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Description
This introduction describes a nonlinear New Classical model, estimates some of its parameters,

and explores the model’s impulse–response functions under two different parameter settings.

Remarks and examples stata.com

Remarks are presented under the following headings:
The model
Parameter estimation
Steady state
Model-implied covariances
Policy and transition matrices
Impulse responses
Sensitivity analysis

The model
Equations (1)–(8) specify a variant on the New Classical model studied in King and Rebelo (1999).

It includes equations for output Yt, consumption Ct, investment It hours worked Ht, the interest rate
Rt, the real wage Wt, the capital stock Kt, and productivity Zt. Model variables must be weakly
stationary. The model contains six parameters: α, β, χ, δ, ρ, and σ.
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Kt+1 = It + (1− δ)Kt (7)

ln(Zt+1) = ρ ln(Zt) + et+1 (8)

Equation (1) is a consumption Euler equation that links consumption in the current period to expected
future consumption and the expected future interest rate. Equation (2) is a labor supply equation
that links hours worked to the wage and consumption. Equation (3) is a standard national income
accounting identity, stating that output is split between consumption and investment. Equation (4)
is an output supply equation or production function, stating that output is produced by combining
capital Kt and labor Ht at productivity level Zt. Equation (5) is a capital demand curve. Equation
(6) is a labor demand curve. Equation (7) is the capital accumulation process. Equation (8) specifies
a stochastic process for productivity. The stochastic shock et+1 is i.i.d. normal with mean zero and
standard deviation σz .
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The model includes six parameters. β is the discount factor reflecting a preference for current
consumption relative to future consumption. α is a production parameter. χ is a preference parameter.
δ is the depreciation rate. ρ measures the persistence of the stochastic productivity process. Finally,
σ is the standard deviation of the innovations to the productivity process.

Parameter estimation
In this example, we fix some parameters at prespecified values and estimate others. Once the

parameters are estimated, we analyze the model by inspecting its steady state, low-order moments,
policy and transition matrices, and impulse–response functions.

We use the growth rate of output as the empirical counterpart to yt. For the calibrated parameters,
we set α = 0.33, β = 0.99, δ = 0.025, and χ = 2, which follows King and Rebelo (1999). We will
estimate (ρ, σz). We first bring in the data.

. use https://www.stata-press.com/data/r18/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)

We next set up all the constraints
. constraint 1 _b[alpha] = 0.33

. constraint 2 _b[beta] = 0.99

. constraint 3 _b[delta] = 0.025

. constraint 4 _b[chi] = 2

and estimate the remaining parameters,
. dsgenl (1/c = {beta}*(1/F.c)*(1+F.r-{delta}))
> ({chi}*h = w/c)
> (y = c + i)
> (y = z*k^{alpha}*h^(1-{alpha}))
> (r = {alpha}*y/k)
> (w = (1-{alpha})*y/h)
> (F.k = i + (1-{delta})*k)
> (ln(F.z) = {rho}*ln(z))
> , observed(y) unobserved(c i r w h) exostate(z) endostate(k) constraint(1/4)
Solving at initial parameter vector ...
Checking identification ...
(setting technique to bfgs)
Iteration 0: Log likelihood = -955.44919
Iteration 1: Log likelihood = -857.31841 (backed up)
Iteration 2: Log likelihood = -850.75913 (backed up)
Iteration 3: Log likelihood = -850.75913 (backed up)
Iteration 4: Log likelihood = -827.82709
Iteration 5: Log likelihood = -827.82709 (backed up)
Iteration 6: Log likelihood = -827.82709 (backed up)
BFGS stepping has contracted, resetting BFGS Hessian
Iteration 7: Log likelihood = -812.65536
Iteration 8: Log likelihood = -809.74135 (backed up)
Iteration 9: Log likelihood = -764.90349
(switching technique to nr)
Iteration 10: Log likelihood = -764.90349 (not concave)
Iteration 11: Log likelihood = -702.6619
Iteration 12: Log likelihood = -691.50282
Iteration 13: Log likelihood = -689.88687 (not concave)
Iteration 14: Log likelihood = -682.85662
Iteration 15: Log likelihood = -653.96651
Iteration 16: Log likelihood = -639.87678
Iteration 17: Log likelihood = -639.39734
Iteration 18: Log likelihood = -639.39684
Iteration 19: Log likelihood = -639.39684
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First-order DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -639.39684
( 1) [/structural]alpha = .33
( 2) [/structural]beta = .99
( 3) [/structural]delta = .025
( 4) [/structural]chi = 2

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .99 (constrained)

delta .025 (constrained)
chi 2 (constrained)

alpha .33 (constrained)
rho .3133483 .0614696 5.10 0.000 .1928701 .4338265

sd(e.z) 2.287682 .1036018 2.084627 2.490738

We specified four options related to the model structure. The exostate(z) option lists the
state variable that is subject to shocks, z. The endostate(k) option specifies that k is a state
variable without shocks. The observed(y) option specifies y as an observed control variable. The
unobserved(c i r w h) option specifies those variables as unobserved, or latent, control variables.
The remaining option we specified was constraint(1/4), which applies the constraints we set
up previously. We find that the estimated productivity process is mildly persistent, ρ = 0.31. The
standard deviation of the productivity shock is about 2.3, or about 2%.

Steady state

In the absence of shocks, the variables in a nonlinear DSGE model converge to a steady-state
position in which variables are constant through time. dsgenl finds the steady state of the model at
the estimated parameter values. You can view the steady state with estat steady.

. estat steady

Location of model steady-state

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

k 18.75991 . . . . .
z 1 . . . . .
c 1.526432 . . . . .
i .4689977 . . . . .
r .035101 . . . . .
w 2.02027 . . . . .
h .6617621 . . . . .
y 1.99543 . . . . .

Note: Standard errors reported as missing for constrained steady-state values.

All the standard errors for the estimated location of the steady state are missing. This is because
of the constraints we placed on some of the model parameters. We estimated the persistence of the
productivity state variable and the standard deviation of the shock to productivity. These dynamic
parameters have no effect on the steady state. Instead, the steady state is a function of the model’s
static parameters. Because we constrained all the static parameters, the steady-state location is not
subject to uncertainty, and the standard errors are all missing. Put another way, the location of the
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steady state is determined entirely by parameters that we have constrained in the model and by the
model’s structure itself.

Model-implied covariances

The model’s state-space matrices generate predictions for the variances and covariances of the
model variables.

. estat covariance

Estimated covariances of model variables

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

c
var(c) .870567 .1701705 5.12 0.000 .537039 1.204095

cov(c,i) 3.39887 .5499555 6.18 0.000 2.320977 4.476763
cov(c,r) .0352466 .0232027 1.52 0.129 -.0102298 .080723
cov(c,w) 1.167688 .2145175 5.44 0.000 .7472416 1.588135
cov(c,h) .2971211 .0448135 6.63 0.000 .2092883 .3849539
cov(c,y) 1.464809 .2590251 5.66 0.000 .9571294 1.972489

i
var(i) 196.9607 19.01966 10.36 0.000 159.6829 234.2386

cov(i,r) 48.87007 4.692839 10.41 0.000 39.67227 58.06786
cov(i,w) 26.14587 2.644813 9.89 0.000 20.96213 31.32961
cov(i,h) 22.747 2.18294 10.42 0.000 18.46852 27.02549
cov(i,y) 48.89287 4.818514 10.15 0.000 39.44876 58.33699

r
var(r) 12.92995 1.273471 10.15 0.000 10.434 15.42591

cov(r,w) 5.774216 .5477555 10.54 0.000 4.700635 6.847797
cov(r,h) 5.73897 .5520461 10.40 0.000 4.656979 6.82096
cov(r,y) 11.51319 1.099565 10.47 0.000 9.358078 13.66829

w
var(w) 4.103074 .4796048 8.56 0.000 3.163066 5.043082

cov(w,h) 2.935386 .2902517 10.11 0.000 2.366503 3.504269
cov(w,y) 7.03846 .7632272 9.22 0.000 5.542562 8.534358

h
var(h) 2.638265 .2521725 10.46 0.000 2.144016 3.132514

cov(h,y) 5.573651 .5419094 10.29 0.000 4.511528 6.635774

y
var(y) 12.61211 1.298179 9.72 0.000 10.06773 15.15649

One object of interest is the relative volatility of a model variable, defined as the standard deviation
of that variable compared with the standard deviation of a reference variable. We can calculate the
volatility of investment (model variable i) relative to output (model variable y) with nlcom.

Before we can use nlcom, we need to add the post option to our estat covariance command.
With this option, the results are stored in e(), where nlcom can access them. First, however, we
save the dsgenl estimates using estimates store.

. estimates store dsgenl

. quietly estat covariance, post
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We can now refer to the variances of investment and output as b[i:var(i)] and b[y:var(y)].
We use nlcom to compute the volatility of investment relative to output.

. nlcom sqrt(_b[i:var(i)] / _b[y:var(y)])

_nl_1: sqrt(_b[i:var(i)] / _b[y:var(y)])

Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 3.951809 .0303923 130.03 0.000 3.892241 4.011377

The model predicts that investment is about four times as volatile as output.

Policy and transition matrices

The model’s state-space form expresses the control variables as functions of the state variables
alone. It solves the system of equations locally near the steady state, resolving the expectations of
future variables via the rational expectations assumption. The entries in the state-space matrices are
interpretable as the contemporaneous effect of a one-unit change in the state variable on the control
variable.

. estimates restore dsgenl
(results dsgenl are active now)

. estat policy

Policy matrix

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

c
k .5530748 . . . . .
z .1006471 .0040593 24.79 0.000 .092691 .1086031

i
k -.8741569 . . . . .
z 5.854704 .0219119 267.19 0.000 5.811758 5.897651

r
k -.782376 . . . . .
z 1.453057 .0020449 710.58 0.000 1.44905 1.457065

w
k .3853494 . . . . .
z .7768523 .0010072 771.31 0.000 .7748782 .7788263

h
k -.1677254 . . . . .
z .6762052 .0030521 221.56 0.000 .6702232 .6821872

y
k .217624 . . . . .
z 1.453057 .0020449 710.58 0.000 1.44905 1.457065

Note: Standard errors reported as missing for constrained policy matrix
values.

The standard errors presented here again require some interpretation. The standard errors for the
impact effect of k on all model variables are missing. These impact effects depend entirely on the
parameters we constrained, so their values are fixed entirely by the structure of the model.
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The state variables are correlated in this model. The capital equation shown in (7) specifies that
future capital is a function of the current capital stock and current investment. In turn, investment
depends on the current capital stock and on productivity; hence, the future capital stock depends on
both the current capital stock and current productivity. We can see these relationships with estat
transition.

. estat transition

Transition matrix of state variables

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

F.k
k .9531461 . . . . .
z .1463676 .0005478 267.19 0.000 .1452939 .1474413

F.z
k 0 (omitted)
z .3133483 .0614696 5.10 0.000 .1928701 .4338265

Note: Standard errors reported as missing for constrained transition matrix
values.

The “own” effects (k on F.k and z on F.z) are persistence parameters. The other reported effects
show how a change in one state variable contemporaneously affects another. A change in the capital
stock does not affect future productivity, but a change in productivity does affect the future capital
stock. A 1% increase in productivity raises the future capital stock by 0.15%.
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Impulse responses

The policy and transition matrices display impact effects. Because of the dynamic structure of
the state, a shock to a state variable has lasting effects on both the state and the controls. An
impulse–response function traces out the full dynamic effect of a shock. When state variables are
correlated, a shock to one state variable will (either immediately or eventually) lead to movements in
another state variable.

We use the irf commands to trace out the effect of a shock to productivity on itself and on each
of the control variables in our model.

. irf set rbcirf, replace
(file rbcirf.irf created)
(file rbcirf.irf now active)

. irf create est, step(20) replace
(irfname est not found in rbcirf.irf)
(file rbcirf.irf updated)

. irf graph irf, impulse(z) response(y c i h w z) byopts(yrescale)
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All model variables rise on a shock to productivity. For most model variables, the increase is
short lived, and they return to their long-run values within five periods. Consumption is the exception
(upper left panel). It rises smoothly for several periods, then gradually falls back to its long-run value.
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Sensitivity analysis

In this section, we will explore the effect of changing some model parameters on the impulse
responses. We first type the dsgenl command without arguments to replay the current estimates.

. dsgenl

First-order DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -639.39684
( 1) [/structural]alpha = .33
( 2) [/structural]beta = .99
( 3) [/structural]delta = .025
( 4) [/structural]chi = 2

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .99 (constrained)

delta .025 (constrained)
chi 2 (constrained)

alpha .33 (constrained)
rho .3133483 .0614696 5.10 0.000 .1928701 .4338265

sd(e.z) 2.287682 .1036018 2.084627 2.490738

We can solve the model using different parameter values and analyze how the model behaves
across the two scenarios. It is common to examine a model’s behavior for multiple parameter settings,
for example, for different settings for the persistence of a shock or for different settings of preference,
technology, or policy parameters. The simplest way to solve using a new set of parameters is to use
the from() and solve options. First, store the current parameter vector in a Stata matrix.

. matrix b = e(b)

Next, change the entries in the matrix to the new desired parameters. In this case, we want to look
at the response of the model to a shock when productivity is more persistent than was estimated, so
we set ρ = 0.6.

. matrix b[1,5] = 0.6
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Next, we solve the model again. In the following command, note the use of the from(b) and
solve options.

. dsgenl (1/c = {beta}*(1/F.c)*(1+F.r-{delta}))
> ({chi}/(1-h) = w/c)
> (y = c + i)
> (y = z*k^{alpha}*h^(1-{alpha}))
> (w = (1-{alpha})*y/h)
> (r = {alpha}*y/k)
> (F.k = i + (1-{delta})*k)
> (ln(F.z) = {rho}*ln(z))
> , observed(y) unobserved(c i r w h) exostate(z) endostate(k)
> from(b) solve noidencheck
Solving at initial parameter vector ...

First-order DSGE model

Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -653.63973

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .99 . . . . .

delta .025 . . . . .
chi 2 . . . . .

alpha .33 . . . . .
rho .6 . . . . .

sd(e.z) 2.287682 . . .

Note: Skipped identification check.
Note: Model solved at specified parameters; maximization options ignored.

We passed the parameter vector in using from(), and we used the solve option to prevent
estimation. Because we specified the solve option, the estimation table simply repeats the values we
fed in with from(). Of course, because we did not estimate, we do not get standard errors. When
we use solve, the point of the analysis is always in the estat and irf commands that come after.

We create a new set of impulse responses.

. irf create alt, step(20) replace
(irfname alt not found in rbcirf.irf)
(file rbcirf.irf updated)
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We graph the response of y to a z impulse across the two models.

. irf ograph (est z y irf) (alt z y irf)
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We see that output increases more and takes longer to return to its long-run value when we set ρ
to 0.60 instead of its estimated value of 0.31.

We are not interested only in the response of y to a shock in z. We can also plot the response of
c, h, i, w, y, and z to an impulse to z in panels of a combined graph. We will accomplish this task
with a foreach loop.
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. foreach v in c h i w y z {
2. irf ograph (est z ‘v’ irf) (alt z ‘v’ irf), name(‘v’) nodraw
3. }

. graph combine c h i w y z
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The model with ρ = 0.60 shows more persistence overall than the estimated value of ρ = 0.31, as
expected. For variables such as consumption and wages, the amplitude of the response is amplified
as well.
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