
irt 3pl — Three-parameter logistic model

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
irt 3pl fits three-parameter logistic (3PL) models to binary items. In the 3PL model, items vary in

their difficulty and discrimination and the possibility of guessing is allowed.

Quick start
3PLmodel for binary items b1 to b10

irt 3pl b1-b10

Group estimates by parameter type and sort items by difficulty

estat report, byparm sort(b)

Plot ICCs for all items

irtgraph icc

Menu
Statistics > IRT (item response theory)
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Syntax
irt 3pl varlist [ if ] [ in ] [weight ] [ , options ]

options Description

group(varname) fit model for different groups

Model

cns(spec) apply specified parameter constraints

listwise drop observations with any missing items

sepguessing estimate a separate pseudoguessing parameter for each item

gsepguessing estimate separate pseudoguessing parameters for each group

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
notable suppress coefficient table

noheader suppress output header

display options control columns and column formats

Integration

intmethod(intmethod) integration method

intpoints(#) set the number of integration points; default is intpoints(7)

Maximization

maximize options control the maximization process; seldom used

startvalues(svmethod) method for obtaining starting values

noestimate do not fit the model; show starting values instead

estmetric show parameter estimates in the estimation metric

dnumerical use numerical derivative techniques

coeflegend display legend instead of statistics

intmethod Description

mvaghermite mean–variance adaptive Gauss–Hermite quadrature; the default

mcaghermite mode-curvature adaptive Gauss–Hermite quadrature

ghermite nonadaptive Gauss–Hermite quadrature

bootstrap, by, collect, jackknife, statsby, and svy are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

startvalues(), noestimate, estmetric, dnumerical, and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/irtirtconstraints.pdf#irtirtconstraintsSyntax
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/irt.pdf#irtirt3plOptionsdisplay_options
https://www.stata.com/manuals/irt.pdf#irtirt3plSyntaxintmethod
https://www.stata.com/manuals/irt.pdf#irtirt3plOptionsmaxopts
https://www.stata.com/manuals/irt.pdf#irtirt3plOptionsstartvalues
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
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Options
group(varname) specifies that the model be fit separately for the different values of varname; see

[IRT] irt, group( ) for details.

� � �
Model �

cns(spec) constrains item parameters to a fixed value or constrains two or more parameters to be equal;

see [IRT] irt constraints for details.

listwise handles missing values through listwise deletion, which means that the entire observation is

omitted from the estimation sample if any of the items are missing for that observation. By default,

all nonmissing items in an observation are included in the likelihood calculation; only missing items

are excluded.

sepguessing specifies that a separate pseudoguessing parameter be estimated for each item. This is a

seldom used option; see the technical note below.

gsepguessing specifies that separate pseudoguessing parameters be estimated for each group. This

option is allowed only when fitting a group model.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that allow for

intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

notable suppresses the estimation table, either at estimation or upon replay.

noheader suppresses the output header, either at estimation or upon replay.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

� � �
Integration �

intmethod(intmethod) specifies the integration method to be used for computing the log likelihood.

mvaghermite performs mean and variance adaptive Gauss–Hermite quadrature; mcaghermite per-

forms mode and curvature adaptive Gauss–Hermite quadrature; and ghermite performs nonadaptive

Gauss–Hermite quadrature.

The default integration method is mvaghermite.

intpoints(#) sets the number of integration points for quadrature. The default is intpoints(7),
which means that seven quadrature points are used to compute the log likelihood.

The more integration points, the more accurate the approximation to the log likelihood. However,

computation time increases with the number of integration points.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/irtirtgroup.pdf#irtirt,group()
https://www.stata.com/manuals/irtirtconstraints.pdf#irtirtconstraints
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3plRemarksandexamplessepguess
https://www.stata.com/manuals/rvce_option.pdf#rvce_option
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. Those that require

special mention for irt are listed below.

from() accepts a properly labeled vector of initial values or a list of coefficient names with values.

A list of values is not allowed.

The following options are available with irt but are not shown in the dialog box:

startvalues() specifies how starting values are to be computed. Starting values specified in from()
override the computed starting values.

startvalues(zero) specifies that all starting values be set to 0. This option is typically useful only

when specified with the from() option.

startvalues(constantonly) builds on startvalues(zero) by fitting a constant-only model for

each response to obtain estimates of intercept and cutpoint parameters.

startvalues(fixedonly) builds on startvalues(constantonly) by fitting a full fixed-effects

model for each response variable to obtain estimates of coefficients along with intercept and cut-

point parameters. You can also add suboption iterate(#) to limit the number of iterations irt
allows for fitting the fixed-effects model.

startvalues(ivloadings) builds on startvalues(fixedonly) by using instrumental-variable

methods with the generalized residuals from the fixed-effects models to compute starting values

for latent-variable loadings. This is the default behavior.

noestimate specifies that the model is not to be fit. Instead, starting values are to be shown (as modified
by the above options if modifications were made), and they are to be shown using the coeflegend
style of output. An important use of this option is before you have modified starting values at all; you

can type the following:

. irt ..., ... noestimate

. matrix b = e(b)

. ... (modify elements of b) ...

. irt ..., ... from(b)

estmetric displays parameter estimates in the slope-intercept metric that is used for estimation.

dnumerical specifies that during optimization, the gradient vector and Hessian matrix be computed

using numerical techniques instead of analytical formulas. By default, irt uses analytical formulas

for computing the gradient and Hessian for all integration methods.

coeflegend; see [R] Estimation options.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
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Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
The following discussion is about how to use irt to fit (3PL) models to binary items. If you are new

to the IRT features in Stata, we encourage you to read [IRT] irt first.

In the 3PL model, item responses are typically of the form yes or no, correct or incorrect, agree or

disagree, etc. Items are assumed to vary in discrimination and difficulty, and the model accommodates

the possibility of guessing on a test. The probability of person 𝑗 providing a positive answer to item 𝑖 is
given by

Pr(𝑦𝑖𝑗 = 1|𝜃𝑗) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp{𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}

1 + exp{𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}
𝜃𝑗 ∼ 𝑁(0, 1) (1)

where 𝑎𝑖 represents the discrimination of item 𝑖, 𝑏𝑖 represents the difficulty of item 𝑖, 𝑐𝑖 represents the

pseudoguessing parameter, and 𝜃𝑗 is the latent trait of person 𝑗. By default, the 𝑐𝑖 are constrained to be

the same across all items; see the technical note below.

Although (1) is not in logistic form, the model is commonly referred to as a three-parameter logistic

model.

The 3PL model was proposed by Birnbaum (1968). An earlier three-parameter model with a probit

link was developed by Finney (1952).

Technical note
By default, irt 3pl constrains the pseudoguessing parameter to be the same across all items. You can

use the advanced option sepguessing to request a separate pseudoguessing parameter for each item.

We do not recommend this option because this version of the 3PL model is plagued with identification

problems; see, for example, Samejima (1973), Holland (1990), Yen, Burket, and Sykes (1991), Maris

(2002), and San Martín, Rolin, and Castro (2013).

The sepguessing option can be useful in the context of hybrid IRT models, where separate pseu-

doguessing parameters can be estimated for a subset of items; see example 2 in [IRT] irt hybrid.

See Balov (2016) for an example of Bayesian estimation of a 3PLmodel with separate pseudoguessing

parameters.

https://www.stata.com/manuals/irtirt.pdf#irtirt
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3plRemarksandexamplessepguess
https://www.stata.com/manuals/irtirt3pl.pdf#irtirt3plRemarksandexampleseq1
https://www.stata.com/manuals/irtirthybrid.pdf#irtirthybridRemarksandexamplesex2
https://www.stata.com/manuals/irtirthybrid.pdf#irtirthybrid
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Example 1: Fitting a 3PL model
To illustrate the 3PLmodel, we use an abridged version of the mathematics and science data from De

Boeck and Wilson (2004). Student responses to test items are coded 1 for correct and 0 for incorrect.

Here we list the first five observations.

. use https://www.stata-press.com/data/r19/masc1
(Data from De Boeck & Wilson (2004))
. list in 1/5

q1 q2 q3 q4 q5 q6 q7 q8 q9

1. 1 1 1 0 0 0 0 1 0
2. 0 0 1 0 0 0 0 1 1
3. 0 0 0 1 0 0 1 0 0
4. 0 0 1 0 0 0 0 0 1
5. 0 1 1 0 0 0 0 1 0

Looking across the rows, we see that the first student correctly answered items q1, q2, q3, and q8,
the second student correctly answered items q3, q8, and q9, and so on.

We fit a 3PLmodel to binary items q1–q9 as follows:

. irt 3pl q1-q9
Fitting fixed-effects model:
Iteration 0: Log likelihood = -5322.8824
Iteration 1: Log likelihood = -4317.9868
Iteration 2: Log likelihood = -4273.6659
Iteration 3: Log likelihood = -4269.7862
Iteration 4: Log likelihood = -4269.7825
Iteration 5: Log likelihood = -4269.7825
Fitting full model:
Iteration 0: Log likelihood = -4226.5553 (not concave)
Iteration 1: Log likelihood = -4126.9014 (not concave)
Iteration 2: Log likelihood = -4120.7233
Iteration 3: Log likelihood = -4117.2619
Iteration 4: Log likelihood = -4116.3931
Iteration 5: Log likelihood = -4116.3434
Iteration 6: Log likelihood = -4116.3404
Iteration 7: Log likelihood = -4116.3404
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Three-parameter logistic model Number of obs = 800
Log likelihood = -4116.3404

Coefficient Std. err. z P>|z| [95% conf. interval]

q1
Discrim 1.911892 .3633509 5.26 0.000 1.199737 2.624047

Diff -.3040607 .0970816 -3.13 0.002 -.4943372 -.1137842

q2
Discrim .750889 .1414085 5.31 0.000 .4737334 1.028045

Diff .1506376 .1667842 0.90 0.366 -.1762535 .4775287

q3
Discrim .9674965 .1682051 5.75 0.000 .6378205 1.297172

Diff -1.508912 .2358768 -6.40 0.000 -1.971222 -1.046602

q4
Discrim .9846883 .1860968 5.29 0.000 .6199454 1.349431

Diff .5726226 .1491574 3.84 0.000 .2802794 .8649659

q5
Discrim 1.439631 .4426227 3.25 0.001 .5721063 2.307156

Diff 1.605677 .2144335 7.49 0.000 1.185395 2.025959

q6
Discrim 1.369119 .3249596 4.21 0.000 .7322101 2.006028

Diff .7818615 .1236333 6.32 0.000 .5395447 1.024178

q7
Discrim .4823135 .1727569 2.79 0.005 .1437162 .8209108

Diff 3.010922 .8924986 3.37 0.001 1.261656 4.760187

q8
Discrim 1.436069 .2482751 5.78 0.000 .9494586 1.922679

Diff -1.594747 .1918747 -8.31 0.000 -1.970815 -1.21868

q9
Discrim .6772551 .1314525 5.15 0.000 .419613 .9348971

Diff -1.213933 .2661804 -4.56 0.000 -1.735637 -.6922291

Guess .0904473 .0359669 .0199534 .1609412

In the 3PLmodel, each test item has its own parameter estimates for discrimination and difficulty. The

estimated common pseudoguessing parameter is reported at the end of the table.
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In the following, we use estat report to replay the table of estimated IRT parameters and control

how the output is reported. We include the byparm option, which arranges the output by parameter rather

than by item, and the sort(b) option, which displays the items in an ascending order of difficulty. This

makes it easy to see that item q8 is least difficult and item q7 is most difficult.

. estat report, byparm sort(b)
Three-parameter logistic model Number of obs = 800
Log likelihood = -4116.3404

Coefficient Std. err. z P>|z| [95% conf. interval]

Discrim
q8 1.436069 .2482751 5.78 0.000 .9494586 1.922679
q3 .9674965 .1682051 5.75 0.000 .6378205 1.297172
q9 .6772551 .1314525 5.15 0.000 .419613 .9348971
q1 1.911892 .3633509 5.26 0.000 1.199737 2.624047
q2 .750889 .1414085 5.31 0.000 .4737334 1.028045
q4 .9846883 .1860968 5.29 0.000 .6199454 1.349431
q6 1.369119 .3249596 4.21 0.000 .7322101 2.006028
q5 1.439631 .4426227 3.25 0.001 .5721063 2.307156
q7 .4823135 .1727569 2.79 0.005 .1437162 .8209108

Diff
q8 -1.594747 .1918747 -8.31 0.000 -1.970815 -1.21868
q3 -1.508912 .2358768 -6.40 0.000 -1.971222 -1.046602
q9 -1.213933 .2661804 -4.56 0.000 -1.735637 -.6922291
q1 -.3040607 .0970816 -3.13 0.002 -.4943372 -.1137842
q2 .1506376 .1667842 0.90 0.366 -.1762535 .4775287
q4 .5726226 .1491574 3.84 0.000 .2802794 .8649659
q6 .7818615 .1236333 6.32 0.000 .5395447 1.024178
q5 1.605677 .2144335 7.49 0.000 1.185395 2.025959
q7 3.010922 .8924986 3.37 0.001 1.261656 4.760187

Guess .0904473 .0359669 .0199534 .1609412

The estimate of the pseudoguessing parameter is 0.09, which suggests a modest degree of guessing on

the test. The pseudoguessing parameter represents the smallest probability of a correct response. Thus,

according to this model, even the least able student has, at minimum, a 9% chance of responding correctly

on any given item.

https://www.stata.com/manuals/irtestatreport.pdf#irtestatreport
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After irt 3pl, we can use irtgraph icc to plot the ICCs using the estimated 3PL parameters; see

[IRT] irtgraph icc. To focus on the most difficult item, as reported by estat report, we restrict the
plot to item q7. We use option blocation to add a vertical line at the estimated difficulty and option

ylabel() to change the default labeling of the 𝑦 axis to include the lower asymptote and the midpoint

probability, where 𝜃 equals the estimated difficulty for q7.

. irtgraph icc q7, blocation ylabel(0 0.09 0.545 1)

0

.09

.545

1
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ro
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bi

lit
y

-4 3.01 4
Theta

Item characteristic curve for Pr(q7=1)

Notice that the estimate of the pseudoguessing parameter is now a lower asymptote for the plotted ICC.

Also, because of the pseudoguessing parameter, the midpoint probability, where 𝜃 equals the estimated

difficulty for q7, is

̂𝑐 + (1 − ̂𝑐) × 1
2

= 0.09 + 0.91 × 1
2

= 0.545

instead of 0.5, as in the case of 1PL and 2PLmodels.

https://www.stata.com/manuals/irtirtgraphicc.pdf#irtirtgraphicc
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The TCC plots the expected score as a function of 𝜃, using the estimated 3PL parameters. We use

irtgraph tcc to plot the TCC. For 9 binary items, it is clear that the total score ranges from 0 to 9;

however, because of the pseudoguessing parameter, the minimum expected score is ̂𝑐 × 9 = 0.09× 9 =
0.81. The thetalines() option plots the expected scores at the specified values for 𝜃.

. irtgraph tcc, thetalines(-1.96 0 1.96)

0

2.21

4.84

7.43
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Test characteristic curve

This plot tells us what kind of scores we can expect from individuals with different levels of the latent

trait. For example, we can expect above-average individuals to score 4.84 or above. Actually, no one

is expected to score 4.84 on a 9-item test, so a more realistic statement is that we expect above-average

individuals to score above 4.

Using the 95% critical values from the standard normal distribution (−1.96 and 1.96), this plot also

tells us that we can expect 95% of randomly selected people to score between 2.21 and 7.43. A more

realistic statement is that we expect about 95% of randomly selected people to score from 2 to 7.

Video example
Item response theory using Stata: Three-parameter logistic (3PL) models

Stored results
irt 3pl stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k dv) number of dependent variables

e(k rc) number of covariances

e(k rs) number of variances

e(irt k eq) number of IRT equations

e(k items1) number of items in first IRT equation

e(sepguess1) 1 if model contains a separate pseudoguessing parameter

e(ll) log likelihood

e(N clust) number of clusters

e(N groups) number of groups

https://www.youtube.com/watch?v=wOsgxpE_pEA
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e(n quad) number of integration points

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if target model converged, 0 otherwise

Macros

e(cmd) gsem
e(cmd2) irt
e(cmdline) command as typed

e(model1) 3pl
e(items1) names of items in first IRT equation

e(depvar) names of all item variables

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(groupvar) name of group variable

e(family#) family for the #th item

e(link#) link for the #th item

e(intmethod) integration method

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(method) estimation method: ml
e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(covariates) list of covariates

e(footnote) program used to implement the footnote display

Matrices

e( N) sample size for each item

e(b) coefficient vector, slope-intercept parameterization

e(b pclass) parameter class

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

e(groupvalue) vector of group values in e(groupvar)
e(nobs) vector with number of observations per group

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Let 𝑌𝑖𝑗 represent the (yet to be observed) outcome for item 𝑖 from person 𝑗, and let 𝑦𝑖𝑗 be the observed

value of 𝑌𝑖𝑗. Without loss of generality, we will use the terms “correct” and “incorrect” in reference to

the outcomes of 𝑌𝑖𝑗. Furthermore, we will refer to 𝑦𝑖𝑗 = 1 as correct and 𝑦𝑖𝑗 = 0 as incorrect.

Using the IRT parameterization, we see that the probability of person 𝑗 with latent trait level 𝜃𝑗 (the

latent trait) providing a correct response to item 𝑖 is given by

Pr(𝑌𝑖𝑗 = 1|𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝜃𝑗) = 𝑐𝑖 + (1 − 𝑐𝑖)
exp{𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}

1 + exp{𝑎𝑖(𝜃𝑗 − 𝑏𝑖)}

where 𝑎𝑖 represents the discrimination of item 𝑖, 𝑏𝑖 represents the difficulty of item 𝑖, and 𝑐𝑖 represents

the pseudoguessing parameter. irt 3pl fits the model using the slope-intercept form, so the probability

for providing a correct answer is parameterized as

Pr(𝑌𝑖𝑗 = 1|𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜃𝑗) = exp(𝛾𝑖)
1 + exp(𝛾𝑖)

+ 1
1 + exp(𝛾𝑖)

exp(𝛼𝑖𝜃𝑗 + 𝛽𝑖)
1 + exp(𝛼𝑖𝜃𝑗 + 𝛽𝑖)

The transformation between these two parameterizations is

𝑎𝑖 = 𝛼𝑖 𝑏𝑖 = − 𝛽𝑖
𝛼𝑖

𝑐𝑖 = exp(𝛾𝑖)
1 + exp(𝛾𝑖)

By default, the 𝛾𝑖 (and thus the 𝑐𝑖) are constrained to be the same across all items.

Let 𝑝𝑖𝑗 ≡ Pr(𝑌𝑖𝑗 = 1|𝛼𝑖, 𝛽𝑖, 𝛾𝑖, 𝜃𝑗) and 𝑞𝑖𝑗 = 1 − 𝑝𝑖𝑗. Conditional on 𝜃𝑗, the item responses are

assumed to be independent, so the conditional density for person 𝑗 is given by

𝑓(y𝑗|B, 𝜃𝑗) =
𝐼

∏
𝑖=1

𝑝𝑦𝑖𝑗
𝑖𝑗 𝑞1−𝑦𝑖𝑗

𝑖𝑗

where y𝑗 = (𝑦1𝑗, . . . , 𝑦𝐼𝑗),B = (𝛼1, . . . , 𝛼𝐼, 𝛽1, . . . , 𝛽𝐼, 𝛾1, . . . , 𝛾𝐼), and 𝐼 is the number of items.
Missing items are skipped over in the above product by default. When the listwise option is spec-

ified, persons with any missing items are dropped from the estimation sample.

The likelihood for person 𝑗 is computed by integrating out the latent variable from the joint density

𝐿𝑗(B) = ∫
∞

−∞
𝑓(y𝑗|B, 𝜃𝑗) 𝜙(𝜃𝑗) 𝑑𝜃𝑗

where 𝜙(⋅) is the density function for the standard normal distribution. The log likelihood for the esti-

mation sample is simply the sum of the log likelihoods from the 𝑁 persons in the estimation sample.

log𝐿(B) =
𝑁

∑
𝑗=1

log𝐿𝑗(B)

The integral in the formula for 𝐿𝑗(B) is generally not tractable, so we must use numerical methods.
Models for multiple groups, Gauss–Hermite quadrature, and adaptive quadrature are documented in

Methods and formulas of [IRT] irt hybrid.

https://www.stata.com/manuals/irtirthybrid.pdf#irtirthybridMethodsandformulas
https://www.stata.com/manuals/irtirthybrid.pdf#irtirthybrid
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