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Description
eprobit fits a probit regression model that accommodates any combination of endogenous covari-

ates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and or-

dinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A

probit or tobit model may be used to account for endogenous sample selection.

xteprobit fits a random-effects probit regression model that accommodates endogenous covariates,

treatment, and sample selection in the same way as eprobit and also accounts for correlation of obser-

vations within panels or within groups.

Quick start
Probit regression of y on x with continuous endogenous covariate y2 modeled by x and z

eprobit y x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2
eprobit y x, endogenous(y2 = x z) endogenous(y3 = x z2)

Probit regression of y on x with binary endogenous covariate d modeled by x and z
eprobit y x, endogenous(d = x z, probit)

Probit regression of y on x with endogenous treatment recorded in trtvar and modeled by x and z
eprobit y x, entreat(trtvar = x z)

Probit regression of y on x with exogenous treatment recorded in trtvar
eprobit y x, extreat(trtvar)

Random-effects probit regression of y on x using xtset data

xteprobit y x

Probit regression of y on x with endogenous sample-selection indicator selvar modeled by x and z
eprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
eprobit y x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3
eprobit y x, select(selvar = x z) endogenous(y2 = x z2) ///

entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment

xteprobit y x, select(selvar = x z) endogenous(y2 = x z2)
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Menu
eprobit
Statistics > Endogenous covariates > Models adding selection and treatment > Probit regression

xteprobit
Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Probit
regression (RE)

Syntax
Basic probit regression with endogenous covariates

eprobit depvar [ indepvars ] , endogenous(depvarsen = varlisten) [ options ]

Basic probit regression with endogenous treatment assignment

eprobit depvar [ indepvars ] , entreat(depvartr [ = varlisttr ]) [ options ]

Basic probit regression with exogenous treatment assignment

eprobit depvar [ indepvars ] , extreat(tvar) [ options ]

Basic probit regression with sample selection

eprobit depvar [ indepvars ] , select(depvar𝑠 = varlist𝑠) [ options ]

Basic probit regression with tobit sample selection

eprobit depvar [ indepvars ] , tobitselect(depvar𝑠 = varlist𝑠) [ options ]

Basic probit regression with random effects

xteprobit depvar [ indepvars ] [ , options ]

Probit regression combining endogenous covariates, treatment, and selection

eprobit depvar [ indepvars ] [ if ] [ in ] [weight ] [ , extensions options ]

Probit regression combining random effects, endogenous covariates, treatment, and selection

xteprobit depvar [ indepvars ] [ if ] [ in ] [ , extensions options ]
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extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated

entreat(entrspec) model for endogenous treatment assignment

extreat(extrspec) exogenous treatment

select(selspec) probit model for selection

tobitselect(tselspec) tobit model for selection

options Description

Model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

enspec is depvarsen = varlisten [ , enopts ]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an endogenous

covariate model using the common varlisten and options.

https://www.stata.com/manuals/erm.pdf#ermeprobitSyntaxenspec
https://www.stata.com/manuals/erm.pdf#ermeprobitSyntaxentrspec
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entrspec is depvartr[ = varlisttr ] [ , entropts ]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates predicting

treatment assignment.

extrspec is tvar [ , extropts ]
where tvar is a variable indicating treatment assignment.

selspec is depvar𝑠 = varlist𝑠 [ , selopts ]
where depvar𝑠 is a variable indicating selection status. depvar𝑠 must be coded as 0, indicating that

the observation was not selected, or 1, indicating that the observation was selected. varlist𝑠 is a list

of covariates predicting selection.

tselspec is depvar𝑠 = varlist𝑠 [ , tselopts ]
where depvar𝑠 is a continuous variable. varlist𝑠 is a list of covariates predicting depvar𝑠. The cen-

soring status of depvar𝑠 indicates selection, where a censored depvar𝑠 indicates that the observation

was not selected and a noncensored depvar𝑠 indicates that the observation was selected.

enopts Description

Model

probit treat endogenous covariate as binary

oprobit treat endogenous covariate as ordinal

pocorrelation estimate different correlations for each level of a binary or an ordinal en-
dogenous covariate

nomain do not add endogenous covariate to main equation

nore do not include random effects in model for endogenous covariate

noconstant suppress constant term

nore is available only with xteprobit.

entropts Description

Model

pocorrelation estimate different correlations for each potential outcome

nomain do not add treatment indicator to main equation

nointeract do not interact treatment with covariates in main equation

nore do not include random effects in model for endogenous treatment

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

nore is available only with xteprobit.

extropts Description

Model

pocorrelation estimate different correlations for each potential outcome

nomain do not add treatment indicator to main equation

nointeract do not interact treatment with covariates in main equation

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/erm.pdf#ermeprobitSyntaxentropts
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selopts Description

Model

nore do not include random effects in selection model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

nore is available only with xteprobit.

tselopts Description

Model
∗ ll(varname | #) left-censoring variable or limit
∗ ul(varname | #) right-censoring variable or limit

main add censored selection variable to main equation

nore do not include random effects in tobit selection model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

∗ You must specify either ll() or ul().
nore is available only with xteprobit.

indepvars, varlisten, varlisttr, and varlist𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvar𝑠, and varlist𝑠 may contain time-series operators; see
[U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, and statsby are allowed with eprobit and xteprobit. rolling and svy are
allowed with eprobit. See [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed with eprobit; see [U] 11.1.6 weight.

reintpoints() and reintmethod() are available only with xteprobit.
collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varname𝑜), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions


eprobit — Extended probit regression 6

� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM

options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

The default technique for eprobit is technique(nr). The default technique for xteprobit is

technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eprobit and xteprobit but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eprobit and xteprobit fit models that we refer to as “extended probit regression models”, meaning

that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous sample

selection, and panel data or other grouped data.

eprobit fits models for cross-sectional data (one-level models). eprobit can account for endoge-

nous covariates, treatment, and sample selection, whether these complications arise individually or in

combination.

xteprobit fits random-effects models (two-level models) for panel data or grouped data. xteprobit
accounts for endogenous covariates, treatment, and sample selection in the same way as eprobit and

also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eprobit and xteprobit commands.

You can see Methods and formulas for a full description of the models that can be fit with eprobit and

xteprobit and details about how those models are fit.

More information on extended probit regression models is found in the separate introductions and

example entries. We recommend reading those entries to learn how to use eprobit and xteprobit.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eprobit and xteprobit and the other extended regression commands for

continuous, interval, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval re-

gression, probit regression, and ordered probit regression—that can be fit using ERM commands.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM

commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to

account for it.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eprobit
or any of the other ERM commands.

https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulas
https://www.stata.com/manuals/ermintro1.pdf#ermIntro1
https://www.stata.com/manuals/ermintro9.pdf#ermIntro9
https://www.stata.com/manuals/ermintro1.pdf#ermIntro1
https://www.stata.com/manuals/ermintro2.pdf#ermIntro2
https://www.stata.com/manuals/ermintro3.pdf#ermIntro3
https://www.stata.com/manuals/ermintro4.pdf#ermIntro4
https://www.stata.com/manuals/ermintro5.pdf#ermIntro5
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses

xteprobit and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eprobit and

xteprobit in the usual way, but this introduction goes beyond the interpretation of coefficients.

We demonstrate how to find answers to interesting questions by using margins. If your model
includes an endogenous covariate or an endogenous treatment, the use of margins differs from

its use after other estimation commands, so we strongly recommend reading this intro if you are

fitting these types of models.

[ERM] Intro 8 will be particularly helpful if you are familiar with ivprobit, heckprobit,
xtprobit, and other commands that address endogenous covariates, sample selection, nonran-

dom treatment assignment, or random effects. This introduction is a Rosetta stone that maps the

syntax of those commands to the syntax of eprobit and xteprobit.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous

covariates, treatment assignment, and sample selection while fitting models with eregress that

address these complications. Although the example uses eregress, the discussion applies equally
to eprobit. This intro also demonstrates how to interpret results by using margins and estat
teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using

eprobit, see

[ERM] Example 3a Probit regression with continuous endogenous covariate

[ERM] Example 3b Probit regression with endogenous covariate and treatment

[ERM] Example 4a Probit regression with endogenous sample selection

[ERM] Example 4b Probit regression with endogenous treatment and sample selection

[ERM] Example 5 Probit regression with endogenous ordinal treatment

[ERM] Example 9 Probit regression with endogenous treatment and random effects

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting

because they handle complications in the same way.

eprobit and xteprobit fit many models discussed in the literature. This includes the probit model

with continuous endogenous covariates (Newey 1987), the probit model withmultiple endogenous binary

covariates (Arendt and Holm 2006), the probit model with an endogenous treatment (Angrist 2001 and

Pindyck and Rubinfeld 1998), and the random-effects probit model (Conway 1990). eprobit can also

be used for probit models with selection, such as that discussed by Van de Ven and Van Pragg (1981),

and for the model with a tobit selection equation, discussed in Wooldridge (2010, sec. 19.7).

xteprobit can be used for the random-effects probit model with selection discussed in Semykina

andWooldridge (2018). The bivariate probit model with random effects discussed inMulkay (2017) may

also be fit using xteprobit. Roodman (2011) investigated probit models with endogenous covariates

and endogenous sample selection and demonstrated howmultiple observational data complications could

be addressed with a triangular model structure. He and Tamás Bartus showed how random effects could

be used in the triangular model structure in Bartus and Roodman (2014). Roodman’s work has been used

to model processes like the impact of finance on the probability of being an entrepreneur (Karymshakov,

Sultakeev, and Sulaimanova 2015) and the impact of foreign direct investment on the probability of

creating an innovative product (Vahter 2011).

https://www.stata.com/manuals/ermintro6.pdf#ermIntro6
https://www.stata.com/manuals/ermintro7.pdf#ermIntro7
https://www.stata.com/manuals/ermintro8.pdf#ermIntro8
https://www.stata.com/manuals/ermintro9.pdf#ermIntro9
https://www.stata.com/manuals/ermexample1a.pdf#ermExample1a
https://www.stata.com/manuals/ermexample9.pdf#ermExample9
https://www.stata.com/manuals/ermexample3a.pdf#ermExample3a
https://www.stata.com/manuals/ermexample3b.pdf#ermExample3b
https://www.stata.com/manuals/ermexample4a.pdf#ermExample4a
https://www.stata.com/manuals/ermexample4b.pdf#ermExample4b
https://www.stata.com/manuals/ermexample5.pdf#ermExample5
https://www.stata.com/manuals/ermexample9.pdf#ermExample9
https://www.stata.com/manuals/ermintro.pdf#ermIntroRemarksandexamplesExamples
https://www.stata.com/manuals/ermintro.pdf#ermIntro
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Stored results
eprobit stores the following in e():
Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(k) number of parameters

e(k cat#) number of categories for the #th depvar, ordinal

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k aux) number of auxiliary parameters

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(n quad) number of integration points for multivariate normal

e(n quad3) number of integration points for trivariate normal

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) eprobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(tsel ll) left-censoring limit for tobit selection

e(tsel ul) right-censoring limit for tobit selection

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset#) offset for the #th depvar, where # is determined by equation order in output

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(cat#) categories for the #th depvar, ordinal

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance
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Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

xteprobit stores the following in e():

Scalars

e(N) number of observations

e(N g) number of groups

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(k) number of parameters

e(k cat#) number of categories for the #th depvar, ordinal

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k aux) number of auxiliary parameters

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(n quad) number of integration points for multivariate normal

e(n quad3) number of integration points for trivariate normal

e(n requad) number of integration points for random effects

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) xteprobit
e(cmdline) command as typed

e(depvar) names of dependent variables

e(tsel ll) left-censoring limit for tobit selection

e(tsel ul) right-censoring limit for tobit selection

e(ivar) variable denoting groups

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset#) offset for the #th depvar, where # is determined by equation order in output

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(reintmethod) integration method for random effects

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique
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e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(cat#) categories for the #th depvar, ordinal

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the probit model. The estimators implemented in

eprobit and xteprobit are maximum likelihood estimators covered by the results in chapter 13 of

Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eprobit and xteprobit are implied by the triangular

structure of the model. Specifically, the joint distribution of the endogenous variables is a product of

conditional and marginal distributions because the model is triangular. For a few of the many relevant

applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman (1976, 1979); chap-

ter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3, 17.5.2, and 19.7.1 in

Wooldridge (2010); andWooldridge (2014). Roodman (2011) and Bartus and Roodman (2014) used this

result to derive the formulas discussed below.

Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combined model
Confidence intervals
Likelihood for multiequation models

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasintro
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasEndogenouscovariates
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasTreatment
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasEndogenoussampleselection
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasprobitsel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulastobitsel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasRandomeffects
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasCombinedmodel
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasci
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaslikelihood
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Introduction
A probit regression of outcome 𝑦𝑖 on covariates x𝑖 may be written as

𝑦𝑖 = 1 (x𝑖β+ 𝜖𝑖 > 0)

where the errors 𝜖𝑖 are distributed as standard normal. The log likelihood is

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 {𝑦𝑖 lnΦ (x𝑖β) + (1 − 𝑦𝑖) lnΦ (−x𝑖β)}

where 𝑤𝑖 are the weights. The conditional probability of success is

𝐸 (𝑦𝑖|x𝑖) = Pr (𝑦𝑖 = 1|x𝑖) = Φ (x𝑖β)

The standard normal cumulative distribution function Φ(⋅) used in these expressions is a one-sided

probability that the random variable is below a certain point. In the models we describe later, it will be

useful to use two-sided probabilities. For two-sided probabilities, we define Φ∗
𝑑 with three inputs. The

first two inputs are 𝑑-dimensional row vectors l and u that have values in 𝐼𝑅 ∪ {−∞, ∞}, the extended
real line. The final input is a 𝑑 × 𝑑 real-valued and positive-definite matrix 𝚺.

Φ∗
𝑑(l,u, 𝚺) = ∫

𝑢1

𝑙1

. . .∫
𝑢𝑑

𝑙𝑑

𝜙𝑑(ε, 𝚺) 𝑑𝜖1 . . . 𝑑𝜖𝑑

where𝜙𝑑 is the density of amean 0, multivariate normal random variable. For details on the calculation of

Φ∗
𝑑, see [M-5] mvnormal( ). The probabilities are approximated using numeric integration. The number

of integration or quadrature points can be varied to attain better approximations. For trivariate errors,

we use the method of Drezner (1994). For four or more errors, we use the method of Miwa, Hayter, and

Kuriki (2003).

The lower and upper limits 𝑙1𝑖 and 𝑢1𝑖 on the unobserved 𝜖𝑖 are based on the observed values of 𝑦𝑖
and x𝑖 and are defined as

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

−x𝑖β 𝑦𝑖 = 1
𝑢1𝑖 =

⎧{
⎨{⎩

−x𝑖β 𝑦𝑖 = 0

∞ 𝑦𝑖 = 1
(1)

They let us rewrite the log likelihood concisely as

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 lnΦ∗
1(𝑙1𝑖, 𝑢1𝑖, 1)

The conditional probability of success can be written using similar notation:

Pr (𝑦𝑖 = 1|x𝑖) = Φ∗
1(−x𝑖β, ∞, 1) (2)

Endogenous covariates

Continuous endogenous covariates

A probit regression of 𝑦𝑖 on exogenous covariates x𝑖 and 𝐶 continuous endogenous covariates w𝑐𝑖
has the form

𝑦𝑖 = 1 (x𝑖β+ w𝑐𝑖β𝑐 + 𝜖𝑖 > 0)
w𝑐𝑖 = z𝑐𝑖A𝑐 + ε𝑐𝑖

https://www.stata.com/manuals/m-5mvnormal.pdf#m-5mvnormal()
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The vector z𝑐𝑖 contains variables from x𝑖 and other covariates that affect w𝑐𝑖. The unobserved errors

𝜖𝑖 and ε𝑐𝑖 are multivariate normal with mean 0 and covariance

[ 1 𝛔′
1𝑐

𝛔1𝑐 𝚺𝑐
]

We can write the joint density of the dependent variables as a product:

𝑓(𝑦𝑖,w𝑐𝑖|x𝑖, z𝑐𝑖) = 𝑓(𝑦𝑖|w𝑐𝑖, x𝑖, z𝑐𝑖)𝑓(w𝑐𝑖|x𝑖, z𝑐𝑖)

The conditional density of w𝑐𝑖 is

𝑓(w𝑐𝑖|x𝑖, z𝑐𝑖) = 𝜙𝐶(w𝑐𝑖 − z𝑐𝑖A𝑐, 𝚺𝑐)

Note that

Pr(𝑦𝑖 = 1|w𝑐𝑖, x𝑖, z𝑐𝑖) = Pr(x𝑖β+ w𝑐𝑖β𝑐 + 𝜖𝑖 > 0|w𝑐𝑖, x𝑖, z𝑐𝑖)

So the conditional density of 𝑦𝑖 can be written as a probability for 𝜖𝑖. Thus, the conditional distribution

of 𝜖𝑖 can be used to find the conditional density of 𝑦𝑖. Conditional on the endogenous and exogenous

covariates, 𝜖𝑖 has mean and variance

𝐸 (𝜖𝑖|w𝑐𝑖, x𝑖, z𝑐𝑖) = 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′

Var (𝜖𝑖|w𝑐𝑖, x𝑖, z𝑐𝑖) = 1 − 𝛔′
1𝑐𝚺−1

𝑐 𝛔1𝑐

The conditional mean is used in the lower and upper limits for the 𝑦𝑖 probability, which are

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

−x𝑖β− 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′ 𝑦𝑖 = 1

𝑢1𝑖 =
⎧{
⎨{⎩

−x𝑖β− 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′ 𝑦𝑖 = 0

∞ 𝑦𝑖 = 1

Using these limits, the conditional variance, and the conditional density of w𝑐𝑖, we obtain the log

likelihood

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 { lnΦ∗
1 (𝑙1𝑖, 𝑢1𝑖, 1 − 𝛔′

1𝑐𝚺−1
𝑐 𝛔1𝑐) + ln𝜙𝐶(w𝑐𝑖 − z𝑐𝑖A𝑐, 𝚺𝑐)}

Letting

𝑙1𝑖1 = −x𝑖β− 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′

𝑢1𝑖1 = ∞

the conditional probability of success is

Pr (𝑦𝑖 = 1|w𝑐𝑖, x𝑖, z𝑐𝑖) = Φ∗
1(𝑙1𝑖1, 𝑢1𝑖1, 1 − 𝛔′

1𝑐𝚺−1
𝑐 𝛔1𝑐)
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Binary and ordinal endogenous covariates

Here we begin by formulating the probit regression of 𝑦𝑖 on exogenous covariates x𝑖 and 𝐵 binary

and ordinal endogenous covariates w𝑏𝑖 = [𝑤𝑏1𝑖, . . . , 𝑤𝑏𝐵𝑖]. Indicator (dummy) variables for the levels
of each binary and ordinal covariate are used in the model. You can also interact other covariates with

the binary and ordinal endogenous covariates, as in treatment-effect models.

Let 𝑗 = 1, . . . , 𝐵. We use a probit model for binary endogenous covariates

𝑤𝑏𝑗𝑖 = 1 (z𝑏𝑗𝑖α𝑏𝑗 + 𝜖𝑏𝑗𝑖 > 0)

For ordinal endogenous covariate 𝑤𝑏𝑗𝑖 that takes values 𝑣𝑏𝑗1, . . . , 𝑣𝑏𝑗𝐵𝑗
with covariates z𝑏𝑗𝑖, we have the

ordered probit model

𝑤𝑏𝑗𝑖 = 𝑣𝑏𝑗ℎ iff 𝜅𝑏𝑗(ℎ−1) < z𝑏𝑗𝑖α𝑏𝑗 + 𝜖𝑏𝑗𝑖 ≤ 𝜅𝑏𝑗ℎ (3)

The values 𝑣𝑏𝑗1, . . . , 𝑣𝑏𝑗𝐵𝑗
are real numbers such that 𝑣𝑏𝑗ℎ < 𝑣𝑏𝑗𝑚 for ℎ < 𝑚. 𝜅𝑏𝑗0 is taken as −∞ and

𝜅𝑏𝑗𝐵𝑗
is taken as +∞. The errors 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 are multivariate normal with mean 0 and covariance

𝚺𝑏 =
⎡
⎢⎢
⎣

1 𝜌𝑏12 · · · 𝜌𝑏1𝐵
𝜌𝑏12 1 · · · 𝜌𝑏2𝐵

⋮ ⋮ ⋱ ⋮
𝜌𝑏1𝐵 𝜌𝑏2𝐵 · · · 1

⎤
⎥⎥
⎦

Because the covariate 𝑤𝑏𝑗𝑖 is binary or ordinal, the effect of each category in the outcome equation is

made with an indicator variable.

wind𝑏𝑗𝑖 = ⎡
⎢
⎣

1(𝑤𝑏𝑗𝑖 = 𝑣𝑏𝑗1)
⋮

1(𝑤𝑏𝑗𝑖 = 𝑣𝑏𝑗𝐵𝑗
)
⎤
⎥
⎦

′

(4)

The model for the outcome can be formulated with or without different correlation parameters

for each level of w𝑏𝑖. Level-specific parameters are obtained by specifying pocorrelation in the

endogenous() option.

If the correlation parameters are not level specific, we have

𝑦𝑖 = 1(x𝑖β+ wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖𝑖 > 0)

where the outcome error 𝜖𝑖 and binary and ordinal endogenous errors 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 are multivariate

normal with mean 0 and covariance

𝚺 = [ 1 ρ′
1𝑏

ρ1𝑏 𝚺𝑏
]

From here, we discuss the model with ordinal endogenous covariates. The results for binary endoge-

nous covariates are similar.

For 𝑗 = 1, . . . , 𝐵 and ℎ = 0, . . . , 𝐵𝑗, let

𝑐𝑏𝑗𝑖ℎ =

⎧{{{
⎨{{{⎩

−∞ ℎ = 0

𝜅𝑏𝑗ℎ − z𝑏𝑗𝑖α𝑏𝑗 ℎ = 1, . . . , 𝐵𝑗 − 1

∞ ℎ = 𝐵𝑗
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The probability for 𝑤𝑏𝑗𝑖 has lower limit

𝑙𝑏𝑗𝑖 = 𝑐𝑏𝑗𝑖(ℎ−1) if 𝑤𝑏𝑗𝑖 = 𝑣𝑏𝑗ℎ (5)

and upper limit

𝑢𝑏𝑗𝑖 = 𝑐𝑏𝑗𝑖ℎ if 𝑤𝑏𝑗𝑖 = 𝑣𝑏𝑗ℎ (6)

Letting

𝑐𝑏𝑖 = −x𝑖β− wind𝑏1𝑖β𝑏1 − · · · − wind𝑏𝐵𝑖β𝑏𝐵

the lower and upper limits for the 𝑦𝑖 probability are

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

𝑐𝑏𝑖 𝑦𝑖 = 1
𝑢1𝑖 =

⎧{
⎨{⎩

𝑐𝑏𝑖 𝑦𝑖 = 0

∞ 𝑦𝑖 = 1

and

l𝑖 = [𝑙1𝑖 𝑙𝑏1𝑖 . . . 𝑙𝑏𝐵𝑖]
u𝑖 = [𝑢1𝑖 𝑢𝑏1𝑖 . . . 𝑢𝑏𝐵𝑖]

The log likelihood for this model is

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 lnΦ∗
𝐵+1(l𝑖,u𝑖, 𝚺)

Now let

l𝑏𝑖 = [𝑙𝑏1𝑖 . . . 𝑙𝑏𝐵𝑖]
u𝑏𝑖 = [𝑢𝑏1𝑖 . . . 𝑢𝑏𝐵𝑖]
l𝑖1 = [−∞ l𝑏𝑖]
u𝑖1 = [𝑐𝑏𝑖 u𝑏𝑖]

The conditional probability of success is

Pr(𝑦𝑖 = 1|x𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖,w𝑏𝑖) =
Φ∗

𝐵+1(l𝑖1,u𝑖1, 𝚺)
Φ∗

𝐵(l𝑏𝑖,u𝑏𝑖, 𝚺𝑏)

When the endogenous ordinal variables are different treatments, holding the correlation parameters

constant over the treatment levels is a constrained form of the potential-outcome model. In an uncon-

strained potential-outcomemodel, the correlations between the outcome and the treatments—the endoge-

nous ordinal regressors w𝑏𝑖—vary over the levels of each treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each treat-

ment. For example, when the endogenous treatment variable 𝑤1 has three levels (0, 1, and 2) and the

endogenous treatment variable𝑤2 has four levels (0, 1, 2, and 3), the unconstrained model has 12 = 3×4

outcome errors. Because there is a different correlation between each potential outcome and each en-

dogenous treatment, there are 2 × 12 correlation parameters between the potential outcomes and the

treatments in this example model.
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We denote the number of different combinations of values for the endogenous treatments w𝑏𝑖 by 𝑀,

and we denote the vector of values in each combination by v𝑗 (𝑗 ∈ {1, 2, . . . , 𝑀}). Letting 𝑘𝑤𝑝 be

the number of levels of endogenous ordinal treatment variable 𝑝 ∈ {1, 2, . . . , 𝐵} implies that 𝑀 =
𝑘𝑤1 × 𝑘𝑤2 × · · · × 𝑘𝑤𝐵.

Denoting the outcome errors 𝜖1𝑖, . . . , 𝜖𝑀𝑖, we have

𝑦1𝑖 = 1(x𝑖β+ wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖1𝑖 > 0)
⋮

𝑦𝑀𝑖 = 1(x𝑖β+ wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖𝑀𝑖 > 0)

𝑦𝑖 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗)𝑦𝑗𝑖

For 𝑗 = 1, . . . , 𝑀, the outcome error 𝜖𝑗𝑖 and the endogenous errors 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 are multivariate

normal with 0 mean and covariance

𝚺𝑗 = [
1 ρ′

𝑗1𝑏
ρ𝑗1𝑏 𝚺𝑏

]

Now let

𝚺𝑖,𝑏 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗)𝚺𝑗

Now the log likelihood for this model is

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 lnΦ∗
𝐵+1(l𝑖,u𝑖, 𝚺𝑖,𝑏)

The conditional probability of success is

Pr(𝑦𝑖 = 1|x𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖,w𝑏𝑖) =
Φ∗

𝐵+1(l𝑖1,u𝑖1, 𝚺𝑖,𝑏)
Φ∗

𝐵(l𝑏𝑖,u𝑏𝑖, 𝚺𝑏)

Treatment
In the potential-outcomes framework, the treatment 𝑡𝑖 is a discrete variable taking 𝑇 values, indexing

the 𝑇 potential outcomes of the outcome 𝑦𝑖: 𝑦1𝑖, . . . , 𝑦𝑇 𝑖.

When we observe treatment 𝑡𝑖 with levels 𝑣1, . . . , 𝑣𝑇, we have

𝑦𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝑦𝑗𝑖

So for each observation, we observe only the potential outcome associated with that observation’s treat-

ment value.

For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect

estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment

process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to

what we provide here for endogenous treatments. The treatment effect on the treated for x𝑖 for an exoge-

nous treatment is equivalent to what we provide here for the endogenous treatment when the correlation

parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs) and

POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what we

describe here for endogenous treatments.

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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From here, we assume an endogenous treatment 𝑡𝑖. For ordinal treatment 𝑡𝑖 with covariates z𝑡𝑖, we

have the ordered probit model

𝑡𝑖 = 𝑣ℎ iff 𝜅ℎ−1 < z𝑡𝑖α𝑡 + 𝜖𝑡𝑖 ≤ 𝜅ℎ (7)

The treatment values 𝑣1, . . . , 𝑣𝑇 are real numbers such that 𝑣ℎ < 𝑣𝑚 for ℎ < 𝑚. 𝜅0 is taken as −∞ and

𝜅𝑇 is taken as +∞. The treatment error 𝜖𝑡𝑖 is standard normal.

We use a probit model for binary treatments that take values in {0, 1},

𝑡𝑖 = 1 (z𝑡𝑖α𝑡 + 𝜖𝑡𝑖 > 0)

A probit regression of 𝑦𝑖 on exogenous covariates x𝑖 and endogenous treatment 𝑡𝑖 taking values

𝑣1, . . . , 𝑣𝑇 has the form

𝑦1𝑖 = 1 (x𝑖β1 + 𝜖1𝑖 > 0)
⋮

𝑦𝑇 𝑖 = 1 (x𝑖β𝑇 + 𝜖𝑇 𝑖 > 0)

𝑦𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝑦𝑗𝑖

This model can be formulated with or without different correlation parameters for each potential

outcome. Potential-outcome specific parameters are obtained by specifying pocorrelation in the

entreat() option.

If the correlation parameters are not potential-outcome specific, for 𝑗 = 1, . . . , 𝑇, 𝜖𝑗𝑖 and 𝜖𝑡𝑖 are

bivariate normal with mean 0 and covariance

𝚺 = [ 1 𝜌1𝑡
𝜌1𝑡 1 ]

The treatment is exogenous if 𝜌1𝑡 = 0. Note that we did not specify the structure of the correlations

between the potential-outcome errors. We do not need information about these correlations to estimate

POMs and treatment effects because all covariates and the outcome are observed in observations from

each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment

models are similar. Because the unobserved errors are bivariate normal, we can express the log likelihood

in terms of the Φ∗
2 function.

For 𝑗 = 1, . . . , 𝑇, let
𝑐1𝑖𝑗 = −x𝑖β𝑗

The lower and upper limits for the 𝑦𝑖 probability are

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

𝑐1𝑖𝑗 𝑦𝑖 = 1, 𝑡𝑖 = 𝑣𝑗

𝑢1𝑖 =
⎧{
⎨{⎩

𝑐1𝑖𝑗 𝑦𝑖 = 0, 𝑡𝑖 = 𝑣𝑗

∞ 𝑦𝑖 = 1
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For 𝑗 = 0, . . . , 𝑇, define

𝑐𝑡𝑖𝑗 =

⎧{{{
⎨{{{⎩

−∞ 𝑗 = 0

𝜅𝑗 − z𝑡𝑖α𝑡 𝑗 = 1, . . . , 𝑇 − 1

∞ 𝑗 = 𝑇

So for the 𝑡𝑖 probability, we have lower limit

𝑙𝑡𝑖 = 𝑐𝑡𝑖(𝑗−1) if 𝑡𝑖 = 𝑣𝑗 (8)

and upper limit

𝑢𝑡𝑖 = 𝑐𝑡𝑖𝑗 if 𝑡𝑖 = 𝑣𝑗 (9)

The log likelihood for the model is

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 lnΦ∗
2([𝑙1𝑖 𝑙𝑡𝑖], [𝑢1𝑖 𝑢𝑡𝑖], 𝚺)

The conditional probability of obtaining treatment level 𝑣ℎ is

Pr(𝑡𝑖 = 𝑣ℎ|z𝑡𝑖) = Φ∗
1(𝑐𝑡𝑖(ℎ−1), 𝑐𝑡𝑖ℎ, 1)

The conditional probability of success at treatment level 𝑣𝑗 is

Pr(𝑦𝑖 = 1|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣𝑗) =
Φ∗

2([𝑐1𝑖𝑗 𝑐𝑡𝑖(𝑗−1)], [∞ 𝑐𝑡𝑖𝑗], 𝚺)
Φ∗

1(𝑐𝑡𝑖(𝑗−1), 𝑐𝑡𝑖𝑗, 1)

The conditional POM for treatment group 𝑗 is

POM𝑗(x𝑖) = 𝐸 (𝑦𝑗𝑖|x𝑖) = Φ∗
1(𝑐1𝑖𝑗, ∞, 1)

Conditional on the covariates x𝑖 and z𝑡𝑖 and the treatment 𝑡𝑖 = 𝑣ℎ, the POM for treatment group 𝑗 is

POM𝑗(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ)

=
Φ∗

2([𝑐1𝑖𝑗 𝑐𝑡𝑖(ℎ−1)], [∞ 𝑐𝑡𝑖ℎ], 𝚺)
Φ∗

1(𝑐𝑡𝑖(ℎ−1), 𝑐𝑡𝑖ℎ, 1)

The treatment effect 𝑦𝑗𝑖 − 𝑦1𝑖 is the difference in the outcome for individual 𝑖 if the individual receives
the treatment 𝑡𝑖 = 𝑣𝑗 instead of the control 𝑡𝑖 = 𝑣1 and what the difference would have been if the

individual received the control treatment instead.

For treatment group 𝑗, the treatment effect (TE) conditioned on x𝑖 is

TE𝑗(x𝑖) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖) = POM𝑗(x𝑖) − POM1(x𝑖)

For treatment group 𝑗, the treatment effect on the treated (TET) in treatment group ℎ conditioned on

x𝑖 and z𝑡𝑖 is

TET𝑗(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ)
= POM𝑗(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ) − POM1(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ)
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We can take the expectation of these conditional predictions over the covariates to get population

average parameters. The margins command is used to estimate the expectations as predictive margins

once the model is fit with eprobit. The POM for treatment group 𝑗 is

POM𝑗 = 𝐸 (𝑦𝑗𝑖) = 𝐸 {POM𝑗(x𝑖)}

The ATE for treatment group 𝑗 is

ATE𝑗 = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖) = 𝐸 {TE𝑗(x𝑖)}

For treatment group 𝑗, the average treatment effect on the treated (ATET) in treatment group ℎ is

ATET𝑗ℎ = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|𝑡𝑖 = 𝑣ℎ)
= 𝐸 {TET𝑗(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ)|𝑡𝑖 = 𝑣ℎ}

If the correlation parameters are potential-outcome specific, for 𝑗 = 1, . . . , 𝑇, 𝜖𝑗𝑖 and 𝜖𝑡𝑖 are bivariate

normal with mean 0 and covariance

𝚺𝑗 = [ 1 𝜌𝑗1𝑡
𝜌𝑗1𝑡 1 ]

Now define

𝚺𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝚺𝑗

The log likelihood for the potential-outcome specification correlation model is

ln𝐿 =
𝑁

∑
𝑖=1

𝑤𝑖 lnΦ∗
2([𝑙1𝑖 𝑙𝑡𝑖], [𝑢1𝑖 𝑢𝑡𝑖], 𝚺𝑖)

The conditional probability of success at treatment level 𝑣𝑗 is

Pr(𝑦𝑖 = 1|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣𝑗) =
Φ∗

2([𝑐1𝑖𝑗 𝑐𝑡𝑖(𝑗−1)], [∞ 𝑐𝑡𝑖𝑗], 𝚺𝑗)
Φ∗

1(𝑐𝑡𝑖(𝑗−1), 𝑐𝑡𝑖𝑗, 1)

The conditional POM for exogenous covariates x𝑖 and treatment group 𝑗 has the same definition as in
the single correlation case. However, when we also condition on the treatment level 𝑡𝑖 = 𝑣ℎ and z𝑡𝑖, the

POM for treatment group 𝑗 is

POM𝑗(x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣ℎ)

=
Φ∗

2([𝑐1𝑖𝑗 𝑐𝑡𝑖(ℎ−1)], [∞ 𝑐𝑡𝑖ℎ], 𝚺𝑗)
Φ∗

1(𝑐𝑡𝑖(ℎ−1), 𝑐𝑡𝑖ℎ, 1)

Treatment effects are formulated as in the single correlation case but using these updated POM defini-

tions. We can take the expectation of these conditional predictions over the covariates to get population-

averaged parameters. The estat teffects or margins command is used to estimate the expectations

as predictive margins once the model is fit with eprobit.

https://www.stata.com/manuals/rmargins.pdf#rmargins
https://www.stata.com/manuals/ermestatteffects.pdf#ermestatteffects
https://www.stata.com/manuals/rmargins.pdf#rmargins
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Endogenous sample selection

Probit endogenous sample selection

A probit model for outcome 𝑦𝑖 with selection on 𝑠𝑖 has the form

𝑦𝑖 = 1 (x𝑖β+ 𝜖𝑖 > 0)
𝑠𝑖 = 1 (z𝑠𝑖α𝑠 + 𝜖𝑠𝑖 > 0)

where x𝑖 are covariates that affect the outcome and z𝑠𝑖 are covariates that affect selection. The outcome

𝑦𝑖 is observed if 𝑠𝑖 = 1 and not observed if 𝑠𝑖 = 0. The unobserved errors 𝜖𝑖 and 𝜖𝑠𝑖 are normal with

mean 0 and covariance

𝚺 = [ 1 𝜌1𝑠
𝜌1𝑠 1 ]

The lower and upper limits for the 𝑦𝑖 probability, 𝑙1𝑖 and 𝑢1𝑖, are as defined in (1). For the selection

indicator, we have lower and upper limits

𝑙𝑠𝑖 =
⎧{
⎨{⎩

−∞ 𝑠𝑖 = 0

−z𝑠𝑖α𝑠 𝑠𝑖 = 1
𝑢𝑠𝑖 =

⎧{
⎨{⎩

−z𝑠𝑖α𝑠 𝑠𝑖 = 0

∞ 𝑠𝑖 = 1
(10)

The log likelihood for the model is

ln𝐿 = ∑
𝑖∈𝑆

𝑤𝑖 lnΦ∗
2([𝑙1𝑖 𝑙𝑠𝑖], [𝑢1𝑖 𝑢𝑠𝑖], 𝚺) +

∑
𝑖∉𝑆

𝑤𝑖 lnΦ∗
1(𝑙𝑠𝑖, 𝑢𝑠𝑖, 1)

where 𝑆 is the set of observations for which 𝑦𝑖 is observed.

In this model, the probability of success is usually predicted conditional on the covariates x𝑖 and not

on the selection status 𝑠𝑖. The formulas for the conditional probability are thus the same as in (2).

The conditional probability of selection is

Pr (𝑠𝑖 = 1|z𝑠𝑖) = Φ∗
1(−z𝑠𝑖α𝑠, ∞, 1)

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses

a censored continuous sample-selection indicator. We allow the selection variable to be left- or right-

censored.

A probit model for outcome 𝑦𝑖 with tobit selection on 𝑠𝑖 has the form

𝑦𝑖 = 1 (x𝑖β+ 𝜖𝑖 > 0)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq1
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq2
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We observe the selection indicator 𝑠𝑖, which indicates the censoring status of the latent selection variable

𝑠⋆
𝑖 ,

𝑠⋆
𝑖 = z𝑠𝑖α𝑠 + 𝜖𝑠𝑖

𝑠𝑖 =

⎧{{{
⎨{{{⎩

𝑙𝑖 𝑠⋆
𝑖 ≤ 𝑙𝑖

𝑠⋆
𝑖 𝑙𝑖 < 𝑠⋆

𝑖 < 𝑢𝑖

𝑢𝑖 𝑠⋆
𝑖 ≥ 𝑢𝑖

where z𝑠𝑖 are covariates that affect selection and 𝑙𝑖 and 𝑢𝑖 are fixed lower and upper limits.

The outcome 𝑦𝑖 is observed when 𝑠⋆
𝑖 is not censored (𝑙𝑖 < 𝑠⋆

𝑖 < 𝑢𝑖). The outcome 𝑦𝑖 is not observed

when 𝑠⋆
𝑖 is left-censored (𝑠⋆

𝑖 ≤ 𝑙𝑖) or 𝑠⋆
𝑖 is right-censored (𝑠⋆

𝑖 ≥ 𝑢𝑖). The unobserved errors 𝜖𝑖 and 𝜖𝑠𝑖 are

normal with mean 0 and covariance

[ 1 𝜌1𝑠𝜎𝑠
𝜌1𝑠𝜎𝑠 𝜎2

𝑠
]

For the selected observations, we can treat 𝑠𝑖 as a continuous endogenous regressor, as in Contin-

uous endogenous covariates. In fact, 𝑠𝑖 may even be used as a regressor for 𝑦𝑖 in eprobit (specify

tobitselect(. . . main)). On the nonselected observations, we treat 𝑠𝑖 like the probit endogenous

sample-selection indicator in Probit endogenous sample selection.

For nonselected observations, we have

Pr(𝑠⋆
𝑖 ≤ 𝑙𝑖|z𝑠𝑖, x𝑖) = Pr(z𝑠𝑖α𝑠 + 𝜖𝑠𝑖 ≤ 𝑙𝑖)

= Φ (𝑙𝑖 − z𝑠𝑖α𝑠
𝜎𝑠

)

and

Pr(𝑠⋆
𝑖 ≥ 𝑢𝑖|z𝑠𝑖, x𝑖) = Pr(z𝑠𝑖α𝑠 + 𝜖𝑠𝑖 ≥ 𝑢𝑖)

= Φ (z𝑠𝑖α𝑠 − 𝑢𝑖
𝜎𝑠

)

The lower and upper limits for the 𝑠𝑖 probability for nonselected observations where 𝑠⋆
𝑖 is left-censored

are

𝑙𝑙𝑖 = −∞

𝑢𝑙𝑖 = 𝑙𝑖 − z𝑠𝑖α𝑠
𝜎𝑠

The lower and upper limits for the 𝑠𝑖 probability for nonselected observations where 𝑠⋆
𝑖 is right-censored

are

𝑙𝑢𝑖 = 𝑢𝑖 − z𝑠𝑖α𝑠
𝜎𝑠

𝑢𝑢𝑖 = ∞

Now we consider the selected observations. For 𝑠𝑖 = 𝑠⋆
𝑖 = 𝑆𝑖, we can write the joint density of the

dependent variables as a product,

𝑓(𝑦𝑖, 𝑠𝑖 = 𝑆𝑖|x𝑖, z𝑠𝑖) = 𝑓(𝑦𝑖|𝑠𝑖 = 𝑆𝑖, x𝑖, z𝑠𝑖)𝑓(𝑠𝑖 = 𝑆𝑖|x𝑖, z𝑠𝑖)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulasprobitsel
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The marginal density of 𝑠𝑖 = 𝑆𝑖 is

𝑓(𝑠𝑖 = 𝑆𝑖|x𝑖, z𝑠,𝑖) = 𝜙(𝑆𝑖 − z𝑠𝑖α𝑠, 𝜎2
𝑠)

The conditional density of 𝑦𝑖 can be written as a probability for 𝜖𝑖. Thus, the conditional distribution

of 𝜖𝑖 can be used to find the conditional density of 𝑦𝑖. Conditional on 𝑠𝑖 = 𝑆𝑖, 𝜖𝑖 has mean and variance

𝐸 (𝜖𝑖|𝑠𝑖 = 𝑆𝑖, x𝑖, z𝑠𝑖) = 𝜌1𝑠𝜎−1
𝑠 (𝑆𝑖 − z𝑠𝑖α)

Var (𝜖𝑖|𝑠𝑖 = 𝑆𝑖, x𝑖, z𝑠𝑖) = 1 − 𝜌2
1,𝑠

The conditional mean is used in the lower and upper limits for the 𝑦𝑖 probability for selected obser-

vations, which are

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

−x𝑖β− 𝜌1𝑠𝜎−1
𝑠 (𝑠𝑖 − z𝑠𝑖α) 𝑦𝑖 = 1

𝑢1𝑖 =
⎧{
⎨{⎩

−x𝑖β− 𝜌1𝑠𝜎−1
𝑠 (𝑠𝑖 − z𝑠𝑖α) 𝑦𝑖 = 0

∞ 𝑦𝑖 = 1

It follows that the log likelihood is

ln𝐿 = ∑
𝑖∈𝑆

𝑤𝑖 { lnΦ∗
1(𝑙1𝑖, 𝑢1𝑖, 1 − 𝜌2

1𝑠) + ln𝜙(𝑠𝑖 − z𝑠𝑖α𝑠, 𝜎2
𝑠)}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
1(𝑙𝑙𝑖, 𝑢𝑙𝑖, 1)

+ ∑
𝑖∈𝑈

𝑤𝑖 lnΦ∗
1(𝑙𝑢𝑖, 𝑢𝑢𝑖, 1)

where 𝑆 is the set of observations for which 𝑦𝑖 is observed, 𝐿 is the set of observations where 𝑠⋆
𝑖 is

left-censored, and 𝑈 is the set of observations where 𝑠⋆
𝑖 is right-censored.

The probability of success conditional on 𝑠𝑖 = 𝑠⋆
𝑖 = 𝑆𝑖 is

Pr(𝑦𝑖 = 1|x𝑖, 𝑠𝑖 = 𝑠⋆
𝑖 = 𝑆𝑖) = Φ∗

1{−x𝑖β− 𝜌1𝑠𝜎−1
𝑠 (𝑆𝑖 − z𝑠𝑖α) , ∞, 1 − 𝜌2

1𝑠}

If we do not include 𝑠𝑖 in the main outcome equation, the probability of success is calculated as (2)

again.

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq2
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Random effects
For a probit regression with random effects, we observe panel data. For panel 𝑖 = 1, . . . , 𝑁 and

observation 𝑗 = 1, . . . , 𝑁𝑖, a probit regression of outcome 𝑦𝑖𝑗 on covariates x𝑖𝑗 may be written as

𝑦𝑖𝑗 = 1 (x𝑖𝑗β+ 𝜖𝑖𝑗 + 𝑢𝑖 > 0)

The random effect 𝑢𝑖 is normal with mean 0 and variance 𝜎2
𝑢. It is independent of the observation-level

error 𝜖𝑖𝑗, which is standard normal.

We derive the likelihood by using the conditional density of 𝑦𝑖𝑗 on the random effect 𝑢𝑖 and the

marginal density of 𝑢𝑖. Multiplying them together, we have the joint density, which is integrated over

𝑢𝑖.

Let

𝑙𝑖𝑗(𝑢) = 𝑦𝑖𝑗Φ (x𝑖𝑗β+ 𝑢) + (1 − 𝑦𝑖𝑗)Φ (−x𝑖𝑗β− 𝑢)

The likelihood for panel 𝑖 is

𝐿𝑖 = ∫
∞

−∞
𝜙 ( 𝑢𝑖

𝜎𝑢
)

𝑁𝑖

∏
𝑗=1

𝑙𝑖𝑗(𝑢𝑖)𝑑𝑢𝑖

We can approximate this integral using Gauss–Hermite quadrature. For 𝑞-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (𝑎𝑘𝑖, 𝑤𝑘𝑖), 𝑘 = 1, . . . , 𝑞. Then, the Gauss–
Hermite quadrature approximation is

∫
∞

−∞
𝑓(𝑥) exp(−𝑥2) 𝑑𝑥 ≈

𝑞

∑
𝑘=1

𝑤𝑘𝑖𝑓(𝑎𝑘𝑖)

The default approximation used by xteprobit is mean–variance adaptive Gauss–Hermite quadra-

ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation models

in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite quadrature.

Using the quadrature approximation, the log likelihood is

ln𝐿 =
𝑁

∑
𝑖=1

ln{
𝑞

∑
𝑘=1

𝑤𝑘𝑖

𝑁𝑖

∏
𝑗=1

𝑙𝑖𝑗(𝜎𝑢𝑎𝑘𝑖)}

Now we will derive the conditional probability of success. This is similar to what was given in

Introduction, but the variance input to Φ⋆
1 is the variance of the random effect plus the observation-level

error.

First, let

𝜉𝑖𝑗 = 𝜖𝑖𝑗 + 𝑢𝑖

where 𝜉𝑖𝑗 is normal with mean 0 and variance 𝜎2
𝜉 = 1 + 𝜎2

𝑢.

Then, the conditional probability of success is

Pr (𝑦𝑖𝑗 = 1|x𝑖𝑗) = Φ∗
1(−x𝑖𝑗β, ∞, 𝜎2

𝜉)
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Combined model
Here we present the likelihood for the probit model with continuous endogenous covariates, ordinal

endogenous covariates, an ordinal endogenous treatment, and endogenous sample selection. This com-

bines all the extensions to the standard probit model that are supported by eprobit. In Likelihood for

multiequation models, we describe the general framework for ERMs with multiple features and show

how random effects may be combined with other features, how xteprobit can support the other ERM

features.

Deriving the combined model with tobit rather than probit endogenous sample selection is straightfor-

ward. On selected observations, the selection indicator would be treated like a continuous endogenous

covariate. On nonselected observations, the model would be identical to the combined model with probit

selection. The correlations between the outcome errors and other errors are also the same between treat-

ment groups and levels of ordinal endogenous covariates. Deriving the model with different correlations

for the treatment groups and endogenous covariate groups is straightforward. Take the likelihood given

here in this section, and use a different covariance matrix depending on the levels of treatment and the

ordinal endogenous covariates.

In this model, the treatment 𝑡𝑖 takes 𝑇 values, indexing the potential outcomes of the main outcome

𝑦𝑖: 𝑦1𝑖, . . . , 𝑦𝑇 𝑖. The relationship between the ordinal treatment 𝑡𝑖, treatment covariates z𝑡,𝑖, and error

𝜖𝑡𝑖 is described in (7). For 𝑗 = 1, . . . , 𝐵, the relationship between the ordinal endogenous covariates

𝑤𝑏𝑗𝑖, exogenous covariates z𝑏𝑗𝑖, and error 𝜖𝑏𝑗𝑖 is given in (3). The model also uses the wind𝑏𝑗𝑖 terms that

are defined in (4).

The probit regression of 𝑦𝑖 on exogenous covariates x𝑖, 𝐶 continuous endogenous covariatesw𝑐𝑖, and

𝐵 ordinal endogenous covariates w𝑏𝑖 = [𝑤𝑏1𝑖, . . . , 𝑤𝑏𝐵𝑖] with endogenous treatment 𝑡𝑖 and endogenous

sample selection on 𝑠𝑖 has the form

𝑦1𝑖 = 1 (x𝑖β1 + w𝑐𝑖β𝑐1 + wind𝑏1𝑖β𝑏11 + · · · + wind𝑏𝐵𝑖β𝑏𝐵1 + 𝜖1𝑖 > 0)
⋮

𝑦𝑇 𝑖 = 1 (x𝑖β𝑇 + w𝑐𝑖β𝑐𝑇 + wind𝑏1𝑖β𝑏1𝑇 + · · · + wind𝑏𝐵𝑖β𝑏𝐵𝑇 + 𝜖𝑇 𝑖 > 0)

𝑦𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝑦𝑗𝑖

w𝑐𝑖 = z𝑐𝑖A𝑐 + ε𝑐𝑖

𝑠𝑖 = 1 (z𝑠𝑖α𝑠 + 𝜖𝑠𝑖 > 0)

where z𝑠𝑖 are covariates that affect selection and z𝑐𝑖 are covariates that affect the continuous endogenous

covariates. The outcome 𝑦𝑖 is observed if 𝑠𝑖 = 1 and is not observed if 𝑠𝑖 = 0.

For 𝑗 = 1, . . . , 𝑇, the unobserved errors 𝜖𝑗𝑖, 𝜖𝑠𝑖, 𝜖𝑡𝑖, 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖, ε𝑐𝑖 are multivariate normal with

mean 0 and covariance

𝚺 =
⎡
⎢
⎢
⎢
⎣

1 𝜌1𝑠 𝜌1𝑡 ρ′
1𝑏 𝛔′

1𝑐
𝜌1𝑠 1 𝜌𝑠𝑡 ρ′

𝑠𝑏 𝛔′
𝑠𝑐

𝜌1𝑡 𝜌𝑠𝑡 1 ρ′
𝑡𝑏 𝛔′

𝑡𝑐
ρ1𝑏 ρ𝑠𝑏 ρ𝑡𝑏 𝚺𝑏 𝚺′

𝑏𝑐
𝛔1𝑐 𝛔𝑠𝑐 𝛔𝑡𝑐 𝚺𝑏𝑐 𝚺𝑐

⎤
⎥
⎥
⎥
⎦
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As in Continuous endogenous covariates, we can write the joint density of the dependent variables as

a product. We have

𝑓(𝑦𝑖, 𝑠𝑖, 𝑡𝑖,w𝑏𝑖,w𝑐𝑖|x𝑖, z𝑠𝑖, z𝑡𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖, z𝑐𝑖) =
𝑓(𝑦𝑖, 𝑠𝑖, 𝑡𝑖,w𝑏𝑖|w𝑐𝑖, x𝑖, z𝑠𝑖, z𝑡𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖, z𝑐𝑖)𝑓(w𝑐𝑖|z𝑐𝑖)

We can then use the conditional distribution of 𝜖𝑗𝑖, 𝜖𝑠𝑖, 𝜖𝑡𝑖, 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 to obtain the conditional density

of 𝑦𝑖, 𝑠𝑖, 𝑡𝑖, and w𝑏𝑖.

For 𝑗 = 1, . . . , 𝑇, conditional on w𝑐𝑖 and the exogenous covariates, 𝜖𝑗𝑖 has mean

𝑒1𝑖 = 𝐸 (𝜖𝑗𝑖|w𝑐𝑖, x𝑖, z𝑠𝑖, z𝑡𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖, z𝑐𝑖)

= 𝛔′
1,𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐,𝑖A𝑐)′

Now, for 𝑗 = 1, . . . , 𝑇, let

𝑐1𝑖𝑗 =

⎧{{{
⎨{{{⎩

−x𝑖β1 − w𝑐𝑖β𝑐,1 − wind𝑏1𝑖β𝑏11 − · · · − wind𝑏𝐵𝑖β𝑏𝐵1 − 𝑒1𝑖 𝑗 = 1

⋮

−x𝑖β𝑇 − w𝑐𝑖β𝑐𝑇 − wind𝑏1𝑖β𝑏1𝑇 − · · · − wind𝑏𝐵𝑖β𝑏𝐵𝑇 − 𝑒1𝑖 𝑗 = 𝑇

The lower and upper limits for the 𝑦𝑖 probability are

𝑙1𝑖 =
⎧{
⎨{⎩

−∞ 𝑦𝑖 = 0

𝑐1𝑖𝑗 𝑦𝑖 = 1, 𝑡𝑖 = 𝑣𝑗

𝑢1𝑖 =
⎧{
⎨{⎩

𝑐1𝑖𝑗 𝑦𝑖 = 0, 𝑡𝑖 = 𝑣𝑗

∞ 𝑦𝑖 = 1

The conditional means of the unobserved errors 𝜖𝑠𝑖, 𝜖𝑡𝑖, 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 have similar forms to 𝑒1𝑖.

Denote these means by 𝑒𝑠𝑖, 𝑒𝑡𝑖, 𝑒𝑏1𝑖, . . . , 𝑒𝑏𝐵𝑖. The lower and upper probability limits for 𝑠𝑖, 𝑡𝑖, and the

ordinal endogenous covariates are obtained by subtracting the means from the limits defined in (10), (8),

(9), (5), and (6).

𝑙∗𝑠𝑖 = 𝑙𝑠𝑖 − 𝑒𝑠𝑖

𝑢∗
𝑠𝑖 = 𝑢𝑠𝑖 − 𝑒𝑠𝑖

𝑙∗𝑡𝑖 = 𝑙𝑡𝑖 − 𝑒𝑡𝑖

𝑢∗
𝑡𝑖 = 𝑢𝑡𝑖 − 𝑒𝑡𝑖

𝑙∗𝑏1𝑖 = 𝑙𝑏1𝑖 − 𝑒𝑏1𝑖

𝑢∗
𝑏1𝑖 = 𝑢𝑏1𝑖 − 𝑒𝑏1𝑖

⋮
𝑙∗𝑏𝐵𝑖 = 𝑙𝑏𝐵𝑖 − 𝑒𝑏𝐵𝑖

𝑢∗
𝑏𝐵𝑖 = 𝑢𝑏𝐵𝑖 − 𝑒𝑏𝐵𝑖

We have lower and upper limits; we need a conditional covariance and the conditional density of

w𝑐𝑖 to formulate the likelihood. For 𝑗 = 1, . . . , 𝑇, conditional on w𝑐𝑖 and the exogenous covariates,

𝜖𝑗𝑖, 𝜖𝑠𝑖, 𝜖𝑡𝑖, 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 have covariance

𝚺𝑜|𝑐 =
⎡
⎢
⎢
⎣

1 𝜌1𝑠 𝜌1𝑡 ρ′
1𝑏

𝜌1𝑠 1 𝜌𝑠𝑡 ρ′
𝑠𝑏

𝜌1𝑡 𝜌𝑠𝑡 1 ρ′
𝑡𝑏

ρ1𝑏 ρ𝑠𝑏 ρ𝑡𝑏 𝚺𝑏

⎤
⎥
⎥
⎦

−
⎡
⎢⎢
⎣

𝛔′
1𝑐

𝛔′
𝑠𝑐

𝛔′
𝑡𝑐

𝚺′
𝑏𝑐

⎤
⎥⎥
⎦

𝚺−1
𝑐

⎡
⎢⎢
⎣

𝛔′
1𝑐

𝛔′
𝑠𝑐

𝛔′
𝑡𝑐

𝚺′
𝑏𝑐

⎤
⎥⎥
⎦

′

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq10
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq8
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq9
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq5
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq6


eprobit — Extended probit regression 25

The conditional density of w𝑐𝑖 is

𝑓(w𝑐𝑖|z𝑐𝑖) = 𝜙𝐶(w𝑐𝑖 − z𝑐𝑖A𝑐, 𝚺𝑐)

Let

l1𝑖 = [𝑙1𝑖 𝑙∗𝑠𝑖 𝑙∗𝑡𝑖 𝑙∗𝑏1𝑖 . . . 𝑙∗𝑏𝐵𝑖]
u1𝑖 = [𝑢1𝑖 𝑢∗

𝑠𝑖 𝑢∗
𝑡𝑖 𝑢∗

𝑏1𝑖 . . . 𝑢∗
𝑏𝐵𝑖]

l𝑖 = [𝑙∗𝑠𝑖 𝑙∗𝑡𝑖 𝑙∗𝑏1𝑖 . . . 𝑙∗𝑏𝐵𝑖]
u𝑖 = [𝑢∗

𝑠𝑖 𝑢∗
𝑡𝑖 𝑢∗

𝑏1𝑖 . . . 𝑢∗
𝑏𝐵𝑖]

The log likelihood of the model is

ln𝐿 = ∑
𝑖∈𝑆

𝑤𝑖 lnΦ∗
3+𝐵 (l1𝑖,u1𝑖, 𝚺𝑜|𝑐) +

∑
𝑖∉𝑆

𝑤𝑖 lnΦ∗
2+𝐵 (l𝑖,u𝑖, 𝚺𝑜|𝑐,−1) +

𝑁
∑
𝑖=1

𝑤𝑖 ln𝜙𝐶(w𝑐𝑖 − z𝑐𝑖A𝑐, 𝚺𝑐)

where 𝑆 is the set of observations where 𝑦𝑖 is observed and 𝚺𝑜|𝑐,−1 is 𝚺𝑜|𝑐 with the first row and column

removed.

As in previous sections, we use the joint and marginal probabilities to determine conditional proba-

bilities.

For 𝑗 = 1, . . . , 𝑇 and 𝑖 such that 𝑡𝑖 = 𝑣𝑗, let

l𝑖11 = [𝑐1𝑖𝑗 𝑙∗𝑡𝑖 𝑙∗𝑏1𝑖 . . . 𝑙∗𝑏𝐵𝑖]
u𝑖11 = [∞ 𝑢∗

𝑡𝑖 𝑢∗
𝑏1𝑖 . . . 𝑢∗

𝑏𝐵𝑖]
l𝑖12 = [𝑙∗𝑡𝑖 𝑙∗𝑏1𝑖 . . . 𝑙∗𝑏𝐵𝑖]
u𝑖12 = [𝑢∗

𝑡𝑖 𝑢∗
𝑏1𝑖 . . . 𝑢∗

𝑏𝐵𝑖]

Let 𝚺𝑜|𝑐,−𝑠 be 𝚺𝑜|𝑐 with the second row and column removed. This is the conditional covariance

matrix without the endogenous sample-selection equation components. Let 𝚺𝑜|𝑐,−𝑠−1 be 𝚺𝑜|𝑐,−𝑠 with

the first row and column removed.

The conditional probability of success at treatment level 𝑡𝑖 = 𝑣𝑗 is

Pr(𝑦𝑖 = 1|t𝑖 = 𝑣𝑗,w𝑏𝑖,w𝑐𝑖, x𝑖, z𝑠𝑖, z𝑡𝑖, z𝑏1𝑖, . . . , z𝑏𝐵𝑖, z𝑐𝑖) =
Φ∗

2+𝐵 (l𝑖11,u𝑖11, 𝚺𝑜|𝑐,−𝑠)

Φ∗
1+𝐵 (l𝑖12,u𝑖12, 𝚺𝑜|𝑐,−𝑠−1)

The conditional probabilities of treatment, selection, and the ordinal endogenous covariates are de-

rived in similar ways. We condition on the treatment and the other endogenous covariates together with

the exogenous covariates that affect the outcome. POMs and treatment effects are conditioned on the

endogenous and exogenous covariates. See Predictions using the full model in [ERM] eprobit postesti-

mation for more details.
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Confidence intervals
The estimated variances will always be nonnegative, and the estimated correlations will always fall

in (−1, 1). We use transformations to obtain confidence intervals that accommodate these ranges.

We use the log transformation to obtain the confidence intervals for variance parameters. Let 𝜎̂2 be a

point estimate for the variance parameter 𝜎2, and let ŜE(𝜎̂2) be its standard error. The (1 − 𝛼) × 100%
confidence interval for ln(𝜎2) is

ln(𝜎̂2) ± 𝑧𝛼/2
ŜE(𝜎̂2)

𝜎̂2

where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution. Let 𝑘𝑢 be the upper endpoint of

this interval, and let 𝑘𝑙 be the lower. The (1 − 𝛼) × 100% confidence interval for 𝜎2 is then given by

(𝑒𝑘𝑙 , 𝑒𝑘𝑢)

We use the inverse hyperbolic tangent transformation to obtain confidence intervals for correlation

parameters; for details on the hyperbolic functions, see [FN] Trigonometric functions. Let ̂𝜌 be a point

estimate for the correlation parameter 𝜌, and let ŜE( ̂𝜌) be its standard error. The (1−𝛼)×100% confidence

interval for atanh(𝜌) is
atanh( ̂𝜌) ± 𝑧𝛼/2ŜE( ̂𝜌) 1

1 − ̂𝜌2

where 𝑧𝛼/2 is the 1 − 𝛼/2 quantile of the standard normal distribution. Let 𝑘𝑢 be the upper endpoint of

this interval, and let 𝑘𝑙 be the lower. The (1 − 𝛼) × 100% confidence interval for 𝜌 is then given by

{tanh(𝑘𝑙), tanh(𝑘𝑢)}

Likelihood for multiequation models
The general framework for ERMs is formulated such that it accommodates multiple features. Binary

and ordinal endogenous covariates may occur together with continuous endogenous covariates in ERMs.

Endogenous covariates may also occur together with endogenous sample selection or treatments in ERMs.

Random effects may occur in any combination with the other features as well.

Here we show how the log likelihood is formulated when we have multiple auxiliary equations. We

begin with the cross-sectional case, where there are no random effects.

Suppose that we have 𝐻 auxiliary equations with endogenous outcomes 𝑦1𝑖, . . . , 𝑦𝐻𝑖. We will treat

the main outcome 𝑦𝑖 as stage 𝐽 = 𝐻 + 1, so 𝑦𝐽𝑖 = 𝑦𝑖. The ERMs that we fit with eintreg, eoprobit,
eprobit, and eregress are triangular, so we can order the equations such that the first depends only on

exogenous covariates—say, w1𝑖 = z𝑖—and for 𝑗 = 2, . . . , 𝐽, equation 𝑗 depends only on the exogenous
covariates z𝑖 and the endogenous covariates from equation ℎ = 𝑗 − 1 and 𝑦1𝑖, . . . , 𝑦ℎ𝑖 below. These are

stored together in w𝑗𝑖.

So we have

𝑦1𝑖 = 𝑔1𝑖(w1𝑖β1 + 𝑣1𝑖)
⋮

𝑦𝐻𝑖 = 𝑔𝐻𝑖(w𝐻𝑖β𝐻 + 𝑣𝐻𝑖)
𝑦𝑖 = 𝑦𝐽𝑖 = 𝑔𝐽𝑖(w𝐽𝑖β𝐽 + 𝑣𝐽𝑖)

https://www.stata.com/manuals/fntrigonometricfunctions.pdf#fnTrigonometricfunctions
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where the form of the functions 𝑔𝑗𝑖(⋅) is determined by whether the outcome 𝑦𝑗𝑖 has a linear, probit, or

interval model. The errors 𝑣1𝑖, . . . , 𝑣𝐽𝑖 are multivariate normal with mean 0 and covariance 𝚺.

The covariates w𝑗𝑖 and the outcome 𝑦𝑗𝑖 determine a range for the error 𝑣𝑗𝑖. For example, if 𝑦𝑗𝑖 has a

linear model, then 𝑣𝑗𝑖 = 𝑦𝑗𝑖 − w𝑗𝑖β𝑗, the residual. If 𝑦𝑗𝑖 = 1 and 𝑦𝑗𝑖 has a probit model, then 𝑣𝑗𝑖 is in

the range (−w𝑗𝑖β𝑗, ∞). If 𝑦𝑖𝑗 is left-censored at 𝑙𝑖, then 𝑣𝑗𝑖 is in the range (−∞, 𝑙𝑖 − w𝑗𝑖β𝑗).

The density of the endogenous variables can be represented using a multivariate normal density func-

tion that is evaluated at the residuals for the continuous outcomes and integrated over the error ranges of

the noncontinuous outcomes.

The conditional density of the error 𝑣𝑗𝑖 on w𝑗𝑖 has the form

𝑓(𝑣𝑗𝑖|w𝑗𝑖) =
∫
V⋆

ℎ𝑖
𝜙𝑗(𝑣1𝑖, . . . , 𝑣𝑗𝑖, 𝚺𝑗)𝑑v⋆

ℎ𝑖

∫
V⋆

ℎ𝑖
𝜙ℎ(𝑣1𝑖, . . . , 𝑣ℎ𝑖, 𝚺ℎ)𝑑v⋆

ℎ𝑖

where 𝚺𝑗 is the covariance of 𝑣1𝑖, . . . , 𝑣𝑗𝑖 and 𝚺ℎ is the covariance of 𝑣1𝑖, . . . , 𝑣ℎ𝑖, where ℎ = 𝑗−1. The

vector v⋆
ℎ𝑖 contains the errors that correspond to binary, ordinal, or censored outcomes in 𝑦1𝑖, . . . , 𝑦ℎ𝑖.

These outcomes induce the error ranges V⋆
ℎ𝑖, which we integrate over. The other errors are determined

by the outcomes and covariates as residuals.

If 𝑦𝑗𝑖 is continuous, then

𝑓(𝑦𝑗𝑖|w𝑗𝑖) = 𝑓(𝑣𝑗𝑖|w𝑗𝑖) (11)

When 𝑦𝑗𝑖 is a binary, ordinal, or censored outcome, we have

𝑓(𝑦𝑗𝑖|w𝑗𝑖) =
∫
V⋆

𝑗𝑖
𝜙𝑗(𝑣1𝑖, . . . , 𝑣𝑗𝑖, 𝚺𝑗)𝑑v⋆

𝑗𝑖

∫
V⋆

ℎ𝑖
𝜙ℎ(𝑣1𝑖, . . . , 𝑣ℎ𝑖, 𝚺ℎ)𝑑v⋆

ℎ𝑖
(12)

So we also integrate over the range of the error 𝑣𝑗𝑖 when 𝑦𝑗𝑖 is not continuous.

We can express the joint density of the main outcome and the endogenous covariates in terms of the

marginal and conditional densities. The denominator in (11) or (12) in the higher stage will cancel out

the numerator of (11) or (12) in the lower stage, so we have

𝑓(𝑦1𝑖, . . . , 𝑦𝑗𝑖|z𝑖) = ∫
V⋆

𝑗𝑖

𝜙𝑗(𝑣1𝑖, . . . , 𝑣𝑗𝑖, 𝚺𝑗)𝑑v⋆
𝑗𝑖 (13)

If we have only continuous endogenous variables, we have

𝑓(𝑦1𝑖, . . . , 𝑦𝑗𝑖|z𝑖) = 𝜙𝑗(𝑣1𝑖, . . . , 𝑣𝑗𝑖, 𝚺𝑗)

If V⋆
𝑗𝑖 has dimension 𝑗, we can calculate the integral given in (13) by using the Φ∗

𝑗. Let l𝑖 contain the

lower endpoints and u𝑖 contain the upper endpoints forV
⋆
𝑗𝑖. Whenwe do not have continuous endogenous

covariates, we have

𝑓(𝑦1𝑖, . . . , 𝑦𝑗𝑖|z𝑖) = Φ∗
𝑗(l𝑖,u𝑖, 𝚺𝑗)

Now suppose that we have 𝐶 < 𝑗 continuous outcomes in 𝑦1𝑖, . . . , 𝑦𝑗𝑖, so the dimension of V⋆
𝑗𝑖 is

𝑗 − 𝐶. Without loss of generality, these 𝐶 correspond to the last 𝐶 endogenous covariates 𝑦(𝑗−𝐶+1)𝑖, . . . ,

𝑦𝑗𝑖. The covariates can be reordered as needed.

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq11
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq12
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq11
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq12
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq13


eprobit — Extended probit regression 28

We partition the covariance

𝚺𝑗 = [𝚺11 𝚺′
12

𝚺12 𝚺22
]

where 𝚺22 is the covariance of the last 𝐶 errors.

Conditional on 𝑣(𝑗−𝐶+1)𝑖, . . . , 𝑣𝑗𝑖, the errors 𝑣1𝑖, . . . , 𝑣(𝑗−𝐶)𝑖 have mean and variance

µ1|2,𝑖 = 𝚺12𝚺−1
22

⎡⎢
⎣

𝑣(𝑗−𝐶+1)𝑖
⋮

𝑣𝑗𝑖

⎤⎥
⎦

𝚺1|2 = 𝚺11 − 𝚺12𝚺−1
22 𝚺′

12

By conditioning on 𝑣(𝑗−𝐶+1)𝑖, . . . , 𝑣𝑗𝑖, we can express the density in terms of 𝜙𝐶 and Φ∗
𝑗−𝐶. We can

write the joint density in terms of the marginal and conditional densities to obtain

𝑓(𝑦1𝑖, . . . , 𝑦𝑗𝑖|z𝑖) = 𝜙𝐶(𝑣(𝑗−𝐶+1)𝑖, . . . , 𝑣𝑗𝑖, 𝚺22)Φ∗
𝑗−𝐶(l𝑖 − µ1|2,𝑖,u𝑖 − µ1|2,𝑖, 𝚺1|2)

The natural logarithm of the density 𝑓(𝑦1𝑖, . . . , 𝑦𝐽𝑖|z𝑖) is the log likelihood of the model. We maxi-

mize the log likelihood to estimate the model parameters.

We can relax the assumption that the errors 𝑣1𝑖, . . . , 𝑣𝐽𝑖 are multivariate normal with mean 0 and

covariance 𝚺. We will allow the covariance matrix to vary based on the 𝑀 different levels of the binary

or ordinal endogenous covariates w𝑝𝑜𝑖: ω1, . . . ,ω𝑀. These are the different combinations of values for

the covariates w𝑝𝑜𝑖.

We use a potential-outcome framework for the outcome errors 𝑣𝐽𝑖. For the potential-outcome errors

𝑣1𝐽𝑖, . . ., 𝑣𝑀𝐽𝑖, we have

𝑣𝐽𝑖 =
𝑀

∑
𝑚=1

1(w𝑝𝑜𝑖 = ω𝑚)𝑣𝑚𝐽𝑖

For 𝑚 = 1, . . . , 𝑀, 𝑣𝑚𝐽𝑖 and 𝑣1𝑖, . . ., 𝑣𝐻𝑖 are multivariate normal mean 0 and covariance

𝚺𝑚 = [ 𝜎2
𝑚 𝛔′

𝑚𝑜
𝛔𝑚𝑜 𝚺𝑜

]

For observations where w𝑝𝑜𝑖 = ω𝑚, the log likelihood can be derived with 𝚺𝑚 in place of Σ. The

log likelihoods from the different potential-outcome group observations can then be summed together to

get the log likelihood of the model.

Now we assume that we have random effects in each equation and a panel-data structure. This discus-

sion applies to themodels fit by xteintreg, xteoprobit, xteprobit, and xteregress. For simplicity,
we assume that the errors do not follow a potential-outcome framework. We have 𝑁 panels. For panel

𝑖 = 1, . . . , 𝑁, there are 𝑁𝑖 observations, and for 𝑡 = 1, . . . , 𝑁𝑖, we have

𝑦1𝑖𝑡 = 𝑔1𝑖𝑡(w1𝑖𝑡β1 + 𝑣1𝑖𝑡 + 𝑢1𝑖)
⋮

𝑦𝐻𝑖𝑡 = 𝑔𝐻𝑖𝑡(w𝐻𝑖𝑡β𝐻 + 𝑣𝐻𝑖𝑡 + 𝑢𝐻𝑖)
𝑦𝑖𝑡 = 𝑦𝐽𝑖𝑡 = 𝑔𝐽𝑖𝑡(w𝐽𝑖𝑡β𝐽 + 𝑣𝐽𝑖𝑡 + 𝑢𝐽𝑖)
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The observation-level errors 𝑣1𝑖𝑡, . . . , 𝑣𝐽𝑖𝑡 are multivariate normal with mean 0 and covariance 𝚺.

They are independent of the panel-level errors, or random effects 𝑢1𝑖, . . . , 𝑢𝐽𝑖, which are multivariate

normal with mean 0 and covariance 𝚺𝑢. We further assume that the observation-level errors are inde-

pendent within panels.

Now the covariates w𝑗𝑖𝑡, random effect 𝑢𝑗𝑖, and the outcome 𝑦𝑗𝑖𝑡 determine a range for the error 𝑣𝑗𝑖𝑡.

For example, if 𝑦𝑗𝑖𝑡 has a linear model, then 𝑣𝑗𝑖𝑡 = 𝑦𝑗𝑖𝑡 −w𝑗𝑖𝑡β𝑗 − 𝑢𝑗𝑖, the residual. If 𝑦𝑗𝑖𝑡 = 1 and 𝑦𝑗𝑖𝑡
has a probit model, then 𝑣𝑗𝑖𝑡 is in the range (−w𝑗𝑖𝑡β𝑗 − 𝑢𝑗𝑖, ∞). If 𝑦𝑖𝑗𝑡 is left-censored at 𝑙𝑖𝑡, then 𝑣𝑗𝑖𝑡
is in the range (−∞, 𝑙𝑖 − w𝑗𝑖𝑡β𝑗 − 𝑢𝑗𝑖).

Conditional on the random effects 𝑢1𝑖, . . . , 𝑢𝐽𝑖, the density of the endogenous variables can be repre-

sented using a multivariate normal density function that is evaluated at the residuals for the continuous

outcomes and integrated over the error ranges of the noncontinuous outcomes. So the conditional density

is formulated as in the cross-sectional case. The random effects are essentially added to the covariates

w1𝑖𝑡, . . . , w𝐽𝑖𝑡.

Note that each panel has the same random effects for every observation. So if panel 𝑖 has random
effects u𝑖 = (𝑢1𝑖, . . . , 𝑢𝐽𝑖), its likelihood is

𝐿𝑖 = ∫
ℜ𝐽

{
𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui)} 𝜙𝐽(u𝑖, 𝚺𝑢)𝑑ui (14)

This multivariate integral is generally not tractable. We can use a change-of-variables technique to

transform the multivariate integral in (14) into a set of nested univariate integrals. Let L be the Cholesky

decomposition of 𝚺𝑢; that is, 𝚺𝑢 = LL′. It follows that u𝑖 = Lψ𝑖, where ψ𝑖 is a vector of independent

standard normal random variables.

So we can rewrite (14) as

𝐿𝑖 = ∫
∞

−∞
. . .∫

∞

−∞
{

𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = Lψ𝑖)} 𝜙(𝜓1𝑖) . . .𝜙(𝜓𝐽𝑖)𝑑𝜓1𝑖 . . . 𝑑𝜓𝐽𝑖 (15)

Now the univariate integral can be approximated using Gauss–Hermite quadrature (GHQ). For 𝑞-
point GHQ, let the abscissa and weight pairs be denoted by (𝑎∗

𝑘, 𝑤∗
𝑘), 𝑘 = 1, . . . , 𝑞. Then, the GHQ

approximation is

∫
∞

−∞
𝑓(𝑥) exp(−𝑥2) 𝑑𝑥 ≈

𝑞

∑
𝑘=1

𝑤∗
𝑘𝑓(𝑎∗

𝑘)

Consider a 𝐽-dimensional quadrature grid containing 𝑞 quadrature points in each dimension. Let the
vector of abscissas a𝑘 = (𝑎𝑘1

, . . . , 𝑎𝑘𝐽
)′ be a point in this grid, and let w𝑘 = (𝑤𝑘1

, . . . , 𝑤𝑘𝐽
)′ be the

vector of corresponding weights. The GHQ approximation to the likelihood for a given panel is

𝐿𝑖 =
𝑞

∑
𝑘1=1

. . .

𝑞

∑
𝑘𝐽=1

[{
𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = La𝑘)} {
𝐽

∏
𝑠=1

𝑤𝑘𝑠
}] (16)

Rather than using regular GHQ, we can use mean–variance adaptive Gauss–Hermite quadrature. Fix-

ing the observed variables and model parameters in the integrand of (14), we see the posterior density

for ψ𝑖 is proportional to

{
𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = Lψ𝑖)} 𝜙(ψ𝑖)

https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq14
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq14
https://www.stata.com/manuals/erm.pdf#ermeprobitMethodsandformulaseq14


eprobit — Extended probit regression 30

It is reasonable to assume that this posterior density can be approximated by a multivariate normal

density with mean vector µ𝑣𝑖 and variance matrix τ𝑣𝑖. Instead of using the prior density of ψ𝑖 as the

weighting distribution in the integral, we can use our approximation for the posterior density,

𝐿𝑖 = ∫
ℜ𝐽

{∏𝑁𝑖
𝑡=1 𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = Lψ𝑖)} 𝜙(ψ𝑖)

𝜙(ψ𝑖,µ𝑣𝑖, τ𝑣𝑖)
𝜙(ψ𝑖,µ𝑣𝑖, τ𝑣𝑖) 𝑑ψ𝑖

The likelihood is then approximated by

𝐿𝑖 =
𝑞

∑
𝑘1=1

. . .

𝑞

∑
𝑘𝐽=1

[{
𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = Lα𝑘)} {
𝐽

∏
𝑠=1

𝜔𝑘𝑠
}] (17)

where α𝑘 and 𝜔𝑘𝑠
are the adaptive versions of the abscissas and weights after an orthogonalizing trans-

formation, which eliminates posterior covariances between elements of ψ𝑖. The posterior means µ𝑣𝑖
and posterior variances τ𝑣𝑖 are computed iteratively by updating the posterior moments by using the

mean–variance adaptive Gauss–Hermite approximation, starting with a 0 mean vector and identity vari-

ance matrix.

Then, the log likelihood for all panels is

ln𝐿 =
𝑁

∑
𝑖=1

( ln

𝑞

∑
𝑘1=1

. . .

𝑞

∑
𝑘𝐽=1

[{
𝑁𝑖

∏
𝑡=1

𝑓(𝑦1𝑖𝑡, . . . , 𝑦𝐽𝑖𝑡|z𝑖𝑡,ui = Lα𝑘)} {
𝐽

∏
𝑠=1

𝜔𝑘𝑠
}]) (18)

As in the cross-sectional case, we can relax the assumption that the errors 𝑣1𝑖𝑡, . . . , 𝑣𝐽𝑖𝑡 aremultivariate

normal with mean 0 and covariance 𝚺. We will allow the covariance matrix to vary based on the 𝑀
different levels of the binary or ordinal endogenous covariatesw𝑝𝑜𝑖𝑡: ω1, . . . ,ω𝑀. These are the different

combinations of values for the covariates w𝑝𝑜𝑖𝑡.

We use a potential-outcome framework for the outcome errors 𝑣𝐽𝑖𝑡. For the potential-outcome errors

𝑣1𝐽𝑖𝑡, . . ., 𝑣𝑀𝐽𝑖𝑡, we have

𝑣𝐽𝑖𝑡 =
𝑀

∑
𝑚=1

1(w𝑝𝑜𝑖𝑡 = ω𝑚)𝑣𝑚𝐽𝑖𝑡

For 𝑚 = 1, . . . , 𝑀, 𝑣𝑚𝐽𝑖𝑡 and 𝑣1𝑖𝑡, . . ., 𝑣𝐻𝑖𝑡 are multivariate normal mean 0 and covariance

𝚺𝑚 = [ 𝜎2
𝑚 𝛔′

𝑚𝑜
𝛔𝑚𝑜 𝚺𝑜

]

For observations where w𝑝𝑜𝑖𝑡 = ω𝑚, the likelihood can be derived with 𝚺𝑚 in place of Σ.
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