
dyngen — Dynamically generate new values of variables

Description Menu Syntax Option Remarks and examples Also see

Description
dyngen replaces the value of variables when two or more variables depend on each other’s lagged

values. Use dyngen when the values for the whole set of variables must be computed for an observation

before moving to the next observation.

Menu
Data > Create or change data > Dynamically generate new values

Syntax
dyngen {

update varname1 = exp [if] [, missval(#)]

⋮

update varname𝑁 = exp [if] [, missval(#)]

} [if] [in]
varname𝑛, 𝑛 = 1, . . . , 𝑁, must already exist in the dataset and cannot be an alias variable; see [D] frunalias.

exp must be a valid expression and may include time-series operators; see [U] 11.4.4 Time-series varlists.

Option
missval(#) specifies the value to use in place of missing values when performing calculations. This

option is particularly useful when referring to lags that exist prior to the data.

Remarks and examples
Like replace, dyngen modifies the contents of existing variables. However, dyngen works obser-

vation by observation. If you are doing a computation only on a single variable that relies only on its own

lagged values or those of other variables, you do not need dyngen because generate and replace work

their way through the data sequentially. Use dyngen when you need to modify two or more variables at

the same time.

1

https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.3ifexp
https://www.stata.com/manuals/u11.pdf#u11.1.4inrange
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/u11.pdf#u11.4.4Time-seriesvarlists
https://www.stata.com/manuals/dgenerate.pdf#dgenerate

dyngen — Dynamically generate new values of variables 2

The examples in this entry use the following data:

. input time x1 x2
time x1 x2

1. 1 3 1
2. 2 4 4
3. 3 5 2
4. 4 5 1
5. 5 2 1
6. end

Example 1: Using dyngen
We want to update our values of x1 and x2 such that x1 depends on its current value and the previous

value of x2, and x2 depends on previous values of x1 and x2. We will be using these same values of x1
and x2 in subsequent examples, so we do not want to overwrite their values. We create a copy of each in

the variables d1 and d2, where the d prefix is used to remind us that these variables contain dynamically

updated values.

. generate d1=x1

. generate d2=x2

Because we are using previous values, we need to specify a value for dyngen to substitute in place of

missings; in this case, we use the means.

. summarize d1 d2
Variable Obs Mean Std. dev. Min Max

d1 5 3.8 1.30384 2 5
d2 5 1.8 1.30384 1 4

Within the dyngen command, we specify an update statement for d1 and d2. We also use observation

subscripts to indicate the previous values as needed; see [U] 13.7 Explicit subscripting. With time-series

data, we could also use time-series operators; see example 3 for an illustration.

. dyngen {

. update d1 = .4*d1 + .1*d2[_n-1], missval(3.8)

. update d2 = .2*d1[_n-1] + .3*d2[_n-1], missval(1.8)

. }

. list x1 x2 d*

x1 x2 d1 d2

1. 3 1 3.8 1.8
2. 4 4 1.78 1.3
3. 5 2 2.13 .746
4. 5 1 2.0746 .6498
5. 2 1 .86498 .60986

In observation 1, dyngen has substituted 3.8 for d1 and 1.8 for d2, values that would otherwise be

missing because there are no data preceding the first observation. In observation 2, the updated value of

d1 is 0.4 × 4 + 0.1 × 1.8 = 1.78 and that of d2 is 0.2 × 3.8 + 0.3 × 1.8 = 1.3, and so on.

https://www.stata.com/manuals/u13.pdf#u13.7Explicitsubscripting
https://www.stata.com/manuals/ddyngen.pdf#ddyngenRemarksandexamplesex3

dyngen — Dynamically generate new values of variables 3

Example 2: Distinction between dyngen and replace
We can compare the results from example 1 with those from replace to see how dyngen operates

differently.

As in example 1, we create two new variables, r1 and r2, that will hold values we update using

replace. There is no automatic way to handle missing values with replace, so we need to set the first
values to the means “by hand” to avoid missing values later. We then have a replace command for each

variable, restricted to observations 2 through 5.

. generate r1=x1

. generate r2=x2

. replace r1 = 3.8 in 1
(1 real change made)
. replace r2 = 1.8 in 1
(1 real change made)
. replace r1 = .4*r1 + .1*r2[_n-1] in 2/5
(4 real changes made)
. replace r2 = .2*r1[_n-1] + .3*r2[_n-1] in 2/5
(4 real changes made)

Now, we can compare the results side by side.

. list x* d* r*

x1 x2 d1 d2 r1 r2

1. 3 1 3.8 1.8 3.8 1.8
2. 4 4 1.78 1.3 1.78 1.3
3. 5 2 2.13 .746 2.4 .746
4. 5 1 2.0746 .6498 2.2 .7038
5. 2 1 .86498 .60986 .9 .65114

For the first two observations, the inputs are exactly the same, so there is no difference in the outcome.

We see differences starting in the third row.

At the time that replace is updating the value of r1 in observation 3, it is making the calculation

0.4 × 5 + 0.1 × 4 = 2.4

because the value of r2 is still 4, the original value of x2. Compare this with the results of dyngen,
which uses

0.4 × 5 + 0.1 × 1.3 = 2.13

That is, the key distinction is dyngen has fully updated observation 2 before moving on to observation 3.

replace will make a full pass through r1 before moving on to r2.

https://www.stata.com/manuals/ddyngen.pdf#ddyngenRemarksandexamplesex1
https://www.stata.com/manuals/dgenerate.pdf#dgenerate

dyngen — Dynamically generate new values of variables 4

Example 3: Processing if conditions
Each update statement within the dyngen command can take an if condition. To illustrate, we

replace d1 and d2 with the original values of x1 and x2 and update them again, this time restricting the

updated observations to just those observations where time ≥ 3.

. replace d1=x1
(5 real changes made)
. replace d2=x2
(5 real changes made)

Here, we tsset the data and use the lag operator instead of subscripting observations, but that is not

required.

. tsset time
Time variable: time, 1 to 5

Delta: 1 unit
. dyngen {
. update d1 = .4*d1 + .1*L.d2 if time>=3
. update d2 = .2*L.d1 + .3*L.d2 if time>=3
. }
. list x* d*

x1 x2 d1 d2

1. 3 1 3 1
2. 4 4 4 4
3. 5 2 2.4 2
4. 5 1 2.2 1.08
5. 2 1 .908 .764

When the same if condition is specified on all update statements, the results are equivalent to specifying
one if condition on the entire dyngen block. We used the same if statement on both update statements

above, so typing the following produces the same results as the code above.

dyngen {
update d1 = .4*d1 + .1*L.d2
update d2 = .2*L.d1 + .3*L.d2

} if time>=3

You may also specify an in qualifier with the dyngen command. If you specify an if or in qualifier,

dyngen loops over the observations that meet the if condition or in range but will reference values

outside that range if needed.

Also see
[D] frunalias — Change storage type of alias variables

[D] generate — Create or change contents of variable

[U] 12 Data

[U] 13 Functions and expressions
Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

https://www.stata.com/manuals/tstsset.pdf#tstsset
https://www.stata.com/manuals/dfrunalias.pdf#dfrunalias
https://www.stata.com/manuals/dgenerate.pdf#dgenerate
https://www.stata.com/manuals/u12.pdf#u12Data
https://www.stata.com/manuals/u13.pdf#u13Functionsandexpressions

dyngen — Dynamically generate new values of variables 5

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

