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Description
eintreg fits an interval regression model that accommodates any combination of endogenous co-

variates, nonrandom treatment assignment, and endogenous sample selection. Continuous, binary, and

ordinal endogenous covariates are allowed. Treatment assignment may be endogenous or exogenous. A

probit or tobit model may be used to account for endogenous sample selection.

xteintreg fits a random-effects interval regression model that accommodates endogenous covari-

ates, treatment, and sample selection in the same way as eintreg and also accounts for correlation of

observations within panels or within groups.

Quick start
All quick start examples use an interval-measured dependent variable with the interval’s lower bound

recorded in variable y l and its upper bound recorded in y u.

Regression of [y l, y u] on x with continuous endogenous covariate y2 modeled by x and z
eintreg y_l y_u x, endogenous(y2 = x z)

Same as above, but adding continuous endogenous covariate y3 modeled by x and z2
eintreg y_l y_u x, endogenous(y2 = x z) endogenous(y3 = x z2)

Regression of [y l, y u] on x with binary endogenous covariate d modeled by x and z
eintreg y_l y_u x, endogenous(d = x z, probit)

Regression of [y l, y u] on x with endogenous treatment recorded in trtvar and modeled by x and z
eintreg y_l y_u x, entreat(trtvar = x z)

Regression of [y l, y u] on x with exogenous treatment recorded in trtvar
eintreg y_l y_u x, extreat(trtvar)

Random-effects regression of [y l, y u] on x using xtset data

xteintreg y_l y_u x

Regression of [y l, y u] on x with endogenous sample-selection indicator selvar modeled by x and z
eintreg y_l y_u x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2)

Same as above, but adding endogenous treatment recorded in trtvar and modeled by x and z3
eintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2) ///

entreat(trtvar = x z3)

Same as above, but with random effects and without endogenous treatment

xteintreg y_l y_u x, select(selvar = x z) endogenous(y2 = x z2)
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Menu
eintreg

Statistics > Endogenous covariates > Models adding selection and treatment > Interval regression

xteintreg
Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Interval
regression (RE)
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Syntax
Basic interval regression with endogenous covariates

eintreg depvar1 depvar2 [ indepvars ] , endogenous(depvarsen = varlisten) [ options ]

Basic interval regression with endogenous treatment assignment

eintreg depvar1 depvar2 [ indepvars ] , entreat(depvartr [ = varlisttr ]) [ options ]

Basic interval regression with exogenous treatment assignment

eintreg depvar1 depvar2 [ indepvars ] , extreat(tvar) [ options ]

Basic interval regression with sample selection

eintreg depvar1 depvar2 [ indepvars ] , select(depvar𝑠 = varlist𝑠) [ options ]

Basic interval regression with tobit sample selection

eintreg depvar1 depvar2 [ indepvars ] , tobitselect(depvar𝑠 = varlist𝑠) [ options ]

Basic interval regression with random effects

xteintreg depvar1 depvar2 [ indepvars ] [ , options ]

Interval regression combining endogenous covariates, treatment, and selection

eintreg depvar1 depvar2 [ indepvars ] [ if ] [ in ] [weight ] [ , extensions options ]

Interval regression combining random effects, endogenous covariates, treatment, and selection

xteintreg depvar1 depvar2 [ indepvars ] [ if ] [ in ] [ , extensions options ]

depvar1 and depvar2 should have the following form:

Type of data depvar1 depvar2

point data 𝑎 = [ 𝑎, 𝑎 ] 𝑎 𝑎
interval data [ 𝑎, 𝑏 ] 𝑎 𝑏
left-censored data ( −∞, 𝑏 ] . 𝑏
right-censored data [ 𝑎, +∞ ) 𝑎 .
missing . .

extensions Description

Model

endogenous(enspec) model for endogenous covariates; may be repeated

entreat(entrspec) model for endogenous treatment assignment

extreat(extrspec) exogenous treatment

select(selspec) probit model for selection

tobitselect(tselspec) tobit model for selection
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options Description

Model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(numlist) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) set the number of integration (quadrature) points for integration over
four or more dimensions; default is intpoints(128)

triintpoints(#) set the number of integration (quadrature) points for integration over
three dimensions; default is triintpoints(10)

reintpoints(#) set the number of integration (quadrature) points for
random-effects integration; default is reintpoints(7)

reintmethod(intmethod) integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

enspec is depvarsen = varlisten [ , enopts ]
where depvarsen is a list of endogenous covariates. Each variable in depvarsen specifies an endogenous

covariate model using the common varlisten and options.

entrspec is depvartr[ = varlisttr ] [ , entropts ]
where depvartr is a variable indicating treatment assignment. varlisttr is a list of covariates predicting

treatment assignment.

extrspec is tvar [ , extropts ]
where tvar is a variable indicating treatment assignment.

selspec is depvar𝑠 = varlist𝑠 [ , selopts ]
where depvar𝑠 is a variable indicating selection status. depvar𝑠 must be coded as 0, indicating that

the observation was not selected, or 1, indicating that the observation was selected. varlist𝑠 is a list

of covariates predicting selection.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/r.pdf#rvce_option
https://www.stata.com/manuals/erm.pdf#ermeintregOptionsdisplay_options
https://www.stata.com/manuals/erm.pdf#ermeintregOptionsmaxopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/erm.pdf#ermeintregSyntaxenopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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https://www.stata.com/manuals/erm.pdf#ermeintregSyntaxentropts
https://www.stata.com/manuals/erm.pdf#ermeintregSyntaxextropts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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tselspec is depvar𝑠 = varlist𝑠 [ , tselopts ]
where depvar𝑠 is a continuous variable. varlist𝑠 is a list of covariates predicting depvar𝑠. The cen-

soring status of depvar𝑠 indicates selection, where a censored depvar𝑠 indicates that the observation

was not selected and a noncensored depvar𝑠 indicates that the observation was selected.

enopts Description

Model

probit treat endogenous covariate as binary

oprobit treat endogenous covariate as ordinal

povariance estimate a different variance for each level of a binary or an ordinal endoge-
nous covariate

pocorrelation estimate different correlations for each level of a binary or an ordinal en-
dogenous covariate

nomain do not add endogenous covariate to main equation

nore do not include random effects in model for endogenous covariate

noconstant suppress constant term

nore is available only with xteintreg.

entropts Description

Model

povariance estimate a different variance for each potential outcome

pocorrelation estimate different correlations for each potential outcome

nomain do not add treatment indicator to main equation

nointeract do not interact treatment with covariates in main equation

nore do not include random effects in model for endogenous treatment

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

nore is available only with xteintreg.

extropts Description

Model

povariance estimate a different variance for each potential outcome

pocorrelation estimate different correlations for each potential outcome

nomain do not add treatment indicator to main equation

nointeract do not interact treatment with covariates in main equation

selopts Description

Model

nore do not include random effects in selection model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

nore is available only with xteintreg.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/erm.pdf#ermeintregSyntaxtselopts
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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tselopts Description

Model
∗ ll(varname | #) left-censoring variable or limit
∗ ul(varname | #) right-censoring variable or limit

main add censored selection variable to main equation

nore do not include random effects in tobit selection model

noconstant suppress constant term

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

∗ You must specify either ll() or ul().
nore is available only with xteintreg.

indepvars, varlisten, varlisttr, and varlist𝑠 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar1, depvar2, indepvars, depvarsen, varlisten, depvartr, varlisttr, tvar, depvar𝑠, and varlist𝑠 may contain time-series
operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, and statsby are allowed with eintreg and xteintreg. bayesboot, rolling, and
svy are allowed with eintreg. See [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

vce() and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, iweights, and pweights are allowed with eintreg; see [U] 11.1.6 weight.
reintpoints() and reintmethod() are available only with xteintreg.
collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

endogenous(enspec), entreat(entrspec), extreat(extrspec), select(selspec),
tobitselect(tselspec); see [ERM] ERM options.

noconstant, offset(varname𝑜), constraints(numlist); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype); see [ERM] ERM options.

� � �
Reporting �

level(#), nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intpoints(#), triintpoints(#), reintpoints(#), reintmethod(intmethod); see [ERM] ERM

options.

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u11.pdf#u11.4.3Factorvariables
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/rbootstrap.pdf#rbootstrap
https://www.stata.com/manuals/svysvy.pdf#svysvy
https://www.stata.com/manuals/u11.pdf#u11.1.6weight
https://www.stata.com/manuals/u20.pdf#u20Estimationandpostestimationcommands
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/d.pdf#dformat
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
https://www.stata.com/manuals/ermermoptions.pdf#ermERMoptions
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� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R]Maximize.

The default technique for eintreg is technique(nr). The default technique for xteintreg is

technique(bhhh 10 nr 2).

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with eintreg and xteintreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples
eintreg and xteintreg fit models that we refer to as “extended interval regression models”, mean-

ing that they accommodate endogenous covariates, nonrandom treatment assignment, endogenous sam-

ple selection, and panel data or other grouped data.

eintreg fits models for cross-sectional data (one-level models). eintreg can account for endoge-

nous covariates, treatment, and sample selection, whether these complications arise individually or in

combination.

xteintreg fits random-effects models (two-level models) for panel data or grouped data. xteintreg
accounts for endogenous covariates, treatment, and sample selection in the same way as eintreg and

also accounts for within-panel or within-group correlation among observations.

In this entry, you will find information on the syntax for the eintreg and xteintreg commands. You
can see Methods and formulas for a full description of the models that can be fit with these commands

and for details about how those models are fit.

More information on extended interval regression models is found in the separate introductions and

example entries. We recommend reading those entries to learn how to use eintreg and xteintreg.
Below, we provide a guide to help you locate the ones that will be helpful to you.

For an introduction to eintreg, xteintreg, and the other extended regression commands for con-
tinuous, binary, and ordinal outcomes, see [ERM] Intro 1–[ERM] Intro 9.

[ERM] Intro 1 introduces the ERM commands, the problems they address, and their syntax.

[ERM] Intro 2 provides background on the four types of models—linear regression, interval re-

gression, probit regression, and ordered probit regression—that can be fit using ERM commands.

This intro also demonstrates how to fit tobit models using eintreg by transforming your depen-

dent variable into the required format. This same transformation can be used to fit random-effects

tobit models with xteintreg.

[ERM] Intro 3 considers the problem of endogenous covariates and how to solve it using ERM

commands.

[ERM] Intro 4 gives an overview of endogenous sample selection and using ERM commands to

account for it.

[ERM] Intro 5 covers nonrandom treatment assignment and how to account for it using eintreg
or any of the other ERM commands.

https://www.stata.com/manuals/rmaximize.pdf#rMaximizeSyntaxalgorithm_spec
https://www.stata.com/manuals/rmaximize.pdf#rMaximize
https://www.stata.com/manuals/restimationoptions.pdf#rEstimationoptions
https://www.stata.com/manuals/ermeintreg.pdf#ermeintregMethodsandformulas
https://www.stata.com/manuals/ermintro1.pdf#ermIntro1
https://www.stata.com/manuals/ermintro9.pdf#ermIntro9
https://www.stata.com/manuals/ermintro1.pdf#ermIntro1
https://www.stata.com/manuals/ermintro2.pdf#ermIntro2
https://www.stata.com/manuals/ermintro3.pdf#ermIntro3
https://www.stata.com/manuals/ermintro4.pdf#ermIntro4
https://www.stata.com/manuals/ermintro5.pdf#ermIntro5
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[ERM] Intro 6 covers random-effects models for panel data and other grouped data. It discusses

xteintreg and the other ERM commands for panel data.

[ERM] Intro 7 discusses interpretation of results. You can interpret coefficients from eintreg and

xteintreg in the usual way, but this introduction goes beyond the interpretation of coefficients.

We demonstrate how to find answers to interesting questions by using margins. If your model
includes an endogenous covariate or an endogenous treatment, the use of margins differs from

its use after other estimation commands, so we strongly recommend reading this intro if you are

fitting these types of models.

[ERM] Intro 8 will be helpful if you are familiar with ivtobit, xtintreg, xttobit, and other

commands that address endogenous covariates, sample selection, nonrandom treatment assign-

ment, or panel data. This introduction is a Rosetta stone that maps the syntax of those commands

to the syntax of eintreg and xteintreg. If your outcome is stored in a single variable, which is
necessary with tobit, ivtobit, and xttobit, the Rosetta stone also demonstrates how to create

the lower- and upper-bound variables necessary for eintreg and xteintreg.

[ERM] Intro 9 walks you through an example that gives insight into the concepts of endogenous

covariates, treatment assignment, and sample selection while fitting models with eregress that

address these complications. Although the example uses eregress, the discussion applies equally
to eintreg. This intro also demonstrates how to interpret results by using margins and estat
teffects.

Additional examples are presented in [ERM] Example 1a–[ERM] Example 9. For examples using

eintreg, see

[ERM] Example 1b Interval regression with continuous endogenous covariate

[ERM] Example 1c Interval regression with endogenous covariate and sample selection

See Examples in [ERM] Intro for an overview of all the examples. All examples may be interesting

because they handle complications in the same way. Examples using eregress and xteregress will

be of particular interest because results of models fit by eintreg and xteintreg are interpreted in the

same way.

eintreg and xteintreg fit manymodels discussed in the literature. For instance, the tobit model was
originally conceived in Tobin (1958) as a model of consumption of consumer durables, where purchases

were left-censored at 0. Wooldridge (2020, sec. 17.4) introduces censored and truncated regression mod-

els. Cameron and Trivedi (2022, chap. 19) discuss the tobit model using Stata examples. eintreg can

also fit models like the tobit regression model with continuous endogenous regressors (Newey 1987) and

the censored regression model with binary endogenous regressors (Angrist 2001). xteintreg can fit the

random-effects tobit model discussed in (Wooldridge 2010, sec. 17.8). Roodman (2011) investigated in-

terval regression models with endogenous covariates and endogenous sample selection and demonstrated

how multiple observational data complications could be addressed with a triangular model structure. He

and Tamás Bartus showed how random effects could be used in the triangular model structure in Bartus

and Roodman (2014). Roodman’s work has been used to model processes like the effect of innovation

on labor productivity (Mairesse and Robin 2009) and the effect of insect-resistant crops on pesticide

demand (Fernandez-Cornejo and Wechsler 2012).

https://www.stata.com/manuals/ermintro6.pdf#ermIntro6
https://www.stata.com/manuals/ermintro7.pdf#ermIntro7
https://www.stata.com/manuals/ermintro8.pdf#ermIntro8
https://www.stata.com/manuals/ermintro9.pdf#ermIntro9
https://www.stata.com/manuals/ermexample1a.pdf#ermExample1a
https://www.stata.com/manuals/ermexample9.pdf#ermExample9
https://www.stata.com/manuals/ermexample1b.pdf#ermExample1b
https://www.stata.com/manuals/ermexample1c.pdf#ermExample1c
https://www.stata.com/manuals/ermintro.pdf#ermIntroRemarksandexamplesExamples
https://www.stata.com/manuals/ermintro.pdf#ermIntro
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Stored results

eintreg stores the following in e():

Scalars

e(N) number of observations

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(N int) number of interval-censored observations

e(k) number of parameters

e(k cat#) number of categories for the #th depvar, ordinal

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k aux) number of auxiliary parameters

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(n quad) number of integration points for multivariate normal

e(n quad3) number of integration points for trivariate normal

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) eintreg
e(cmdline) command as typed

e(depvar) names of dependent variables

e(tsel ll) left-censoring limit for tobit selection

e(tsel ul) right-censoring limit for tobit selection

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset#) offset for the #th depvar, where # is determined by equation order in output

e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(cat#) categories for the #th depvar, ordinal
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e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

xteintreg stores the following in e():

Scalars

e(N) number of observations

e(N g) number of groups

e(N selected) number of selected observations

e(N nonselected) number of nonselected observations

e(N unc) number of uncensored observations

e(N lc) number of left-censored observations

e(N rc) number of right-censored observations

e(N int) number of interval-censored observations

e(k) number of parameters

e(k cat#) number of categories for the #th depvar, ordinal

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k dv) number of dependent variables

e(k aux) number of auxiliary parameters

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(p) 𝑝-value for model test
e(n quad) number of integration points for multivariate normal

e(n quad3) number of integration points for trivariate normal

e(n requad) number of integration points for random effects

e(g min) smallest group size

e(g avg) average group size

e(g max) largest group size

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) xteintreg
e(cmdline) command as typed

e(depvar) names of dependent variables

e(tsel ll) left-censoring limit for tobit selection

e(tsel ul) right-censoring limit for tobit selection

e(ivar) variable denoting groups

e(title) title in estimation output

e(clustvar) name of cluster variable

e(offset#) offset for the #th depvar, where # is determined by equation order in output
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e(chi2type) Wald; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(reintmethod) integration method for random effects

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(cat#) categories for the #th depvar, ordinal

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here are for the interval model. The estimators implemented

in eintreg and xteintreg are maximum likelihood estimators covered by the results in chapter 13 of

Wooldridge (2010) and White (1996).

The log-likelihood functions maximized by eintreg and xteintreg are implied by the triangular

structure of the model. Specifically, the joint distribution of the endogenous variables is a product of

conditional and marginal distributions because the model is triangular. For a few of the many relevant

applications of this result in literature, see chapter 10 of Amemiya (1985); Heckman (1976, 1979); chap-

ter 5 of Maddala (1983); Maddala and Lee (1976); sections 15.7.2, 15.7.3, 16.3.3, 17.5.2, and 19.7.1 in

Wooldridge (2010); andWooldridge (2014). Roodman (2011) and Bartus and Roodman (2014) used this

result to derive the formulas discussed below.
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Methods and formulas are presented under the following headings:

Introduction
Endogenous covariates

Continuous endogenous covariates
Binary and ordinal endogenous covariates

Treatment
Endogenous sample selection

Probit endogenous sample selection
Tobit endogenous sample selection

Random effects
Combinations of features
Confidence intervals

Introduction
A regression model of outcome 𝑦𝑖 on covariates x𝑖 may be written as

𝑦𝑖 = x𝑖β + 𝜖𝑖

where 𝜖𝑖 is normal with mean 0 and variance 𝜎2. Instead of observing 𝑦𝑖, we observe the endpoints 𝑦𝑙𝑖
and 𝑦𝑢𝑖.

If 𝑦𝑖 is left-censored, the lower endpoint 𝑦𝑙𝑖 = −∞ and we know that 𝑦𝑖 ≤ 𝑦𝑢𝑖. If 𝑦𝑖 is right-censored,

the upper endpoint 𝑦𝑢𝑖 = +∞ and we know that 𝑦𝑖 ≥ 𝑦𝑙𝑖. If there is no censoring, 𝑦𝑙𝑖 = 𝑦𝑢𝑖 = 𝑦𝑖.

When 𝑦𝑙𝑖 and 𝑦𝑢𝑖 are real valued and not equal, we know that 𝑦𝑙𝑖 ≤ 𝑦𝑖 ≤ 𝑦𝑢𝑖.

The log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln𝜙(𝑦𝑖 − x𝑖β, 𝜎2)

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ(𝑦𝑢𝑖 − x𝑖β

𝜎
)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ(−𝑦𝑙𝑖 + x𝑖β

𝜎
)

+ ∑
𝑖∈𝐼

𝑤𝑖 ln{Φ(𝑦𝑢𝑖 − x𝑖β

𝜎
) − Φ(𝑦𝑙𝑖 − x𝑖β

𝜎
)}

where 𝑈 is the set of observations where 𝑦𝑖 is not censored, 𝐿 is the set of observations where 𝑦𝑖 is

left-censored, 𝑅 is the set of observations where 𝑦𝑖 is right-censored, 𝐼 is the set of observations where
𝑦𝑖 is interval-censored, and 𝑤𝑖 are the weights.
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The conditional mean of 𝑦𝑖 is

𝐸(𝑦𝑖|x𝑖) = x𝑖β

If we wished to condition on the censoring, we could calculate an expectation on 𝑦⋆
𝑖 =

max{𝑦𝑙𝑖,min(𝑦𝑖𝑗, 𝑦𝑢𝑖)} or a constrained mean 𝐸(𝑦𝑖|𝑦𝑙𝑖 < 𝑦𝑖 < 𝑦𝑢𝑖). See Predictions using the full

model in [ERM] eprobit postestimation for details on how this is done.

If you are willing to take our word for some derivations and notation, the following is complete.

Longer explanations and derivations for some terms and functions are provided in Methods and formulas

of [ERM] eprobit. For example, we need the two-sided probability function Φ∗
𝑑 that is discussed in

Introduction in [ERM] eprobit.

If you are interested in all the details, we suggest you read Methods and formulas of [ERM] eprobit in

its entirety before reading this section. Here we mainly show how the complications that arise in ERMs

are handled in an interval regression framework.

Endogenous covariates

Continuous endogenous covariates

An interval regression of 𝑦𝑖 on exogenous covariates x𝑖 and 𝐶 continuous endogenous covariates w𝑐𝑖
has the form

𝑦𝑖 = x𝑖β + w𝑐𝑖β𝑐 + 𝜖𝑖

w𝑐𝑖 = z𝑐𝑖A𝑐 + ε𝑐𝑖

As in Introduction, we do not observe 𝑦𝑖 but instead observe the endpoints 𝑦𝑙𝑖 and 𝑦𝑢𝑖. The vector

z𝑐𝑖 contains variables from x𝑖 and other covariates that affect w𝑐𝑖. For the model to be identified, z𝑐𝑖
must contain one extra exogenous covariate not in x𝑖 for each of the endogenous regressors in w𝑐𝑖. The

unobserved errors 𝜖𝑖 and ε𝑐𝑖 are multivariate normal with mean 0 and covariance

𝚺 = [ 𝜎2 𝛔′
1𝑐

𝛔1𝑐 𝚺𝑐
]

Conditional on the endogenous and exogenous covariates, 𝜖𝑖 has mean and variance

𝜇1|𝑐,𝑖 = 𝐸 (𝜖𝑖|w𝑐𝑖, x𝑖, z𝑐𝑖) = 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′

𝜎2
1|𝑐 = Var (𝜖𝑖|w𝑐𝑖, x𝑖, z𝑐𝑖) = 𝜎2 − 𝛔′

1𝑐𝚺−1
𝑐 𝛔1𝑐

Let

𝑟𝑙𝑖 = 𝑦𝑙𝑖 − x𝑖β − w𝑐𝑖β𝑐 − 𝜇1|𝑐,𝑖

𝑟𝑢𝑖 = 𝑦𝑢𝑖 − x𝑖β − w𝑐𝑖β𝑐 − 𝜇1|𝑐,𝑖

https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulas
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulasintro
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulas
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulasintro
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The log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln𝜙(𝑟𝑙𝑖, 𝜎2
1|𝑐)

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
1 (−∞, 𝑟𝑢𝑖, 𝜎2

1|𝑐)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
1 (𝑟𝑙𝑖, ∞, 𝜎2

1|𝑐)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
1 (𝑟𝑙𝑖, 𝑟𝑢𝑖, 𝜎2

1|𝑐)

+
𝑁

∑
𝑖=1

𝑤𝑖 ln𝜙𝐶(w𝑐𝑖 − z𝑐𝑖A𝑐, 𝚺𝑐)

where 𝑈 is the set of observations where 𝑦𝑖 is not censored, 𝐿 is the set of observations where 𝑦𝑖 is left-

censored, 𝑅 is the set of observations where 𝑦𝑖 is right-censored, and 𝐼 is the set of observations where
𝑦𝑖 is interval-censored.

The conditional mean of 𝑦𝑖 is

𝐸(𝑦𝑖|x𝑖,w𝑐𝑖, z𝑐𝑖) = x𝑖β + w𝑐𝑖β𝑐 + 𝛔′
1𝑐𝚺−1

𝑐 (w𝑐𝑖 − z𝑐𝑖A𝑐)′

Binary and ordinal endogenous covariates

Here we begin by formulating the interval regression of 𝑦𝑖 on exogenous covariates x𝑖 and 𝐵 binary

and ordinal endogenous covariates w𝑏𝑖 = [𝑤𝑏1𝑖, . . . , 𝑤𝑏𝐵𝑖]. Indicator (dummy) variables for the levels
of each binary and ordinal covariate are used in the model. You can also interact other covariates with

the binary and ordinal endogenous covariates, as in treatment-effect models.

The binary and ordinal endogenous covariatesw𝑏𝑖 are formulated as in Binary and ordinal endogenous

covariates in [ERM] eprobit.

The model for the outcome can be formulated with or without different variance and correlation pa-

rameters for each level of w𝑏𝑖. Level-specific parameters are obtained by specifying povariance or

pocorrelation in the endogenous() option.

If the variance and correlation parameters are not level specific, we have

𝑦𝑖 = x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖𝑖

The wind𝑏𝑗𝑖 vectors are defined in Binary and ordinal endogenous covariates in [ERM] eprobit. As

in Introduction, we do not observe 𝑦𝑖 but instead observe the endpoints 𝑦𝑙𝑖 and 𝑦𝑢𝑖. The binary and

ordinal endogenous errors 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 and outcome error 𝜖𝑖 are multivariate normal with 0 mean and

covariance

𝚺 = [𝚺𝑏 𝛔1𝑏
𝛔′

1𝑏 𝜎2 ]

From here, we discuss the model with ordinal endogenous covariates. The results for binary endoge-

nous covariates are similar.

As in Binary and ordinal endogenous covariates in [ERM] eregress, for the uncensored observations,

we write the joint density of 𝑦𝑖 and w𝑏𝑖 using the conditional density of 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 on 𝜖𝑖. For the

censored observations, we use tools discussed in Likelihood for multiequation models in [ERM] eprobit

to formulate the joint density directly.

https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulasintro
https://www.stata.com/manuals/ermeregress.pdf#ermeregressMethodsandformulascatendog
https://www.stata.com/manuals/ermeregress.pdf#ermeregress
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulaslikelihood
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
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For 𝑖 ∈ 𝑈, the uncensored observations, define

𝑟𝑖 = 𝑦𝑖 − (x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵)

For the censored observations, define

𝑟𝑙𝑖 = 𝑦𝑙𝑖 − (x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵)
𝑟𝑢𝑖 = 𝑦𝑢𝑖 − (x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵)

Let

𝚺𝑏|1 = 𝚺 − 𝛔1𝑏𝛔′
1𝑏

𝜎2

Now the log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln{Φ∗
𝐵(l𝑖,u𝑖, 𝚺𝑏|1) 𝜙(𝑟𝑖, 𝜎2)}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 −∞], [u𝑏𝑖 𝑟𝑢𝑖], 𝚺)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 𝑟𝑙𝑖], [u𝑏𝑖 ∞], 𝚺)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 𝑟𝑙𝑖], [u𝑏𝑖 𝑟𝑢𝑖], 𝚺)

where 𝑈 is the set of observations where 𝑦𝑖 is not censored, 𝐿 is the set of observations where 𝑦𝑖 is

left-censored, 𝑅 is the set of observations where 𝑦𝑖 is right-censored, and 𝐼 is the set of observations

where 𝑦𝑖 is interval-censored. The vectors l𝑏𝑖 and u𝑏𝑖 are the upper and lower limits for the binary and

ordinal endogenous regressors defined in Binary and ordinal endogenous covariates in [ERM] eprobit.

The vectors l𝑖 and u𝑖 are the upper and lower limits for the binary and ordinal endogenous regressors

defined in Binary and ordinal endogenous covariates in [ERM] eregress.

The expected value of 𝑦𝑖 conditional on w𝑏𝑖 can be calculated using the techniques discussed in Pre-

dictions using the full model in [ERM] eprobit postestimation.

When the endogenous ordinal variables are different treatments, holding the variance and correlation

parameters constant over the treatment levels is a constrained form of the potential-outcome model. In

an unconstrained potential-outcome model, the variance of the outcome and the correlations between

the outcome and the treatments—the endogenous ordinal regressors w𝑏𝑖—vary over the levels of each

treatment.

In this unconstrained model, there is a different potential-outcome error for each level of each treat-

ment. For example, when the endogenous treatment variable 𝑤1 has three levels (0, 1, and 2) and the

endogenous treatment variable𝑤2 has four levels (0, 1, 2, and 3), the unconstrained model has 12 = 3×4

outcome errors. So there are 12 outcome error variance parameters. Because there is a different corre-

lation between each potential outcome and each endogenous treatment, there are 2 × 12 correlation

parameters between the potential outcomes and the treatments in this example model.

We denote the number of different combinations of values for the endogenous treatments w𝑏𝑖 by 𝑀,

and we denote the vector of values in each combination by v𝑗 (𝑗 ∈ {1, 2, . . . , 𝑀}). Letting 𝑘𝑤𝑝 be

the number of levels of endogenous ordinal treatment variable 𝑝 ∈ {1, 2, . . . , 𝐵} implies that 𝑀 =
𝑘𝑤1 × 𝑘𝑤2 × · · · × 𝑘𝑤𝐵.

https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulascatendog
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/ermeregress.pdf#ermeregressMethodsandformulascatendog
https://www.stata.com/manuals/ermeregress.pdf#ermeregress
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation


eintreg — Extended interval regression 16

Denoting the outcome errors 𝜖1𝑖, . . ., 𝜖𝑀𝑖, we have

𝑦1𝑖 = x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖1𝑖

⋮
𝑦𝑀𝑖 = x𝑖β + wind𝑏1𝑖β𝑏1 + · · · + wind𝑏𝐵𝑖β𝑏𝐵 + 𝜖𝑀𝑖

𝑦𝑖 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗)𝑦𝑗𝑖

For 𝑗 = 1, . . . , 𝑀, the endogenous errors 𝜖𝑏1𝑖, . . . , 𝜖𝑏𝐵𝑖 and outcome error 𝜖𝑗𝑖 are multivariate normal

with 0 mean and covariance

𝚺𝑗 = [ 𝚺𝑏 𝛔𝑗1𝑏
𝛔′

𝑗1𝑏 𝜎2
𝑗

]

Now let

𝜎𝑖,𝑏 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗)𝜎𝑗

𝚺𝑖,𝑏 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗)𝚺𝑗

𝚺𝑖,𝑏|1 =
𝑀

∑
𝑗=1

1(w𝑏𝑖 = v𝑗) (𝚺𝑏 −
𝛔𝑗1𝑏𝛔′

𝑗1𝑏

𝜎2
𝑗

)

Now the log likelihood for this model is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln{Φ∗
𝐵(l𝑖,u𝑖, 𝚺𝑖,𝑏|1) 𝜙(𝑟𝑖, 𝜎2

𝑖,𝑏)}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 −∞], [u𝑏𝑖 𝑟𝑢𝑖], 𝚺𝑖,𝑏)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 𝑟𝑙𝑖], [u𝑏𝑖 ∞], 𝚺𝑖,𝑏)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
𝐵+1([l𝑏𝑖 𝑟𝑙𝑖], [u𝑏𝑖 𝑟𝑢𝑖], 𝚺𝑖,𝑏)

As in the other case, the expected value of 𝑦𝑖 conditional onw𝑏𝑖 can be calculated using the techniques

discussed in Predictions using the full model in [ERM] eprobit postestimation.

Treatment
In the potential-outcomes framework, the treatment 𝑡𝑖 is a discrete variable taking 𝑇 values, indexing

the 𝑇 potential outcomes of the outcome 𝑦𝑖: 𝑦1𝑖, . . . , 𝑦𝑇 𝑖.

When we observe treatment 𝑡𝑖 with levels 𝑣1, . . . , 𝑣𝑇, we have

𝑦𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝑦𝑗𝑖

So for each observation, we observe only the potential outcome associated with that observation’s treat-

ment value.

https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimation
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For exogenous treatments, our approach is equivalent to the regression adjustment treatment-effect

estimation method. See [CAUSAL] teffects intro advanced. We do not model the treatment assignment

process. The formulas for the treatment effects and potential-outcome means (POMs) are equivalent to

what we provide here for endogenous treatments. The treatment effect on the treated for x𝑖 for an exoge-

nous treatment is equivalent to what we provide here for the endogenous treatment when the correlation

parameter between the outcome and treatment errors is set to 0. The average treatment effects (ATEs)

and POMs for exogenous treatments are estimated as predictive margins in an analogous manner to what

we describe here for endogenous treatments. We can also obtain different variance parameters for the

different exogenous treatment groups by specifying povariance in extreat().

From here, we assume an endogenous treatment 𝑡𝑖. As in Treatment in [ERM] eprobit, we model

the treatment assignment process with a probit or an ordered probit model, and we call the treatment

assignment error 𝜖𝑡𝑖. An interval regression of 𝑦𝑖 on exogenous covariates x𝑖 and endogenous treatment

𝑡𝑖 taking values 𝑣1, . . . , 𝑣𝑇 has the form

𝑦1𝑖 = x𝑖β1 + 𝜖1𝑖

⋮
𝑦𝑇 𝑖 = x𝑖β𝑇 + 𝜖𝑇 𝑖

𝑦𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝑦𝑗𝑖

As in Introduction, we do not observe 𝑦𝑖 but instead observe the endpoints 𝑦𝑙𝑖 and 𝑦𝑢𝑖.

This model can be formulated with or without different variance and correlation parameters for each

potential outcome. Potential-outcome specific parameters are obtained by specifying povariance or

pocorrelation in the entreat() option.

If the variance and correlation parameters are not potential-outcome specific, for 𝑗 = 1, . . . , 𝑇, 𝜖𝑗𝑖
and 𝜖𝑡𝑖 are bivariate normal with mean 0 and covariance

𝚺 = [ 𝜎2 𝜎𝜌1𝑡
𝜎𝜌1𝑡 1 ]

The treatment is exogenous if 𝜌1𝑡 = 0. Note that we did not specify the structure of the correlations

between the potential-outcome errors. We do not need information about these correlations to estimate

POMs and treatment effects because all covariates and the outcome are observed in observations from

each group.

From here, we discuss a model with an ordinal endogenous treatment. The results for binary treatment

models are similar. The likelihood is derived in a similar manner to Binary and ordinal endogenous

covariates.

For 𝑖 ∈ 𝑈, the uncensored observations, define

𝑟𝑖 = 𝑦𝑖 − x𝑖β𝑗 if 𝑡𝑖 = 𝑣𝑗

For the censored observations, define

𝑟𝑙𝑖 = 𝑦𝑙𝑖 − x𝑖β𝑗 if 𝑡𝑖 = 𝑣𝑗

𝑟𝑢𝑖 = 𝑦𝑢𝑖 − x𝑖β𝑗 if 𝑡𝑖 = 𝑣𝑗

https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulasTreatment
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Now the log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln{Φ∗
1 (𝑙𝑡𝑖 − 𝜌1𝑡

𝜎
𝑟𝑖, 𝑢𝑡𝑖 − 𝜌1𝑡

𝜎
𝑟𝑖, 1 − 𝜌2

1𝑡) 𝜙(𝑟𝑖, 𝜎2)}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 −∞], [𝑢𝑡𝑖 𝑟𝑢𝑖], 𝚺)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 𝑟𝑙𝑖], [𝑢𝑡𝑖 ∞], 𝚺)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 𝑟𝑙𝑖], [𝑢𝑡𝑖 𝑟𝑢𝑖], 𝚺)

where 𝑈 is the set of observations where 𝑦𝑖 is not censored, 𝐿 is the set of observations where 𝑦𝑖 is

left-censored, 𝑅 is the set of observations where 𝑦𝑖 is right-censored, and 𝐼 is the set of observations

where 𝑦𝑖 is interval-censored. 𝑙𝑡𝑖 and 𝑢𝑡𝑖 are the limits for the treatment probability given in Treatment

in [ERM] eprobit.

The treatment effect 𝑦𝑗𝑖 −𝑦1𝑖 is the difference in the outcome for individual 𝑖 if the individual receives
the treatment 𝑡𝑖 = 𝑣𝑗 and what the difference would have been if the individual received the control

treatment 𝑡𝑖 = 𝑣1 instead.

The conditional POM for treatment group 𝑗 is

POM𝑗(x𝑖) = 𝐸 (𝑦𝑗𝑖|x𝑖) = x𝑖β𝑗

For treatment group 𝑗, the treatment effect (TE) conditioned on x𝑖 is

TE𝑗(x𝑖) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖) = POM𝑗(x𝑖) − POM1(x𝑖)

For treatment group 𝑗, the treatment effect on the treated (TET) in group ℎ is

TET𝑗(x𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)
= x𝑖β𝑗 − x𝑖β1 + 𝐸 (𝜖𝑗𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ) − 𝐸 (𝜖1𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)

Remembering that the outcome errors and the treatment error 𝜖𝑡𝑖 are multivariate normal, for 𝑗 =
1, . . . , 𝑇, we can decompose 𝜖𝑗𝑖 such that

𝜖𝑗𝑖 = 𝜎𝜌1𝑡𝜖𝑡𝑖 + 𝜓𝑗𝑖

where 𝜓𝑗𝑖 has mean 0.

It follows that

TET𝑗(x𝑖, 𝑡𝑖 = 𝑣ℎ) = x𝑖β𝑗 − x𝑖β1

We can take the expectation of these conditional predictions over the covariates to get population

average parameters. The estat teffects or margins command is used to estimate the expectations as

predictive margins once the model is estimated with eintreg. The POM for treatment group 𝑗 is

POM𝑗 = 𝐸 (𝑦𝑗𝑖) = 𝐸 {POM𝑗(x𝑖)}

The ATE for treatment group 𝑗 is

ATE𝑗 = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖) = 𝐸 {TE𝑗(x𝑖)}

https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulasTreatment
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
https://www.stata.com/manuals/ermestatteffects.pdf#ermestatteffects
https://www.stata.com/manuals/rmargins.pdf#rmargins
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For treatment group 𝑗, the average treatment effect on the treated (ATET) in treatment group ℎ is

ATET𝑗ℎ = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|𝑡𝑖 = 𝑣ℎ) = 𝐸 {TET𝑗(x𝑖, 𝑡𝑖 = 𝑣ℎ)|𝑡𝑖 = 𝑣ℎ}

The conditional mean of 𝑦𝑖 at treatment level 𝑣𝑗 is

𝐸(𝑦𝑖|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣𝑗) = x𝑖β𝑗 + 𝐸(𝜖𝑖|x𝑖, z𝑡𝑖, 𝑡𝑖 = 𝑣𝑗)

In Predictions using the full model in [ERM] eprobit postestimation, we discuss how the conditional

mean of 𝜖𝑖 is calculated.

If the variance and correlation parameters are potential-outcome specific, for 𝑗 = 1, . . . , 𝑇, 𝜖𝑗𝑖 and 𝜖𝑡𝑖
are bivariate normal with mean 0 and covariance

𝚺𝑗 = [ 𝜎2
𝑗 𝜎𝑗𝜌𝑗𝑡

𝜎𝑗𝜌𝑗𝑡 1 ]

Define

𝜌𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝜌𝑗𝑡

𝜎𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝜎𝑗

𝚺𝑖 =
𝑇

∑
𝑗=1

1(𝑡𝑖 = 𝑣𝑗)𝚺𝑗

Now the log likelihood for the model is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln{Φ∗
1 (𝑙𝑡𝑖 − 𝜌𝑖

𝜎𝑖
𝑟𝑖, 𝑢𝑡𝑖 − 𝜌𝑖

𝜎𝑖
𝑟𝑖, 1 − 𝜌2

𝑖 ) 𝜙(𝑟𝑖, 𝜎2
𝑖 )}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 −∞], [𝑢𝑡𝑖 𝑟𝑢𝑖], 𝚺𝑖)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 𝑟𝑙𝑖], [𝑢𝑡𝑖 ∞], 𝚺𝑖)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
2([𝑙𝑡𝑖 𝑟𝑙𝑖], [𝑢𝑡𝑖 𝑟𝑢𝑖], 𝚺𝑖)

The definitions for the potential-outcome means and treatment effects are the same as in the case where

the variance and correlation parameters did not vary by potential outcome. For the treatment effect on

the treated (TET) of group 𝑗 in group ℎ, we have

TET𝑗(x𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)
= x𝑖β𝑗 − x𝑖β1 + 𝐸 (𝜖𝑗𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ) − 𝐸 (𝜖1𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)

The outcome errors and the treatment error 𝜖𝑡𝑖 are multivariate normal, so for 𝑗 = 1, . . . , 𝑇, we can

decompose 𝜖𝑗𝑖 such that

𝜖𝑗𝑖 = 𝜎𝑗𝜌𝑗𝜖𝑡𝑖 + 𝜓𝑗𝑖

where 𝜓𝑗𝑖 has mean 0 and is independent of 𝑡𝑖.

https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
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It follows that

TET𝑗(x𝑖, 𝑡𝑖 = 𝑣ℎ) = 𝐸 (𝑦𝑗𝑖 − 𝑦1𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)
= x𝑖β𝑗 − x𝑖β1 + (𝜎𝑗𝜌𝑗 − 𝜎1𝜌1)𝐸 (𝜖𝑡𝑖|x𝑖, 𝑡𝑖 = 𝑣ℎ)

The mean of 𝜖𝑡𝑖 conditioned on 𝑡𝑖 and the exogenous covariates x𝑖 can be determined using the for-

mulas discussed in Predictions using the full model in [ERM] eprobit postestimation. It is nonzero. So

the treatment effect on the treated will be equal only to the treatment effect under an exogenous treatment

or when the correlation and variance parameters are identical between the potential outcomes.

As in the other case, we can take the expectation of these conditional predictions over the covariates

to get population-averaged parameters. The estat teffects or margins command is used to estimate

the expectations as predictive margins once the model is fit with eintreg.

Endogenous sample selection

Probit endogenous sample selection

The regression for outcome 𝑦𝑖 with selection on 𝑠𝑖 has the form

𝑦𝑖 = x𝑖β + 𝜖𝑖

𝑠𝑖 = 1 (z𝑠𝑖α𝑠 + 𝜖𝑠𝑖 > 0)

where x𝑖 are covariates that affect the outcome and z𝑠𝑖 are covariates that affect selection. As in the

Introduction above, we do not observe 𝑦𝑖 but instead observe the endpoints 𝑦𝑙𝑖 and 𝑦𝑢𝑖. If 𝑠𝑖 = 1, then

the observation is selected, and there is an interval regression contribution to the likelihood. If 𝑠𝑖 = 0,

then the observation is not selected, and there is no interval regression contribution to the likelihood.

The unobserved errors 𝜖𝑖 and 𝜖𝑠𝑖 are normal with mean 0 and covariance

𝚺 = [ 𝜎2 𝜎𝜌1𝑠
𝜎𝜌1𝑠 1 ]

The likelihood is derived in a similar manner to that in Treatment.

For 𝑖 ∈ 𝑈, the uncensored and selected observations, define

𝑟𝑖 = 𝑦𝑖 − x𝑖β

Let

𝜇𝑠|1,𝑖 = 𝜌1𝑠
𝜎

𝑟𝑖

𝜎𝑠|1 = 1 − 𝜌2
1𝑠

For the selection indicator 𝑠𝑖, the lower and upper limits on 𝜖𝑠𝑖 are

𝑙𝑠𝑖 =
⎧{
⎨{⎩

−∞ 𝑠𝑖 = 0

−z𝑠𝑖α𝑠 𝑠𝑖 = 1
𝑢𝑠𝑖 =

⎧{
⎨{⎩

−z𝑠𝑖α𝑠 𝑠𝑖 = 0

∞ 𝑠𝑖 = 1

https://www.stata.com/manuals/ermeprobitpostestimation.pdf#ermeprobitpostestimationMethodsandformulaspredtotal
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For the censored but selected observations, 𝑖 ∉ 𝑈, define

𝑟𝑙𝑖 = 𝑦𝑙𝑖 − x𝑖β𝑗

𝑟𝑢𝑖 = 𝑦𝑢𝑖 − x𝑖β𝑗

Now the log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln{Φ∗
1(𝑙𝑠𝑖 − 𝜇𝑠|1,𝑖, 𝑢𝑠𝑖 − 𝜇𝑠|1,𝑖, 𝜎2

𝑠|1) 𝜙(𝑟𝑖, 𝜎2)}

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
2([𝑙𝑠𝑖 −∞], [𝑢𝑠𝑖 𝑟𝑢𝑖], 𝚺)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
2([𝑙𝑠𝑖 𝑟𝑙𝑖], [𝑢𝑠𝑖 ∞], 𝚺)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
2([𝑙𝑠𝑖 𝑟𝑙𝑖], [𝑢𝑠𝑖 𝑟𝑢𝑖], 𝚺)

∑
𝑖∉𝑆

𝑤𝑖 lnΦ∗
1(𝑙𝑠𝑖, 𝑢𝑠𝑖, 1)

where 𝑈 is the set of observations where 𝑦𝑖 is not censored, 𝐿 is the set of observations where 𝑦𝑖 is

left-censored, 𝑅 is the set of observations where 𝑦𝑖 is right-censored, 𝐼 is the set of observations where
𝑦𝑖 is interval-censored, and 𝑆 is the set of selected observations.

The conditional mean of 𝑦𝑖 is

𝐸(𝑦𝑖|x𝑖) = x𝑖β

Tobit endogenous sample selection

Instead of constraining the selection indicator to be binary, tobit endogenous sample selection uses

a censored continuous endogenous sample-selection indicator. We allow the selection variable to be

left-censored or right-censored.

The underlying regression model for 𝑦𝑖 with tobit selection on 𝑠𝑖 has the form

𝑦𝑖 = x𝑖β + 𝜖𝑖

We observe the selection indicator 𝑠𝑖, which indicates the censoring status of the latent selection variable

𝑠⋆
𝑖 ,

𝑠⋆
𝑖 = z𝑠𝑖α𝑠 + 𝜖𝑠𝑖

𝑠𝑖 =

⎧{{{
⎨{{{⎩

𝑙𝑖 𝑠⋆
𝑖 ≤ 𝑙𝑖

𝑠⋆
𝑖 𝑙𝑖 < 𝑠⋆

𝑖 < 𝑢𝑖

𝑢𝑖 𝑠⋆
𝑖 ≥ 𝑢𝑖

where z𝑠𝑖 are covariates that affect selection and 𝑙𝑖 and 𝑢𝑖 are fixed lower and upper limits.
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As in Introduction, 𝑦𝑖 is observed via the endpoints 𝑦𝑙𝑖 and 𝑦𝑢𝑖. If 𝑠⋆
𝑖 is not censored (𝑙𝑖 < 𝑠⋆

𝑖 <
𝑢𝑖), then the observation is selected, and there is an interval regression contribution to the likelihood.

Otherwise, if 𝑠⋆
𝑖 is left-censored (𝑠⋆

𝑖 < 𝑙𝑖) or right-censored (𝑠⋆
𝑖 > 𝑙𝑖), then the observation is not selected,

and there is no interval regression contribution to the likelihood. The unobserved errors 𝜖𝑖 and 𝜖𝑠𝑖 are

normal with mean 0 and covariance

𝚺 = [ 𝜎2 𝜎1𝑠
𝜎1𝑠 𝜎2

𝑠
]

For the selected observations, we can treat 𝑠𝑖 as a continuous endogenous regressor, as in Contin-

uous endogenous covariates. In fact, 𝑠𝑖 may even be used as a regressor for 𝑦𝑖 in eintreg (specify

tobitselect(. . . main)). On the nonselected observations, we treat 𝑠𝑖 like the probit endogenous

sample-selection indicator in Probit endogenous sample selection.

Conditional on 𝑠⋆
𝑖 and the exogenous covariates, 𝜖𝑖 has mean and variance

𝜇1|𝑠,𝑖 = 𝐸 (𝜖𝑖|𝑠⋆
𝑖 , x𝑖, z𝑠𝑖) = 𝜎1𝑠𝜎−2

𝑠 (s⋆
𝑖 − z𝑠𝑖α𝑠)

𝜎2
1|𝑠 = Var (𝜖𝑖|𝑠⋆

𝑖 , x𝑖, z𝑠𝑖) = 𝜎2 − 𝜎1𝑠𝜎−2
𝑠 𝜎1𝑠

Let

𝑟𝑙𝑖 = 𝑦𝑙𝑖 − x𝑖β − 𝜇1|𝑠,𝑖

𝑟𝑢𝑖 = 𝑦𝑢𝑖 − x𝑖β − 𝜇1|𝑠,𝑖

The log likelihood is

ln𝐿 = ∑
𝑖∈𝑈

𝑤𝑖 ln𝜙(𝑟𝑙𝑖, 𝜎2
1|𝑠)

+ ∑
𝑖∈𝐿

𝑤𝑖 lnΦ∗
1 (−∞, 𝑟𝑢𝑖, 𝜎2

1|𝑠)

+ ∑
𝑖∈𝑅

𝑤𝑖 lnΦ∗
1 (𝑟𝑙𝑖, ∞, 𝜎2

1|𝑠)

+ ∑
𝑖∈𝐼

𝑤𝑖 lnΦ∗
1 (𝑟𝑙𝑖, 𝑟𝑢𝑖, 𝜎2

1|𝑠)

+ ∑
𝑖∈𝑆

𝑤𝑖 ln𝜙(𝑠𝑖 − z𝑠𝑖α𝑠, 𝜎2
𝑠)

+ ∑
𝑖∈𝐿𝑛

𝑤𝑖 lnΦ∗
1(𝑙𝑙𝑖, 𝑢𝑙𝑖, 1)

+ ∑
𝑖∈𝑅𝑛

𝑤𝑖 lnΦ∗
1(𝑙𝑢𝑖, 𝑢𝑢𝑖, 1)

where 𝑆 is the set of observations for which 𝑦𝑙𝑖 and 𝑦𝑢𝑖 are observed, 𝑈 ⊂ 𝑆 is the set of observations

where 𝑦𝑖 is not censored, 𝐿 ⊂ 𝑆 is the set of observations where 𝑦𝑖 is left-censored, 𝑅 ⊂ 𝑆 is the set of

observations where 𝑦𝑖 is right-censored, 𝐼 ⊂ 𝑆 is the set of observations where 𝑦𝑖 is interval-censored,

𝐿𝑛 is the set of observations for which 𝑠⋆
𝑖 is left-censored, and 𝑅𝑛 is the set of observations for which 𝑠⋆

𝑖
is right-censored. The lower and upper limits for selection— 𝑙𝑙𝑖, 𝑢𝑙𝑖, 𝑙𝑢𝑖, and 𝑢𝑢𝑖—are defined in Tobit

endogenous sample selection in [ERM] eprobit.

When 𝑠𝑖 is not a covariate in x𝑖, we use the standard conditional mean formula,

𝐸(𝑦𝑖|x𝑖) = x𝑖β

https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulasintro
https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulascontendog
https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulasprobitsel
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulastobitsel
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobitMethodsandformulastobitsel
https://www.stata.com/manuals/ermeprobit.pdf#ermeprobit
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Otherwise, we use

𝐸(𝑦𝑖|x𝑖, 𝑠𝑖, 𝑧𝑠𝑖) = x𝑖β + 𝜎1𝑠
𝜎2

𝑠
(𝑠𝑖 − 𝑧𝑠𝑖α𝑠)

Random effects
For an interval regression with random effects, we observe panel data. For panel 𝑖 = 1, . . . , 𝑁 and

observation 𝑗 = 1, . . . , 𝑁𝑖, an interval regression of 𝑦𝑖𝑗 on exogenous covariates x𝑖𝑗 with random effect

𝑢𝑖 has the form

𝑦𝑖𝑗 = x𝑖𝑗β + 𝜖𝑖𝑗 + 𝑢𝑖

As in Introduction, we do not observe 𝑦𝑖𝑗 but instead observe endpoints 𝑦𝑙𝑖𝑗 and 𝑦𝑢𝑖𝑗. The random effect

𝑢𝑖 is normal with mean 0 and variance 𝜎2
𝑢. It is independent of the observation-level error 𝜖𝑖𝑗, which is

normal with mean 0 and variance 𝜎2.

We derive the likelihood by using the conditional density of 𝑦𝑙𝑖𝑗 and 𝑦𝑢𝑖𝑗 on the random effect 𝑢𝑖 and

the marginal density of 𝑢𝑖. Multiplying them together we have the joint density, which is integrated over

𝑢𝑖.

Let

𝑙𝑖𝑗(𝑢) = ∑
𝑗∈𝑈𝑖

𝜙(𝑦𝑖𝑗 − x𝑖𝑗β − 𝑢, 𝜎2)

+ ∑
𝑗∈𝐿𝑖

Φ(
𝑦𝑢𝑖𝑗 − x𝑖𝑗β − 𝑢

𝜎
)

+ ∑
𝑖∈𝑅𝑖

Φ(
−𝑦𝑙𝑖𝑗 + x𝑖𝑗β − 𝑢

𝜎
)

+ ∑
𝑖∈𝐼𝑖

{Φ(
𝑦𝑢𝑖𝑗 − x𝑖𝑗β − 𝑢

𝜎
) − Φ(

𝑦𝑙𝑖𝑗 − x𝑖𝑗β − 𝑢
𝜎

)}

where 𝑈𝑖 is the set of observations where 𝑦𝑖𝑗 is not censored, 𝐿𝑖 is the set of observations where 𝑦𝑖𝑗 is

left-censored, 𝑅𝑖 is the set of observations where 𝑦𝑖𝑗 is right-censored, and 𝐼𝑖 is the set of observations

where 𝑦𝑖𝑗 is interval-censored.

The likelihood for panel 𝑖 is

𝐿𝑖 = ∫
∞

−∞
𝜙 ( 𝑢𝑖

𝜎𝑢
)

𝑁𝑖

∏
𝑗=1

𝑙𝑖𝑗(𝑢𝑖)𝑑𝑢𝑖

We can approximate this integral using Gauss–Hermite quadrature. For 𝑞-point Gauss–Hermite
quadrature, let the abscissa and weight pairs be denoted by (𝑎𝑘𝑖, 𝑤𝑘𝑖), 𝑘 = 1, . . . , 𝑞. The Gauss–Hermite
quadrature approximation is then

∫
∞

−∞
𝑓(𝑥) exp(−𝑥2) 𝑑𝑥 ≈

𝑞

∑
𝑘=1

𝑤𝑘𝑖𝑓(𝑎𝑘𝑖)

The default approximation used by xteintreg is mean–variance adaptive Gauss–Hermite quadra-

ture. This chooses optimal abscissa and weights for each panel. See Likelihood for multiequation models

in [ERM] eprobit for more information on the use of mean–variance adaptive Gauss–Hermite quadrature.

https://www.stata.com/manuals/erm.pdf#ermeintregMethodsandformulasintro
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Using the quadrature approximation, the log likelihood is

ln𝐿 =
𝑁

∑
𝑖=1

ln{
𝑞

∑
𝑘=1

𝑤𝑘𝑖

𝑁𝑖

∏
𝑗=1

𝑙𝑖𝑗(𝜎𝑢𝑎𝑘𝑖)}

The conditional mean of 𝑦𝑖𝑗 is

𝐸(𝑦𝑖𝑗|x𝑖𝑗) = x𝑖𝑗β

Combinations of features
Extended interval regression models that involve multiple features can be formulated using the tech-

niques discussed in Likelihood for multiequation models in [ERM] eprobit. Essentially, the density of

the observed endogenous covariates can be written in terms of the unobserved normal errors. The ob-

served endogenous and exogenous covariates determine the range of the errors, and the joint density can

be evaluated as multivariate normal probabilities and densities.

Confidence intervals
The estimated variances will always be nonnegative, and the estimated correlations will always fall

in (−1, 1). To obtain confidence intervals that accommodate these ranges, we must use transformations.
We use the log transformation to obtain the confidence intervals for variance parameters and the atanh

transformation to obtain confidence intervals for correlation parameters. For details, see Confidence

intervals in [ERM] eprobit.
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