
Intro 3b — New Classical model

Description Remarks and examples Reference Also see

Description
In this example, we solve a New Classical model similar to the one in King and Rebelo (1999). We

also demonstrate how to compare amodel’s theoretical predictions under different parameter values using

IRFs.

Remarks and examples
Remarks are presented under the following headings:

The model
Solving the model
Policy and transition matrices
Impulse responses
Sensitivity analysis

The model
In this model, output, consumption, investment, employment, and other variables are driven by state

variables linked to production and demand. The model is similar to the one in King and Rebelo (1999)

and is referred to as a real business cycle model.

The nonlinear form of the model is

1
𝐶𝑡

= 𝛽𝐸𝑡 { 1
𝐶𝑡+1

(1 + 𝑅𝑡+1 − 𝛿)} (1)

𝐻𝜂
𝑡 = 𝑊𝑡

𝐶𝑡
(2)

𝑌𝑡 = 𝐶𝑡 + 𝑋𝑡 + 𝐺𝑡 (3)
𝑌𝑡 = 𝐾𝛼

𝑡 (𝑍𝑡𝐻𝑡)1−𝛼 (4)

𝑊𝑡 = (1 − 𝛼) 𝑌𝑡
𝐻𝑡

(5)

𝑅𝑡 = 𝛼 𝑌𝑡
𝐾𝑡

(6)

𝐾𝑡+1 = (1 − 𝛿)𝐾𝑡 + 𝑋𝑡 (7)

Equation (1) specifies consumption 𝐶𝑡 as a function of expected future consumption and the expected

future interest rate 𝐸𝑡(𝑅𝑡+1). Equation (2) specifies labor hours 𝐻𝑡 as a function of the wage 𝑊𝑡 and

consumption; it is a labor supply equation. Equation (3) is the national income accounting identity for

a closed economy, specifying output 𝑌𝑡 as the sum of consumption, investment 𝑋𝑡, and government

spending 𝐺𝑡. Equation (4) is a production function that specifies output as a function of labor input 𝐻𝑡,

capital input 𝐾𝑡, and productivity 𝑍𝑡. Equations (5) and (6) specify labor demand and capital demand,

respectively. Equation (7) specifies the equation for capital accumulation. The model is completed when

we add state transition equations for 𝑍𝑡 and 𝐺𝑡. These state transition equations are conventionally

specified after the model has been linearized.
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The linearized form of the model is

𝑐𝑡 = 𝐸𝑡(𝑐𝑡+1) − (1 − 𝛽 + 𝛽𝛿)𝐸𝑡(𝑟𝑡+1)
𝜂ℎ𝑡 = 𝑤𝑡 − 𝑐𝑡

𝜙1𝑥𝑡 = 𝑦𝑡 − 𝜙2𝑐𝑡 − 𝑔𝑡

𝑦𝑡 = (1 − 𝛼)(𝑧𝑡 + ℎ𝑡) + 𝛼𝑘𝑡

𝑤𝑡 = 𝑦𝑡 − ℎ𝑡

𝑟𝑡 = 𝑦𝑡 − 𝑘𝑡

𝑘𝑡+1 = 𝛿𝑥𝑡 + (1 − 𝛿)𝑘𝑡

𝑧𝑡+1 = 𝜌𝑧𝑧𝑡 + 𝜖𝑡+1

𝑔𝑡+1 = 𝜌𝑔𝑔𝑡 + 𝜉𝑡+1

The model has six control variables and three state variables. Two of the state variables, 𝑧𝑡+1 and

𝑔𝑡+1, are modeled as first-order autoregressive processes. The state equation for 𝑘𝑡+1 depends on the

current value of a control variable, namely, 𝑥𝑡.

Solving the model
The solve option of dsge places the model in state-space form without estimating parameters; it

is similar to iterate(0) but is faster because it does not calculate standard errors. Using solve for

different parameter values of your model is a useful way to explore the model’s theoretical properties.

The parameter values used here are similar to those used in King and Rebelo (1999). Each has an

interpretation. (1− alpha) is labor’s share of national income. delta is the depreciation rate of capital.

eta is the slope of the labor supply curve. phi1 and phi2 are share parameters related to investment’s

share of national income and consumption’s share of national income, respectively. rhoz and rhog are

autoregressive parameters on the state variables.
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. use https://www.stata-press.com/data/r19/usmacro2
(Federal Reserve Economic Data - St. Louis Fed, 2017-01-15)
. dsge (c = F.c - (1-{beta}+{beta}*{delta})*F.r, unobserved)
> ({eta}*h = w - c, unobserved)
> ({phi1}*x = y - {phi2}*c - g, unobserved)
> (y = (1-{alpha})*(z+h) + {alpha}*k)
> (w = y - h, unobserved)
> (r = y - k, unobserved)
> (F.k = {delta}*x+ (1-{delta})*k, state noshock)
> (F.z = {rhoz}*z, state)
> (F.g = {rhog}*g, state),
> from(beta=0.96 eta=1 alpha=0.3 delta=0.025 phi1=0.2 phi2=0.6 rhoz=0.8 rhog=0.3)
> solve noidencheck
DSGE model
Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -1957.0261

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .96 . . . . .

delta .025 . . . . .
eta 1 . . . . .

phi1 .2 . . . . .
phi2 .6 . . . . .

alpha .3 . . . . .
rhoz .8 . . . . .
rhog .3 . . . . .

sd(e.z) 1 . . .
sd(e.g) 1 . . .

Note: Skipped identification check.
Note: Model solved at specified parameters.

The solve option solves the model at the specified values in from(). We skip the identification

check with noidencheck. Simply solving the model does not involve any reference to the data or any
estimation. Still, we can explore what these parameters imply.
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Policy and transition matrices
After solving, we can use many of the postestimation commands, though standard errors will be

missing throughout.

The state transition matrix shows how the state vector in the next period is related to the state vector

in the current period. Some state variables are specified as first-order autoregressive processes, and

their transition equations will simply repeat information that is already available in the estimation table.

However, if any state variable equation contains control variables, then that state variable’s transition

equation will depend on the other state variables.

. estat transition
Transition matrix of state variables

Delta-method
Coefficient std. err. z P>|z| [95% conf. interval]

F.k
k .9256785 . . . . .
z .1078282 . . . . .
g -.1070547 . . . . .

F.z
k 0 (omitted)
z .8 . . . . .
g 0 (omitted)

F.g
k 0 (omitted)
z 0 (omitted)
g .3 . . . . .

Note: Standard errors reported as missing for constrained transition matrix
values.

The value of the state variables z and g in the next period depends only on their value in the current

period, but the value of the capital stock k in the next period depends on the current value of all three state
variables. This feature means that, for example, a shock to the z state variable has two effects: it increases
future values of z, because z is autoregressive, but it also increases future values of k. Interrelationships
among the state variables can generate more interesting patterns in the IRFs than theAR(1) dynamics that

we saw in [DSGE] Intro 3a.

Impulse responses
One way to compare two parameter sets is to graph the impulse response of model variables to a shock

under each parameter set. We first set the impulse–response file with irf set and then add impulse

responses named persistent to the file with irf create.
. irf set rbcirf
(file rbcirf.irf created)
(file rbcirf.irf now active)

. irf create persistent
(file rbcirf.irf updated)

https://www.stata.com/manuals/dsgeintro3a.pdf#dsgeIntro3a
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The response of model variables to a shock to z is graphed by typing

. irf graph irf, irf(persistent) impulse(z) response(y c x h w z) noci
> byopts(yrescale)
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Step
Graphs by irfname, impulse variable, and response variable

Each graph is labeled with the IRF name, the impulse variable, and the response variable. For instance,

the top-left graph shows the response of consumption to a shock to the 𝑧𝑡 state variable. The bottom-right

graph shows the response of the state variable 𝑧𝑡 itself. The state is persistent, which is not surprising:

we set the autoregressive parameter in the 𝑧𝑡 equation to 0.8.

In the top-left graph, we see that consumption c rises over time before returning to steady state. The

time unit is quarters, so a value of about 0.27, 4 periods after the shock, indicates that consumption is

0.27% above its steady-state value one year after the shock. Hours worked h are shown in the top center

graph and rise initially before falling below steady state. The real wage w, output y, and investment x all

rise.
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Sensitivity analysis
The responses of variables to a shock to z are persistent. Some variables, like consumption and the

wage, show dynamics beyond the simple autoregressive behavior of z itself. To evaluate the role of

persistence in z on the persistence of other model variables, we rerun the dsge command. This time, we

set the persistence of z to a smaller value of 0.6.

. dsge (c = F.c - (1-{beta}+{beta}*{delta})*F.r, unobserved)
> ({eta}*h = w - c, unobserved)
> ({phi1}*x = y - {phi2}*c - g, unobserved)
> (y = (1-{alpha})*(z+h) + {alpha}*k)
> (w = y - h, unobserved)
> (r = y - k, unobserved)
> (F.k = {delta}*x+ (1-{delta})*k, state noshock)
> (F.z = {rhoz}*z, state)
> (F.g = {rhog}*g, state),
> from(beta=0.96 eta=1 alpha=0.3 delta=0.025 phi1=0.2 phi2=0.6 rhoz=0.6
> rhog=0.3) solve noidencheck
DSGE model
Sample: 1955q1 thru 2015q4 Number of obs = 244
Log likelihood = -1659.7331

y Coefficient Std. err. z P>|z| [95% conf. interval]

/structural
beta .96 . . . . .

delta .025 . . . . .
eta 1 . . . . .

phi1 .2 . . . . .
phi2 .6 . . . . .

alpha .3 . . . . .
rhoz .6 . . . . .
rhog .3 . . . . .

sd(e.z) 1 . . .
sd(e.g) 1 . . .

Note: Skipped identification check.
Note: Model solved at specified parameters.
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The only change in the parameter set is that rhoz has been set to 0.6 from its earlier setting of 0.8.

We can add the impulse responses of this model to the irf file with the name transitory,

. irf create transitory, replace
(irfname transitory not found in rbcirf.irf)
(file rbcirf.irf updated)

and graph them.

. irf graph irf, irf(transitory) impulse(z) response(y c x h w z) noci
> byopts(yrescale)
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Step
Graphs by irfname, impulse variable, and response variable

Model variables are much less persistent. We can use irf ograph to overlay the IRF for a variable

under the two calibrations. This way we can view the differences across calibrations directly.

. irf ograph (persistent z c irf) (transitory z c irf)
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 persistent: irf of z -> c
 transitory: irf of z -> c

When the shock itself is persistent, consumption responds persistently. When the shock is transitory,

consumption returns to its steady-state value quickly.
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