
DID intro — Introduction to difference-in-differences estimation

Description Remarks and examples References Also see

Description
Difference in differences (DID) is a method to estimate the average effect of a treatment on those who

receive the treatment. The method can be applied to two types of observational data: repeated cross-

sections, in which different individuals are observed at different time points, and panel data, in which

the same individuals are observed over time. We provide commands that estimate the average treatment

effect on the treated (ATET). The effect may be the same for all (homogeneous) or may differ across time

and across groups (heterogeneous). didregress and xtdidregress are for homogeneous treatment

effects; hdidregress and xthdidregress are for heterogeneous treatment effects.

didregress and xtdidregress estimate the ATET of a binary or continuous treatment on a contin-

uous outcome by fitting a linear model with time fixed effects and group or panel fixed effects. These

commands also estimate difference in difference in differences (DDD), in which we augment the DID

framework to include additional control groups to obtain the ATET.

hdidregress and xthdidregress estimate ATETs that vary over time and over treatment cohorts.

Treatment cohorts are groups that are subject to intervention at different points in time. As in the homo-

geneous case, we can fit a linear model with time fixed effects and group or panel fixed effects, but we

also incorporate interactions of the treatment with time and treatment cohorts. We fit these models us-

ing the two-way fixed-effects (TWFE) estimator. hdidregress and xthdidregress additionally allow

for regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-probability

weighting (AIPW) to estimate the ATETs. See [CAUSAL] teffects intro for a discussion of RA, AIPW, and

IPW estimators.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Intuition for estimating effects
DID with heterogeneous treatment effects
Standard error considerations
Different types of data and specification

Specifying groups and time as binary indicators
Excluding group and time effects
Exploring treatment-effect heterogeneity

Conclusion

This entry presents the intuition and some of the technical details for the estimators in didregress,
xtdidregress, hdidregress, and xthdidregress and the diagnostics available after estimation. See

[CAUSAL] didregress, [CAUSAL] didregress postestimation, [CAUSAL] hdidregress, [CAUSAL] xth-

didregress, and [CAUSAL] hdidregress postestimation for details on the syntax and worked examples.

For a more complete discussion and references on homogeneous DID, see Angrist and Pischke (2009),

Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner (2011), Angrist and Pischke (2015),

Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018). For more details on hetero-

geneous DID, see Roth et al. (2022) and de Chaisemartin and D’Haultfœuille (2023) and the references

therein.
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Introduction
DID is one of themost venerable causal inferencemethods used by researchers. DID provides estimates

of treatment effects on those that receive a treatment. Examples of such treatment effects are the effect of

a minimum-wage increase on employment for those that see their minimum wage increase or the effect

of water pollution on health outcomes for those that were exposed to water pollution.

Unlike the treatment-effects estimators described in [CAUSAL] teffects, which are applied to data

from one cross-section, DID allows us to consider variation over time. For example, DID allows for panel

data, for which we observe the same unit over time. It also works for repeated cross-sections, for which

individuals sampled within groups differ across time periods but the groups sampled are the same. An

appealing feature of DID is that our model specification does not require us to control for individual

characteristics to identify treatment effects, something that is fundamental to the estimators described in

[CAUSAL] teffects.

When thinking about ATETs in a DID framework, we compare a group before and after the treatment,

perhaps by looking at a graph such as the one below:
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Figure 1.

A treatment occurred in the year 2010. This might be a government policy, a change in medicine

dosage, or any other intervention of interest. We would like to know if the treatment had a causal effect.

It is clear from the graph that the outcome of interest changed after 2010. Is this due to the treatment or

is something else occurring? Perhaps there are unobserved time effects that affect the treatment group

after the treatment. For instance, there could have been a change in weather conditions or an economic

downfall that affected the treatment group but was not captured in the model or the data. If this is the

case, it does not suffice to look at the treatment group before and after the policy. DID addresses this by

finding a control group, that is, a group that was subject to the same unobserved time effects but was

not exposed to the treatment. Comparing the treatment group with the control group before and after

the treatment might give us a better understanding of whether the treatment made a difference. A graph

looking at a treatment and control group might look like this:

https://www.stata.com/manuals/causalteffects.pdf#causalteffects
https://www.stata.com/manuals/causalteffects.pdf#causalteffects
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Figure 2.

For both the treatment and the control group, we see that there was a decrease in the mean of the outcome

after 2010. Therefore, the decrease we saw in the treatment group cannot be attributable entirely to the

treatment. (In fact, these are simulated data, and we know the treatment has no effect.)

In a DID setup, if the treated group had not received the treatment, we would expect the treated and

control groups to experience the same trends. A treatment effect implies a systematic deviation from a

common trend that can be observed graphically. This is what we observe:
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Figure 3.

Here both groups experienced a decrease after 2010, but the treatment-group decrease was more sub-

stantial. The difference in the decreases across groups may indicate the effect of the treatment.

Researchers may motivate their analysis with such graphs. However, graphical evidence is not

enough. We need statistical validation, so we fit a model.
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TheATET is consistently estimated by differencing the average outcome for the treatment and control

groups over time to eliminate time-invariant unobserved characteristics and also differencing the average

outcome of these groups to eliminate time-varying unobserved effects common to both groups. These

two differences give the method its name and highlight its intuitive appeal. More appealing is the fact

that you can get the effect of interest, the ATET, from one parameter in a linear regression.

When talking about DID, people cite Snow (1849) and Snow (1855) as the first known applications.

Snow claimed that cholerawas not transmitted by contaminated air or contaminated blood, as was thought

by some academics of his time. Snow hypothesized the disease was communicated via water that had

been polluted with sewage. Below, he describes how he came up with an idea for a natural experiment

to validate his hypothesis:

In Thomas Street, Horsleydown, there are two courts close together, consisting of a num-

ber of small houses or cottages, inhabited by poor people. The houses occupy one side of

each court or alley—the south side of Trusscott’s Court, and the north side of the other,

which is called Surrey Buildings, being placed back to back, with an intervening space,

divided into small back areas, in which are situated the privies of both the courts, communi-

cating with the same drain, and there is an open sewer which passes the further end of both

courts. Now, in Surrey’s buildings the cholera has committed fearful devastation, whilst in

the adjoining court there has been but one fatal case, and another case that ended in recovery.

In the former court the slops of dirty water poured down by the inhabitants into a channel

in front of the houses got into the well from which they obtained their water, this being the

only difference . . . .

In the first edition (1849) of the text, Snow reports the deaths from cholera from September 23, 1848,

to August 25, 1849, for five London districts. The number of deaths is higher in the South and East

districts relative to the other three districts, arising from the source of their water supply. Snow obtains

a clear motivation for his theory. In the second edition (1855), he collects data before and after a pump

with contaminated water in Broadstreet, London, is closed. It is then that he can compare a treated with

a control group before and after a treatment to establish a treatment effect.
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� �
John Snow (1813–1858) was born in York, England. From age 14, he worked as an apprentice

and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London;

he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians in

1850. He made outstanding contributions to the adoption of anesthesia and is considered one of the

originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform toQueen

Victoria for the births of her last two children, which helped obstetric anesthesia gain wider accep-

tance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On the

Mode of Communication of Cholera was first published in 1849 and then greatly enlarged in 1855

with the results of his very detailed investigation of the role of water supply in the epidemic of 1854

in the Soho district of London. Snow identified the source of the outbreak as the public water pump

on Broad Street (now Broadwick Street), leading the local council to remove the pump handle. It

was later discovered that the well had been dug very close to an old cesspit. He also mapped the

clustering of cholera cases around the pump and related mortality to water sources, clearly showing

higher deathrates in areas supplied by the Southwark and Vauxhall Waterworks Company, which

was taking water from sewage-polluted sections of the River Thames. Snow is widely regarded as

a pioneer in public health, epidemiology, and medical geography.� �
Intuition for estimating effects

We can build our intuition about the causal inference implied by the DID setup by using the potential-

outcomes framework described in [CAUSAL] Intro, [CAUSAL] teffects intro, and [CAUSAL] teffects intro

advanced. We consider individual-level data for which we sample different individuals at different

points in time, that is, a repeated cross-section. The treatment occurs at the group level. For example,

the treatment may occur at the state, county, or hospital level. All individuals in a given state, county, or

hospital either are treated or are controls at a given point in time. We index individuals by 𝑖, groups by 𝑔,
and time by 𝑡. We are interested in the effect of a treatment, 𝐷𝑖𝑔𝑡 ∈ {0, 1}, on an outcome, 𝑌𝑖𝑔𝑡. Suppose

the potential-outcome mean of an individual in group 𝑔 at time 𝑡 that does not receive the treatment is
given by the following:

𝐸 {𝑌𝑖𝑔𝑡 (0) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 (1)

Above,𝛄𝑔 denotes the group effects, and𝛄𝑡 denotes the time effects. Also suppose the potential-outcome

mean for someone who receives the treatment is given by the following:

𝐸 {𝑌𝑖𝑔𝑡 (1) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 + 𝛿 (2)

The potential outcomes described above allow us to think of the regression model

𝑌𝑖𝑔𝑡 = 𝛄𝑔 + 𝛄𝑡 + 𝐷𝑔𝑡𝛿 + 𝜖𝑖𝑔𝑡

A regression estimate of 𝛿, the coefficient on the indicator of treatment, consistently estimates the

ATET in this simplified framework, if we meet the overlap assumption, the stable unit treatment value

assumption, and conditional independence (described in [CAUSAL] Intro and [CAUSAL] teffects intro

advanced), plus one additional assumption.

https://www.stata.com/giftshop/bookmarks/series8/snow/
https://www.stata.com/manuals/causalintro.pdf#causalIntro
https://www.stata.com/manuals/causalteffectsintro.pdf#causalteffectsintro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalintro.pdf#causalIntro
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
https://www.stata.com/manuals/causalteffectsintroadvanced.pdf#causalteffectsintroadvanced
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To introduce this additional assumption, we think it is sometimes more intuitive to look at a two-

period, two-group example. In this case, 𝑔 ∈ {0, 1}, where 0 is the control group and 1 is the treatment
group, and 𝑡 ∈ {0, 1}, where 0 is the period before the treatment and 1 occurs after the treatment. To

guarantee a consistent estimate of the ATET, we need to make the parallel-trends assumption:

𝐸(𝑌𝑖𝑔1 (0) | 𝐷𝑔𝑡 = 1) − 𝐸(𝑌𝑖𝑔0 (0) | 𝐷𝑔𝑡 = 1) = 𝐸(𝑌𝑖𝑔1 (0) | 𝐷𝑔𝑡 = 0) − 𝐸(𝑌𝑖𝑔0 (0) | 𝐷𝑔𝑡 = 0)

The parallel-trends assumption is stated in terms of the potential outcomes of not being treated, 𝑌𝑖𝑔𝑡(0),
conditional on treatment, 𝐷𝑔𝑡. It implies that if the treated had not received the treatment, the groups

defined by 𝐷𝑔𝑡 = 1 and 𝐷𝑔𝑡 = 0 would have the same trends. For this to be true, we need group effects

to be time invariant and time effects to be group invariant. The simple framework described in (1) and

(2) satisfies the parallel-trends assumption.

The parallel-trends assumption has a graphical representation. Let’s think again about the case with

multiple time periods. The parallel-trends assumption implies the paths of the outcome variable over time

are parallel between the control and treatment groups prior to the date of the treatment. We can visually

check this assumption by plotting the means of the outcome over time for both groups or by visualizing

the results of the linear trends model. For instance, we might use a graph like the one in figure 2, where

we plotted the means over time. After fitting a model using didregress and xtdidregress, you can
get both the mean outcome plot and the trends plot by typing

. estat trendplots

Another way to think about the parallel-trends assumption in the pretreatment period is that treatment

and control groups do not change their behavior in anticipation of the treatment. We can think of the

parallel-trends assumption as implying that there should be no treatment effect in anticipation of the

treatment. To test this assumption, we could fit a Granger-type causality model where we augment

our model with dummies for each pretreatment period for the treated observations. A joint test of the

coefficients on these dummies against 0 can be used as a test of the null hypothesis that no anticipatory

effects have taken place. We can perform this test by typing

. estat granger

DID with heterogeneous treatment effects
When we introduced DID estimation above, we built our intuition for a case in which the treatment

effect is the same for every group and in which the treatment effect does not change over time. We

imposed this when we wrote

𝐸 {𝑌𝑖𝑔𝑡 (0) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡

𝐸 {𝑌𝑖𝑔𝑡 (1) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 + 𝛿

Also, we discussed the model using two groups and two time periods, a 2 × 2 model. But nothing

precludes us from thinking of a set of treatment effects, say, 𝛿𝑔𝑡, that varies over multiple groups, 𝑔,
and time periods, 𝑡. More importantly, when we assume that the effect is homogeneous but the true

model is heterogeneous, our treatment-effect estimates are going to be inconsistent, as was shown by

de Chaisemartin and D’Haultfœuille (2020), Borusyak, Jaravel, and Spiess (2021), Sun and Abraham

(2021), and Goodman-Bacon (2021).

Goodman-Bacon (2021) characterizes the ATET estimate obtained from a DID of the form

𝑌𝑖𝑔𝑡 = 𝛄𝑔 + 𝛄𝑡 + 𝐷𝑔𝑡𝛿 + 𝜖𝑖𝑔𝑡

https://www.stata.com/manuals/causaldidintro.pdf#causalDIDintroRemarksandexamplesfigure2
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when there are multiple time periods and treatment occurs at different points in time as a deviation from

the 2 × 2 framework. He shows the estimated coefficient, ̂𝛿, is a weighted average of contrasts between
groups treated at different points in time and groups that are not treated. When contrasts occur over

time between treated groups and groups that are never treated or not yet treated, the comparisons are

informative. When contrasts occur between groups that are both already treated, this component of the

weighted average is not a treatment effect and thus introduces bias. The bias can be significant and

change not only the magnitude but also the sign of the coefficient.

Goodman-Bacon (2021) decomposes ̂𝛿 and estimates all contrasts and weights that lead to the homo-
geneous estimate. For balanced-panel datasets, after xtdidregress, you can get the decomposition of
the ATET by typing

. estat bdecomp

The result will let you know if the homogeneity assumption is warranted. This would be the case if the

coefficients of the different contrasts are similar to theATET estimate. If the contrasts differ substantially

from the ATET estimate, our estimates are misleading.

If the decomposition suggests the homogeneous treatment effect is unwarranted or you do not want

to impose homogeneity in treatment, you may use xthdidregress. If you are concerned about hetero-
geneity, you may choose from two workflows. With balanced panels, you might choose to fit the model

for homogeneous treatment effects first and use estat bdecomp to determine whether effects are hetero-
geneous. With any panel or repeated cross-sectional data, you can fit a heterogeneous treatment-effects

model and then use estat aggregation to ascertain whether effects are heterogeneous.

The treatment effects you are estimating using hdidregress and xthdidregress are of the form

ATET (𝑐, 𝑡)

where 𝑐 corresponds to the moment in time when a group receives the treatment, a cohort, and 𝑡 corre-
sponds to time. For example, a policy might be administered at the state level starting in 1995 for some

states and in 1998 for other states. In this case, we would have treatment effects of the form ATET(1995, 𝑡)
and ATET(1998, 𝑡). We are saying that the effect of the policy is different for states treated in 1995 than

it is for those treated in 1998. Also, we are saying that the effect changes over time. Thus, if our sample

goes from 1993 to 2000, for the 1995 cohort, we have treatment effects of the form ATET(1995, 1993),
ATET(1995, 1994), . . . , ATET(1995, 2000).

As is the case for homogeneous treatment, we need to satisfy a parallel-trends assumption and no

anticipation of treatment. Both of these assumptions now need to hold for each cohort. As with the

homogeneous treatment effects, we provide graphical diagnostics and tests. For a test of parallel trends,

we have the command

. estat ptrends

For graphical inspection, you may type

. estat atetplot

which results in a graph for each cohort before and after treatment that lets you see whether there is no

treatment effect, before treatment, for each cohort.

For a discussion of these assumptions and the requirements needed for consistency of the heteroge-

neous treatment implemented in hdidregress and xthdidregress, see Wooldridge (2021), Callaway

and Sant’Anna (2021), and Roth et al. (2022).
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Standard error considerations
While a standard linear regression model can be used to estimate the ATET in the homogeneous case,

when assuming homogeneous treatment, the best estimate of the standard error requires some consider-

ation. Many standard-error estimates have been proposed, and each one performs differently depending

on the type of DID model being fit and the structure of the data. Below, we provide a discussion of

some of the issues centered on the available standard-error estimates for hdidregress, didregress,
xthdidregress, and xtdidregress. For a more complete discussion of inference for the homoge-

neous treatment-effect estimators, see Cameron and Miller (2015) and MacKinnon (2019) and the ref-

erences therein. For a more complete discussion of the heterogeneous case, see Wooldridge (2021),

Callaway and Sant’Anna (2021), and Roth et al. (2022). We begin our discussion with didregress and

xtdidregress.

Bertrand, Duflo, and Mullainathan (2004) show that the standard errors for DID estimates are incon-

sistent if they do not account for the serial correlation of the outcome of interest. Because the outcomes

studied usually vary at the group and time levels, it makes sense to correct for serial correlation. The

authors show that using cluster–robust standard errors at the group level where treatment occurs provides

correct coverage in the presence of serial correlation when the number of groups is not too small. Bester,

Conley, and Hansen (2011) further show that using cluster–robust standard errors and using critical val-

ues of a 𝑡 distribution with 𝐺−1 degrees of freedom, where 𝐺 is the number of groups, is asymptotically

valid for a fixed number of groups and a growing sample size. In other words, you do not need the num-

ber of groups to be arbitrarily large, that is, to grow asymptotically. Cluster–robust standard errors with

𝐺 − 1 degrees of freedom are the default standard errors of didregress and xtdidregress.

The results of Bertrand, Duflo, and Mullainathan (2004) and Bester, Conley, and Hansen (2011)

demonstrate that we could still obtain reliable standard errors even when the number of groups was

not large. But what about data with a very small number of groups? Several simulation and theoret-

ical results suggest that cluster–robust standard errors may still have poor coverage when the number

of groups is very small or when the number of treated groups is small relative to the number of con-

trol groups. These scenarios with small group sizes are common in DID studies, and another method of

standard error estimation should be considered in these situations.

When the number of groups is small, we provide three alternatives. The first alternative is to use

the wild cluster bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach, and

Miller (2008) and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides better

inference than using cluster–robust standard errors with 𝑡(𝐺 − 1) critical values. The second alternative
comes from Imbens and Kolesár (2016), who show that with a small number of groups, you may use

bias-corrected standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaffrey

(2002). For the third alternative, you may use aggregation-type methods like those proposed by Donald

and Lang (2007); they show that their method works well when the number of groups is small but the

number of individuals in each group is large.

When the disparity between treatment and control groups is large, for example, because there is only

one treated group or because the group sizes vary greatly, cluster–robust standard errors and the other

methods mentioned above underperform. Yet the bias-corrected and cluster–bootstrap methods provide

an improvement over the cluster–robust standard errors.

What we said above for didregress and xtdidregress applies to hdidregress and

xthdidregress when the underlying estimator is a linear regression. Considerations are different when

we talk about the RA, AIPW, and IPW estimators implemented by the heterogeneous DID commands.

These last three estimators can be understood as estimates from a multiple-equation model, in which
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each ATET(𝑐, 𝑡) could have been estimated separately. The standard errors of the estimates are, by de-

fault, equivalent to what you would obtain using a method of moments estimator and clustering at the

group level where the treatment is administered; see [R] gmm.

Because heterogeneous DID has multiple equations and parameters, you may want to consider infer-

ence of all the ATET(𝑐, 𝑡) estimates simultaneously: uniform inference. For such a scenario, you may use

the bootstrap procedure suggested by Callaway and Sant’Anna (2021) by typing

. estat sci

after hdidregress and xthdidregress to obtain simultaneous confidence intervals.

Different types of data and specification
We allow for DID estimation of ATETs with two types of data: repeated cross-sections and panel data.

The type of estimator to use depends on the assumptions you would like to make about the model and

what type of data you have. Below, we walk you through the different types of models you may want to

fit and how to fit them with didregress, hdidregress, xtdidregress, and xthdidregress.

Suppose you have a repeated cross-section of individuals 𝑖 over a period of time 𝑡. The treatment is
implemented at the state level, 𝑠, and it is denoted by 𝐷𝑠𝑡, where 𝐷𝑠𝑡 = 1 for all observations that are

subject to the treatment in state 𝑠 at time 𝑡. The indexing of the treatment makes clear that all individuals
in the state at a given time are either treated or untreated. The model to be fit is given by

𝑦𝑖𝑠𝑡 = 𝛄𝑠 + 𝛄𝑡 + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (3)

In the expression above, 𝑦𝑖𝑠𝑡 is the outcome, y in our data; z𝑖𝑠𝑡 are individual-level characteristics, given

by z1 and z2; and 𝐷𝑠𝑡 is given by the variable d. To obtain the ATET, we type
. didregress (y z1 z2) (d), group(state) time(year)

Within the first set of parentheses, we list the outcome and covariates z𝑖𝑠𝑡 from (3). In the second

set of parentheses, we specify the treatment variable. Group and time effects are included in the model

through the group() and time() options, respectively. Also, by default, cluster–robust standard errors

are computed at the state level. The command above is equivalent to typing

. regress y z1 z2 i.year i.state d, vce(cluster state)

The model we fit above assumes the treatment effect is homogeneous. Yet we may want to allow the

treatment effect to vary over treatment-time cohort and over time. If this is the case, we may type

. hdidregress twfe (y) (d), group(state) time(year)

or, instead of twfe, we could specify ra, ipw, or aipw. All of these estimators will provide multiple
cohort-time treatment effects instead of one ATET parameter. Notice that we excluded z1 and z2 in the

specification above. Depending on the estimator we select, we could include them in either of the sets

of parentheses. If we include them only in the first parentheses, we are modeling the outcome. If we

include them in the second parentheses, we are modeling the treatment. If we include regressors in both

parentheses, we are modeling the treatment and the outcome. This is equivalent to what we specify when

we use the estimators discussed in [CAUSAL] teffects ra, [CAUSAL] teffects ipw, and [CAUSAL] teffects

aipw.

didregress also allows us to specify a DDDmodel for situations in which we would like to augment

the DID framework to include another control group. For instance, starting from (3), let’s assume the

treatment occurs at the state level but also varies for people older than 65 versus people who are younger,

defined by a binary variable 𝑔. The DDD model is now given by

𝑦𝑖𝑠𝑔𝑡 = 𝛄𝑠 + 𝛄𝑔 + 𝛄𝑡 + 𝛄𝑠𝛄𝑡 + 𝛄𝑔𝛄𝑡 + 𝛄𝑠𝛄𝑔 + z𝑖𝑠𝑔𝑡β + 𝐷𝑠𝑔𝑡𝛿 + 𝜖𝑖𝑠𝑔𝑡

https://www.stata.com/manuals/rgmm.pdf#rgmm
https://www.stata.com/manuals/causalteffectsra.pdf#causalteffectsra
https://www.stata.com/manuals/causalteffectsipw.pdf#causalteffectsipw
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
https://www.stata.com/manuals/causalteffectsaipw.pdf#causalteffectsaipw
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To fit this model, we would type

. didregress (y z1 z2) (d), group(state g) time(year)

Although the model has a large set of interactions and looks much more complex than the DID model,

the only difference in what we type is the addition of g to the set of group variables. The cluster–robust

standard errors are computed at the highest level of clustering, in this case, state.

In some cases, data do not include a time component but rather multiple grouping variables across

which differences may be taken. You could fit DDD models for three groups or DID for two groups. For

DDD with state, g1, and g2, you could type

. didregress (y z1 z2) (d), group(state g1 g2)

Or you could fit a DID by typing

. didregress (y z1 z2) (d), group(g1 g2)

With these last two specifications, diagnostics that rely on time variables are not available.

With panel data, the basic model is given by

𝑦𝑖𝑠𝑡 = 𝛄𝑖 + 𝛄𝑡 + z𝑖𝑠𝑡𝛽 + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (4)

Again, 𝑖 denotes the individual (panel), 𝑡 is the time period, and 𝑠 is a group-level index. Individuals are
assumed to be nested within the group, and treatment occurs at the group and time levels.

The specification is analogous to the one in (3) , except that instead of 𝛄𝑠 we have 𝛄𝑖. Suppose that

our data now include a panel identifier variable, id, that corresponds to 𝑖 in (4). To fit the model above,
we would type

. xtset id

. xtdidregress (y z1 z2) (d), group(state) time(year)

In this model, the group variable is different from the xtset identifying variable. The group variable

defines the level of clustering, whereas the xtset variable defines the panel identifier. In other words,

we are fitting a fixed-effects model with individual fixed effects, not one with state fixed effects. Of

course, the group and xtset variables could be the same, but they do not need to be.

If we want to assume heterogeneous treatment, we must xtset our data with respect to the panel

variable and with respect to time. The heterogeneous estimates rely on first differences of the outcome

variable. For the RA estimator, you would type

. xtset id time

. xthdidregress ra (y z1 z2) (d), group(state)

Again, the panel variable and the group variable need not be the same, but the group and panel variable

need to be related.

Specifying groups and time as binary indicators

The cross-sectional and panel-data models discussed above for homogeneous treatment are referred

to as generalized DID models by Wing, Simon, and Bello-Gomez (2018). They are a generalization of

the two-period, two-group specification that is usually discussed in the literature. This is also the way

Angrist and Pischke (2009) write the model.
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It is not uncommon, however, to write the DID model in terms of binary indicators. Instead of having

group effects and time effects in the model for all groups and times in the data, you could instead include

only a posttreatment effect and a treatment-group effect. To do this, you would create and include an

indicator in your model that takes the value of 1 if the observation belongs to a treated group and 0

otherwise as well as an indicator that is 1 if the period considered occurs after the treatment. You can

specify this model by using the nogteffects option and including your own indicators.

Say, for example, you create a time-constant indicator, gtreated, that is 1 if a group is treated and
0 otherwise, as well as an indicator, post, that is 1 after the policy was implemented and 0 before. You
would type

. didregress (y z1 z2 i.post i.gtreated) (d), group(state) time(year) nogteffects

The syntax, in which we include indicators and use nogteffects, is equivalent for xtdidregress.

The model you specify in this case is given by

𝑦𝑖𝑠𝑡 = 1 {𝑠 = treated} + 1 {𝑡 = post} + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡

where 1 {𝑠 = treated} is an indicator function that is 1 if group 𝑠 receives the treatment and 0 otherwise.
Similarly, 1 {𝑡 = post} indicates that we are in the period for which the treatment is active. In the ex-

pression above, we still specify the group() and time() options to obtain the correct standard errors,

to validate the assumptions of the DID specification, and to obtain group- and time-level statistics.

Excluding group and time effects

didregress and xthdidregress allow you to forgo the group and time effects that are generated

by default. In this case, you would have to add your own group and time effects or omit them entirely

by using the nogteffects option, which excludes group and time effects from your specification. For

DDD models, you may also use the nointeract option, which will exclude group and time interactions

from your model. Combining both options excludes group and time effects altogether. You may type

. didregress (y z) (d), group(s g) time(t) nogteffects nointeract

You would then fit

𝑦𝑖𝑠𝑔𝑡 = 𝛽0 + z𝑖𝑔𝑠𝑡𝛽 + 𝐷𝑠𝑔𝑡𝛿 + 𝜖𝑖𝑠𝑡

You could still include group and time interactions by adding them in the first set of parentheses.
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Exploring treatment-effect heterogeneity

The heterogeneous treatment-effect estimators assume that the treatment effect changes over cohorts

and over time. Yet we may want to see how the treatment effects vary only in one of those dimen-

sions. For instance, we may want to look at the average of the treatment effects for the 1995 cohort

ATET(1995, 𝑡) within all time periods. We could also average within cohorts at a given point in time to

get a treatment effect for a particular year. Or even more, we might average over cohort and over time

to get back one single ATET. After estimation, we can do this using the estat aggregation command;

see [CAUSAL] hdidregress postestimation.

For the twfe estimator, we can additionally decide at the estimation stage what level of heterogeneity

we want to impose to our model. We can decide whether we want to allow for time heterogeneity or

cohort-level heterogeneity using the hettype() option. For instance, if we wanted to disregard time

heterogeneity but model cohort heterogeneity, we would type

. hdidregress ..., ... hettype(cohort)

Conclusion
didregress and xtdidregress compute the ATET using DID and DDD for panel data and repeated

cross-sections. Additionally, hdidregress and xthdidregress estimate ATETs that vary over time

and over treatment cohorts. All four commands offer standard error computations that address some

of the issues that researchers face, such as a small number of groups. After you fit models with these

commands, diagnostics and tests to validate the assumptions and internal validity of the DID and DDD

results are available.
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