
lasso examples — Examples of lasso for prediction

Description Remarks and examples References Also see

Description
This entry contains more examples of lasso for prediction. It assumes you have already read

[LASSO] Lasso intro and [LASSO] lasso.

Remarks and examples
Remarks are presented under the following headings:

Overview
Using vl to manage variables
Using splitsample
Lasso linear models
Adaptive lasso
Cross-validation folds
BIC
More potential variables than observations
Factor variables in lasso
Lasso logit and probit models
Lasso Poisson models
Lasso Cox models

Overview
In the examples of this entry, we use a dataset of a realistic size for lasso. It has 1,058 observations

and 172 variables. Still, it is a little on the small side for lasso. Certainly, you can use lasso on datasets of

this size, but lasso can also be used with datasets that have thousands or tens of thousands of variables.

The number of variables can even be greater than the number of observations. What is essential for

lasso is that the set of potential variables contains a subset of variables that are in the true model (or

something close to it) or are correlated with the variables in the true model.

As to howmany variables there can be in the true model, we can say that the number cannot be greater

than something proportional to
√

𝑁/ ln 𝑞, where 𝑁 is the number of observations, 𝑝 is the number of

potential variables, and 𝑞 = max{𝑁, 𝑝}. We cannot, however, say what the constant of proportionality

is. That this upper bound decreases with 𝑞 can be viewed as the cost of performing covariate selection.

Using vl to manage variables
Wewill show how to use commands in the vl system to manage large numbers of variables. vl stands

for “variable lists”. The idea behind it is that we might want to run a lasso with hundreds or thousands or

tens of thousands of variables specified as potential variables. We do not want to have to type all these

variable names.

Many times, we will have a mix of different types of variables. Some we want to treat as continuous.

Some we want to treat as categorical and use factor-variable operators with them to create indicator

variables for their categories. See [U] 11.4.3 Factor variables.

1

https://www.stata.com/manuals/lassolassointro.pdf#lassoLassointro
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/dvl.pdf#dvl
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
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The first goal of the vl system is to help us separate variables we want to treat as categorical from

those we want to treat as continuous. The second goal of the system is to help us create named variable

lists we can use as arguments to lasso or any other Stata command simply by referring to their names.

The purpose here is to illustrate the power of vl, not to explain in detail how it works or show all of

its features. For that, see [D] vl.

We load the dataset we will use in these examples.

. use https://www.stata-press.com/data/r19/fakesurvey
(Fictitious survey data)

It is simulated data designed to mimic survey data. It has 1,058 observations and 172 variables.

. describe
Contains data from https://www.stata-press.com/data/r19/fakesurvey.dta
Observations: 1,058 Fictitious survey data

Variables: 172 14 Jun 2024 15:31

Variable Storage Display Value
name type format label Variable label

id str8 %9s Respondent ID
gender byte %8.0g gender Gender
age byte %8.0g Age (y)
q1 byte %10.0g Question 1
q2 byte %8.0g Question 2
q3 byte %8.0g yesno Question 3
(output omitted )

q160 byte %8.0g yesno Question 160
q161 byte %8.0g yesno Question 161
check8 byte %8.0g Check 8

Sorted by: id

The variables are a mix. Some we know are integer-valued scales that we want to treat as continuous

variables in our models. There are a lot of 0/1 variables, and there are some with only a few categories

that we will want to turn into indicator variables. There are some with more categories that we do not

yet know whether to treat as categorical or continuous.

The first vl subcommand we run is vl set. Nonnegative integer-valued variables are candidates for
use as factor variables. Because factor variables cannot be negative, any variable with negative values

is classified as continuous. Any variable with noninteger values is also classified as continuous.

vl set has two options, categorical(#) and uncertain(#), that allow us to separate out the

nonnegative integer-valued variables into three named variable lists: vlcategorical, vluncertain,
and vlcontinuous.

https://www.stata.com/manuals/dvl.pdf#dvl
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When the number of levels (distinct values), 𝐿, is

2 ≤ 𝐿 ≤ categorical(#)

the variable goes in vlcategorical. When

categorical(#) < 𝐿 ≤ uncertain(#)

the variable goes in vluncertain. When

𝐿 > uncertain(#)

the variable goes in vlcontinuous.

The defaults are categorical(10) and uncertain(100). For our data, we do not like the defaults,
so we change them. We specify categorical(4) and uncertain(19). We also specify the option

dummy to create a variable list, vldummy, consisting solely of 0/1 variables. Let’s run vl set with these

options.

. vl set, categorical(4) uncertain(19) dummy

Macro’s contents

Macro # Vars Description

System
$vldummy 99 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 20 continuous variables
$vluncertain 27 perhaps continuous, perhaps categorical variables
$vlother 9 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.
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The vluncertain variable list contains all the variables we are not sure whether we want to treat as

categorical or continuous. We use vl list to list the variables in vluncertain.

. vl list vluncertain

Variable Macro Values Levels

q12 $vluncertain integers >=0 5
q18 $vluncertain integers >=0 7
q23 $vluncertain integers >=0 10
q27 $vluncertain integers >=0 8
q28 $vluncertain integers >=0 15
q35 $vluncertain integers >=0 7
q39 $vluncertain integers >=0 5
q54 $vluncertain integers >=0 10
q63 $vluncertain integers >=0 7
q66 $vluncertain integers >=0 5
q80 $vluncertain integers >=0 5
q81 $vluncertain integers >=0 5
q92 $vluncertain integers >=0 5
q93 $vluncertain integers >=0 7
q99 $vluncertain integers >=0 5

q103 $vluncertain integers >=0 7
q107 $vluncertain integers >=0 18
q111 $vluncertain integers >=0 7
q112 $vluncertain integers >=0 7
q119 $vluncertain integers >=0 8
q120 $vluncertain integers >=0 7
q124 $vluncertain integers >=0 14
q127 $vluncertain integers >=0 5
q132 $vluncertain integers >=0 7
q135 $vluncertain integers >=0 10
q141 $vluncertain integers >=0 12
q157 $vluncertain integers >=0 7

We are going to have to go through these variables one by one and reclassify them. We know we have

several seven-level Likert scales in these data. We tabulate one of them.

. tabulate q18
Question 18 Freq. Percent Cum.

Very strongly disagree 139 13.15 13.15
Strongly disagree 150 14.19 27.34

Disagree 146 13.81 41.15
Neither agree nor disagree 146 13.81 54.97

Agree 174 16.46 71.43
Strongly agree 146 13.81 85.24

Very strongly agree 156 14.76 100.00

Total 1,057 100.00
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We look at all the variables with seven levels, and they are all Likert scales. We want to treat them as

continuous in our models, so we move them out of vluncertain and into vlcontinuous.

. vl move (q18 q35 q63 q93 q103 q111 q112 q120 q132 q157) vlcontinuous
note: 10 variables specified and 10 variables moved.

Macro # Added/Removed

$vldummy 0
$vlcategorical 0
$vlcontinuous 10
$vluncertain -10
$vlother 0

When variables are moved into a new vl system-defined variable list, they are automatically moved out

of their current system-defined variable list.

In our examples, we have three variables we want to predict: q104, a continuous variable; q106, a 0/1
variable; and q107, a count variable. Because we are going to use the variables in vlcategorical and

vlcontinuous as potential variables to select in our lassos, we do not want these dependent variables

in these variable lists. We move them into vlother, which is intended as a place to put variables we do
not want in our models.

. vl move (q104 q106 q107) vlother
note: 3 variables specified and 3 variables moved.

Macro # Added/Removed

$vldummy -1
$vlcategorical 0
$vlcontinuous -1
$vluncertain -1
$vlother 3

Notice the parentheses around the variable names when we used vl move. The rule for vl is to use

parentheses around variable names and to not use parentheses for variable-list names.

The system-defined variable lists are good for a general division of variables. But we need further

subdivision for our models. We have four demographic variables, which are all categorical, but we want

them included in all lasso models. So we create a user-defined variable list containing these variables.

. vl create demographics = (gender q3 q4 q5)
note: $demographics initialized with 4 variables.

Wewant to convert the variables in vldummy and vlcategorical into indicator variables. We create

a new variable list, factors, containing the union of these lists. Because we want to handle the variables
in demographics separately, we remove them from factors.

. vl create factors = vldummy + vlcategorical
note: $factors initialized with 114 variables.
. vl modify factors = factors - demographics
note: 4 variables removed from $factors.

The vl substitute command allows us to apply factor-variable operators to a variable list. We turn

the variables in demographics and factors into factor variables.
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. vl substitute idemographics = i.demographics

. vl substitute ifactors = i.factors

We are done using vl and we save our dataset. One nice feature of vl is that the variable lists are

saved with the data.

. label data ”Fictitious survey data with vl”

. save fakesurvey_vl
file fakesurvey_vl.dta saved

We are now ready to run some lassos.

Using splitsample
Well, almost ready. We want to evaluate our lasso predictions on a sample that we did not use to fit

the lasso. So we decide to randomly split our data into two samples of equal sizes. We will fit models

on one, and we will use the other to test their predictions.

Let’s load the version of our dataset that contains our variable lists. We first increase maxvar because

we are going to create thousands of interactions in a later example.

. clear all

. set maxvar 10000

. use https://www.stata-press.com/data/r19/fakesurvey_vl
(Fictitious survey data with vl)

Variable lists are not automatically restored. We have to run vl rebuild to make them active.

. vl rebuild
Rebuilding vl macros ...

Macro’s contents

Macro # Vars Description

System
$vldummy 98 0/1 variables
$vlcategorical 16 categorical variables
$vlcontinuous 29 continuous variables
$vluncertain 16 perhaps continuous, perhaps categorical variables
$vlother 12 all missing or constant variables

User
$demographics 4 variables
$factors 110 variables
$idemographics factor-variable list
$ifactors factor-variable list

We now use splitsample to generate a variable indicating the two subsamples.

. set seed 1234

. splitsample, generate(sample) nsplit(2)

. label define svalues 1 ”Training” 2 ”Testing”

. label values sample svalues

https://www.stata.com/manuals/dsplitsample.pdf#dsplitsample
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Lasso linear models
When fitting our lasso model, we can now specify variables succinctly using our vl variable lists.

Variable lists are really global macros—we bet you already guessed this. Listing them under the header

“Macro” in vl output was a real tip-off, right? Because they are global macros, when we use them as

arguments in commands, we put a $ in front of them.

We put parentheses around idemographics. This notation means that we want to force these vari-
ables into the model regardless of whether lasso wants to select them. See Syntax in [LASSO] lasso.

We also set the random-number seed using the rseed() option so that we can reproduce our results.

We fit lasso on the first subsample.

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93341
(output omitted )

Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10 CVF = 12.17933
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0147 16.93341
18 lambda before .1846342 42 0.2953 12.10991

* 19 selected lambda .1682318 49 0.2968 12.08516
20 lambda after .1532866 55 0.2964 12.09189
23 last lambda .1159557 74 0.2913 12.17933

* lambda selected by cross-validation.
. estimates store linearcv

After the command finished, we used estimates store to store the results in memory so that we can

later compare these results with those from other lassos. Note, however, that estimates store only

saves them in memory. To save the results to disk, use

. estimates save filename

See [LASSO] estimates store.

The minimum of the cross-validation (CV) function was found to be at 𝜆 = 0.1682318. It selects 𝜆∗

as this 𝜆, which corresponds to 49 variables in the model, out of 277 potential variables.

https://www.stata.com/manuals/lassolasso.pdf#lassolassoSyntax
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/rsetseed.pdf#rsetseed
https://www.stata.com/manuals/lassoestimatesstore.pdf#lassoestimatesstore
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After fitting a lasso using CV to select 𝜆, it is a good idea to plot the CV function and look at the shape

of the curve around the minimum.

. cvplot
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λCV = .17 is the cross-validation minimum λ; # coefficients = 49.

Cross-validation plot

By default, the lasso command stops when it has identified a minimum. Computation time in-

creases as 𝜆’s get smaller, so computing the CV function for smaller 𝜆’s is computationally expensive.

We could specify the option selection(cv, alllambdas) to compute models for more small 𝜆’s. See
[LASSO] lasso and [LASSO] lasso fitting for details and a description of less computationally intensive

options to get more assurance that lasso has identified a minimum.

We can also get a plot of the size of the coefficients as they become nonzero and change as 𝜆 gets

smaller. Typically, they get larger as 𝜆 gets smaller. But they can sometimes return to 0 after being

nonzero.

. coefpath
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Coefficient paths

We see four lines that do not start at 0. These are lines corresponding to the four variables in

idemographics that we forced into the model.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/lassolassofitting.pdf#lassolassofitting
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Adaptive lasso
We are now going to run an adaptive lasso, which we do by specifying the option

selection(adaptive).
. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, rseed(4321) selection(adaptive)
Lasso step 1 of 2:
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 17.012
(output omitted )

Grid value 24: lambda = .1056545 no. of nonzero coef. = 78
Folds: 1...5....10 CVF = 12.40012
... cross-validation complete ... minimum found
Lasso step 2 of 2:
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = 48.55244 no. of nonzero coef. = 4
(output omitted )

Grid value 100: lambda = .0048552 no. of nonzero coef. = 59
10-fold cross-validation with 100 lambdas ...
Fold 1 of 10: 10....20....30....40....50....60....70....80....90....100
(output omitted )

Fold 10 of 10: 10....20....30....40....50....60....70....80....90....100
... cross-validation complete
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Adaptive No. of lasso steps = 2
Final adaptive step results

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

25 first lambda 48.55244 4 0.0101 17.01083
77 lambda before .3847698 46 0.3985 10.33691

* 78 selected lambda .3505879 46 0.3987 10.33306
79 lambda after .3194427 47 0.3985 10.33653

124 last lambda .0048552 59 0.3677 10.86697

* lambda selected by cross-validation in final adaptive step.
. estimates store linearadaptive

Adaptive lasso performs multiple lassos. In the first lasso, a 𝜆∗ is selected, and penalty weights are

constructed from the coefficient estimates. Then these weights are used in a second lasso, where another

𝜆∗ is selected. We did not specify how many lassos should be performed, so we got the default of two.

We could specify more, but typically the selected 𝜆∗ does not change after the second lasso, or it changes

little. See the selection(adaptive) option in [LASSO] lasso.

https://www.stata.com/manuals/lassolasso.pdf#lassolassoOptionsselection_adapt
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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We can see details of the two lassos by using lassoknots and specifying the option steps to see all

steps of the adaptive lasso.

. lassoknots, steps

No. of CV mean
nonzero pred. Variables (A)dded, (R)emoved,

Step ID lambda coef. error or left (U)nchanged

1
1 .8978025 4 17.012 A 1.q3 1.q4

1.q5 1.gender
2 .8180442 7 16.91096 A 0.q19 0.q85

3.q156
3 .7453714 8 16.66328 A 0.q101
4 .6791547 9 16.33224 A 0.q88

(output omitted )

23 .1159557 74 12.35715 A 3.q6 0.q40
0.q82 0.q98
0.q128 2.q134
0.q148 q157

24 .1056545 78 12.40012 A 2.q6 0.q9
1.q34 4.q155

2
25 48.55244 4 17.01083 A 1.q3 1.q4

1.q5 1.gender
26 44.23918 6 16.94087 A 0.q19 0.q85

(output omitted )

76 .4222844 45 10.33954 A 0.q44
77 .3847698 46 10.33691 A q111

* 78 .3505879 46 10.33306 U
79 .3194427 47 10.33653 A 0.q97
80 .2910643 48 10.3438 A 0.q138

(output omitted )

112 .0148272 59 10.7663 A q70
124 .0048552 59 10.86697 U

* lambda selected by cross-validation in final adaptive step.

Notice how the scale of 𝜆 changes in the second lasso. That is because of the penalty weights generated

by the first lasso.

The ordinary lasso selected 49 variables, and the adaptive lasso selected 46. It is natural to ask how

much these two groups of variables overlap. When the goal is prediction, however, we are not supposed to

care about this. Ordinary lasso might select one variable, and adaptive lasso might instead select another

that is highly correlated to it. So it is wrong to place importance on any particular variable selected or

not selected. It is the group of variables selected as a whole that matters.

Still, we cannot resist looking, and the lassocoef command was designed especially for this pur-

pose. We specify lassocoef with the option sort(coef, standardized). This sorts the listing by

the absolute values of the standardized coefficients with the largest displayed first. lassocoef can list

different types of coefficients and display them in different orderings. See [LASSO] lassocoef.

https://www.stata.com/manuals/lassolassoknots.pdf#lassolassoknots
https://www.stata.com/manuals/lassolassocoef.pdf#lassolassocoef
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. lassocoef linearcv linearadaptive, sort(coef, standardized)

linearcv linearadaptive

q19
No x x

q85
No x x

q5
Yes x x

3.q156 x x

q101
No x x

(output omitted )

q160
No x x
age x x
q53 x x

2.q105 x

q102
No x x

q154
No x x

q111 x x

q142
No x x

0.q55 x
0.q97 x

q65
4 x x

1.q110 x x
q70 x

q44
No x

(output omitted )

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

We see that the adaptive lasso did not select four variables that the lasso did, and it selected one that the

lasso did not. All the differences occurred among the variables with smaller standardized coefficients.
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Themost important question to ask is which performed better for out-of-sample prediction. lassogof
is the command for that. We specify the over() option with the name of our sample indicator variable,

sample. We specify the postselection option because for linear models, postselection coefficients

are theoretically slightly better for prediction than the penalized coefficients (which lassogof uses by

default).

. lassogof linearcv linearadaptive, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

The ordinary lasso did a little better in this case than the adaptive lasso.

Cross-validation folds
CVworks by dividing the data randomly into 𝐾 folds. One fold is chosen, and then a linear regression

is fit on the other𝐾 −1 folds using the variables in the model for that 𝜆. Then using these new coefficient

estimates, a prediction is computed for the data of the chosen fold. The mean squared error (MSE) of the

prediction is computed. This process is repeated for the other𝐾 −1 folds. The𝐾 MSEs are then averaged

to give the value of the CV function.

Let’s increase the number of folds from the default of 10 to 20 by specifying selection(cv,
folds(20)).

. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(cv, folds(20)) rseed(9999)
20-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4
Folds: 1...5....10....15....20 CVF = 17.08362
(output omitted )

Grid value 23: lambda = .1159557 no. of nonzero coef. = 74
Folds: 1...5....10....15....20 CVF = 12.12667
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 20

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .8978025 4 0.0059 17.08362
19 lambda before .1682318 49 0.2999 12.03169

* 20 selected lambda .1532866 55 0.3002 12.02673
21 lambda after .139669 62 0.2988 12.05007
23 last lambda .1159557 74 0.2944 12.12667

* lambda selected by cross-validation.
. estimates store linearcv2

https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
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Which performs better for out-of-sample prediction?

. lassogof linearcv linearcv2, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearcv2
Training 8.545785 0.5126 502
Testing 14.7507 0.2594 488

The first lasso with 10 folds did better than the lasso with 20 folds. This is generally true. More than 10

folds typically does not yield better predictions.

We should mention again that CV is a randomized procedure. Changing the random-number seed can

result in a different 𝜆∗ being selected and so give different predictions.

BIC
We are now going to select 𝜆∗ by minimizing the BIC function, which we do by specifying the option

selection(bic).
. lasso linear q104 ($idemographics) $ifactors $vlcontinuous
> if sample == 1, selection(bic)
Evaluating up to 100 lambdas in grid ...
Grid value 1: lambda = .8978025 no. of nonzero coef. = 4

BIC = 2618.642
Grid value 2: lambda = .8180442 no. of nonzero coef. = 7

BIC = 2630.961
Grid value 3: lambda = .7453714 no. of nonzero coef. = 8

BIC = 2626.254
Grid value 4: lambda = .6791547 no. of nonzero coef. = 9

BIC = 2619.727
Grid value 5: lambda = .6188205 no. of nonzero coef. = 10

BIC = 2611.577
Grid value 6: lambda = .5638462 no. of nonzero coef. = 13

BIC = 2614.155
Grid value 7: lambda = .5137556 no. of nonzero coef. = 13

BIC = 2597.164
Grid value 8: lambda = .468115 no. of nonzero coef. = 14

BIC = 2588.189
Grid value 9: lambda = .4265289 no. of nonzero coef. = 16

BIC = 2584.638
Grid value 10: lambda = .3886373 no. of nonzero coef. = 18

BIC = 2580.891
Grid value 11: lambda = .3541118 no. of nonzero coef. = 22

BIC = 2588.984
Grid value 12: lambda = .3226535 no. of nonzero coef. = 26

BIC = 2596.792
Grid value 13: lambda = .2939899 no. of nonzero coef. = 27

BIC = 2586.521
Grid value 14: lambda = .2678726 no. of nonzero coef. = 28

BIC = 2578.211
Grid value 15: lambda = .2440755 no. of nonzero coef. = 32

BIC = 2589.632
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Grid value 16: lambda = .2223925 no. of nonzero coef. = 35
BIC = 2593.753

Grid value 17: lambda = .2026358 no. of nonzero coef. = 37
BIC = 2592.923

Grid value 18: lambda = .1846342 no. of nonzero coef. = 42
BIC = 2609.975

Grid value 19: lambda = .1682318 no. of nonzero coef. = 49
BIC = 2639.437

... selection BIC complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 277
Selection: Bayesian information criterion

No. of
nonzero In-sample

ID Description lambda coef. R-squared BIC

1 first lambda .8978025 4 0.0308 2618.642
13 lambda before .2939899 27 0.3357 2586.521

* 14 selected lambda .2678726 28 0.3563 2578.211
15 lambda after .2440755 32 0.3745 2589.632
19 last lambda .1682318 49 0.4445 2639.437

* lambda selected by Bayesian information criterion.
. estimates store linearbic

The minimum of the BIC function was found to be at 𝜆 = 0.268. It selects 𝜆∗ as this 𝜆, which
corresponds to 28 variables in the model out of 277 potential variables.

After fitting a lasso using BIC, it is a good idea to plot the BIC function and look at the shape of the

curve around the minimum.

. bicplot
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λBIC = .27 is the BIC minimum λ; # coefficients = 28.

BIC plot

We see that the BIC function rises sharply once it hits the minimum. By default, the lasso command

stops when it has identified a minimum.

So far, we have fit lasso linear models using CV, an adaptive lasso, and BIC. Which one performs

better in the out-of-sample prediction?



lasso examples — Examples of lasso for prediction 15

. lassogof linearcv linearadaptive linearbic, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

linearadaptive
Training 8.637575 0.5057 504
Testing 14.70756 0.2595 494

linearbic
Training 9.740229 0.4421 508
Testing 13.44496 0.3168 503

The BIC lasso performs the best.

More potential variables than observations
Lasso has no difficulty fitting models when the number of potential variables exceeds the number of

observations.

We use vl substitute to create interactions of all of our factor-variable indicators with our contin-

uous variables.

. vl substitute interact = i.factors##c.vlcontinuous

We fit the lasso.

. lasso linear q104 ($idemographics) $interact if sample == 1, rseed(1234)
note: 1.q32#c.q70 omitted because of collinearity with another variable.
note: 2.q34#c.q63 omitted because of collinearity with another variable.
(output omitted )

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = 1.020288 no. of nonzero coef. = 4
Folds: 1...5....10 CVF = 16.93478
(output omitted )

Grid value 34: lambda = .2198144 no. of nonzero coef. = 106
Folds: 1...5....10 CVF = 12.91285
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 458

No. of covariates = 7,227
Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 1.020288 4 0.0146 16.93478
29 lambda before .2773743 80 0.2531 12.83525

* 30 selected lambda .2647672 85 0.2545 12.81191
31 lambda after .2527331 89 0.2541 12.81893
34 last lambda .2198144 106 0.2486 12.91285

* lambda selected by cross-validation.
. estimates store big
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There were 7,227 potential covariates in our model, of which lasso selected 85. That seems signifi-

cantly more than the 49 selected by our earlier lasso.

Let’s see how they do for out-of-sample prediction.

. lassogof linearcv big, over(sample) postselection
Postselection coefficients

Name sample MSE R-squared Obs

linearcv
Training 8.652771 0.5065 503
Testing 14.58354 0.2658 493

big
Training 6.705183 0.6117 490
Testing 17.00972 0.1403 478

Our model with thousands of potential covariates did better for in-sample prediction but significantly

worse for out-of-sample prediction.

Factor variables in lasso
It is important to understand how lasso handles factor variables. Let’s say we have a variable, region,

that has four categories representing four different regions of the country. Other Stata estimation com-

mands handle factor variables by setting one of the categories to be the base level; it then makes indicator

variables for the other three categories, and they become covariates for the estimation.

Lasso does not set a base level. It creates indicator variables for all levels (1.region, 2.region,
3.region, and 4.region) and adds these to the set of potential covariates. The reason for this should
be clear. What if 1.region versus the other three categories is all that matters for prediction? Lasso

would select 1.region and not select the other three indicators. If, however, 1.region was set as a

base level and omitted from the set of potential covariates, then lasso would have to select 2.region,
3.region, and 4.region to pick up the 1.region effect. It might be wasting extra penalty on three

coefficients when only one was needed.

See [LASSO] Collinear covariates.

https://www.stata.com/manuals/lassocollinearcovariates.pdf#lassoCollinearcovariates
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Lasso logit and probit models
lasso will also fit logit, probit, Poisson, and Cox models.

We fit a logit model.

. lasso logit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1155342 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384878
(output omitted )

Grid value 27: lambda = .010285 no. of nonzero coef. = 88
Folds: 1...5....10 CVF = 1.147343
... cross-validation complete ... minimum found
Lasso logit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1155342 0 -0.0004 1.384878
22 lambda before .0163767 65 0.1857 1.127315

* 23 selected lambda .0149218 69 0.1871 1.125331
24 lambda after .0135962 73 0.1864 1.126333
27 last lambda .010285 88 0.1712 1.147343

* lambda selected by cross-validation.
. estimates store logit

Logit and probit lasso models are famous for having CV functions that are more wiggly than those for

linear models.

. cvplot
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λCV = .015 is the cross-validation minimum λ; # coefficients = 69.

Cross-validation plot

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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This curve is not as smoothly convex as was the CV function for the linear lasso shown earlier. But it is

not as bad as some logit CV functions. Because the CV functions for nonlinear models are not as smooth,

lasso has a stricter criterion for declaring that a minimum of the CV function is found than it has for

linear models. lasso requires that five smaller 𝜆’s to the right of a nominal minimum be observed with

larger CV function values by a relative difference of cvtolerance(#) or more. Linear models only

require three such 𝜆’s be found before declaring a minimum and stopping.

Let’s now fit a probit model.

. lasso probit q106 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .1844415 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 1.384877
(output omitted )

Grid value 26: lambda = .0180201 no. of nonzero coef. = 87
Folds: 1...5....10 CVF = 1.152188
... cross-validation complete ... minimum found
Lasso probit model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .1844415 0 -0.0004 1.384877
21 lambda before .0286931 61 0.1820 1.132461

* 22 selected lambda .0261441 64 0.1846 1.128895
23 lambda after .0238215 70 0.1841 1.129499
26 last lambda .0180201 87 0.1677 1.152188

* lambda selected by cross-validation.
. estimates store probit
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lassocoef can be used to display coefficient values. Obviously, logit and probit coefficient values

cannot be compared directly. But we do see similar relative scales.

. lassocoef logit probit, sort(coef, standardized) display(coef, standardized)

logit probit

q142
No -.50418 -.3065817

q154
No -.3875702 -.2344515

q90
No -.3771052 -.2288992

q8
No -.3263827 -.200673

(output omitted )

q37
No -.0128537 -.0062874

2.q158 .0065661 .0012856
3.q65 -.0062113

3.q110 -.0055616
q120 .0044864

0.q146 -.004312

q95
3 .0030261

Legend:
b - base level
e - empty cell
o - omitted

The probit lasso selected five fewer variables than logit, and they were the five variables with the smallest

absolute values of standardized coefficients.

We look at how they did for out-of-sample prediction.

. lassogof logit probit, over(sample)
Penalized coefficients

Deviance
Name sample Deviance ratio Obs

logit
Training .8768969 0.3674 499
Testing 1.268346 0.0844 502

probit
Training .8833892 0.3627 500
Testing 1.27267 0.0812 503

Neither did very well. The out-of-sample deviance ratios were notably worse than the in-sample values.

The deviance ratio for nonlinear models is analogous to 𝑅2 for linear models. See Methods and formulas

for [LASSO] lassogof for the formal definition.

https://www.stata.com/manuals/lassolassogof.pdf#lassolassogofMethodsandformulas
https://www.stata.com/manuals/lassolassogof.pdf#lassolassogof
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We did not specify the postselection option in this case because there are no theoretical grounds

for using postselection coefficients for prediction with nonlinear models.

Lasso Poisson models
Next, we fit a Poisson model.

. lasso poisson q107 $idemographics $ifactors $vlcontinuous
> if sample == 1, rseed(1234)
10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .5745539 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 2.049149
(output omitted )

Grid value 21: lambda = .089382 no. of nonzero coef. = 66
Folds: 1...5....10 CVF = 1.653376
... cross-validation complete ... minimum found
Lasso Poisson model No. of obs = 458

No. of covariates = 277
Selection: Cross-validation No. of CV folds = 10

No. of Out-of-
nonzero sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .5745539 0 -0.0069 2.049149
16 lambda before .1423214 37 0.1995 1.629222

* 17 selected lambda .129678 45 0.1999 1.628315
18 lambda after .1181577 48 0.1993 1.62962
21 last lambda .089382 66 0.1876 1.653376

* lambda selected by cross-validation.

We see how it does for out-of-sample prediction.

. lassogof, over(sample)
Penalized coefficients

Deviance
sample Deviance ratio Obs

Training 1.289175 0.3515 510
Testing 1.547816 0.2480 502

Its in-sample and out-of-sample predictions are fairly close. Much closer than they were for the logit and

probit models.

Lasso Cox models
lasso will also fit Cox proportional hazards models. We illustrate lasso cox with an example that

predicts risk of death for stage I lung adenocarcinoma patients. Lung adenocarcinoma is one of the most

common non-small-cell lung cancers.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
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Stage I adenocarcinoma indicates that the tumor size is relatively small, and cancer has not spread

to other distant organs. Stage I adenocarcinoma patients usually have varied survival outcomes even

though they are in the early cancer development stage. For example, Yu et al. (2016) show that, in one

cohort, more than 50% of stage I adenocarcinoma patients died within 5 years after the initial diagnosis,

while about 15% of the patients survived for more than 10 years.

Histopathology image features are indispensable for prognostic analysis. Examples of the histopathol-

ogy image features include image granularity, image intensity, cell size and shape, pixel intensity of the

cell, cell texture, area occupied by cells, neighboring relation of the cells, nucleus size and shape, and

nucleus texture. We can use lasso cox to extract the top histopathology image features that distinguish

short-term survivors from long-term survivors.

We have a fictitious survival dataset (lungcancer.dta) inspired by Yu et al. (2016). The variable t
records either the time of death or censoring in months for stage I adenocarcinoma lung cancer patients.

The indicator variable died is 1 or 0 if the patient died or is censored, respectively. There are 500

histopathology image features, histfeature1 to hisfeature500, and only 250 patients. The analysis
aims to classify a new patient into a low-risk or high-risk group, given the histopathology image features.

We first load the dataset and then type stset to show it has already been stset.
. use https://www.stata-press.com/data/r19/lungcancer
(Fictitious data on stage I adenocarcinoma lung cancer)
. stset
-> stset t, failure(died)
Survival-time data settings

Failure event: died!=0 & died<.
Observed time interval: (0, t]

Exit on or before: failure

250 total observations
0 exclusions

250 observations remaining, representing
211 failures in single-record/single-failure data

18,465.093 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 260

Next, we need to split the entire sample into training and testing data. The training data will be used

for estimation, and the testing data will be used to measure the prediction performance. These steps are

typically used in the microarray survival literature; for an application to the performance of a Cox model

with lasso, see Sohn et al. (2009).

We use splitsample to split the data into two parts. The generate(group) option creates a new

variable group for the identification of the training and testing data. That is, group equals 1 if it belongs

to the training data or 0 if it belongs to the testing data. The split(0.6 0.4) option specifies that 60%

of the entire data be used as training data and 40% of them be used as testing data. To make the results

reproducible, we specify the rseed() option.

. splitsample, generate(group) split(0.6 0.4) rseed(12345)

For the convenience of later use, we separately save the training data (lungcancer training.dta)
and the testing data (lungcancer testing.dta).
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. preserve

. keep if group == 1
(100 observations deleted)
. save lungcancer_training
file lungcancer_training.dta saved
. restore
. preserve
. keep if group == 2
(150 observations deleted)
. save lungcancer_testing
file lungcancer_testing.dta saved
. restore

We are now ready to fit a lasso cox model using only the training data. By default, we use cross-

validation. We specify rseed() to make the results reproducible.

. use lungcancer_training, clear
(Fictitious data on stage I adenocarcinoma lung cancer)
. lasso cox histfeature*, rseed(12345671)

Failure _d: died
Analysis time _t: t

10-fold cross-validation with 100 lambdas ...
Grid value 1: lambda = .3539123 no. of nonzero coef. = 0
Folds: 1...5....10 CVF = 8.922501
Grid value 2: lambda = .3378265 no. of nonzero coef. = 1
Folds: 1...5....10 CVF = 8.917438
(output omitted )

Grid value 30: lambda = .0918411 no. of nonzero coef. = 45
Folds: 1...5....10 CVF = 8.042941
Grid value 31: lambda = .0876668 no. of nonzero coef. = 48
Folds: 1...5....10 CVF = 8.039609
Grid value 32: lambda = .0836822 no. of nonzero coef. = 52
Folds: 1...5....10 CVF = 8.05246
Grid value 33: lambda = .0798787 no. of nonzero coef. = 57
Folds: 1...5....10 CVF = 8.070293
Grid value 34: lambda = .0762481 no. of nonzero coef. = 63
Folds: 1...5....10 CVF = 8.105045
... cross-validation complete ... minimum found
Lasso Cox model No. of obs = 150

No. of covariates = 500
Selection: Cross-validation No. of CV folds = 10

No. of
nonzero In-sample CV mean

ID Description lambda coef. dev. ratio deviance

1 first lambda .3539123 0 0.0000 8.922501
30 lambda before .0918411 45 0.2199 8.042941

* 31 selected lambda .0876668 48 0.2306 8.039609
32 lambda after .0836822 52 0.2419 8.05246
34 last lambda .0762481 63 0.2662 8.105045

* lambda selected by cross-validation.
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lasso cox selects 48 of the 500 features. We can now predict the relative-hazard ratio, which we will

call riskscore training, and evaluate risk scores. We will use the median of riskscore training
as a threshold to classify a patient as low risk or high risk. We store the median value in a global macro

(median) for later use.

. predict riskscore_training
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. summarize riskscore_training, detail

Predicted hazard ratio, penalized

Percentiles Smallest
1% .054982 .0414753
5% .0838301 .054982

10% .1308778 .0702972 Obs 150
25% .3676802 .0727958 Sum of wgt. 150
50% .9458244 Mean 1.998198

Largest Std. dev. 3.75226
75% 2.368032 9.962103
90% 4.912702 11.13334 Variance 14.07945
95% 6.651043 12.4411 Skewness 7.054249
99% 12.4411 39.40631 Kurtosis 67.68195
. global median = r(p50)

Based on the median of the predicted risk ratio in the training data, we now use the testing data

to validate the model. First, we predict the risk ratio in the testing sample, which we will call

riskscore testing. Then, we compare riskscore testing with the median of the risk ratio ob-

tained in the training data ($median). If the predicted risk score is greater than or equal to the median, the
patient is labeled as high risk. If the predicted risk score is less than the median, the patient is classified

as low risk.

. use lungcancer_testing, clear
(Fictitious data on stage I adenocarcinoma lung cancer)
. predict riskscore_testing
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. generate byte risk = (riskscore_testing >= $median)
. label define risk_lb 1 ”High risk” 0 ”Low risk”
. label values risk risk_lb
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To evaluate the effectiveness of risk classification, we first look at the Kaplan–Meier plot, which

draws the survival curve for both low-risk and high-risk groups.

. sts graph, by(risk)
Failure _d: died

Analysis time _t: t
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Kaplan–Meier survival estimates

The graph shows that the predicted high-risk patients have a more steeply falling survival curve than

the predicted low-risk patients. To confirm this conjecture, we do a log-rank test.

. sts test risk
Failure _d: died

Analysis time _t: t
Equality of survivor functions
Log-rank test

Observed Expected
risk events events

Low risk 39 68.17
High risk 51 21.83

Total 90 90.00
chi2(1) = 61.50
Pr>chi2 = 0.0000

The log-rank test rejects the hypothesis that the predicted low-risk and high-risk patients have the

same survival functions. Both the Kaplan–Meier plot and the log-rank test show that using the predicted

hazard ratios’median can effectively distinguish a low-risk patient from a high-risk patient. We can now

make prognostic predictions given new data.

The dataset (newlungcancer.dta) contains histopathology image features for some new stage I

adenocarcinoma patients, but their survival time is not recorded because they are still alive. Based on

the prediction model from lasso cox, we want to classify these new patients as low risk or high risk.

To achieve this objective, we need to predict the new patients’ hazard ratios and compare them with the

median level of risk score obtained in the training data.
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. use https://www.stata-press.com/data/r19/newlungcancer, clear
(Fictitious new data on stage I adenocarcinoma lung cancer)
. predict riskscore_new
(options hr penalized assumed; predicted hazard ratio with penalized
coefficients)
. generate risk = (riskscore_new >= $median)
. label define risk_lb 1 ”High risk” 0 ”Low risk”
. label values risk risk_lb
. tabulate risk

risk Freq. Percent Cum.

Low risk 27 54.00 54.00
High risk 23 46.00 100.00

Total 50 100.00

The table of the predicted risk level shows that 27 patients are classified as low risk, while 23 patients

are classified as high risk.
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