, 𝜆gmin; this is a looser alternative to the default
stopok and is rarely used

postselection use postselection coefficients to compute BIC

alwaysvars and othervars may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed with all sel method options. See [U] 11.1.6 weight.

penaltywt(matname) does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
See [LASSO] lasso fitting for an overview of the lasso estimation procedure and a detailed description of

how to set options to control it.

� � �
Model �

noconstant omits the constant term. Note, however, when there are factor variables among the other-

vars, sqrtlasso can potentially create the equivalent of the constant term by including all levels of

a factor variable. This option is likely best used only when all the othervars are continuous variables

and there is a conceptual reason why there should be no constant term.

selection(cv), selection(plugin), selection(bic), and selection(none) specify the selec-

tion method used to select 𝜆∗. These options also allow suboptions for controlling the specified se-

lection method.

selection(cv [, cv opts]) is the default. It selects 𝜆∗ to be the 𝜆 that gives the minimum of the CV

function. lasso postestimation commands can be used after selection(cv) to assess alternative

𝜆∗ values.

cv opts are folds(#), alllambdas, serule, stopok, strict, and gridminok.

folds(#) specifies that CV with # folds be done. The default is folds(10).

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the CV

function is calculated after each model is fit. If a minimum of the CV function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.

https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation

sqrtlasso — Square-root lasso for prediction and model selection 4

alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the CV function is wanted for

assurance that a trueminimum has been found. Regardless of whether alllambdas is specified,
the selected 𝜆∗ will be the same.

serule selects 𝜆∗ based on the “one-standard-error rule” recommended by Hastie, Tibshirani,

and Wainwright (2015, 13–14) instead of the 𝜆 that minimizes the CV function. The one-

standard-error rule selects the largest 𝜆 for which the CV function is within a standard error

of the minimum of the CV function.

stopok, strict, and gridminok specify what to do when the CV function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the CV function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the CV function has an identified minimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the CV function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the CV function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the CV function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is as-

sumed that 𝜆stop has a CV function value close to the true minimum. When no minimum is

identified and the stop(#) criterion is not met, an error is issued.

strict requires the CV function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the CV function has no identified

minimum and the stop(#) stopping criterion was not met, 𝜆gmin, the minimum of the 𝜆
grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

selection(plugin [, plugin opts]) selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. The plugin method was designed for lasso inference methods and is useful when using

sqrtlasso to manually implement inference methods, such as double-selection lasso. The plugin

estimator calculates a value for 𝜆∗ that dominates the noise in the estimating equations, which

makes it less likely to include variables that are not in the true model. See Methods and formulas.

selection(plugin) does not estimate coefficients for any other values of 𝜆, so it does not re-

quire a 𝜆 grid, and none of the grid options apply. It is much faster than selection(cv) because

estimation is done only for a single value of 𝜆. It is an iterative procedure, however, and if the

plugin is computing estimates for a small 𝜆 (which means many nonzero coefficients), the estima-

tion can still be time consuming. Because estimation is done only for one 𝜆, you cannot assess

alternative 𝜆∗ as the other selection methods allow.

plugin opts are heteroskedastic and homoskedastic.

https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoMethodsandformulas

sqrtlasso — Square-root lasso for prediction and model selection 5

heteroskedastic assumes model errors are heteroskedastic. It is the default. Specifying

selection(plugin) is equivalent to specifying selection(plugin, heteroskedastic).

homoskedastic assumes model errors are homoskedastic. See Methods and formulas.

selection(bic [, bic opts]) selects 𝜆∗ by using the Bayesian information criterion function. It

selects the 𝜆∗ with the minimum BIC function value.

bic opts are alllambdas, stopok, strict, gridminok, and postselection.

alllambdas specifies that models be fit for all 𝜆’s in the grid or until the stop(#) tolerance is

reached. By default, models are calculated sequentially from largest to smallest 𝜆, and the BIC

function is calculated after each model is fit. If a minimum of the BIC function is found, the

computation ends at that point without evaluating additional smaller 𝜆’s.
alllambdas computes models for these additional smaller 𝜆’s. Because computation time

is greater for smaller 𝜆, specifying alllambdas may increase computation time manyfold.

Specifying alllambdas is typically done only when a full plot of the BIC function is wanted

for assurance that a true minimum has been found. Regardless of whether alllambdas is

specified, the selected 𝜆∗ will be the same.

stopok, strict, and gridminok specify what to do when the BIC function does not have an

identified minimum. A minimum is identified at 𝜆∗ when the BIC function at both larger and

smaller adjacent 𝜆’s is greater than it is at 𝜆∗. When the BIC function has an identifiedminimum,

these options all do the same thing: the selected 𝜆∗ is the 𝜆 that gives the minimum. In some

cases, however, the BIC function declines monotonically as 𝜆 gets smaller and never rises to

identify a minimum. When the BIC function does not have an identified minimum, stopok
and gridminok make alternative selections for 𝜆∗, and strict makes no selection. You may

specify only one of stopok, strict, or gridminok; stopok is the default if you do not specify
one. With each of these options, estimation results are always left in place, and alternative 𝜆∗

can be selected and evaluated.

stopok specifies that when the BIC function does not have an identified minimum and the

stop(#) stopping tolerance for 𝜆 was reached, the selected 𝜆∗ is 𝜆stop, the 𝜆 that met the

stopping criterion. 𝜆stop is the smallest 𝜆 for which coefficients are estimated, and it is

assumed that 𝜆stop has a BIC function value close to the true minimum. When no minimum

is identified and the stop(#) criterion is not met, an error is issued.

strict requires the BIC function to have an identified minimum, and if not, an error is issued.

gridminok is a rarely used option that specifies that when the BIC function has no identified

minimum and the stop(#) stopping criterion was not met, then 𝜆gmin, the minimum of the

𝜆 grid, is the selected 𝜆∗.

The gridminok selection criterion is looser than the default stopok, which is looser than

strict. With strict, only an identified minimum is selected. With stopok, either the iden-
tified minimum or 𝜆stop is selected. With gridminok, either the identified minimum or 𝜆stop or

𝜆gmin is selected, in this order.

postselection specifies to use the postselection coefficients to compute the BIC function. By

default, the penalized coefficients are used.

https://www.stata.com/manuals/lassosqrtlasso.pdf#lassosqrtlassoMethodsandformulas

sqrtlasso — Square-root lasso for prediction and model selection 6

selection(none) does not select a 𝜆∗. Square-root lasso is estimated for the grid of values for

𝜆, but no attempt is made to determine which 𝜆 should be selected. The postestimation command

lassoknots can be run to view a table of 𝜆’s that define the knots (the sets of nonzero coefficients)
for the estimation. The lassoselect command can be used to select a value for 𝜆∗, and lassogof
can be run to evaluate the prediction performance of 𝜆∗.

When selection(none) is specified, the CV function is not computed. If you want to view

the knot table with values of the CV function shown and then select 𝜆∗, you must specify

selection(cv). There are no suboptions for selection(none).

offset(varname𝑜) specifies that varname𝑜 be included in the model with its coefficient constrained to

be 1.

cluster(clustvar) specifies the cluster variable clustvar. Specifying a cluster variable will affect how

the log-likelihood function is computed and the sample split in cross-validation. The log-likelihood

function is computed as the sum of the log likelihood at the cluster levels. If option selection(cv)
is specified, the cross-validation sample is split by the clusters defined by clustvar. That is, the sub-

sample in each fold is drawn on the cluster level. Therefore, all observations in a cluster are kept

together in the same subsample.

� � �
Optimization �

[no]log displays or suppresses a log showing the progress of the estimation.

rseed(#) sets the random-number seed. This option can be used to reproduce results for

selection(cv). The other selection methods, selection(plugin) and selection(none), do
not use random numbers. rseed(#) is equivalent to typing set seed # prior to running sqrtlasso.
See [R] set seed.

grid(#𝑔 [, ratio(#) min(#)]) specifies the set of possible 𝜆’s using a logarithmic grid with #𝑔 grid

points.

#𝑔 is the number of grid points for 𝜆. The default is #𝑔 = 100. The grid is logarithmic with the 𝑖th grid
point (𝑖 = 1, . . . , 𝑛 = #𝑔) given by ln𝜆𝑖 = [(𝑖 − 1)/(𝑛 − 1)] ln 𝑟 + ln𝜆gmax, where 𝜆gmax = 𝜆1
is the maximum, 𝜆gmin = 𝜆𝑛 = min(#) is the minimum, and 𝑟 = 𝜆gmin/𝜆gmax = ratio(#) is the

ratio of the minimum to the maximum.

ratio(#) specifies 𝜆gmin/𝜆gmax. The maximum of the grid, 𝜆gmax, is set to the smallest 𝜆 for which

all the coefficients in the lasso are estimated to be zero (except the coefficients of the alwaysvars).

𝜆gmin is then set based on ratio(#). When 𝑝 < 𝑁, where 𝑝 is the total number of othervars

and alwaysvars (not including the constant term) and 𝑁 is the number of observations, the default

value of ratio(#) is 1e−4. When 𝑝 ≥ 𝑁, the default is 1e−2.

min(#) sets 𝜆gmin. By default, 𝜆gmin is based on ratio(#) and 𝜆gmax, which is computed from the

data.

stop(#) specifies a tolerance that is the stopping criterion for the 𝜆 iterations. The default is 1e−5. This

option does not apply when the selection method is selection(plugin). Estimation starts with the

maximum grid value, 𝜆gmax, and iterates toward the minimum grid value, 𝜆gmin. When the relative

difference in the deviance produced by two adjacent 𝜆 grid values is less than stop(#), the iteration
stops and no smaller 𝜆’s are evaluated. The value of 𝜆 that meets this tolerance is denoted by 𝜆stop.

Typically, this stopping criterion is met before the iteration reaches 𝜆gmin.

Setting stop(#) to a larger value means that iterations are stopped earlier at a larger 𝜆stop. To pro-

duce coefficient estimates for all values of the 𝜆 grid, you can specify stop(0). Note, however,

that computations for small 𝜆’s can be extremely time consuming. In terms of time, when you use

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassoselect.pdf#lassolassoselect
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

sqrtlasso — Square-root lasso for prediction and model selection 7

selection(cv), the optimal value of stop(#) is the largest value that allows estimates for just

enough 𝜆’s to be computed to identify the minimum of the CV function. When setting stop(#) to

larger values, be aware of the consequences of the default 𝜆∗ selection procedure given by the default

stopok. You may want to override the stopok behavior by using strict.

cvtolerance(#) is a rarely used option that changes the tolerance for identifying the minimum CV

function. For linear models, a minimum is identified when the CV function rises above a nominal

minimum for at least three smaller 𝜆’s with a relative difference in the CV function greater than #. For

nonlinear models, at least five smaller 𝜆’s are required. The default is 1e−3. Setting # to a bigger

value makes a stricter criterion for identifying a minimum and brings more assurance that a declared

minimum is a true minimum, but it also means that models may need to be fit for additional smaller

𝜆, which can be time consuming. See Methods and formulas for [LASSO] lasso for more information

about this tolerance and the other tolerances.

bictolerance(#) is a rarely used option that changes the tolerance for identifying the minimum BIC

function. Aminimum is identified when the BIC function rises above a nominal minimum for at least

two smaller 𝜆’s with a relative difference in the BIC function greater than #. The default is 1e−2.

Setting # to a bigger value makes a stricter criterion for identifying a minimum and brings more

assurance that a declared minimum is a true minimum, but it also means that models may need to be

fit for additional smaller 𝜆, which can be time consuming. SeeMethods and formulas in [LASSO] lasso

for more information about this tolerance and the other tolerances.

tolerance(#) is a rarely used option that specifies the convergence tolerance for the coefficients. Con-

vergence is achieved when the relative change in each coefficient is less than this tolerance. The

default is tolerance(1e-7).

dtolerance(#) is a rarely used option that changes the convergence criterion for the coefficients. When

dtolerance(#) is specified, the convergence criterion is based on the change in deviance instead of

the change in the values of coefficient estimates. Convergence is declared when the relative change

in the deviance is less than #. More-accurate coefficient estimates are typically achieved by not spec-

ifying this option and instead using the default tolerance(1e-7) criterion or specifying a smaller

value for tolerance(#).

The following option is available with sqrtlasso but is not shown in the dialog box:

penaltywt(matname) is a programmer’s option for specifying a vector of weights for the coefficients

in the penalty term. The contribution of each coefficient to the square-root lasso penalty term is

multiplied by its corresponding weight. Weights must be nonnegative. By default, each coefficient’s

penalty weight is 1.

Remarks and examples
We assume you have read the lasso introduction [LASSO] Lasso intro.

The square-root lasso is an alternative version of lasso. Lasso minimizes

1
2𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

whereas square-root lasso minimizes

√ 1
𝑁

(y − Xβ′)′(y − Xβ′) + 𝜆
𝑁

𝑝

∑
𝑗=1

|𝛽𝑗|

https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro

sqrtlasso — Square-root lasso for prediction and model selection 8

In the square-root formulation, the standard deviation of the error term becomes a multiplicative con-

stant that drops out of the minimization. This lack of dependence facilitates the derivation of plugin

estimators for the lasso penalty parameter 𝜆∗ because there is no need to estimate the standard deviation

of the error term as part of the plugin formula.

Square-root lasso is primarily used in combination with a plugin estimator for 𝜆∗. The resulting

square-root lasso estimation can be used with the double-selection or partialing-out methods described

in [LASSO] Lasso inference intro.

Square-root lasso can also be used on its own for prediction or model selection. To be consistent

with lasso, the default selection method for 𝜆∗ is CV. To use the plugin estimator, specify the option

selection(plugin).

Square-root lasso was formulated by Belloni, Chernozhukov, and Wang (2011), who also derived the

square-root lasso plugin estimator for 𝜆, which is implemented here.

Example 1: Square-root lasso and lasso
Let’s compare square-root lasso with an ordinary lasso to illustrate that their results are numerically

similar when used with CV.

We load the example dataset we used in [LASSO] lasso examples. It has stored variable lists created

by vl. See [D] vl for a complete description of the vl system and how to use it to manage large variable

lists.

After we load the dataset, we type vl rebuild to make the saved variable lists active again.

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We randomly split our data into two samples of equal sizes. One we will fit lassos on, and the other

we will use to test their predictions. We use splitsample to generate a variable indicating the samples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

https://www.stata.com/manuals/lassolassoinferenceintro.pdf#lassoLassoinferenceintro
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample

sqrtlasso — Square-root lasso for prediction and model selection 9

We have four user-defined variable lists, demographics, factors, idemographics, and ifactors.
The variable lists idemographics and ifactors contain factor-variable versions of the categori-

cal variables in demographics and factors. That is, a variable q3 in demographics is i.q3 in

idemographics. See the examples in [LASSO] lasso examples to see how we created these variable

lists.

We are going to use idemographics and ifactors along with the system-defined variable list

vlcontinuous as arguments to sqrtlasso. Together they contain the potential variables we want to

specify. Variable lists are actually global macros, and when we use them as arguments in commands, we

put a $ in front of them.

We also set the random-number seed using the rseed() option so we can reproduce our results.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 104.6235 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 17.2848
(output omitted)

Grid value 23: lambda = 13.51264 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 12.35321
... cross-validation complete ... minimum found
Square-root lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 104.6235 0 -0.0058 17.2848
17 lambda before 23.61373 53 0.2890 12.21892

* 18 selected lambda 21.51595 61 0.2901 12.19933
19 lambda after 19.60453 67 0.2899 12.20295
23 last lambda 13.51264 87 0.2812 12.35321

* lambda selected by cross-validation.
. estimates store sqrtcv

The square-root lasso with the default CV selection method selected a model with 61 variables in it.

https://www.stata.com/manuals/lassolassoexamples.pdf#lassolassoexamples
https://www.stata.com/manuals/rsetseed.pdf#rsetseed

sqrtlasso — Square-root lasso for prediction and model selection 10

Let’s run lasso with the same potential variables.

. lasso linear q104 $idemographics $ifactors $vlcontinuous if sample == 1,
> rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .9469819 no. of nonzero coef. = 0
(output omitted)

Grid value 25: lambda = .1015418 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.26768
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .9469819 0 -0.0046 17.26383
19 lambda before .1774471 47 0.2899 12.20399

* 20 selected lambda .1616832 51 0.2912 12.18122
21 lambda after .1473197 60 0.2908 12.18739
25 last lambda .1015418 78 0.2862 12.26768

* lambda selected by cross-validation.
. estimates store lassocv

Lasso selected a model with 51 variables in it.

After we ran sqrtlasso and lasso, we used estimates store to keep the results in memory. This

lets us compare the models. We can use lassocoef to view the coefficient estimates. We display the

standardized coefficients and sort them so that the biggest in absolute values are shown first.

. lassocoef sqrtcv lassocv, display(coef, standardized) sort(coef, standardized)

sqrtcv lassocv

q19
No -.8446332 -.8119414

q85
No -.7089993 -.6940387

3.q156 -.6843823 -.6727969

q101
No .5981556 .5785246

q48
No -.5867942 -.5502145

q88
No .5793049 .553872

q38
4 -.5275709 -.5089004

q5
No -.4795077 -.467305
q22 -.4610605 -.4410858
q31 .4556527 .4047143

https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef

sqrtlasso — Square-root lasso for prediction and model selection 11

q56
No -.4482692 -.4026312

q139 -.4189969 -.4118033

q73
No -.3565698 -.3368294

q96
No -.3149921 -.2950566

3.q16 -.263147 -.2278278

q43
No -.2605833 -.2355772

q50
No .2455526 .2307073

q149
No -.2407299 -.2070948

2.q84 -.2321074 -.2150944

q109
No .1965246 .1530308

q49
No .1937052 .1626059

q159
No .1870743 .1771646

q115
No .153256 .1272736

3.q134 .1525998 .1418469

q108
No -.1491124 -.1469051

q91
No -.1475877 -.1252736

q140
No -.142592 -.1192079

2.q34 .1397604 .1155922
q93 -.1379424 -.0964044

q14
No -.1377481 -.0964684

gender
Female -.1296337 -.1047897

q153
No .1238655 .0835772
q53 .1123144 .0813566

q65
3 .1035524 .084643

q38
3 .0922535 .086774

sqrtlasso — Square-root lasso for prediction and model selection 12

q160
No -.0901901 -.0763008

q3
No -.082771 -.0574645
age -.0707354 -.0590426

q102
No -.0578734 -.0427812

q44
No .0561402 .0301015

1.q110 -.0556488 -.0268615

q154
No .0492342 .0188979

q130
No -.0453674 -.0288351
q18 -.0428028 -.018666

q97
No .0427896 .021222

q142
No -.0427358 -.0188524

q75
No -.0341663 -.0011199

q111 -.0333302 -.0294021
3.q95 -.0214817

q65
4 -.0213682

q38
2 .0197855

0.q74 .0165583
0.q33 -.016441

q20 .0147089

q94
No .0136563 .013323
q52 .0132519

0.q138 -.0125278
0.q71 .012269

q13
No .0094304 .0027091

q105
Fair .0052163 .00026
0.q59 .0036381
_cons 0 0

Legend:
b - base level
e - empty cell
o - omitted

sqrtlasso — Square-root lasso for prediction and model selection 13

Numerically, the coefficients are similar. The six variables that square-root lasso selected—but lasso did

not—are among the variables with the smallest coefficients.

We split the sample in half so we could look at the out-of-sample prediction. We use lassogof to do

this using postselection coefficients.

. lassogof sqrtcv lassocv, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

sqrtcv
Training 8.419174 0.5184 503
Testing 15.09863 0.2402 487

lassocv
Training 8.595046 0.5083 503
Testing 14.66581 0.2600 491

Both square-root lasso and lasso did significantly worse predicting out of sample than they did in sample.

This is typical in many cases when there are many variables with small coefficients in the models.

Let’s compare the plugin estimators for both square-root lasso and lasso.

. sqrtlasso q104 $idemographics $ifactors $vlcontinuous, selection(plugin)
Computing plugin lambda ...
Iteration 1: lambda = 134.4262 no. of nonzero coef. = 5
Iteration 2: lambda = 134.4262 no. of nonzero coef. = 8
Iteration 3: lambda = 134.4262 no. of nonzero coef. = 8
Square-root lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda 134.4262 8 0.0835 5233.117

* lambda selected by plugin formula assuming heteroskedastic errors.

https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof

sqrtlasso — Square-root lasso for prediction and model selection 14

Square-root lasso with plugin selected only 8 variables. Let’s see what lasso does.

. lasso linear q104 $idemographics $ifactors $vlcontinuous,
> selection(plugin) rseed(1234)
Computing plugin lambda ...
Iteration 1: lambda = .1470747 no. of nonzero coef. = 8
Iteration 2: lambda = .1470747 no. of nonzero coef. = 11
Iteration 3: lambda = .1470747 no. of nonzero coef. = 13
Iteration 4: lambda = .1470747 no. of nonzero coef. = 15
Iteration 5: lambda = .1470747 no. of nonzero coef. = 15
Lasso linear model No. of obs = 914

No. of covariates = 277
Selection: Plugin heteroskedastic

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

* 1 selected lambda .1470747 15 0.1549 5206.721

* lambda selected by plugin formula assuming heteroskedastic errors.

Lasso with plugin selected a few more—15 variables in total. We can see from the in-sample 𝑅2 that

the predictive capabilities of models using plugin are much lower than those using CV. We expect this

because plugin estimators were designed as a tool for inferential models, not for prediction.

Stored results
sqrtlasso stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k allvars) number of potential variables

e(k nonzero sel) number of nonzero coefficients for selected model

e(k nonzero cv) number of nonzero coefficients at CV mean function minimum

e(k nonzero serule) number of nonzero coefficients for one-standard-error rule

e(k nonzero min) minimum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero max) maximum number of nonzero coefficients among estimated 𝜆’s
e(k nonzero bic) number of nonzero coefficients at BIC function minimum

e(lambda sel) value of selected 𝜆∗

e(lambda gmin) value of 𝜆 at grid minimum

e(lambda gmax) value of 𝜆 at grid maximum

e(lambda last) value of last 𝜆 computed

e(lambda cv) value of 𝜆 at CV mean function minimum

e(lambda serule) value of 𝜆 for one-standard-error rule

e(lambda bic) value of 𝜆 at BIC function minimum

e(ID sel) ID of selected 𝜆∗

e(ID cv) ID of 𝜆 at CV mean function minimum

e(ID serule) ID of 𝜆 for one-standard-error rule

e(ID bic) ID of 𝜆 at BIC function minimum

e(cvm min) minimum CV mean function value

e(cvm serule) CV mean function value at one-standard-error rule

e(devratio min) minimum deviance ratio

e(devratio max) maximum deviance ratio

e(L1 min) minimum value of ℓ1-norm of penalized unstandardized coefficients

e(L1 max) maximum value of ℓ1-norm of penalized unstandardized coefficients

sqrtlasso — Square-root lasso for prediction and model selection 15

e(L2 min) minimum value of ℓ2-norm of penalized unstandardized coefficients

e(L2 max) maximum value of ℓ2-norm of penalized unstandardized coefficients

e(ll sel) log-likelihood value of selected model

e(n lambda) number of 𝜆’s
e(n fold) number of CV folds

e(stop) stopping rule tolerance

Macros

e(cmd) sqrtlasso
e(cmdline) command as typed

e(depvar) name of dependent variable

e(allvars) names of all potential variables

e(allvars sel) names of all selected variables

e(alwaysvars) names of always-included variables

e(othervars sel) names of other selected variables

e(post sel vars) all variables needed for post-square-root lasso

e(clustvar) name of cluster variable

e(lasso selection) selection method

e(sel criterion) criterion used to select 𝜆∗

e(plugin type) type of plugin 𝜆
e(model) linear, logit, poisson, or probit
e(title) title in estimation output

e(rngstate) random-number state used

e(properties) b
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) penalized unstandardized coefficient vector

e(b standardized) penalized standardized coefficient vector

e(b postselection) postselection coefficient vector

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
This section provides the methods and formulas for the methods implemented in sqrtlasso. The

square-root lasso was derived by Belloni and Chernozhukov (2011).

Methods and formulas are presented under the following headings:

Notation
Plugin estimators

Notation
sqrtlasso estimates the parameters by finding the minimum of a penalized objective function. The

penalized objective function is

𝑄 = √ 1
𝑁

𝑁
∑
𝑖=1

𝑤𝑖(𝑦𝑖 − 𝛽0 − x𝑖β
′)2 + 𝜆

𝑁

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗| (1)

sqrtlasso — Square-root lasso for prediction and model selection 16

where 𝑁 is the number of observations, 𝑤𝑖 are observation-level weights, 𝛽0 is the intercept, x𝑖 is the

1× 𝑝 vector of covariates, β is the 1× 𝑝 vector of coefficients, 𝜆 is the lasso penalty parameter that must

be ≥ 0, and 𝜅𝑗 are coefficient-level weights.

When 𝜆 = 0, there is no penalty term, and 𝑄 is the objective function for a version of the reweighted

least-squares estimator.

By default, the coefficient-level weights 𝜅𝑗 are 1. The heteroskedastic plugin estimator uses

coefficient-level weights that differ from 1. In addition, they may be set to other values using option

penaltywt().

sqrtlasso uses the coordinate descent algorithm to minimize𝑄 for a given value of 𝜆. See Friedman

et al. (2007) for an introduction to the coordinate descent algorithm.

The numerical problem is made much easier and more stable by standardizing all the covariates to

have mean 0 and standard deviation 1. The standardization also removes 𝛽0 from the problem.

The grid of values for 𝜆 is specified as described in Methods and formulas in [LASSO] lasso.

As with lasso and elastic net, we need to select a value of 𝜆∗. The available selection methods are

selection(cv) (CV, the default), selection(plugin), selection(bic), and selection(none).
The square-root lasso was designed to facilitate the derivation of the plugin estimator for 𝜆∗ discussed

below. CV and BIC for the square-root lasso use the same algorithm as the regular lasso; see Methods and

formulas in [LASSO] lasso for details.

If option cluster() is specified, the penalized objective function with clusters is

𝑄 =
√√√
⎷

1
𝑁clust

𝑁clust

∑
𝑖=1

{ 1
𝑇𝑖

𝑇𝑖

∑
𝑡=1

𝑤𝑖𝑡(𝑦𝑖𝑡 − 𝛽0 − x𝑖𝑡β
′)2} + 𝜆

𝑁clust

𝑝

∑
𝑗=1

𝜅𝑗|𝛽𝑗|

where 𝑁clust is the total number of clusters and 𝑇𝑖 is the number of observations in cluster 𝑖. For the 𝑡th
observation in cluster 𝑖, 𝑤𝑖𝑡 is its observational level weight, 𝑦𝑖𝑡 is the dependent variable, and x𝑖𝑡 are

the covariates.

Plugin estimators
The same formula for the plugin estimator is used for the homoskedastic and the heteroskedastic cases

with the square-root lasso. This result is essentially why the square-root lasso was derived; see Belloni,

Chernozhukov, and Wang (2011). In the homoskedastic case, the coefficient-level weights are all 1

because the variables have been normalized. In the heteroskedastic case, the coefficient-level weights

are estimated using algorithm 1, which comes from Belloni, Chernozhukov, and Wang (2011, 769).

The formula for 𝜆∗ is

𝜆sqrt = 2𝑐
√

𝑁 Φ−1 (1 − 𝛾
2𝑝

)

where 𝑐 = 1.1 per the recommendation of Belloni and Chernozhukov (2011), 𝑁 is the sample size, 𝛾
is the probability of not removing variable 𝑥𝑗 when it has a coefficient of 0, and 𝑝 is the number of

candidate covariates in the model. Also, per the recommendation of Belloni and Chernozhukov (2011),

we set 𝛾 = 0.1/ ln[max{𝑝, 𝑁}].

https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolassoMethodsandformulas
https://www.stata.com/manuals/lassolasso.pdf#lassolasso

sqrtlasso — Square-root lasso for prediction and model selection 17

Algorithm 1: Estimate coefficient-level weights for the heteroskedastic case

1. Remove the mean and standardize each of the covariates 𝑥𝑗 to have variance one. Remove the

mean from 𝑦.
2. Initialize the maximum number of iterations 𝐾 = 15, initialize the iteration counter 𝑘 = 0, and

initialize each of the coefficient-level weights,

𝜅𝑗,0 = max1≤𝑖≤𝑁|𝑥𝑖𝑗| for 𝑗 ∈ {1, . . . , 𝑝}

3. Update 𝑘 = 𝑘 + 1, and estimate the square-root lasso coefficients β̂ using the coefficient-level

weights 𝜅𝑗,𝑘−1 and the above formula for 𝜆sqrt.

4. Update the coefficient-level weights,

𝜅𝑗,𝑘 = max

⎧{
⎨{⎩

1,
√ 1

𝑁 ∑𝑁
𝑖=1(𝑥𝑖𝑗𝑟𝑖)2

√ 1
𝑁 ∑𝑁

𝑖=1 𝑟2
𝑖

⎫}
⎬}⎭

where 𝑟𝑖 = 𝑦𝑖 − x𝑖β̂
′
.

References
Belloni, A., and V. Chernozhukov. 2011. “High dimensional sparse econometric models: An Introduction”. In Inverse

Problems of High-Dimensional Estimation, edited by P. Alguier, E. Gautier, and G. Stoltz, 121–156. Berlin: Springer.

https://doi.org/10.1007/978-3-642-19989-9_3.

Belloni, A., V. Chernozhukov, and L. Wang. 2011. Square-root lasso: Pivotal recovery of sparse signals via conic pro-

gramming. Biometrika 98: 791–806. https://doi.org/10.1093/biomet/asr043.

Friedman, J. H., T. J. Hastie, H. Höfling, and R. J. Tibshirani. 2007. Pathwise coordinate optimization.Annals of Applied

Statistics 1: 302–332. https://doi.org/10.1214/07-AOAS131.

Hastie, T. J., R. J. Tibshirani, and M. Wainwright. 2015. Statistical Learning with Sparsity: The Lasso and Generalizations.

Boca Raton, FL: CRC Press. https://doi.org/10.1201/b18401.

Also see
[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] elasticnet — Elastic net for prediction and model selection

[LASSO] lasso — Lasso for prediction and model selection

[R] regress — Linear regression

[U] 20 Estimation and postestimation commands

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://doi.org/10.1007/978-3-642-19989-9_3
https://doi.org/10.1093/biomet/asr043
https://doi.org/10.1214/07-AOAS131
https://doi.org/10.1201/b18401
https://www.stata.com/manuals/lassolassopostestimation.pdf#lassolassopostestimation
https://www.stata.com/manuals/lassoelasticnet.pdf#lassoelasticnet
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

