
Datetime durations — Obtaining and working with durations

Description Quick start Syntax Remarks and examples Reference Also see

Description
This entry describes functions that calculate durations, such as the number of years between two dates

(for example, a person’s age). These functions account for leap years and leap days and produce results

that are more consistent than simply taking arithmetic differences of numerical dates and converting to

another unit.

This entry also describes functions that convert durations from one unit (for example, milliseconds)

to another (for example, hours).

Quick start
Calculate age of a subject in integer years on the date of a survey based on a numerically encoded Stata

date dob that gives the subject’s date of birth and a numerically encoded Stata date date of survey
generate subject_age = age(dob, date_of_survey)

Same as above, but calculate the age as a noninteger; that is, include the fractional part

generate subject_fage = age_frac(dob, date_of_survey)

Calculate age on date d for persons born on 29feb as having their birthday on 28feb in nonleap years

(rather than the default of 01mar)

generate celebrate = age(dob, d, ”28feb”)

Calculate the difference in number of months, rounded down to an integer, between two Stata dates, d1
and d2

generate diff_months = datediff(d1, d2, ”month”)

Same as above, but include the fractional part of the difference

generate diff_fmonths = datediff_frac(d1, d2, ”month”)

Calculate the difference in number of hours, rounded down to an integer, between two Stata datetime/c

variables, t1 and t2
generate diff_hours = clockdiff(t1, t2, ”hour”)

Same as above, but include the fractional part of the difference

generate diff_fhours = clockdiff_frac(t1, t2, ”hour”)

Same as above, but use a conversion function to calculate hours with a fractional part

generate diff_fhours2 = hours(t2 - t1)

Calculate the difference in number of minutes, rounded down to an integer, between two Stata datetime/C

variables, tvar1 and tvar2
generate diff_minutes = Clockdiff(tvar1, tvar2, ”minute”)

Calculate the number of days since the previous Monday relative to Stata date d
generate ndays = dayssinceweekday(d, ”Monday”)

1

Datetime durations — Obtaining and working with durations 2

Syntax
Syntax is presented under the following headings:

Functions for calculating durations
Functions for converting units of a duration

Functions for calculating durations

Description Function Value returned

age age(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) years rounded down to an integer

age with fraction age frac(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) years with fractional part

datetime/C difference Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) integer (rounded down)

datetime/c difference clockdiff(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) integer (rounded down)

datetime/C difference Clockdiff frac(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) floating point
with fraction

datetime/c difference clockdiff frac(𝑒𝑡𝑐1,𝑒𝑡𝑐2,𝑠𝑡𝑢) floating point
with fraction

date difference datediff(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[,𝑠𝑛𝑙]) integer (rounded down)

date difference with datediff frac(𝑒𝑑1,𝑒𝑑2,𝑠𝑑𝑢[,𝑠𝑛𝑙]) floating point
fraction

days since previous dayssinceweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or dayssincedow(𝑒𝑑,𝑑)

days until next daysuntilweekday(𝑒𝑑,𝑑) integers 1 to 7
day of week or daysuntildow(𝑒𝑑,𝑑)

𝑒𝑑, 𝑒𝑑 DOB
, 𝑒𝑑1, and 𝑒𝑑2 are Stata dates.

𝑒𝑡𝐶1 and 𝑒𝑡𝐶2 are Stata datetime/C values.

𝑒𝑡𝑐1 and 𝑒𝑡𝑐2 are Stata datetime/c values.

𝑠𝑛𝑙 is a string specifying nonleap-year birthdays or anniversaries of 29feb and may be

”01mar”, ”1mar”, ”mar01”, or ”mar1” (the default); or

”28feb” or ”feb28” (case insensitive).

𝑠𝑡𝑢 is a string specifying time units:

”day” or ”d” for day;

”hour” or ”h” for hour;

”minute”, ”min”, or ”m” for minute;

”second”, ”sec”, or ”s” for second; or

”millisecond” or ”ms” for millisecond (case insensitive).

𝑠𝑑𝑢 is a string specifying date units:

”day” or ”d” for day;

”month”, ”mon”, or ”m” for month; or

”year” or ”y” for year (case insensitive).

𝑑 is a numeric day of week (0=Sunday, 1=Monday, . . . , 6=Saturday); alternatively,

it is a string specifying the first two or more letters of the day of week (case insensitive).

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates
https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates
https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates

Datetime durations — Obtaining and working with durations 3

Notes:

1. The string 𝑠𝑛𝑙 specifying nonleap-year birthdays or anniversaries is an optional

argument. It rarely needs to be specified. See example 3 below.

2. When 𝑒𝑑 < 𝑒𝑑 DOB
, age(𝑒𝑑 DOB

,𝑒𝑑[,𝑠𝑛𝑙]) and age frac(𝑒𝑑 DOB
,𝑒𝑑[,𝑠𝑛𝑙]) return

missing (.).

3. Clockdiff(𝑒𝑡𝐶1,𝑒𝑡𝐶2,𝑠𝑡𝑢) = −Clockdiff(𝑒𝑡𝐶2,𝑒𝑡𝐶1,𝑠𝑡𝑢).
clockdiff(), Clockdiff frac(), clockdiff frac(), datediff(), and
datediff frac() have the same anticommutative property.

Functions for converting units of a duration
Desired conversion Function Value returned

milliseconds to hours hours(ms) ms/(60 × 60 × 1000)
milliseconds to minutes minutes(ms) ms/(60 × 1000)
milliseconds to seconds seconds(ms) ms/1000
hours to milliseconds msofhours(h)* h × 60 × 60 × 1000

minutes to milliseconds msofminutes(m)* m × 60 × 1000

seconds to milliseconds msofseconds(s)* s × 1000

* Stata datetime values are in milliseconds and must be stored as doubles. When using millisecond

results to add to or subtract from a Stata datetime, store the results as doubles.

Remarks and examples
Remarks are presented under the following headings:

Calculating ages and differences of dates
Calculating differences of datetimes

We assume you have read [D] Datetime and are familiar with how Stata stores dates and datetimes.

String dates and times must be converted into numeric values to become Stata dates and datetimes.

Stata date and time values are durations (positive or negative) from 01jan1960. Stata date values record

the number of days from 01jan1960. Stata datetime/c values record the number of milliseconds from

01jan1960 00:00:00. Stata datetime/C is the same as datetime/c, except that it accounts for leap seconds

and encodes Coordinated Universal Time (UTC).

There are other types of Stata date and time values, ones for weeks, months, quarters, half years, and

years, but the functions described here are intended for use with daily dates or datetimes.

Calculating ages and differences of dates
The age() function calculates age just as one would expect. Typing

. generate subject_age = age(date_of_birth, current_date)

produces integers that are a person’s age in years on current date given birthdate date of birth.
The variables date of birth and current date must be Stata dates.

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_born_leap_day
https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates
https://www.stata.com/manuals/ddatetime.pdf#dDatetime
https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates

Datetime durations — Obtaining and working with durations 4

The arguments of age() need not be variables, but they must be Stata date values, which are numeric.

To get Stata date values for literal dates, we can use the date pseudofunction td() and use its results as

arguments to age(). For example,

. display age(td(05feb1927), td(24may2006))
79

shows that an individual born on 05feb1927 was 79 years old on 24may2006.

age frac() returns age including the fractional part. For example, let’s use age frac() with the

dates we specified above:

. display age_frac(td(05feb1927), td(24may2006))
79.29589

The datediff() and datediff frac() functions produce results in units of years, months, or days.
For example, to determine the number of months between 05feb1927 and 24may2006, first as an integer

(rounded down) and as a number including the fractional part, we type

. display datediff(td(05feb1927), td(24may2006), ”month”)
951
. display datediff_frac(td(05feb1927), td(24may2006), ”month”)
951.6129

The optional last argument, 𝑠𝑛𝑙, for age(), age frac(), datediff(), and datediff frac() was

not specified in any of the above examples. It applies only to a date of birth (or starting date) on 29feb

when the ending date is not in a leap year. The argument controls whether to use 01mar (the default) or

28feb as the birthday (or anniversary) in nonleap years. Setting this argument is important only when the

data you are using have a set rule for determining the age of persons born on 29feb. For example, you

might have data on the dates when people first get their driver’s licenses. You would want the argument

to match the legal rule for the data. See example 3.

The functions age() and age frac() are based on datediff() and datediff frac(),
respectively,

age(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

and

age frac(𝑒𝑑 DOB
,𝑒𝑑,𝑠𝑛𝑙) = datediff frac(𝑒𝑑 DOB

,𝑒𝑑,”year”,𝑠𝑛𝑙)

when 𝑒𝑑 ≥ 𝑒𝑑 DOB
. When 𝑒𝑑 < 𝑒𝑑 DOB

, age() and age frac() return missing (.).

datediff(. . .,”year”,. . .) and datediff frac(. . .,”year”,. . .) calculate the number of years

between two dates just as one would expect. The only wrinkles are leap days and leap years. SeeMethods

and formulas in [FN] Date and time functions for details.

The usefulness of these functions is solely in the way they handle leap days and leap years. Sup-

pose, for example, you are doing an analysis of age of onset of some disorder. If you use values from

age frac() as time in a survival model, these times will match up perfectly with recorded ages (or ages

from age() of course). If instead you used

. generate time_years = (onset_date - date_of_birth)/365.25

as your time variable, there would be minor discrepancies between this time and ages at birthdays. See

examples below.

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxTypingdatesintoexpressions
https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_born_leap_day
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctionsMethodsandformulas
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctionsMethodsandformulas
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctions
https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_ages

Datetime durations — Obtaining and working with durations 5

datediff(. . .,”month”,. . .) and datediff frac(. . .,”month”,. . .) calculate the number of

months between two dates as one would expect for starting days 1–28. For example, a starting date

on the 28th of the month will have month anniversaries on the 28th of all other months. When the day

of the starting date is 29, 30, or 31, other months may not have this day of the month. The last day of

February will be 28 or 29. When the starting date is on the 31st, the months ending on the 30th obviously

do not have a 31st. In these cases, the first day of the next month is considered the month anniversary.

(This is consistent with the default handling of 29feb start dates when calculating year anniversaries in

nonleap years; the nonleap year anniversaries are on 01mar.)

Fractional months are also a bit tricky because lengths of months vary. There is an example below,

and see Methods and formulas in [FN] Date and time functions for how they are calculated.

Note that datediff(...,”year”,...), datediff frac(...,”year”,...), datediff(...,
”month”,...), and datediff frac(. . .,”month”,. . .) all match up. That is, on an ending

date on which datediff(. . .,”year”,. . .) increases by one from the previous day, the value of

datediff frac(. . .,”year”,. . .) is exactly an integer and equal to datediff(. . .,”year”,. . .). On
this ending date, datediff frac(. . .,”month”,. . .) is also an integer and equal to 12 times the year

difference.

datediff(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) and datediff frac(𝑒𝑑1,𝑒𝑑2,”day”,𝑠𝑛𝑙) have no complications
in how they are calculated. Both are equal to 𝑒𝑑2 − 𝑒𝑑1 and are always integers. The optional argument

𝑠𝑛𝑙 has no bearing on the calculation and is ignored if specified.

Example 1: Ages
Calculating ages is straightforward, but we do need to show how age frac() calculates the fractional

part of age. Here is an example.

We have a dataset with string dates. Date of birth is recorded in the variable str dob, and the end

date for calculating age is in str end date.

. use https://www.stata-press.com/data/r19/ages
(Fictional data for calculating ages)
. describe
Contains data from https://www.stata-press.com/data/r19/ages.dta
Observations: 5 Fictional data for calculating

ages
Variables: 2 30 Oct 2024 17:35

Variable Storage Display Value
name type format label Variable label

str_dob str9 %9s Date of birth
str_end_date str9 %9s End date

Sorted by:
. list, abbreviate(12)

str_dob str_end_date

1. 28/8/1967 27/8/2019
2. 28/8/1967 28/8/2019
3. 28/8/1967 29/8/2019
4. 28/8/1967 28/8/2020
5. 28/8/1967 29/8/2020

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_diff_months
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctionsMethodsandformulas
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctions

Datetime durations — Obtaining and working with durations 6

We must convert the strings to numeric Stata dates, which we do using the date() function with

a mask of ”DMY” because the date components are in the order day, month, year. We format the new

encoded date variables using format %td, the simplest format specification for daily dates.

. generate dob = date(str_dob, ”DMY”)

. generate end_date = date(str_end_date, ”DMY”)

. format dob end_date %td

. list str_dob dob str_end_date end_date, abbreviate(12)

str_dob dob str_end_date end_date

1. 28/8/1967 28aug1967 27/8/2019 27aug2019
2. 28/8/1967 28aug1967 28/8/2019 28aug2019
3. 28/8/1967 28aug1967 29/8/2019 29aug2019
4. 28/8/1967 28aug1967 28/8/2020 28aug2020
5. 28/8/1967 28aug1967 29/8/2020 29aug2020

This person was born on 28aug1967, and we compute his or her age and age with the fractional part

on the dates in end date.

. generate age = age(dob, end_date)

. generate double fage = age_frac(dob, end_date)

. format fage %12.0g

. list dob end_date age fage

dob end_date age fage

1. 28aug1967 27aug2019 51 51.99726027
2. 28aug1967 28aug2019 52 52
3. 28aug1967 29aug2019 52 52.00273224
4. 28aug1967 28aug2020 53 53
5. 28aug1967 29aug2020 53 53.00273973

Note that the fractional parts on end dates of 29aug2019 and 29aug2020 differ. There are 366 days

between 28aug2019 and 28aug2020 because 2020 is a leap year. So the fractional part for 29aug2019 is

1/366 = 0.00273224. There are 365 days between 28aug2020 and 28aug2021, so the fractional part for

29aug2020 is 1/365 = 0.00273973.

Example 2: Differences in months
Here we show an example of how datediff() and datediff frac() calculate date differences in

units of months.

We load a dataset with Stata date variables start and end. First, we generate months using

datediff(start, end, ”month”) to get the integer difference (rounded down) in months. Then, we

generate fmonths using datediff frac(start, end, ”month”) to get the difference including the

fractional part. We also put datediff(start, end, ”day”) into a variable to get differences in days

to help us see how the fractional parts are calculated.

. use https://www.stata-press.com/data/r19/month_differences, clear
(Fictional data for calculating date differences)
. generate months = datediff(start, end, ”month”)
. generate double fmonths = datediff_frac(start, end, ”month”)

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats

Datetime durations — Obtaining and working with durations 7

. generate days = datediff(start, end, ”day”)

. format fmonths %12.0g

. list start end months fmonths days, sepby(start)

start end months fmonths days

1. 15jan2019 15jan2019 0 0 0
2. 15jan2019 16jan2019 0 .0322580645 1
3. 15jan2019 15feb2019 1 1 31
4. 15jan2019 16feb2019 1 1.035714286 32
5. 15jan2019 15mar2019 2 2 59
6. 15jan2019 16mar2019 2 2.032258065 60
7. 15jan2019 15apr2019 3 3 90
8. 15jan2019 16apr2019 3 3.033333333 91

9. 31jan2019 01feb2019 0 .0344827586 1
10. 31jan2019 28feb2019 0 .9655172414 28
11. 31jan2019 01mar2019 1 1 29
12. 31jan2019 02mar2019 1 1.033333333 30
13. 31jan2019 31mar2019 2 2 59
14. 31jan2019 01apr2019 2 2.032258065 60
15. 31jan2019 30apr2019 2 2.967741935 89
16. 31jan2019 01may2019 3 3 90

Let’s first look at the start date 15jan2019. months increases by one on 15feb2019 and then again on

15mar2019 and 15apr2019. On these days, datediff frac(. . ., ”month”) is an integer.

The fractional month difference between 15jan2019 and 16jan2019 is 1/31 = 0.032258. The de-

nominator is 31 because the next month anniversary is 15feb2019, which is 31 days from 15jan2019.

The fractional part of the difference between 15jan2019 and 16feb2019 is 1/28 = 0.035714 because

there are 28 days between the month anniversaries 15feb2019 and 15mar2019. The fractional part of the

difference between 15jan2019 and 16apr2019 is 1/30 = 0.033333 because there are 30 days between

the month anniversaries 15apr2019 and 15may2019.

For the start date 31jan2019, monthly anniversaries are 01mar2019, 31mar2019, and 01may2019.

Fractional differences are calculated based on the number of days between the monthly anniversaries.

For example, there are 29 days between 31jan2019 and 01mar2019, so the fractional difference between

31jan2019 and 01feb2019 is 1/29 = 0.034483.

The optional fourth argument, 𝑠𝑛𝑙, of datediff(𝑒𝑑1,𝑒𝑑2,”month”,𝑠𝑛𝑙) applies only when the start

date, 𝑒𝑑1, falls on 29feb. See the next example for what this option does with ages in years. It works

similarly when units are months.

Example 3: Born on a leap day
If you are a “leapling”—born on 29feb—when do you have a birthday in nonleap years? On 28feb

or 01mar? Or do you not have a birthday at all in nonleap years (Sullivan 1923)?

In the United Kingdom, a leapling legally becomes 18 on 01mar. In Taiwan, it is 28feb. In the United

States, there is no legal statute concerning leap-day birthdates.

The functions age(), age frac(), datediff(), and datediff frac() all have an optional last

argument that sets the day of the birthday (or anniversary) in nonleap years. Here is an example using

age() and age frac().

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_born_leap_day

Datetime durations — Obtaining and working with durations 8

We load a dataset with Stata date variables dob (containing date of birth) and end date. We generate

age1 using age() with the ”01mar” argument (which is the default if it is not specified). The age2 vari-

able is generated using ”28feb”. We also generate the variables fage1 and fage2 using age frac()
with different last arguments.

. use https://www.stata-press.com/data/r19/leap_day, clear
(Fictional leapling data)
. generate age1 = age(dob, end_date, ”01mar”)
. generate double fage1 = age_frac(dob, end_date, ”01mar”)
. generate age2 = age(dob, end_date, ”28feb”)
. generate double fage2 = age_frac(dob, end_date, ”28feb”)
. generate year = year(end_date)
. format fage1 fage2 %12.0g
. list dob end_date age1 age2 fage1 fage2, sepby(year)

dob end_date age1 age2 fage1 fage2

1. 29feb2004 27feb2019 14 14 14.99452055 14.99726027
2. 29feb2004 28feb2019 14 15 14.99726027 15
3. 29feb2004 01mar2019 15 15 15 15.00273224

4. 29feb2004 28feb2020 15 15 15.99726027 15.99726776
5. 29feb2004 29feb2020 16 16 16 16
6. 29feb2004 01mar2020 16 16 16.00273224 16.00273973

Changes in age1 and age2 (that is, birthdays) in nonleap years occur on the day specified by the

last argument to age(). Note that birthdays in leap years are, of course, on 29feb regardless of the

last argument. Fractional parts from age frac() differ because they are based on the number of days

between birthdays on either side of end date, which will be 365 or 366. So fractional parts are multiples
of 1/365 or 1/366.

It is worth mentioning again that age(), age frac(), datediff(), and datediff frac() all

match up sensibly, but if there are leaplings, the last argument must be the same (or not be specified)

for them to match up. See Methods and formulas in [FN] Date and time functions.

Calculating differences of datetimes
The clockdiff() function calculates differences of datetime/c values in units of days, hours, min-

utes, seconds, or milliseconds, with the result rounded down to an integer. The Clockdiff() function

does the same, except it calculates differences for datetime/C values (UTC times with leap seconds).

The clockdiff frac() and Clockdiff frac() functions calculate the corresponding differences

for datetime/c and datetime/C values, respectively, but the fractional part of the difference is also in-

cluded.

Example 4: Differences of datetime/c values
We have a dataset with string datetimes. A start datetime is recorded in the variable str start, and

an end datetime is in str end.

https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctionsMethodsandformulas
https://www.stata.com/manuals/fndateandtimefunctions.pdf#fnDateandtimefunctions

Datetime durations — Obtaining and working with durations 9

. use https://www.stata-press.com/data/r19/time_differences, clear
(Fictional data for calculating time differences)
. list, abbreviate(9)

str_start str_end

1. 2015-06-30 00:00:00 2015-06-30 23:59:59
2. 2015-06-30 00:00:00 2015-06-30 23:59:60
3. 2015-06-30 00:00:00 2015-07-01 00:00:00
4. 2015-06-30 00:00:00 2015-07-01 23:59:59
5. 2015-06-30 00:00:00 2015-07-02 00:00:00

We must convert the strings to numeric Stata datetimes, which we do using the clock() function

with a mask of ”YMDhms”. We format the new encoded datetime variables using format %tc, the simplest
format specification for datetime/c.

. generate double cstart = clock(str_start, ”YMDhms”)

. generate double cend = clock(str_end, ”YMDhms”)
(1 missing value generated)
. format cstart cend %tc
. list str_end cend

str_end cend

1. 2015-06-30 23:59:59 30jun2015 23:59:59
2. 2015-06-30 23:59:60 .
3. 2015-07-01 00:00:00 01jul2015 00:00:00
4. 2015-07-01 23:59:59 01jul2015 23:59:59
5. 2015-07-02 00:00:00 02jul2015 00:00:00

One of the string values became missing when it was encoded. It was the value ”2015-06-30
23:59:60”. This is a leap second, which was added to the end of the day on 30jun2015. There is

no encoding for leap seconds in datetime/c. That is why it is missing. We snuck in this leap second to

illustrate a point later about datetime/C.

We now use clockdiff() to calculate differences in seconds and hours between the datetime/c vari-

ables cstart and cend.

. generate csecs = clockdiff(cstart, cend, ”second”)
(1 missing value generated)
. generate chours = clockdiff(cstart, cend, ”hour”)
(1 missing value generated)
. list cstart cend csecs chours

cstart cend csecs chours

1. 30jun2015 00:00:00 30jun2015 23:59:59 86399 23
2. 30jun2015 00:00:00 . . .
3. 30jun2015 00:00:00 01jul2015 00:00:00 86400 24
4. 30jun2015 00:00:00 01jul2015 23:59:59 172799 47
5. 30jun2015 00:00:00 02jul2015 00:00:00 172800 48

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingdatesstoredasstringstoStatadates
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats

Datetime durations — Obtaining and working with durations 10

clockdiff() calculates values rounded down to integers, and the results are what we expect. Integer

hours starting at 30jun2015 00:00:00 are 23 hours at 30jun2015 23:59:59. Integer hours become 24 hours

one second later at 01jul2015 00:00:00.

Rather than use clockdiff(), we could take the difference between the datetime/c variables cstart
and cend and use the conversion functions seconds() and hours().

. generate double csecs2 = seconds(cend - cstart)
(1 missing value generated)
. generate double chours2 = hours(cend - cstart)
(1 missing value generated)
. format %12.0g chours2
. list csecs csecs2 chours chours2

csecs csecs2 chours chours2

1. 86399 86399 23 23.99972222
2.
3. 86400 86400 24 24
4. 172799 172799 47 47.99972222
5. 172800 172800 48 48

The results are consistent with our earlier results. The number of seconds are exactly the same in

csecs and csecs2 because they are integers. Hours in chours2 are not integers, but rounded down to

integers, they agree with hours produced by clockdiff().

If we want to calculate the difference between cstart and cend in hours with the fractional part, we

can use clockdiff frac() as follows:

. generate double fchours = clockdiff_frac(cstart, cend, ”hour”)
(1 missing value generated)
. format %12.0g fchours
. list chours chours2 fchours

chours chours2 fchours

1. 23 23.99972222 23.99972222
2. . . .
3. 24 24 24
4. 47 47.99972222 47.99972222
5. 48 48 48

As expected, fchours is the same as chours2.

Example 5: Differences of datetime/C values
What if we are using datetime/C values, that is, datetimes with leap seconds? Let’s redo

the previous example encoding the strings using Clock() to produce Cstart and Cend as date-

time/C. Then, we generate a variable Csecs using Clockdiff(Cstart, Cend, ”second”), Chours
using clockdiff(Cstart, Cend, ”hour”), and fChours using Clockdiff frac(Cstart, Cend,
”hour”).

. generate double Cstart = Clock(str_start, ”YMDhms”)

. generate double Cend = Clock(str_end, ”YMDhms”)

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_datetimec

Datetime durations — Obtaining and working with durations 11

. format Cstart Cend %tC

. generate Csecs = Clockdiff(Cstart, Cend, ”second”)

. generate Chours = Clockdiff(Cstart, Cend, ”hour”)

. generate double fChours = Clockdiff_frac(Cstart, Cend, ”hour”)

. format %12.0g fChours

. list Cstart Cend Csecs Chours fChours

1. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:59 86399 23

fChours
23.9994446

2. Cstart Cend Csecs Chours
30jun2015 00:00:00 30jun2015 23:59:60 86400 23

fChours
23.9997223

3. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 00:00:00 86401 24

fChours
24

4. Cstart Cend Csecs Chours
30jun2015 00:00:00 01jul2015 23:59:59 172800 47

fChours
47.99972222

5. Cstart Cend Csecs Chours
30jun2015 00:00:00 02jul2015 00:00:00 172801 48

fChours
48

In the previous example, the difference between the times of the first observationwas 23.99972222 hours;

now it is 23.99944460 hours. The difference for the first observation in this example is further from 24

hours because there are now two seconds between Cend and 24 hours from Cstart, whereas before there
was only one second because the leap second was treated as if it did not exist.

The other difference is the denominator of the fractional part. From the earlier example using date-

time/c values and clockdiff frac(), we note that 1 − 0.99972222 = 0.00027778 = 1/3600,
where 3,600 is the number of seconds in an hour. In this example using datetime/C values and

Clockdiff frac(), we see that 1− 0.99944460 = 0.00055540 = 2/3601, where 3,601 is the number
of seconds in the hour containing the leap second.

https://www.stata.com/manuals/ddatetimedurations.pdf#dDatetimedurationsRemarksandexamplesex_datetimec

Datetime durations — Obtaining and working with durations 12

For the second-to-last observation, the fractional part of the difference is 0.99972222, the same as the

fractional part in the previous example. So in this example, the hour differences with the fractional part

are not evenly spaced, and this would be true even without the second observation with the leap second

in the data. If the lack of uniform spacing is a problem and there are no leap seconds in your data, you

may want to consider converting your datetime/C data to datetime/c.

Reference
Sullivan, A. 1923. The Pirates of Penzance or the Slave of Duty, libretto by W. S. Gilbert. New York: G. Schirmer.

Also see
[D] Datetime — Date and time values and variables

[D] Datetime business calendars — Business calendars

[D] Datetime conversion — Converting strings to Stata dates

[D] Datetime display formats — Display formats for dates and times

[D] Datetime relative dates — Obtaining dates and date information from other dates

[D] Datetime values from other software — Date and time conversion from other software

Stata, Stata Press, Mata, NetCourse, and NetCourseNow are registered trademarks of StataCorp
LLC. Stata and Stata Press are registered trademarks with the World Intellectual Property Or-
ganization of the United Nations. StataNow is a trademark of StataCorp LLC. Other brand and
product names are registered trademarks or trademarks of their respective companies. Copyright
© 1985–2025 StataCorp LLC, College Station, TX, USA. All rights reserved.

®

For suggested citations, see the FAQ on citing Stata documentation.

https://www.stata.com/manuals/ddatetime.pdf#dDatetimeSyntaxConvertingamongunits
https://www.stata.com/manuals/ddatetime.pdf#dDatetime
https://www.stata.com/manuals/ddatetimebusinesscalendars.pdf#dDatetimebusinesscalendars
https://www.stata.com/manuals/ddatetimeconversion.pdf#dDatetimeconversion
https://www.stata.com/manuals/ddatetimedisplayformats.pdf#dDatetimedisplayformats
https://www.stata.com/manuals/ddatetimerelativedates.pdf#dDatetimerelativedates
https://www.stata.com/manuals/ddatetimevaluesfromothersoftware.pdf#dDatetimevaluesfromothersoftware
https://www.stata.com/support/faqs/resources/citing-software-documentation-faqs/

