lassoinfo — Display information about lasso estimation results

Description Quick start Menu Syntax Option
Remarks and examples Stored results Also see

Description

lassoinfo displays basic information about the lasso or lassos fit by all commands that fit lassos.

Quick start

After any command that fits lassos

lassoinfo

dsregress was run and the results stored under the name mygreatmodel using estimates store; show information about all the lassos in mygreatmodel

lassoinfo mygreatmodel

Same as above, but three models were stored

lassoinfo mygreatmodel mygoodmodel myfairmodel

After an xpo command, show information about every single lasso fit

lassoinfo, each

Menu

Statistics > Postestimation

Syntax

For all lasso estimation results

lassoinfo [namelist]

For xpo estimation results

lassoinfo [namelist] [, each]

namelist is a name of a stored estimation result, a list of names, _all, or *. _all and * mean the same thing. See [R] estimates store.

collect is allowed; see [U] 11.1.10 Prefix commands.

Option

each applies to xpo models only. It specifies that information be shown for each lasso for each cross-fit fold to be displayed. If resample was specified, then information is shown for each lasso for each cross-fit fold in each resample. By default, summary statistics are shown for the lassos.

Remarks and examples

lassoinfo is intended for use after ds, po, xpo commands and after telasso to see basic information about the lassos they fit. It is a good idea to always run lassoinfo after these commands to see how many variables were selected in each lasso.

Running lassoinfo is a first step toward doing a sensitivity analysis. The lassos listed by lassoinfo can be examined using coefpath, cvplot, lassocoef, lassoknots, and lassoselect.

Example 1: lasso

lassoinfo works after lasso, sqrtlasso, and elasticnet, but it does not display much useful information for these commands.

Here is an example using lasso from [LASSO] lasso examples. We load the data and make the vl variable lists active.

```
. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)
. vl rebuild
Rebuilding v1 macros ...
 (output omitted)
```

We fit the lasso.

```
. lasso linear q104 $idemographics $ifactors $vlcontinuous, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1:
                 lambda = .9090511
                                     no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 18.33331
 (output omitted)
Grid value 28:
                 lambda = .0737359
                                     no. of nonzero coef. = 80
Folds: 1...5....10 CVF = 11.92887
... cross-validation complete ... minimum found
Lasso linear model
                                            No. of obs
                                                                       914
                                           No. of covariates =
                                                                       277
Selection: Cross-validation
                                           No. of CV folds =
                                                                        10
```

ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	.9090511	0	-0.0010	18.33331
23	lambda before	.1174085	58	0.3543	11.82553
* 24	selected lambda	.1069782	64	0.3547	11.81814
25	lambda after	.0974746	66	0.3545	11.8222
28	last lambda	.0737359	80	0.3487	11.92887

^{*} lambda selected by cross-validation.

lassoinfo tells us nothing new.

. lassoinfo

Estimate: active Command: lasso

Depend varia		Model		Selection criterion	lambda	No. of selected variables
	q104	linear	cv	CV min.	.1069782	64

Replaying the command gives more information.

. lasso

Lasso linear model No. of obs 914 No. of covariates = 277 Selection: Cross-validation No. of CV folds 10

ID	Description	lambda	No. of nonzero coef.	Out-of- sample R-squared	CV mean prediction error
1	first lambda	.9090511	0	-0.0010	18.33331
23	lambda before	.1174085	58	0.3543	11.82553
* 24	selected lambda	.1069782	64	0.3547	11.81814
25	lambda after	.0974746	66	0.3545	11.8222
28	last lambda	.0737359	80	0.3487	11.92887

^{*} lambda selected by cross-validation.

Example 2: dsregress

lassoinfo gives important information after the ds, po, and xpo commands.

We load the data used in [LASSO] lasso examples. See that entry for details about the data.

```
. use https://www.stata-press.com/data/r19/fakesurvey_vl, clear
(Fictitious survey data with vl)
. vl rebuild
Rebuilding vl macros ...
 (output omitted)
```

We are going to fit a dsregress model with q104 as our dependent variable and variables of interest q41 and q22. These variables of interest are currently in the variable lists factors and vlcontinuous, which we will use to specify the control variables. So we need to move them out of these variable lists.

```
. vl modify factors = factors - (q41)
note: 1 variable removed from $factors.
. vl move (q22) vlother
note: 1 variable specified and 1 variable moved.
 (output omitted)
. vl rebuild
Rebuilding vl macros ...
 (output omitted)
```

4

After we moved the variables out of the variable lists, we typed v1 rebuild to update the variable list ifactors created from factors. See [D] v1 for details.

We fit our dsregress model using cross-validation to select λ^* 's in the lassos.

- . dsregress q104 i.q41 q22,
- > controls((\$idemographics) \$ifactors \$vlcontinuous)
- > selection(cv) rseed(1234)

Estimating lasso for q104 using cv Estimating lasso for 1bn.q41 using cv Estimating lasso for q22 using cv

Double-selection linear model

Number of obs	=	914
Number of controls	=	274
Number of selected controls	=	123
Wald chi2(2)	=	10.96
Prob > chi2	=	0.0042

q104	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
q41 Yes q22	.6003918 0681067	.2848483	2.11 -2.22	0.035 0.026	.0420994 1281246	1.158684 0080888

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

lassoinfo shows us how many variables were selected in each lasso.

. lassoinfo

Estimate: active Command: dsregress

 Variable	Model	Selection method	Selection criterion	lambda	No. of selected variables
q104 1bn.q41 q22	linear linear linear	CV CV	CV min. CV min. CV min.	.1116376 .0135958 .1624043	63 68 49

lassoinfo also gives useful information after fitting the model using the default selection(plugin).

. dsregress q104 i.q41 q22, controls((\$idemographics) \$ifactors \$vlcontinuous)

Estimating lasso for q104 using plugin Estimating lasso for 1bn.q41 using plugin

Estimating lasso for q22 using plugin

Double-selection linear model

 Number of obs
 =
 914

 Number of controls
 =
 274

 Number of selected controls
 =
 33

 Wald chi2(2)
 =
 18.72

 Prob > chi2
 =
 0.0001

q104	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
q41 Yes q22	.8410538 0878443	.2691082 .0310435	3.13 -2.83	0.002 0.005	.3136114 1486884	1.368496 0270001

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

. lassoinfo

Estimate: active Command: dsregress

Variable	Model	Selection method	lambda	No. of selected variables
q104	linear	plugin	.1467287	18
1bn.q41	linear	plugin	.1467287	16
q22	linear	plugin	.1467287	15

See [LASSO] lassoselect, where we continue this example and do a sensitivity analysis to examine the differences between the lassos fit using cross-validation and the lassos fit using the plugin estimator.

4

> Example 3: poivregress

We want to show you some differences that arise when you fit models containing endogenous variables using poivregress and xpoivregress.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data,

. use https://www.stata-press.com/data/r19/mroz2, clear

set v1 variable lists,

```
= (kidslt6 kidsge6 age husage city exper)
note: $vars initialized with 6 variables.
. vl substitute vars2 = c.vars c.vars#c.vars
                      = (huseduc motheduc fatheduc)
. vl create iv
note: $iv initialized with 3 variables.
. vl substitute iv2 = c.iv c.iv#c.iv
```

and fit our model using poivregress.

```
. poivregress lwage (educ = $iv2), controls($vars2) selection(cv) rseed(12345)
Estimating lasso for lwage using cv
Estimating lasso for educ using cv
Estimating lasso for pred(educ) using cv
                                                                           428
Partialing-out IV linear model
                                   Number of obs
                                   Number of controls
                                                                            27
                                   Number of instruments
                                                                             9
                                   Number of selected controls
                                                                            16
                                   Number of selected instruments =
                                                                            4
                                   Wald chi2(1)
                                                                        11.10
                                   Prob > chi2
                                                                        0.0009
```

lwage	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
educ	.0765154	.0229707	3.33	0.001	.0314936	.1215371

Endogenous: educ

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

. estimates store poivregresscv

4

We stored our estimation results using estimates store, and here we use lassoinfo with the name used to store them.

. lassoinfo poivregresscv Estimate: poivregresscv Command: poivregress

Variable	Model		Selection criterion	lambda	No. of selected variables
lwage educ pred(educ)	linear linear linear	cv cv	CV min. CV min. CV min.	.0353704 .0530428 .013186	3 10 12

Note that we have two lassos for educ labeled by lassoinfo as educ and pred(educ). poivregress and xpoivregress perform two lassos for each endogenous variable, one for the endogenous variable and one for its prediction. lassoinfo shows us how to refer to each of these lassos in other postestimation commands using the for() option. In this example, we would type for (educ) and for (pred(educ)), respectively.

Example 4: xporegress

The xpo commands fit many lassos. For each lasso fit by a po command, the corresponding xpo command fits xfolds(#) × resample(#) lassos. lassoinfo can be used to get information about these lassos.

We will not describe the data or the model here. See [LASSO] Inference examples.

We load the data.

. use https://www.stata-press.com/data/r19/breathe, clear (Nitrogen dioxide and attention)

set vl variable lists.

. vl set (output omitted)

. vl move (siblings_old siblings_young) vlcontinuous note: 2 variables specified and 2 variables moved.

(output omitted)

. vl create mycontinuous = vlcontinuous - (react no2 class) note: \$mycontinuous initialized with 10 variables.

. vl substitute mycontrols = i.vlcategorical mycontinuous

3

2

and fit our model using xporegress with the options xfolds(3) and resample(2).

```
. xporegress react no2_class, controls($mycontrols) xfolds(3) resample(2)
> selection(cv) rseed(12345)
Resample 1 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 1 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 1 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 2 of 3 ...
Estimating lassos: 1.
Resample 2 of 2 ...
Cross-fit fold 3 of 3 ...
Estimating lassos: 1.
Cross-fit partialing-out
                                      Number of obs
                                                                           1,036
linear model
                                      Number of controls
                                                                              32
                                      Number of selected controls =
                                                                              27
                                      Number of folds in cross-fit =
                                      Number of resamples
                                      Wald chi2(1)
                                                                           20.99
                                                                          0.0000
                                      Prob > chi2
```

react	Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
no2_class	2.332193	.5090902	4.58	0.000	1.334394	3.329991

Note: Chi-squared test is a Wald test of the coefficients of the variables of interest jointly equal to zero. Lassos select controls for model estimation. Type lassoinfo to see number of selected variables in each lasso.

For each cross-fit fold and each resample, xporegress fits lassos. So it fit six lassos for the dependent variable, react, and six for the variable of interest, no2_class. lassoinfo summarizes the numbers of variables selected across these six lassos for react and no2_class.

. lassoinfo

Estimate: active Command: xporegress

variables	selected	No. of	Selection		
n max	mediar	min	method	Model	Variable
5 15	15	11	cv	linear	no2_class
5 19	15	9	cv	linear	react

. lassoinfo, each
Estimate: active

Command: xporegress

	,						
Dependent variable	Model	Selection method	Resample number	xfold no.	Selection criterion	lambda	No. of sel. var.
no2_class	linear	cv	1	1	CV min.	.2663004	11
no2_class	linear	cv	1	2	CV min.	.2860957	15
no2_class	linear	cv	1	3	CV min.	.2887414	14
no2_class	linear	cv	2	1	CV min.	.2337636	15
no2_class	linear	cv	2	2	CV min.	.2824076	15
no2_class	linear	cv	2	3	CV min.	.2515777	15
react	linear	cv	1	1	CV min.	6.07542	9
react	linear	cv	1	2	CV min.	1.704323	19
react	linear	cv	1	3	CV min.	3.449884	15
react	linear	cv	2	1	CV min.	6.034922	9
react	linear	cv	2	2	CV min.	4.31785	16
react	linear	CV	2	3	CV min.	4.096779	15

See [LASSO] lassocoef for an example where we list the variables selected by each lasso.

Stored results

lassoinfo stores the following in r():

Macros

r(names) names of estimation results displayed

Matrices

r(table) matrix containing the numerical values displayed

Also see

[LASSO] lassoselect — Select lambda after lasso

[LASSO] lasso postestimation — Postestimation tools for lasso for prediction

[LASSO] lasso inference postestimation — Postestimation tools for lasso inferential models

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

For suggested citations, see the FAQ on citing Stata documentation.

4