STATA CAUSAL INFERENCE AND
TREATMENT-EFFECTS ESTIMATION
REFERENCE MANUAL

RELEASE 19

A Stata Press Publication
StataCorp LLC
College Station, Texas



=~ ® Copyright © 1985-2025 StataCorp LLC
'r_d'ﬂ"\ \}l All rights reserved
ol ‘Ij\)/‘ Version 19

iz

Published by Stata Press, 4905 Lakeway Drive, College Station, Texas 77845
ISBN-10: 1-59718-420-9
ISBN-13: 978-1-59718-420-5

This manual is protected by copyright. All rights are reserved. No part of this manual may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means—electronic, mechanical, photocopy, recording, or other-
wise—without the prior written permission of StataCorp LLC unless permitted subject to the terms and conditions of
a license granted to you by StataCorp LLC to use the software and documentation. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document.

StataCorp provides this manual “as is” without warranty of any kind, either expressed or implied, including, but not lim-
ited to, the implied warranties of merchantability and fitness for a particular purpose. StataCorp may make improvements
and/or changes in the product(s) and the program(s) described in this manual at any time and without notice.

The software described in this manual is furnished under a license agreement or nondisclosure agreement. The software
may be copied only in accordance with the terms of the agreement. It is against the law to copy the software onto DVD,
CD, disk, diskette, tape, or any other medium for any purpose other than backup or archival purposes.

The automobile dataset appearing on the accompanying media is Copyright © 1979 by Consumers Union of U.S., Inc.,
Yonkers, NY 10703-1057 and is reproduced by permission from CONSUMER REPORTS, April 1979.

Stata, STATQ, Stata Press, Mata, MATA, NetCourse, and NetCourseNow are registered trademarks of StataCorp LLC.
Stata and Stata Press are registered trademarks with the World Intellectual Property Organization of the United Nations.
StataNow is a trademark of StataCorp LLC.

Other brand and product names are registered trademarks or trademarks of their respective companies.

For copyright information about the software, type help copyright within Stata.

The suggested citation for this software is
StataCorp. 2025. Stata 19. Statistical software. StataCorp LLC.
The suggested citation for this manual is

StataCorp. 2025. Stata 19 Causal Inference and Treatment-Effects Estimation Reference Manual. College Station,
TX: Stata Press.

www.stata.com


https://www.stata.com

Contents

Intro .................... Introduction to causal inference and treatment-effects estimation 1
Causal inference commands ................... Introduction to causal inference commands 16
CAE vttt et Conditional average treatment-effects estimation 23
cate POSteStMAtION . ..o vt ettt ittt Postestimation tools for cate 85
DIDiIntro ......... ..., Introduction to difference-in-differences estimation 103
didregress . ... Difference-in-differences estimation 116
didregress postestimation .............. Postestimation tools for didregress and xtdidregress 155
eteffects ... o Endogenous treatment-effects estimation 173
eteffects postestimation ................ ..., Postestimation tools for eteffects 185
CtPOISSON . v v v v ettt Poisson regression with endogenous treatment effects 190
etpoisson postestimation ............. .. .. oL, Postestimation tools for etpoisson 204
CIIEEIESS © vt ve e et Linear regression with endogenous treatment effects 208
etregress postestimation .. ............. ..., Postestimation tools for etregress 236
GENCONOTE . .ottt ettt e e e e e Create a cohort variable 241
hdidregress ...........ooiiiiiii i Heterogeneous difference in differences 243
hdidregress postestimation ........... Postestimation tools for hdidregress and xthdidregress 264
mediate ... ... Causal mediation analysis 275
mediate postestimation ............. i Postestimation tools for mediate 316
stteffects ................ Treatment-effects estimation for observational survival-time data 328
stteffects intro . ........ Introduction to treatment effects for observational survival-time data 329
stteffects ipw .. ... Survival-time inverse-probability weighting 349
stteffects ipwra ........... Survival-time inverse-probability-weighted regression adjustment 359
stteffects postestimation ........... ... ... ..., Postestimation tools for stteffects 389
stteffectsra .. ... o Survival-time regression adjustment 399
stteffects wra .. ... . . Survival-time weighted regression adjustment 410
tebalance ........... ... ... .. ... ... Check balance after teffects or stteffects estimation 418
tebalance bOX ... ... e Covariate balance box 431
tebalance density .......... ... ... Covariate balance density 436
tebalance overid . ... ... .. Test for covariate balance 441
tebalance summarize ............. ..., Covariate-balance summary statistics 446
teffects . ... . Treatment-effects estimation for observational data 452
teffectsintro .......... ... . ... ..... Introduction to treatment effects for observational data 453
teffects intro advanced .. ... Advanced introduction to treatment effects for observational data 466
teffectsaipw ... ... i Augmented inverse-probability weighting 480
teffectS IPW . oo Inverse-probability weighting 504
teffectsipwra ........ ... ... ... .. ... Inverse-probability-weighted regression adjustment 513
teffects multivalued ....... ... .. ... ... . ... ... Multivalued treatment effects 523
teffectsnnmatch ........ ... ... .. . .. . . Nearest-neighbor matching 533
teffects postestimation ............ .. ... ..., Postestimation tools for teffects 549
teffects psmatch ........ . .. .. . Propensity-score matching 557
teffectS Ta .o Regression adjustment 566

telaSSO . vt Treatment-effects estimation using lasso 578



Contents ii

telasso postestimation .............. ... Postestimation tools for telasso 600
BOVETIAD ottt Overlap plots 603
xthdidregress ..................... Heterogeneous difference in differences for panel data 610
xthdidregress postestimation ...................... Postestimation tools for xthdidregress 632
GlOSSaAIY .\ ot ettt ettt e e e e e e e 633
Subject and author indeX . ... ... it 640



Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first example
is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide; the second
is a reference to the regress entry in the Base Reference Manual; and the third is a reference to the
reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT]  Stata Adaptive Designs: Group Sequential Trials Reference Manual
[BAYES] Stata Bayesian Analysis Reference Manual

[BMA] Stata Bayesian Model Averaging Reference Manual

[CAUSAL] Stata Causal Inference and Treatment-Effects Estimation Reference Manual
[CM] Stata Choice Models Reference Manual

[D] Stata Data Management Reference Manual

[DSGE] Stata Dynamic Stochastic General Equilibrium Models Reference Manual
[ERM] Stata Extended Regression Models Reference Manual

[FMM] Stata Finite Mixture Models Reference Manual

[FN] Stata Functions Reference Manual

[G] Stata Graphics Reference Manual

[H20OML]  Machine Learning in Stata Using H2O: Ensemble Decision Trees Reference Manual
[IRT] Stata Item Response Theory Reference Manual

[LASSO] Stata Lasso Reference Manual

[XT] Stata Longitudinal-Data/Panel-Data Reference Manual

[META] Stata Meta-Analysis Reference Manual

[ME] Stata Multilevel Mixed-Effects Reference Manual

[MI] Stata Multiple-Imputation Reference Manual

[MV] Stata Multivariate Statistics Reference Manual

[PSS] Stata Power, Precision, and Sample-Size Reference Manual

[P] Stata Programming Reference Manual

[RPT] Stata Reporting Reference Manual

[SP] Stata Spatial Autoregressive Models Reference Manual

[SEM] Stata Structural Equation Modeling Reference Manual

[SVY] Stata Survey Data Reference Manual

[ST] Stata Survival Analysis Reference Manual

[TABLES] Stata Customizable Tables and Collected Results Reference Manual

[TS] Stata Time-Series Reference Manual

[1] Stata Index

[M] Mata Reference Manual



Intro — Introduction to causal inference and treatment-effects estimation

Description Remarks and examples References

Description

This entry provides an introduction to causal inference and treatment-effects estimation. It presents
concepts, frameworks, and assumptions that researchers consider when they wish to draw causal infer-
ences in their analyses.

For information on Stata commands that estimate treatment effects and that are specifically designed
for causal inference, see [CAUSAL] Causal inference commands.

For more in-depth introductions to causal inference, see Imbens and Rubin (2015), Robins and Green-
land (1992), Hernan and Robins (2020), and Pearl (2009).

Remarks and examples

Remarks are presented under the following headings:

Motivation: Causation versus association

Causal inference workflow

Potential-outcomes framework
Treatment-effect estimands
Assumptions required in potential-outcomes framework
Relaxing causal assumptions

Causal diagrams

Importance of identification before estimation

Motivation: Causation versus association

Research may be driven by the desire to evaluate causation or association. Causal questions explore
changes in the outcome when we change a variable under our control or examine what would happen to
the outcome if a variable of interest had not changed. For example:

e Does receiving a treatment cure the illness?

e What would have happened to the inflation rate if the Federal Reserve had not increased interest rates?
e Does smoking reduce fetal growth?

e Does raising the minimum wage decrease unemployment?

In contrast, associative questions observe patterns in data. For example:

e How does the cure rate between patients who received treatment and those who did not receive treat-
ment compare?

e [s there a correlation between interest rates and inflation?

o [s there a difference in the mean birthweight of infants born to mothers who smoke versus those born
to mothers who do not smoke?

e What is the difference in the unemployment rate between states that have implemented an increase in
minimum wage and those that have not?
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The first set of questions asks what happens when there is an intervention or imagine a scenario where
a variable changes versus does not change. The second set of questions observe only the pattern without
intervention.

To examine some of the considerations we must face when performing causal inference, we consider
a hypothetical study, conducted by a software company called Statanium, that examines the relationship
between the number of breaks taken by software developers and their productivity. The company wants
to find out whether the number of breaks impacts productivity. As a user of Statanium and an expert in
causality, you are hired to advise the company whether it should encourage developers to take additional
breaks during their workday. The question the company is interested in is causal because it aims to com-
pare the productivity when the number of breaks is increased versus the productivity when the number of
breaks (and other possible factors) remains unchanged. If the two outcomes of productivity are different,
then the action of increasing the number of breaks has a causal effect. In causal inference literature, the
action of increasing the number of breaks is referred to as a treatment or an intervention.

You could estimate an association between increased breaks and productivity via correlation or many
other statistical methods that estimate dependence. However, the interest is in estimation of causal ef-
fect. The well-known expression “association is not causation” suggests that for any given amount of
association, only some part or none of it is causal. Thus, a challenge in causal inference is to identify
and eliminate relationships that are only associative. To perform causal inference in our case, we want
to create a hypothetical scenario where the number of breaks is increased and all other factors that may
influence productivity remain fixed. Then we can determine the causal effect of the additional break.

When it is possible, randomized experiments are a popular method to estimate causal effects because
the treatment (number of breaks) is controlled by the experimenter. Therefore, the treatment assignment
is guaranteed to be random and unrelated to all other factors that may determine the outcome. This can
be represented using causal diagrams, as in figure 1, where T represents the treatment, Y represents the
productivity or outcome, and X represents all other factors. The absence of an arrow between X and T’
indicates that X does not affect 1.

Figure 1.

However, randomized experiments are not always feasible, and causal effects need to be inferred
from observational data. In the observational data case, the experimenter does not have control over the
treatment assignment, and the assumption that all other factors are held constant in both the observed
and hypothetical worlds may not hold. This is due to the presence of confounding factors (for example,
job satisfaction) that affect both the treatment and outcome. This is reflected in the causal diagram in
figure 2 by arrows from X to both T'and Y.
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Figure 2.

Here the measured total association between 7'and Y contains both causal path 7" — Y'and association
path T <— X — Y, highlighted in red. To identify the causal effect and make further causal inference,
you need to eliminate the association represented by the red path by accounting or adjusting for other
confounding factors.

The following highlights the significance of adjusting for confounding variables. Suppose that in
figure 3 you plot the productivity of software developers as a function of the average number of breaks.

10 .

Productivity

Number of breaks

Figure 3.

The plot shows a positive association between the number of breaks and productivity, implying that
taking more breaks leads to higher productivity. The questions of interest are whether this association
can be considered causal and whether Statanium should motivate its hardworking developers to take
more breaks during the workday. The conclusion that more breaks are beneficial would be valid if the
model assumed is as shown in figure 1. However, as an expert, you believe that there are confounding
factors, such as workload or job satisfaction, that need to be considered, as shown in figure 2. To account
for the effect of job satisfaction, in figure 4, you plot the productivity of software developers against
the average number of breaks they take, considering different levels of job satisfaction—dissatisfied
(orange), satisfied (red), and highly satisfied (yellow).
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10

Productivity

0 5 10
Number of breaks

Figure 4.

The plot shows that when job satisfaction is accounted for, the effect of the number of breaks on
productivity changes from positive to negative. This phenomenon is known as Simpson’s paradox (Blyth
1972), where the overall effect appears to be positive but, when it is adjusted for a confounder, the effect
sign changes direction.

The above example illustrates the fundamental difference between causation and association. For
example, if for some reason the researcher does not account for the job satisfaction or it is not observed,
then the estimated association cannot be interpreted as causal.

Below, we introduce the workflow, popular causal inference frameworks, and assumptions that allow
researchers to draw causal inferences rather than merely find associations.

Causal inference workflow

The causal inference literature recommends the following three-phase workflow (Pearl 2009; Imbens
2020; and Heckman and Pinto 2022) when a research question is causal in nature:

1. Hypothetical modeling: Researchers make assumptions about relationships among variables based
on their understanding and expertise. These assumptions are related not only to the treatment variable
and the outcome of interest but also to any variables that might be related to the treatment or the
outcome. The assumptions regarding these relationships cannot be tested from data; therefore, the
validity of these assumptions must come from previous theory or the researcher’s own expertise.

2. Causal effect identification: Based on the assumptions made in the first phase, the researcher tries to
determine whether the causal effect can be identified.

3. Parameter estimation: If the answer to the second phase is positive, the researcher can then use var-
ious estimation techniques, such as those provided by the commands discussed in [CAUSAL] Causal
inference commands, to estimate the causal effect.

Potential-outcomes framework

The potential-outcomes framework is one of the most commonly used theories for understanding and
evaluating causal inference. The foundation of this framework is motivated by the idea of a natural ex-
periment (Imbens 2020), which focuses on finding settings and identification strategies under which the
assignment of a treatment can be considered as good as random even though the data are observational
rather than from a randomized experiment. The roots of the potential-outcomes framework trace back to
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a seminal paper by Splawa-Neyman (1923), and the framework was formally introduced in Rubin (1974).
Fisher (1925) built upon Neyman’s ideas and introduced the idea of physical randomization, which for-
mally defines the concept of a treatment-assignment mechanism. For further reading, see Imbens and
Rubin (2015).

As discussed earlier, the goal of causal inference is to estimate the change in an outcome as the
treatment varies. In the Statanium example, we now assume that the treatment (number of breaks) and
the outcome (productivity) are binary. That is, 7, = 1 means the Statanium developer takes additional
breaks, and 7; = 0 otherwise. Similarly, Y; = 1 if a developer’s productivity increases, and Y; =
0 otherwise. Thus, we are interested in estimating the change in productivity if the developer takes
additional breaks, T; = 1, versus if the developer does not take additional breaks, T; = 0. However,
for a given developer, we can observe only one outcome. This is known as the fundamental problem of
causal inference (Holland 1986). The potential-outcomes framework provides tools and assumptions to
solve this problem.

The important concepts in potential outcomes are the unit, treatment, and outcome. A unit is the
research object to which treatment is assigned. It can be, for example, a person, a company, a school, or
a county. Treatment is the action that we apply to a unit. In this entry, treatment is denoted as 7. For
binary treatment, the units to which treatment is applied (7" = 1) are called the treated group, and the
units to which the treatment is not applied (7" = 0) are called the control group. The potential outcome
of treatment with value ¢ for unit ¢ is denoted by Y, (7, = ¢) or Y;(¢). In our running example, the unit is
the developer, treatment is taking additional breaks, and the outcome is whether productivity improves.

The observed outcome is related to the potential outcome through Y; = T,Y;(1) + (1 — T;)Y;(0).
That is, if the unit receives the treatment 7; = 1, then Y; = Y;(1) and Y;(0) otherwise.

A potential outcome that is not observed is called a counterfactual outcome. For example, for the
developer who took additional breaks, Y;(1) is the observed outcome and Y;(0) is the counterfactual
outcome.

Treatment-effect estimands

Individual treatment effect (ITE). For each developer or unit 4, the ITE is defined as

Yi(T; =1) = Y,(T; = 0)

Because only one of the potential outcomes is observed, we cannot identify this quantity directly
from the data without making assumptions about the unobserved counterfactuals and the assignment
to treatment. However, estimates of individual effects can be useful for providing insight into how a
treatment may affect an individual. For instance, in epidemiology, estimated ITEs could help determine
whether a treatment is likely to be helpful for a particular patient.

We can also define and estimate effects that allow us to draw interesting causal inferences for the
population instead of for each individual.

Average treatment effect (ATE). The ATE is also known as the average causal effect. The ATE at
the population level can be defined as the mean difference in potential outcomes when units received a
treatment versus when units did not receive any treatment,

ATE = E[Y (1) = Y/(0)] = E[Y (1)] — E[Y (0)] (1)

where Y (t) = Y(T = t), fort = {0,1}. We say that the ATE of treatment 7T on outcome Y exists if
E[Y(1)] # E[Y(0)).
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The ATE provides an estimate of the expected average effect in the population and can therefore be
used to answer many interesting questions that could help policymakers make decisions. In our Statanium
example, the ATE is the expected difference in productivity if all developers took extra breaks versus
none taking extra breaks. Statanium could determine whether extra breaks are beneficial and set break
policies based on the estimated ATE. Similarly, we interpret the ATE for a couple of our motivating causal
questions. When investigating whether a treatment cures an illness, we could interpret the ATE as the
expected difference in the proportion of individuals who were cured from an illness when everyone
received the treatment versus when no one received the treatment. When evaluating a raise in minimum
wage, we could interpret the ATE as the expected change in unemployment rate when the minimum wage
is raised for everyone versus when the minimum wage stays the same.

When the ATE is of interest, we must use an appropriate method that leads to an estimate of this
quantity. We might be tempted to use association difference to estimate ATE, where association difference
is the conditional mean difference of outcomes between treatment and not treated units. The treatment
T and Y are associated if E[Y|T = 1] # E[Y|T = 0]. Thus, one might try to estimate the causal
quantity in (1) with the statistical quantity E[Y'|T" = 1] — E[Y|T = 0]. For the Statanium example, this
quantity could be estimated from the data by contrasting the sample average of the developers that took
the treatment with the ones that did not. Mathematically,

N N
o YT > V(=T
N o N
Zizlj-zi Zi:l(l _T’L>

However, in general, ATE and association difference are different; otherwise, association would be
causation. Figure 5 highlights the causation—association difference.

Population Causation Association

Figure 5.

To infer causation, we imagine that each treatment or intervention is applied to the entire population,
and the difference between the red and white circles is observed in the same population. In contrast, to
infer association, we condition on 7" = ¢ and estimate the difference between subsets of populations.
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Average treatment effect on the treated (ATET). For the treated group, the treatment-effect esti-
mand is the ATET:
ATET = E[Y(1)|T = 1] — E[Y(0)|T = 1]

The ATET is useful when researchers are interested in the effect on those who received the treatment.
This effect may be of particular interest when the goal is to understand how a treatment performs for the
subpopulation at which the treatment was targeted. The effect is a comparison with what would have
happened in this subpopulation if they had not received the treatment. In our Statanium example, we
estimate the expected difference in productivity for developers who took extra breaks compared with
the productivity of these developers if they had not taken extra breaks. When we investigate whether a
treatment cures an illness, the ATET is focused only on those who received the treatment. For this group,
what is the expected difference in the proportion of individuals who were cured when given the treatment
versus the proportion cured if they had not received the treatment? When evaluating a raise in minimum
wage, we might be interested in the effect for states that enacted a minimum wage increase. The ATET
is the expected difference in unemployment rate for these states compared with a situation where these
states did not raise minimum wage.

Additional estimands. In specific situations, there are several other treatment-effect estimands that
may be of interest and that can be defined in the potential-outcomes framework. We briefly mention a
few here.

Sometimes, it is assumed that the effect of 7'on Y'may involve both a direct effect and an indirect effect
such that T'has an effect on another variable M, known as a mediator, and that M in turn has an effect on
Y. In the Statanium example, we might believe that increased breaks could improve the developers’ focus
while working and that improved focus leads to increased productivity. In such a situation, comparisons
of average direct treatment effects and average indirect treatment effects may be of interest. See Robins
and Greenland (1992), VanderWeele (2015), and Pearl and MacKenzie (2018) for discussions of causal
mediation analysis and definitions of applicable direct and indirect effect estimands.

Recently, there has been a surge of interest in estimating the treatment effect when it differs between
subgroups, also known as the heterogeneous treatment effect (Athey and Imbens 2016; Kiinzel et al. 2019
; and Nie and Wager 2021). At the subgroup level, the treatment-effect estimand is called conditional
average treatment effect (CATE),

CATE = E[Y(1)|X = z] — E[Y(0)|X = 1]

where Y (¢)| X = x for t = {0, 1} are the potential outcomes of the subgroup X = z.

Assumptions required in potential-outcomes framework

At this point, it is natural to ask under which conditions treatment effects can be estimated from
observational data. For illustration purposes, our focus will be on ATE. We are interested in assumptions
for which

ATE = E[Y(1)] - E[Y(0)] = E[Y|T = 1] — E[Y|T = 0]

A causal quantity, that is, ATE, is “identifiable” if it can be computed from a statistical quantity
E[Y|T = t]. By statistical quantity, we mean an object that can be estimated from data.

In the potential-outcome framework, commonly used assumptions are the stable unit treatment value
assumption (SUTVA), unconfoundedness assumption, and overlap assumption.



Intro — Introduction to causal inference and treatment-effects estimation 8

SUTVA. The SUTVA, along with consistency, states that for a given unit, the treatment of other units
does not affect the outcome of the treatment received by that unit. Consequently, there are two different
sources in which SUTVA could be violated. The first source is a violation of the consistency condition,
which might not hold in some studies (Cole and Frangakis 2009; and Schwartz, Gatto, and Campbell
2011). Usually, the problem arises from the vagueness of the assigned treatment. For example, for
the Statanium example, if the treatment is additional breaks, this may be one additional break or three
additional breaks. If we observe only whether a treatment has been assigned, the counterfactual Y (T' = ¢)
is not well defined because different numbers of breaks have different causal effects. The second source
of violation arises if some units are influenced by the assignment of the treatment of other units. For
example, if some developers in the control group noticed that the developers in the treatment group are
less productive, they might change their lifestyle and start taking fewer breaks, which can lead to an
increase in productivity. Typically, interference can occur because of spillover effects or noncompliance
or because the units are members of a social network. For details, see Hernan and Robins (2020, chap. 3).

Unconfoundedness assumption. The unconfoundedness assumption goes by many names, including
the conditional-independence assumption, the ignorability assumption, and the exchangeability assump-
tion. The impetus behind this assumption is to make the treatment and control group comparable within
strata defined by X. It states that the probability of a positive outcome in the control group (white group
in the figure above) would be the same as the probability of a positive outcome in the treatment group
(red group) had units in the control group received the treatment given to those in the treatment group.
In other words, under unconfoundedness, if by accident the treatment were given to the white group
instead of the red group, then the ATE would remain the same. Mathematically, this is represented by
(Y(1),Y(0)) 1L T'|X, where L denotes (conditional) independence and X are potential confounders.
It is important to differentiate between Y (¢) L T'| X, which utilizes potential outcomes, and Y 1l T'|X.
The unconfoundedness assumption does not imply that Y 1L T'|X. On the contrary, if the ATE is not
zero, then Yand T are associated. In the context of the Statanium example, the underlying intuition is
that for two developers ¢ and j, their potential outcomes should be independent of the treatment assign-
ment P(Y;(0),Y;(1)|T" =t;, X) = P(Y;(0),Y;(1)|T = t;, X), fort;, t; € {0, 1}.

Overlap assumption. Finally, the overlap or positivity assumption P(T = t|X = z) > 0 implies
that the treatment assignment should be stochastic. For example, if the developers who are highly sat-
isfied are always assigned treatment 7" = 1, then there is no meaning in studying the treatment 7" = 0.
In contrast to unconfoundedness, the overlap assumption can sometimes be verified from the data. For
details, see Hernan and Robins (2020, chap. 12).

When these three main assumptions in the potential-outcome framework are satisfied, then the ATE is
identified, and estimation methods available in the teffects suite of commands can be used.

Relaxing causal assumptions

One of the crucial questions in causal inference is whether all confounders have been accounted for
in the study. Unfortunately, the unconfoundedness is not testable from data. There are observable and
unobservable confounders that, unaccounted for, will lead to incorrect conclusions. This problem of
unobserved confounders or endogeneity is usually addressed using estimators that account for an en-
dogenous treatment or instrumental-variable method.

Discussions of these issues can be found in Imbens and Rubin (2015). For a general treatment, see
Wooldridge (2010) and Angrist and Pischke (2009).
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The potential-outcome framework is not restricted only to models in which identification relies on
conditional unconfoundedness, which is sometimes referred to as selection on observables. It also allows
us to recover the ATET by controlling for individual and time-varying unobservables, without the need to
control for covariates. One example of this is the difference-in-differences method, which can be used
to estimate ATET by comparing the change in outcomes between the treatment and control groups over
time.

Causal diagrams

In Motivation: Causation versus association, we used causal diagrams, specifically directed acyclic
graphs (DAGs), to represent our assumptions about causal relationships. DAGs are helpful in phases 1
and 2 described in Causal inference workflow. The intellectual predecessor of causal diagrams, or more
generally, the structural causal models (SCMs) framework, goes back to the pioneering work of geneti-
cist Wright (1921, 1934) and econometricians Frisch and Waugh (1933) and Haavelmo (1944) and the
references therein. Early econometricians were attempting to conceptualize the fact that, unlike correla-
tion, the regression of a variable Y on T has a natural direction and is different from the regression of 7'
on Y. This distinction led to the development of causal frameworks by Pearl (2009) and Heckman and
Pinto (2022). Furthermore, this differentiation is linked to the concept known as “the ladder of causal-
ity” (Pearl and MacKenzie 2018), where the lowest rung signifies association and higher rungs address
causal queries. Here our focus is on causal diagrams. We provide only a brief introduction and explore
the usefulness of causal diagrams in determining causal-effect identification before estimating treatment
effects using one of Stata’s estimation commands. We will mention some of the common terminology
used in SCM, but for more detailed descriptions of these terms and additional details on SCM, we refer
you to Pearl (2009), Peters, Janzing, and Scholkopf (2017), Bareinboim et al. (2022), and the references
therein.

DAGs are characterized by nodes and directed edges between the nodes (shown as circles and arrows,
respectively, in diagrams below), which represent causal relationships. The absence of edges between
nodes indicates that there is no direct causal effect between those nodes. Unlike path diagrams in SEM,
independent unobserved error terms are not depicted in DAGs.

For the Statanium example, we capture our assumptions using the DAG in the left panel of figure 6.

Figure 6. (left) Unconfoundedness and (right) Instrumental variable

Here X is a confounder in the causal relationship for 7"and Y, and because X is observed, we can
control or adjust for it by including it as a covariate in our model when we estimate the causal effect.
With this adjustment, we eliminate associative paths and identify the causal relationship between 7" and
Y. In the causal diagram literature, the path 7' <— X — Yis known as a backdoor path because it contains
an arrow that goes to the back of node T'(hence, the name “backdoor”). If we do not condition on X, we
say that we are leaving the path open, and we cannot estimate the causal effect. In this situation, we meet
what is known as the backdoor path criterion because, by adjusting for X, we close all paths entering 7.

In comparison, in the DAG shown on the right of figure 6, X is an unobserved confounder, which is
indicated by shading the node for this variable. In this case, we cannot condition on X by including it
as a covariate when we estimate the causal effect. Thus, the backdoor path criterion is not satisfied, and
the causal effect of 7on Y cannot be identified in this way. Fortunately, in this case, the assumed DAG
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still allows us to estimate the causal effect because Z can be used as an instrumental variable. A proper
instrumental variable can be included as a predictor of the treatment to eliminate unobserved sources of
confounding such as that from X here. Z can be used as a proper instrumental variable because there is
no direct effect of Z on the outcome Y and there are no unobserved confounders between Z and X or Z
and Y.

For our simple DAGs, we were able to evaluate identification easily by considering the relationships
among the few variables. For more complex situations, there exist several algorithms and criteria that are
designed to check and achieve causal effect identification using a graphical approach. We do not discuss
those algorithms here; we instead refer the interested reader to Shpitser and Pearl (2008), Pearl (2009),
Maathuis and Colombo (2015), Perkovic et al. (2015), and van der Zander, Liskiewicz, and Textor (2019).
These algorithms can select variables that form a valid adjustment set that can be used for treatment-effect
estimation. Once the valid adjustment set is selected, researchers can use their preferred treatment-effect
estimation method from the list of commands in [CAUSAL] Causal inference commands.

Below, we demonstrate how a DAG can be used in the phases discussed in the Causal inference work-
flow. Consider a study that examines the effect on five-year mortality of polycystic kidney disease (PKD)
among patients undergoing peritoneal dialysis (PD). Recall that in phase 1 of the workflow, we construct
a hypothetical model that represents researchers’ assumptions. We begin our causal analysis by drawing
a DAG that represents our assumptions about the causal effects we are interested in estimating and the
relationship among all variables, observed and unobserved, that may affect the variables of interest. Here
we borrow the hypothetical model from Evans et al. (2012), illustrated in figure 6.

Figure 6.

The goal of phase 2 is to check whether the causal effect of the treatment variable PKD on mortality
M is identifiable. For the variable definitions, see table 2. The gray node in the graph indicates that the
variable AT is not observed.

Table 2. Variable definitions

PKD - polycystic kidney disease; treatment variable

M - mortality; outcome variable

A - patient age

G - patient gender

C - patient’s comorbidities summary index

PD - indicator for patients undergoing peritoneal dialysis
AT - type of medical assistance

DT - type of peritoneal dialysis
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Note that if all variables in the causal graph are observed, then the causal effect can be identified using
backdoor path criteria (Pearl 2009).

However, in our example, AT is not observed, and there are unblocked noncausal (backdoor) paths
that hinder identification:

Pl: PKD < CI — AT — M
P2: PKD < A — AT - M
P3:PKD <+ CI <+ G — AT - M

Note that, despite a common misconception, conditioning on all observed variables does not mitigate the
identification issue. For example, consider the path PKD — DT < AT. This type of path is known as a
v-structure, and DT is called a collider. PKD and AT are unrelated because the collider closes or blocks
the path. However, we would not want to include DT in the model because conditioning on the collider
DT introduces a selection bias through PKD — DT < AT — M. For more examples, see Importance of
identification before estimation. Interestingly, the above noncausal paths P1, P2, and P3 can be blocked
if we condition on variables CI and A. In fact, CI and A are the necessary minimal sufficient set that makes
the causal effect of PKD to M identifiable. Now that we know that the causal effect is identified, we are
ready to move to phase 3, estimation of the treatment effect. In this case, Cl and A can be used as covariates
in, for instance, the inverse-probability weighting estimator. For details, see [CAUSAL] teffects ipw.

. teffects ipw (M) (PKD CI A)
(output omitted)

Importance of identification before estimation

In this section, we provide numerical examples that reemphasize the importance of the identifica-
tion step. If a causal effect is not identified, the results of any treatment-effect estimation method are
unreliable. We illustrate this point with two simple examples, which also aim to clear up the common
misconception that it is harmless to control for more variables in treatment-effect estimation. For more
examples, the reader is referred to Cinelli, Forney, and Pearl (2024) and Hiinermund, Louw, and Caspi
(2021).

b Example 1

The presumed relationship among variables in figure 7 is well known for introducing collider bias,
sometimes called selection bias, in the estimated effect of T on Y. In the causal diagram literature, the
represented DAG is known as a v-structure, and the variable X as a collider. A v-structure 7' — X < Y
has an interesting characteristic that the causal effect of T'on Yis 0 because the collider X blocks the path.
If we adjust for X, we introduce a selection bias because the adjustment results in an induced association
between T'and Y.

Figure 7.
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Suppose the data come from the data-generation process as
T:=¢€p
Y: €y
X:=2xT—05xY +ey

where e, €y, €x ~ N(0,1). The regression of Y on T"and X shows that T'and X are for prediction
purposes if we were to determine this on the basis of their p-values. However, the X is a bad control in
terms of answering a causal question about the effect of 7'on Y.

. regress Y T X

Source SS df MS Number of obs = 1,000
F(2, 997) = 111.51

Model 187.350778 2 93.675389 Prob > F = 0.0000
Residual 837.504999 997 .840025074  R-squared = 0.1828
Adj R-squared = 0.1812

Total 1024.85578 999 1.02588166 Root MSE = .91653

Y | Coefficient Std. err. t P>t [95% conf. intervall

T .8088171 .0607918 13.30 0.000 .6895225 .9281117

X -.3942266 .0263994 -14.93 0.000 -.4460314  -.3424219

_cons .0345212 .0289833 1.19 0.234 -.0223541 .0913965

Fortunately, the true causal effect 0 is recovered if we do not control for X.

. regress Y T

Source SS df MS Number of obs = 1,000
F(1, 998) = 0.02
Model .025504326 1 .025504326 Prob > F = 0.8748
Residual 1024.83027 998 1.02688404 R-squared = 0.0000
Adj R-squared = -0.0010
Total 1024.85578 999 1.02588166 Root MSE = 1.0134
Y | Coefficient Std. err. t P>t [95% conf. intervall
T .0049212 .0312266 0.16 0.875 -.0563562 .0661986
_cons .0347662 .0320452 1.08 0.278 -.0281175 .0976498
N
b Example 2

Here we demonstrate another type of bias that can be induced in the estimated effect of 7'on Y.

€S

Compared with the previous example, the harmfulness for controlling X is not explicit. Recall that in
the previous section, we mentioned that the nodes for unobserved error terms (e, €y, are omitted from
the causal graph, but they are there. If we imagine that the error term for Yis there, then Y would be a

Figure 8.
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collider because T' — Y <« €y. We alsosee Y — X, so we can say that X is a descendant of the collider
Y. It turns out that by controlling on the descendant X of collider Y, we induce an association between 7'
and ey- (Pearl 2009, sec. 11.3). This conditioning opens a backdoor path between T and Y, which makes
the causal effect of 7"on Y unidentified.

Suppose the data arise from the following data-generation process:

T::€T
Yi=2xT+ ey
X:=—05xY +ex

Then the causal effect of 7' on Y'is 2. Similar to the previous example, even though X is good for
prediction purposes, it is a bad control for causality.

. regress YT X

Source SS df MS Number of obs = 1,000
F(2, 997) = 2631.17

Model 4420.49975 2 2210.24987 Prob > F = 0.0000
Residual 837.504998 997 .840025073  R-squared = 0.8407
Adj R-squared = 0.8404

Total 5258.00474 999 5.26326801  Root MSE = .91653

Y | Coefficient Std. err. t P>|t] [95% conf. interval]

T 1.626137 .0379613 42.84 0.000 1.551644 1.700631

X -.3942266 .0263994 -14.93 0.000 -.4460314  -.3424219

_cons .0345212 .0289833 1.19 0.234 -.0223541 .0913965

Again, the true causal effect is recovered if we do not control for X.

. regress Y T

Source SS df MS Number of obs = 1,000
F(1, 998) = 4122.35

Model 4233.17448 1 4233.17448 Prob > F = 0.0000
Residual 1024.83027 998 1.02688404 R-squared = 0.8051
Adj R-squared = 0.8049

Total 5258.00474 999 5.26326801 Root MSE = 1.0134

Y | Coefficient Std. err. t P>t [95% conf. intervall

T 2.004921 .0312266 64.21 0.000 1.943644 2.066199

_cons .0347662 .0320452 1.08 0.278 -.0281175 .0976498

These examples demonstrate that, before estimating a treatment effect, we must determine whether
and how the effect can be identified based on our assumed relationships among variables. Once we have
evaluated identification, we can select an appropriate method for estimating the causal effect. In these
examples, we used linear regression. Actually, many of Stata’s regression commands can be used for
estimating treatment effects, provided that identification assumptions hold. Stata also offers estimation
commands that are specifically designed for estimating treatment effects in various situations. For more
information on these specialized commands, see [CAUSAL] Causal inference commands.

d
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Causal inference commands — Introduction to causal inference commands

Description Remarks and examples Also see

Description

In this entry, we give you an overview of the estimation commands in Stata that are designed for
causal inference. We provide important details about each command so that readers can select the one
that best fits their data and research needs.

Here we assume that you are familiar with causal inference and the most common assumptions. For
an introduction to these concepts, see [CAUSAL] Intro.

Remarks and examples

Below, we introduce Stata commands that are specifically designed for causal inference. For each
command, we provide information on the type of data required and the necessary assumptions. In addi-
tion, we outline the type of statistics that can be estimated—typically one or more of the average treatment
effect (ATE), the average treatment effect on the treated (ATET), or the potential-outcome means (POM).
We also indicate the type of outcome variable (continuous, binary, count, fractional, or nonnegative) and
the type of treatment (binary, multivalued, or continuous) that each command supports. Finally, we note
which models must be specified: a model for the outcome, a model for the treatment, both, or none.

Remarks are presented under the following headings:

teffects

stteffects

telasso

cate

Difference in differences
Endogenous treatment
Causal mediation

Extended regression models
margins

teffects

The teffects suite of commands is useful for estimating treatment effects from cross-sectional
data. These commands rely on the stable unit treatment value assumption (SUTVA), unconfoundedness
(conditional-independence) assumption, and overlap assumption.

The commands in the teffects suite and the type of estimator provided by each are as follows:

teffects ra Regression adjustment

teffects ipw Inverse-probability weighting

teffects ipwra Inverse-probability-weighted regression adjustment
teffects aipw Augmented inverse-probability weighting
teffects nnmatch Nearest-neighbor matching

teffects psmatch Propensity-score matching

16
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Details on the available estimands, types of outcomes and treatments supported, and the models to be
specified are given below:

Outcome Treatment Models
Command Estimand types types specified
teffects ra ATE continuous binary outcome
ATET binary multivalued
POM count
fractional
nonnegative
teffects ipw ATE continuous binary treatment
ATET binary multivalued
POM count
fractional
nonnegative
teffects ipwra ATE continuous binary outcome
ATET binary multivalued treatment
POM count
fractional
nonnegative
teffects aipw ATE continuous binary outcome
ATET binary multivalued treatment
POM count
fractional
nonnegative
teffects psmatch ATE continuous binary treatment
ATET binary
count
fractional
nonnegative
teffects nnmatch ATE continuous binary outcome*
ATET binary
count
fractional
nonnegative

*nnmatch includes covariates for modeling the outcome but does not require specification of a functional form for the outcome
model.

For further information on these commands and the properties of the estimators that they implement,
see [CAUSAL] teffects intro.
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stteffects

The stteffects suite of commands is useful for estimating treatment effects from survival-time data.
These commands rely on the SUTVA, unconfoundedness (conditional-independence) assumption, and
overlap assumption. They also rely on an assumption that the correct adjustment is made for censoring.

The commands in the stteffects suite and the type of estimator provided by each are as follows:

stteffects ra Survival-time regression adjustment

stteffects wra Survival-time weighted regression adjustment

stteffects ipw Survival-time inverse-probability weighting

stteffects ipwra Survival-time inverse-probability-weighted regression adjustment

Details on the available estimands, types and treatments supported, and the models to be specified are
given below:

Treatment Models

Command Estimand types specified

stteffects ra ATE binary outcome
ATET multivalued
POM

stteffects wra ATE binary outcome
ATET multivalued censoring
POM

stteffects ipw ATE binary treatment
ATET multivalued censoring
POM

stteffects ipwra ATE binary outcome
ATET multivalued treatment
POM censoring (optional)

For further information on these commands and the properties of the estimators that they implement,
see [CAUSAL] stteffects intro.

telasso

The telasso command is useful for estimating treatment effects from cross-sectional data and using
lasso to select from among many potential control variables to be included in the model. This estimator
relies on the SUTVA, unconfoundedness (conditional-independence) assumption, and overlap assumption.

telasso allows a continuous, binary, count, or nonnegative outcome and requires a binary treatment
variable. Models are specified for both the outcome and the treatment. The ATE, ATET, or POM may be
requested.

For further information on this command and the properties of the estimator that it implements, see
[CAUSAL] telasso.
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cate

The cate suite of commands is useful for estimating the average treatment effects conditional on a
set of variables, known as conditional average treatment effects (CATEs). cate provides three differ-
ent CATE estimates: individualized average treatment effects (IATEs), group average treatment effects
(GATEs), and sorted group average treatment effects (GATESs). IATEs are treatment effects conditional
on observation-level characteristics. There is one IATE for each observation in the data. GATEs are treat-
ment effects conditional on prespecified groups. There is a treatment effect for each group. GATESs are
average treatment effects for a prespecified number of groups. The groups are determined by quantiles
of individual-level treatment-effects values. Estimating CATEs allows us to study the treatment-effect
heterogeneity and evaluate the treatment-assignment policy.

These commands rely on the stable unit treatment value assumption (SUTVA), unconfoundedness
(conditional-independence) assumption, and overlap assumption.

cate allows a continuous outcome and requires a binary treatment variable. cate estimates a CATE
function, an outcome model, and a treatment-assignment model. The CATE function is estimated by
the partialing-out (PO) estimator or the augmented inverse-probability weighting (AIPW) estimator via
random forest or parametric regression. The outcome and the treatment models can be estimated using
cross-fitting via lasso, random forest, or parametric regression.

For further information on this command and the properties of the estimator that it implements, see
[CAUSAL] cate.

Difference in differences

The difference-in-differences suite of commands is useful for estimating treatment effects from data in
which some of the units are observed both before and after a treatment and some units remain untreated.
The difference-in-differences suite comprises the following commands:

didregress Difference in differences

xtdidregress Difference in differences for panel data

hdidregress Heterogeneous difference in differences

xthdidregress Heterogeneous difference in differences for panel data

gencohort Create a cohort variable for heterogeneous difference in differences

The didregress and hdidregress commands estimate treatment effects for repeated cross-
sectional data, while xtdidregress and xthdidregress estimate treatment effects for panel data.
The didregress and xtdidregress commands estimate a single ATET. The hdidregress and
xthdidregress commands allow for heterogeneous treatment effects and report separate ATETs for
each time and treatment cohort.

These estimators rely on the SUTVA, unconfoundedness (conditional-independence) assumption, and
overlap assumption. In addition, they rely on an assumption of parallel trends in the treatment and control
groups.

For further information on these commands and the properties of the estimators that they implement,
see [CAUSAL] DID intro.
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Endogenous treatment

The et commands are useful for estimating treatment effects from cross-sectional data in cases where
the unconfoundedness (conditional-independence) assumption is violated because treatment assignment
is not independent of the potential outcomes. The et commands comprise the following:

eteffects Endogenous treatment-effects estimation
etpoisson Poisson regression with endogenous treatment effects
etregress Linear regression with endogenous treatment effects

Details on the estimands, types of outcomes and treatments supported, and the models to be specified
are given below:

Outcome Treatment Models
Command Estimand types types specified
eteffects ATE continuous binary outcome
ATET binary treatment
POM count
fractional
nonnegative
etpoisson ATE count binary outcome
ATET nonnegative treatment
POM
etregress ATE continuous binary outcome
ATET treatment
POM

Note that etef fects provides the ATE, ATET, and POM directly. etregress estimates the ATE directly,
while the ATET and POM can be obtained from margins after estimation. For etpoisson, ATE, ATET,
and POM can all be obtained from margins after estimation.

For further information on these commands and the properties of the estimators that they implement,
see [CAUSAL] eteffects, [CAUSAL] etpoisson, and [CAUSAL] etregress.

Causal mediation

The mediate command is useful for estimating direct, indirect, and total treatment effects from cross-
sectional data in some cases where the treatment may affect an outcome both directly and indirectly. An
indirect effect is one in which the treatment affects another variable, called a mediator, and the mediator
in turn affects the outcome.

The mediate command allows both outcome and mediator variables to be continuous, binary, count,
and nonnegative. The treatment may be binary, multivalued, or continuous. Models may be specified
for the treatment and the mediator.

This estimator relies on the SUTVA, unconfoundedness (conditional-independence) assumption, and
overlap assumption.
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mediate provides estimates of the following statistics:

Estimand Synonym

average indirect treatment effect (AITE) natural indirect effect (NIE)
average direct treatment effect (ADTE) natural direct effect (NDE)

total average treatment effect (ATE) marginal total effect (MTE)
average indirect treatment effect with respect to controls (AITEC) pure natural indirect effect (PNIE)
average direct treatment effect with respect to the treated (ADTET) total natural direct effect (TNDE)

For further information on this command and the properties of the estimator that it implements, see
[CAUSAL] mediate.

Extended regression models

The extended regression model (ERM) suite of commands is designed to account for treatment (ex-
ogenous or endogenous), endogenous covariates, and nonrandom sample selection one at a time or in
combination. Commands are available for both cross-sectional and panel data. The following commands
are comprised in the ERM suite:

eregress Extended linear regression

eintreg Extended interval regression

eprobit Extended probit regression

eoprobit Extended ordered probit regression

xteregress Extended linear regression for panel data
xteintreg Extended interval regression for panel data
xteprobit Extended probit regression for panel data
xteoprobit Extended ordered probit regression for panel data

eregress and xteregress fit models for continuous outcomes. eintreg and xteintreg fit models
for interval-censored outcomes. eprobit and xteprobit fit models for binary outcomes. eoprobit
and xteoprobit fit models for ordinal outcomes. All commands allow binary and multivalued treat-
ments.

After fitting a model that accounts for endogenous or exogenous treatment with one of the ERM com-
mands, you can use estat teffects to estimate the ATE, ATET, or POM.

For further information on these commands and the properties of the estimators that they implement,
see [ERM] Intro 1.

Other commands in Stata provide some of the features found in the ERM commands. For instance,
when you account only for endogenous covariates, eregress and ivregress provide equivalent param-
eter estimates. Instrumental-variable commands—ivregress, ivprobit, ivpoisson, and ivtobit—
are designed to account for endogeneity (unobserved confounding) and provide consistent parameter
estimates in this situation. Thus, these commands are used when the goal is causal inference. In some
cases, a parameter estimated by these commands can be directly interpreted as the causal effect of interest,
and in other cases, postestimation commands can be used to obtain the ATE, ATET, and POM.
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margins

The margins command is available after many estimation commands in Stata. When a researcher
has determined that appropriate assumptions have been satisfied for performing causal inference, many
estimation commands can be used in combination with margins to estimate the ATE, ATET, and POM. As
a simple example, you may type

. regress y c.x##i.trt, vce(robust)

to fit a linear regression of y on treatment trt and adjusted for covariate x. To estimate the POM, you
could type

. margins trt, vce(unconditional)
The ATE is a contrast of the POM, and margins uses the r. operator to request such a contrast:

. margins r.trt, vce(unconditional)

The margins command can be used similarly after other estimation commands, and the results can
be interpreted causally when proper assumptions for causal inference have been met.

For more information on margins, see [R] margins.

Also see

[CAUSAL] Intro — Introduction to causal inference and treatment-effects estimation

[CAUSAL] Glossary
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

cate estimates conditional average treatment effects (CATEs), which are average treatment effects
(ATEs) conditional on a set of variables for which the treatment effects may vary. Estimating CATEs
allows us to study treatment-effect heterogeneity and evaluate treatment-assignment policies.

cate provides three different CATE estimates: individualized average treatment effects (IATES), group
average treatment effects (GATEs), and sorted group average treatment effects (GATESs). IATEs are treat-
ment effects conditional on observation-level characteristics; there is one IATE for each observation in
the data. GATEs are treatment effects conditional on prespecified groups; there is a treatment effect for
each group. GATESs are treatment effects for a prespecified number of groups, where the groups are
determined by the quantiles of the IATEs.

To estimate CATEs, cate fits an outcome model and a treatment-assignment model. These models can
be fit using cross-fitting via lasso, random forest, or parametric regression. The CATEs themselves can
be estimated using a partialing-out (PO) estimator or an augmented inverse-probability weighting (AIPW)
estimator, either via random forest or linear regression.

Quick start

Estimate the IATE function for outcome y and treatment treat, conditioning on covariates x1-x5 and
i.groupl, using the PO estimator, and report the ATE

cate po (y x1-x5 i.groupl) (treat)

Same as above, but add variables w1-w100 as control variables in the outcome and treatment models
cate po (y x1-x5 i.groupl) (treat), controls(wi-w100)

Same as above, but use the AIPW estimator
cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100)

Estimate the GATEs for the groups defined by variable group2
cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100) group(group2)
Same as above, but reestimate the GATEs for groups defined by variable group1 without refitting the
IATE function
cate, reestimate group(groupl)
Divide the data into five groups based on quintiles of the IATE estimates, and estimate the GATESs for
those groups
cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100) group(5)
Same as above, but divide the data into four groups (quartiles of the TATE estimates), and reestimate the
GATESs for these groups

cate, reestimate group(4)

23
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Perform cross-fitting with five folds instead of the default ten folds
cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100) xfolds(5)

Perform random forest for the outcome and treatment models

cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100) /17
omethod(rforest) tmethod(rforest)

Same as above, but use the out-of-bag prediction-based algorithm instead of cross-fitting

cate aipw (y x1-x5 i.groupl) (treat), controls(wl-w100) /17
omethod(rforest) tmethod(rforest) oob

Use linear regression to fit the outcome model, logit regression to fit the treatment model, and linear
regression to fit the CATE model

cate aipw (y x1-x5 i.groupl) (treat), /17
omethod(regress) tmethod(logit) cmethod(regress)

Menu

Statistics > Causal inference/treatment effects > Continuous outcomes > Conditional average treatment effects
Syntax

Partialing-out estimator

cate po (ovar catevarlist) (tvar) [if | [in] [, options]

Augmented inverse-probability weighting estimator

cate aipw (ovar catevarlist) (tvar) [if' ] [in] [, options ]

ovar is a continuous outcome of interest.

catevarlist specifies the covariates of the CATE model—the conditioning variables for the treatment ef-
fects. catevarlist may contain factor variables; see [U] 11.4.3 Factor variables.

tvar must be a binary variable representing the treatment levels.
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options Description
Model
controls (varlist) specify the control variables for the outcome and treatment models
* group (varname) compute the GATE for each group defined by varname
* group (#) divide the data into # groups based on IATEs and compute the GATES
for each group
rseed(#) set random-number seed
xfolds(#) use cross-fitting algorithm with # folds; default is xfo1ds (10)
Method
omethod (om_spec) specify estimation method for outcome model;
default is omethod (lasso)
tmethod (tm_spec) specify estimation method for treatment model;
default is tmethod (1lasso)
cmethod (cm_spec) specify estimation method for CATE model; default is
cmethod (rforest)
Advanced
freestimate reestimate GATEs or GATESs with a new specification in group ()
and without refitting IATE function
toob use out-of-bag prediction-based algorithm instead of cross-fitting

treatcontrols (varlist) use variables in varlist as controls for treatment model instead
of variables specified in controls() (AIPW estimator only)

pstolerance(#) set tolerance for overlap assumption; default is pstolerance(le-5)
osample (newvar) generate newvar to identify observations that violate the

overlap assumption
rflistwise omit observations with missing covariate values when random forest

is used for all models

Reporting
level(#) set confidence level; default is 1evel (95)
[no]log suppress iteration log
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

*Only one of group (varname) or group (#) may be specified.

freestimate may be specified with group (#) only if group(#) has been specified in the previous cate estimation. If
reestimate is specified with group (new_varname), where new_varname is different than the previous group (var-
name) , then new_varname must have been a factor variable in catevarlist in the previous cate estimation.

£o0b may not be specified with group (#) or xfolds (). oob is only allowed if the random forest method has been specified
for both the outcome and the treatment models (omethod (rforest) and tmethod(rforest)).

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

om_spec Description

lasso| , lasso_options | use linear lasso to fit the outcome model; the default
sqrtlassol, lasso_options|  use square-root lasso to fit the outcome model
rforest[, rforesi_options | use random forest to fit the outcome model

regress use linear regression to fit the outcome model
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tm_spec

Description

lasso| , lasso_options |
rf orest[ , }fﬁ)r@sl‘_options}

use logit lasso to fit the treatment model; the default
use random forest to fit the treatment model

logit use logit regression to fit the treatment model
probit use probit regression to fit the treatment model
cm_spec Description

rforest[, rforesi_options |
regress

use random forest to fit the CATE model; the default
use linear regression to fit the CATE model

rforest_options

Description

samprate (#)
ntrees (#)
cintrees (#)

splitminobs (#)

splitmeanvars (#)

specify sampling rate for observations; default is samprate (0.5)
specify number of trees in the forest; default is ntrees (2000)
specify number of trees in each group to compute the confidence
intervals; default is cintrees (2)
specify minimum number of observations to split a node; default is
splitminobs(6)
specify mean number of variables to be split in each node;
default is splitmeanvars(ceil (sqrt(p) +20))
with p as the dimension of catevarlist

nohonest do not use an honest tree
honestrate (#) set sampling rate for honest tree; default is honestrate (0.5)
Options

Model

controls (varlist) specifies the control variables for the outcome and treatment models. catevarlist
and the specified control variables are the covariates in the outcome and the treatment models. If no
control variables are specified, then the variables specified in catevarlist will be the only covariates
for both models.

group (varname) computes the GATE for each group defined by the levels of varname. The ATE for each
level in the group variable will be estimated. The grouping variable will be added as a factor variable
in catevarlist. Only one of group (varname) or group (#) may be specified.

group (#) computes the GATESs by dividing the observations into # groups. The groups are generated
from the quantiles of the estimates of the IATEs. The observations are sorted based on the IATEs and
grouped into # levels. For example, if we specify group(4), the data would be divided into four
groups. The first group will contain observations with IATE estimates greater than the 75th percentile
of the overall IATE estimates, the second group will contain observations that lie between the 50th and
the 75th percentiles, the third group will contain those between the 25th and 50th percentiles, and the
last group will contain those below the 25th percentile. Once the groups are formed, cate computes
the ATE for each group. Only one of group (#) or group (varname) may be specified.

rseed(#) sets the random-number seed. rseed (#) is equivalent to typing set seed # prior to running
cate. Random numbers are used to produce split samples for cross-fitting. To reproduce results, you
must either use this option or use set seed. See [R] set seed.
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xfolds (#) specifies the number of folds for cross-fitting. The default is xfolds(10); that is, cross-
fitting is done by randomly dividing the original data into 10 folds.

_ [Hetnod

omethod (om_spec) specifies the estimation method for the outcome model. om_spec may be lasso| ,
lasso_options |; sqrtlasso| , lasso_options|; rforest| , rforest_options|; or regress. The de-
fault is omethod (lasso).

lasso| , lasso_options | specifies that linear lasso be used to fit the outcome model. lasso_options
are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then
selection(plugin) is assumed; that is, the plugin penalty parameter is used.

sqrtlasso[, lasso_options| specifies that square-root lasso be used to fit the outcome model.
lasso_options are selection(), grid(), stop(), cvtolerance(), bictolerance(),
tolerance (), and dtolerance(); see [LASSO] lasso options. If selection() is not specified,
then selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[, rforesi_options| specifies that random forest be used to fit the outcome model. rfor-
est_options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate().

samprate (#) sets the sampling rate for observations when drawing the random sample for each
tree. The sampling is without replacement. The sampling rate must be in the range (0, 1). The
default is samprate (0.5), meaning that half of the estimation sample is used to construct each
tree. Using a random sample to construct each tree makes the random forest more robust to the
overfitting issues.

ntrees (#) sets the number of trees in the random forest. The default is ntrees (2000). Using
more trees in the random forest usually implies more stable estimates, but it also requires longer
computational time.

cintrees (#) sets the number of trees in each group or bag when using the bootstrap of little bags
to compute the confidence intervals of the random forest’s predictions. Each tree in the same
bag draws a random sample from the same half-size sample, which allows us to estimate the
variance of the random forest’s prediction. The default is cintrees(2), two trees in each bag.

splitminobs (#) sets the minimum number of observations to perform a split in a node. A node
must have at least # observations to be split. The default is splitminobs(6).

splitmeanvars(#) sets the mean number of variables to be split in each node. In each tree
node in a random forest, only a random subset of variables is searched to find the best split-
ting variable and value. The number of variables in this subset is also random and equals
max( min(m, p), 1), where p is the dimension of catevarlist and m follows a Poisson distribu-
tion with mean #. The default is splitmeanvars(ceil (sqrt(p) + 20)).

nohonest specifies not to use an honest tree. Honest splitting in an honest tree is the critical fea-
ture that allows us to make inferences on the random forest’s prediction. Confidence intervals
and standard errors for the random forest’s prediction cannot be estimated when nohonest is
specified.

honestrate (#) specifies the fraction of the sample used for splitting the honest tree. For a
random sample S drawn to create a tree, an honest tree divides sample .S into two disjoint parts
A and B. Part A is used to split the tree and part B is used to label the tree. honestrate ()
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specifies the fraction of the sample S'to be used as part A. Honest splitting is the key feature that
allows inference on the random forest’s prediction. The default is honestrate(0.5), where
half of the data in S is used to split the tree and the other half is used to label the tree.

regress specifies that linear regression be used to fit the outcome model. Thus, this option imposes
a parametric assumption on the outcome model.

tmethod (fm_spec) specifies the estimation method for the treatment model. fm_spec may be lasso| ,
lasso_options |, rforest| , rforest_options |, logit, or probit. The default is tmethod (1asso).

lasso| , lasso_options | specifies that logit lasso be used to fit the treatment model. lasso_options
are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then
selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[, rforest_options | specifies that random forest be used to fit the treatment model. rfor-
est_options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate (); see rforest_options.

logit specifies that a logit model be used to fit the treatment model. Thus, this option imposes a
parametric assumption on the treatment model.

probit specifies that a probit model be used to fit the treatment model. Thus, this option imposes a
parametric assumption on the treatment model.

cmethod (cm_spec) specifies the estimation method for the CATE model. ¢cm_spec may be rforest|,
rforest_options | or regress. The default is cmethod (rforest).

rforest|, rforesi_options| specifies that random forest be used to fit the CATE model. rfor-
est_options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate (); see rforest_options.

regress specifies that linear regression be used to fit the CATE model. Thus, this option assumes a
parametric assumption on the CATE model.

Advanced

reestimate reestimates GATEs or GATESs with a new specification in group (). It is much faster than
estimating GATEs or GATESs from scratch because it uses existing results from the previous cate
estimation for the estimates of the IATE function. The typical usages of this option are the following:

reestimate with the group (new_varname) option reestimates the GATEs with the group variable
new_varname. This syntax requires that the group variable new_varname was specified as a factor
variable in catevarlist in the previous cate estimation. For example, after using cate to estimate
the GATE for each level of group variable group1,

cate (y x1 x2 i.group2) (treat), group(groupl)
we can estimate the GATE for each level of group variable group2:
cate, reestimate group(group2)

Notice above that group?2 is specified as a factor variable in catevarlist.
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reestimate with the group (#) option reestimates the GATESs with # data-driven groups. This syntax
requires that option group (#) has been specified in the previous cate estimation. For example,
after using cate to estimate the GATESs with 4 data-driven groups,

cate (y x1 x2) (treat), group(4)
we can estimate the GATESs with 5 data-driven groups:
cate, reestimate group(5)
Notice that we specified option group (#) in the previous cate specification.

oob uses the out-of-bag prediction-based algorithm instead of cross-fitting. It requires that the random
forest is used to fit the outcome model and the treatment model; that is, both omethod (rforest)
and tmethod(rforest) must be specified with oob. The out-of-bag prediction-based algorithm
is generally faster than cross-fitting under the same setup. However, this algorithm does not allow
computing the GATESs; thus, oob may not be combined with group (#).

treatcontrols (varlist) specifies that varlist be used as controls in the treatment model instead
of the variables specified in controls(). This option is only allowed for the AIPW estimator.
If treatcontrols() is not specified, then the variables in catevarlist and the variables speci-
fied in controls() are used as covariates in both the outcome and the treatment models. If
treatcontrols (varlist) is specified, then the treatment model instead uses varlist as covariates.

pstolerance (#) specifies the tolerance used to check the overlap assumption. The default value is
pstolerance(le-5). cate will exit with an error if an observation has an estimated propensity
score smaller than that specified by pstolerance().

osample (newvar) generates indicator variable newvar identifying observations that violate the overlap
assumption.

rflistwise specifies that listwise deletion be used when the random forest method is used for all mod-
els. By default, when omethod (rforest), tmethod(rforest), and cmethod(rforest) are all
specified, observations with missing covariate values will be used because the random forest method
can use missing covariate values in estimation. See Generalized random forest in Methods and for-
mulas.

When rflistwise is specified, observations with missing covariate values are not used to estimate
the CATEs. If one of omethod (), tmethod (), or cmethod () does not use rforest, then observations
with missing covariate values will not be used for estimating the CATEs.

Reporting

level (#); see [R] Estimation options.

[no]log displays or suppresses a log showing the progress of the estimation. The log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (/,fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
What is a CATE?
Different versions of the CATE
Overview of the cate suite
Workftlows
Workflow 1: Exploiting the IATE function heterogeneity
Workflow 2: Prespecified group hypothesis testing
Worktlow 3: Data-driven group hypothesis testing
Workflow 4: Evaluation of counterfactual policies
Workflow 5: Evaluating policies designed using the IATE estimates
Examples
Example 1: Explore treatment-effect heterogeneity
Example 2: Add high-dimensional controls
Example 3: Estimate the ATEs over prespecified groups
Example 4: Estimate the ATEs over values of a continuous variable
Example 5: Use the AIPW estimator
Example 6: Data-driven group hypothesis testing
Example 7: Flexible models
Example 8: Treatment-assignment policy evaluation

Introduction

Treatment effects estimate the causal effect of a treatment on an outcome. This effect may be constant
or it may vary across different subpopulations. For example, a labor economist may want to know if the
earnings of immigrants and nonimmigrants are affected differently by a job training program and, if
so, by how much. An online shopping company may want to know the effect of a price discount on
purchasing behavior for customers with different demographic characteristics such as age or income. A
medical team may want to measure the effect of smoking on stress levels for individuals in different age
groups.

The ATE is a popular way to summarize the treatment effects by taking the mean of the effects over
the population. The ATE characterizes the whole distribution of treatment effects when the treatment
effect is constant across the population. However, when the treatment effects are heterogeneous and the
units react differently to the same treatment, estimating only the mean of treatment effects may mask the
underlying mechanism of how the treatment affects different units. For example, the estimated ATE may
be close to zero when some groups experience positive effects while other groups experience adverse
effects.

In contrast to the ATE, the CATEs help us better understand the heterogeneous nature of treatment
effects. Like the ATE, the CATEs are averages of treatment effects, but unlike the ATE, the averages are
taken over population subgroups. Imagine that we have a microscope to observe the treatment effects.
The ATE only allows us to look at the effects at the most coarse precision, but the CATEs allow us to
zoom in on particular parts of the population. Furthermore, once we understand the heterogeneity of
treatment effects, we can evaluate different treatment-assignment policies that may shed light on which
policy would result in better overall outcomes for different groups in the population.

In summary, the advantage of studying the CATEs is, at least, two-fold:

1. It improves understanding of the treatment-effect heterogeneity.

2. It builds a foundation to optimize the assignment to treatment.
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What is a CATE?

So what is a CATE precisely? Under the potential outcome framework, we define y,;(1) to be the
potential outcome if unit 7 is treated and define y,(0) to be the potential outcome if unit 4 is not treated.
X, is a vector of characteristics for unit . The CATE is defined as

CATE = 7(x) = E{y;(1) — y;(0)|x; = x}

That is, the CATE is the expectation of the difference between the treated and untreated potential outcomes
conditional on the characteristics, x;, being equal to x.

We can identify 7(x) via either a partial linear or a fully interactive model. Here we build intuition by
focusing on identification of the CATE via the partial linear model. For notational simplicity, we drop the
subscript ¢ indicating the ith observation to refer to a random variable. We refer to the observed outcome
as y and the binary treatment indicator as d.

In the simplest case, when the treatment effects are constant or when we are interested in estimating
the ATE, the partial linear model is

y=d*x7+g(x,w)+ ¢
d= f(x,w)+u

Here we divide the variables into two groups: x and w. We will differentiate the two shortly. The
outcome model is partial linear because the observed outcome is a sum of the treatment effects d * 7,
a nonparametric function g(x,w), and the error term e. The treatment assignment is modeled by the
function f(x, w) and an additive error term u. By definition, we can write the potential outcome models
as

y(l) =T +Q(X,W) te
y(0) = g(x,w) +¢

Thus, 7 characterizes the ATE.
ATE = E{y(1) —y(0)} =7

Now let’s go one step further. Suppose the treatment effects are heterogeneous and depend on x. We
can rewrite the outcome model as

y=d=*7(x)+ g(x,w) +¢€

where x is a vector of conditioning variables for the treatment effects. 7(x) is a function of x that inter-
acts with the treatment d. Notice that 7(x) is a function of x but not of w. w is an optional vector of
additional control variables for the outcome and treatment-assignment models, which can potentially be
high-dimensional. This model is flexible and general because it does not impose parametric assumptions
on 7(x) or g(x, w). The potential outcomes now become

=7(x)+g(x,w) + €
y(0) = g(x,w) + €

Thus, the CATE is 7(x).
E{y(1) —y(0)x} = 7(x)
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If we impose parametric assumptions such as 7(x) = x’ S and g(x, w) = x’7y; +W’~,, we can estimate
this special model by running a regression of i on X, w, and the interaction between d and x. However,
this parametric assumption may be too strong and hard to satisfy with our data. In the implementation of

cate,

we focus on a more general case that does not impose a parametric form on 7(x) or the nuisance

parameters g(x, w) and f(x, w). The parameter of interest, 7(x), can be estimated nonparametrically via
the generalized random forest proposed in Athey, Tibshirani, and Wager (2019). The nuisance parameters
can be estimated using lasso or random forest. However, if we want to impose a parametric assumption
on either 7(x) or the nuisance parameters, cate can also fit such models.

Different versions of the CATE

The granularity of the conditional set x; determines the subpopulation. Thus, the CATE has different
versions or names depending on the definition of the conditional set x;.

IATE:

GATE:

GATES:

Atthe finest level, when x, refers to the characteristics of a specific observation, the CATE measures
the expected treatment effect for individuals with the same characteristics as this observation. This
version of CATE is also called IATE. In literature, people often refer to IATE as CATE, even though
IATE is a special version of CATE. In our terminology, we use IATE when we refer to the finest level
of CATE.

Under the unconfoundedness assumption, it is possible to identify and estimate 7(x) if we are
willing to impose some restrictions on 7(x). In particular, when x is a low-dimensional vector
and 7(x) is smooth enough as defined in Athey, Tibshirani, and Wager (2019), we can nonpara-
metrically estimate the IATE and provide confidence intervals using the generalized random forest
proposed in Athey, Tibshirani, and Wager (2019).

If x; is a prespecified grouping, denoted by GG, the CATE measures the ATE for each group. This
version of CATE is also called GATE.

In particular, the GATE is defined as

7(9) = E{y;(1) —4;,(0)|G,; = g}

where G is a prespecified grouping and g is a specific group. The GATEs are coarser than the
IATEs because they focus on group effects instead of individual effects.

For the GATEs, we must specify the group variable, G;, before analyzing the data to avoid
p-value hacking, as discussed in Head et al. (2015).

Sometimes, we do not have a group variable to specify but still want to understand the underlying
treatment-effect heterogeneity. In such cases, we can discover the groups in a data-driven way by
using the sorted IATEs. This version of CATE is known as GATES.

The groups are generated by the quantiles of the IATE estimates. For example, let’s say we
want to divide the data into four groups. The first group will consist of the observations with
IATE estimates greater than the 75th percentile of the overall IATE estimates, the second group will
include observations whose estimates lie between the 50th and 75th percentiles, the third group
will contain observations with estimates between the 25th and 50th percentile, and the last group
will contain observations with estimates below the 25th percentile.

Once we have the groups as above, we can estimate the GATEs as usual.
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The cate command estimates IATEs, GATEs with prespecified groups, and GATESs, for which groups
are determined in a data-driven way. cate helps us answer questions about treatment heterogeneity, such
as the following:

1. Are the treatment effects heterogeneous?
2. How do the treatment effects vary with some variables?
3. Do the treatment effects vary between prespecified groups?

4. Do the data discover groups where treatment effects are different?

Additionally, we can use the estimates obtained from cate to measure the effect of counterfac-
tual treatment-assignment policies on the outcome by using postestimation commands such as estat
policyeval and estat ate. Suppose a hypothetical treatment-assignment policy assigns some indi-
viduals in the sample to be treated and some others not to be treated. Using estat policyeval and
estat ate postestimation commands, we may answer questions such as the following:

1. If we implement such a policy, how would the average outcome in the population change?

2. Which policy is better among a candidate set of policies?

Overview of the cate suite

Here we outline the Stata commands to estimate, predict, visualize, and make inferences about the
CATEs. In particular, these Stata commands can be grouped into the following categories:

Estimation: cate po estimates the IATE function by using the PO estimator discussed in
Nie and Wager (2021) via the generalized random forest proposed in
Athey, Tibshirani, and Wager (2019). This method is the default and is
also known as causal forest.

cate aipw estimates the IATE function by using the AIPW estimator discussed
in Knaus (2022) and Kennedy (2023) via the honest regression random
forest proposed in Wager and Athey (2018) by default.

cate with option group (varname) estimates the GATEs by taking the means of
the AIPW scores implied by the model (the estimates of the individual-level
treatment effects) over the group variable varname. This method is
discussed in Semenova and Chernozhukov (2021) and Knaus (2022).

cate with option group (#) estimates the GATESs for # groups with levels based
on the rankings of the IATE estimates. This method is discussed in
Chernozhukov et al. (2006). Once the groups
are discovered, the GATESSs are estimated as the GATEs.

Prediction:  predict predicts the IATE function 7(x), its standard errors, and the lower
and upper bounds of the pointwise confidence intervals. The estimates of
standard errors and confidence intervals are computed using the bootstrap of
little bags proposed in Athey, Tibshirani, and Wager (2019).
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Visualization: categraph histogram plots the histogram of estimated IATEs and shows how
the TATEs are distributed. This histogram can serve as a preliminary
visualization of the treatment-effect heterogeneity.

categraph gateplot plots the estimate of the GATE or GATES and its confidence
interval for each group. It visualizes the trend of the GATE or GATES function.

categraph iateplot plots the IATE function with varying values of x.
If x is a vector, we can allow one variable to vary, fix the values of the other
variables, and then use categraph iateplot to plot the function.

Inference: estat heterogeneity tests whether the treatment effects are heterogeneous using
the method proposed by Chernozhukov et al. (2006).

estat gatetest tests whether the estimated GATEs or GATESs are equal
across the groups.

estat classification compares the means of a variable in the group with the largest
treatment effect and the group with the smallest treatment effect. It is used to compare
the properties of the subpopulations with the largest and smallest effects.

estat ate computes the ATE for a subpopulation. This command can be useful
for policy evaluations.

estat projection fits a linear regression of the estimated IATE on a vector of
variables. It provides a linear approximation of the IATE function.

estat series fits a nonparametric series regression of the estimated IATE on a
vector of variables using B-spline, piecewise polynomial spline, or polynomial
basis. It provides a nonparametric approximation of the IATE function, as discussed
in Semenova and Chernozhukov (2021).

estat policyeval evaluates and compares the prespecified treatment-assignment
policy. In particular, it computes the value of a treatment-assignment policy or
compares the difference of two policies’ values if specified.

Workflows

Here we provide possible workflows that may be useful, depending on the question of interest. Work-
flows 1 to 3 help us to answer questions regarding the treatment-effects heterogeneity, and workflows 4
and 5 help us to evaluate treatment-assignment policies. Below, we list the questions of interest for each
workflow. Then, we will discuss the details of the workflows.

1. Understand treatment-effect heterogeneity:
* Workflow 1: Exploiting the IATE function heterogeneity
Given an estimate of the IATE function, are the treatment effects heterogeneous?

* Workflow 2: Prespecified group hypothesis testing

We have some prespecified groups and we want to test whether the treatment effects are
the same across these groups or study how the effects differ across them.
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* Workflow 3: Data-driven group hypothesis testing

We do not know the groups for which the treatment effects may vary, so we ask the data
to discover these groups and study whether certain variables may be correlated with the
treatment-effect heterogeneity.

2. Policy evaluation:

* Workflow 4: Evaluation of counterfactual policies
We want to evaluate some prespecified treatment-assignment policies and compare them.

* Workflow 5: Evaluating policies designed using the IATE estimates

We want to evaluate a policy that is designed based on the IATE estimates. For example,
we want to treat all units with an IATE greater than a fixed cost and evaluate the effect of
such a policy on the outcome.

Workflow 1: Exploiting the IATE function heterogeneity

1. Suppose the outcome variable is y, the CATE covariates are x1-x5, the treatment variable is treat,
and the control variables are w1-w100. Estimate the IATE function. (We demonstrate using the PO
estimator but could also use the AIPW estimator.)

cate po (y x1-x5) (treat), controls(wl-w100)

2. Plot the histogram of IATE estimates.

categraph histogram

3. Test whether the effects are heterogeneous.
estat heterogeneity
4. Regress the estimated IATE function on variables that may impact treatment effects to understand
the mechanism underlying the treatment-effect heterogeneity.
estat projection x1-x5
5. Estimate the ATE for a subpopulation of interest. Suppose we suspect that the variable x1 positively

affects the treatment effects; we can estimate the ATE for the subpopulation where x1 is greater
than 0.8.

estat ate if x1 >0.8

6. Plot the IATE function for x1 while the other variables are fixed at specific values, such as their
means.

estat iateplot x1, at((mean) x2-x5)
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Workflow 2: Prespecified group hypothesis testing

1. Estimate the GATE function over the levels of group variable gvar. (We demonstrate using the
ATPW estimator but could also use the PO estimator.)

cate aipw (y x1-x5) (treat), controls(wl-w100) group(gvar)

2. Visualize the GATE estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATEs are the same across groups.

estat gatetest

Workflow 3: Data-driven group hypothesis testing

1. Estimate the GATES function for five groups created by dividing data into groups based on rank-
ings of the IATE estimates. (We demonstrate using the ATPW estimator but could also use the PO
estimator.)

cate aipw (y x1-x5) (treat), controls(wl-w100) group(5)

2. Visualize the GATES estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATESs are the same across groups.

estat gatetest

4. Compare the mean of x1 in the groups with the smallest and largest treatment effects.

estat classification x1

Workflow 4: Evaluation of counterfactual policies

1. Estimate the IATE function. (We demonstrate using the PO estimator but could also use the ATPW
estimator.)

cate po (y x1-x5) (treat), controls(wi-w100)
2. Estimate the average outcome in the population for a potential policy. Suppose the policyl

variable stores the treatment assignments for each observation under a counterfactual policy; we
estimate the average outcome for policyl.

estat policyeval policyl
3. Compare the average outcomes in the population for multiple potential policies. Suppose the

policy?2 variable stores the treatment assignments for an alternative policy; we compare average
outcomes for policyl and policy2.

estat policyeval policyl policy2
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Workflow 5: Evaluating policies designed using the IATE estimates

1. Split the sample into training and testing data.
splitsample, split (0.6 0.4) generate(group)
2. Estimate the IATE function using the training data, group = 1. (We demonstrate using the PO
estimator but could also use the AIPW estimator.)
cate po (y x1-x5) (treat) if group==1, controls(wl-w100)
3. Predict the IATE function in the testing data, group = 2; the predicted IATE function is used to
construct the policy rule.
predict tauhat if group ==
4. Estimate the IATE function using the testing data; the ATPW scores will be to compute the ATE in
the testing sample.

cate po (y x1-x5) (treat) if group == 2, controls(wl-w100)

5. Estimate the ATE for the entire testing sample.
estat ate if group ==
6. Estimate the ATE for a subset of units in the testing sample based on the IATE predictions. For
instance, estimate the ATE for units with predicted IATEs greater than 50 in the testing sample.

estat ate if group == 2 & tauhat >= 50

Examples

In the following examples, we illustrate how to use cate to study treatment-effect heterogeneity and
to evaluate treatment-assignment policies. In particular, in examples 1 to 7, we demonstrate commands
to evaluate the effects of 401(k) program eligibility on net financial wealth. Suppose that we want to
answer the following questions:

1. Are the effects of 401(k) eligibility on net wealth heterogeneous? In other words, do the treatment
effects vary across individuals or groups?

2. If the treatment effects are heterogeneous, how do they vary across levels of prespecified group
variables, such as income category, home ownership, or education level?

3. Do the data discover groups in which the treatment effects are particularly high or low?
In example 8, we demonstrate commands to evaluate the effects of two types of lung transplants on

patients’ health outcomes. Supposing a doctor has a treatment-assignment recommendation rule, we
want to evaluate the overall outcomes if this treatment-assignment rule is implemented.
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Example 1: Explore treatment-effect heterogeneity

Suppose we want to estimate the effect of 401(k) eligibility (e401k) on net financial assets (asset)
using data reported by Chernozhukov and Hansen (2004). These data are from a sample of households in
the 1990 Survey of Income and Program Participation (SIPP). The data contain information on the head
of the household: income level category (incomecat), age (age), years of education (educ), whether
they receive pension benefits (pension), marital status (married), whether they participate in an IRA
(ira), whether they own a home (ownhome), and whether there are two earners in the same household
(twoearn).

We believe that the treatment effects of e401k on asset could vary based on incomecat, age, educ,
pension,married, ira, ownhome, and twoearn, which we denote as x. asset(1) represents the poten-
tial outcomes (net financial assets) of being eligible for a 401(k), and asset(0) represents the potential
outcomes of not being eligible for a 401(k). We want to estimate the effects of 401(k) eligibility on assets
conditional on the variables x. In other words, we are interested in estimating the effects as a function of
x. Precisely, we want to estimate

E{asset(1) — asset(0)|x}
This version of CATEs is also known as individualized average treatment effects (IATEs) because x refers
to individual characteristics. In the syntax of cate, x is referred to as the catevarlist.

In this example, we use the PO estimator in the partial linear model to estimate the IATE function.
Without assuming any additional control variables, the partial linear model for asset is

asset = e401k * 7(X) + g(Xx) + €

where 7(x) is a function of x that interacts with the treatment e401k, g(x) is a nonparametric nuisance
function, and e is the error term for the outcome. The treatment-assignment model for the treatment
e401k is

e401k = f(x) +u

where f(x) is a nonparametric nuisance function and w is an error term for the treatment.

The potential outcomes are

asset(l) =7(x) + g(x) + €
asset(0) = g(x) + ¢

Thus, the function 7(x) identifies the IATE function.

7(x) = F{asset(l) — asset(0)|x}

Notice that we do not assume any functional form of 7(x), and it can be as simple as a linear model or
any arbitrary function of x. Here we want the data to tell us what this function 7(x) looks like instead of
assuming a specific functional form. We can use cate to estimate the function 7(x) nonparametrically
via the generalized random forest proposed in Athey, Tibshirani, and Wager (2019); this method is also
known as causal forest and is the default method used by cate.

First, we open the assets3 data. To save some typing later, we define a global macro, catecovars,
to represent the IATE conditioning variables Xx.

. use https://www.stata-press.com/data/r19/assets3
(Excerpt from Chernozhukov and Hansen (2004))

. global catecovars age educ i.(incomecat pension married twoearn ira ownhome)
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We are ready to fit the model using cate. We specify po to use the partialing-out estimator. We
specify the outcome variable asset and catevarlist (the x variables) in the first set of parentheses and
the treatment-assignment variable e401k in the second set. We also specify the rseed () option to make
the results reproducible. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671)

Cross-fit fold 1 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...

(output omitted)

Cross-fit fold 10 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...

This iteration log corresponds to the cross-fitting process that is used to fit the outcome model for
assets and the treatment model for e401k. To estimate the IATE function 7(x), the PO estimator needs
to partial out the nuisance functions g(x) and f(x). To do this, cate needs to estimate the expectation
of the outcome and the treatment variable conditional on x. By default, the lasso for the linear model is
used to estimate the outcome assets, and the lasso for the logit model is used to estimate the treatment
e401k. To guard against errors when fitting the nuisance functions (variable selection errors when using
lasso and prediction errors when using random forest), cate uses cross-fitting. By default, ten-fold
cross-fitting is used. See Methods and formulas for details.

We can also use other alternatives, such as a random forest or a parametric model, to estimate the
outcome and the treatment models. Here, we use the default lasso for both models.

The remaining output is

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating ATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 17
Treatment model: Logit lasso Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. interval]
ATE
e401k
(Eligible
vs
Not elig..) 7937.182 1153.017 6.88 0.000 5677.309 10197.05
POmean
e401k
Not eligi.. 14016.38  833.4423 16.82  0.000 12382.87 15649.9

We see that a random forest is used to estimate the IATE function once the cross-fitting is finished. It
then estimates the AIPW scores, not to be confused with the AIPW estimator. The AIPW scores are doubly
robust estimates of individual-level treatment effects. The average of these AIPW scores is the ATE. The
estimated ATE indicates that if everyone in the population is eligible for a 401(k), the net financial assets



cate — Conditional average treatment-effects estimation 40

will, on average, be $7,937 larger than the net financial assets if no one is eligible for a 401(k). The
potential outcome mean indicates that net financial assets are expected to be $14,016 if no one is eligible
for a 401(k).

In addition to the ATE that we see in the output, cate also estimates the IATE function 7(x), and we
can use it to predict the treatment effects for each observation. We can use categraph histogram to
draw a histogram of the predicted 7(x) function and see its distribution.

. categraph histogram
(bin=39, start=-40204.13, width=2975.4332)

IATE predictions
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The graph shows that treatment effects are mostly positive but have a fat right tail. Thus, the ATE may
underestimate the effect of 401(k) eligibility on assets for some groups.

Although the histogram above allows us to inspect the distribution of treatment effects visually, we
should not use it as conclusive evidence to support treatment-effect heterogeneity. For example, when
the number of observations in the sample is small or when the number of the CATE conditioning variables
x is very large, we will likely see a well-spread histogram of IATE predictions due to the estimation noise
even if the actual CATE function is constant.

To statistically test whether the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity

Treatment-effects heterogeneity test
HO: Treatment effects are homogeneous

chi2(1) 4.11
Prob > chi2 = 0.0427

We find evidence against the null hypothesis that the treatment effects are homogeneous.
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To further explore the heterogeneity of treatment effects, we want to know whether a variable posi-
tively or negatively affects the treatment effects. One way to do this is by linearly projecting the AIPW
scores, the individual-level treatment effects estimated by cate, on the variables of interest. We use
estat projection.

. estat projection

Treatment-effects linear projection Number of obs = 9,913
F(11, 9901) = 4.90
Prob > F = 0.0000
R-squared = 0.0045
Adj R-squared = 0.0034
Root MSE = 1.146e+05
Robust
Coefficient std. err. t P>t [95% conf. intervall
age 205.1206  117.9809 1.74 0.082 -26.14605 436.3873
educ -442.4583  488.4721 -0.91 0.365 -1399.963 515.0466
incomecat
1 -2439.222  2013.522 -1.21  0.226 -6386.136 1507.692
2 1874.817  2295.155 0.82 0.414 -2624.154 6373.788
3 5707.689  3298.341 1.73 0.084 -757.7313 12173.11
4 18194.6  5398.391 3.37 0.001 7612.651 28776.54
pension
Receives .. 3817.355  2454.437 1.56  0.120 -993.8419 8628.553
married
Married -2399.333  3403.066 -0.71  0.481 -9070.035 4271.37
twoearn
Yes -1428.041  4347.025 -0.33 0.743 -9949.094 7093.013
ira
Yes -2438.404  3619.217 -0.67 0.500 -9532.807 4656
ownhome
Yes 3162.649  1669.587 1.89 0.058 -110.081 6435.379
_cons 232.72561  8072.023 0.03 0.977 -15590.08 16055.53

Without specifying any variables, estat projection projects the ATPW scores on all the variables
defined in x. In other words, it performs a regression of 7(x) on the conditioning variables in our model.
We can interpret the coefficients as the effects of variables on the linear approximation of treatment
effects. For example, the coefficient for 4.incomecat is 18,195. We can say that being in the highest
income category increases the 401(k) eligibility effects on assets by $18,195 over being in the lowest
income category if the treatment effects are linearly approximated by the variables defined in x.

We can also plot the estimated IATE function by allowing one variable to vary and fixing the other
variables to set values. For example, we can plot the function 7(x) by allowing educ to vary and fixing
the values of the other variables.
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We use categraph iateplot. We specify the variable educ to allow the IATE function to vary with
educ. By default, the continuous variables, such as age, are fixed at their sample means, and the factor
variables are fixed at their base levels.

. categraph iateplot educ

Note: IATE estimated at fixed values of covariates other than educ.

Variable | Statistic Value Type
age mean 41.05891 continuous
incomecat base 0 factor
ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor

IATE function for educ
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categraph iateplot plots the prediction of the IATE function at different education levels while
holding other variables fixed. It also plots the 95% pointwise confidence interval for each prediction.
Below 10 years of education, the effects seem constant. The treatment effects are larger for people with
12 to 14 years of education and then vary for 15 or more years of education. However, with the wide
confidence intervals for the TATEs, especially at the higher education levels, we cannot conclude that the
IATEs vary across education levels when the other variables are fixed at these levels.

Example 2: Add high-dimensional controls

In the previous example, the control variables for the outcome and the treatment-assignment model
coincide with catevarlist or the x variables. In this example, we want to allow more flexible models for
the outcome and the treatment-assignment by adding high-dimensional controls.

The partial linear model with high-dimensional controls is defined as

asset = e401k * 7(x) + g(X, W) + €
e401k = f(x,w) + u

where w is a vector of additional control variables. The nuisance functions g(x,w) and f(x, w) now
depend on both x and w.



cate — Conditional average treatment-effects estimation 43

The potential outcomes are now

asset(l) = 7(x) + g(x,w) + ¢
asset(0) = g(x,w) + ¢

Thus, the function 7(x) identifies the IATE function.

7(x) = E{asset(l) — asset(0)|x}

Here we want to include the interactions between the continuous variables (age and educ) and the fac-
tor variables (incomecat, pension, married, twoearn, ira, and ownhome) as controls in the outcome
and treatment-assignment models. We define a global macro, controls, to represent the interaction
terms.

. global fvars incomecat pension married twoearn ira ownhome

. global controls c.(educ age)#i.($fvars)

We add the controls() option to our cate command to include the additional control variables in
both the outcome and the treatment model. We also specify option nolog to suppress the iteration log.

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)

> nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall]
ATE
e401k
(Eligible
Vs
Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36
POmean
e401k
Not eligi.. 13902.88  838.5924 16.58  0.000 12259.27 15546.49

The header shows that there are now 47 control variables for both the outcome and the treatment
model. After accounting for these controls, the ATE indicates that if everyone in the population were
eligible for a 401(k), the net financial assets would be $8,108 more than if no one in the population were
eligible. This is a larger estimated effect of 401(k) eligibility on financial assets than the ATE of $7,937
estimated in example 1.
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We can again use categraph histogranm to visualize the distribution of the predicted IATE function.

. categraph histogram
(bin=39, start=-41089.941, width=2938.3059)
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The IATE predictions are primarily positive, and the distribution has a fat right tail. This may imply
that the ATE underestimates the treatment effects for some groups in the population. To statistically test
if the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity

Treatment-effects heterogeneity test
HO: Treatment effects are homogeneous

chi2(1) = 4.19
Prob > chi2 = 0.0406

We find evidence against the null hypothesis that the treatment effects are homogeneous, which is the
same conclusion as in example 1.

Finally, we can use categraph iateplot to plot the IATE function by allowing one variable to vary
and fixing the other variables at some values. We plot the IATE function with respect to the level of
education (educ).

. categraph iateplot educ

Note: IATE estimated at fixed values of covariates other than educ.

Variable | Statistic Value Type
age mean 41.05891 continuous
incomecat base 0 factor
ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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The graph shows that the treatment effects are larger for people with 12 to 14 years of education while
holding other variables fixed. Again, the confidence intervals for the IATEs are wide, especially at the
highest education levels.

Example 3: Estimate the ATEs over prespecified groups

In examples 1 and 2, we learned that the treatment effects of 401(k) eligibility on financial assets are
heterogeneous. To further characterize this heterogeneity, we want to know how the ATEs vary across
population groups defined by variables such as income category or home ownership.

In general, we refer to a group variable as G and a specific level of the group variable as g. We want
to estimate the ATE conditional on belonging to group g, that is, G = g. We are interested in estimating
7(g) = E{asset(l) — asset(0)|G = g}

The function 7(g) is referred to as the GATE function. In our case, the first G variable of interest is the
income category (incomecat). We will consider the home ownership indicator (ownhome) later.

We use table to report the minimum, maximum, and median income for the five income categories.

. table incomecat, stat(min income) stat(max income) stat(median income) nototal

Minimum value Maximum value Median

Income category

0 0 17196 12240
1 17214 26523 21735
2 26526 37275 31482
3 37296 53841 44379
4 53844 242124 69612

Levels 0 and 1 are low-income groups, levels 2 and 3 are middle-income groups, and level 4 is the
high-income group.
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The GATEs are summaries of the TATE function over the groups defined by variable G. Because we
already estimated the IATE function in example 2, there is no need to estimate it again. By specifying the
option reestimate, we can reuse the IATE function and only reestimate the effects reported, here the
GATEs for incomecat. With this option, cate will require less computational time than estimating the
GATEs from scratch. We specify group(incomecat) to estimate GATEs for the income categories.

. cate, group(incomecat) reestimate
Estimating GATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
GATE
incomecat
0 4089.228 900.535 4.54 0.000 2324.212 5854.244
1 830.3422 1687.517 0.49 0.623 -2477.13 4137.815
2 5602.296 1300.555 4.31 0.000 3053.256 8151.336
3 9084 .531 2265.143 4.01 0.000 4644.933 13524.13
4 20929.77  4706.377 4.45 0.000 11705.44 30154.1
ATE
e401k
(Eligible
Vs
Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36
POmean
e401k
Not eligi.. 13902.88  838.5924 16.58  0.000 12259.27 15546.49

The results show both the ATE and the GATEs. For example, the GATE estimate for the high-income
group (level 4) is $20,930. For those in the high-income group, being eligible for a 401(k) is expected to
increase net financial assets by $20,930 compared with the net financial assets if not eligible for a 401(k).
In contrast, the GATE estimate for the lowest income group (level 0) is only $4,089. In other words,
people who earn more benefit more from working for a company with a 401(k) plan. The ATE estimate
indicates that the treatment effects for the population are expected to be $8,108. The variation in the
estimated GATEs across income categories indicates that using the ATE alone does not fully characterize
the treatment effects.
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We can use categraph gateplot to visualize the GATE estimates and see if there is any trend.

. categraph gateplot
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The graph illustrates the upward trend between the income group and the treatment effects.

To further test whether the treatment effects are heterogeneous across income groups, we use estat
gatetest.

. estat gatetest

Group treatment-effects heterogeneity test
HO: Group average treatment effects are homogeneous

( 1) [GATE]Obn.incomecat - [GATE]1l.incomecat = 0
( 2) [GATE]Obn.incomecat - [GATE]2.incomecat = 0
( 3) [GATE]Obn.incomecat - [GATE]3.incomecat = 0
( 4) [GATE]Obn.incomecat - [GATE]4.incomecat = 0
chi2(4) = 21.84
Prob > chi2 = 0.0002

We find evidence that the group treatment effects are not homogeneous.
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To compare the treatment-effects difference between groups, we use contrast.
. contrast r.incomecat
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions

Margins: asbalanced

df chi?2 P>chi2
GATE
incomecat
(1 vs 0) 1 2.90 0.0884
(2 vs 0) 1 0.91 0.3388
(3 vs 0) 1 4.20 0.0404
(4 vs 0) 1 12.35 0.0004
Joint 4 21.84 0.0002
Contrast  Std. err. [95% conf. intervall
GATE
incomecat
(1 vs 0) -3258.886 1912.767 -7007.84 490.0682
(2 vs 0) 1513.068 1581.899 -1587.397 4613.534
(3 vs 0) 4995.303  2437.588 217.7184 9772.887
(4 vs 0) 16840.54 4791.758 7448 .869 26232.22

The output shows the difference in each group’s ATE compared with the lowest income group (level 0).
Except for income group 1, we see that the difference in GATEs increases as income level increases,
which corresponds with our conjecture that people who earn more benefit more from being eligible for
a401(k).
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Similarly, we can estimate the GATEs for home ownership. We again specify option reestimate to
reuse the cate estimation results and specify option group (ownhome) to estimate the GATEs for home
ownership categories.

. cate, group(ownhome) reestimate
Estimating GATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
GATE
ownhome
0 3319.503  795.4385 4.17  0.000 1760.472 4878.534
1 10858.26  1742.672 6.23  0.000 7442.69 14273.84
ATE
e401k
(Eligible
vs
Not elig..) 8107.563  1144.817 7.08 0.000 5863.763 10351.36
POmean
e401k
Not eligi.. 13902.88  838.5924 16.58  0.000 12259.27 15546.49

Among people who own a home, being eligible for a 401(k) is expected to increase their net finan-
cial assets by $10,858 compared with the net financial assets if not eligible for a 401(k). This effect is
substantially larger than $8,108, the ATE in the population.

We use estat gatetest to test whether the GATEs are heterogeneous.

. estat gatetest

Group treatment-effects heterogeneity test
HO: Group average treatment effects are homogeneous

( 1) [GATE]Obn.ownhome - [GATE]1.ownhome = 0

chi2(1) = 15.49
Prob > chi2 = 0.0001

We find evidence that the GATEs are not homogeneous.

Finally, we use contrast to further quantify the difference of the effects between the groups.

. contrast r.ownhome
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions

Margins: asbalanced

df chi2 P>chi2

GATE
ownhome 1 15.49 0.0001
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Contrast  Std. err. [95% conf. intervall

GATE
ownhome
(Yes vs No) 7538.76 1915.627 3784.201 11293.32

For homeowners, the GATE of 401(k) eligibility on financial assets is $7,539 more than that for the
nonhomeowners.

Example 4: Estimate the ATEs over values of a continuous variable

In example 3, we estimated the ATEs over levels of categorical variables. Sometimes, however, we
want to estimate the ATEs over values of a continuous variable. For example, we may want to know how
the effects of 401(k) eligibility vary with income (not with income categories).

For a continuous variable Z and a specific value z of variable Z, we are interested in estimating
7(z) = E{asset(l) — asset(0)|Z = z}

Semenova and Chernozhukov (2021) proposed the use of nonparametric series regression to approximate
the function 7(z). Specifically, they suggest running a series regression of the AIPW scores estimated in
cate on the variable Z. To do this after cate, we use estat series. We specify income after estat
series to indicate that we want to estimate the ATEs over values of income. We also specify the graph
option to plot the estimated function. To reduce the impact of outliers (very high incomes) on estimation,
we restrict the sample to incomes less than or equal to $150,000, which is the 99th percentile of incomes
in the sample. We also specify the option knots (5) to choose five knots in the generated B-spline terms.
. estat series income if income <= 150000, graph knots(5)

Computing approximating function

Computing average derivatives

Nonparametric series regression for IATE
Cubic B-spline estimation Number of obs = 9,884

Number of knots = 5
Robust
Effect std. err. z P>|z| [95% conf. intervall
income .1966117 .0521898 3.77 0.000 .0943216 .2989018

Note: Effect estimates are averages of derivatives.

The estimate shows the marginal effect of income on the 401(k) eligibility treatment effects on the
net financial assets. Thus, the average marginal effect of a change in income on the treatment effects
is $0.20, indicating that people who earn more benefit more from working in a company with a 401(k)
plan.
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Because we specified the graph option, we obtain the following graph that illustrates how the treat-
ment effect changes with income.

ATE over income
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Each point in the plot corresponds to the estimated ATE at a given income level. It also plots the 95%
confidence interval. The graph shows an upward trend between income level and the treatment effects,
especially at higher income levels. However, the confidence intervals for the ATEs are also wide at the
higher income levels. Compared with the categraph gateplot we used for the income category in
example 3, the series graph reveals a more nuanced and nonlinear relationship between income and the
treatment effects.

Example 5: Use the AIPW estimator

In addition to the PO estimator in a partial linear model, we can also estimate the IATE function in a
fully interactive model by using the AIPW estimator. For example, let’s estimate the IATE function as in
example 2 but using the AIPW estimator.

The IATE function we want to estimate is
7(x) = E{asset(l) — asset(0)|x}

where asset(1) and asset(0) are the treated and untreated potential outcomes, respectively. x are the
treatment-effects covariates.

The fully interactive model is

asset(l) = g;(x, W) + ¢
asset(0) = go(x, W) + €
e401k = f(x,Wy) +u

where w and w, are vectors of additional control variables for the outcome and treatment models, re-
spectively. By default, w, is the same as w, but it can be different if specified. g, (x,w) and g,(x, w)
are the nonparametric models for the treated and untreated potential outcomes, respectively. €; and e,
are the error terms. f(X, W) is a nonparametric model for the treatment, and w is the error term. The
fully interactive model allows the treatment effect to interact with both x and w; thus, it is more general
than the partial linear model. Note that estimating 7(x) now requires that we also estimate three nuisance
functions: g (x, W), go(x, w), and f(x, w,).
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We specify aipw after cate to invoke the AIPW estimator. The first portion of the output is

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
Cross-fit fold 1 of 10 ...

Estimating lasso for outcome assets if o401k = 0 .
Estimating lasso for outcome assets if o401k = 1 .
Performing lasso for treatment e401k ...

(output omitted)
Cross-fit fold 10 of 10 ...
Estimating lasso for outcome assets if o401k = 0 .
Estimating lasso for outcome assets if o401k = 1 .

Performing lasso for treatment e401k ...

The iteration log shows that two potential outcome models and a treatment model are fit using ten-
fold cross-fitting. By default, the potential outcome models are estimated using a linear lasso and the
treatment model is estimated with a logit lasso.

The remaining portion of the output is

Estimating AIPW scores ...
Estimating random forest for IATE ...
Estimating ATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
ATE
e401k
(Eligible
Vs
Not elig..) 8164.364  1151.125 7.09 0.000 5908.2 10420.53
POmean
e401k
Not eligi.. 13910.87  842.0945 16.52  0.000 12260.39 15561.34

We see that random forest is used to estimate the IATE function once the cross-fitting is finished. Then
the ATPW scores implied by the fully interactive model are computed, and the ATE is an average of the
AIPW scores. The estimated ATE indicates that if everyone in the population is eligible for a 401(k), the
net financial assets will, on average, be $8,164 more than if no one in the population is eligible for a
401(k). The $8,164 ATE estimate is similar to the $8,108 result in example 2.

Both the PO and the AIPW estimators are Neyman orthogonal, implying that the ATE estimation results
are robust in response to the machine learning estimation errors in the outcome and the treatment model.
However, the AIPW estimator is asymptotically more efficient than the PO estimator (see Kennedy [2023]).
In addition, the AIPW estimator enjoys a doubly robust property, meaning that only one of the outcome
model or the treatment-assignment model needs to be correctly specified to consistently estimate the ATE
(see Chernozhukov et al. [2018]).
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Another advantage of the AIPW estimator over the PO estimator is that it allows us to use different
control variables in the outcome and the treatment model. For example, suppose we want to add the
square of age as an additional control in the treatment-assignment model. In cate, we specify the option
treatcontrols($controls c.age#c.age) to use c.age#c.age as the additional control variable in
the treatment model.

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> treatcontrols($controls c.age#c.age) nolog

Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 48
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
ATE
e401k
(Eligible
vs
Not elig..) 8164 .364 1151.125 7.09 0.000 5908.2 10420.53
POmean
e401k
Not eligi.. 13910.87  842.0945 16.52  0.000 12260.39 15561.34

The ATE estimate does not change in this case even though the outcome model has one extra control
variable. The results in this example imply that our results are robust to a different control specification.

We can use the same set of postestimation commands to explore, summarize, and visualize the treat-
ment effects after ATPW estimation as we did after PO estimation. The conclusions for our example would
be similar; thus, we will not repeat those postestimation commands here.

Example 6: Data-driven group hypothesis testing

In example 3, we summarized the heterogeneous treatment effects by estimating the ATEs for the
prespecified groups of income category and home ownership. We emphasize that these group variables
must be prespecified before the data collection and analysis to avoid p-value hacking as discussed in
Head et al. (2015). This scenario is suitable when researchers know a priori across which groups they
would like to explore treatment-effect heterogeneity.

However, we sometimes do not know which variable is linked to the heterogeneity of treatment effects;
we want the data to discover these variables. Chernozhukov et al. (2006) suggest ranking the treatment
effects first and then performing a classification analysis based on the groups induced by the treatment-
effects ranking.

For example, suppose we estimate the TATE of 401(k) eligibility on net financial assets for each obser-
vation, and we divide the data into four groups based on the IATE prediction’s ranking. The first group
is the people in the top 25% of the treatment effects in the data, and the last group is the people in the
bottom 25% of the treatment effects in the data. We want to know whether the mean income differs for
the groups with the largest and the smallest treatment effects.
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In cate, we specify the group (#) option to rank the data based on the estimated IATEs. In the fol-
lowing example, we specify group(4) to divide the data into four groups based on the IATE ranking. We
also specify the option xfolds(5) to use five-fold cross-fitting. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> group(4) xfolds(5)

Cross-fit fold 1 of 5 ...

Performing lasso for outcome assets ...

Performing lasso for treatment e401k ...

Estimating IATE rankings ...

Estimating AIPW scores ...

(output 51nitted)

Cross-fit fold 5 of 5 ...

Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
Estimating IATE rankings ...

Estimating AIPW scores ...

The iteration logs show that the IATE rankings are computed using cross-fitting. This procedure is
necessary because it avoids the overfitting issues by using one sample to estimate the IATE function and
a different sample to predict the IATE function.

The remaining output is as follows:

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating sorted GATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall]
GATES
rank
1 13529.88  3792.728 3.57 0.000 6096.266 20963.49
2 11190.14 1646.548 6.80 0.000 7962.962 14417.31
3 4026.967 1154.876 3.49 0.000 1763.452 6290.481
4 3993.897 1627.408 2.45 0.014 804.236 7183.558
ATE
e401k
(Eligible
Vs
Not elig..) 8183.327 1148.204 7.13  0.000 5932.888 10433.77
POmean
e401k
Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

The remaining output shows the ATEs for the groups sorted by IATE predictions, also known as the
GATESs. The GATES for the group with the largest treatment effects is $13,530. The results show a
substantial difference of GATESs estimates between the most and the least affected groups.
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In some cases, however, the highest-ranking group does not necessarily have a greater GATES estimate
than the lowest-ranking group because the rankings are generated using cross-fitting to avoid overfitting.
The rankings depend on the IATE estimates’ quantiles in each cross-fitting fold but not the whole sample.
Thus, an observation with a higher ranking implies only that this observation has greater IATE estimates
compared with other observations in a particular fold; it does not necessarily mean that it has greater IATE
estimates compared with the full sample. If the treatment effects are genuinely homogeneous, we would
observe GATES estimates that are similar across ranking levels. See Methods and formulas for details.

We can visualize the GATES estimates using categraph gateplot.

. categraph gateplot
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To test whether the treatment effects are homogeneous across the group, we use estat gatetest.
We specify levels 1 and 4 to compare the groups with the largest and smallest effects.

. estat gatetest 1 4

Sorted group treatment-effects heterogeneity test
HO: Sorted group average treatment effects are homogeneous

(1) [GATES]ibn.rank - [GATES]4.rank = O

chi2(1) = 5.34
Prob > chi2 = 0.0209

We find evidence that the GATESs are not homogeneous across the groups with the largest and smallest
effects.
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We can use estat classification to test whether the means of some variables are different be-
tween the groups with the largest and smallest effects. For example, we can test whether the income
level has different means in groups ranked 1 and 4.

. estat classification income

Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. intervall

1 2,480 62522.61 513.3117 25562.71 61516.05 63529.17
2,475 26420.44 367.1063 18263.31 25700.57 27140.31

Combined 4,955 44489.74 406.6722 28626.37 43692.48 45287
diff 36102.17 631.2817 34864.58 37339.76
diff = mean(1) - mean(4) t = 57.1887

HO: diff =0 Degrees of freedom = 4953
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(IT| > [t]) = 0.0000 Pr(T > t) = 0.0000

The income levels are higher in the group with the largest effects than in the group with the smallest
effects.

We can do a similar classification analysis for age and ownhome.

. estat classification ownhome

Classification t test with equal variances

Group Obs Mean Std. err.  Std. dev. [95% conf. intervall

1 2,480 .8584677 .0070009 .3486401 .8447396 .8721959

2,475 .4056566 .0098718 .4911179 . 3862986 .4250145

Combined 4,955 .6322906 .0068507 .4822304 .6188603 .645721

diff .4528112 .0120983 .4290932 .4765291

diff = mean(1) - mean(4) t = 37.4278

HO: diff =0 Degrees of freedom = 4953
Ha: diff < 0 Ha: diff !'= 0 Ha: diff > 0

Pr(T < t) = 1.0000 Pr(IT| > [t]) = 0.0000 Pr(T > t) = 0.0000

. estat classification age

Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. intervall

1 2,480 45.16815 .1808494 9.006225 44.81351 45.52278

2,475 35.26747 .2175367 10.82231 34.8409 35.69405

Combined 4,955 40.22281 .1579318 11.1171 39.91319 40.53242

diff 9.90067 .2828416 9.346176 10.45517

diff = mean(1) - mean(4) t = 35.0043

HO: diff = 0 Degrees of freedom = 4953
Ha: diff < O Ha: diff != 0 Ha: diff > 0O

Pr(T < t) = 1.0000 Pr(ITI > |tl) = 0.0000 Pr(T > t) = 0.0000
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More people in group 1 own homes than in group 4, and people are older in group 1 than people in
group 4.

The analysis suggests that individuals who are older, have a home, and have a higher income see a
more substantial effect of 401(k) eligibility on net financial assets. Without any ex-ante assumptions
about the effect of eligibility, we can learn from the data which subpopulations defined by covariates
would benefit more with greater access to a 401(k).

Finally, we can specify the group (#) option with reestimate if we want to divide the data into a
different number of ranking groups but want to avoid recomputing the IATE function. It is much faster
than estimating GATESs from scratch. Here, we specify the group (2) option to divide the data into two
ranking levels.

. cate, group(2) reestimate

Estimating sorted GATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = a7
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall]
GATES
rank
1 12360.48  2067.996 5.98 0.000 8307.28 16413.68
2 4010.449 997.4399 4.02 0.000 2055.502 5965.395
ATE
e401k
(Eligible
vs
Not elig..) 8183.327 1148.204 7.13 0.000 5932.888 10433.77
POmean
e401k
Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

Example 7: Flexible models

In the CATE estimation, we need to specify the estimation methods in three different models: the out-
come model, the treatment-assignment model, and the CATE model. The outcome and treatment models
are the nuisance parameters, which we are not interested in making inferences about. The CATE model
is the object of interest, and we want to make inferences on IATEs, ATEs, GATEs, and GATESS.

In the previous examples, we used the lasso linear model for the outcome model, the lasso logit model
for the treatment model, and the random forest for the IATE function 7(x), the default in cate. Sometimes,
however, we want to use different techniques to explore data based on different assumptions. For the
outcome and treatment models, we can use a semi-parametric method such as lasso, a nonparametric
method such as random forest, or a purely parametric method such as linear or logistic regression. For
the IATE function, we can use either a nonparametric method, such as random forest, or a parametric
method, such as linear regression. We can try different models to see how sensitive the results are to the
modeling methods and assumptions.
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In the case of our 401(k) eligibility example, we will try the parametric models, which are estimated
using parametric methods, and the nonparametric models, which are estimated using random forest.

Parametric models like linear regression are easier to compute and interpret than nonparametric mod-
els such as a random forest. However, the assumptions of a parametric model are less likely to be satisfied.
Nevertheless, we can use it as a benchmark. For example, suppose we assume a linear model for the out-
come, a logit model for the treatment, and the linear model for the IATE. Under these assumptions, the
IATE function is

T(x) =x'f

Thus, the outcome and treatment models under these parametric assumptions become

asset = e401k x (X'f) + X'y, + €

7
exp(x
Pr(e401k = 1|x) = M

1+ exp(x'7,)
In cate, we specify the omethod(regress) option to use linear regression for the outcome, the
tmethod (logit) option to use a logit model for the treatment, and the cmethod (regress) option to
use linear regression for the IATE function.

. cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(regress) tmethod(logit) cmethod(regress) nolog

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear regression Number of outcome controls = 17
Treatment model: Logit Number of treatment controls = 17
CATE model: Linear regression Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
ATE
e401k
(Eligible
vs
Not elig..) 7904.218  1155.565 6.84 0.000 5639.351 10169.08
POmean
e401k
Not eligi.. 13977.45  831.0932 16.82  0.000 12348.54 15606.37
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We can interpret the results as before. If we plot the IATE function over one variable, such as educ,
we see a straight line, which is expected due to the parametric assumption on the IATE function 7(x).

. categraph iateplot educ

Note: IATE estimated at fixed values of covariates other than educ.

Variable | Statistic Value Type
age mean 41.05891 continuous
incomecat base 0 factor
ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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Interestingly, the graph shows a downward trend between the years of education and the IATEs, and the
estimates of the IATEs are not different from zero (the confidence intervals include zero for all education
levels). This conclusion is very different from that in examples 1 and 2 when we use the random forest
to estimate the IATE function. It may imply that the parametric assumptions on the IATE function are too
strong.

In contrast to the pure parametric model, we can use the random forest in the outcome, the treatment,
and the IATE models. Random forest allows us to model flexibly without imposing restrictive assump-
tions. Another advantage is that we can use the out-of-bag predictions from the random forest to avoid
using cross-fitting, which may be time consuming.

We specify the omethod (rforest) and tmethod (rforest) options to use the random forest model
for both the outcome and the treatment models. The default method for the IATE estimation is already a
random forest, so we do not need to specify the cmethod () option here. In addition, to use the out-of-bag
prediction-based algorithm, we specify the oob option.
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cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(rforest) tmethod(rforest) oob

Performing random forest for outcome assets
Performing random forest for treatment e401k ...
Performing random forest for IATE ...
Estimating AIPW scores

Estimating ATE ...

Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 1
Outcome model: Random forest Number of outcome controls = 17
Treatment model: Random forest Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall]
ATE
e401k
(Eligible
vs
Not elig..) 8225.258 1173.862 7.01 0.000 5924 .53 10525.99
POmean
e401k
Not eligi.. 14016.34  850.1257 16.49 0.000 12350.13 15682.56

The results are a little different from those in examples 1 and 2. This is expected because, in exam-
ples 1 and 2, we used the lasso methods for the outcome and treatment models.

We can test whether the treatment effects are heterogeneous using estat heterogeneity.

estat heterogeneity

Treatment-effects heterogeneity test
HO: Treatment effects are homogeneous

chi2(1) = 4.07
Prob > chi2 = 0.0437
We find evidence that the treatment effects are not homogeneous.

To compare with the parametric model, we can also plot the IATE function with respect to education
(educ).

categraph iateplot educ

Note: IATE estimated at fixed values of covariates other than educ.

Variable | Statistic Value Type
age mean 41.05891 continuous
incomecat base 0 factor
ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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Compared with the parametric IATE function, the graph shows a nonlinear form, and the treatment effects
are more substantial for people with 12 to 15 years of education while holding other variables fixed.

The random forest method puts less restrictive assumptions on the data generating process (DGP) than
the lasso method, and thus, random forest may model the real-world data better. However, the caveats
are that the random forest can not handle high-dimensional controls like lasso, and it takes much longer
to compute when there are many observations in the data. In contrast, lasso can be considered a semi-
parametric model by approximating a function using a set of basis functions. It can approximate the
DGP reasonably well when the underlying function is sparse, meaning only a few terms among high-
dimensional controls have nonzero coefficients.

Example 8: Treatment-assignment policy evaluation

In examples 1 to 7, we use cate to study the treatment-effects heterogeneity from different per-
spectives, such as IATEs, GATEs, and GATESs. Sometimes, researchers are not interested in the treatment-
effects heterogeneity itself but instead want to use the estimated treatment effects to evaluate a treatment-
assignment policy.

We want to evaluate the policy by answering questions such as the following:

1. If we implement such a policy, what is the average outcome of the population?

2. If we have alternative policies, which one is better?

For the first question, we compute the average outcome if the treatment is assigned according to the
policy, which is also known as the policy’s value. Precisely, the value of the treatment-assignment policy,
II(rr), is defined as

I(7) = E{my;(1) + (1 —m) ;(0)}
where 7; € [0,1] is a prespecified treatment-assignment probability for the ith observation. Thus, 7,

is referred to as the policy. y;(1) and y,;(0) are the potential outcomes for being treated or not treated,
respectively.
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For the second question, we compute the value difference between the two policies,

(my) —(mp)
where 74 and 7 are two different treatment-assignment policies.

We illustrate how to use cate to evaluate a hypothetical treatment-assignment policy that assigns
patients to two types of lung transplants. Bilateral lung transplant (BLT) is usually associated with a higher
death rate in the short term after the operation but with a more significant improvement in the quality of
life compared with a single lung transplant (SLT). Suppose a doctor has a simple treatment-assignment
rule, which assigns a patient to BLT if the patient’s walking distance is greater than 500 meters in six
minutes and if the patient does not have diabetes. The doctor wants to evaluate this policy by answering
the following two questions:

1. What would be the average outcome if this policy is implemented?

2. Is this policy better than the treatment assignment observed in the data?

We have a fictional dataset (Lung. dta) inspired by Koch, Vock, and Wolfson (2018). An individual’s
forced expiratory volume in one second (FEV1) measures a patient’s quality of life. The outcome of
interest is the percentage of FEV1 that a patient has relative to a healthy person with similar characteristics,
FEV1% (fevip), measured one year after the operation. The treatment variable (transtype) indicates
whether the treatment is BLT or SLT.
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To open the dataset and describe it, we type

. use https://wuw.stata-press.com/data/r19/lung, clear
(Fictional data on lung transplant)

. describe *, short

Variable Storage Display Value
name type format label Variable label

agep byte %10.0g Patient age (years)

bmip double %10.0g Patient body mass index

diabetesp byte %12.0g lbdiab Patient diabetes status

heightp double %10.0g Patient height (cm)

o2amt double %10.0g Oxygen delivered

karn byte %8.0g lbyes Karnofsky score > 60

lungals double %10.0g Lung allocation score

racep byte %8.0g lbrace Patient race

sexp byte %8.0g lbsex Patient gender

lifesvent byte %8.0g lbyes Life support ventilator needed

assisvent byte %8.0g lbyes Assisted ventilation needed

centervol double %10.0g Center volume

walkdist double %10.0g Walking distance in 6 minutes

o2rest byte %8.0g lbyes Oxygen needed at rest

aged byte %10.0g Donor age (years)

raced byte %8.0g lbrace Donor race

bmid double %10.0g Donor body mass index

smoked byte %8.0g lbyes Donor if has history of smoking

cmv byte %8.0g lbyes Positive cytomegalovirus test

deathcause byte %8.0g lbyes Cause of death - traumatic brain
injury

diabetesd byte %12.0g lbdiab Donor diabetes status

expandd byte %8.0g lbyes Expanded donor needed

heightd double %10.0g Donor height (cm)

sexd byte %8.0g lbsex Donor gender

distd int %10.0g Donor to treatment center
distance

lungpo2 double %10.0g Lung P02

lungalloc byte %8.0g lballo Lung allocation status

hratio double %10.0g Height ratio

ischemict double %10.0g Ischemic time

genderm byte %19.0g lbgm Matching gender status

racem byte %17.0g lbrm Matching race status

transtype byte %8.0g lbtau Lung transplant type

fevip double %10.0g Percentage of predicted value of
FEV1

Thirty-one variables measure characteristics of the patients and donors. To construct catevarlist and
the control variables, we want to use these variables and the interactions among them. The following
commands create global macro catecovars to represent the covariates in the IATE function and global
macro controls to represent the additional control variables in the outcome and treatment models.

. global cvars bmip heightp o2amt lungals centervol walkdist bmid heightd
> distd lungpo2 hratio ischemict

. global fvars diabetesp karn racep sexp lifesvent assisvent o2rest raced
> smoked cmv deathcause diabetesd expandd sexd lungalloc genderm racem

. global catecovars c.($cvars) i.($fvars)

. global controls c.($cvars)#i.($fvars)
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The hypothetical policy variable policy1 assigns a patient to BLT if the patient’s walking distance is
more than 500 meters and if the patient does not have diabetes.

. generate policyl = walkdist > 500 & !diabetesp & !missing(walkdist)
To evaluate policyl, we first need to use cate and estimate the potential outcomes for each individ-
ual.

. cate aipw (fevlp $catecovars) (transtype), rseed(12345671) controls($controls)

> nolog
Conditional average treatment effects Number of observations = 937
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 454
Treatment model: Logit lasso Number of treatment controls = 454
CATE model: Random forest Number of CATE variables = 46
Robust
fevlp | Coefficient std. err. z P>|z| [95% conf. intervall
ATE
transtype
(BLT
vs
SLT) 37.5243 .1646795 227.86  0.000 37.20153 37.84707
POmean
transtype
SLT 46.49502 .2025403 229.56  0.000 46.09805 46.892

The FEV1% if all the patients were to be assigned to BLT is expected to be 38 percentage points higher
than the 46% average expected if all patients were to be assigned to SLT.

The ATE is a special version of policy evaluation. The ATE estimates the difference in average outcomes
between the two policies: everyone is treated versus everyone is untreated. Here is an illustration.
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We create the variable treatall representing a policy that assigns each patient to BLT treatment. In
contrast, variable treatnone represents a policy that assigns each patient to SLT treatment.

. generate treatall =1
. generate treatnone = 0
We can use estat policyeval to compare these treatment policies.

. estat policyeval treatall treatnone

Treatment-assignment policy evaluation Number of obs = 937
Robust
Coefficient std. err. z P>|z| [95% conf. intervall
Value
policy
treatall 84.01932 .3085432 272.31  0.000 83.41459 84.62406
treatnone 46.49502 .2025403 229.56  0.000 46.09805 46.892
Contrast
policy
(treatall
vs
treatnone) 37.5243 .1646795 227.86  0.000 37.20153 37.84707

The value of a policy is the average outcome if the policy is implemented. For example, the value of
treatnone is 46.5, which means that the expected FEV1% is 46.5% if all patients are assigned to SLT.
By definition, the value of treatnone corresponds to the potential outcome mean if the treatment status
is SLT, and in the cate output, the POmean for SLT is indeed 46.5. That is,

II(treatnone) = E{0 * fevip(l) + 1 x fevip(0)} = E{fevip(0)}

Similarly, the value of treatall is the potential outcome if all patients are assigned to BLT. That is,

II(treatall) = E{l x fevip(l) + 0 x fevip(0)} = E{fevip(l)}

The contrast is the difference in the values of the two policies. The contrast between treatall and
treatnone is 37.5, which means that the FEV1% is 37.5% higher if all patients are assigned to BLT over
SLT. By definition, the contrast between treatall and treatnone is the ATE, and the ATE estimate in
the cate output is indeed 37.5. That is,

II(treatall) — II(treatnone) = E{fevip(l) — fevip(0)} = ATE

Now we are ready to evaluate the hypothetical policy policy1, which assigns a patient to BLT if the
patient’s walking distance is greater than 500 meters and the patient does not have diabetes.

. estat policyeval policyl

Treatment-assignment policy evaluation Number of obs = 937
Robust
Coefficient std. err. z P>|z| [95% conf. intervall
Value
policy
policyl 72.66426 .714435 101.71  0.000 71.26399 74.06452
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The average FEV1% is 72.6% if this policy is implemented. We can compare this with the observed

treatment policy (transtype).

. estat policyeval policyl transtype

Treatment-assignment policy evaluation

Number of obs = 937

Robust
Coefficient std. err. z P>zl [95% conf. intervall
Value
policy
policyl 72.66426 .714435 101.71 0.000 71.26399 74.06452
transtype 66.53891 .5149955 129.20 0.000 65.52954 67.54828
Contrast
policy
(policyl
vs
transtype) 6.125348 .9130896 6.71 0.000 4.335725 7.91497

The average FEV1% is 6.1% higher if policy1 is implemented compared with the actual treatment-

assignment policy transtype.

Stored results

cate stores the following in e ():

Scalars

e(N)

e(n—xfolds)
e(k_controls_om)
e(k_controls_tm)
e(k_cate_covars)
e(gateslevel)
e(samprate_om)
e(ntrees_om)
e(cintrees_om)
e(splitminobs_om)

e(splitmeanvars_om)

e(honestrate_om)
e(samprate_tm)
e(ntrees_tm)
e(cintrees_tm)
e(splitminobs_tm)

e(splitmeanvars_tm)
e(honestrate_tm)
e(samprate_cm)
e(ntrees_cm)
e(cintrees_cm)
e(splitminobs_cm)

e(splitmeanvars_cm)

e(honestrate_cm)

number of observations

number of folds for cross-fitting

number of controls in the outcome model

number of controls in the treatment model

number of covariates in the CATE model

number of sub-levels in the data-driven group if group (#) specified

sampling rate for outcome model, if omethod (rforest) specified

number of trees for outcome model, if omethod (rforest) specified

number of trees in each group for outcome model, if omethod (rforest) specified
minimum number of observations to split a node for outcome model,

omethod (rforest) specified
mean number of variables to be split in each node for outcome model,

omethod(rforest) specified
sampling rate for honest tree for outcome model, if omethod (rforest) specified

sampling rate for treatment model, if tmethod (rforest) specified

number of trees for treatment model, if tmethod (rforest) specified

number of trees in each group for treatment model, if tmethod (rforest) specified
minimum number of observations to split a node for treatment model,

tmethod(rforest) specified
mean number of variables to be split in each node for treatment model,

tmethod (rforest) specified

sampling rate for honest tree for treatment model, if tmethod (rforest) specified

sampling rate for CATE model, if cmethod (rforest) specified

number of trees for CATE model, if cmethod (rforest) specified

number of trees in each bag for CATE model, if cmethod(rforest) specified

minimum number of observations to split a node for CATE model,
cmethod (rforest) specified

mean number of variables to be split in each node for CATE model,
cmethod (rforest) specified

sampling rate for honest tree for CATE model, if cmethod (rforest) specified

if

if

if
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Macros
e(cmd) cate
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e(gate_var) GATE variable
e(cate_covars) name of CATE covariates
e(covars_om) covariates for outcome model
e(covars_tm) covariates for treatment model

e(lasso_selection_om) lasso selection method for outcome model
e(lasso_selection_tm) lasso selection method for treatment model

e(estimator) name of estimator

e (omethod) estimation method for outcome model

e(tmethod) estimation method for treatment model

e(cmethod) estimation method for CATE model

e(title) title in estimation output

e(predict) program used to implement predict

e(vce) veetype specified in vce ()

e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) bV

e(marginsnotok) predictions disallowed by margins
Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

The methods and formulas are presented under the following headings:

PO for the partial linear model

PO IATE estimator

PO GATE estimator with prespecified groups

PO GATES estimator with data-driven groups
AIPW for the fully interactive model

AIPW IATE estimator

AIPW GATE estimator with prespecified groups

AIPW GATES estimator with data-driven groups
Generalized random forest

Honest tree

Honest random forest

Confidence intervals

Missing values

We can group the estimation methods by the outcome model. The outcome model can be expressed
as a partial linear or fully interactive model. For the partial linear model, the estimation method is the
PO estimator proposed in Nie and Wager (2021). The fully interactive model’s estimation methods are
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built around the AIPW estimator discussed in Knaus (2022) and Kennedy (2023). We will briefly discuss
the features of these two estimators and compare them. For notational simplicity, we drop the subscript
¢ indicating the ith observation to refer to a random variable.

PO for the partial linear model

The partial linear model is

y=dx71(x)+ g(x,w) + €
d=f(x,w)+u
where y is the outcome variable, d is a binary treatment, X is a vector of covariates for the IATE function,

w are optional controls for both the outcome and the treatment models, and g(x, w) and f(x,w) are
nuisance functions for the outcome and the treatment, respectively. € and u are the error terms.

Let y(1) be the potential outcome when the unit is treated and y(0) be the potential outcome when
the unit is not treated. By definition, the potential outcomes are

=7(x) +g(x,w) +€
y(0) = g(x,w) + €
Thus, the IATE function is 7(x) = E{y(1) — y(0)|x}.

To estimate 7(x), we need to partial-out the nuisance functions g(x, w) and f(x, w). To do this, we
need to construct residuals of the outcome and the treatment that are independent of w and x. First, we
take the expectation of y conditional on x and w. That is,

E(ylx,w) = f(x,w)7(x) + g(x, W)

Note that unconfoundedness implies that E(e|x,w) = E(u|x,w) = 0, and therefore we have
E(d|x,w) = f(x,w). Thus, subtracting E(y|x, w) from y removes the term g(x, w).

y— Elylx,w) = {d — f(x,w)}7(x) + ¢

We can estimate E(y|x,w) and f(x,w) via lasso, random forest, or parametric regression. Then we

use the residuals to estimate 7(x). Let h(x, w) = E(y|x, w), and let h(x, w) and f(x, w) be the estimates
for h(x,w) and f(x, w), respectively. We construct the PO version of y and d as

One way we can estimate 7(x) is by solving the local moment condition

N

S [alend {7 - dir(x)}] =0

=1

where a(x;) defines the local weights that attach more weight to observations that are close to x. We
use the generalized random forest proposed in Athey, Tibshirani, and Wager (2019) to solve this moment
condition. For details on causal forest, see Generalized random forest.
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Another way to estimate 7(x) is by assuming a linear functional form for the CATE, 7(x) = xf3, and
estimating (3 using linear regression.

Next we discuss the PO estimator for IATES, GATEs, and GATESS.

PO IATE estimator

In practice, the partialed-out residuals d and ¢ are constructed using the out-of-sample prediction.
In particular, h(x;,w;) = h\"9(x;,w,) is the out-of-sample prediction of y;, with A(=%) (x, w) estimated
using data that exclude observation i. Similarly, f(x;, w;) = f=9(x;, w;) is the out-of-sample prediction
ofd,.

The residuals are based on the out-of-sample prediction.

77 =y — W (x;, W)

a(ii) =d; — f(7i><xiawi)

3

Thus, in practice, we solve the moment condition

N

> [a(mi)aﬁ’“ {@«—i) e (X)H 0

=1

We can construct the out-of-sample prediction using the cross-fitting technique. We split the data into
K folds, define the main sample as the observations in the kth fold, and define the auxiliary sample as the
observations not in the kth fold. We estimate all the nuisance functions using the auxiliary sample and get
the out-of-sample predictions in the main sample. After circulating through all the folds, we eventually
compute the out-of-sample predictions for the full sample. For details of the cross-fitting version of the
PO estimator for the IATE, see algorithm 1 below.

Algorithm 1: PO for the IATE using cross-fitting
1. Define the input.

(a) Set the number of cross-fitting folds K.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,
square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of probability forest, lasso,
probit, or logit.

2. Do the cross-fitting to construct the residuals.

(a) Randomly split the data into K folds.
(b) For each fold £ = 1 to K, do the following:

i. Define the main sample S* as the observations in the kth fold and the auxiliary sample
S4 as the observations not in the kth fold.

ii. Construct outcome residuals.
A. Using the auxiliary sample S, train the outcome model h* (X, W).
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B. Based on ilA(L w), predict the outcome in the main sample S*. Denote the pre-
diction as ™.

C. Compute outcome residuals in the main sample § = y — gM.

iii. Construct treatment residuals.

A. Using the auxiliary sample S, train the treatment model f A(x,w).

B. Based on f“(x,w), predict the outcome in the main sample S™. Denote the pre-
diction as d™.

C. Compute treatment residuals in the main sample d™ = d — d™.

3. Using the full sample, estimate the function 7(x) via linear regression or via generalized random
forest as in Athey, Tibshirani, and Wager (2019):

a (i) i)
> Jatw@ ™ {7 =T} =0
i=1

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is
computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular
case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to
construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees
in the random forest that do not contain this observation. See Generalized random forest for more details.
This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-
bag prediction-based PO estimator for the IATE, see algorithm 2 below.

Algorithm 2: PO for the IATE using out-of-bag prediction

1. Construct outcome residuals.

(a) Use the full sample, fit a regression forest for the outcome model, and denote it as B(x, w).
(b) Based on iz(x, w), compute the out-of-bag prediction for the full sample, and denote it as
~(oob)
Yo%),

(c) Compute the outcome residuals for the full sample: § = 3 — 7(°°°).

2. Construct treatment residuals.

(a) Use the full sample, fit a probability forest for the treatment model, and denote it as f (x,w).

(b) Based on f (x,w), compute the out-of-bag prediction for the full sample, and denote it as
J(oob).
(c) Compute the treatment residuals for the full sample: d=d—d,
3. Using the full sample, estimate the function 7(x) via linear regression or via generalized random

forest:
N

Z {a(xi)a;(m {@H) - ;1:(7”7(7()}] =0

i=1

cate po implements both algorithms 1 and 2, and the cross-fitting-based PO estimator in algorithm 1
is the default. In algorithm 2, the oob option specifies to use the out-of-bag prediction, and it also requires
that options omethod () and tmethod () be specified with random forest.
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In practice, we need to specify the following points in cate po for the IATE estimation:

1. The outcome variable y and the treatment variable d.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of
cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod () option with the estimation method for the TATE function 7(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod() option with the estimation method for E(y|x, w), which can be lasso, random
forest, or linear regression. The default is lasso.

6. The tmethod () option with the estimation method for the treatment model f(x, w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Here is a general note on choosing between random forest, lasso, and parametric regression: Random
forest is suitable when the number of covariates is low-dimensional relative to the number of observations
and the function is smooth enough. Lasso is suitable when the model can be approximated by a sparse
function, which can be very useful in the presence of high-dimensional controls. Parametric regression
is easy to compute and interpret but imposes strong assumptions that may be too hard to satisfy with
real-world data. In terms of computational speed, lasso is generally faster than random forest.

PO GATE estimator with prespecified groups

The GATE estimator is constructed by regressing the AIPW scores implied by the partial linear model
on the group dummy variables, following Semenova and Chernozhukov (2021). In the partial linear
model, the AIPW score is defined as

d; — f““(xi,wi)
FED(xi,w;) {1 — FEO(x;, wy)

L, =70(x) +

} {yz — (X, Wy, dz)}

where

1. 7-9(x;,) is the out-of-bag prediction of IATE produced by predict after cate po. If CATE is
estimated by linear regression, then 7(~%)(x;) is the linear prediction.

2. d, is the treatment indicator.

3. f<’i> (x;,w;) is the prediction of propensity scores. These out-of-sample predictions are already
produced in the cross-fitting algorithm 1 or the out-of-bag prediction algorithm 2.

4. y, is the outcome.

5. a9 (x;,w;, d;) is the out-of-sample prediction of the outcome mean conditional on both the con-

17

trols and the treatment status. It is defined as
A (%, W, dy) = RO (x, W) + {di — [(x,, WJ} 7(x;)

where 1) (x;,w;) is the out-of-sample prediction of E(y|x, w), which are already computed in
either algorithm 1 or 2 when estimating the IATE function.
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Here we derive i~ (x;, W, d,). By the definition of the partial linear model, h(x, w) = E(y|x, w) =

[2Rat

7(x) f(x,w)+g(x, w). Denote p,(x, w) as the conditional expected value of the potential outcome when
it is not treated. It is defined as
1o (X, W) = g(x, W) = h(x, w) — 7(x) f(x, W)

Denote 1, (X, w) as the conditional expected value of the potential outcome when it is treated. It is defined
as

By (X, W) = ﬂ()(xv W) + T(X) = h(wi) + {1 - f(X, W)}T(X)
Thus, the cross-fitting version of i (x, w, d) is defined as above.

We already computed all the necessary terms when fitting the IATE function, so it is computationally
convenient to compute the AIPW scores. Once we get the AIPW scores, computing the GATE is easy. Just
run a linear regression of the ATPW scores on the group indicators. For details on estimating the GATE in
the partial linear model, see algorithm 3 below.

Algorithm 3: PO for the GATE with a prespecified group

1. Set the group indicator variable G.

2. Run either algorithm 1 or algorithm 2 to get the following terms:
(a) @\i(_i) =10 (x;,w,)
) 4 = F I (xw,)

3. Compute the out-of-bag prediction of the IATE 7(~9)(x;).

4. Compute the AIPW scores for the partial linear model:

I, =70(x,) +

K3

(2Rt

di — f(x;, W) f—

{1— ”xw}

A0 (%, Wi, dy) = RO (x,, w,) + {di - f<7i)(xi7wi)} 7 (x,)

2Rt

— AT (x;, W, d;) }
with

5. Run ordinary least-squares (OLS) regression of the AIPW scores I'; on the group dummy indicators
based on G. The coefficients estimated on these indicators are the GATEs.

PO GATES estimator with data-driven groups

Suppose we do not know which groups we should condition on when computing the GATEs. We can
ask the data to discover the groups based on the sorted estimates of the IATEs. The groups are generated
by the quantiles of IATE estimates. For example, if we want to divide the IATEs into four groups, the
first group will be observations with IATE estimates greater than the 75th percentile of the overall IATE
estimates; the second group will be observations with estimates between the 50th and 75th percentiles;
the third group will be between the 25th and 50th percentiles; and the last group will be below the 25th
percentile.
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We use the cross-fitting technique to generate the group’s ranking to avoid overfitting. Suppose we
split the data into K folds. For each fold, we do the following. Observations in the kth fold are defined
as the main sample, and observations in the other folds are defined as the auxiliary sample. First, we
train an IATE model using the auxiliary sample. Second, we predict the IATE function 7(x) in the main
sample and denote the prediction as 7(x)*). The ranking in the main sample depends on the quantile of
7(x)®). After circulating all the folds, we divide the full sample into the prespecified number of groups.

Because of the nature of cross-fitting, using the data to discover groups is time consuming. In addition,
it requires a large sample because we need to fit a separate random forest model for the IATE in each fold.

Once the group is discovered, we run an OLS regression of the AIPW scores, which is generated in the
cross-fitting procedure, to the group indicator. For details of the GATES estimator with the data-driven
group for the partial linear model, see algorithm 4. For a discussion of using the sorted effects to generate
the group, see Chernozhukov et al. (2006, sec. E) and Golub Capital Social Impact Lab (2023, chap. 4).

Algorithm 4: GATES estimator for data-driven group for partial linear model

1. Define the input.

(a) Set number of cross-fitting folds K.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,
square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,
logit, or probit.

(d) Set the number of groups G to divide.

2. Do the cross-fitting to construct the AIPW scores and group ranking.

(a) Randomly split the data into K folds.
(b) For each fold £ = 1 to K, do the following:
i. Define the main sample S™ as the observations in the kth fold and the auxiliary sample
S4 as the observations not in the kth fold.
ii. Construct the outcome prediction.
A. Using the auxiliary sample S, train the outcome model 2 (x, w).
B. Based on ?lA(X, w), predict the outcome in the main sample S*. Denote the pre-
diction as iLM(Xi, Ww;).
iii. Construct the treatment prediction.
A. Using the auxiliary sample S, train the treatment model f A(x,w).
B. Based on fA (x, w), predict the propensity score in the main sample S™. Denote
the prediction as f(x;, w;).
iv. Construct the IATE ranking.
A. Using the auxiliary sample S*, fit the IATE model 7(x)“ using algorithm 1.
B. Based on 7(x)%, predict 7(x) in the main sample and denote it as 7(x).
C. Generate the ranking in the main sample using the quantiles of 7(x)™.
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v. Construct the AIPW scores in the main sample:

. — AM . .
l—\i\/[ — %A[(XJ + dz .f (xmwz)

i){lffM(Xia } o = A )}

with A X
}LM(X Wis dl) h]w(xi’ wz) + {dz - f]w(xiv wz)} %AI(Xz

3. Regress the AIPW scores on the group dummies based on the IATE quantiles to estimate the GATESS.

AIPW for the fully interactive model

The fully interactive model is

y(1) = g1(x, W) + ¢
y(0) = go(x, W) + €
d= f(X, w2) tu

where g, (x,w) and g, (x, w) are the models for the potential outcomes y(1) and y(0), respectively. €,
and ¢, are the error terms. w, is a vector of control variables for the treatment model. By default, w, is
equal to w. However, it can be different if specified. The other terms, d, x, w, and f(x, w,), are the same
as seen in the partial linear model. The fully interactive model allows the treatment effect to interact with
both x and w; thus, it is more general than the partial linear model.

By definition, the IATE function 7(x) is
7(x) = E{y(1) = y(0)[x} = E{g,(x, W) — go(x, W)|x}

Intuitively, we can regress ¢, (X, W) — go(X, W) on x to estimate 7(x). This method is also known
as regression adjustment (RA). However, RA is vulnerable to machine learning mistakes made when
estimating ¢, (x, w) and g, (x, w). Similarly, the inverse-probability weighting (IPW) estimator is also a
bad choice. In contrast, the classical ATPW estimator, known as a doubly robust estimator, is Neyman
orthogonal (see Chernozhukov et al. [2018] and Knaus [2022]). The AIPW version of the potential
outcomes are

I(d=1){y — g1 (x, W)}
f(wi2)
I(d = 0){y — go(x,w)}
1-— f(X, W2>

Y(1) apw = 91 (X, W) +

Y(0)arpw = go(x, W) +
Thus, 7(x) can also be written as

7(x) = E{y(1) apw — ¥(0) arpw X}

Given the estimates of g, (x,w), go(x,w), and f(x,w,), let y(1 ) be estimates of

arpw 304 Y(0), oy
y(1) xrpw and y(0) pw, respectively. Let I' = y(l)AlPW y(O)AIPW be an estimate of the AIPW scores.
We estimate 7(x) by solving the local moment condition

N

Z [O‘(Xi) {fz - T(X)}] =0

=1
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where a(x;) defines the local weights that attach more weight to observations that are close to x. To
solve this moment condition, we use the honest regression forest proposed in Wager and Athey (2018)
and implement it using the generalized random forest in Athey, Tibshirani, and Wager (2019). For details
on honest regression forest, see Generalized random forest.

AIPW IATE estimator

To guard against machine learning estimation bias in the nuisance function, we need to construct the
AIPW scores using the out-of-sample prediction. We estimate the IATE function 7(x) by solving

N

S ax) {57 —0x)}] =0

i=1

where féfi) are predictions of the AIPW scores for the ith observation via estimation of the nuisance
function using observations excluding the ith observation.

We can construct the out-of-sample prediction using the cross-fitting technique. We split the data
into K folds, define the main sample as the observations in the kth fold, and define the auxiliary sample
as the observations not in the kth fold. We estimate all the nuisance functions by using the auxiliary
sample and get the out-of-sample predictions in the main sample. After circulating through all the folds,
we eventually compute the out-of-sample predictions for the full sample. For details of the cross-fitting
version of the AIPW estimator for the IATE, see algorithm 5 below.

Algorithm 5: AIPW estimator for the IATE using cross-fitting
1. Define the input.

(a) Set the number of cross-fitting folds K.
(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,
square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,
logit, or probit.

2. Do the cross-fitting to construct the AIPW scores.

(a) Randomly split the data into K folds.
(b) For each fold £ = 1 to K, do the following:
i. Define the main sample S as the observations in the kth fold and the auxiliary sample
S4 as the observations not in the kth fold.
ii. Construct g, (x, w).
A. Using the auxiliary sample S and treated observations (d; = 1), train the outcome
model g (x, w).
B. Based on §i*(x, w), predict the treated potential outcome in the main sample S™.

—— M

Denote the prediction as y(1)
iil. Construct gq(x, w).
A. Using the auxiliary sample S and untreated observations (d; = 0), train the out-
come model g3 (x, w).

B. Based on g§'(x, w), predict the untreated potential outcome in the main sample S™.
—M
Denote the prediction as y(0)
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iv. Construct the propensity score.
A. Using the auxiliary sample S, train the outcome model 4 (x, w).

B. Based on fA (x,w), predict the propensity score in the main sample S™. Denote

the prediction as d™.
v. Construct the AIPW score in the main sample S as

—M —M
[ i@ [ 0=dp {u—v0); )
= i), | - ),

K2

3. Fit an honest random forest regression of I on x using the generalized random forest in Athey,
Tibshirani, and Wager (2019) or fit a linear regression of I" on x.

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is
computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular
case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to
construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees
in the random forest that do not contain this observation. See Generalized random forest for more details.
This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-
bag prediction-based PO estimator for the IATE, see algorithm 6 below.

Algorithm 6: AIPW estimator for the IATE using out-of-bag prediction

1. Construct g; (X, w).
(a) Using the full sample and the treated observations (d; = 1), fit a regression forest for the
outcome model. Denote it as g, (X, w).
(b) Based on g, (x, w), predict the treated potential outcome for the full sample using the out-

——(oob)

of-bag prediction. Denote it as y(1)
2. Construct go(x, w).

(a) Using the full sample and the untreated observations (d; = 0), fit a regression forest for the
outcome model. Denote it as g, (x, w).

(b) Based on g, (x, w), predict the treated potential outcome for the full sample using the out-
——(oob)

of-bag prediction. Denote it as y(0)
3. Construct the propensity score.

(a) Using the full sample, fit a probability forest for the treatment model. Denote it as f (x,w).

(b) Based on f (x, w), predict the propensity score for the full sample using the out-of-bag pre-
diction. Denote it as d'*°).

4. Construct the AIPW scores as

/\(oob) A(oob)
e A {n D] [ 0= dp {n 00
y(1), + = |y(0), +

T =

J(°°b> i 1_ d\goob)
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5. Fit arandom forest regression of I" on x using the generalized random forest in Athey, Tibshirani,
and Wager (2019) or fit a linear regression of I on x.

cate aipw implements both algorithms 5 and 6, and the cross-fitting-based AIPW estimator in algo-
rithm 5 is the default. The oob option specifies to use the out-of-bag prediction in algorithm 6, and it
requires that options omethod () and tmethod () be specified with random forest.

In practice, we must specify the following points in cate aipw for the IATE estimation:

1. The outcome variable y and the treatment variable d.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of
cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod () option with the estimation method for the IATE function 7(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod () option with the estimation method for g, (x, w) and g, (x, w) can be lasso, random
forest, or linear regression. The default is lasso.

6. The tmethod () option with the estimation method for the treatment model f(x, w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Both PO and AIPW are consistent estimators of 7(x) under similar regularity conditions, and they are
Neyman orthogonal in the sense that the estimates are robust to the machine learning mistakes made in
the nuisance parameters, such as g(x, w) or f(x,w).

The ATPW estimator is more efficient than the PO estimator. That is, in large samples, the AIPW esti-
mates of the IATE function are more precise than the PO estimates (see Kennedy [2023]). In addition, the
AIPW estimator has double robustness; that is, the estimator is still consistent even if the outcome model
or the treatment model is misspecified (see Chernozhukov et al. [2018]).

However, the PO estimator is more robust than the AIPW estimator when there are some nearly perfect
predictions of the propensity score f(x,w). More precisely, the AIPW estimator needs to compute the
inverse of propensity score f(x, w) or 1 — f(x, w), which lies between 0 and 1. Thus, the AIPW estimator
may be undefined whenever the propensity score f(x, w) estimates are close to 0 or 1. In contrast, the
PO estimator does not have these issues.

AIPW GATE estimator with prespecified groups

The GATE estimator for the fully interactive model is the OLS estimate for the AIPW scores on the group
indicator, following Semenova and Chernozhukov (2021).

In the full interactive model, the AIPW score is defined as

— (=) — (i)
(- di{yi—y(l)i } ) (1—di){yi—y(0>i }
Li=y(1), + = = |y0), + e
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where

1. y; is the observed outcome.

2. d, is the observed treatment indicator.

3. y/(l\)iﬂ) is the out-of-sample prediction of the treated potential outcome.

—(—1)

4. y(0)  is the out-of-sample prediction of the untreated potential outcome.
K3

5. di_” is the out-of-sample prediction of the propensity score.

The scores can be obtained using either the cross-fitting AIPW estimator in algorithm 5 or the out-
of-bag prediction-based AIPW estimator in algorithm 6. After the AIPW scores are obtained, the GATE
estimator is just the OLS estimate of scores on the group indicator. For details of estimating the GATE in
the fully interactive model, see algorithm 7 below.

Algorithm 7: GATE estimator with a prespecified group

1. Select the group variable G.

2. Run either algorithm 5 or algorithm 6 to obtain the AIPW scores FE_“.

— () — (i)
AP p—— %{w—yOL } ) O—dn{w—yWL }
Lo =1u), + — |y

) d"(—i)

i 1—d "
1
3. Run OLS of T" on the group indicators based on G.

AIPW GATES estimator with data-driven groups

In the fully interactive model, the procedure to compute the GATESs with data-driven groups is very
similar to that for the partial linear model. The only difference is using the AIPW scores implied by
the fully interactive model. For details of estimating the GATESs with data-driven groups for the fully
interactive model, see algorithm 8.

Algorithm 8: GATES estimator with data-driven groups in fully interactive model

1. Define the input.

(a) Set the number of cross-fitting folds /.

(b) Select the estimation method for the outcome and treatment models.
2. Perform cross-fitting to construct the AIPW scores.

(a) Randomly split the data into K folds.
(b) For each fold £ = 1 to K, do the following:

i. Define the main sample S as the observations in folds k and the auxiliary sample S4
as the observations not in folds k.
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ii. Construct g, (x, w).
A. Using the auxiliary sample S and treated observations (d; = 1), train the outcome
model g (x, w).
B. Based on §i*(x, w), predict the treated potential outcome in the main sample S™.

—

Denote the prediction as y(1)
iil. Construct gq(x, w).
A. Using the auxiliary sample S and untreated observations (d; = 0), train the out-
come model &' (x, w).
B. Basedon %‘ (x, w), predict the untreated potential outcome in the main sample S™.

—

Denote the prediction as y(0)
iv. Construct the propensity score.
A. Using the auxiliary sample S, train the outcome model fA (x,w).

B. Based on fA (x, w), predict the propensity score in the main sample S™. Denote

the prediction as d™.
v. Construct the AIPW score in the main sample S™ as

—M —M

vi. Construct the IATE ranking.
A. Using the auxiliary sample S, train the TATE model 7(x)“ using algorithm 5.
B. Based on 7(x)4, predict 7(x) in the main sample, and denote it as 7(x)".
C. Generate the ranking in the main sample based on the quantiles of 7(x).

3. Run an OLS regression of the AIPW scores on the generated groups’ indicator dummies.

Generalized random forest

The generalized random forest, proposed in Athey, Tibshirani, and Wager (2019), solves the moment
condition

E{¢gx)(0))]x; = x} =0

where 0(x) is a parameter of interest, 0, is a vector of variables including the outcome variable and some
covariates, and x; is a vector of covariates in the function 6(x).

The form of 1)y, (0;) varies depending on the context. For example, in the regression or probability
random forest, the parameter of interest is (x) = F(y|x), and the moment condition is

E{y; — 0(x)[x; =x} =0
In the causal random forest, the parameter of interest is #(x) = 7(x), and the moment condition is

E [Ji {5, — 0(x)d; } |x; = x] =0

where d and i are partialed-out residuals of d and y discussed in the PO estimator.
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To estimate 6(x), generalized random forest solves the empirical moment condition

N
Z Q; (X)¢0(x) (0;)=0

where «,(x) defines the local weights that attach more weight to observations close to x. Generalized
random forest obtains «;(x) by averaging the neighborhood implied by a forest. See Athey, Tibshirani,
and Wager (2019, sec. 2) for a detailed discussion.

The generalized random forest is an ensemble of honest trees, which we explain next.

Honest tree

A tree is an algorithm that divides the data into different parts, such that each part consists of obser-
vations that are as similar as possible. The following graph illustrates a regular regression tree:

x15 <=-0.58
x19 <=0.36 x20 <= 0.42
A y
_ size =5 _ size =9
x10<=1.78 Y = 1.40 x11 <=-1.22 Y = 5.42
size =9 size = 1 size = 1 _
Y = -4.06 Y =267 Y = -5.94 x12 <=-0.52
size = 2 size = 8
Y=-254 Y =1.69

For example, in the above graph, we first look at variable x15 to determine how to divide the data.
If its value is smaller than or equal to —0.58, that observation goes to the left; otherwise, it goes to the
right. Each time we split the data, it is represented by a node. We recursively continue this procedure
until we hit a “leaf” node, which means we cannot find a variable to split the data.

The leaf nodes in the graph are represented as a blue rectangle. A leaf node defines a part of the tree
partition. For example, the leftmost leaf has 9 observations (size = 9 and Y = —4.06 in the graph). We
can travel to this leaf by finding observations satisfying three conditions: 15 < —0.58, 19 < 0.36, and
210 < 1.78. These three conditions correspond to the three nodes from the top to the bottom, enabling
us to travel from the top to the particular leaf.
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In each leaf node, the mean of the outcome within a leaf is used to label the leaf or attach a value to it.
Thus, constructing a tree involves two main steps: splitting the tree and labeling the tree. More precisely,
tree construction involves the following:

1. Splitting the tree: For each node, find a splitting variable x, and a value v, such that the resulting
divisions are as different as possible. In particular, we find x, and v, by solving
(z4,v4) = argmin<x v YexxD(a,) {cost(z,, <w,,) + cost(z,, > v,,)}

ms>Vm

where cost(+) is a cost function that characterizes the node’s homogeneity and its definition varies
depending on the context. For example, in the regression forest, the cost function is the mean
squared error of the outcome; in the probability forest, the cost function is the Gini index for the
outcome; in the causal forest, the cost function is the squared sum of the influence function implied
by the causal forest moment condition. For details, see Athey, Tibshirani, and Wager (2019, sec. 2).

2. When there are not enough observations in any node, the algorithm stops searching. The
splitminobs () option specifies the minimum number of observations needed to perform a split.

3. Labeling the tree: In each leaf, attach a value or a label to the leaf. The labeling formula varies
depending on the context. In the regression or probability forest, the label is the outcome’s mean
within a leaf. In the causal forest, the label consists of the means of the outcome, the treatment,
and their interactions. For details, see Athey, Tibshirani, and Wager (2019, sec. 2).

An honest tree differs from a regular tree by dividing the sample into two subsamples. One is used to
split the tree, and the other is used to label the leaves. For details, see algorithm 9 below.

Algorithm 9: Honest tree

1. Split the data into two parts: A and B. The honestrate() option specifies the fraction of the
data used to construct A.

2. Use sample A to split the tree.

3. Use sample B to label the tree.

Honest random forest

The honest random forest is an ensemble of honest trees with some requirements on the randomness
of the tree. There are two main requirements: first, each tree must use a random subsample of the data;
second, for each node in the tree, only a random subset of the variables may be searched to find the best
variable to split. For more details on the honest random forest, see algorithm 10 below.

Algorithm 10: Honest random forest

1. Define B as the number of trees, which can be specified in the ntrees () option.

2. For each tree b = 1 to B, do the following:

(a) Draw a random sample S, of the full data. The samprate () option specifies the fraction of
the sample.
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(b) Based on S, construct an honest tree using algorithm 9. In each node of the honest tree, only
arandom subset of variables is searched to find the best variable to split. The mean number of
this variable set follows a Poisson distribution with expectation x. The splitmeanvars ()
option specifies .

3. Use the forest to construct local weights «;(x), and then estimate 0(x) by solving the moment
condition Zj\il @;(X)Ygx) (0;) = 0.

Confidence intervals

The confidence intervals of the estimate 6(x) in generalized random forest are constructed using the
delta method, as discussed in Athey, Tibshirani, and Wager (2019, sec. 4). In particular, the confidence
intervals with significance level « are defined as

lim,, . B [0(x) € {0(x) £ 271 (1 - /2)5(x)}] =
where ®~1(-) is the inverse function of the Gaussian cumulative distribution function and &(x) is an
estimate of the standard errors of 6(x).
The variance of 6(x) is defined as
Var{0(x)} = &'V(x) T Hx)V(x) "¢
where V(x) = %&;"‘i:x}, ¢ is the subvector selector, and H(x) = Var {Zf\il ai%(x)(oi)}. See

Athey, Tibshirani, and Wager (2019, sec. 4) for a detailed discussion on V' (x) and £. We use the bootstrap
of little bags to estimate H (x). See algorithm 11 for details.

Algorithm 11: Bootstrap of little bags
1. Define the number of trees in each bag, [, which can be specified in the cintrees () option.
2. Define the number of trees in the forest, B, which can be specified in the ntrees () option.

3. For each bag, g = 1,...,[B/l], draw a random half-sample H, C {1,...,n} of size [n/2],
where n is the total number of observations.

4. Foreachtree,b = 1,..., B, draw arandom sample I;, C Hy, 1, and build an honest tree using /..
This step implies that the trees in the same bag are drawing samples from the same half-sample
H

o

5. Define ¥, {0(x)} = Z:;l i (X)Pg(x) (0;), Where v, (x) is the tree-level local weight. Similarly,
define W{0(x)} = 27" | ;(X)1hgy)(0;), Where a;(x) is the forest-level local weight. Estimate
H(x) as

1 2 l 1 2
mo-r{(igmes) bt i (i) |

where the expectation is taken over the bags.

See Athey, Tibshirani, and Wager (2019, sec. 4.1) for a detailed discussion on the consistency of the
bootstrap of little bags.
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Missing values

Random forest can handle missing values in covariates. When facing a missing value of a covariate,
there are three possible scenarios for splitting a node. All three scenarios are computed for every variable
in the random subset of variables to search, and the one with the best cost function is used. For more
discussion, see Twala, Jones, and Hand (2008).

1. Scenario 1: All observations that are not missing in a specific covariate are sent to the left node,
and all the other observations are sent to the right node.

Missing values can provide information on the dependent variable, and potentially, a missing value
of a covariate can be used to split a node in the tree.

2. We use the optimal nonmissing value of the specific covariate (the value that minimizes the cost)
to split observations and then proceed as follows:

(a) Scenario 2: The observations with missing values are sent to the right node.

(b) Scenario 3: The observations with missing values are sent to the left node.

In cate, the observations with missing covariate values are kept if the random forest is used in all
the models, that is, when omethod (), tmethod(), and cmethod () all use rforest. Specifying the
rflistwise option will drop the observations with missing covariate values when all the models are
estimated using random forest.

In contrast, if one of omethod (), tmethod (), or cmethod () does not use rforest, the observations
with missing covariates will be dropped before any computation. This is because estimation methods
such as lasso, regress, and probit will predict missing values if one of the covariates is missing,
and the predicted missing values make the dependent variable of the IATE estimation missing. Because
random forest cannot handle missing dependent variable values, these observations will be dropped even-
tually.
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Postestimation commands

The following postestimation commands are of special interest after cate:

Command

Description

estat heterogeneity
estat gatetest
estat ate

estat projection

estat series

estat policyeval
estat tassigneval
estat classification
categraph histogram
categraph gateplot

categraph iateplot

test for treatment-effects heterogeneity
test for group treatment-effects heterogeneity
compute the average treatment effect (ATE) for a subpopulation

fit a linear projection of the individualized average treatment effect (IATE)
estimates on variables
fit a nonparametric series regression of the IATE estimates on variables

evaluate treatment-assignment policy

synonym of estat policyeval

perform classification analysis of the data-driven groups
histogram of the IATE predictions

plot of the group average treatment effect (GATE) or sorted GATE (GATES)
estimates
plot of the IATE function estimates

The following postestimation commands are also available:

Command

Description

contrast

estat summarize
estat vce
estimates
etable

lincom

nlcom

predict
predictnl

pwcompare
test
testnl

contrasts and ANOVA-style joint tests of parameters
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

point estimates, standard errors, testing, and inference for nonlinear com-
binations of parameters

predict the IATE function or its confidence intervals

point estimates, standard errors, testing, and inference for generalized pre-
dictions
pairwise comparisons of parameters

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses
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predict

Description for predict

predict predicts the observation-level IATE function, the standard errors, or the IATE confidence
intervals.

Menu for predict

Statistics > Postestimation

Syntax for predict

Syntax for predicting the IATE or the standard errors

predict [npe] newvar [if | [in] [, iate stdp]

Syntax for predicting the IATE confidence intervals

predict [npe] newvary [type] newvary [if ] [in], ci [level(#) ]

newvary and newvar, specify new variables for the lower and upper bounds of confidence intervals,
respectively.

These statistics are available both in and out of sample; type predict . .. if e (sample) ... if wanted only for the estimation
sample.

Options for predict

iate, the default, predicts the IATE function point estimates for each observation. The prediction can
be from either a random forest or a parametric regression, which depends on the specification of
cmethod () in cate. If the cmethod(rforest) option is specified in cate, the IATE prediction
is computed using the generalized random forest. If the cmethod (regress) option is specified in
cate, the IATE prediction is computed using a parametric linear regression. By default, a random
forest prediction of the IATE function is computed.

stdp predicts the standard errors of the predictions of the IATE function. For the IATE predictions based
on random forest, the standard errors are computed using a bootstrap of little bags, and for the IATE
predictions based on linear regression, they are computed using the parametric delta method.

ci predicts the confidence intervals of the predictions of the IATE function.

level (#), available only with ci, sets the confidence levels of the confidence intervals; the default is
level(95).
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estat

Description for estat

estat heterogeneity tests the null hypothesis that the treatment effects are homogeneous.

estat gatetest tests the null hypothesis that the ATEs are the same among the specified subgroups.
This command is allowed only when the group () option is specified in cate.

estat ate computes the ATE for a subpopulation defined by an if or in qualifier.
estat projection fits a linear projection of the estimated IATE function on specified variables.

estat series performs nonparametric series regression of the estimated IATE function on specified
variables using a B-spline, piecewise polynomial spline, or polynomial basis.

estat policyeval evaluates the prespecified treatment-assignment rule. In particular, it computes
the value of the policy and compares the difference of the two policies’ values if two policies are specified.

estat tassigneval is a synonym of estat policyeval.

estat classification performs a classification analysis of the groups constructed based on the
sorted IATE estimates. It performs a two-sample ¢ test to compare the mean of a variable between the
group with the largest treatment effects and the group with the smallest treatment effects. It is only
allowed when the group () option is specified in cate.

Menu for estat

Statistics > Postestimation

Syntax for estat

Perform test of treatment-effects heterogeneity

estat heterogeneity

Perform test of group treatment-effects heterogeneity

estat gatetest [grnumlist] | , gatetest_option |

grnumlist is a numlist that specifies the group levels to be tested. If none are specified, all levels are
used.

Compute the ATE for a subpopulation

estat ate [if | [in] [, ate_options |

Fit a linear projection of the IATE estimates on variables
estat projection [varlist} [lf} [in] [ , pmjeclian_()pti()ns]

If varlist is not specified, then catevarlist specified in cate will be used.
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Fit a nonparametric series regression of the IATE estimates on variables
estat series indepvarsyye [if | [in] [, series_options |

indepvarsg,., is a list of independent variables for which a basis function will be formed.

Evaluate treatment-assignment policy
estat policyeval policyvar, [policyvar, | [if ] [in] [, policy_options]

policyvar; and policyvar, are variables specifying the probability of assigning each observation to treat-
ment. If two policyvars are specified, estat policyeval computes the values of each policy and
their difference.

Perform classification analysis of the data-driven groups

estat classification varname [if | [in] [, classification_options |

gatetest_option Description

mtest | (miest_options) | test each condition separately

mtest_options Description

noadjust no adjustment is to be made; the default
bonferroni Bonferroni’s method

holm Holm’s method

sidak Sidak’s method

Specifying mtest without an argument is equivalent to mtest (noadjust).

ate_options Description
level (#) set confidence level; default is 1evel (95)
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

projection_options Description

vce (vcetype) veetype can be one of ols or robust

level (#) set confidence level; default is 1evel (95)

noconstant suppress the constant term

post post the results as the estimation results

display__options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling
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series_options

Description

Model

bspline
bspline (#)

spline

spline (#)
polynomial
polynomial (#)
asis (varlist)
nointeract (seriesvarlist)
criterion(crittype)
knots (#)

knotsmat (matname)

distinct (#)

SE
vce (veetype)

Graph

* graph| (seriesgraph_opts) |

Reporting
level(#)
aequations
display_options

use a third-order B-spline basis; the default

use a B-spline basis of order #

use a third-order piecewise polynomial spline basis

use a piecewise polynomial spline basis of order #

use a polynomial basis

use a polynomial basis of order #

include varlist in model as specified; do not use in basis

use seriesvarlist in basis without interactions

criterion to use; crittype may be cv, gcv, aic, bic, or mallows

use a piecewise polynomial spline or B-spline basis function
with # knots

use knots in matrix matname for piecewise polynomial spline or
B-spline estimation

minimum number of distinct values allowed in continuous covariates;

default is distinct (10)

veetype can be one of ols or robust; default is vce (robust)

plot the prediction of conditional ATEs (CATEs)

set confidence level; default is 1evel (95)
display auxiliary regression coefficients

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

*When graph or graph () is specified, only one variable is allowed in indepvars,

seriesgraph_opts

series*

Description

noci

cateopts (scatter_opts)
ciopts (area_opts)
twoway_options

do not plot the confidence intervals

affect rendition of the predicted CATE point estimates
affect rendition of the confidence interval

any options other than by () documented in [G-3] twoway_options

scatter_opts

Description

connect_options
marker _options

change the look of lines or connecting method
change the look of markers (color, size, etc.)

policy_options Description

level (#)
display _options

set confidence level; default is 1evel (95)

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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classification_options Description

unequal data have unequal variances

welch use Welch’s approximation

level(#) set confidence level; default is 1evel (95)

Options for estat

Options for estat are presented under the following headings:

Options for estat gatetest
Options for estat ate

Options for estat projection
Options for estat series
Options for estat policyeval
Options for estat classification

Options for estat gatetest

mtest [ (mtest_options)| specifies that tests be performed for each condition separately. mtest_options
specifies the method for adjusting p-values for multiple tests and can be the following:

noadjust specifies that no adjustment is to be made.
bonferroni specifies that Bonferroni’s method be used.
holm specifies that Holm’s method be used.

sidak specifies that Siddk’s method be used.

Specifying mtest without an argument is equivalent to specifying mtest (noadjust).

Options for estat ate

level (#); see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (,fint), pformat (%fmt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Options for estat projection

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (ols) or that are robust to some kinds of misspecification (robust); see
[R] vce_option. The default is vce (robust).

vce (ols) uses the standard variance estimator for ordinary least-squares regression.
level(#); see [R] Estimation options.
noconstant suppresses the constant term.

post posts the results as the estimation results, so all postestimation commands after regress will be
available; see [R] regress postestimation.
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display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fmt), pformat (% fmt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Options for estat series

Model

bspline specifies that a third-order B-spline be selected as the basis. It is the default basis.
bspline (#) specifies that a B-spline of order # be used as the basis. The order may be 1, 2, or 3.
spline specifies that a third-order piecewise polynomial spline be selected as the basis.

spline (#) specifies that a piecewise polynomial spline of order # be used as the basis. The order may
be 1, 2, or 3.

polynomial specifies that a polynomial be selected as the basis.

polynomial (#) specifies that a polynomial of order # be used as the basis. The order may be an integer
between 1 and 16.

asis(varlist) specifies that variables in varlist be included as independent variables in the model without
any transformation. No B-spline, piecewise polynomial spline, or polynomial basis function will be
formed from these variables. Variables in varlist may not be specified in indepvars,

series*

nointeract (seriesvarlist) specifies that the terms in the basis function formed from variables in se-
riesvarlist not be interacted with the terms of the basis function formed from other variables in inde-
pvars Covariates specified in seriesvarlist must be in indepvars

series* series*

criterion(crittype) specifies that crittype be used to select the optimal number of terms in the ba-
sis function. crittype may be one of the following: cv (cross-validation), gcv (generalized cross-
validation), aic (Akaike’s information criterion), bic (Schwarz’s Bayesian information criterion), or
mallows (Mallows’s C)). The default is criterion(cv).

knots (#) specifies that a piecewise polynomial spline or B-spline basis function with # knots be used.
The minimum number of knots must be an integer greater than or equal to 1. The maximum number
of knots is either 4,096 or two-thirds of the sample size, whichever is smaller.

knotsmat (matname) specifies that the knots for each continuous covariate be the values in each row
of matname. The number of knots should be the same for each covariate, and there must be as many
rows as there are continuous covariates. If rows of matname are not labeled with varnames, then rows

are assumed to be in the order of indepvarsgg;e-

distinct (#) specifies the minimum number of distinct values allowed in continuous variables. By
default, continuous variables that enter the basis through either indepvarsg,., or seriesvarlist are
required to have at least 10 distinct values. Continuous variables with few distinct values provide
little information for determining an appropriate basis function and may produce unreliable estimates.

[sEl

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust) and that assume homoskedasticity (ols); see [R] vce_option. The
default is vce (robust).
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N

graph| (seriesgraph_opts) | plots the prediction of CATES. seriesgraph_opts may be the following:
noci specifies not to plot the confidence intervals.

cateopts (scatter_opts) affects the rendition of the predicted CATE point estimates. scatter_opts
may be the following:

connect_options specify how points on a graph are to be connected; see [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape,
size, color, and outline; see [G-3] marker_options.

ciopts (area_options) affects the rendition of the confidence intervals; see [G-3] area_options.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving__option).

When graph or graph () is specified, only one variable is allowed in indepvars

series*

level (#); see [R] Estimation options.

aequations specifies that the auxiliary regression coefficients be reported. By default, only the average
marginal effects of the covariates on the treatment effects are reported.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (/,fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Options for estat policyeval

level (#); see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Options for estat classification

unequal specifies that the unpaired data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s (1947)
formula rather than from Satterthwaite’s (1946) approximation formula, which is the default when
unequal is specified. Specifying welch implies unequal.

level (#); see [R] Estimation options.
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categraph

Description for categraph

categraph histogram plots the histogram of the IATE predictions.
categraph gateplot plots the GATE or GATES estimates and their confidence intervals.

categraph iateplot plots the IATE function and the pointwise confidence intervals when one vari-
able is varying and the other variables are fixed at specific values.

Menu for categraph

Statistics > Postestimation

Syntax for categraph
Histogram of the IATE predictions

categraph histogram [if | [in] [, histogram_options |

Plot of the GATE or GATES estimates

categraph gateplot [, gateploi_options |

Plot of the IATE function estimates

categraph iateplot xvar [if | [in] [, iateploi_options |

xvar is a variable name specified in catevarlist of cate. It can be a regular variable or a factor variable,
but interaction and product notations are not allowed.

gateplot_options Description

Main
level (#) set confidence level; default is 1evel (95)
noci do not plot the confidence intervals

Scatter options
gateopts (scatter_opts)  affect rendition of the predicted GATE or GATES point estimates

Cl options
ciopts (area_opts) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall

twoway_options any options other than by () documented in [G-3] twoway_options
scatter_opts Description
connect_options change the look of lines or connecting method

marker_options change the look of markers (color, size, etc.)




cate postestimation — Postestimation tools for cate 94

iateplot_options Description
Model
* range (#_min #_max) plot IATE function over xvar equal to #_min to #_max; the default sets
minimum and maximum of xvar in the current dataset
* range (varname) plot TATE function over xvar equal to minimum and maximum of varname
*n(#) evaluate at # points; default is 300 points
level (#) set confidence level; default is 1evel (95)
at (atspec) set values for all catevarlist except xvar
IATE plot

iateopts (scatter_opts)  affect rendition of the predicted IATE point estimates

Cl
noci do not plot the confidence intervals
ciopts(area_opts) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

*range () and n() are not allowed if xvar is a factor variable in catevarlist of cate.

Options for categraph

Options for categraph are presented under the following headings:

Options for categraph histogram
Options for categraph gateplot
Options for categraph iateplot

Options for categraph histogram

histogram_options are options in [R] histogram.

Options for categraph gateplot

Main

level (#); see [R] Estimation options.

noci specifies not to plot the confidence intervals.

Scatter options

gateopts (scatter_opts) affects the rendition of the predicted GATE or GATES point estimates. scat-
ter_opts may be the following:

connect_options specify how points on a graph are to be connected; see [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size,
color, and outline; see [G-3]| marker_options.

Cl options

ciopts (area—options) affects the rendition of the confidence intervals; see [G-3] area_options.
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Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving__option).

Options for categraph iateplot

_ [Hodel

range (#_min #_max) or range (varname) plots the IATE function over xvar between #_min and #_max
or between the minimum or maximum of varname, respectively, while holding other variables in
catevarlist of cate fixed at some values. The default sets #_min and #_max to the minimum and
maximum of xvar in the current dataset. See at () below for details on fixing values for the variables
other than xvar.

n(#) evaluates the IATE function at # points. The points on xvar are evenly spaced between the minimum
and the maximum specified in range (). The other variables in catevarlist are fixed at some values
specified in at (). The default is n(300).

level (#); see [R] Estimation options.

at (atspec) specifies values for all the covariates (except xvar) in catevarlist of cate to be treated as
fixed.

atspec may contain one or more of the following specifications:
(stat) varlist
varname = #

where

1. Variable names (whether in varlist or varname) must be the covariates in catevarlist other than
xvar in the cate estimation.

2. Variable names may be continuous variables or factor variables.
3. varlist may also be one of three standard lists:

(a) —all (all covariates),
(b) _factor (all factor-variable covariates), or

(c) —_continuous (all continuous covariates).
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4. stat may be any of the following:

Variables
stat Description allowed
mean means (default for continuous variables) continuous
base base level (default for factor variables) factors
median medians continuous
pl 1st percentile continuous
p2 2nd percentile continuous
... 3rd—49th percentiles continuous
p50 50th percentile (same as median) continuous
... 51st—97th percentiles continuous
p98 98th percentile continuous
P99 99th percentile continuous
min minimums continuous
max maximums continuous
zero fixed at zero continuous

IATE plot

iateopts (scatter_opts) affects the rendition of the predicted IATE point estimates. scatter_opts may
be the following:

connect_options specify how points on a graph are to be connected; [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size,
color, and outline; see [G-3]| marker_options.

[ci

r

noci specifies not to plot the confidence intervals.

ciopts (area_options) affects the rendition of the confidence intervals; see [G-3] area_options.

Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving_option).

Remarks and examples

For an overview of cate postestimation tools and the examples that demonstrate how to use the cate
command and its postestimation tools, see details in Remarks and examples in [CAUSAL] cate.

The estimates commands after the cate command work the same as they do after other estimation
commands with only one difference: estimates save filename saves three files, not just one. file-
name.ster, filename . stgrf, and filename . stxer are saved. See [R] estimates for details.
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Stored results

estat heterogeneity stores the following in r():

Scalars
r(p) two-sided p-value
r(df) test constraints degrees of freedom
r(chi2) x?
Matrices
r(b) coefficient vector in the best linear prediction of IATE
r(V) variance—covariance matrix of the estimators

estat gatetest stores the following in r ():

Scalars
r(p) two-sided p-value
r(df) test constraints degrees of freedom
r(chi2) x?
r(drop) 1 if constraints were dropped, 0 otherwise

estat ate stores the following inr ():

Scalars
r(N) number of observations
Matrices
r(b) coefficient vector
r(V) variance—covariance matrix of the estimators
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals

estat projection stores the following inr():

Scalars
r(N) number of observations
r(mss) model sum of squares
r(df_m) model degrees of freedom
r(rss) residual sum of squares
r(df_r) residual degrees of freedom
r(r2) R?
r(r2_a) adjusted R?
r(F) Fstatistic
r(rmse) root mean squared error
r(11) log likelihood under additional assumption of independent and identically distributed nor-
mal errors
r(11_-0) log likelihood, constant-only model
r (rank) rank of r (V)
Matrices
r(b) coefficient vector
r (V) variance—covariance matrix of the estimators
r(beta) standardized coefficients
r (V_modelbased) model-based variance
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals
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estat projection with the post option stores the following in e ():

Scalars
e(N)
e(mss)
e(df_m)
e(rss)
e(df_r)
e(r2)
e(r2_a)
e(F)
e(rmse)
e(11)
e(11_0)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(model)
e(title)
e(vce)
e(vcetype)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(asbalanced)
e(asobserved)

Matrices
e(b)
e(V)
e(beta)
e(V_modelbased)

Functions
e(sample)

number of observations

model sum of squares

model degrees of freedom

residual sum of squares

residual degrees of freedom

R2

adjusted R?

Fstatistic

root mean squared error

log likelihood under additional assumption of i.i.d. normal errors
log likelihood, constant-only model
rank of e (V)

regress

command as typed

name of dependent variable

ols

title in estimation output when vce () is not ols
veetype specified in vece ()

title used to label Std. err.

bV

program used to implement estat
program used to implement predict
predictions allowed by margins

factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector

variance—covariance matrix of the estimators
standardized coefficients

model-based variance

marks estimation sample

estat series stores the following inr ():

Scalars
r(N)
r(converged)
r(order)
r (rank)

Matrices
r(b)
r (V)
r(V_modelbased)
r(ilog)
r(table)

number of observations

1 if converged, 0 otherwise
order of basis function
rank of r (V)

coefficient vector

variance—covariance matrix of the estimators

model-based variance

iteration log (up to 20 iterations)

matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals
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estat policyeval stores the following in r():

Scalars
r(N) number of observations
Macros
r(policy_varl) first policy variable name
r(policy_var2) second policy variable name
Matrices
r(b) coefficient vector
r (V) variance—covariance matrix of the estimators
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals

estat classification stores the following inr():

Scalars
r(N_1) sample size n,
r(N_2) sample size n,
r(p-1) lower one-sided p-value
r(p-u) upper one-sided p-value
r(p) two-sided p-value
r(se) estimate of standard error
r(t) t statistic
r(sd-1) standard deviation for population 1
r(sd_2) standard deviation for population 2
r(sd) combined standard deviation
r(mu_1) T, mean for population 1
r(mu_2) T mean for population 2
r(df_t) degrees of freedom
r(level) confidence level

categraph iateplot stores the following in r ():

Macros
r(xvar) variable allowed to vary
r(vtype_list) types of variables other than r (xvar)
r(vname_list) names of variables other than r (xvar)
r(stat_list) statistics of variables other than r (xvar)
Matrices
r(at) matrix of values from the at () options

Methods and formulas

Methods and formulas are presented under the following headings:

IATE predictions

Test of treatment-effects heterogeneity

Test of group-level treatment-effects heterogeneity

ATE for a subsample

Linear or nonparametric series projection of the IATE on variables
Treatment-assignment policy evaluation

Classification analysis

For notational simplicity, we drop the subscript ¢ indicating the ith observation to refer to a random
variable.
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IATE predictions

predict predicts the IATEs, their standard errors, or the IATE confidence intervals. The IATEs can be
estimated by either a generalized random forest or a parametric linear regression, which is specified in
the cmethod () option of cate. For details of the random-forest-based IATE predictions, their standard
errors, and the confidence intervals, see Generalized random forest in [CAUSAL] cate. For details on
linear-regression-based predictions and their standard errors, see the discussions in Methods and formulas
of [R] predict; the confidence intervals are obtained via the delta method.

Test of treatment-effects heterogeneity

estat heterogeneity tests the null hypothesis that the treatment effects are homogeneous. In par-
ticular, it implements the test proposed in Chernozhukov et al. (2006). Let 7, (x) be the true IATE function,
7(x) be an estimate of the IATE function, 7 be E{7(x)}, and 7 be the sample average of 7(x). Then the
best linear prediction of 7, (x) conditional on 7(x) is given by

To(X) = NT+7{7(x) =7} + ¢
where ¢ is the error term.

If y5 = 0, it implies that the 7(x) predictions are pure noise, and it also means that 7, (x) is constant or
homogeneous. Thus, to test the null hypothesis that the treatment effects are homogeneous, we perform
a Wald test of v, = 0.

In the partialing-out estimator, the coefficients of y; and v, can be identified by fitting the following
regression:

y = hix,w) = 1 7{d = f(x, W)} + 7 {7(x) = FHd - f(x, W)} + e

where ¥ is the outcome variable, h(x, w) estimates E(y|x, w), d is the treatment variable, and f (x,w)
estimates E(d|x, w) = P(d = 1|x,w).

In the augmented inverse-probability weighting (AIPW) estimator, the best linear prediction of 7,(x)
conditional on 7(x) can be obtained by regressing the AIPW scores implied by the full interactive model
on7and 7(x) — 7.

Test of group-level treatment-effects heterogeneity

estat gatetest tests the null hypothesis that the ATEs are the same among the specified subgroup
levels. It performs Wald tests on the GATE estimates’ coefficients. For details of Wald tests, see Methods
and formulas in [R] test.

ATE for a subsample

estat ate computes the ATE for a subsample by taking the average of the AIPW scores implied by
the model over the subsample, which is proposed in Chernozhukov et al. (2018) and Knaus (2022). For
details of the AIPW scores in the partial linear and the fully interactive models, see Methods and formulas
in [CAUSAL] cate.
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Linear or nonparametric series projection of the IATE on variables

estat projection computes the linear projection of the IATE function on the specified variables.
Similarly, estat series computes the nonparametric series projection of the IATE function on the basis
functions formed by the specified variables. The linear projection is a special case of the series projection
that uses the basis functions as the variables themselves. Thus, we only need to discuss the methods for
estat series, because estat projection is just a special case.

estat series implements the methods proposed by Semenova and Chernozhukov (2021) by running
a series regression of the ATPW scores implied by the model on the basis functions formed by the specified
variables. For details of the AIPW scores in the partial linear and the fully interactive models, see Methods
and formulas in [CAUSAL] cate. For a discussion of nonparametric series regression, see Methods and
formulas in [R] npregress series.

Treatment-assighment policy evaluation

estat policyeval or estat tassigneval evaluates treatment-assignment policies. Suppose a
treatment-assignment rule assigns individuals to be treated or not treated. We want to evaluate this
treatment-assignment rule by answering questions such as the following:

1. If we implement such a rule, what is the average outcome of the population?

2. Furthermore, if we have two different rules, which is better?

For the first question, we compute the average of the outcome if the treatment is assigned according
to a rule. We estimate

I(7) = E[r(x)y(1) + {1 — w(x)} y(0)]

where y(1) is the potential outcome when it is treated, y(0) is the potential outcome when it is not treated,
and 7(x) € [0, 1] is a prespecified treatment-assignment probability, which is also known as a policy.
II(7) is also called the value of the policy .

For the second question, we compute the difference of the values between two policies, 7, and 7,. In
particular, we compute the contrast of the values between the two treatment-assignment policies.

() — IL(7ry)

For details of the potential outcomes in the partial linear and the fully interactive models, see Methods
and formulas in [CAUSAL] cate.

Classification analysis

estat classification performs a classification analysis of the groups constructed based on the
sorted IATE estimates. It performs a two-sample ¢ test to compare the mean of a variable between the
least and the most affected groups. For details of ¢ tests on the equality of means, see Methods and
formulas in [R] ttest.
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Description Remarks and examples References Also see

Description

Difference in differences (DID) is a method to estimate the average effect of a treatment on those who
receive the treatment. The method can be applied to two types of observational data: repeated cross-
sections, in which different individuals are observed at different time points, and panel data, in which
the same individuals are observed over time. We provide commands that estimate the average treatment
effect on the treated (ATET). The effect may be the same for all (homogeneous) or may differ across time
and across groups (heterogeneous). didregress and xtdidregress are for homogeneous treatment
effects; hdidregress and xthdidregress are for heterogeneous treatment effects.

didregress and xtdidregress estimate the ATET of a binary or continuous treatment on a contin-
uous outcome by fitting a linear model with time fixed effects and group or panel fixed effects. These
commands also estimate difference in difference in differences (DDD), in which we augment the DID
framework to include additional control groups to obtain the ATET.

hdidregress and xthdidregress estimate ATETs that vary over time and over treatment cohorts.
Treatment cohorts are groups that are subject to intervention at different points in time. As in the homo-
geneous case, we can fit a linear model with time fixed effects and group or panel fixed effects, but we
also incorporate interactions of the treatment with time and treatment cohorts. We fit these models us-
ing the two-way fixed-effects (TWFE) estimator. hdidregress and xthdidregress additionally allow
for regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-probability
weighting (ATPW) to estimate the ATETs. See [CAUSAL] teffects intro for a discussion of RA, AIPW, and
IPW estimators.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Intuition for estimating effects
DID with heterogeneous treatment effects
Standard error considerations
Diftferent types of data and specification
Specifying groups and time as binary indicators
Excluding group and time effects
Exploring treatment-effect heterogeneity
Conclusion
This entry presents the intuition and some of the technical details for the estimators in didregress,
xtdidregress, hdidregress, and xthdidregress and the diagnostics available after estimation. See
[CAUSAL] didregress, [CAUSAL] didregress postestimation, [CAUSAL] hdidregress, [CAUSAL] xth-
didregress, and [CAUSAL] hdidregress postestimation for details on the syntax and worked examples.
For a more complete discussion and references on homogeneous DID, see Angrist and Pischke (2009),
Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner (2011), Angrist and Pischke (2015),
Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018). For more details on hetero-
geneous DID, see Roth et al. (2022) and de Chaisemartin and D’Haultfceuille (2023) and the references
therein.
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Introduction

DID is one of the most venerable causal inference methods used by researchers. DID provides estimates
of treatment effects on those that receive a treatment. Examples of such treatment effects are the effect of
a minimum-wage increase on employment for those that see their minimum wage increase or the effect
of water pollution on health outcomes for those that were exposed to water pollution.

Unlike the treatment-effects estimators described in [CAUSAL] teffects, which are applied to data
from one cross-section, DID allows us to consider variation over time. For example, DID allows for panel
data, for which we observe the same unit over time. It also works for repeated cross-sections, for which
individuals sampled within groups differ across time periods but the groups sampled are the same. An
appealing feature of DID is that our model specification does not require us to control for individual

characteristics to identify treatment effects, something that is fundamental to the estimators described in
[CAUSAL] teffects.

When thinking about ATETS in a DID framework, we compare a group before and after the treatment,
perhaps by looking at a graph such as the one below:
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Figure 1.

A treatment occurred in the year 2010. This might be a government policy, a change in medicine
dosage, or any other intervention of interest. We would like to know if the treatment had a causal effect.
It is clear from the graph that the outcome of interest changed after 2010. Is this due to the treatment or
is something else occurring? Perhaps there are unobserved time effects that affect the treatment group
after the treatment. For instance, there could have been a change in weather conditions or an economic
downfall that affected the treatment group but was not captured in the model or the data. If this is the
case, it does not suffice to look at the treatment group before and after the policy. DID addresses this by
finding a control group, that is, a group that was subject to the same unobserved time effects but was
not exposed to the treatment. Comparing the treatment group with the control group before and after
the treatment might give us a better understanding of whether the treatment made a difference. A graph
looking at a treatment and control group might look like this:
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Figure 2.

For both the treatment and the control group, we see that there was a decrease in the mean of the outcome
after 2010. Therefore, the decrease we saw in the treatment group cannot be attributable entirely to the
treatment. (In fact, these are simulated data, and we know the treatment has no effect.)

In a DID setup, if the treated group had not received the treatment, we would expect the treated and

control groups to experience the same trends. A treatment effect implies a systematic deviation from a
common trend that can be observed graphically. This is what we observe:
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Here both groups experienced a decrease after 2010, but the treatment-group decrease was more sub-
stantial. The difference in the decreases across groups may indicate the effect of the treatment.

Researchers may motivate their analysis with such graphs.
enough. We need statistical validation, so we fit a model.

However, graphical evidence is not
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The ATET is consistently estimated by differencing the average outcome for the treatment and control
groups over time to eliminate time-invariant unobserved characteristics and also differencing the average
outcome of these groups to eliminate time-varying unobserved effects common to both groups. These
two differences give the method its name and highlight its intuitive appeal. More appealing is the fact
that you can get the effect of interest, the ATET, from one parameter in a linear regression.

When talking about DID, people cite Snow (1849) and Snow (1855) as the first known applications.
Snow claimed that cholera was not transmitted by contaminated air or contaminated blood, as was thought
by some academics of his time. Snow hypothesized the disease was communicated via water that had
been polluted with sewage. Below, he describes how he came up with an idea for a natural experiment
to validate his hypothesis:

In Thomas Street, Horsleydown, there are two courts close together, consisting of a num-
ber of small houses or cottages, inhabited by poor people. The houses occupy one side of
each court or alley—the south side of Trusscott’s Court, and the north side of the other,
which is called Surrey Buildings, being placed back to back, with an intervening space,
divided into small back areas, in which are situated the privies of both the courts, communi-
cating with the same drain, and there is an open sewer which passes the further end of both
courts. Now, in Surrey’s buildings the cholera has committed fearful devastation, whilst in
the adjoining court there has been but one fatal case, and another case that ended in recovery.
In the former court the slops of dirty water poured down by the inhabitants into a channel
in front of the houses got into the well from which they obtained their water, this being the
only difference ....

In the first edition (1849) of the text, Snow reports the deaths from cholera from September 23, 1848,
to August 25, 1849, for five London districts. The number of deaths is higher in the South and East
districts relative to the other three districts, arising from the source of their water supply. Snow obtains
a clear motivation for his theory. In the second edition (1855), he collects data before and after a pump
with contaminated water in Broadstreet, London, is closed. It is then that he can compare a treated with
a control group before and after a treatment to establish a treatment effect.
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John Snow (1813—-1858) was born in York, England. From age 14, he worked as an apprentice
and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London;
he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians in
1850. He made outstanding contributions to the adoption of anesthesia and is considered one of the
originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform to Queen
Victoria for the births of her last two children, which helped obstetric anesthesia gain wider accep-
tance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On the
Mode of Communication of Cholera was first published in 1849 and then greatly enlarged in 1855
with the results of his very detailed investigation of the role of water supply in the epidemic of 1854
in the Soho district of London. Snow identified the source of the outbreak as the public water pump
on Broad Street (now Broadwick Street), leading the local council to remove the pump handle. It
was later discovered that the well had been dug very close to an old cesspit. He also mapped the
clustering of cholera cases around the pump and related mortality to water sources, clearly showing
higher deathrates in areas supplied by the Southwark and Vauxhall Waterworks Company, which
was taking water from sewage-polluted sections of the River Thames. Snow is widely regarded as
a pioneer in public health, epidemiology, and medical geography.

Intuition for estimating effects

We can build our intuition about the causal inference implied by the DID setup by using the potential-
outcomes framework described in [CAUSAL] Intro, [CAUSAL] teffects intro, and [CAUSAL] teffects intro
advanced. We consider individual-level data for which we sample different individuals at different
points in time, that is, a repeated cross-section. The treatment occurs at the group level. For example,
the treatment may occur at the state, county, or hospital level. All individuals in a given state, county, or
hospital either are treated or are controls at a given point in time. We index individuals by ¢, groups by g,
and time by ¢. We are interested in the effect of a treatment, D, € {0, 1}, on an outcome, Y; ;. Suppose
the potential-outcome mean of an individual in group g at time ¢ that does not receive the treatment is
given by the following:

E{Yig (0) |g,t} =~, +, (M

Above, N, denotes the group effects, and ~y, denotes the time effects. Also suppose the potential-outcome
mean for someone who receives the treatment is given by the following:

E{Yi (1) gt} =~ +~, +0 )

The potential outcomes described above allow us to think of the regression model

Yvigt = A{g—'_'\{t +Dgt6+€igt

A regression estimate of d, the coefficient on the indicator of treatment, consistently estimates the
ATET in this simplified framework, if we meet the overlap assumption, the stable unit treatment value
assumption, and conditional independence (described in [CAUSAL] Intro and [CAUSAL] teffects intro
advanced), plus one additional assumption.


https://www.stata.com/giftshop/bookmarks/series8/snow/

DID intro — Introduction to difference-in-differences estimation 108

To introduce this additional assumption, we think it is sometimes more intuitive to look at a two-
period, two-group example. In this case, g € {0, 1}, where 0 is the control group and 1 is the treatment
group, and ¢ € {0, 1}, where 0 is the period before the treatment and 1 occurs after the treatment. To
guarantee a consistent estimate of the ATET, we need to make the parallel-trends assumption:

E(}/igl (0) |Dgt = 1) _E(Ytig() (O) ‘Dgt = 1) = E(S/igl (0) |Dgt = O) _E(}/ig() (0) |Dgt = O)
The parallel-trends assumption is stated in terms of the potential outcomes of not being treated, Y;,(0),
conditional on treatment, D,,. It implies that if the treated had not received the treatment, the groups
defined by D, = 1 and D, = 0 would have the same trends. For this to be true, we need group effects
to be time invariant and time effects to be group invariant. The simple framework described in (1) and
(2) satisfies the parallel-trends assumption.

The parallel-trends assumption has a graphical representation. Let’s think again about the case with
multiple time periods. The parallel-trends assumption implies the paths of the outcome variable over time
are parallel between the control and treatment groups prior to the date of the treatment. We can visually
check this assumption by plotting the means of the outcome over time for both groups or by visualizing
the results of the linear trends model. For instance, we might use a graph like the one in figure 2, where
we plotted the means over time. After fitting a model using didregress and xtdidregress, you can
get both the mean outcome plot and the trends plot by typing

. estat trendplots

Another way to think about the parallel-trends assumption in the pretreatment period is that treatment
and control groups do not change their behavior in anticipation of the treatment. We can think of the
parallel-trends assumption as implying that there should be no treatment effect in anticipation of the
treatment. To test this assumption, we could fit a Granger-type causality model where we augment
our model with dummies for each pretreatment period for the treated observations. A joint test of the
coefficients on these dummies against 0 can be used as a test of the null hypothesis that no anticipatory
effects have taken place. We can perform this test by typing

. estat granger

DID with heterogeneous treatment effects

When we introduced DID estimation above, we built our intuition for a case in which the treatment
effect is the same for every group and in which the treatment effect does not change over time. We
imposed this when we wrote

E{ifigt (0) |g,t} = F\{g_|_,\{t
E{Yigt(l) |g,t} :~{9+~Yt+5

Also, we discussed the model using two groups and two time periods, a 2 x 2 model. But nothing
precludes us from thinking of a set of treatment effects, say, d,,, that varies over multiple groups, g,
and time periods, ¢. More importantly, when we assume that the effect is homogeneous but the true
model is heterogeneous, our treatment-effect estimates are going to be inconsistent, as was shown by
de Chaisemartin and D’Haultfceuille (2020), Borusyak, Jaravel, and Spiess (2021), Sun and Abraham
(2021), and Goodman-Bacon (2021).

Goodman-Bacon (2021) characterizes the ATET estimate obtained from a DID of the form

Y—igt = ﬁ{g +Hft + Dgt5+ Eigt
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when there are multiple time periods and treatment occurs at different points in time as a deviation from
the 2 x 2 framework. He shows the estimated coefficient, 5, is a weighted average of contrasts between
groups treated at different points in time and groups that are not treated. When contrasts occur over
time between treated groups and groups that are never treated or not yet treated, the comparisons are
informative. When contrasts occur between groups that are both already treated, this component of the
weighted average is not a treatment effect and thus introduces bias. The bias can be significant and
change not only the magnitude but also the sign of the coefficient.

Goodman-Bacon (2021) decomposes 5 and estimates all contrasts and weights that lead to the homo-
geneous estimate. For balanced-panel datasets, after xtdidregress, you can get the decomposition of
the ATET by typing

. estat bdecomp

The result will let you know if the homogeneity assumption is warranted. This would be the case if the
coefficients of the different contrasts are similar to the ATET estimate. If the contrasts differ substantially
from the ATET estimate, our estimates are misleading.

If the decomposition suggests the homogeneous treatment effect is unwarranted or you do not want
to impose homogeneity in treatment, you may use xthdidregress. If you are concerned about hetero-
geneity, you may choose from two workflows. With balanced panels, you might choose to fit the model
for homogeneous treatment effects first and use estat bdecomp to determine whether effects are hetero-
geneous. With any panel or repeated cross-sectional data, you can fit a heterogeneous treatment-effects
model and then use estat aggregation to ascertain whether effects are heterogeneous.

The treatment effects you are estimating using hdidregress and xthdidregress are of the form
ATET (c, t)

where ¢ corresponds to the moment in time when a group receives the treatment, a cohort, and ¢ corre-
sponds to time. For example, a policy might be administered at the state level starting in 1995 for some
states and in 1998 for other states. In this case, we would have treatment effects of the form ATET (1995, ¢)
and ATET(1998, t). We are saying that the effect of the policy is different for states treated in 1995 than
it is for those treated in 1998. Also, we are saying that the effect changes over time. Thus, if our sample
goes from 1993 to 2000, for the 1995 cohort, we have treatment effects of the form ATET(1995, 1993),
ATET(1995,1994), ..., ATET(1995, 2000).

As is the case for homogeneous treatment, we need to satisfy a parallel-trends assumption and no
anticipation of treatment. Both of these assumptions now need to hold for each cohort. As with the
homogeneous treatment effects, we provide graphical diagnostics and tests. For a test of parallel trends,
we have the command

. estat ptrends
For graphical inspection, you may type
. estat atetplot

which results in a graph for each cohort before and after treatment that lets you see whether there is no
treatment effect, before treatment, for each cohort.

For a discussion of these assumptions and the requirements needed for consistency of the heteroge-
neous treatment implemented in hdidregress and xthdidregress, see Wooldridge (2021), Callaway
and Sant’Anna (2021), and Roth et al. (2022).
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Standard error considerations

While a standard linear regression model can be used to estimate the ATET in the homogeneous case,
when assuming homogeneous treatment, the best estimate of the standard error requires some consider-
ation. Many standard-error estimates have been proposed, and each one performs differently depending
on the type of DID model being fit and the structure of the data. Below, we provide a discussion of
some of the issues centered on the available standard-error estimates for hdidregress, didregress,
xthdidregress, and xtdidregress. For a more complete discussion of inference for the homoge-
neous treatment-effect estimators, see Cameron and Miller (2015) and MacKinnon (2019) and the ref-
erences therein. For a more complete discussion of the heterogeneous case, see Wooldridge (2021),
Callaway and Sant’Anna (2021), and Roth et al. (2022). We begin our discussion with didregress and
xtdidregress.

Bertrand, Duflo, and Mullainathan (2004) show that the standard errors for DID estimates are incon-
sistent if they do not account for the serial correlation of the outcome of interest. Because the outcomes
studied usually vary at the group and time levels, it makes sense to correct for serial correlation. The
authors show that using cluster—robust standard errors at the group level where treatment occurs provides
correct coverage in the presence of serial correlation when the number of groups is not too small. Bester,
Conley, and Hansen (2011) further show that using cluster—robust standard errors and using critical val-
ues of a ¢ distribution with G — 1 degrees of freedom, where G is the number of groups, is asymptotically
valid for a fixed number of groups and a growing sample size. In other words, you do not need the num-
ber of groups to be arbitrarily large, that is, to grow asymptotically. Cluster—robust standard errors with
G — 1 degrees of freedom are the default standard errors of didregress and xtdidregress.

The results of Bertrand, Duflo, and Mullainathan (2004) and Bester, Conley, and Hansen (2011)
demonstrate that we could still obtain reliable standard errors even when the number of groups was
not large. But what about data with a very small number of groups? Several simulation and theoret-
ical results suggest that cluster—robust standard errors may still have poor coverage when the number
of groups is very small or when the number of treated groups is small relative to the number of con-
trol groups. These scenarios with small group sizes are common in DID studies, and another method of
standard error estimation should be considered in these situations.

When the number of groups is small, we provide three alternatives. The first alternative is to use
the wild cluster bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach, and
Miller (2008) and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides better
inference than using cluster—robust standard errors with ¢(G — 1) critical values. The second alternative
comes from Imbens and Kolesar (2016), who show that with a small number of groups, you may use
bias-corrected standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaffrey
(2002). For the third alternative, you may use aggregation-type methods like those proposed by Donald
and Lang (2007); they show that their method works well when the number of groups is small but the
number of individuals in each group is large.

When the disparity between treatment and control groups is large, for example, because there is only
one treated group or because the group sizes vary greatly, cluster—robust standard errors and the other
methods mentioned above underperform. Yet the bias-corrected and cluster—bootstrap methods provide
an improvement over the cluster—robust standard errors.

What we said above for didregress and xtdidregress applies to hdidregress and
xthdidregress when the underlying estimator is a linear regression. Considerations are different when
we talk about the RA, AIPW, and IPW estimators implemented by the heterogeneous DID commands.
These last three estimators can be understood as estimates from a multiple-equation model, in which
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each ATET(c, t) could have been estimated separately. The standard errors of the estimates are, by de-
fault, equivalent to what you would obtain using a method of moments estimator and clustering at the
group level where the treatment is administered; see [R] gmm.

Because heterogeneous DID has multiple equations and parameters, you may want to consider infer-
ence of all the ATET(c, t) estimates simultaneously: uniform inference. For such a scenario, you may use
the bootstrap procedure suggested by Callaway and Sant’Anna (2021) by typing

. estat sci

after hdidregress and xthdidregress to obtain simultaneous confidence intervals.

Different types of data and specification

We allow for DID estimation of ATETs with two types of data: repeated cross-sections and panel data.
The type of estimator to use depends on the assumptions you would like to make about the model and
what type of data you have. Below, we walk you through the different types of models you may want to
fit and how to fit them with didregress, hdidregress, xtdidregress, and xthdidregress.

Suppose you have a repeated cross-section of individuals 7 over a period of time ¢. The treatment is
implemented at the state level, s, and it is denoted by D_,, where D, = 1 for all observations that are
subject to the treatment in state s at time ¢. The indexing of the treatment makes clear that all individuals
in the state at a given time are either treated or untreated. The model to be fit is given by

Yist =N, N, +Z2;gB+ D0+ €, (3)
In the expression above, y,, is the outcome, y in our data; z,, are individual-level characteristics, given
by z1 and z2; and D, is given by the variable d. To obtain the ATET, we type
. didregress (y zl z2) (d), group(state) time(year)

Within the first set of parentheses, we list the outcome and covariates z, , from (3). In the second
set of parentheses, we specify the treatment variable. Group and time effects are included in the model
through the group () and time () options, respectively. Also, by default, cluster—robust standard errors
are computed at the state level. The command above is equivalent to typing

. regress y zl z2 i.year i.state d, vce(cluster state)

The model we fit above assumes the treatment effect is homogeneous. Yet we may want to allow the
treatment effect to vary over treatment-time cohort and over time. If this is the case, we may type

. hdidregress twfe (y) (d), group(state) time(year)

or, instead of twfe, we could specify ra, ipw, or aipw. All of these estimators will provide multiple
cohort-time treatment effects instead of one ATET parameter. Notice that we excluded z1 and z2 in the
specification above. Depending on the estimator we select, we could include them in either of the sets
of parentheses. If we include them only in the first parentheses, we are modeling the outcome. If we
include them in the second parentheses, we are modeling the treatment. If we include regressors in both
parentheses, we are modeling the treatment and the outcome. This is equivalent to what we specify when
we use the estimators discussed in [CAUSAL] teffects ra, [CAUSAL] teffects ipw, and [CAUSAL] teffects
aipw.

didregress also allows us to specify a DDD model for situations in which we would like to augment
the DID framework to include another control group. For instance, starting from (3), let’s assume the
treatment occurs at the state level but also varies for people older than 65 versus people who are younger,
defined by a binary variable g. The DDD model is now given by

Yisgt = Vo T, 3, F N TN, Y, ZisgB+ Digid + €45
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To fit this model, we would type
. didregress (y zl z2) (d), group(state g) time(year)
Although the model has a large set of interactions and looks much more complex than the DID model,

the only difference in what we type is the addition of g to the set of group variables. The cluster—robust
standard errors are computed at the highest level of clustering, in this case, state.

In some cases, data do not include a time component but rather multiple grouping variables across
which differences may be taken. You could fit DDD models for three groups or DID for two groups. For
DDD with state, g1, and g2, you could type

. didregress (y zl z2) (d), group(state gl g2)

Or you could fit a DID by typing

. didregress (y zl z2) (d), group(gl g2)

With these last two specifications, diagnostics that rely on time variables are not available.

With panel data, the basic model is given by
Yist = PY,L + A{t + Zistﬁ + Dstd + €ist (4)

Again, i denotes the individual (panel), ¢ is the time period, and s is a group-level index. Individuals are
assumed to be nested within the group, and treatment occurs at the group and time levels.

The specification is analogous to the one in (3) , except that instead of ~_ we have ~,. Suppose that
our data now include a panel identifier variable, id, that corresponds to i in (4). To fit the model above,
we would type

. Xtset id
. xtdidregress (y z1l z2) (d), group(state) time(year)

In this model, the group variable is different from the xtset identifying variable. The group variable
defines the level of clustering, whereas the xtset variable defines the panel identifier. In other words,
we are fitting a fixed-effects model with individual fixed effects, not one with state fixed effects. Of
course, the group and xtset variables could be the same, but they do not need to be.

If we want to assume heterogeneous treatment, we must xtset our data with respect to the panel
variable and with respect to time. The heterogeneous estimates rely on first differences of the outcome
variable. For the RA estimator, you would type

. Xtset id time
. xthdidregress ra (y z1 z2) (d), group(state)

Again, the panel variable and the group variable need not be the same, but the group and panel variable
need to be related.

Specifying groups and time as binary indicators

The cross-sectional and panel-data models discussed above for homogeneous treatment are referred
to as generalized DID models by Wing, Simon, and Bello-Gomez (2018). They are a generalization of
the two-period, two-group specification that is usually discussed in the literature. This is also the way
Angrist and Pischke (2009) write the model.
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It is not uncommon, however, to write the DID model in terms of binary indicators. Instead of having
group effects and time effects in the model for all groups and times in the data, you could instead include
only a posttreatment effect and a treatment-group effect. To do this, you would create and include an
indicator in your model that takes the value of 1 if the observation belongs to a treated group and 0
otherwise as well as an indicator that is 1 if the period considered occurs after the treatment. You can
specify this model by using the nogteffects option and including your own indicators.

Say, for example, you create a time-constant indicator, gtreated, that is 1 if a group is treated and
0 otherwise, as well as an indicator, post, that is 1 after the policy was implemented and 0 before. You
would type

. didregress (y zl z2 i.post i.gtreated) (d), group(state) time(year) nogteffects

The syntax, in which we include indicators and use nogteffects, is equivalent for xtdidregress.

The model you specify in this case is given by
Yisr = 1{s = treated} + 1 {t = post} +z,,,3+ D0 + €,

where 1 {s = treated} is an indicator function that is 1 if group s receives the treatment and 0 otherwise.
Similarly, 1 {¢ = post} indicates that we are in the period for which the treatment is active. In the ex-
pression above, we still specify the group () and time () options to obtain the correct standard errors,
to validate the assumptions of the DID specification, and to obtain group- and time-level statistics.

Excluding group and time effects

didregress and xthdidregress allow you to forgo the group and time effects that are generated
by default. In this case, you would have to add your own group and time effects or omit them entirely
by using the nogteffects option, which excludes group and time effects from your specification. For
DDD models, you may also use the nointeract option, which will exclude group and time interactions
from your model. Combining both options excludes group and time effects altogether. You may type

. didregress (y z) (d), group(s g) time(t) nogteffects nointeract

You would then fit
yisgt = ﬁO + Zigstﬂ + Dsgtls + €ist

You could still include group and time interactions by adding them in the first set of parentheses.
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Exploring treatment-effect heterogeneity

The heterogeneous treatment-effect estimators assume that the treatment effect changes over cohorts
and over time. Yet we may want to see how the treatment effects vary only in one of those dimen-
sions. For instance, we may want to look at the average of the treatment effects for the 1995 cohort
ATET(1995, ¢) within all time periods. We could also average within cohorts at a given point in time to
get a treatment effect for a particular year. Or even more, we might average over cohort and over time
to get back one single ATET. After estimation, we can do this using the estat aggregation command,;
see [CAUSAL] hdidregress postestimation.

For the twfe estimator, we can additionally decide at the estimation stage what level of heterogeneity
we want to impose to our model. We can decide whether we want to allow for time heterogeneity or
cohort-level heterogeneity using the hettype () option. For instance, if we wanted to disregard time
heterogeneity but model cohort heterogeneity, we would type

. hdidregress ..., ... hettype(cohort)

Conclusion

didregress and xtdidregress compute the ATET using DID and DDD for panel data and repeated
cross-sections. Additionally, hdidregress and xthdidregress estimate ATETs that vary over time
and over treatment cohorts. All four commands offer standard error computations that address some
of the issues that researchers face, such as a small number of groups. After you fit models with these
commands, diagnostics and tests to validate the assumptions and internal validity of the DID and DDD
results are available.
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Description

didregress estimates the average treatment effect on the treated (ATET) from observational data by
difference-in-differences (DID) or difference-in-difference-in-differences (DDD). The ATET of a binary or
continuous treatment on a continuous outcome is estimated by fitting a linear model with time and group
fixed effects. The DID and DDD estimation performed by didregress can be applied to data comprising
repeated cross-sections in which different groups of individuals are observed at each time period.

xtdidregress estimates the ATET from observational data by DID or DDD for panel data. The ATET
of a binary or continuous treatment on a continuous outcome is estimated by fitting a linear model with
time and panel fixed effects.

Quick start

DID estimate of the ATET of treat1 on outcome y1 modeled using covariates x1 and x2, and grpvarl
and tvar fixed effects, with the treatment occurring at the grpvar1 and tvar levels

didregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar)

Same as above, but compute wild cluster—bootstrap p-values and confidence intervals with grpvar1 as
the clustering variable

didregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar) ///
wildbootstrap

Aggregate data at the grpvar1 and tvar levels to estimate the ATET
didregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar) ///
aggregate (standard)
Same as above, but use the Donald and Lang (2007) method to compute the ATET and standard errors
didregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar) ///
aggregate (dlang)

DDD estimate of the ATET of treat?2 on outcome y2 modeled using covariates x1 and x2 and fixed effects
defined by two-way interactions for grpvar1l, grpvar2, and tvar, with the treatment occurring at
the grpvaril, grpvar2, and tvar levels

didregress (y2 x1 x2) (treat2), group(grpvarl grpvar2) time(tvar)
DID estimate of ATET of treat3 on outcome y3 using xtset data; y3 modeled using covariates x1 and

x2, and individual (panel) and tvar fixed effects, with the treatment occurring at the grpvar1 and
tvar levels

xtdidregress (y3 x1 x2) (treat3), group(grpvarl) time(tvar)

116
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Menu

didregress

Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > DID

xtdidregress

Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > Panel-
data DID (FE)

Syntax
DID for repeated cross-sectional data

didregress (ovar omvarlist) (tvar [, continuous|) [if ] [in] [weight],

group (groupvars) [ time (timevar) ()pli()ns]

DID for panel data

xtdidregress (ovar omvarlist) (tvar [, continuous|) [if | [in] [weight],

group (groupvars) [ time (timevar) options ]

ovar is the outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see
[U] 11.4.3 Factor variables.

tvar must be a binary variable indicating observations subject to treatment or a continuous variable mea-
suring treatment intensity.

groupvars are categorical variables that indicate the group level at which the treatment occurs. At least
one group variable must be specified. If timevar is specified, at most two group variables may be
specified. If timevar is not specified, at most three group variables may be specified.

timevar is a time variable. It must be specified if groupvar has only one variable.
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options Description
Model
* group (groupvars) specify group variables
ttime (timevar) specify time variable
nointeract exclude group () and time () interactions
nogteffects do not include group and time effects in the model
aggregate (aggmethod) aggregate to the levels defined by interacting groupvars and timevar

wildbootstrap| (wildopts) | compute confidence intervals and p-values with the wild bootstrap

SE/Robust
vce (vcetype) vecetype may be cluster clustvar, robust, hc2, or bootstrap
Reporting
level(#) set confidence level; default is 1evel (95)
aequations display auxiliary-equation results
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
coeflegend display legend instead of statistics

*group (groupvars) is required.

¥ time (fimevar) is required when only one group is specified.
For xtdidregress, a panel variable must be specified using xtset; see [XT] xtset.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

aggmethod Description

standard aggregate data and fit model

dlang|, dlopt| aggregate data and fit model using Donald and Lang method

wildopts Description

errorweight (edtype) specify the error weight type edtype; default is
errorweight (rademacher)

reps(#) perform # wild bootstrap replications; default is reps (1000)

rseed (#) set random-number seed to #

blocksize (#) perform wild bootstrap in blocks of # replications
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Options
Model

group (groupvars) specifies group variables. It indicates the group level at which the treatment occurs.
groupvars may be, for example, states, counties, or hospitals. groupvars define the group levels for
which group effects are included in the model used to perform DID estimation and for which group
interactions are included in the model used to perform DDD estimation. group() also defines the
level clustering for the default cluster—robust standard errors. group () is required.

You may specify at most two group variables if you also specify a time variable in the time () option
or at most three group variables if no time variable is specified.

time (timevar) specifies the time variable. You may specify time () when one or two group variables
are specified in the group () option. time () is required when only one group variable is specified in
the group () option.

nointeract excludes groupvars and timevar interactions from being included in the model. By default,
didregress and xtdidregress include group and time interactions for your specification if there
is more than one group variable.

nogteffects specifies to not include group and time effects. By default, didregress adds group and
time dummies to the regression specification. By default, xtdidregress adds time dummies to the
fixed-effects specification.

aggregate (aggmethod) fits the model by aggregating data at the groupvars and timevar levels. ag-
gmethod may be either standard or dlang| , dlopt|.

standard specifies that aggregation is performed using the standard aggregation method. In this
case, a regression model is fit of the original outcome on covariates that vary within levels of
the groupvars and timevar interaction. The estimates of the group-time level effects from this
regression are used to construct a new dependent variable. These effects along with the remaining
covariates are then aggregated to the level of the of the groupvars and timevar interaction. The
final results are obtained by regressing the estimated group-time level effects on the remaining
covariates with this aggregated dataset and estimating group-level cluster—robust standard errors.

dlang[, dlopt| aggregates data using methods proposed by Donald and Lang (2007). dlopt may be
either constant or varying.

constant requests that standard errors be estimated using the standard ordinary least-squares
method, as suggested by Donald and Lang (2007). With this method, as with the standard
aggregation method, a single regression model is fit in the first step, so the coefficient estimates
are constant across levels of the groupvars and timevar interaction.

varying specifies that the aggregation method allow for varying coefficients on the covariates.
Specifically, in this case, separate regression models of the original outcome on covariates that
vary within levels of groupvars and timevar are fit for each level of the groupvars and timevar
interaction. Thus, this method allows the coefficients on these variables to vary. The constant
from each of these regressions forms the new dependent variable. The final regression and
standard error computations are equivalent to those used by the constant method.
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wildbootstrap| (wildopts) | computes confidence intervals and p-values with the wild bootstrap. The
wild bootstrap is constructed imposing the null hypothesis that the ATET is O; that is, it is a restricted
wild bootstrap. Confidence intervals are computed separately from the p-values. The bounds of the
confidence interval are computed using a bisection optimization algorithm described in Methods and
formulas. wildopts are errorweight (edtype), reps (#), rseed (#), and blocksize (#).

errorweight (edfype) defines the error weight used to draw residuals from the wild bootstrap. edtype
is one of rademacher (the default), mammen, webb, normal, or gamma.

rademacher multiplies the residuals at each bootstrap replication with a randomly generated vari-
able that takes the value of 1 with probability 0.5 and the value of —1 with probability 0.5.
errorweight (rademacher) is the default.

mammen multiplies the residuals at each bootstrap replication with a randomly generated variable
that takes the value of 1 — ¢ with probability ¢/+/5 and ¢ otherwise, where ¢ = (1 ++/5)/2.

webb multiplies the residuals at each bootstrap replication with a randomly generated variable that

takes the values —+/3/2, —/2/2, —\/1/2, \/1/2, 1/2/2, and /3 /2, each with probability

1/6.
normal multiplies the residuals at each bootstrap replication with a randomly generated normal

distribution variable with the first four moments given by 0, 1, 0, and 3.

gamma multiplies the residuals at each bootstrap replication with a randomly generated gamma
distribution variable with shape parameter 4 and scale parameter 1/2.

reps (#) performs # wild bootstrap replications. The default is reps (1000).
rseed (#) sets the random-number seed to #.

blocksize (#) specifies that the wild bootstrap be performed in blocks, with # replications
per block. The wild bootstrap computation requires a matrix with dimensions (# groups) x
(#replications). If this is too large, you can reduce the matrix to (# groups) x (# block size) and
loop (# replications)/(# block size) times. When the same random seed is set, using a different
block size does not change the numerical results; it only modifies the computation method. The
block size must be less than or equal to the number of bootstrap replications.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that allow for intra-
group correlation (cluster clustvar), that are robust to some kinds of misspecification (robust),
that are bias-corrected cluster—robust using the degrees-of-freedom adjustment proposed by Bell and
McCaffrey (2002) (hc2), and that use bootstrap sampling done at the group level (bootstrap); see
[R] vce—option.

vce (cluster clustvar), the default, uses the first variable specified in the group (groupvars) option.

vce (hc2) specifies bias-corrected cluster—robust standard errors with the degrees-of-freedom adjust-
ment proposed by Bell and McCaffrey (2002). As with vce(hc2) in [R] regress, the residuals are
rescaled by the projection matrix to improve the small-sample properties of the variance estimates.
For more details, see Methods and formulas.

Specifying vce (robust) is equivalent to specifying vce (cluster clustvar), where clustvar is the
first variable specified in the group (groupvars) option.
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Reporting

level (#); see [R] Estimation options.

aequations specifies that the results for the outcome-model parameters be displayed. By default, the
results for these auxiliary parameters are not displayed.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (/,fint), pformat (%fimt),
sformat (%fmt), and nolstretch; see [R] Estimation options.

The following option is available with didregress and xtdidregress but is not shown in the dialog
box:

coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction

DID estimation

Graphical diagnostics and tests
Specifying a 2-by-2 DID

Standard error considerations

Default cluster—robust standard errors

Introduction

DID is one of the most venerable causal inference methods used by researchers. DID estimates the
average treatment effect on the treated group (ATET).

To obtain the ATET using DID, one must compute the difference of the mean outcome for the treat-
ment and the control groups before and after the treatment. This eliminates time-invariant unobservable
group characteristics that confound the ATET; however, this is not enough to identify an effect. There
may be time-varying unobservable confounders with an effect on the treatment group even after we con-
trol for time-invariant unobservable group characteristics. DID eliminates time-varying confounders by
including a control group that is subject to the same time-varying confounders as the treatment group.

The ATET is then consistently estimated, differencing the mean outcome for the treatment and control
groups over time to eliminate time-invariant unobservable characteristics and also differencing the mean
outcome of these groups to eliminate time-varying unobservable effects common to both groups. These
two differences give the DID method its name and highlight its intuitive appeal. More appealing is the
fact that you can get the effect of interest, the ATET, from one parameter in a linear regression.

Below, we illustrate how to use didregress and xtdidregress. For more information about the
methods used below, see [CAUSAL] DID intro. For general discussions of the DID methodology, see
Angrist and Pischke (2009, 2015), Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner
(2011), Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018) and the references
therein.
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DID estimation

b Example 1: Fitting a DID model

A health provider is interested in studying the effect of a new hospital admissions procedure on the
satisfaction of patients. The provider has monthly data on patients from January to July. The new ad-
missions procedure was implemented in April by hospitals that were under new management. Of the 46
hospitals in the study, 18 implemented the new procedure.

The health provider will use a DID regression to analyze the effect of the new admissions procedure
on the hospitals that participated in the program. The outcome of interest is patient satisfaction, satis,
which is recorded as an average of the responses to a set of four questions asked to patients. satis
may take values between 0 and 10, where 10 is the greatest possible level of satisfaction and 0 is utter
disappointment. The procedure variable marks the treated observations; it is 1 if a surveyed individual
was admitted to the hospital using the new procedure after March and 0 otherwise. To get the ATET on
the outcome satis, we type

. didregress (satis) (procedure), group(hospital) time(month)

The first set of parentheses is used to specify the outcome of interest followed by the covariates in
the model. In this case, there are no covariates, just the outcome, satis. The second set of parentheses
is used to specify the binary variable that indicates the treated observations, procedure. The group ()
and time () options are used to construct group and time fixed effects that are included in the model.
The variable specified in group () is also important because it defines the level of clustering for the
default cluster—robust standard errors; in this case, we cluster at the hospital level. The results from this
command are as follows:

. use https://www.stata-press.com/data/r19/hospdd

(Artificial hospital admission procedure data)

. didregress (satis) (procedure), group(hospital) time(month)
Treatment and time information

Time variable: month
Control: procedure
Treatment: procedure

0
1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4
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Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis | Coefficient std. err. t P>|t| [95% conf. interval]
ATET
procedure
(New
vs
014d) .8479879 .0321121 26.41 0.000 .7833108 .912665

Note: ATET estimate adjusted for group effects and time effects.

The first table gives information about the treated and control groups and about treatment timing. The
first segment with the title Group tells us the number of treated and control hospitals: 28 hospitals were
using the old procedure and 18 hospitals were using the new one. The second segment of the table gives
information about the first time we observe hospitals in the control group and the first time we observe
the treatment (the new admission procedure) for hospitals in the treatment group. In this example, all
hospitals that adopted the new procedure did so in April, time period 4. If some hospitals had adopted
the policy later, the minimum and maximum time of first treatment would differ.

The ATET is 0.85, almost a 1-point increase in satisfaction relative to the case where none of the treated
hospitals enacted the new procedure. In other words, if the hospitals that implemented the new admission
procedure had not done so, their satisfaction ratings would be lower by almost one point on average.

We now explore whether the trajectories of satis are parallel for the control and treatment groups
prior to the date when the new procedure was implemented. We are checking what is known as the
parallel-trends or common-trends assumption, an important assumption of the DID model, as discussed
in [CAUSAL] DID intro. A visual diagnostic of this assumption can be obtained by plotting the means of
the outcome over time for both groups or by visualizing the results of the linear-trends model. We can
perform both of these diagnostic checks by using estat trendplots. To obtain figure 1 below, we type

. estat trendplots

Graphical diagnostics for parallel trends

Observed means Linear-trends model
4.4

4.2

—— Contro

3.8- —— Treatment

Patient satisfaction score
Patient satisfaction score

3.6

3.4+
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The graph seems to indicate that the parallel-trends assumption is satisfied. Prior to the policy imple-
mentation, treated and control hospitals followed a parallel path.

We could also perform a test to see if the trajectories are parallel by augmenting our original model
to include variables representing time trends before and after the treatment for both groups of hospitals.
The linear-trends model estimates a coefficient for the differences in linear trends prior to treatment, and
if that coefficient is 0, the linear pretreatment trends are parallel. Otherwise, identification of the ATET
may become questionable.

We can perform this test by using estat ptrends:

. estat ptrends

Parallel-trends test (pretreatment time period)
HO: Linear trends are parallel

F(1, 45) 0.55

Prob > F = 0.4615

We do not have evidence to reject the null hypothesis of parallel trends in this case. Both the test and
the graphical analysis support the parallel-trends assumption and, therefore, our ATET estimate.

N

b Example 2: Fitting a DDD model

The results in example 1 could come into question if they could be the consequence of other un-
observed variables rather than the consequence of the new hospital admissions procedure. The health
provider administrators believe that responses to the survey are related to the frequency of individuals’
hospital visits. The patients may have unobserved characteristics that affect both how frequently they
visit the hospital and how they feel about the admissions procedure. In other words, there might be
unobserved characteristics that confound the effect of the new hospital admissions procedure. The ad-
ministrators decide to obtain the ATET by using a DDD model. They want to estimate the average treatment
effect on patients who visit the hospital with high or very high frequencies.

To do this, we will first create a new variable hightrt to be our new treatment identifier. Observations
are now marked as treated (hightrt = 1) if hospital visit frequency by an individual is high or very
high (frequency = 3 or 4) and if the hospital implemented the new admissions procedure in April.

. generate hightrt = procedure==1 & (frequency==3 | frequency==4)
. label define trt O "Untreated" 1 "Treated"
. label values hightrt trt
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The DDD model will incorporate both hospital and frequency of usage effects as well as their interac-
tion with time effects. To fit the model, we incorporate a new group variable, frequency:

. didregress (satis) (hightrt), group(hospital frequency) time(month)
(output omitted)
Treatment and time information

Time variable: month

Control: hightrt = 0
Treatment: hightrt = 1
Control Treatment
Group
hospital 28 18
frequency 2 2
Time
Minimum 1 4
Maximum 1 4
Triple-differences regression Number of obs = 7,368

Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis | Coefficient std. err. t P>|t| [95% conf. intervall
ATET
hightrt
(Treated
vs
Untreated) .764154 .0402603 18.98 0.000 .6830655 .8452425

Note: ATET estimate adjusted for group effects, time effects, and group- and
time-effects interactions.

The omitted output after the command corresponds to the factor-variable interactions that include the
base categories. This is common when you fit DDD models that by default include group interactions and
group and time interactions.

The first table above has information on the second group variable, frequency, for which low and
medium frequencies are controls and high and very high frequencies are treated. The second table shows
that the ATET is now smaller, but the policies still increase satisfaction.

d
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b Example 3: DID for panel-data model

Moser and Voena (2012) look at the effect of compulsory licensing on domestic inventions. Compul-
sory licensing allows firms in developing countries to produce foreign inventions without the consent of
foreign patent owners. Having access to foreign technology may discourage domestic inventions, but it
could also enhance local production.

Moser and Voena consider legislation that occurred during World War I called Trading With the Enemy
Act (TWEA). By 1919, German-owned patents were systematically licensed to US companies. In Moser
and Voena (2012), the treated observations correspond to a subclass in the chemical industry that was
granted at least one of the TWEA patents after 1918, as reported by United States Patent and Trademark
Office (USPTO). A subclass is a group of firms in an industry that employ similar technologies, as defined
by the USPTO.

The outcome of interest is the number of patents granted to inventors from the US in that subclass,
uspatents. This measures domestic innovation. Moser and Voena also include the number of non-
TWEA patents granted to the subclass that were from foreign inventors, fpatents. fpatents measure
innovation in the subclass that is not from US inventors. We observe the same subclasses at each point
in time from 1875 to 1939. Thus, we have a panel dataset.

To fit the model, we first xtset our data at the subclass level, classid:

. use https://www.stata-press.com/data/r19/patents
(Excerpt from Moser and Voena (2012))
. xtset classid

Panel variable: classid (balanced)
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Below, we fit a DID model for the number of patents granted to US inventors in a subclass, controlling
for the number of non-TWEA patents granted to foreign inventors. The treatment indicator gotpatent
is 1 if the subclass received a TWEA patent after 1918 and is 0 otherwise. The model includes year fixed
effects and subclass fixed effects.

. xtdidregress (uspatents fpatents) (gotpatent), group(classid) time(year)
Treatment and time information

Time variable: year

Control: gotpatent = 0
Treatment: gotpatent = 1
Control Treatment

Group

classid 6912 336
Time

Minimum 1875 1919

Maximum 1875 1919
Difference-in-differences regression Number of obs = 471,120

Data type: Longitudinal
(Std. err. adjusted for 7,248 clusters in classid)

Robust
uspatents | Coefficient std. err. t P>t [95% conf. intervall
ATET
gotpatent
(Patent
vs
None) .150516 .0356081 4.23 0.000 .0807137 .2203183

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

The ATET is 0.15, which means that in subclasses that were awarded one or more patents, domestic
inventors produced an average of 0.15 additional patents after the TWEA compared with the scenario in
which no patents are awarded for those subclasses.

N
Graphical diagnostics and tests

b Example 4: DID diagnostic graphs and tests

As illustrated in example 1, when conducting a DID study, it is common to complement the regression
analysis with graphical diagnostics and tests that provide evidence of whether an estimated effect can be
given a causal interpretation. As discussed in [CAUSAL] DID intro, we would like to observe that the
treated and control groups had mean outcomes that evolved similarly to each other over time prior to the
treatment. This is usually referred to as a parallel-trends or common-trends assumption. We would also
like to ascertain that neither the control nor the treatment group changed their behavior in anticipation of
the treatment. This is assessed using a Granger-type test.

Below, we use simulated data to illustrate the diagnostics and tests available after didregress and
xtdidregress. Simulated data helps us know exactly what we should expect and how to interpret it.
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Suppose we have a panel dataset with 10 time points, denoted by t1, where a treatment has taken
place between t1 = 5 and t1 = 6. We have a set of covariates, x1 and x2, and an outcome, y1. The
outcome could be something like patient satisfaction, as in example 1, or the number of patents filed by
US inventors, as in example 3.

We fit the model:

. use https://www.stata-press.com/data/r19/parallelt
(Simulated data to test parallel-trends assumption)

. Xtset idl

Panel variable: idl (unbalanced)

. xtdidregress (yl c.xl##c.x2) (treatedl), group(idl) time(tl)
Treatment and time information

Time variable: t1

Control: treatedl = 0
Treatment: treatedl = 1
Control Treatment
Group
id1 102 98
Time
Minimum 1 6
Maximum 1 6
Difference-in-differences regression Number of obs = 2,000

Data type: Longitudinal
(Std. err. adjusted for 200 clusters in idl)

Robust
y1 | Coefficient std. err. t P>t [95% conf. intervall
ATET
treatedl
(Treated
vs
Untreated) .5069426 .0220218 23.02 0.000 .4635166 .5503686

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Is this result valid? We can first explore the assumption of parallel trends graphically, comparing the
trajectories of the outcome variable for the control and treatment groups prior to the date of treatment.
We can check this assumption by plotting the means of the outcome over time for both groups or by
visualizing the results of the linear-trends model. We can perform both of these diagnostic checks by
using estat trendplots.
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. estat trendplots

Graphical diagnostics for parallel trends

Observed means Linear-trends model

—— Control
—— Treatment

Y1

6.5

Figure 2.

Looking at the plotted observed means (left side of figure 2), the outcome trajectories in the control and
treatment groups prior to the treatment are somewhat different. While we can observe declining trends
in both groups, it looks as though the decline is progressing more rapidly in the control group, especially
between time points three and five. We can get a clearer picture of this by looking at the results of the
linear-trends model on the right side of figure 2. The group-level trajectories are shown with respect to
a common reference point, t1 = 1, which makes it easy to discern whether they are parallel. In this
case, we can see that they are not. The differences between the treatment and control groups are growing
larger over time up to t1 = 5 (posttreatment time periods are not relevant when assessing the parallel-
trends assumption). Judging by figure 2 alone, we should be concerned about whether the parallel-trends
assumption holds for our effect estimate.

A more formal way to assess whether the pretreatment trajectories are parallel is to perform a test on
the linear-trends model coefficient that captures the differences in the trends between treated and controls.
If the pretreatment trends are actually linear in both groups, then this coefficient will be 0 because there
are no differences in the slopes between the two groups. Thus, by testing this coefficient against 0, we
have a test of the null hypothesis that the pretreatment period trajectories are parallel. We can perform
this test by using estat ptrends:

. estat ptrends

Parallel-trends test (pretreatment time period)
HO: Linear trends are parallel

F(1, 199) 39.97
Prob > F = 0.0000

We reject the null hypothesis of the linear trends being parallel.
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We can also think of nonparallel as an indication of an anticipatory treatment effect. We saw that the
trends were not parallel before the treatment took place, which could indicate a treatment effect even
before the treatment is implemented. Thus, another way to state our parallel-trends assumption is that
there should be no treatment effect in anticipation of the treatment. To test this assumption, we could fit a
Granger-type causality model where we augment our model with dummies that indicate future treatment
status for each time period prior to the treatment. A joint test of the coefficients on these dummies
against 0 can be used as a test of the null hypothesis that no anticipatory effects have taken place. We
can perform this test by using estat granger:

. estat granger

Granger causality test
HO: No effect in anticipation of treatment

F(4, 199) = 18.17
Prob > F = 0.0000

The result suggests that we reject the null hypothesis of no anticipatory effects prior to treatment.
Thus, based on the results of both estat ptrends and estat granger, we conclude that we should be
concerned about identification of ATET.

Notice that the parallel-trends F'test consumes only 1 numerator degree of freedom, while the Granger
causality F' test consumes 4. That is because we have five pretreatment time periods and thus four
coefficients to test. In this example, both tests would be appropriate, but the parallel-trends test has
higher statistical power. However, as we will see below, the less-powered Granger test is more flexible
and can be used in situations where the differences between treatment and control groups are nonlinear
in pretreatment periods.

N
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b Example 5: DID diagnostics and tests with nonlinear mean outcome differences

We now look at a different outcome and policy using the same simulated dataset as in example 4. We
fit the same model but with the new variables:

. Xtset id2

Panel variable: id2 (balanced)

. xtdidregress (y2 c.zl##c.z2) (treated2), group(id2) time(t2)
Treatment and time information

Time variable: t2

Control: treated2 = 0
Treatment: treated2 = 1
Control Treatment
Group
id2 480 520
Time
Minimum 1 6
Maximum 1 6
Difference-in-differences regression Number of obs = 10,000

Data type: Longitudinal
(Std. err. adjusted for 1,000 clusters in id2)

Robust
y2 | Coefficient std. err. t P>|t]| [95% conf. interval]
ATET
treated2
(Treated
vs
Untreated) .2636651 .0097188 27.13  0.000 .2445936 .2827367

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Here is the diagnostic plot produced by estat trendplots:

Graphical diagnostics for parallel trends

Observed means Linear-trends model
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Inspecting the observed means over the pretreatment time periods, we can see that no considerable
change has occurred in the outcome of the treatment group over time. For the control group, on the other
hand, we observe a somewhat U-shaped trajectory in advance of the treatment. However, if we look at
the plot from the linear-trends model, both trajectories appear somewhat U-shaped, and the trends appear
to be almost parallel. Indeed, if we use estat ptrends, we fail to reject the null hypothesis of parallel
trends:

. estat ptrends

Parallel-trends test (pretreatment time period)
HO: Linear trends are parallel

F(1, 999) 2.13

Prob > F = 0.1446

The Granger causality test can handle cases in which the trajectories are nonlinear and for which
estat ptrends will fail to reject the null hypothesis when it should:

. estat granger
Granger causality test
HO: No effect in anticipation of treatment

F(4, 999) 9.86
Prob > F = 0.0000

We correctly reject the null hypothesis of no effect in anticipation of the treatment.

b Example 6: Diagnostics and tests when parallel-trends assumption is satisfied

Finally, we look at a case where the assumption of parallel trends is satisfied. Again, we use the
simulated dataset from example 4. We fit the following model:

. xtset id3

Panel variable: id3 (balanced)

. xtdidregress (y3 c.wi#fc.w2) (treated3), group(id3) time(t3)
Treatment and time information

Time variable: t3
Control: treated3
Treatment: treated3

0
1

Control Treatment

Group
id3 502 498

Time

[}

Minimum 1
Maximum 1 6
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Difference-in-differences regression Number of obs = 10,000
Data type: Longitudinal

(Std. err. adjusted for 1,000 clusters in id3)

Robust
y3 | Coefficient std. err. t P>[t] [95% conf. intervall
ATET
treated3
(Treated
vs
Untreated) .4996049 .0102458 48.76 0.000 .4794991 .5197107

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Using estat trendplots, we obtain

Graphical diagnostics for parallel trends

Observed means Linear-trends model

—— Contro
—— Treatment

Y3

Figure 4.

This time, the trajectories of the observed means appear to be parallel before the treatment occurs.
Both follow a declining trend up to the last pretreatment time point. Looking at the results from the
linear-trends model, the pretreatment trajectories appear to be the same. Using estat ptrends yields
the following result:

. estat ptrends

Parallel-trends test (pretreatment time period)
HO: Linear trends are parallel

F(1, 999) = 0.00
Prob > F = 0.9688

We cannot reject the null hypothesis of parallel linear trends. Likewise, using estat granger, we
do not reject the null hypothesis of the absence of anticipatory effects:

. estat granger
Granger causality test
HO: No effect in anticipation of treatment
F(4, 999) = 0.52
Prob > F = 0.7220
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b Example 7: Time-specific treatment effects

As we have seen in the previous examples, we can use estat granger to test for treatment effects
occurring prior to the point at which treatment has been administered. Beyond the particular purpose
of this test, however, it can be instructive to inspect not only pretreatment effects but also posttreatment
effects that are allowed to vary over time. That is, rather than relying on a single treatment-effect estimate
that is assumed to be constant over time, it can be instructive to check whether treatment effects change as
time unfolds. We can fit a model that includes lags and leads of an indicator for the time period in which
the treatment began. The coefficients on the lags can be used to assess whether there is any change in
the treatment effect during posttreatment time periods. We can use the postestimation command estat
grangerplot to fit such a model and plot the resulting coefficients. This model is also sometimes
referred to as an event study model in the literature; see Schmidheiny and Siegloch (2019) and Clarke
and Tapia-Schythe (2021).

We start by fitting the following DID model:
. use https://www.stata-press.com/data/r19/hospdd
(Artificial hospital admission procedure data)
. didregress (satis) (procedure), group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1
Control Treatment
Group
hospital 28 18
Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression
Data type: Repeated cross-sectional

Number of obs = 7,368

(Std. err. adjusted for 46 clusters in hospital)
Robust
satis | Coefficient std. err. t P>t [95% conf.
ATET

procedure

(New
vs

01d) .8479879 .0321121 26.41 0.000 .7833108

Note: ATET estimate adjusted for group effects and time effects.
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We can now simply use estat grangerplot to plot pre- and postintervention treatment effects:

. estat grangerplot
This yields the following graph:

Effects over time, leads and lags with 95% Cls

_: b

Figure 5.

By default, estat grangerplot uses all available leads and lags, and in this case, we have estimates
for two leads and four lags. For identification purposes, we must omit one of the indicator variables. By
default, estat grangerplot omits the first lead, which sets the coefficient to 0 that corresponds to the
time period prior to treatment administration. Thus, the plotted effects are normalized with respect to
that time period. If we wanted, we could change the baseline period by using the baseline () option.
We can see that the coefficients on the leads that correspond to the first two months are both close to 0,
which shows that there are no substantial effects in the pretreatment era. The posttreatment effects for
months 4 to 7 range between around 0.8 and 0.9. When we account for the uncertainty of these estimates,
as indicated by the plotted 95% confidence intervals, it appears as though the treatment effects are rather
stable over time in this example.
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Rather than just plotting the coefficients, we could be interested in looking at a table with the numeric
results. We can obtain the underlying results by specifying the verbose option. We are also using the
nodraw option to see only the numeric results and not draw the graph again:

. estat grangerplot, nodraw verbose

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46
F(12, 45) = 94.68
Prob > F = 0.0000
R-squared = 0.5334
Adj R-squared = 0.5298
Root MSE = 0.7240
(std. . adjusted for 46 clusters in hospital)
Robust

satis | Coefficient std. err. t P>[t] [95% conf. intervall]

month
February -.007044 .0263953 -0.27 0.791 -.0602068 .0461188
March .0335696 .0255925 1.31 0.196 -.0179764 .0851156
April .0187852 .0250623 0.75 0.457 -.0316927 .0692632
May -.0211152 .0269569 -0.78 0.438 -.0754092 .0331788
June .0091208 .0179016 0.51 0.613 -.026935 .0451766
July -.0203444 .0306266 -0.66 0.510 -.0820296 .0413407
_lead3 .027897 .035569 0.78 0.437 -.0437426 .0995367
_lead2 .0217322 .0380076 0.57 0.570 -.054819 .0982833
_lag0 .8228153 .0494933 16.62  0.000 .7231307 .9224999
_lagl .9040498 . 0469682 19.25  0.000 .8094511 .9986486
_lag2 .844724 .0608006 13.89 0.000 . 7222654 .9671826
_lag3 .8978885 .0511588 17.55  0.000 . 7948494 1.000928
_cons 3.433074 .0198449 173.00  0.000 3.393104 3.473044

The coefficients on the variables that begin with _lead and _lag are the ones that are plotted in our

graph.
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As an interesting side note, notice that our original DID model is a special case of the model that we
fit with estat grangerplot. Specifically, it is the model that includes only a single lead and no lags.
To reproduce our original DID result, we can use the nleads () and nlags () options:

. estat grangerplot, nodraw verbose nleads(1) nlags(0)

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46
F(7, 45) = 138.73
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5299
Root MSE = 0.7238
(Std. err. adjusted for 46 clusters in hospital)
Robust

satis | Coefficient std. err. t P>[t] [95% conf. intervall]

month
February -.0096077 .0184317 -0.52 0.605 -.0467311 .0275158
March .0219686 .018251 1.20 0.235 -.0147907 .0587279
April -.0032839 .0221028 -0.15 0.883 -.0478013 .0412335
May -.0094027 .0232399 -0.40 0.688 -.0562103 .0374048
June -.0038375 .0190634 -0.20 0.841 -.0422332 .0345581
July -.0111941 .0230029 -0.49 0.629 -.0575244 .0351361
_lag0 .8479879 .0321121 26.41 0.000 .7833108 .912665
_cons 3.444675 .011354  303.39 0.000 3.421807 3.467543

As we can see, the results match the ones we obtained earlier with didregress.
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Notice also that the model used by estat granger is a special case as well; it is the model with all
available leads and no lags. To re-create the test result from estat granger, we use the post option to
store the results:

. estat grangerplot, nodraw verbose post nlags(0)

Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46
F(9, 45) = 113.78
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5298
Root MSE = 0.7239
(Std. err. adjusted for 46 clusters in hospital)
Robust

satis | Coefficient std. err. t P>[t] [95% conf. intervall]

month
February -.007044 .0263899 -0.27 0.791 -.0601959 .0461079
March .0335696 .0255873 1.31 0.196 -.0179658 .085105
April .0002573 .0243547 0.01 0.992 -.0487955 .0493101
May -.0058616 .0249982 -0.23 0.816 -.0562105 .0444874
June -.0002964 .0199414 -0.01 0.988 —-.0404605 .0398678
July -.007653 .0251828 -0.30 0.763 -.0583738 .0430679
_lead3 .027897 .0355617 0.78 0.437 -.043728 .099522
_lead2 .0217322 .0379998 0.57 0.570 -.0548033 .0982676
_lag0 .8673694 .0424929 20.41 0.000 .7817844 .9529544
_cons 3.433074 .0198408 173.03  0.000 3.393113 3.473035

We can now test whether the coefficients on the leads are jointly 0:

. test _lead3 _lead2

(1) _lead3 =0
(2) _lead2 =0
F( 2, 45) = 0.33
Prob > F = 0.7239

The test result indicates that we cannot reject the null hypothesis that the coefficients are jointly 0. We
fit our original model again to compare the results with the ones from estat granger:

. quietly didregress (satis) (procedure), group(hospital) time(month)
. estat granger

Granger causality test
HO: No effect in anticipation of treatment

F(2, 45) = 0.33
Prob > F = 0.7239

As we can see, the results are the same. Using estat grangerplot followed by test allows us to
perform additional tests of lags and leads that are not available through estat granger.

d
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Specifying a 2-by-2 DID

b Example 8: Specifying a 2-by-2 DID

didregress and xtdidregress by default fit generalized DID models, also known as two-way fixed-
effects models. Yet DID models sometimes are viewed from a two-period and two-group perspective, a
2-by-2 DID. You can also fit a 2-by-2 DID using didregress and xtdidregress. In fact, you will get
equivalent results using a 2-by-2 DID or a generalized DID. The generalized DID is the default because it
allows for a wider range of specifications that would not be feasible within the 2-by-2 framework, such
as cases when the intervention occurs at different points in time.

In example 1, we got the ATET for hospitals that instituted a new admissions procedure. We typed the
following:
. use https://www.stata-press.com/data/r19/hospdd

. didregress (satis) (procedure), group(hospital) time(month)

This implies that we are regressing satis on procedure and indicators for hospitals and for months.
The indicators are created and added as regressors to our model by default. To fit a 2-by-2 model, we
need to omit the hospital and month indicators and instead add an indicator for the period after treatment
and an indicator for groups that are treated.

This is what we do below. We create the treatment-group indicator based on the fact that the variable
procedure is 1 for individuals that experienced the new procedure and 0 otherwise; this variable iden-
tifies treated hospitals. We create the posttreatment indicator based on the fact that the new procedures
are established after March, which has a value of 3 in the data.

. bysort hospital: egen treated = max(procedure)

. generate post = month>3

We now fit
. didregress (satis i.treated i.post) (procedure), nogteffects
> group(hospital) time(month)
Treatment and time information

Time variable: month
Control: procedure
Treatment: procedure

0
1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4
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Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis | Coefficient std. err. t P>|t| [95% conf. interval]
ATET
procedure
(New
vs
014d) .8479879 .0320051 26.50 0.000 . 7835263 .9124494

Note: ATET estimate adjusted for covariates.

We add the new indicators to our list of covariates and use the nogteffects option to exclude the
group and time indicators that were included by default.

The point estimates are identical. What changes are the standard errors. They change because we
have a different number of regressors.

N
Standard error considerations

b Example 9: Standard errors and data aggregation

In example 3, we had 336 treated subclasses and 7,248 subclasses in total. However, many studies
face the challenge of having very few elements per group. In fact, sometimes the data analyzed consist
of only two groups—the treatment group in which treatment is administered to members of the group
and the controls group in which no treatment is administered. Think, for example, of an analysis at the
state level where one state is treated and one state is controlled. As discussed in [CAUSAL] DID intro,
these scenarios with few elements pose a challenge for inference. For a good discussion on these issues,
see MacKinnon (2019).

didregress and xtdidregress provide alternatives in such cases. One alternative is to compute
standard errors by using the wild cluster—bootstrap. Another alternative is to use bias-corrected clustered
standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaftrey (2002). A final
alternative is to aggregate your data and then compute effects and standard errors such as proposed by
Donald and Lang (2007) or use bias-corrected standard errors.

Below, we explore these options using simulated data. We created a dataset with 2,000 individuals
and five time periods. The treatment occurs at the county level and there are six counties. Two of the
counties, county 1 and county 2, receive the treatment and the remaining four counties do not. The true
value of the ATET is —1.0. As we see below, the groups are unbalanced.
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. use https://www.stata-press.com/data/r19/smallg
(Simulated data with a small number of groups)

. tab county
County Freq. Percent Cum.
1 715 7.15 7.15
2 2,570 25.70 32.85
3 3,410 34.10 66.95
4 2,285 22.85 89.80
5 920 9.20 99.00
6 100 1.00 100.00
Total 10,000 100.00

First, we fit the model using the default standard errors, which perform well with many balanced
groups but not necessarily well with data like these. We compare the other results with these results.

. didregress (outcome x i.b) (treated), group(county) time(year)
Treatment and time information

Time variable: year

Control: treated = 0
Treatment: treated =1
Control Treatment
Group
county 4 2
Time
Minimum 2011 2013
Maximum 2011 2013
Difference-in-differences regression Number of obs = 10,000

Data type: Repeated cross-sectional

(Std. err. adjusted for 6 clusters in county)

Robust
outcome | Coefficient std. err. t P>[t| [95% conf. intervall]
ATET
treated
(Treated
vs
Untreated) -.9394987 .0884134 -10.63 0.000 -1.166773 -.7122247

Note: ATET estimate adjusted for covariates, group effects, and time effects.

For this draw, the point estimates are reasonably close to the true value of —1.0, and the true values
are contained inside the confidence interval.

Next, we use the wild cluster—bootstrap. For a good introduction to the methodology, see Cameron,
Gelbach, and Miller (2008), MacKinnon and Webb (2018), and Roodman et al. (2019). The wild clus-
ter—bootstrap works well in scenarios like the one above, where there are few groups.
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We use the wild cluster bootstrap to construct p-values and confidence intervals, imposing the null
hypothesis that the ATET is 0. We describe both computations in Methods and formulas. Here are the
results:

. didregress (outcome x i.b) (treated), group(county) time(year)
> wildbootstrap(rseed(123) errorweight (webb))

Performing 1,000 replications for p-value for constraint
treated = 0
Computing confidence interval for treated
Lower bound: ......... 100 ... at 20...... done (26)
note: lower-bound CI achieved F(-1.25) = 0.0240, but target is F(x) = .025.
note: the sorted bootstrap t statistics have at least two tied values
adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.
Upper bound: ......... 10 c.en. 20..... done (25)
Treatment and time information

Time variable: year

Control: treated = 0
Treatment: treated = 1
Control Treatment
Group
county 4 2
Time
Minimum 2011 2013
Maximum 2011 2013
DID with wild-cluster bootstrap inference Number of obs = 10,000
Replications = 1,000
Data type: Repeated cross-sectional
Error weight: webb
outcome | Coefficient t P>|t| [95.10% conf. intervall
ATET
treated
(Treated vs Untreated) -.9394987 -10.63 0.020 -1.248532 -.5549851

Note: 95.10% confidence interval is wider than requested.
Note: ATET estimate adjusted for covariates, group effects, and time effects.

Above, we first see the iterations used to find the confidence interval lower bound and upper bound.
The optimization algorithm sometimes converges to a level that is below the test size. In such cases,
the confidence interval is conservative. In the example above, instead of a 95% confidence interval,
you obtain a 95.1% confidence interval. If there are ¢ statistics that have exactly the same value across
bootstrap replications, the algorithm will not solve exactly for the requested confidence level. We also
use errorweight () with error weight webb to compute the wild bootstrap. This is best in cases with
less than 10 groups, as suggested by Roodman et al. (2019). The results from the wild bootstrap suggest
more uncertainty than the default confidence interval.
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Now we look at two data aggregation methods. In both cases, data aggregation occurs in two steps.
In the first step, we regress the outcome on the set of covariates that vary at the individual, group, and
time levels. We then estimate the group—time fixed effects from this procedure to use in a second stage
as the new dependent variable. In the second stage, we aggregate the remaining covariates and the
new dependent variable at the group and time levels and run a regression. This aggregation strategy
is described in more detail in Bertrand, Duflo, and Mullainathan (2004), Donald and Lang (2007), and
Cameron and Miller (2015). We also describe the aggregation methods in Methods and formulas.

Below, we aggregate the data as described above and estimate bias-corrected standard errors by using
the degrees-of-freedom adjustment suggested by Bell and McCaffrey (2002). This method of getting
standard errors is computationally intensive, so it is well suited for cases where the dimensionality of the
problem is reduced via aggregation.

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(standard) vce(hc2)

Computing degrees of freedom ...

Treatment and time information

Time variable: year

Control: treated = 0
Treatment: treated = 1
Control Treatment
Group
county 4 2
Time
Minimum 2011 2013
Maximum 2011 2013
Difference-in-differences regression Number of obs = 30
No. of clusters = 6
Data type: Repeated cross-sectional
Aggregation: Standard
Robust HC2
outcome | Coefficient std. err. t P>|t] [95% conf. intervall]
ATET
treated
(Treated
Vs
Untreated) -.9958521 .1373277 -7.25 0.017 -1.566242  -.4254624

Note: ATET estimate adjusted for covariates, group effects, and time effects.

We see that the confidence intervals are again wider than with the default standard errors. It is also
worth noticing that we went from 10,000 observations to 30. This is because we aggregated at the county
and year levels. We have six counties and five years.
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We could also aggregate our data and compute the ¢ statistics using the degrees of freedom proposed

by Donald and Lang (2007). This gives us

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(dlang)

Treatment and time information

Time variable: year
Control: treated = 0
Treatment: treated = 1
Control Treatment
Group
county 4 2
Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression

Number of obs = 30

Data type: Repeated cross-sectional
Aggregation: Donald-Lang

outcome | Coefficient Std. err. t P>|t| [95% conf. intervall
ATET

treated

(Treated
vs
Untreated) -.9958521 .1224496 -8.13  0.000 -1.248576  -.7431287

Note: ATET estimate adjusted for covariates, group effects, and time effects.

Again, we see wider confidence intervals.

Whenever you have few elements for each group and the groups are unbalanced, as in this example,
you should be careful not to base your conclusions solely on the default cluster—robust standard errors.
As was mentioned in [CAUSAL] DID intro, you should validate your conclusions by using one of the
standard error computations suggested above.

d
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Default cluster—robust standard errors

b Example 10: Default cluster—robust standard errors with didregress and xtdidregress

We have stated that didregress was designed to handle repeated cross-sections and xtdidregress
was designed to handle panel datasets. However, you can use xtdidregress when you have repeated
cross-sections. For instance, for the hospital dataset in example 1, you may have typed

. use https://www.stata-press.com/data/r19/hospdd
(Artificial hospital admission procedure data)

. xtset hospital
Panel variable: hospital (unbalanced)
. xtdidregress (satis) (procedure), group(hospital) time(month)

Treatment and time information

Time variable: month
Control: procedure = 0
Treatment: procedure = 1
Control Treatment
Group
hospital 28 18
Time
Minimum 1 4
Maximum 1 4
Difference-in-differences regression Number of obs = 7,368
Data type: Longitudinal
(Std. err. adjusted for 46 clusters in hospital)
Robust
satis | Coefficient std. err. t P>[t] [95% conf. intervall
ATET
procedure
(New
Vs
01d) .8479879 .0320138 26.49  0.000 . 7835088 .9124669

Note: ATET estimate adjusted

for panel effects and time effects.

You will get the same point estimate as you would get with didregress but different standard er-
rors. The reason is that xtdidregress with cluster—robust standard errors does not count the group
variables as regressors in the degrees-of-freedom correction used to compute standard errors. It relies
on the asymptotic theory of fixed-effects regression, where the number of group effects are expected to
grow with the sample size. Put differently, xtdidregress is using xtreg, fe to compute the default
cluster—robust standard errors. didregress uses areg, which assumes the number of groups is fixed
and counts them in the degrees-of-freedom computation.

As a practical matter, these standard errors are going to be close to each other when the number of

observations per cluster is large, as is

the case for this example. As the number of observations per cluster

becomes smaller, however, the standard errors will differ more, with standard errors of didregress

tending to be larger.
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Which estimator to use depends on the assumptions you would like to make about your data. If you
think your data should be treated as panel data, with the number of groups growing with the sample size,
then even if you have repeated cross-sections, you should use xtdidregress.

More in-depth discussions about cluster—robust standard errors can be found in Cameron and Miller
(2015) and Wooldridge (2010).
d

Stored results

didregress stores the following ine():

e(treatment)
e(treatment_type)

Scalars
e() number of observations
e(N_clust) number of clusters
e(tmin) minimum of first observed treatment time across groups
e(tmax) maximum of first observed treatment time across groups
e(N_reps) number of bootstrap replications
e(df_r) residual degrees of freedom
e(blocksize) block size used in wild bootstrap computations
Macros
e(cmd) didregress
e(cmdline) command as typed
e(depvar) name of outcome variable

indicator for treated observations
binary or continuous

e(wtype) weight type

e (wexp) weight expression
e(wb_weight) wild bootstrap error weight
e(datatype) data type

e(groupvars)
e(clustvar)

group variables
name of cluster variable

e(timevar) time variable
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.

e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

e(_contrast_not_ok)

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
prediction disallowed by contrast

Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
e(group_count) matrix with number of groups and treatment time
e(fwboot) wild bootstrap estimates
e (wboot) wild bootstrap statistics and constraint
e(aggmethod) aggregation method

Functions
e(sample) marks estimation sample

Matrices

r(table)

In addition to the above, the following is stored in r () :

matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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xtdidregress stores the following in e () :

e(treatment)
e(treatment_type)
e(wtype)
e(wexp)
e(wb_weight)
e(datatype)
e(groupvars)
e(clustvar)
e(panelvar)
e(timevar)
e(vce)
e(vcetype)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)

e(_contrast_not_ok)

Scalars
e () number of observations
e(N_clust) number of clusters
e(tmin) minimum of first observed treatment time across groups
e(tmax) maximum of first observed treatment time across groups
e(N_reps) number of bootstrap replications
e(df_r) residual degrees of freedom
e(blocksize) block size used in wild bootstrap computations
Macros
e(cmd) xtdidregress
e(cmdline) command as typed
e(depvar) name of outcome variable

indicator for treated observations
binary or continuous

weight type

weight expression

wild bootstrap error weight

data type

group variables

name of cluster variable

panel variable

time variable

veetype specified in vce ()

title used to label Std. err.

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
prediction disallowed by contrast

Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
e(group_count) matrix with number of groups and treatment time
e(fwboot) wild bootstrap estimates
e(wboot) wild bootstrap statistics and constraint
e(aggmethod) aggregation method

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and

confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas

Methods and formulas are presented under the following headings:

DID for repeated cross-sectional data

DDD model
DID and DDD models with longitudinal data
Aggregation estimators
Wild bootstrap confidence intervals and p-values
Bias-corrected clustered standard error

DID for repeated cross-sectional data

The DID model for repeated cross-sectional data fit by didregress is given by

Yist = Vs T T 2ZiuB+ Dgy0 + €, (D

where i is the observation-level index, s is a group-level index, and ¢ is a time-level index. For example,
we might have yearly repeated cross-sectional data for individuals living in different states; in this case,
i denotes the individual, s the state, and ¢ the year. In (1) above, -, are group fixed effects and ~, are
time fixed effects. z,,, are the covariates, and e,, is the error term. D, is the treatment that varies at
the group and time levels. D, could be binary or continuous.

If y,,; is y in the data, then z,, are z1 and z2, D,; is d, the group is state, and time is year. To fit
the model, you would type

didregress (y zl1 z2) (d), group(state) time(year)
which is equivalent to typing
areg y z1 z2 i.year d, absorb(state) vce(cluster state)

The methods and formulas for this model are those of a linear regression and can be found in Methods
and formulas in [R] areg.

DDD model

The DDD model is given by

yisgt =Vs + rYg + Vi + VsVt + 7971& + 7579 + Zisgtlﬁ + Dsgiﬁ(S + 6isgt (2)

where 7 is the observation-level index, s and g are group-level indices, and ¢ is a time-level index. For
example, we might have yearly repeated cross-sectional data for older and younger individuals living
in different states. In this case, ¢ denotes the individual, s the state, g age group, and ¢ the year. In (2)
above, ~, are group s fixed effects, v, are group g fixed effects, and -y, are time fixed effects. z;,, are
the covariates, and €;,, is the error term. D, denotes the treatment that varies at the group s, group g,
and time levels. D, could be binary or continuous.
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Say you now want to fit a DDD, where the treatment occurs for group?2 in some of the states, state.
You would type

didregress (y zl z2) (d), group(state group2) time(year)

didregress would construct the group and time interactions in (2) and fit a linear regression. The
methods and formulas for the specification are the same as those in Methods and formulas in [R] areg.

DID and DDD models with longitudinal data

The DID model for longitudinal data fit by xtdidregress is given by
Yist = @+ % + 2B+ Dy + € 3)

where i is the observation-level index, s is a group-level index, and ¢ is a time-level index. For example,
we might have a longitudinal dataset of individuals over time living in a given state; in this case, ¢ denotes
the individual, s the state, and ¢ the year. In (3) above, «; are individual fixed effects and ~, are time
fixed effects. z,,, are the covariates, and ¢, is the error term. D, denotes the treatment that varies at
the group and time levels. D, could be binary or continuous. Individuals, ¢, are assumed to be nested
within the group; thus, group effects are subsumed by the individual effects.

If y;,, is y in the data, then z,,, are z1 and z2, D, is d, the group is state, time is year, and
individuals are denoted by id. To fit the model, you would type

xtset id year
xtdidregress (y z1 z2) (d), group(state) time(year)

which is equivalent to typing

xtreg y zl z2 i.year d, fe vce(cluster state)

The methods and formulas for this model are those of a within estimator computed by xtreg, fe and
can be found in Methods and formulas in [XT] xtreg.

The DDD model is given by

yisgt =y + Yt + Yt Vs + ’Yt’)/g + Zistﬁ + Dst6 + €isgt
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Aggregation estimators

To discuss the aggregation estimators, it is instructive to rewrite the covariate vector z,, as consisting
of group and time invariant components z, ,, and time-, group-, and individual-varying components z,;_, .
The DID model can now be expressed as

Yist = Vs + Tt + letlal + Z2istﬁ2 + Dst6 + €ist
Yist = Z2ist182 + Cst + €ist (4)
Cst = s + Tt + ZlStlﬁl + Dst(S + Vst (5)

The standard and dlang, constant aggregation methods regress y,,; on z,;, in (4) and then obtain
an estimate of Csf, Cst After we regress y,;,, on z,;,,, we get an estimate of the group—time effects C’
from y;,, — zgmﬁ €;5:- These effect estimates come from using predict with option d after areg.

We then aggregate the data at the s and ¢ levels. With the aggregated data, we run a regression of CA’st
on z,;,, and on D, using group and time fixed effects in (5). The d1lang method computes the ordinary
least-squares standard errors from this second stage. The standard method uses cluster—robust standard
errors clustered at the group level by default.

The dlang, varying method runs a regression for each group defined by s and ¢ and obtains an
estimate of C,; as the set of constants for each regression. Whereas in the first case 3, was the same
vector across the sample, in this case, we will get a different estimate of the slope coefficient for each

group. The second step is the same as for dlang, constant.

Wild bootstrap confidence intervals and p-values

The wild cluster—bootstrap is a bit different from the conventional bootstrap in that it keeps the covari-
ates fixed and constructs the new dependent variables using the residuals from the original regression.
The wild bootstrap procedure proceeds as follows:

1. Fit a restricted model, where the ATET is constrained to be 0. In other words, imposing the
null hypothesis that the ATET is 0. Obtain the predicted values, y,., and residuals, u,., from the
restricted model, where the subscript r refers to the bootstrap replicates. Also fit the unrestricted
model and compute the ¢ statistic, ¢, testing the null hypothesis ATET = 0.

2. Ateach of the subsequent B — 1 bootstrap steps, compute y* = y,. + 4, © (Kw), where wis a
column vector of length S, the number of clusters, containing the wild bootstrap weights, and
Kisan N x S matrix with elements k, ; = 1 if observation ¢, ¢ = 1,..., N, is in group j and
0 otherwise. The operator © is the Hadamard product that performs elementwise multiplica-
tion. By default, w; = 1 with probability 0.5 and w; = —1 with probability 0.5, that is, the
rademacher error weights.

Alternatively, use one of the following error weights w:
e mammen, which is 1 — ¢ with probability ¢/+/5 and ¢ otherwise, where ¢ = (1 + /5)/2.

e webb, which takes the values —\/3/2, —+/2/2,—/1/2,+/1/2,1/2/2, and \/3/2, each

with probability 1/6.
e normal, which is a normal distribution with the first four moments given by 0, 1, 0, and 3.
e gamma, which is a gamma distribution with shape parameter 4 and scale parameter 1/2.

3. For each bootstrap sample, compute the unrestricted model and the null hypothesis ¢ statistic,
t*. Include the observed ¢ statistic, ¢ in this set.
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4. Given the B bootstrapped ¢ statistics ¢7, b = 1,..., B, compute the wild bootstrap lower-tail

p-value
B

Z (It < 1£1)

and the upper-tail p-value

1 B
P =5 > Lt > 151
b=1

The reported equal-tail p-value is P.,(t) = 2 min{P;(t), P, (¢)}.

5. Compute the wild bootstrap confidence interval by searching for the lower limit and upper limit
separately using the bisection root-finding algorithm. In doing so, find the quantities ATET = ¢;
and ATET = ¢,, ¢, < ¢, such that (100 — L)/2% of the bootstrapped distribution of the ¢
statistics testing ATET = c is contained in either the lower or the upper tail. By default, L = 95.

The search algorithm does not always generate an L% confidence interval. One reason for this
situation is if B(100 — L) /200 is not an integer, then there is not a slot in the sorted vector t* that
corresponds to the upper- or lower-tail area (100 — L)/200. See Roodman et al. (2019, 8) for a
good discussion.

Also, although a low-probability event, if at least one of the computed t* is (numerically) equal
to the ¢ testing ATET = c, or if there are ties between other computed values in t* adjacent to the ¢
testing ATET = ¢, then the algorithm will not achieve the optimal coverage. In this case, we choose
the confidence interval that is more conservative than requested. The achieved confidence level is
reported in the ATET coefficient table.

The chance of ties in t* increases if the number of clusters, S, is small and the rademacher
error weights are used, because there are 2° possible combinations of the two values 1 and —1 in
the weight vector w. For example, if S = 10, then there are 1,024 possible combinations.

Bias-corrected clustered standard error

Let there be S clusters, s = 1, ..., .5, each with IV, observations, and let N be the number of obser-
vations in the data. Let X be the covariate matrix for cluster s, and let X be the covariate matrix for all
observations with dimension N x L. Also, define Iy, to be an identity matrix of dimension IV, and define

P,. = X, (X’X) ' X/, as a projection matrix for cluster s. Finally, let €, be the residuals corresponding
to cluster s. The bias-corrected cluster variance—covariance matrix is given by the following:

-1 -1
(Eon) Exte o e (S o
s=1 s=1

Let P be the projection matrix for all the data, and let (Iy —P) be an N x N matrix of rows of the
N x N matrix (Iy — P). Finally, let e, ; be an L vector with kth component equal to 1 and equal to 0
elsewhere. We define the matrix G as the matrix with sth column given by

—1/2

Gs = (IN - P); (INb - P.ss) Xs (X/X)71 €Lk
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We compute the degrees-of-freedom adjustment proposed by Bell and McCaffrey (2002), Ky, as
follows,

tr (G'G)?
tr{ (G'G) 2}
(=2,0)°

Zz 1)\2

where tr(-) is the trace function and ), is the ith eigenvalue of the matrix G'G.

KBM =

When S is large, computing the eigenvalues can be time consuming. We define

a,=(Iy —P,) ° x (X'X) ey,
b, =P,a
= (alal,...,asas)/ = (A17A27---7AS)/
By, By, -+ Bjg
B=(b,,....bg)=| : e

BN,I BN,Q BN,S

where P, = X(X’X)7'X/ and B, ¢, 1 = 1,..., N, are the elements of the vectors by, s = 1,...,S.
Then G'G = diag(A) — B’B. We now express the adjusted degrees of freedom (Kolesar 2023) as

Kgu = (Zle A, - va1 Zss 1 BiQS>2
Zf:l A% —2 Zf:l AS Zz]\il + Zs =1 Zs =1 ( S1 92)

which can be computed efficiently in Mata and using QR decomposition. For example, by decomposing
X = QR, where Q is n X k and orthonormal and R is k£ x k and upper triangular. The matrix B can be
rewritten so that it has dimension k& x S instead of N x S. We can do even better if the column rank of
X is r < k by taking advantage of QR column pivoting.

When weights are speciﬁed we use the weighted-covariate matrix X = diag(w)%X and its corre-
spondmg projection matrix P, as well as the cluster covariance matrices X , their projection matrices
P, ., and weighted residuals €, = diag(w,)? €,

For the ATET coefficient, we use the standard errors from (6) and the degrees of freedom in Ky, to
construct confidence intervals.
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Postestimation commands predict estat
Remarks and examples Stored results Methods and formulas
References Also see

Postestimation commands

The following postestimation commands are of special interest after didregress and

xtdidregress:

Command

Description

estat trendplots
estat ptrends
estat granger
estat grangerplot
estat bdecomp

graphical diagnostics for parallel trends
parallel-trends test

Granger causality test

time-specific treatment effects
treatment-effect decomposition

The following standard postestimation commands are also available:

Command

Description

estat summarize
estat vce
estimates
etable
forecast
lincom

nlcom

predict
predictnl

test
testnl

summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

dynamic forecasts and simulations

point estimates, standard errors, testing, and inference for linear combinations
of parameters

point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

linear predictions and residuals

point estimates, standard errors, testing, and inference for generalized predic-
tions
Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

155



didregress postestimation — Postestimation tools for didregress and xtdidregress 156

predict

Description for predict

predict creates a new variable containing predictions such as linear predictors and residuals.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf} [in] [ s statistic]

statistic Description

Main
xb linear predictor; the default
residuals residuals

Options for predict

Main

xb, the default, calculates the linear predictor. It excludes the effect of the first group or of the panel
identifier. All other effects, including the time fixed effects, are included in the linear predictor.

residuals calculates the overall residuals. It is the difference of the outcome and the linear predictor,
including all group, panel, and time effects. In other words, it is not just the difference of the outcome
and the linear predictor.
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estat

Description for estat

estat trendplots produces two diagnostic plots for assessing the parallel-trends assumption that
is required for consistent estimation of the ATET using didregress or xtdidregress. The first plot
consists of two lines showing the mean of the outcome over time for the treatment and the control groups.
The second plot augments the DID model to include interactions of time with an indicator of treatment
and plots the predicted values of this augmented model for the treatment and control groups. Both plots
include a vertical line one period before treatment.

estat ptrends performs a test of whether the linear trends in the outcome variable are parallel be-
tween control and treatment groups during the pretreatment period.

estat granger performs a test of whether treatment effects can be observed in anticipation of the
treatment.

estat grangerplot produces a graph of time-specific treatment effects by plotting coefficients from
leads and lags of the treatment indicator variable.

estat bdecomp performs a treatment-effect (Bacon) decomposition into all 2-by-2 treatment-effect
components when there are multiple cohorts, each with a different treatment timing. Optionally, the
components can be plotted against their weights. estat bdecomp requires that the data be strongly
balanced. That is, units defined by the group variable must have the same number of observations, and
observation times must be the same across all units.

Menu for estat

Statistics > Postestimation

Syntax for estat
Graphical diagnostics for parallel trends

estat trendplots [ , trend_options pl()t_optionx}

Parallel-trends test

estat ptrends

Granger causality test

estat granger

Time-specific treatment effects

estat grangerplot |, grangerplot_options |

Treatment-effect decomposition

estat bdecomp [, bdecomp_options |
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trend_options

Description

omeans

omeans (plot_options)
ltrends

ltrends (plot_options)
notitle

noxline
nocommonlegend
legendfrom(#)

draw graph showing observed means

draw observed-means graph and affect its rendition
draw graph showing linear trends

draw linear-trends graph and affect its rendition
suppress overall title

suppress treatment-time reference line

display two individual legends

specify which legend to use

plot_options

Description

Plot
cline_options
linelopts(cline_options)
line2opts (cline_options)

Y axis, X axis, Titles, Legend, Overall
twoway_options

affect rendition of the plotted trend lines; see [G-3] cline_options
affect rendition of the line for controls
affect rendition of the line for treated

any options other than by () documented in [G-3] twoway_options

grangerplot_options

Description

nleads (#)
nlags (#)
baseline (#)
}ﬁgziew
verbose
post

noci
noyline

Cl plot
recastci(plottype)
ciopts (rcap_options)
level(#)

Add plots
addplot (plot)

Y axis, X axis, Titles, Legend, Overall
twoway_options

number of leads

number of lags

baseline period

show lags instead of time units

display results of the underlying regression

post the results of the underlying regression in e ()
do not plot confidence intervals

suppress y-axis reference line

plot confidence intervals using plottype
affect rendition of confidence intervals
set confidence level; default is 1evel (95)

add other plots to the graph

any options other than by () documented in [G-3] twoway_options
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bdecomp_options Description
summaryonly show decomposition summary only
fulldecomponly show full decomposition only
noheader suppress the table header in the output
notable suppress the table in the output
graph plot individual components against their weights

Plot
copts (marker_options) change look of markers for cohorts
tnopts (marker_options) change look of markers for treated versus never treated
laopts (marker_options) change look of markers for later versus always treated
leopts (marker_options) change look of markers for later versus earlier treated
elopts (marker_options) change look of markers for earlier versus later treated
atetlineopts(cline_options) change look of the ATET reference line
noatetline suppress ATET reference line

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

Options for estat trendplots

omeans, omeans (plot_options), 1trends, and 1trends (plot_options) specify which graphs are to be
included and how they should be individually rendered. The default is omeans 1trends, meaning
that both graphs are included without any modifications.

omeans specifies that the observed-means graph be included. Specifying omeans suppresses the
linear-trends model graph unless 1trends or 1trends (plot_options) is also specified.

omeans (plot_options) specifies that the observed-means graph be included and affects its rendition.
Specifying omeans (plot_options) suppresses the linear-trends model graph unless 1trends or
1ltrends (plot_options) is also specified.

ltrends specifies that the linear-trends model graph be included. Specifying 1trends suppresses
the observed-means graph unless omeans or omeans (plot_options) is also specified.

1ltrends (plot_options) specifies that the linear-trends model graph be included and affects its ren-
dition. Specifying 1trends (plot_options) suppresses the observed-means graph unless omeans
or omeans (plot_options) is also specified.

notitle suppresses the overall title of the rendered graph.
noxline suppresses rendering of the treatment-time reference line.
nocommonlegend suppresses the display of one common legend and renders two individual legends.

legendfrom(#) specifies which legend to use; the default is legendfrom (1), which refers to the legend
of the first plot (observed means). legendfrom(#) is not allowed with the nocommonlegend option.
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Plot

cline_options affect the rendition of the plotted trend lines, including their style, size, and color; see
[G-3] cline_options.

linelopts(cline_options) affect the rendition of the plotted trend lines for the group of controls, in-
cluding their style, size, and color; see [G-3] cline_options.

line2opts(cline_options) affect the rendition of the plotted trend lines for the group of treated, includ-
ing their style, size, and color; see [G-3] cline_options.

Y axis, X axis, Titles, Legend, Overall 1

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving_option).

Options for estat grangerplot

nleads (#) specifies the number of leads to be included in the model and plotted. By default, all available
leads are included. The number of leads must be greater than 0.

nlags (#) specifies the number of lags to be included in the model and plotted. By default, all available
lags are included. The number of lags must be greater than or equal to 0.

baseline (#) specifies the baseline period for which the corresponding lead or lag is omitted. By default,
the first lead is omitted, which corresponds to the time period prior to intervention.

lagview specifies to show the values of the x axis in terms of lags. If this option is not specified, time
values are shown.

verbose specifies to display the output of the underlying regression model.
post posts the results of the underlying regression as estimation results in e ().
noci removes the pointwise confidence intervals. The default is to plot the confidence intervals.

noyline suppresses rendering of the reference line.

Cl plot

recastci(plottype) specifies that confidence intervals be plotted using plottype. plottype may be
rarea, rbar, rspike, rcap, rcapsym, rline, rconnected, or rscatter; see [G-2] graph twoway.
When recastci() is specified, the plot-rendition options appropriate to the specified plottype may be
used in lieu of rcap_options. For details on those options, follow the appropriate link from [G-2] graph
twoway.

ciopts (rcap_options) affects the rendition of confidence intervals; see [G-3] rcap_options.

level (#) specifies the confidence level, as a percentage, for confidence intervals. The default is
level (95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

Add plots

addplot (plot) provides a way to add other plots to the generated graph; see [G-3] addplot_option.
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Y axis, X axis, Titles, Legend, Overall |

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving__option).

Options for estat bdecomp

summaryonly displays the decomposition summary only.
fulldecomponly displays the results of the full decomposition only.
noheader suppresses the table header in the output.

notable suppresses the results table in the output.

graph specifies to plot the treatment-effect components against their weights.

Plot

copts (marker_options) affect the rendition of the markers for the plotted cohort coefficients, including
their style, size, and color; see [G-3] marker_options.

tnopts (marker_options) affect the rendition of the markers for the plotted coefficients for treated versus
never treated, including their style, size, and color; see [G-3] marker_options.

laopts (marker_options) affect the rendition of the markers for the plotted coefficients for later versus
always treated, including their style, size, and color; see [G-3] marker_options.

leopts (marker—_options) affect the rendition of the markers for the plotted coefficients for later versus
earlier treated, including their style, size, and color; see [G-3]| marker_options.

elopts (marker_options) affect the rendition of the markers for the plotted coefficients for earlier versus
later treated, including their style, size, and color; see [G-3] marker_options.

atetlineopts (cline_options) affect the rendition of the plotted ATET reference line, including its style,
size, and color; see [G-3] cline_options.

noatetline suppresses rendering of the ATET reference line.

Y axis, X axis, Titles, Legend, Overall W

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These

include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving_option).
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Remarks and examples

In the following, we discuss the treatment-effect decomposition approach implemented in estat
bdecomp. To see examples of estat trendplots, estat ptrends, and estat granger, see exam-
ples 1,4, 5, and 6 in [CAUSAL] didregress. An example of estat grangerplot is shown in example 7
in [CAUSAL] didregress.

A simple 2-by-2 DID design is characterized by two time periods (a period before and a period after a
treatment or intervention occurs) and two groups (a treatment and a control group). Under this design, all
treated units receive the treatment at the same time. A staggered DID design, on the other hand, involves
multiple time points at which the treatment is administered. Goodman-Bacon (2021) has shown that, in
this case, the ATET is a weighted average of all possible 2-by-2 DID estimators that compare treatment co-
horts with each other. Decomposing an overall ATET into these 2-by-2 components provides a diagnostic
tool to assess the validity of the two-way fixed-effects DID estimator implemented in didregress and
xtdidregress when treatment timing varies.

Consider the case of a DID design with two treatment times so that the data consist of three groups: an
earlier-treated group, a later-treated group, and a never-treated group. Under this scenario, there would
be four 2-by-2 comparisons. Two of these come from comparing the group that was treated first with the
never-treated group and comparing the group that was treated second with the never-treated group. The
third compares the earlier-treated group with the later-treated group (before the later-treated group was
treated). The fourth compares the later-treated group with the earlier-treated group (beginning at the point
where the earlier-treated group received treatment). This fourth comparison is of particular concern if the
2-by-2 DID estimate substantially differs from the overall ATET estimate and if the corresponding weight is
considerably large. In that case, this 2-by-2 estimate induces bias in the overall ATET estimate. The Bacon
decomposition implemented in estat bdecomp offers insight into which 2-by-2 comparisons are driving
the overall ATET estimate. With this decomposition, we can identify sources of variation that potentially
bias the overall effect estimate. In cases of suspected bias, users may consider using hdidregress or
xthdidregress to account for treatment-effect heterogeneity.

The decomposition requires that the data be strongly balanced with respect to the observed times
per unit. Specifically, units defined by the group variable that is specified in the group() option of
didregress or xtdidregress must have an equal number of observations, and observation times given
by the variable specified in the time () option of didregress or xtdidregress must be the same across
all units.

For further theoretical and empirical details, see Goodman-Bacon (2021). A summary of the Bacon
treatment-effect decomposition is provided in Baker, Larcker, and Wang (2022). Applications of the
Bacon decomposition can be found in Rabideau et al. 2021 and Strasseri, Oggenfuss, and Wolter (2022).
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b Example 1: DID treatment-effect decomposition for designs with variation in treatment
timing
We use a (fictional) dataset where the units are dog breeds for which registration numbers at the
American Kennel Club are observed over the course of 10 years. We wish to find out whether the
registration numbers change in response to a breed being featured in a widely shown movie. Here is
an excerpt of the data:
. use https://www.stata-press.com/data/r19/akc
(Fictional dog breed and AKC registration data)
. list in 981/1000, sepby(breed) abbreviate(10) noobs

year breed movie best registered
2031 01d English Sheepdog 0 0 1324
2032 01d English Sheepdog 0 0 878
2033 01d English Sheepdog 0 0 699
2034 01d English Sheepdog 0 0 645
2035 01d English Sheepdog 0 0 1762
2036 01d English Sheepdog 0 0 1182
2037  01d English Sheepdog 1 0 1816
2038 01d English Sheepdog 1 0 4171
2039 01d English Sheepdog 1 0 3755
2040 01d English Sheepdog 1 0 4054
2031 Otterhound 0 0 692
2032 Otterhound 0 0 598
2033 Otterhound 0 0 670
2034 Otterhound 0 0 1642
2035 Otterhound 0 0 1311
2036 Otterhound 0 0 572
2037 Otterhound 0 0 1167
2038 Otterhound 0 0 620
2039 Otterhound 0 0 511
2040 Otterhound 0 0 1065
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We list the data for two breeds, the Old English Sheepdog and the Otterhound. We can see that the Old
English Sheepdog is featured in a movie that is released in the year 2037 and, thus, is a treated unit. The
Otterhound breed has no such luck and belongs to the group that is never treated. Our outcome variable
registered measures the number of registrations at the American Kennel Club. We use xtdidregress
to fit a two-way fixed-effects DID model:

. Xtset breed

Panel variable: breed (balanced)

. xtdidregress (registered) (movie), group(breed) time(year)
Treatment and time information

Time variable: year

Control: movie = 0
Treatment: movie = 1
Control Treatment
Group
breed 119 22
Time
Minimum 2031 2034
Maximum 2031 2037
Difference-in-differences regression Number of obs = 1,410

Data type: Longitudinal
(Std. err. adjusted for 141 clusters in breed)

Robust
registered | Coefficient std. err. t P>|t]| [95% conf. interval]
ATET
movie
(1 vs 0) 2129.655 78.16241 27.25 0.000 1975.124 2284.186

Note: ATET estimate adjusted for panel effects and time effects.
Note: Treatment occurs at different times.
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We can see that our overall ATET estimate is around 2,130, which is to say that we expect the number
of dog registrations to increase by 2,130 if a member of their breed is featured as a movie protagonist.
We can now use estat bdecomp to decompose this number into its constituent 2-by-2 parts:

. estat bdecomp

DID treatment-effect decomposition

ATET = 2129.655 Number of obs = 1,410
Number of groups = 141
Number of cohorts = 4
ATET decomposition summary ATET component Weight
Treated vs never treated 2166.021 0.970810
Treated earlier vs later 936.70729 0.013157
Treated later vs earlier 906.60588 0.016033
Full ATET decomposition 2x2 coefficient Weight
Treated vs never treated
2034 vs never treated 1673.5688 0.157125
2036 vs never treated 1999.2515 0.140290
2037 vs never treated 2315.6702 0.673394
Treated earlier vs later
2034 vs 2036 580.59722 0.001132
2034 vs 2037 836.17778 0.008488
2036 vs 2037 1291.9333 0.003537
Treated later vs earlier
2036 vs 2034 542.825 0.001886
2037 vs 2034 831.70833 0.011318
2037 vs 2036 1448.7167 0.002829

Note: Number of cohorts includes never treated.

Note: The ATET reported by xtdidregress is a weighted average of the ATET
components. If any component is substantially different from the ATET
reported by xtdidregress and the weight is large, consider accounting
for treatment-effect heterogeneity by using xthdidregress.

In the table header, we see that we have 1,410 observations from 141 groups (breeds) and that we
have four cohorts. The four cohorts consist of groups of breeds that are treated at three different times
(2034, 2036, and 2037) and a group that is never treated. The first table shows a decomposition summary
where the estimated ATET is decomposed into components due to comparisons between treated and never
treated, between earlier treated and later treated, and between later treated and earlier treated. The results
in the second table decompose the summary results further into the individual 2-by-2 comparisons.

From the summary results, we see that the component due to comparisons between treated and never
treated is close to the overall effect estimate and that its weight is large. Specifically, the weight is around
0.97, which indicates that 97% of the overall ATET estimate is due to comparisons between treated and
never treated. The other two components are not close to the overall effect. This would be a potential
concern, especially for the later- versus earlier-treated comparisons, if the corresponding weight was
considerably large. However, the weights are small here. The later- versus earlier-treated and earlier-
versus later-treated components together account for only 3% of the overall ATET.

In the full decomposition results, we see the three components from the summary broken down further.
For example, if we look at the treated versus never-treated component, we see that around two thirds of
that component is driven by the group that received treatment last. We also see that the 2-by-2 coefficients
are increasing, which provides some indication that the treatment effect may be changing over time.
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In this example, the number of treatment times is relatively small. However, if that number is large,
it can be instructive to plot the 2-by-2 coefficients against their weights. We do this by using the graph
option of estat bdecomp. Because we do not need to see the numerical results again, we also specify
the notable and noheader options:

. estat bdecomp, graph notable noheader

Difference-in-differences treatment-effect decomposition
2500

20004 o

1500

2x2 coefficient
*

1000+

500

T

0 2 4 .6 .8
Weight

e Treated vs never treated  # Treated earlier vs later
4 Treated later vs earlier

The blue circles are the 2-by-2 coefficients from the treated versus never-treated component; the red
diamonds are the 2-by-2 coefficients from the earlier- versus later-treated component; and the green
triangles are the 2-by-2 coefficients from the later- versus earlier-treated component. The triangles and
diamonds, while being substantially different from the overall ATET (indicated by the dashed reference
line), are all very close to zero weight. This indicates that the contribution of these coefficients to the
overall ATET is negligible.

d
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Stored results

estat ptrends stores the following results for the test of linear trends in r ()

Scalars
r(N) number of observations
r(F) test statistic
r(df_r) number of degrees of freedom of the residuals for the F'distribution under H
r(p) p-value
r(df_m) number of degrees of freedom of the test for the F'distribution under H,

estat granger stores the following results for the test of treatment anticipation in r():

Scalars
r(N) number of observations
r(F) test statistic
r(df_r) number of degrees of freedom of the residuals for the F'distribution under H,
r(p) p-value
r(df_m) number of degrees of freedom of the test for the F'distribution under H,

estat grangerplot, when used with option post, stores results from the underlying regression
modeline() andr ().

estat bdecomp stores the following results in r():

Scalars
r(N_groups) number of panels
r(N_obs) number of observations
r(N_cohorts) number of cohorts
r(atet) overall ATET
r(atet_between_b) between component
r(atet_within_b) within component
r(atet_between_w) weight of between component
r(atet_within_w) weight of within component
Macros
r(ttimes) times of treatment
Matrices
r(atet_comp_b) ATET components
r(atet_comp_w) weights of ATET components
r(coefs) individual 2-by-2 coefficients
r(ugts) weights of individual 2-by-2 coefficients

Methods and formulas

The tests performed with estat ptrends and estat granger are based on augmented difference-
in-differences (DID) models. With estat ptrends, we augment the DID model with terms that capture
the differences in slopes between treated and controls. With estat granger, we augment the model by
interacting the dummy variable that marks treated observations with dummy variables for time periods
prior to the treatment to capture any potential anticipatory treatment effects.

Let’s consider the case of panel data for individuals over time, in which individuals belong to a group
s. Groups could be states, occupational categories, districts, etc. Let y,,. be the outcome of individual ¢,
who belongs to group s, at time ¢, wherei =1,... N, t=1,... ., T,ands=1,...,S5.
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We can write the DID model for such setups as follows:
Yist =Y T Ve T XiseB+ D0 + €5

Here ~; are individual fixed effects, -, are time fixed effects, x,,, are covariates, D, is a variable that
is 1 if an individual belongs to a group s that is treated at time ¢ and is 0 otherwise, and ¢,, is an error
term. The coefficient d represents the average treatment effect on the treated (ATET).

To simplify the exposition below, we rewrite the model as follows:

Yist = Vi TV T XiuB+ Dy + €,
Yist = DIDjgp + €54 (H

The linear-trends model that is used for the parallel-trends test with estat ptrends augments the
above model with two more terms. Let d, , = 1(d;, = 0) be a variable indicating pretreatment time
periods, and let d, ; = 1(d, = 1) be a variable indicating posttreatment time periods. Also, let w; be a
variable that is 1 if the individual belongs to a treated group and is 0 otherwise. The augmentation terms
then consist of two 3-way interactions between d, o, w;, and ¢, and d, ;, w;, and ¢:

Yist = DID;g + w;d, otCq + w;dy 180y + €44 @)

Under this specification, the coefficient (; captures the differences in slopes between treatment group
and control group in pretreatment periods, while ¢, captures the differences in slopes in posttreatment
periods. If ¢; is 0, the linear trends in the outcome are parallel during pretreatment periods. The same is
true for ¢, with respect to the posttreatment period; however, posttreatment differences in trends are not
relevant for assessing the parallel-trends assumption. estat ptrends uses a Wald test of (; against 0
to assess whether the linear trends are parallel prior to treatment. Thus, the null hypothesis of this test is
that the linear trends are parallel.

estat granger performs a Granger-type causality test to assess whether treatment effects are ob-
served prior to the treatment. To illustrate this, suppose the treatment took place at time t = j. We
could express D, as D, = 1(t > j)w;. The Granger-type test augments the model with counterfactual
treatment-time indicators. For example, if the treatment occurred at time j — 1, then we could construct
a new treatment as 1(¢;, > j — 1)w;, and if we have sufficient time points, we could construct another
counterfactual treatment as 1(¢;, > j — 2)w;, and so on. These terms are referred to as leads in the
DID literature. The model used by estat granger uses the model in (1) and augments it with all leads
leaving out one for identification purposes. Let .J index the time at which the treatment occurs.

<
i

Yis¢ = DID; gy + Lty > JwAj + vy 3)
J

Il
V]

The test result is then obtained by performing a joint Wald test on the coefficients A;. Thus, the null
hypothesis for this test is that the coefficients in A; are jointly 0, which is to say there are no anticipatory
effects.
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estat grangerplot fits a generalization of the DID model in (1) and plots the estimated coefficients
from this model, including their 95% confidence intervals. The model is similar to (3), but this model
parameterizes the leads differently and includes lags in addition to leads. Let I, be the time of treatment,
m < 0 be the number of time periods prior to I, ¢ > 0 be the number of periods after I, and b be the
baseline period. The model is

q
Yist =Y T +XiaB+ Z Blw Ay, + €
k=m,k+b

where
1(t, <I,+k),ifk=m
B, = 1, =1, +k),ifm<k<gq
Lty > I, +k),ifk=¢q

This yields a model with |m| leads and ¢ lags. By default, estat grangerplot uses all available leads
and lags. If, without loss of generality, we set the base to the period prior to treatment, b = —1 (the
default), then with ¢ = 1,...,T'and I, = J, a maximum of n,q, = J — 2 leads and njpog =T — J + 1
lags is available. Notice that, if all available leads and lags are used, B¥, reduces to B, = 1(t,, = I, +k)
because there are no periods before or after I, + k. With fewer than available leads and lags, that is,
] < Nyeags OF ¢ < Ty, Notice that the corresponding indicator variables capture the periods beyond
the endpoints that correspond to m and gq.

At a minimum, the model has to include a single lead. In that case, we have that m = —1 and ¢ = 0.
After omitting the base, we have that k = 0 and B, reduces to B¥, = 1(¢,, > I,). Notice that B¥,w,
now yields our original treatment indicator D_,. In other words, the model with a single lead and no lags
yields the special case of the DID model in (1). Notice also that the model in (3) is a special case, too.
It is equivalent to the model fit by estat grangerplot with all available leads and no lags. However,
(3) uses a different parameterization because the indicator variables are constructed differently. estat
grangerplot plots the coefficients A, against the corresponding time periods.

The estat trendplots command produces two plots. The first plot is simply plotting the observed
means for each treatment group at each point in time. The second plot is based on the model in (2), which
is the model used for the parallel-trends test, but this model centers the continuous time variable around
its minimum value:

Yist = DID; gy + w;d, o{t — min(?) }¢; + w;d, 1{t — min()}Cy + p;5

Centering around the minimum time value provides a common reference point at the first observed time
point such that deviations from parallelism are easily detectable. The graph then shows the predicted
values from this model, evaluated at all observed time points for each of the treatment groups and at the
means of the covariates.

While the formulas above are shown for the case of panel data, these methods work the same way for
data that consist of repeated cross-sections.
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The estat bdecomp command may be used in cases where units get treatment at different times. The
command performs a decomposition of the estimated DID treatment effect into components that come
from all possible 2-by-2 cohort comparisons. Cohorts are defined by the times of treatment administration
and also include a group of never treated and potentially a group of always treated. Cohorts are also
referred to as timing groups. estat bdecomp results are based on the derivation in Goodman-Bacon
(2021).

For a DID model without covariates, we have the two-way fixed-effects model

Yie =7 + v+ Dpd®° + ey
where PP is the overall treatment effect from the DID model. Let ¢; denote the time when unit i receives
treatment. If unit ¢ was never treated, we set {;, = U > T'and say that the unit belongs to cohort U (where
T is the latest time period for which we have data). If unit ¢ was treated in period k € {1,2,...T}, that
is, t;, = k, we say that the unit belongs to cohort k. Let K denote the set of all cohorts (including U).
5DD

Goodman-Bacon (2021) show that we can decompose the estimated into the weighted sum of the

DID coefficients that comes from all possible 2-by-2 cohort pairs,

DD __ T2%2 k S2x2,k 1 f2x2,1
6P = ZwkUdkE + Z Z [wklékl + Wiy 0 ]
EU EU ISk

where 5%62 is the coefficient from the 2-by-2 DID model that uses cohorts k and U as treatment and

control, respectively, and 5,3? 2k is the coefficient from the model that uses cohorts k and  as treatment
and control, respectively. The weights w are given by

_ (set50)* k(1 — 5,0) Dy (1 — D)

Wy = oD
Nk D,-D, 1-D,
W — [(s + 501 = D) sja(1 = s3) D, 1D,
Kl oo
.12 D, D, D
o (G 50D s (1= sy) P 2
Wy = 5D

where s; = > 1(t; = j)/N is the share of cohort j € K, s,, = s,/(s, + ;) is the relative size of
cohort a with respect to cohort b, D; = Zt 1(t > j)/T is the proportion of time spent in treatment by

cohort j € K, and VD is the sample variance of the treatment indicator demeaned with respect to both
group and time fixed effects. The weights w sum to unity: Zk#U Wiy + Zk#U Zl>k [w’,jl + wfd] = 1.

For a model that includes time-varying covariates, X,,, a similar decomposition result holds. Consider
the model
Yir = Vi + % + X B+ Dy 8PP + ¢y

where §PPIX denotes the covariate-adjusted ATET. In this case, we can decompose 6°P/* into a within and
a between component,
§PPIx — Qdp + (1 — Q)5
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To estimate the within and between components, we first fit a linear model that partials the covariates
out of D,,; that is,

Dy = XU+ dyy = Dy + dyy “4)
where 5“ and X;, are respectively the treatment indicator and the covariates demeaned with respect to

both group and time fixed effects. The resulting residuals can then be separated into a within component,
d;(1)¢> and a between component, dy,, so that d;, = d;p), + djy.-

The within component of d;, is defined as dyye = (dyy — d;) — (dy, — ), where d;; = D, — T'x;,
is the treatment status adjusted by covariates only; and d;, d,, and d,, are respectively the averages of

d;, by individual, cohort, and cohort by year. This component captures deviations of d,, from cohort
averages and cohort-by-year averages.

The between component of dy, is defined as d, = (d,, — d;) — (d, — d), where d, and d are the
averages of d,;, by year and in the whole sample, respectively.

The within and between components of the DID treatment effect, 5” and 5‘1 can be obtained by sepa-
rately regressing the outcome variable y;, on d, ikt and dkf, respectively. Thus, y;, = a,, + dl( " 6w +v,
and y;, = a, + dy; 08 + n,,. The weight Q is given by the ratio of the variances Q = V4/V4, where Vg
and V¥ are the sample variances of Ji(k)t and ci,;t, respectively.

The between component 3,? can be decomposed further into 2-by-2 components

Z Z b\x "2><2\d

1>k
where A
D >< p sp
s2x2ld _ V 5 _Vb,kléb,kl
ki ‘7
bkl
and .

| bdkl

blx 2 "bk

Wiy = (s, + 1) 7d

In the formulas above, ‘7,{1 and ‘7bdkz are the sample variances of de in the whole sample and in the
subsample consisting of cohorts k and [, respectively. ‘7}5 and ‘A/bp 1, are the sample variances of 5”
and p,,, respectively, in the subsample consisting of cohorts &k and I. Finally, 52” and gg’kl are the

coefficients from a regression of y;, on Dit and from a regression of y;, on p,;, respectively, in the
subsample consisting of cohorts & and /.

Thus, the full decomposition for a DID specification with controls is

5DDIx _ 5p+ 1-0Q ZZ b\x*2x2|d

1>k
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Description

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs) from observational data when treatment assignment
is correlated with the potential outcomes. It allows for continuous, binary, count, fractional, and non-
negative outcomes and requires a binary treatment. To control for the endogeneity of the treatment
assignment, the estimator includes residuals from the treatment model in the models for the potential
outcomes, known as a control-function approach.

Quick start

ATE of binary treatment treat using a linear model for outcome y1 on x and the residuals from a probit
model for treat on x and z

eteffects (y1 x) (treat x z)

Same as above, but estimate ATET
eteffects (y1 x) (treat xz), atet

Same as above, but estimate POMs

eteffects (y1 x) (treat x z), pomeans

Same as above, and show parameters from auxiliary equations

eteffects (y1 x) (treat x z), pomeans aequations

ATE of treat using an exponential-mean model for y1

eteffects (y1 x, exponential) (treat x z)

Same as above, but for count outcome y2

eteffects (y2 x, exponential) (treat x z)

Same as above, but use a probit model for binary outcome y3
eteffects (y3 x, probit) (treat x z)

Same as above, but use a fractional probit model for y4 ranging from 0 to 1
eteffects (y4 x, fractional) (treat x z)

173
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Menu
Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Continu-
ous outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Binary
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Count
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Fractional
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Nonneg-
ative outcomes

Syntax

eteffects (ovar omvarlist [ , omodel noconstant ])

(tvar tmvarlist |, noconstant |) [if | [in] [weight] [, stat options |

ovar is the depvar of the outcome model.
omvarlist is the list of exogenous indepvars in the outcome model.
tvar is the binary treatment variable.

tmvarlist is the list of covariates that predict treatment assignment.

omodel Description
Model
linear linear outcome model; the default
fractional fractional probit outcome model
probit probit outcome model
exponential exponential-mean outcome model
stat Description
Model
ate estimate average treatment effect in population; the default
atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description
Model
noconstant suppress constant term
SE/Robust
vce (veetype) veetype may be robust, cluster clustvar, bootstrap, or
jackknife
Reporting
level(#) set confidence level; default is 1evel (95)
aequations display auxiliary-equation results

Wsplay_options

Maximization
maximize_options

Advanced
pstolerance(#)
osample (newvar)

coeflegend

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

control the maximization process; seldom used
set tolerance for overlap assumption

generate newvar to mark observations that violate the overlap assumption

display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ [odel

noconstant; see [R] Estimation options.

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] Estimation options.
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aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-
played. By default, the results for these auxiliary parameters are not displayed.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (7, fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: iterate (#), [no|log, and from(init_specs); see [R] Maximize. These options are
seldom used.

init_specs is one of
matname [ , skip copy]

#[,#...], copy

Advanced

pstolerance (#) specifies the tolerance used to check the overlap assumption. The default value is
pstolerance(le-5). eteffects will exit with an error if an observation has an estimated propen-
sity score smaller than that specified by pstolerance().

osample (newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

The following option is available with eteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

If you are unfamiliar with treatment-effects estimators for observational data or the teffects com-
mands, we recommend that you look at [CAUSAL] teffects intro. For the intuition behind some of the
concepts discussed below, we recommend that you read Defining treatment effects in [CAUSAL] teffects
intro advanced.

The estimators implemented in eteffects extend the regression adjustment (RA) estimators im-
plemented in teffects ra to allow for endogenous treatments, that is, when treatment assignment is
not independent of outcomes. This endogeneity is a violation of the conditional mean independence
assumption used by teffects ra, as discussed in The potential-outcome model in [CAUSAL] teffects
intro advanced.

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated
(ATET), and the potential-outcome means (POMs). It uses a linear, a probit, a fractional probit, or an
exponential-mean model for the potential outcomes and a probit model for treatment assignment. After
conditioning on the observable covariates, eteffects allows some remaining unobservable components
to affect both treatment assignment and the potential outcomes. The treatment assignment process is
endogenous because these unobservable components affect both treatment assignment and the potential
outcomes.
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To control for the endogeneity of the treatment assignment, eteffects uses a control-function ap-
proach. This method controls for endogeneity by including the residuals from the treatment-assignment
model as a regressor in the models for the potential outcome. The implementation in eteffects follows
Wooldridge (2010), who provides an excellent discussion of the control-function approach that addresses
endogeneity problems in a treatment-effects context.

The control-function approach estimates the parameters of the conditional means of the potential
outcomes. Sample averages of the conditional means are used to estimate the unconditional ATE, ATET,
or POMs. This method is known as RA.

Taken collectively, the estimators implemented in eteffects are control-function RA estimators. See
Methods and formulas below for details about the estimation procedure.

b Example 1: Linear outcome estimates for ATE

Suppose we want to know the effect of a mother smoking while pregnant on the birthweight of her
infant. We use an extract from Cattaneo (2010) in which bweight records the baby’s birthweight and
mbsmoke is the variable (0 or 1) indicating whether a mother smoked while pregnant.

We may believe that birthweight (the potential outcome) is influenced by whether the mother had
a prenatal exam in the first trimester, whether the mother is married, the mother’s age, whether this is
the first birth, and the education level of the father. We may also believe that the smoking decision (the
treatment) is influenced by the mother’s marital status, the education level of the mother, her age, whether
she had a prenatal exam in the first trimester, and whether this baby is her first baby.

Thus we condition on different sets of covariates in the models for treatment assignment and the
potential outcomes. In the probit model for smoking status (mbsmoke), we condition on marital status
(mmarried), age (mage), mother’s education level (medu), father’s education level (fedu), and whether
it was the mother’s first baby (fbaby). We model birthweight (bweight) as a linear function of whether
the mother had a first-trimester prenatal exam (prenatall), mmarried, mage, and fbaby. We can
estimate the ATE of smoking status using one of the teffects estimators if we believe that there are
no unobservable components that affect both the decision to smoke while pregnant and the potential
birthweights.

If we believe there is some unobservable factor that affects both assignment to treatment and the
potential outcome, we must select another estimator. For example, we do not observe a mother’s health
consciousness, which affects both the smoking decision and each potential birthweight through other
behaviors such as intake of prenatal vitamins. Under these assumptions, the estimators in eteffects
consistently estimate the ATE, but the estimators in [CAUSAL] teffects yield inconsistent estimates.
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. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)

. eteffects (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration 0: EE criterion = 4.739e-24
Iteration 1: EE criterion = 2.524e-25

Endogenous treatment-effects estimation Number of obs = 4,642

Outcome model: linear
Treatment model: probit

Robust
bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
ATE
mbsmoke
(Smoker
vs
Nonsmoker) -455.9119 212.4393 -2.15 0.032 -872.2853 -39.53852
POmean
mbsmoke
Nonsmoker 3437.964 31.21145 110.15 0.000 3376.791 3499.138

When no mother smokes, the average birthweight is 3,438 grams. The average birthweight is 456
grams less when all mothers smoke than when no mother smokes.

We can compare these results with those obtained if we ignore the endogeneity of the smoking deci-
sion. Below we estimate the ATE using the inverse-probability-weighted regression-adjustment estimator
in [CAUSAL] teffects ipwra.

. teffects ipwra (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)

Iteration 0: EE criterion = 3.036e-22
Iteration 1: EE criterion = 3.755e-26

Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit
Robust
bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
ATE
mbsmoke
(Smoker
vs
Nonsmoker) -233.6835 25.07695 -9.32 0.000 -282.8335 -184.5336
POmean
mbsmoke
Nonsmoker 3403.191  9.529709  357.11  0.000 3384.513 3421.869

In magnitude, the estimated ATE is more than half the estimate that allows for endogenous treatment
assignment. If there is endogeneity, disregarding it underestimates the effect of smoking on birthweight.
We show how to test for endogeneity in example 1 of [CAUSAL] eteffects postestimation.

N
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b Example 2: Estimating the ATET

Continuing example 1, we can use the atet option to estimate the ATET.

. eteffects (bweight i.prenatall i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu), atet

Iteration 0: EE criterion = 4.659e-24
Iteration 1: EE criterion = 1.479e-25

Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model: linear
Treatment model: probit

Robust
bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
ATET
mbsmoke
(Smoker
Vs
Nonsmoker) -409.8527 161.4816 -2.54 0.011 -726.3507 -93.35466
POmean
mbsmoke
Nonsmoker 3547.512 160.0595 22.16 0.000 3233.801 3861.223

In the population of mothers who smoke, the average infant birthweight would be 3,548 grams if none
of these mothers smoked. For the mothers who smoke, the average infant birthweight is 410 grams less
than if none of these mothers smoked.

d
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b Example 3: Exponential-mean outcomes

We estimate the ATE of living in an urban area on monthly earnings (wage), using a subset of the
National Longitudinal Survey in 1980 found in Wooldridge (2010). We assume that once we condition
on work experience (exper), whether education level attained is college or higher (college), and IQ
(iq9), individual wages follow an exponential mean. The variables used to predict residence in an urban
area (urban) are college and whether the respondent’s father attained a bachelor’s degree or higher
(fcollege).

. use https://www.stata-press.com/data/r19/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

Iteration 0: EE criterion = 2.903e-25
Iteration 1: EE criterion = 2.903e-25 (backed up)

Endogenous treatment-effects estimation Number of obs = 935
Outcome model: exponential
Treatment model: probit

Robust
wage | Coefficient std. err. z P>|z]| [95% conf. intervall
ATE
urban
(1 vs 0) 481.0465 31.74882 15.15 0.000 418.82 543.2731
POmean
urban
0 233.8083 13.51028 17.31 0.000 207.3286 260.288

When everyone lives outside urban areas, wages are $234 a month on average. Wages are $481 a
month greater, on average, when everyone lives in urban areas.

d
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Stored results

eteffects stores the following in e ():

Scalars
e () number of observations
e(nj) number of observations for treatment level j
e(k_eq) number of equations in e (b)
e(k_levels) number of levels in treatment variable
e (rank) rank of e (V)
e(converged) 1 if converged, O otherwise
Macros
e(cmd) eteffects
e(cmdline) command as typed
e(depvar) name of outcome variable
e(tvar) name of treatment variable
e (omodel) fractional, linear, probit, or exponential
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(tlevels) levels of treatment variable
e(vce) veetype specified in vece ()
e(vcetype) title used to label Std. err.
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas

The treatment-effects models considered in eteffects are given by

Yio = E(y0/%;) + €50 1

Yin = E(yalx;) + e, 2
t;=Elz) +v; (3)

Yi =ty + (L —1)y0 “)
E(e;lx;,2;) = E(€;lz;) = E(eylx;) =0 for je{0,1} 6)
E(e,lt)#0 for je{0,1} 6)

where the subscript ¢ denotes individual level observations, y,; is the potential outcome of receiving
the treatment, y,, is the potential outcome when the treatment is not received, ¢; is the observed binary
treatment, and y;, is the observed outcome. Each one of the potential outcomes is determined by its
expected value conditional on a set of regressors X; and an unobserved random component ¢, ;, for j €
{0,1}. Similarly, the treatment is given by its expectation conditional on a set of regressors z,, which
does not need to differ from x;, and an unobserved component v;.

Equations (1)—(5) describe the parametric treatment-effects models in [CAUSAL] teffects. Equation
(6) adds endogeneity to the framework. It states that the unobservables in the potential-outcome equations
are correlated to treatment status. For our birthweight example, this would happen if mothers who do not
smoke are more health conscious than those who smoke and if we do not observe health awareness in our
data. If we do not observe health awareness, the decision to smoke or not to smoke is not independent
of the infant’s birthweight.

Equations (3), (5), and (6) are the basis of the control-function estimator implemented by eteffects.
Equation (5) states that the unobserved components in the potential outcome are independent of z;. There-
fore, the correlation between ¢, and the unobserved components must be equivalent to the correlation
between €;; and v;. Another way of stating this is

from (3) E (e;lt;) = E (e E(tlz;) +v;)
from (5) =K (fz‘j\”i)
= Viﬁgj

We fit (3) using a probit estimator. We then obtain ; as the difference between the treatment and our
estimate of E (t;|z;) and use this statistic to compute an estimate of E (y;;|x;,v;,t;) for j € {0,1}. If
the outcome is linear, for instance,

For the probit and exponential-mean cases, respectively, we have the following:

B (y;jlx;vipt; =) = @ <x;’61j + ViﬁZj) ®)
E (yy|x;,vi,t; = j) = exp (X;'Blj+yiﬁ2j) ©)
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The parameters of (3) and (7)—(9), and the ATE, ATET, and POMs are estimated using the gener-
alized method of moments (GMM). The moment equations used in GMM are the sample analogs of
E{wie;(0)} = 0, where w;, are the instruments, ¢,(¢) are residuals, and 6 are the parameters of the
model (see [R] gmm). The moment conditions in the GMM estimation for the linear model are given by

1 ~ ~

n 2 Xi(y; —XiBy; + viBy,)ti = 0 (10)

iiX(y —XiB,, + %B,)(1—1,) =0 (1n
LS {(xByg + 1) — PO} =0

i; {(xiByy + 7B, ) — POMD — ATE} = 0 (13)

where U, = t, — ® (z;7), n is the number of observations, and Bll , Blo’ 521 , Bzo’ 7, ATE, and POMO are
the parameters. If we want to estimate the ATET, we replace (13) with

1< L5 s NN —
— X; + v; — —POMO0— — ATET p =0
13 { (i +7,,) 2 — o0 -

and if we want to estimate the potential-outcome means, we replace (13) with
1< ~ 5
E;{(xiﬁu +D;35,) —POM1 } = 0 (14)

where ATET and POMI are the parameters of the model, and 7, is the number of treated units.

For the exponential-mean outcome model, we replace x;BU + Di,BQj with exp(xgﬁlj + Dlﬁ%) to
obtain the residual equations in (10)—(14). For the probit outcome model, we replace (10) and (11) with
the following:

oo @ (Xéﬁlj + DiBZj) ¢ (Xﬁu + Di32j> }
SN x Ay 251y, J ZUA
; o {qu) (X'zﬁlj + ’721323') ( ! )1 -2 (x;ﬁlj + I;i'BQj)
S ¢ (X;@ -+ 0,6, ) ¢ (X;BI + f’z@) }
= L—t)x, <y, = = (1—y, =8 < =0
n ;( » {y ® (xiB,; + 7iBy) R (xiBy; + 7iy,)

For the remaining equations, x;/ﬂ\lj + f/iﬁ%. is replaced with <I>(x;f31j + l/i/ﬁ\%). The fractional probit
model uses the same moment conditions as the probit model.
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eteffects postestimation — Postestimation tools for eteffects

Postestimation commands predict estat Remarks and examples Also see

Postestimation commands

The following postestimation command is of special interest after eteffects:

Command

Description

estat endogenous

perform tests of endogeneity

The following standard postestimation commands are available after eteffects:

Command

Description

estat summarize
estat vce
estimates
etable

hausman

lincom

nlcom

predict
predictnl
test
testnl

summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
cataloging estimation results

table of estimation results

Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations of
parameters

point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

treatment effects, conditional means at treatment, propensity scores, etc.

point estimates, standard errors, testing, and inference for generalized predictions
Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

185
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predict

Description for predict

predict creates a new variable containing predictions such as treatment effects, conditional means,
propensity scores, and linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [lype] {Stub* | newvar | newvarlist} [lf] [in} [ , Statistic mvel]

predict [nype] stub* [if ] [in], scores

statistic Description
Main
te treatment effect; the default
cmean conditional mean at treatment level
ps propensity score
xb linear prediction
psxb linear prediction for propensity score
xbtotal linear prediction, using residuals from treatment model

Specify one new variable with te; specify one or two new variables with cmean, ps, and xb.

Options for predict

Main

te, the default, calculates the treatment effect.

cmean calculates the conditional mean for the control group. To also obtain the conditional mean for
the treatment group, specify two variables. If you want the conditional mean for only the treatment
group, specify the tlevel option.

ps calculates the probability of being in the control group. To also obtain the probability of being in the
treatment group, specify two variables. If you want the probability of being in the treatment group
only, specify the tlevel option.

xb calculates the linear prediction for the control group. To also obtain the linear prediction for the
treatment group, specify two variables. If you want the linear prediction for only the treatment group,
specify the tlevel option.

psxb calculates the linear prediction for the propensity score.

xbtotal calculates the linear prediction for the control group, including the residuals from the treatment
model as regressors. To also obtain the linear prediction for the treatment group, specify two variables.
If you want the linear prediction, including the residuals from the treatment model as regressors, only
for the treatment group, specify the t1level option.
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tlevel specifies that the statistic be calculated for the treatment group; the default is to calculate the
statistic for the control group.

scores calculates the score variables. For eteffects, this is the same as the residuals in the moment
conditions used by the generalized method of moments (see [R] gmm). For the average treatment
effect, the average treatment effect on the treated, and the potential-outcome means, parameter-level
scores are computed. For the auxiliary equations, equation-level scores are computed.

estat

Description for estat

estat endogenous performs a Wald test to determine whether the estimated correlations between
the treatment-assignment and potential-outcome models are different from zero. The null hypothesis is
that the correlations are jointly zero. Rejection of the null hypothesis suggests endogeneity.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat endogenous

collect is allowed with estat endogenous; see [U] 11.1.10 Prefix commands.

Remarks and examples

b Example 1: Testing for endogeneity

In example 3 of [CAUSAL] eteffects, endogeneity could arise if unobservable factors that determine
wages are correlated with the decision to live in an urban area. Ifthere is no endogeneity, we would prefer
to use one of the teffects estimators because they will give us the more efficient standard errors. The
control-function approach used by eteffects allows us to test for endogeneity.

The control-function approach estimates the correlation between the unobservables of the treatment-
assignment and potential-outcome models. If there is no correlation between the unobservables, then
there is no endogeneity. We test for correlation, and thus for endogeneity, by typing

. use https://www.stata-press.com/data/r19/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)

(output omitted)
. estat endogenous

Test of endogeneity
HO: Treatment and outcome unobservables are uncorrelated

chi2( 2) 275.36
Prob > chi2 0.0000
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We reject the null hypothesis of no endogeneity. This suggests that unobservable factors that deter-
mine wages mediate the decision to live in an urban area.

N

Q Technical note

The estimated correlations between the unobservables of the treatment-assignment and potential-
outcome models are auxiliary parameters. They appear under the headings TEOMO and TEOM1, which
refer to treatment residuals (TE) for outcome model 0 (0MO) and outcome model 1 (0M1), when the option
aequations is specified.

For the model in example 3 of [CAUSAL] eteffects with the aequations option, the results are the
following:

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege), aequations

EE criterion = 2.903e-25
EE criterion = 2.903e-25
Endogenous treatment-effects estimation

Outcome model: exponential
Treatment model: probit

Iteration O:

Iteration 1: (backed up)

Number of obs = 935

Robust
wage | Coefficient std. err. z P>|z]| [95% conf. interval]
ATE
urban
(1 vs 0) 481.0465  31.74882 15.15  0.000 418.82 543.2731
POmean
urban
0 233.8083  13.51028 17.31  0.000 207.3286 260.288
TME1
college
1 .195811 .1012119 1.93 0.053 -.0025607 .3941827
fcollege .1069748  .0992075 1.08 0.281 -.0874683 .3014179
_cons .498012 .056408 8.83 0.000 .3874543 .6085698
OMEO
exper .0193244  .0085633 2.26 0.024 .0025405 .0361082
iq .0099473  .0036949 2.69 0.007 .0027053 .0171892
college
1 -.3718598  .2678636 -1.39 0.165 -.8968629 .15631433
OME1
exper .0238566 .017597 1.36  0.175 -.0106329 .058346
iq .0148581 .0113311 1.31  0.190 -.0073505 .0370667
college
1 1.236947  .6401383 1.93 0.053 -.0177013 2.491595
TEOMO
_cons -7.771932  .6406251 -12.13  0.000 -9.027534 -6.51633
TEOM1
_cons 16.7739  4.777519 3.51  0.000 7.410131 26.13766
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Among other things, we can use these correlations to test the joint significance of the coefficients
on the residuals from the treatment-assignment models. This is equivalent to the endogeneity test in

example 1. We type
. test [TEOMO] _cons [TEOM1]_cons

( 1) [TEOMO] _cons = 0
( 2) [TEOM1] _cons = 0
chi2( 2) = 275.36
Prob > chi2 = 0.0000

Also see
[CAUSAL] eteffects — Endogenous treatment-effects estimation

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

etpoisson estimates the parameters of a Poisson regression model in which one of the regressors is
an endogenous binary treatment. Both the average treatment effect and the average treatment effect on
the treated can be estimated with etpoisson.

Quick start

Poisson model of y on x and endogenous binary treatment treat modeled by x and w

etpoisson y x, treat(treat =x w)

With robust standard errors

etpoisson y x, treat(treat = x w) vce(robust)

Average treatment effect after etpoisson with the required vce (robust) option

margins r.treat, vce(unconditional)

Same as above, but calculate average treatment effect on the treated

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu

Statistics > Causal inference/treatment effects > Endogenous treatment > Maximum likelihood estimator > Count
outcomes

190
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Syntax
etpoisson depvar [indepvars) [if ] [in] [weight] ,

treat (depvar, = indepvars, | , noconstant offset (varname,) |) |options |

options Description

Model

*treat() equation for treatment effects
noconstant suppress constant term

include In(varname,) in model with coefficient constrained to 1
include varname, in model with coefficient constrained to 1
apply specified linear constraints

exposure (varname,)
offset (varname,)
constraints (constraints)

SE/Robust
vce (veetype) veetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife
Reporting
level(#) set confidence level; default is 1evel (95)
irr report incidence-rate ratios
nocnsreport do not display constraints

display_options

Integration
intpoints (#)

Maximization
maximize_options

collinear
coeflegend

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

use # Gauss—Hermite quadrature points; default is intpoints(24)
control the maximization process; seldom used

keep collinear variables
display legend instead of statistics

*treat () is required.

The full specification is treat (depvar, = indepvars, |, noconstant offset(varname,) ]).

indepvars and indepvars, may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, depvar,, indepvars, and indepvars; may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayesboot, bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

vce () and weights are not allowed with the svy prefix; see [SVY] svy.

fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.



etpoisson — Poisson regression with endogenous treatment effects 192

Options
Model

treat (depvar, = indepvars, | , noconstant offset (varname,) |) specifies the variables and options
for the treatment equation. It is an integral part of specifying a treatment-effects model and is required.

The indicator of treatment, depvar,, should be coded as 0 or 1.

noconstant, exposure (varname,), offset (varname,), constraints (constraints); see [R] Esti-
mation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vce_option.

Reporting

level (#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, e’ rather than B;. Stan-
dard errors and confidence intervals are similarly transformed. This option affects how results are
displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-
ing previously estimated results.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fmt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intpoints(#) specifies the number of integration points to use for integration by quadrature. The
default is intpoints(24); the maximum is intpoints(128). Increasing this value improves the
accuracy but also increases computation time. Computation time is roughly proportional to its value.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg) .

The following options are available with etpoisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples

Remarks are presented under the following headings:

Overview

Basic example

Average treatment effect (ATE)

Average treatment effect on the treated (ATET)

Overview

etpoisson estimates the parameters of a Poisson regression model that includes an endogenous
binary-treatment variable. The dependent variable must be a Poisson distributed count. The parame-
ters estimated by etpoisson can be used to estimate the average treatment effect (ATE) and average
treatment effect on the treated (ATET).

We call the model fit by etpoisson an endogenous treatment-regression model, although it is also
known as an endogenous binary-variable model or as an endogenous dummy-variable model. The
endogenous treatment-regression model fit by etpoisson is a specific endogenous treatment-effects
model; it uses a nonlinear model for the outcome and a constrained normal distribution to model the
deviation from the conditional independence assumption imposed by the estimators implemented by
teffects; see [CAUSAL] teffects intro. In treatment-effects jargon, the endogenous binary-variable
model fit by etpoisson is a nonlinear potential-outcome model that allows for a specific correlation
structure between the unobservables that affect the treatment and the unobservables that affect the po-
tential outcomes. See [CAUSAL] etregress for an estimator that allows for a linear-outcome model and a
similar model for the endogeneity of the treatment.

More formally, we have an equation for outcome y; and an equation for treatment ¢,
E(y;lx;,t;,¢;) = exp(x,;8+dt; +¢;)

. L, wiy+u; >0

J 0, otherwise

The X; are the covariates used to model the outcome, w, are the covariates used to model treatment
assignment, and error terms ¢; and u; are bivariate normal with mean 0 and covariance matrix

o op

op 1
The covariates x; and w; are unrelated to the error terms; in other words, they are exogenous. Note that
y; may be a count or continuous and nonnegative in this specification.

Terza (1998) describes the maximum likelihood estimator used in etpoisson. Terza (1998) catego-
rized the model fit by etpoisson as an endogenous-switching model. These models involve a binary
switch that is endogenous for the outcome. Calculation of the maximum likelihood estimate involves
numeric approximation of integrals via Gauss—Hermite quadrature. This is computationally intensive,
but the computational costs are reasonable on modern computers.
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Basic example

b Example 1

In this example, we observe a simulated random sample of 5,000 households. The outcome of interest
is the number of trips taken by members of the household in the 24-hour period immediately prior to the
interview time.

We have fictional household level data on the following variables: number of trips taken in the past
24 hours (trips), distance to the central business district from the household (cbd), distance from the
household to a public transit node (ptn), an indicator of whether there is a full-time worker in the house-
hold (worker), an indicator of whether the examined period is on a weekend (weekend), the ratio of the
household income to the median income of the census tract (realinc), and an indicator of car owner-
ship (owncar). We suspect that unobservables that affect the number of trips also affect the household’s
propensity to own a car.

We use etpoisson to estimate the parameters of a Poisson regression model for the number of trips
with car ownership as an endogenous treatment. In subsequent examples, we will use margins (see
[R] margins) to estimate the ATE and the ATET of car ownership on the number of trips taken by the
household. In the etpoisson command below, we specify the vce (robust) option because we need to
specify vce (unconditional) when we use margins later.



etpoisson — Poisson regression with endogenous treatment effects 195

. use https://www.stata-press.com/data/r19/tripl
(Household trips, car ownership)

. etpoisson trips cbd ptn worker weekend,
> treat(owncar = cbd ptn worker realinc) vce(robust)

Iteration 0: Log pseudolikelihood = -14845.147 (not concave)
Iteration 1: Log pseudolikelihood = -14562.997 (not concave)
Iteration 2: Log pseudolikelihood = -13655.592 (not concave)
Iteration 3: Log pseudolikelihood = -12847.219 (not concave)
Iteration 4: Log pseudolikelihood = -12566.037
Iteration 5: Log pseudolikelihood = -12440.974
Iteration 6: Log pseudolikelihood = -12413.485
Iteration 7: Log pseudolikelihood = -12412.699
Iteration 8: Log pseudolikelihood = -12412.696
Iteration 9: Log pseudolikelihood = -12412.696
Poisson regression with endogenous treatment Number of obs = 5,000
(24 quadrature points) Wald chi2(5) = 397.94
Log pseudolikelihood = -12412.696 Prob > chi2 = 0.0000
Robust
Coefficient std. err. z P>|z]| [95% conf. interval]
trips
cbd -.0100919 .0020071 -5.03 0.000 -.0140258 -.006158
ptn -.0204038  .0020289 -10.06  0.000 -.0243805 -.0164272
worker .692301 .0548559 12.62  0.000 .5847854 .7998166
weekend .0930517 .034538 2.69 0.007 .0253585 .160745
1.owncar .5264713  .1124157 4.68 0.000 .3061406 .746802
_cons -.2340772 .0810812 -2.89 0.004 -.3929934 -.0751609
owncar
cbd .007218 .00239 3.02 0.003 .0025337 .0119023
ptn .0084769 .0024518 3.46  0.001 .0036714 .0132824
worker .543643  .0504267 10.78  0.000 .4448085 .6424774
realinc .176479 .0108746 16.23  0.000 .1551652 .1977928
_cons -.4611246 .0592161 -7.79  0.000 -.5771859  -.3450633
/athrho .5741169 .0957832 5.99  0.000 .3863852 .7618486
/lnsigma -.2182037  .0256281 -8.51  0.000 -.2684338 -.1679735
rho .5183763  .0700449 .3682398 .6421645
sigma .8039617 .020604 . 764576 .8453762
Wald test of indep. egns. (rho = 0): chi2(1) = 35.93 Prob > chi2 = 0.0000

The Wald test in the header is highly significant, indicating a good model fit. All the covariates are
statistically significant, and the Wald test in the footer indicates that we can reject the null hypothesis of
no correlation between the treatment errors and the outcome errors.

We can interpret the coefficient on 1.owncar as the logarithm of the ratio of the treatment potential-
outcome mean to the control potential-outcome mean. The treatment variable did not interact with any
of the outcome covariates, so the effect of each regressor is the same in the two regimes and will cancel
from the ratio of potential-outcome means. This means the ratio is equivalent to the exponentiated coef-
ficient on 1. owncar. After discussing the other parameters, we will use 1incom to obtain this ratio. See
[R] lincom for more information.

The estimated correlation between the treatment-assignment errors and the outcome errors is 0.518,
indicating that unobservables that increase the number of trips tend to occur with unobservables that
increase the chance of car ownership.
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The results for the two ancillary parameters require explanation. etpoisson estimates the inverse
hyperbolic tangent of p,
Lto)
1-p
and Ino rather than p and . For numerical stability during optimization, etpoisson does not directly
estimate p and o.

1
atanh p = 5 ln(

Now we use lincom and the eform option to estimate the exponentiated coefficient for 1.owncar.
This corresponds to the ratio of the treatment regime potential-outcome mean to the control regime
potential-outcome mean.

. lincom [trips]_bl[1l.owncar], eform

(1) [trips]i.owncar = 0

exp(b)  Std. err. z P>|z| [95% conf. intervall

(@D) 1.692948 .1903139 4.68 0.000 1.358173 2.110241

The potential-outcome mean for the treatment regime is 1.69 times the potential-outcome mean for
the control regime. So the average number of trips in the treatment regime is over one and a half times
the average number of trips in the control regime.

By interacting the treatment, owncar, with the other regressors, we could estimate different coeffi-
cients for the regressors in the treatment and control regimes. In the current model, there are no treatment
interactions, so the coefficients are the same in each regime.

N

Average treatment effect (ATE)

The parameter estimates from etpoisson can be used by margins to estimate the ATE, the average
difference of the treatment and control potential outcomes.

b Example 2

Continuing with example 1, we use margins to estimate the ATE of car ownership on the number of
trips taken in a 24-hour period.

We can estimate the ATE of car ownership by using the potential-outcome means obtained through
the predict, pomean command and the margins command; see Methods and formulas below and
[CAUSAL] etpoisson postestimation for more details about the use of predict after etpoisson.
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The r. notation indicates that the potential-outcome means for treatment and control will be con-
trasted. We specify the contrast (nowald) option to suppress the Wald tests that margins displays by
default for contrasts.

. margins r.owncar, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 5,000

Expression: Potential-outcome mean, predict()

Unconditional
Contrast  std. err. [95% conf. intervall
owncar
(1 vs 0) 1.058914 .1922909 .6820309 1.435797

The estimated ATE of car ownership on the number of trips taken is 1.06. The average household will
take 1.06 more trips when it owns a car.

N

Average treatment effect on the treated (ATET)

The parameter estimates from etpoisson can be used by margins to estimate the ATET, the average
difference of the treatment and control potential outcomes in the treated population.

b Example 3

Continuing with the previous example, we use margins to estimate the ATET of car ownership on the
number of trips taken in a 24-hour period.

We can estimate the ATET of car ownership by using the conditional treatment effect (conditional
on exogenous covariates and treatment level) obtained through the predict, cte command and the
margins command; see Methods and formulas below and [CAUSAL] etpoisson postestimation for more
details about the use of predict after etpoisson.

We estimate the ATET with margins. We specify cte in the predict () option. Estimation is re-
stricted to the treated subpopulation by specifying owncar in the subpop () option.

. margins, predict(cte) vce(unconditional) subpop(owncar)

Predictive margins Number of obs = 5,000
Subpop. no. obs = 3,504
Expression: Conditional treatment effect, predict(cte)
Unconditional
Margin std. err. z P>|z| [95% conf. intervall
_cons 1.251971 .2059201 6.08 0.000 .8483747 1.655567

The estimated ATET of car ownership on the number of trips taken is 1.25. Thus the average household
in the treated population will take 1.25 more trips than it would if it did not own a car. This number is
higher than the ATE. In this model, the ATE and ATET will only coincide when there is no correlation be-
tween the treatment errors and outcome errors and the exogenous covariates x have the same distribution
in the general population and treated subpopulation. See Methods and formulas for more details.

d
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Stored results

etpoisson stores the following in e ():

e(converged)

e(technique)
e(properties)
e(predict)
e(marginsok)
e(asbalanced)
e(asobserved)

Scalars
e () number of observations
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) 2
e(chi2_c) X2 for comparison, p = 0 test
e(n_quad) number of quadrature points
e(p) p-value for model test
e(p—c) p-value for comparison test
e(rank) rank of e (V)
e(ic) number of iterations
e(rc) return code

1 if converged, 0 otherwise

Macros
e(cmd) etpoisson
e(cmdline) command as typed
e(depvar) name of dependent variable
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(clustvar) name of cluster variable
e(offsetl) offset for regression equation
e(offset2) offset for treatment equation
e(chi2type) Wald; type of model x? test
e(chi2_ct) Wald; type of comparison x? test
e(vce) veetype specified in vece ()
e(vcetype) title used to label Std. err.
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e (user) name of likelihood-evaluator program

maximization technique

bV

program used to implement predict
predictions allowed by margins

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(\) variance—covariance matrix of the estimators
e (V_modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r () :

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

Terza (1998) derives the maximum likelihood estimator implemented here. We provide some details
of the derivation and then explain how the model is nested in a more general potential-outcomes model.
Then the ATE and ATET are derived.

Let x; be the covariates used to model the outcome, and let w; be the covariates used to model treat-
ment as51gnment Define z; = (w,,x;). The vector z; contams all the exogenous covariates in the
model. When offsets 0? are used in the outcome Varlable equation, the following formulas apply with
x;/3 changed to x,3 + of . Similarly, when offsets 0;- are used in the endogenous treatment equation, the
following formulas apply with w,~ changed to w;~ + o}. If offsets are used in either equation, they are
included in the vector of exogenous covariates z;.

For treatment ¢ ; and ¢;, outcome y; of this model has conditional mean

i %5
E(y;lx;,t;,€;) = exp(x;8+ dt; +¢;) (1)
The probability density function of y; for this model, conditioned on treatment ¢, z;, and €, is given

FERE
by
exp{—exp(x;8+ 6t; + ¢;) }{ exp(x;8 + 6t + ;) }¥i

yj!

fyjlzj.t,€5) =
The treatment ¢, is determined by

b 1, ifw~N+u; >0
J 0, otherwise

The error terms €; and u, are bivariate normal with mean zero and covariance matrix
o op
op 1

Conditional on €, u; is normal with mean ¢;p/o and variance (1 — p?); thus we obtain the following
conditional probability density for ¢,

_ W+ (p/o)e; B B W+ (p/o)e;
- [EI) L fo o]

® denotes the standard normal cumulative distribution function. This leads to the following joint density
ofy;, t;, and €;:
f(ywtﬁey‘zy) (yj|z_}7 7 ]) (t |Z_]7 ])f(e )
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The density of y; and ¢;, conditioned on z,, is obtained by integrating the above with respect to €;.

Recall that €; is normal with mean 0 and variance o2.

St = [ Syt )Ptz ) exp{ (m)}d

f(y;,t;|z;) cannot be evaluated in a closed form. We change the variable of integration from ¢; to
n; = ej/(ax/i), which yields

(y]7 t]|z / f(yj‘zj7 R fgn]) (t]|zjv \6077]) eXp(-T]?) dnj

We approximate this integral by Gauss—Hermite quadrature. Observing a sample of ¢, y;, and z;, we
calculate the log likelihood as the following:

InL = ij ln{f(yj7tj|zj)}
Jj=1

The w, terms denote optional weights.

In the maximum likelihood estimation, o and p are not directly estimated. Directly estimated are In o

and atanh p:
1 1
atanh p = — ln<ﬁ>
2 1—0p

Now we present formulas for the ATE and ATET. First, we nest the endogenous-treatment Poisson re-
gression model in a potential-outcome model. A potential-outcome model specifies what each individual
would obtain in each treatment level.

A potential-outcome model that nests the endogenous-treatment Poisson regression fit by etpoisson
is
E(yoj\xj,e») = exp(x; 3, + €o;)
(ylj‘xﬁ ]) = exp(legl + 61j)
b 1, ifwyy+u; >0

J 0, otherwise
where y,; is the outcome that person j obtains if person j selects treatment 0, and y, ; is the outcome
that person j obtains if person j selects treatment 1. This formulation allows differing coefficients for
the control (3,) and treatment (/3,) regimes. The constant intercept for the control group is Syy. The

constant intercept for the treatment group is 31, = f3y, + 9, where 4 is the coefficient for treatment ¢; in
the outcome (1). The remaining notation was defined above.

We may allow other coefficients to differ across regimes in the outcome (1) by adding interactions
between the treatment t and covariates X; to the model. To be concise, we use two coefficient vectors
ﬂo and 8, here rather than a single coefficient vector with interactions between the treatment ¢; and
covariates x;. The two formulations are equivalent.
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We never observe both y,; and y, ;, only one or the other. We observe
Yy; =ty + (1 =)y

The vector of error terms (€, €1, ;)" comes from a mean zero trivariate normal distribution with
covariance matrix

a2 0 op
0 o2 op
op op 1

The parameters o and p were discussed earlier. The parameter 6 is the covariance between the two
potential outcomes. We cannot estimate 6 because we have no observations in which an individual is
observed in both potential outcomes. Fortunately, 6 is not required for the calculations that we present.

The ATE is the difference in means of the potential outcomes. The mean of each potential outcome
accounts for each individual’s contribution, regardless of whether that individual selects that treatment
level.

The conditional means of the potential outcomes y,;, t € (0, 1) for exogenous covariates z, are
o2
E(y,;lz;) = exp (Xjﬁt + 7)

We can see that when the coefficients are the same across the regimes, the ratio of potential-outcome
means will be equal to exp(d); this is true of the conditional and marginal potential-outcome means.

The difference in potential-outcome means or treatment effect at exogenous covariates z; is

E(yy; — yo;12;) = { exp (x;8,) — exp (x;8,) } exp (%)

By the law of iterated expectations, the ATE is
E(y1j - ?Jo]') = E{E(ylj - yoﬂzj)}
o2
=E|{exp(x;8,) — exp (x;8,) } exp (2>}
This expectation can be estimated as a predictive margin.

Now we will derive an expression for the ATET.

The conditional means of the potential outcomes y,;, t € (0,1) for exogenous covariates z; and
treatment ¢ are

E - +w K 1—t
o2 ® (po ~ 1= (po+wnA j
(ytj|lj,tj) exp (xjﬁt + 2) ( j ) ( ; )

© (w;) 1—@(w;)
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Rather than the conditional potential-outcome means, the conditional mean of the observed outcome
may be of interest. The conditional mean of the observed outcome y; for endogenous treatment indicator
t; and exogenous covariates z; is given by

a2\ D (po+w.~N
E(yj|zj,tj) =t;exp (xj,Bl + ?> <<I>(w~{;)
j

2\ 1—® (pU"‘wj’Y)
+(1—t;)exp <Xj/30 + 3) 1—®(w;y)

The treatment effect at exogenous covariates z; and treatment ¢ is
E(yu - y()j|zj7tj) =

{exp (x;8,) — exp (x;8,)} exp (‘j) {‘I’ (po+wi) } ’ { 1—d (pg+wﬂ)} —t;

@ (Wj’Y> 1—-@ (w;-'\{)

By the law of iterated expectations, the ATET is
E(?hj - y0j|tj =1)= E{E(ylj - y0j|ljvtj = 1)‘75.7‘ =1}

~E 02) ® (po + W)

(o (x,8,) — ew(8,)} e (5 ) 5

-

We note that when p = 0, the correction factor involving ® will disappear from the ATET. Then the
ATE and ATET will be equivalent if the distribution of x; under the treated population is identical to the
distribution over the entire population.

This can be estimated as a predictive margin on the treated subpopulation.

The probability of y; conditional on ¢; and z; is

f(yj =n, tj|zj)
® (wy)" @ (—w,y) '

Pr(yj = n|zj,tj) =

As discussed earlier, we approximate f(y;,?;|z;) using Gauss—Hermite quadrature.
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Also see

[CAUSAL] etpoisson postestimation — Postestimation tools for etpoisson

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[R] heckpoisson — Poisson regression with sample selection

[R] ivpoisson — Poisson model with continuous endogenous covariates

[R] ivprobit — Probit model with continuous endogenous covariates

]
]

[R] ivregress — Single-equation instrumental-variables regression
]

[R] ivtobit — Tobit model with continuous endogenous covariates

[R] poisson — Poisson regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands
Methods and formulas

predict
Also see

margins Remarks and examples

Postestimation commands

*

*

The following standard postestimation commands are available after etpoisson:

Command Description
contrast contrasts and ANOVA-style joint tests of parameters
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

estat summarize

estat vce
estat (svy)
estimates
etable
hausman
lincom

Irtest
margins
marginsplot
nlcom

predict

predictnl
pwcompare
suest
test
testnl

mation criteria (AIC, CAIC, AICc, and BIC, respectively)
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data
cataloging estimation results
table of estimation results
Hausman'’s specification test

point estimates, standard errors, testing, and inference for linear combinations of
parameters

likelihood-ratio test
marginal means, predictive margins, marginal effects, and average marginal effects
graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

potential-outcome means, observed-outcome means, conditional treatment effects,
etc.
point estimates, standard errors, testing, and inference for generalized predictions

pairwise comparisons of parameters

seemingly unrelated estimation

Wald tests of simple and composite linear hypotheses
Wald tests of nonlinear hypotheses

*hausman and 1rtest are not appropriate with svy estimation results.

204
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predict

Description for predict

predict creates a new variable containing predictions such as counts, conditional treatment effects,
probabilities, and linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [npe] newvar [if | [in] [, statistic nooffset |

predict [lype] stubx [lf] [in] , scores

statistic Description
Main
pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(y; = n)
pr(a,b) probability Pr(a <y, <b)
xb linear prediction
xbtreat linear prediction for treatment equation
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
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Options for predict

Main

pomean, the default, calculates the potential-outcome mean.
omean calculates the observed-outcome mean.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.

pr(n) calculates the probability Pr(y; = n), where n is a nonnegative integer that may be specified as

a number or a variable.

pr(a,b) calculates the probability Pr(a < y; < b), where a and b are nonnegative integers that may be
specified as numbers or variables;

b missing (b > .) means +o0;

pr(20,.) calculates Pr(yj > 20);

pr(20,b) calculates Pr(y; > 20) in observations for which b > . and calculates
Pr(20 < y; < b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a missing
value in that observation for pr(a,b).

xb calculates the linear prediction for the dependent count variable, which is x;3 if neither offset ()
nor exposure () was specified; x;3 + offsetéi if offset () was specified; or x,;8 + ln(exposurej) if
exposure () was specified.

xbtreat calculates the linear prediction for the endogenous treatment equation, which is w;~ if

offset () was not specified in treat () and w;~ + offset] if offset () was specified in treat ().

nooffset isrelevant only if you specified offset () or exposure () when you fit the model. It modifies
the calculations made by predict so that they ignore the offset or exposure variable. nooffset
removes the offset from calculations involving both the treat () equation and the dependent count
variable.

scores calculates equation-level score variables.
The first new variable will contain 9InL/0(x;/3).
The second new variable will contain 9InL/0(w;~).
The third new variable will contain 91nL /0 atanh p.

The fourth new variable will contain 9InL/d1no.
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margins

Description for margins
margins estimates margins of response for counts, conditional treatment effects, probabilities, and

linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist| [, options |

margins [marginlist] , predict (statistic . ..) [predict (statistic ...) ...] [options ]
statistic Description
pomean potential-outcome mean (the predicted count); the default
omean observed-outcome mean (the predicted count)
cte conditional treatment effect at treatment level
pr(n) probability Pr(y; = n)
pr(a,b) probability Pr(a <y, <b)
xb linear prediction
xbtreat linear prediction for treatment equation

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the
parameters most frequently estimated by postestimation techniques after etpoisson.

You can use the margins command (see [R] margins) after etpoisson to estimate the ATE or ATET.
See example 2 of [CAUSAL] etpoisson for an example of ATE estimation. See example 3 of [CAUSAL] et-
poisson for an example of ATET estimation.

See example 1 of [CAUSAL] etpoisson for an example using lincom after etpoisson.

Methods and formulas

See Methods and formulas of [CAUSAL] etpoisson for details.

Also see

[CAUSAL] etpoisson — Poisson regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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Description Quick start
Menu Syntax
Options for maximum likelihood estimates Options for two-step consistent estimates
Options for control-function estimates Remarks and examples
Stored results Methods and formulas
References Also see
Description

etregress estimates an average treatment effect (ATE) and the other parameters of a linear regres-
sion model augmented with an endogenous binary-treatment variable. Estimation is by full maximum
likelihood, a two-step consistent estimator, or a control-function estimator.

In addition to the ATE, etregress can be used to estimate the average treatment effect on the treated
(ATET) when the outcome may not be conditionally independent of the treatment.

Quick start

ATE and ATET from a linear regression model of y on x and endogenous binary treatment treat modeled
by x and w

etregress y x, treat(treat =x w)

Same as above, but use a control-function estimator

etregress y x, treat(treat = x w) cfunction

With robust standard errors

etregress y x, treat(treat = x w) vce(robust)

Add the interaction between treat and continuous covariate x using factor variables

etregress y x i.treat#c.x, treat(treat = x w) vce(robust)

ATE after etregress with the required vce (robust) option and endogenous treatment interaction terms

margins r.treat, vce(unconditional)

Same as above, but calculate ATET

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu

Statistics > Causal inference/treatment effects > Endogenous treatment > Maximum likelihood estimator > Con-
tinuous outcomes

208
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Syntax
Basic syntax

etregress depvar [indepvars], treat(depvar, = indepvars,) |twostep|cfunction]

Full syntax for maximum likelihood estimates only
etregress depvar [indepvars) [if ] [in] [weight] ,

treat (depvar, = indepvars, | , noconstant|) [etregress_ml_options |

Full syntax for two-step consistent estimates only

etregress depvar [indepvars] [if ] [in],

treat (depvar, = indepvars, | , noconstant |) twostep |etregress_ts_options |

Full syntax for control-function estimates only
etregress depvar [indepvars] [if ] [in],

treat (depvar, = indepvars, | , noconstant|) cfunction [efregress_cf_options|
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etregress_ml_options Description
Model
*treat() equation for treatment effects
noconstant suppress constant term
poutcomes use potential-outcome model with separate treatment and control

group variance and correlation parameters
constraints (constraints)  apply specified linear constraints

SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife
Reporting
level(#) set confidence level; default is 1evel (95)
first report first-step probit estimates
hazard (newvar) create newvar containing hazard from treatment equation
lrmodel perform the likelihood-ratio model test instead of the default Wald test
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize_options control the maximization process; seldom used
collinear keep collinear variables
coeflegend display legend instead of statistics
*treat (depvar, = indepvars, [, noconstant]) is required.
etregress_ts_options Description
Model
*treat () equation for treatment effects
* twostep produce two-step consistent estimate
noconstant suppress constant term
SE
vce (veetype) veetype may be conventional, bootstrap, or jackknife
Reporting
level(#) set confidence level; default is 1evel (95)
first report first-step probit estimates
hazard (newvar) create newvar containing hazard from treatment equation
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

*treat (depvar, = indepvars, |, noconstant]) and twostep are required.
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etregress_cf_options

Description

Model

*treat()

* cfunction
noconstant
poutcomes

SE
vce (veetype)

Reporting
level(#)
first
hazard (newvar)
display_options

Maximization
maximize_options

coeflegend

equation for treatment effects

produce control-function estimate

suppress constant term

use potential-outcome model with separate treatment and control
group variance and correlation parameters

vcetype may be robust, bootstrap, or jackknife

set confidence level; default is 1evel (95)
report first-step probit estimates
create newvar containing hazard from treatment equation

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

control the maximization process; seldom used

display legend instead of statistics

*treat (depvar, = indepvars, |, noconstant]) and cfunction are required.

indepvars and indepvars, may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvar,, and indepvars, may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayesboot, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix

commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

aweights are not allowed with the jackknife prefix; see [R] jackknife.

twostep, cfunction, vce (), first, hazard(), lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.

pweights, aweights, fweights, and iweights are allowed with both maximum likelihood and control-function estimation;

see [U] 11.1.6 weight. No weights are allowed if twostep is specified.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for maximum likelihood estimates

Model

treat (depvar, = indepvars,| , noconstant |) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

noconstant; see [R] Estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

constraints (constraints); see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [R] vee_option.

Reporting

level (#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-
tion.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

lrmodel, nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (},fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [no|log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

Setting the optimization type to technique (bhhh) resets the default vcetype to vce (opg).

The following options are available with etregress but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.



etregress — Linear regression with endogenous treatment effects 213

Options for two-step consistent estimates

Model

treat (depvar, = indepvars,| , noconstant |) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

twostep specifies that two-step consistent estimates of the parameters, standard errors, and covariance
matrix be produced, instead of the default maximum likelihood estimates.

noconstant; see [R] Estimation options.

[sEl

r

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vee_option.

vce(conventional), the default, uses the conventionally derived variance estimator for the two-step
estimator of the treatment-effects model.

[ 'Reporting |
level (#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-
tion.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (/,fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for control-function estimates

Model

treat (depvar, = indepvars,| , noconstant |) specifies the variables and options for the treatment
equation. It is an integral part of specifying a treatment-effects model and is required.

cfunction specifies that control-function estimates of the parameters, standard errors, and covariance
matrix be produced instead of the default maximum likelihood estimates. cfunction is required.

noconstant; see [R] Estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters
for each of the treatment and control groups be used.

[sEl

vce (vcetype) specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vee_option.
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Reporting

level (#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-
tion.

hazard (newvar) will create a new variable containing the hazard from the treatment equation. The
hazard is computed from the estimated parameters of the treatment equation.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fmt),
sformat (%fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: iterate (#), [no|log, and from (init_specs); see [R] Maximize. These options are
seldom used.

init_specs is one of
matname | , skip copy |
#[#...] copy

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Overview

Basic examples

Average treatment effect (ATE)

Average treatment effect on the treated (ATET)

Overview

etregress estimates an ATE and the other parameters of a linear regression model that also includes
an endogenous binary-treatment variable. In addition to the ATE, the parameters estimated by etregress
can be used to estimate the ATET when the outcome is not conditionally independent of the treatment.

We call the model fit by etregress an endogenous treatment-regression model, although it is also
known as an endogenous binary-variable model or as an endogenous dummy-variable model. The en-
dogenous treatment-regression model is a specific endogenous treatment-effects model; it uses a linear
model for the outcome and a normal distribution to model the deviation from the conditional indepen-
dence assumption imposed by the estimators implemented in teffects; see [CAUSAL] teffects intro.
In treatment-effects jargon, the endogenous binary-variable model is a linear potential-outcome model
that allows for a specific correlation structure between the unobservables that affect the treatment and the
unobservables that affect the potential outcomes. See [CAUSAL] etpoisson for an estimator that allows
for a nonlinear outcome model and a similar model for the endogeneity of the treatment.
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Heckman (1976, 1978) brought this model into the modern literature. Maddala (1983) derives the
maximum likelihood and the control-function (CF) estimators of the model. Maddala (1983) also reviews
some empirical applications and describes it as an endogenous-switching model. Barnow, Cain, and
Goldberger (1981) provide another useful derivation of this model. They concentrate on deriving the
conditions for which the self-selection bias of the simple OLS estimator of the treatment effect, d, is
nonzero and of a specific sign. Cameron and Trivedi (2005, sec. 16.7 and 25.3.4) and Wooldridge (2010,
sec. 21.4.1) discuss the endogenous binary-variable model as an endogenous treatment-effects model and
link it to recent work.

etregress performs CF estimation in one step by using the generalized method of moments (GMM)
with stacked moments. See Newey (1984) and Wooldridge (2010, sec. 14.2) for a description of this
technique. Many econometric and statistical models can be expressed as conditions on the population
moments. The parameter estimates produced by GMM estimators make the sample-moment conditions
as true as possible given the data. See [R] gmm for further information on GMM estimation and how
Stata performs it. Two-step CF estimation is also supported by etregress.

Formally, the endogenous treatment-regression model is composed of an equation for the outcome y;
and an equation for the endogenous treatment ¢;. The variables x; are used to model the outcome. When
there are no interactions between ¢ j and X;, we have

y; =x;8+0t; +¢;
. L, ifwy+u; >0
J 0, otherwise

where w; are the covariates used to model treatment assignment, and the error terms ¢; and u; are bi-
variate normal with mean zero and covariance matrix

% po
po 1

The covariates x; and w; are unrelated to the error terms; in other words, they are exogenous. We call this

the constrained model because the variance and correlation parameters are identical across the treatment
and control groups.

This model can be generalized to a potential-outcome model with separate variance and correlation
parameters for the treatment and control groups. The generalized model is

Yoj = X;8 + €,
Yi; = X0, + e

¢ = L, ifwiNy+u; >0
J 0, otherwise

where y,; is the outcome that person j obtains if person j selects treatment 0, and y, ; is the outcome that
person j obtains if person j selects treatment 1. We never observe both y,; and y, ;, only one or the other.
We observe

y; =ty + (1- tj)l/oj'
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In this unconstrained model, the vector of error terms (€, €, u;)" comes from a mean zero trivariate
normal distribution with covariance matrix

2

) 0021 90Po
001 g3 01P1
OoPo 7101 1

The covariance oy, cannot be identified because we never observe both y; ; and y,;. However, iden-
tification of 0(); is not necessary to estimate the other parameters because all covariates and the outcome
are observed in observations from each group. We normalize the treatment error variance to be 1 because
we observe only whether an outcome occurs under treatment. More details are found in Methods and
formulas.

Rather than showing two separate regression equations, etregress reports one outcome equation
with interaction terms between the treatment and outcome covariates. etregress can fit the constrained
and generalized potential-outcome models using either the default maximum likelihood estimator or the
one-step CF estimator obtained with option cfunction. The two-step CF estimator provides consistent
estimates for the constrained model.

Basic examples

When there are no interactions between the treatment variable and the outcome covariates in the
constrained model, etregress directly estimates the ATE and the ATET.

b Example 1: Basic example

We estimate the ATE of being a union member on wages of women in 1972 from a nonrepresentative
extract of the National Longitudinal Survey on young women who were ages 14-26 in 1968. We will
use the variables wage (wage), grade (years of schooling completed), smsa (an indicator for living
in an SMSA—standard metropolitan statistical area), black (an indicator for being African-American),
tenure (tenure at current job), and south (an indicator for living in the South).
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We use etregress to estimate the parameters of the endogenous treatment-regression model.

. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)

. etregress wage age grade smsa black tenure, treat(union = south black tenure)
Iteration 0: Log likelihood = -3140.811
Iteration 1: Log likelihood = -3053.6629
Iteration 2: Log likelihood = -3051.5847
Iteration 3: Log likelihood = -3051.575
Iteration 4: Log likelihood = -3051.575
Linear regression with endogenous treatment Number of obs = 1,210
Estimator: Maximum likelihood Wald chi2(6) = 681.89
Log likelihood = -3051.575 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. interval]
wage
age .1487409 .0193291 7.70  0.000 .1108566 . 1866252
grade .4205658  .0293577 14.33  0.000 .3630258 .4781058
smsa .9117044  .1249041 7.30 0.000 .6668969 1.156512
black -.7882471 .1367078 -5.77  0.000 -1.05619  -.5203048
tenure .1524015 .0369596 4.12  0.000 .0799621 .2248409
1.union 2.945815 .2749621 10.71  0.000 2.4069 3.484731
_cons -4.351572 .5283952 -8.24  0.000 -5.387208 -3.315936
union
south -.5807419 .0851111 -6.82  0.000 -.7475566  -.4139271
black .4557499 .0958042 4.76  0.000 .2679771 .6435226
tenure .0871536 .0232483 3.75 0.000 .0415878 .1327195
_cons -.8855758  .0724506 -12.22  0.000 -1.027576  -.7435753
/athrho -.6544347  .0910314 -7.19  0.000 -.8328563  -.4760164
/lnsigma . 7026769 .0293372 23.95 0.000 .645177 .7601767
rho -.5746478 .060971 -.682005  -.4430476
sigma 2.019151 .0592362 1.906325 2.138654
lambda -1.1603  .1495097 -1.453334 -.8672668
LR test of indep. egns. (rho = 0): chi2(1) = 19.84 Prob > chi2 = 0.0000

The likelihood-ratio test in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors. The estimated correlation between the
treatment-assignment errors and the outcome errors, p, is —0.575. The negative relationship indicates that
unobservables that raise observed wages tend to occur with unobservables that lower union membership.
We discuss some details about this parameter in the technical note below.

The estimated ATE of being a union member is 2.95. The ATET is the same as the ATE in this case
because the treatment indicator variable has not been interacted with any of the outcome covariates, and
the correlation and variance parameters are identical across the control and treatment groups.

d
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Q Technical note

The results for the ancillary parameters p and o require explanation. For numerical stability during
optimization, etregress does not directly estimate p or . Instead, etregress estimates the inverse
hyperbolic tangent of p,

1 14
atanh p = 5 ln(—p>

1—p

and Ino. Also etregress reports A = po, along with an estimate of the standard error of the estimate
and the confidence interval.
a
In contrast to the constrained model, etregress directly estimates the ATE only when there are no
interactions between the treatment variable and the outcome covariates in the unconstrained model.

b Example 2: Allowing group-specific variance and correlation

We estimate the ATE of having health insurance on the natural logarithm of total out-of-pocket pre-
scription drug expenditures from a simulated random sample of individuals between the ages of 25 and
64. We will use the variables 1ndrug (natural logarithm of spending on prescription drugs), age (age
of the individual), chron (whether the individual has a chronic condition), 1ninc (natural logarithm of
income), married (marriage status), and work (employment status). Our treatment is whether the per-
son has health insurance, ins. We allow the outcome error variance and correlation parameters to vary
between the treated (insured) and control (uninsured) groups in this example, rather than constraining
them to be equal as in example 1.

We use etregress to estimate the parameters of the endogenous treatment-effects model. To estimate
separate variance and correlation parameters for each of the control and treatment groups, we specify the
poutcomes option. We specify the cfunction option to use the CF estimator.
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. use https://www.stata-press.com/data/r19/drugexp

(Prescription drug expenditures)

. etregress lndrug chron age lninc, treat(ins=age married lninc work) poutcomes
> cfunction

Iteration O: GMM criterion Q(b) = 2.279e-15

Iteration 1: GMM criterion Q(b) = 1.842e-28

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: Control function

Robust

Coefficient std. err. z P>|z| [95% conf. intervall

Indrug
chron .4671725 .0319731 14.61 0.000 .4045064 .5298387
age .1021359 .00292 34.98 0.000 .0964128 .1078589
1lninc .0550672 .0225036 2.45 0.014 .0109609 .0991735
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011
_cons 1.665539 .2627527 6.59 0.000 1.170153 2.160925

ins

age .021142 .0022961 9.21 0.000 .0166416 .0256424
married .084631 .0359713 2.35 0.019 .0141286 .15651334
Ininc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -5.73 0.000 -.8362273 -.4097587
/athrhoO .4035094 .1724539 2.34 0.019 .0655059 .7415129
/1nsigma0 .3159269 .0500476 6.31 0.000 .2178353 .4140184
/athrhol . 7929459 .2986601 2.66 0.008 .2075829 1.378309
/1nsigmal .1865347 .0613124 3.04 0.002 .0663646 .3067048
rho0 .3829477 .1471637 .0654124 .6300583
sigma0 1.371563 .0686418 1.243382 1.512885
lambda0 .5252243 .226367 .0815532 .9688954
rhol .6600746 .1685343 .2046518 .880572
sigmal 1.205066 .0738855 1.068616 1.35894
lambdal . 7954338 .2513036 .3028878 1.28798
Wald test of indep. (rho0 = rhol = 0): chi2(2) = 8.88 Prob > chi2 = 0.0118

The Wald test reported in the footer indicates that we can reject the null hypothesis of no correlation
between the treatment-assignment errors and the outcome errors for the control and treatment groups.
The estimate of the correlation of the treatment-assignment errors for the control group (p,) is positive,
indicating that unobservables that increase spending on prescription drugs tend to occur with unobserv-
ables that increase health insurance coverage. Because p, is also positive, we make the same interpreta-
tion for individuals with insurance. The estimate p; is larger than the estimate p,, indicating a stronger
relationship between the unobservables and treatment outcomes in the treated group.

The estimated ATE of having health insurance is —0.86. Note that while the ATE and ATET were the
same in example 1, that is not the case here. We show how to calculate the ATET for a potential-outcome
model in example 6.

The estimate of the outcome error standard-deviation parameter for the control group (o) is slightly
larger than that of the treatment-group parameter (o ), indicating a greater variability in the unobservables
among the untreated group.

d
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Average treatment effect (ATE)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATE, the average difference of the treatment potential
outcomes and the control potential outcomes.

b Example 3: Allowing interactions between treatment and outcome covariates, ATE

In example 1, the coefficients on the outcome covariates do not vary by treatment level. The differ-
ences in wages between union members and nonmembers are modeled as a level shift captured by the
coefficient on the indicator for union membership. In this example, we use factor-variable notation to
allow some of the coefficients to vary over treatment level and then use margins (see [R] margins) to
estimate the ATE. (See [U] 11.4.3 Factor variables for an introduction to factor-variable notation.)

We begin by estimating the parameters of the model in which the coefficients on black and tenure
differ for union members and nonmembers. We specify the vce (robust) option because we need to
specify vce (unconditional) when we use margins below.
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. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)

Iteration O: Log pseudolikelihood = -3614.6714
Iteration 1: Log pseudolikelihood = -3218.8152
Iteration 2: Log pseudolikelihood = -3057.0115
Iteration 3: Log pseudolikelihood = -3049.3081
Iteration 4: Log pseudolikelihood = -3049.2838
Iteration 5: Log pseudolikelihood = -3049.2838

Linear regression with endogenous treatment Number of obs = 1,210
Estimator: Maximum likelihood Wald chi2(8) = 493.40
Log pseudolikelihood = -3049.2838 Prob > chi2 = 0.0000
Robust
Coefficient std. err. z P>|z]| [95% conf. intervall
wage
age .1489075 .0207283 7.18 0.000 .1082809 .1895342
grade .4200493  .0377621 11.12  0.000 .3460371 .4940616
smsa .9232615 .1201486 7.68 0.000 .6877746 1.158748
union#
c.black
0 -.6685582 .1444213 -4.63 0.000 -.9516187  -.3854977
1 -1.1831 .2574817 -4.59  0.000 -1.687755  -.6784455
union#
c.tenure
0 .168746 .0503107 3.35  0.001 .0701388 .2673532
1 .0836367 .0903669 0.93 0.355 -.0934792 .2607526
1.union 3.342859 .5586863 5.98 0.000 2.247854 4.437864
_cons -4.42566 .6493003 -6.82 0.000 -5.698265 -3.153055
union
south -.5844678  .0833069 -7.02  0.000 -.7477464  -.4211893
black .4740688 .093241 5.08 0.000 .2913197 .6568178
tenure .0874297  .0253892 3.44 0.001 .0376678 .1371916
_cons -.8910484  .0746329 -11.94 0.000 -1.037326  -.7447706
/athrho -.6733149 .2215328 -3.04 0.002 -1.107511  -.2391185
/lnsigma .7055907  .0749711 9.41  0.000 .55865 .8525313
rho -.5871562 .1451589 -.8031809 -.234663
sigma 2.025042 .1518197 1.748311 2.345577
lambda -1.189016 .3631079 -1.900695  -.4773378
Wald test of indep. eqns. (rho = 0): chi2(1) = 9.24 Prob > chi2 = 0.0024

The results indicate that the coefficients on black differ by union membership and that the coefficient
on tenure for nonmembers is positive, while the coefficient on tenure for members is 0. The model fits
well overall, so we proceed with interpretation. Because we interacted the treatment variable with two of
the covariates, the estimated coefficient on the treatment level is not an estimate of the ATE. Below we use
margins to estimate the ATE from these results. We specify the vce (unconditional) option to obtain
the standard errors for the population ATE instead of the sample ATE. We specify the contrast (nowald)
option to suppress the Wald tests, which margins displays by default for contrasts.
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. margins r.union, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 1,210

Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. intervall
union
(1 vs 0) 3.042688 .5305151 2.002898 4.082478

The ATE estimate is essentially the same as the one produced by the constrained model in example 1.

d

We can use the same methods above to obtain the ATE in an unconstrained model.

b Example 4: Treatment interactions and group-specific variance and correlation, ATE

In example 2, the coefficients on the outcome covariates do not vary by treatment level. Suppose
we believe that the effect of having a chronic condition on out-of-pocket spending differs between the
insured and uninsured. Again, we use an interaction term. Because we are using a CF estimator, the
variance—covariance of the estimator (VCE) is already robust so we do not specify vce (robust).
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. use https://www.stata-press.com/data/r19/drugexp

(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc, treat(ins=age married lninc work)
> poutcomes cfunction

Iteration O: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 2.883e-28

Linear regression with endogenous treatment Number of obs = 6,000
Estimator: Control function
Robust
Coefficient std. err. z P>|z| [95% conf. intervall
Indrug
ins#chron
01 .3798705 .0720713 5.27  0.000 .2386132 .5211277
11 .4957773 .0352571 14.06  0.000 .4266746 .5648801
age .1022045 .0029228 34.97 0.000 .0964758 .1079331
lninc .0548917 .0225219 2.44 0.015 .0107497 .0990337
1.ins -.89703 .3493058 -2.57 0.010 -1.581657  -.2124031
_cons 1.691336 .2531222 6.68 0.000 1.195225 2.187446
ins
age .021142 .0022961 9.21  0.000 .0166416 .0256424
married .084631 .0359713 2.35 0.019 .0141286 .1551334
lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -5.73 0.000 -.8362273  -.4097587
/athrho0 .4046007 .1725597 2.34 0.019 .0663899 .7428115
/1nsigma0 .3157561 .0501956 6.29  0.000 .2173746 .4141376
/athrhol .7950592 .2992825 2.66 0.008 .2084763 1.381642
/1nsigmal .1868903 .0614281 3.04 0.002 .0664934 .3072871
rho0 .3838786 .1471308 .0662925 .6308408
sigma0 1.371296 .0688329 1.24281 1.513065
lambda0l .5264111 .2264197 .0826366 .9701856
rhol .6612655 .1684146 .2055076 .8813184
sigmal 1.205495 .0740512 1.068754 1.359731
lambdal .7971523 .2514293 .3043599 1.289945
Wald test of indep. (rho0 = rhol = 0): chi2(2) = 8.90 Prob > chi2 = 0.0117

The results indicate that the coefficient on chron differs by whether an individual has insurance. The
model fits well overall, so we proceed with interpretation.

Because we interacted the treatment variable with one of the covariates, the estimated coefficient on
the treatment level is not an estimate of the ATE. Below we use margins to estimate the ATE from these
results. We specify the vce (unconditional) option to obtain the standard errors for the population
ATE instead of the sample ATE. We specify the contrast (nowald) option to suppress the Wald tests.
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. margins r.ins, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 6,000

Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. intervall
ins
(1 vs 0) -.8632045 .3484924 -1.546237 -.1801718

The ATE estimate is similar to the one produced by the constrained model in example 2.

Average treatment effect on the treated (ATET)

When there is a treatment variable and outcome covariate interaction, the parameter estimates from
etregress can be used by margins to estimate the ATET, the average difference of the treatment potential
outcomes and the control potential outcomes on the treated population.

b Example 5: Allowing interactions between treatment and outcome covariates, ATET

The ATET may differ from the ATE in example 3 because the interaction between the treatment variable
and some outcome covariates makes the ATE and the ATET vary over outcome covariate values. Below we
use margins to estimate the ATET by specifying the subpop (union) option, which restricts the sample
used by margins to union members.

. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)

. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)

(output omitted)
. margins r.union, vce(unconditional) contrast(nowald) subpop(union)
Contrasts of predictive margins Number of obs = 1,210
Subpop. no. obs = 253
Expression: Linear prediction, predict()
Unconditional
Contrast  std. err. [95% conf. intervall
union
(1 vs 0) 2.968977 .5358456 1.918739 4.019215

The estimated ATET and ATE are close, indicating that the average predicted outcome for the treatment
group is similar to the average predicted outcome for the whole population.

d
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b Example 6: Treatment interactions and group-specific variance and correlation, ATET

The ATET may differ from the ATE in example 4 because the interaction between the treatment vari-
able and some outcome covariates makes the ATE and the ATET vary over values of the covariate in the
outcome equation. Even if there is no interaction between treatment assignment and a covariate in the
outcome equation, the estimated ATE and ATET will differ if the variances of the outcome errors and their
correlations with the treatment-assignment errors differ across the control and treatment groups.

We can estimate the ATET of having health insurance by using the conditional treatment effect (condi-
tional on exogenous covariates and treatment level) obtained using the predict, cte and the margins
commands; see Methods and formulas below and [CAUSAL] etregress postestimation for more details
about the use of predict after etregress.

We restrict estimation to the treated subpopulation by specifying the subpop(ins) option with
margins.
. use https://www.stata-press.com/data/r19/drugexp
(Prescription drug expenditures)

. etregress lndrug i.ins#i.chron age lninc,
> treat(ins = age married lninc work) poutcomes cfunction

(output omitted)
. margins, predict(cte) subpop(ins) vce(unconditional)

Predictive margins Number of obs = 6,000
Subpop. no. obs = 4,556

Expression: Conditional treatment effect, predict(cte)

Unconditional
Margin std. err. z P>|z]| [95% conf. interval]
_cons -.7558373 .3827579 -1.97  0.048 -1.506029 -.0056457

In absolute value, the treatment effect on the treated of —0.76 is smaller than the population average
effect of —0.86 that we found in example 4.
N
Stored results

etregress (maximum likelihood) stores the following in e ():

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k—eq-model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k—dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model (1rmodel only)
e(N_clust) number of clusters
e(lambda) estimate of A in constrained model
e(selambda) standard error of \ in constrained model
e(sigma) estimate of o in constrained model
e (lambda0) estimate of A in potential-outcome model

e(selambda0) standard error of )\ in potential-outcome model
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e(sigma0)
e(lambdal)
e(selambdal)
e(sigmal)
e(chi2)
e(chi2_c)
e(p)

e(p-c)
e(rho)
e(rho0)
e(rhol)
e(rank)
e(rank0)
e(ic)

e(rc)
e(converged)

Macros

e(cmd)
e(cmdline)
e(depvar)
e(hazard)
e(wtype)

e (wexp)
e(title)
e(title2)
e(clustvar)
e(chi2type)
e(chi2_ct)
e(vce)
e(vcetype)
e(opt)
e(which)
e(method)
e(ml_method)
e(user)
e(technique)
e(properties)
e(predict)
e(footnote)
e(marginsok)
e(asbalanced)
e(asobserved)

estimate of oy in potential-outcome model

estimate of \; in potential-outcome model

standard error of X\ in potential-outcome model

estimate of o, in potential-outcome model
2

x2 for comparison test

p-value for model test

p-value for comparison test

estimate of p in constrained model

estimate of p in potential-outcome model

estimate of p; in potential-outcome model

rank of e (V)

rank of e (V) for constant-only model

number of iterations

return code

1 if converged, 0 otherwise

etregress

command as typed

name of dependent variable

variable containing hazard

weight type

weight expression

title in estimation output

secondary title in estimation output

name of cluster variable

Wald or LR; type of model 2 test

Wald or LR; type of model x? test corresponding to e (chi2_c)
veetype specified in vece ()

title used to label Std. err.

type of optimization

max or min; whether optimizer is to perform maximization or minimization
ml

type of m1 method

name of likelihood-evaluator program
maximization technique

bV

program used to implement predict

program used to implement the footnote display
predictions allowed by margins

factor variables fvset as asbalanced

factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r () :

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

etregress (two-step) stores the following in e ():

Scalars
e(N) number of observations
e(df_m) model degrees of freedom
e(lambda) A
e(selambda) standard error of A
e(signma) estimate of sigma
e(chi2) x2
e(p) p-value for model test
e(rho) P
e(rank) rank of e (V)
Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(title) title in estimation output
e(title2) secondary title in estimation output
e(chi2type) Wald or LR; type of model x? test
e(vce) veetype specified in vce ()
e(method) twostep
e(properties) bV
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display
e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.



etregress — Linear regression with endogenous treatment effects 228

etregress (control-function) stores the following ine():

e(converged)

e(footnote)

e (marginsok)
e(asbalanced)
e(asobserved)

Scalars
e(N) number of observations
e(k) number of parameters
e(k_eq) number of equations in e (b)
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(lambda) estimate of X in constrained model
e(selambda) standard error of X in constrained model
e(sigma) estimate of o in constrained model
e (lambda0) estimate of A in potential-outcome model
e(selambda0) standard error of \() in potential-outcome model
e(sigmal) estimate of o in potential-outcome model
e(lambdal) estimate of \; in potential-outcome model
e(selambdal) standard error of A\ in potential-outcome model
e(sigmal) estimate of o, in potential-outcome model
e(chi2_c) X2 for comparison test
e(p-c) p-value for comparison test
e(rho) estimate of p in constrained model
e(rho0) estimate of p in potential-outcome model
e(rhol) estimate of p; in potential-outcome model
e(rank) rank of e (V)

1 if converged, 0 otherwise

Macros
e(cmd) etregress
e(cmdline) command as typed
e(depvar) name of dependent variable
e(hazard) variable containing hazard
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(title2) secondary title in estimation output
e(chi2_ct) Wald; type of model 2 test corresponding to e (chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(method) cfunction
e(properties) bV
e(predict) program used to implement predict

program used to implement the footnote display
predictions allowed by margins

factor variables fvset as asbalanced

factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.
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Methods and formulas

Maddala (1983, 117-122 and 223-228) derives both the maximum likelihood and the CF estimators
implemented here. Greene (2012, 890—894) also provides an introduction to the treatment-effects model.
Cameron and Trivedi (2005, sections 16.7 and 25.3.4) and Wooldridge (2010, section 21.4.1) discuss the
endogenous binary-variable model as an endogenous treatment-effects model and link it to recent work.

Methods and formulas are presented under the following headings:

Constrained model

General potential-outcome model
Average treatment effect

Average treatment effect on the treated

Constrained model

The primary regression equation of interest is
Y, =x;8+0t; +¢; @)
where ¢, is a binary-treatment variable that is assumed to stem from an unobservable latent variable:
op—
=Wt

The decision to obtain the treatment is made according to the rule

. 1, ift; >0
7710, otherwise

where € and u are bivariate normal with mean zero and covariance matrix
o po
po 1
Interactions between x; and the treatment ¢; are also allowed in (1). The likelihood function for this
model is given in Maddala (1983, 122). Greene (2000, 180) discusses the standard method of reducing

a bivariate normal to a function of a univariate normal and the correlation p. The following is the log
likelihood for observation j,

x.[3— L x.[3 = 2
hlq){wy“ﬁr(% 5)/7/0};(%’2'85) — In(v270) t;=1

. { —W;n \/(%jﬁ)ﬂ/a} B % <yjaxj’8>2 — In(v/270) ¢

where ®(-) is the cumulative distribution function of the standard normal distribution.

InL,; =

0
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In the maximum likelihood estimation, o and p are not directly estimated. Rather In o and atanh p are
directly estimated, where

1 1
atanh p = 5 ln(ﬁ)

1-p
The standard error of A\ = po is approximated through the delta method, which is given by
Var(\) ~ D Var{(atanh p Ino)} D’

where D is the Jacobian of A\ with respect to atanh p and Ino.

Maddala (1983, 120-122) also derives the CF estimator as a two-step estimator. This estimator is
implemented here. We will discuss it and then discuss the one-step CF estimator that is also implemented.

For the two-step estimator, probit estimates of the treatment equation
Pr(t; = 1|w;) = ®(w;~)

are obtained in the first stage. From these estimates, the hazard, h;, for each observation j is computed
as

¢(Wj;{\)/@(WjQ) ti=1

—p(wA) /{1 - WA} ;=0
where ¢ is the standard normal density function. If
dj = h;(h; +w;y)
then
E(y; | t;,x;,w;) = x;8+ 6t; + poh;
Var (y; | t;,%x;,w;) = 0? (1 — pd;)

The two-step parameter estimates of 3 and 0 are obtained by augmenting the regression equation with

the hazard h. Thus the regressors become [x t 1], and the additional parameter estimate 3, is obtained

on the variable containing the hazard. A consistent estimate of the regression disturbance variance is
obtained using the residuals from the augmented regression and the parameter estimate on the hazard

/ 2 N
AQ:ee—l—ﬁth:ld-

N

The two-step estimate of p is then

. B
p==
g

To understand how the consistent estimates of the coefficient covariance matrix based on the aug-
mented regression are derived, let A = [xt h] and D be a square diagonal matrix of size N with
(1 — p?d;) on the diagonal elements. The conventional VCE is

\Y% 52(A’A)"H(A'DA + Q)(A’A)

twostep

where
Q =/?(A’'DA)V,(A'DA)

and V,, is the variance—covariance estimate from the probit estimation of the treatment equation.
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The one-step CF estimator is a GMM estimator with stacked moments. See Newey (1984) and
Wooldridge (2010, sec. 14.2) for a description of this technique. Many econometric and statistical mod-
els can be expressed as conditions on the population moments. The parameter estimates produced by
GMM estimators make the sample-moment conditions as true as possible given the data.

Under CF estimation, as in maximum likelihood estimation, we directly estimate atanh p and Ino
rather than p and o, so the parameter vector is

0= (8,5,~,atanh p,Inc)’
In this case, we have separate error functions for the treatment assignment

¢(Wj’“f)/q)(wj"{) tj=1
uy(t;,w;,0) =
—QS(Wj"f)/{l - (I)(Wj"{)} t; = 0
for the outcome mean
um<yj7 tjvxj>wj7 9) =Y — leB - 6tj - pout,j
and for the outcome variance

Uy (Y, 15X, W;,0) = Ufn,j —a* [1 -’ {ut,j(ut,j + Wj“f)}]

We calculate the hazard, h;, prior to estimation from a probit regression of the treatment ¢; on the
treatment covariates w;. LetZ; = (x;,;, h;). Now we define

30

Nj 0 0

Z,= 0 w; 0

0o 0 1]

and _
Uy j
Sj(yj7tjaxjawj’0) =Z; | u;
_uv,j

The CF estimator 8 is the value of @ that satisfies the sample-moment conditions

1
0= NZ,; $;(Y;j:t5: %5, W, 0)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is N -
V=(1/N)GSG’
where

-1
85' ir gy X5 '79
G—{(l/N)Z 5 t]@é] Wi )}

and
S =(1/N) Z Sj(ijtja X, W, B)Sj(yja 15X, Wy, 0)

3
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The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge to
different matrices.

General potential-outcome model
Equation (1) can be generalized to a potential-outcome model with separate variance and correlation
parameters for the control and treatment groups.

The generalized model is

)L ifwiy+u; >0
0, otherwise

where y; is the outcome that person j obtains if person j selects treatment 0, and y, ; is the outcome that
person j obtains if person j selects treatment 1. We never observe both y,; and y, ;, only one or the other.
We observe

y; = tyyr; + (1 —1;)yo,

In this unconstrained model, the vector of error terms (¢, €1, u;)" comes from a mean zero trivariate
normal distribution with covariance matrix

2
99 %01 %0Po

001 o1 01/
O0Po  91P1 1

The likelihood function for this model is given in Maddala (1983, 224).

W~ + . — X . — X 2
Ind 4 Y (y; —xB)p/on | 1y — %8\ In(v270,), t; =1
\/1—,0% 2 01 !

—w.~— (y;, — X, X, 2
In® Y~ (Y5 —%;80)P0/ %0 _ 1(711] Jﬁo) — In(v270y), t;=0
Visa 7 |

Inf; =

InL = w;Inf
j=1

where ®(-) is the cumulative distribution function of the standard normal distribution, and w, is an
optional weight. The covariance between €; and €, 0, cannot be estimated because the potential
outcomes y,; and y,; are never observed simultaneously.

As in the constrained model, o, and o, are not directly estimated in the maximum likelihood estima-
tion; rather, In o, and In o, are estimated.

The parameters p, and p; are also not directly estimated; rather, atanh p, and atanh p; are directly
estimated.
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The new parameter vector is

0= (/667 /3/1a F‘f/v atanh Po> In 00> atanh P15 In 01)/
The CF estimator for this potential-outcome model uses new error functions for the outcome mean

Uy, (Y55 15 X5, W5, 0) = y,—t,(X;8, + projuy ;)
—(1—=t;)(x;8, + pooouy ;)

and for the outcome variances

uU,O(y]’t]7xJ’w 0) (1 —t; ) ( U, .7 O'(% [1 - p(% {ut,j(ut,j + w]'\f)}])

uv,l(va t]? ngw 0) /' (u?n,j - 01 [ - p% {ut,j(ut,]’ + W]’Y)}})
These error functions are derived based on the identities
(yj |t37 oW ) :t.(xﬂ +p101utj)+( t])(x /3 +P000ut3)
Var(y]|t =0,x;,w )—00 [1_:00 {“ty Uy +W]"{)}]
Var(y] |t =1x X, W ) [1—,01 {uty u“—i-w]'\{)}]

We calculate the hazard, h;, prior to estimation from a probit regression of the treatment, ¢;, on the
treatment covariates, ;. Letz; = {x;,t;h;, (1 —t;)h;}. Now we define

VR

z, 0 0 O

0 w, 0 O

= J
Z 0O 0 1 0
0O 0 0 1
and

Uy
Uy j
$i(y;,t5,%;,w,;,0) =7 uvojj
Uy,1,5

The CF estimator 8 is the value of 8 that satisfies the sample-moment conditions

NZ (Y. t5,%;,W,,0)
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The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,
chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is R
V=(1/N)GSG’

-1
G- {(I/N) > ‘%J'(?/j’tggpwjﬁ) }

?

where

and
S=(1/N) Z 8 (Y;nt5, %5, W5, 0)s,(y,, 5, %5, W5, 0)

K2

The matrix G is not symmetric because our estimator comes from stacking the moment conditions
instead of optimizing one objective function. The implication is that the robust formula should always
be used because, even under correct specification, the nonsymmetric G and the symmetric S converge to
different matrices.

Average treatment effect

The ATE is the average difference of the treated potential outcomes and the control potential outcomes.

By the law of iterated expectations, the ATE is
E(yu - lloj‘) = E{E(ZIU - Z/0j|Xj7 €0j> €1j)}
= E(x]ﬁl + 6]. - leao - €O)
= E{x](ﬁl - 160)}

This expectation can be estimated as a predictive margin when x;(8, — 3,)) varies in x;. Otherwise,
the ATE is estimated as the coefficient of ¢; in the model.

Average treatment effect on the treated

The ATE is the average difference of the treated potential outcomes and the control potential outcomes
on the treated population.

The conditional means of the potential outcomes y,;, ¢ € (0,1) for exogenous covariates x; and
treatment covariates W, at treatment ¢; = 1 are

E(ylx;,w,t; =1) = X;8, + PtUtﬁb(Wj“{)/q)(Wj"f)
By the law of iterated expectations, the ATET is

E(y1; — yolt; = 1) = E{E(y1; — yo;|x;, w;, t; = 1)}
= B(x;(8, = By) + (0101 = po70) 00/ ()l = 1}
This expectation can be estimated as a predictive margin on the treated population when x 5 (B L 50)

varies in x; or when the variance and correlation parameters differ by treatment group. Otherwise, the
ATET is estimated as the coefficient of ¢; in the model.
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Postestimation commands predict margins
Also see

Remarks and examples

Postestimation commands

The following standard postestimation commands are available after etregress:

Command Description
contrast contrasts and ANOVA-style joint tests of parameters
*estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

estat summarize

estat vce
estat (svy)
estimates
etable

* hausman
lincom

*1lrtest
margins

marginsplot
nlcom

predict
predictnl
pwcompare
* suest
test
testnl

mation criteria (AIC, CAIC, AICc, and BIC, respectively)
summary statistics for the estimation sample
variance—covariance matrix of the estimators (VCE)
postestimation statistics for survey data
cataloging estimation results
table of estimation results
Hausman’s specification test

point estimates, standard errors, testing, and inference for linear combinations of
parameters

likelihood-ratio test

marginal means, predictive margins, marginal effects, and average marginal
effects

graph the results from margins (profile plots, interaction plots, etc.)

point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

conditional treatment effects, linear predictions and their SEs, etc.

point estimates, standard errors, testing, and inference for generalized predictions
pairwise comparisons of parameters

seemingly unrelated estimation

Wald tests of simple and composite linear hypotheses

Wald tests of nonlinear hypotheses

*estat ic, lrtest, and suest are not appropriate after etregress, twostep or etregress, cfunction.
hausman and 1rtest are not appropriate with svy estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, conditional treat-
ment effects, standard errors, expected values, and probabilities.

Menu for predict

Statistics > Postestimation

Syntax for predict
After ML, twostep, or cfunction

predict [type} newvar [lf] [in] [ , statistic}

After ML or cfunction

predict [z‘ype] stubx [lf] [in] , scores

statistic Description
Main
xb linear prediction; the default
cte conditional treatment effect at treatment level
stdp standard error of the prediction
stdf standard error of the forecast
yetrt E(y; | treatment = 1)
yentrt E(y; | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation
stdptrt standard error of the linear prediction for treatment equation
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample.
stdf is not allowed with svy estimation results.

Options for predict

Main

xb, the default, calculates the linear prediction, x;b.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment
level.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the
prediction is also referred to as the standard error of the fitted value.
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stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
one observation. It is commonly referred to as the standard error of the future or forecast value. By
construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

yctrt calculates the expected value of the dependent variable conditional on the presence of the treat-
ment: E(y; | treatment = 1).

ycntrt calculates the expected value of the dependent variable conditional on the absence of the treat-
ment: (y; | treatment = 0).

ptrt calculates the probability of the presence of the treatment:
Pr(treatment = 1) = Pr(w;~ + u; > 0).

xbtrt calculates the linear prediction for the treatment equation.
stdptrt calculates the standard error of the linear prediction for the treatment equation.
scores, not available with twostep, calculates equation-level score variables.
The first new variable will contain dInL/0(x;03).
The second new variable will contain 9InL /0 (w ;).
Under the constrained model, the third new variable will contain dInL /0 atanh p.
Under the constrained model, the fourth new variable will contain 91nL/01no.

Under the general potential-outcome model, the third new variable will contain
O1nL/0 atanh pj,.

Under the general potential-outcome model, the fourth new variable will contain OInL/01noy,.
Under the general potential-outcome model, the fifth new variable will contain d1nL /9 atanh p, .

Under the general potential-outcome model, the sixth new variable will contain dInL/d1no;.
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margins

Description for margins

margins estimates margins of response for linear predictions, conditional treatment effects, expected
values, and probabilities.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist| [, options |

margins [marginlist] , predict (statistic . ..) [predict (statistic ...) ...] [options ]

Maximum likelihood and control-function estimation results

statistic Description

xb linear prediction; the default

cte conditional treatment effect at treatment level
yctrt E(y; | treatment = 1)

ycntrt E(y; | treatment = 0)

ptrt Pr(treatment = 1)

xbtrt linear prediction for treatment equation

stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Two-step estimation results

statistic Description

xb linear prediction; the default

ptrt Pr(treatment = 1)

xbtrt linear prediction for treatment equation
cte not allowed with margins

yctrt not allowed with margins

yentrt not allowed with margins

stdp not allowed with margins

stdf not allowed with margins

stdptrt not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the
parameters most frequently estimated by postestimation techniques after etregress.

When there are no interactions between the treatment variable and the outcome covariates in
the constrained model, etregress directly estimates the ATE and the ATET; see example 1 of
[CAUSAL] etregress.

When there are no interactions between the treatment variable and the outcome covariates in

the general potential-outcome model, etregress directly estimates the ATE; see example 2 of
[CAUSAL] etregress.

When there are interactions between the treatment variable and the outcome covariates, you can use
margins after etregress to estimate the ATE. See example 3 and example 4 of [CAUSAL] etregress for
examples of ATE estimation.

When there are interactions between the treatment variable and the outcome covariates in the
constrained model, you can use margins after etregress to estimate the ATET. See example 5 of
[CAUSAL] etregress for an example of ATET estimation in the constrained model.

In the general potential-outcome model, you can use margins after etregress to estimate the ATET.
See example 6 of [CAUSAL] etregress for an example of ATET estimation in the general potential-outcome
model.

Also see

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands



gencohort — Create a cohort variable

Description Quick start Menu Syntax
Options Remarks and examples Also see
Description

gencohort creates a categorical variable indicating the first time period at which units within a group
are treated, that is, a cohort variable. Cohort variables created by gencohort are meant to be used as
inputs for the hdidregress and xthdidregress commands.

Quick start

Create a cohort variable with name mycohort using group variable country, time variable year, and
binary treatment variable policy

gencohort mycohort, group(country) time(year) treat(policy)

Same as above, but only if outcome variable y is positive
gencohort mycohort if y>0, group(country) time(year) treat(policy)

Menu

Data > Create or change data > Other variable-creation commands > Create cohort variable

Syntax

gencohort newvar [if | [in], group(groupvar) time (timevar) treat (tvar)

groupvar is a categorical variable that indicates the group level at which the treatment occurs.
timevar is a time variable.

tvar must be a binary variable indicating observations subject to treatment.

Options
Main

group (groupvar) specifies a group variable that indicates the group level at which the treatment occurs.
groupvar may be, for example, states, counties, or hospitals. group () is required.

time (timevar) specifies the time variable used to define treatment-time cohorts. time () is required.

treat (tvar) specifies the binary variable that indicates which observations are subject to treatment.
treat () is required.

Remarks and examples

For examples, see Remarks and examples in [CAUSAL] hdidregress and Remarks and examples in
[cAUSAL] xthdidregress.
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Also see

[cAUSAL] hdidregress — Heterogeneous difference in differences

[cAUSAL] xthdidregress — Heterogeneous difference in differences for panel data
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description

hdidregress estimates average treatment effects on the treated (ATETs) that may vary over time and
over treatment cohorts. Treatment cohorts are groups subject to treatment at different points in time.
hdidregress provides four estimators: extended two-way fixed effects (TWFE), regression adjustment
(RA), inverse-probability weighting (IPW), and augmented inverse-probability weighting (AIPW). See
[CAUSAL] teffects intro for a discussion of RA, IPW, and AIPW estimators.

hdidregress is for repeated cross-sectional data. For panel data, see [CAUSAL] xthdidregress.

Quick start
Estimate ATETS of treatment treat on outcome y with group grpvar and time tvar; use the RA estimator

and model y using covariate x
hdidregress ra (y x) (treat), group(grpvar) time(tvar)

Same as above, but use the TWFE estimator
hdidregress twfe (y x) (treat), group(grpvar) time(tvar)

Use the IPW estimator and model treat using covariate z
hdidregress ipw (y) (treat z), group(grpvar) time(tvar)

Use the AIPW estimator, model y using covariate x, and model treat using covariate z
hdidregress aipw (y x) (treat z), group(grpvar) time(tvar)

Same as above, but use the not-yet-treated group as the control group
hdidregress aipw (y x) (treat z), group(grpvar) time(tvar) ///
controlgroup(notyet)
Same as above, but cluster at the county level

hdidregress aipw (y x) (treat z), group(grpvar) time(tvar) ///
controlgroup(notyet) vce(cluster county)
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Menu

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (TWFE)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (RA)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (IPW)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (AIPW)

Syntax

Two-way fixed effects
hdidregress twfe (ovar [omvarlist|) (tvar) [if ] [in] [weight],

group (groupvar) time (timevar) [options |

Regression adjustment
hdidregress ra (ovar [omvarlist]) (tvar) [if | [in] [weight],

group (groupvar) time (timevar) [options |

Inverse-probability weighting
hdidregress ipw (ovar) (tvar [tmvarlist]) [if ] [in] [weight],

group (groupvar) time (timevar) [ options |

Augmented inverse-probability weighting
hdidregress aipw (ovar [omvarlist|) (tvar [tmvarlist]) [if ] [in] [weight],

group (groupvar) time (timevar) [options |

ovar is a continuous outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see
[U] 11.4.3 Factor variables.

tvar must be a binary variable indicating observations subject to treatment.

tmvarlist specifies the covariates in the treatment model and may contain factor variables; see
[U] 11.4.3 Factor variables.

groupvar is a categorical variable that indicates the group level at which the treatment occurs.

timevar is a time variable.
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options Description
Model
* group (groupvar) specify group variable

*time (timevar)
controlgroup (cgtype)

cohortvar (cvar [ s replace])
usercohort (varname)

t basetime (btspec)

Y hettype (hetspec)

SE/Robust
vce (vcetype)

Reporting
level(#)
[no]log
nodots
display_options

specify time variable

specify the type of control group; default is
controlgroup(never)

specify the variable name for the generated cohort

specify name of cohort variable to be used for estimation

specify the type of base time for pretreatment periods; default
is basetime (adaptive)

specify the type of heterogeneity; default is
hettype (timecohort)

vecetype may be cluster clustvar, robust,
bootstrap, or jackknife

set confidence level; default is 1evel (95)
suppress iteration log
suppress replication dots

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics
cgtype Description
never use the never-treated group as the control group; the default
notyet use the not-yet-treated group as the control group
btspec Description
adaptive specify the adaptive base time for pretreatment ATETS;
the default
common specify a common base time for all pretreatment ATETs
hetspec Description
timecohort heterogeneous treatment effects over time and cohort; the default
time heterogeneous treatment effects over time
cohort heterogeneous treatment effects over cohort
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*group() and time () are required.

Thasetime () may be specified only when ra, ipw, or aipw is specified.
thettype () may be specified only when tufe is specified.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.
fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options
Model

group (groupvar) specifies a group variable that indicates the group level at which the treatment occurs.
groupvar may be, for example, states, counties, or hospitals. group() also defines the clusters for
the default cluster—robust standard errors. group() is required. You may specify only one group
variable.

time (timevar) specifies the time variable used to define treatment-time cohorts. time () is required.

controlgroup (cgtype) specifies the type of control group. A control group can be either a never-treated
group or a not-yet-treated group. A never-treated group refers to the units that are untreated from the
first to the last period. A not-yet-treated group refers to the units that are untreated up to a specific
period. cgtype can be one of never, referring to the never-treated group, or notyet, referring to the
not-yet-treated group. By default, cgtype is never.

cohortvar (cvar |, replace|) specifies the variable name cvar for the generated cohort variable. The
cohort variable is a categorical variable indicating the period when the unit is first treated. By default,
_did_cohort isused as the name of the cohort variable. If _did_cohort already exists in the dataset,
it is replaced if option cohortvar () is not specified.

If suboption replace is specified, cvar is replaced.

usercohort (varname) specifies a variable to be used as a cohort indicator during estimation. By de-
fault, a cohort variable is generated using the information in the estimation sample to indicate the
period when a unit is first treated. usercohort () overrides this default and allows you to provide a
cohort indicator. This is useful, for instance, when there are gaps in the estimation sample, but you
know a group was treated at the time when the gap is present in the data.

basetime (btspec) specifies how the base time is chosen when computing the pretreatment ATETs with
the ra, ipw, or aipw estimator. btspec is one of adaptive (the default) or common.

adaptive specifies that the base time for pretreatment ATETs be chosen adaptively. The base time for
each pretreatment period ¢ for cohort g is the previous period, t — 1.

common specifies that a common base time of g — 1 be used for all pretreatment ATETs for cohort g. A
long-run violation of the parallel trends assumption is easier to identify when using this common
base time.

The base time for posttreatment periods is g — 1, regardless of whether the adaptive or common base
time is used for pretreatment periods.

hettype (hetspec) specifies time or cohort heterogeneity for the twfe estimator. By default, treatment
is interacted with time and cohort. You may choose to keep one of time or cohort interactions using
hetspec.
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hetspec may be one of timecohort for heterogeneous treatment effects over both time and cohort,
time for heterogeneous treatment effects over time only, or cohort for heterogeneous treatment
effects over cohort only. By default, hetspec is timecohort.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that allow for intra-
group correlation (cluster clustvar), that are robust to intragroup correlation among group variable
(robust), and that use bootstrap or jackknife sampling done at the individual level (bootstrap,
jackknife); see [R] vce_option.

vce (cluster clustvar), the default, uses the variable specified in group (groupvar) .

Reporting

level (#); see [R] Estimation options.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set ifer.

nodots suppresses display of the replication dots.

display_options: noci, nopvalues, cformat(fmt), pformat(%fmt), sformat(%fmt), and
nolstretch; see [R] Estimation options.

The following option is available with hdidregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

It is common to study the effects of a treatment, for example, a policy or intervention, on a group.
hdidregress is for data where the treated groups are subject to the treatment at different points in time
and they remain exposed to the treatment. For example, a health policy such as an increase in the age
to purchase cigarettes is implemented in a given region, and over time, other regions decide to imitate
the initiative. Another example is change in work policies across industries. Perhaps airlines implement
a minimum number of hours between shifts for safety reasons. The policy is subsequently adopted by
other similar industries. Some similar industries may never adopt the policy, remaining untreated, or it
might be that all similar industries eventually adopt the policy.

hdidregress estimates ATET parameters that change over time and treatment cohorts (groups treated
at different points in time). Each one of these ATETs has the same interpretation that the parameters of a
two-time two-group difference-in-differences (DID) parameter would have. Because there are multiple
DID parameters, we refer to them as heterogeneous treatment effects or as heterogeneous DID. This is in
contrast to estimating only one ATET, which assumes there is no variation across time or cohort. If you
assume no variation across time or cohort, you may use didregress; see [CAUSAL] didregress.

hdidregress provides four estimators: TWFE, outlined in Wooldridge (2021); RA, IPW, and AIPW,
outlined in Callaway and Sant’Anna (2021). Each one of these estimators fits a model for the outcome of
interest, a model for the treatment, or a model for both. For example, RA and TWFE model the outcome;
IPW models the treatment; and AIPW models both. If the model for the outcome is correctly specified,
RA and TWFE are best, with TWFE being more efficient. If the treatment model is correctly specified,
IPW should be best. ATPW models both treatment and outcome. If at least one of the models is correctly
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specified, it provides consistent estimates. Thus, it allows us to misspecify one of the models and still get
consistent estimates, a property called double robustness. See [CAUSAL] teffects intro for a discussion
of RA, TIPW, and AIPW estimators.

hdidregress is for repeated cross-sectional data. For panel data, see [CAUSAL] xthdidregress. Be-
low, we illustrate how to use hdidregress. For a general overview of DID and more information about
the methods used below, see [CAUSAL] DID intro. For general discussions about the methods, see Roth
et al. (2022) and de Chaisemartin and D’Haultfceuille (2023) and the references therein.

b Example 1: Heterogeneous DID for repeated cross-sections

We are interested in knowing if a school-district-level program, Healthy Habits, reduces the body mass
index (BMI) for students in the school district. We have fictional data on the Healthy Habits program. This
program incorporates more exercise time and augments the intakes of fruits and vegetables. Our data
are at the school-district level and include information on whether a school participates in the program,
hhabit, and the BMI of students in the district, bmi. We have repeated samples of students ages 11 to 14
from 40 school districts from the year 2032 to the year 2040.

. use https://www.stata-press.com/data/r19/hhabits
(Fictional children BMI and school district data)

We are going to use the aipw estimator, which allows us to model the outcome and the treatment. If
we had selected another estimator and specified the outcome incorrectly, the treatment effects would be
inconsistent; see [CAUSAL] teffects aipw. With the aipw estimator, as long as one of the treatment or
outcome model is correctly specified, we will get a consistent estimate of the ATET—a property called
double robustness.

We model hhabit using the number of parks in the district, parksd. We conjecture that school
districts with more parks consider exercise spaces more important in their urban planning than those
with fewer parks. These districts are therefore more amenable to the Healthy Habits program.

For the outcome variable, we believe that mother’s education, medu, is a good predictor of the health
habits of children. We also believe that participation in sports, sports, affects bmi. Finally, we control
for whether the student is a girl to account for behavioral differences and differences in body types of
boys and girls at this age.

In the first set of parentheses, we define the outcome, bmi, and any covariates that affect the outcome
directly. In the second set of parentheses, we define the observation-level treatment variable, hhabit,
and the covariates that affect it. After the comma, we must define the group variable in group () ; this is
a required option. The group variable defines at which level the treatment occurs and also identifies the
clustering variable, which in this case is schools. We also need to specify a time variable in time ().
We fit the following model:

. hdidregress aipw (bmi medu i.girl i.sports) (hhabit parksd),

> group(schools) time(year)

note: variable _did_cohort, containing cohort indicators formed by treatment
variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Computing ATET for each cohort and time:
Cohort 2034 (8): ........ done
Cohort 2036 (8): ........ done
Cohort 2038 (8): ........ done
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Treatment and time information

Time variable: year
Time interval: 2032 to 2040

Control: _did_cohort = 0

Treatment: _did_cohort > 0
_did_cohort

Number of cohorts 4

Number of obs

Never treated 11355
2034 1231
2036 2097
2038 2042
Heterogeneous treatment-effects regression Number of obs = 16,725
Estimator: Augmented IPW
Treatment level: schools
Control group: Never treated

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. z P>|z| [95% conf. intervall]
2034
year
2033 .6544681 .5946048 1.10 0.271 -.5109359 1.819872
2034 -1.226451 .379168 -3.23 0.001 -1.969607 -.4832957
2035 -2.491842 .4169657 -5.98 0.000 -3.30908 -1.674605
2036 -2.72486 .2363878 -11.53 0.000 -3.188171 -2.261548
2037 -2.786634 .6672867 -4.18 0.000 -4.094492 -1.478776
2038 -3.980456 .2993279 -13.30 0.000 -4.567127 -3.393784
2039 -.604415 .5929199 -1.02 0.308 -1.766517 .5576866
2040 -.6522272 .3640416 -1.79 0.073 -1.365736 .0612812
2036
year
2033 .6635794 .3089663 2.15 0.032 .0580167 1.269142
2034 -1.3933 .3871204 -3.60 0.000 -2.152042 -.6345582
2035 .5947865 .4065947 1.46 0.144 -.2021245 1.391697
2036 -1.71427 .4565384 -3.75 0.000 -2.609069 -.8194714
2037 -3.170542 .5221368 -6.07 0.000 -4.193912 -2.147173
2038 -2.967701 .4247053 -6.99 0.000 -3.800108 -2.135294
2039 .0360098 .6868764 0.05 0.958 -1.310243 1.382263
2040 -.957117 .3510986 -2.73 0.006 -1.645258 -.2689763
2038
year
2033 -1.434451 .5163232 -2.78 0.005 -2.446426 -.422476
2034 1.010288 .4808165 2.10 0.036 .067905 1.952671
2035 -.3809733 .4336764 -0.88 0.380 -1.230963 .4690169
2036 .5199519 .4849723 1.07 0.284 —-.4305763 1.47048
2037 -.0315794 .5863875 -0.05 0.957 -1.180878 1.117719
2038 -3.602114 .3498692 -10.30 0.000 -4.287845 -2.916383
2039 -1.388906 .6765493 -2.05 0.040 -2.714919 -.0628943
2040 -.6222491 .5510466 -1.13 0.259 -1.70228 .4577824

Note: ATET computed using covariates.
Note: Base time for pretreatment ATETs is the previous period.
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Notice the note below the command. A variable with the name _did_cohort has been generated.
Using the group variable and the observation-level treatment, hdidregress generated treatment-time
cohorts. The new variable creates treatment groups based on the time when a group was first treated. For
instance, if two schools adopt the Healthy Habits program in 2034, they are grouped in the 2034 cohort.
The variable also contains a category for a control group. In this case, the control group is formed by
the schools that never participate in the program. Cohorts are an important input for estimation and
for postestimation commands. You do not need to adhere to the default name, _did_cohort, and may
provide your own name using the cohortvar () option.

Next appears a table that gives you a sense of the treatment groups and time. You see the time variable,
year, and its range, 2032 to 2040. Then we see what defines a treated or a control group. The table
after provides group-level information about the cohort-time groups. The first row tells you the number
of cohorts. Following the number of cohorts is a tabulation showing how many observations are in each
cohort. For instance, 11,355 observations are never treated in our data. The table gives you a sense of the
amount of information available in each cohort and might hint at the variability of cohort-level estimates.

The next table presents the ATET estimates. The first panel shows the ATETs for the 2034 cohort. We
first have the 2033 ATET of 0.65, and the confidence interval includes 0. This is as expected; before
treatment, the effect should be 0. We should interpret the ATET to mean that among the school districts
that adopted the Healthy Habits program in 2034, the expected bmi is 0.65 higher than if the districts
had never participated in the program. At treatment onset, in 2034, we observe a treatment effect is a
decrease of the bmi of 1.23. In the last two periods, the effect of the treatment has diminished for the
2034 cohort; the confidence intervals for the effects in 2039 and 2040 again include 0. We interpret the
results for the other cohorts similarly.

N

b Example 2: Visualizing estimation results

In the example above, we had four cohorts and nine time periods. There is a lot of information to
process, and it can get even more daunting if we had more cohorts and time periods. To better visualize
the results, we can use estat atetplot:

. estat atetplot
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Figure 1. ATETs by cohort over time
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The graph shows the pretreatment and the posttreatment ATETs for each cohort and their pointwise
confidence intervals. For the 2034 cohort, we see that the program reduces bmi by approximately 2 to 4
points but this tendency seems to start reverting in 2038. A similar pattern emerges over the other two
cohorts.

d

b Example 3: Less heterogeneity; aggregating and summarizing treatment effects

So far, we have allowed treatment effects to change over cohort and over time. But we might want
to obtain only one treatment effect for each cohort, abstracting away from time variation within cohorts.
You would get this using the postestimation command estat aggregation.

. estat aggregation, cohort
ATET over cohort Number of obs = 16,725

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. z P>|z| [95% conf. intervall
2034 -2.065755 .1999412 -10.33 0.000 -2.457633 -1.673877
2036 -1.7781 .4013978 -4.43 0.000 -2.564825 -.9913744
2038 -1.869405 .4650349 -4.02 0.000 -2.780857 -.9579538

Note that aggregation occurs only for the posttreatment periods and not for the pretreatment periods.
The 2034 estimate is a weighted average of all the treatment-effect estimates after 2034 for the 2034
cohort; see [CAUSAL] hdidregress postestimation for more details.

Aggregated estimates are easier to digest; now we have 3 treatment effects to analyze instead of 24.
For the 2034 cohort, we have a treatment effect of —2.1. For the 2036 cohort, the effect is —1.8, and for
the 2038 cohort, it is —1.9. We cannot see how the treatment evolves over time for each cohort, but we
have a sense of the average effect over time for each of them.

We could instead want to see the treatment effect at each point in time, abstracting from cohort-level
variation.

. estat aggregation, time

ATET over time Number of obs = 16,725
(Std. err. adjusted for 40 clusters in schools)
Robust

Time ATET std. err. z P>|z| [95% conf. intervall
2034 -1.226451 .379168 -3.23 0.001 -1.969607  -.4832957
2035 -2.491842 .4169657 -5.98 0.000 -3.30908 -1.674605
2036 -2.111619 .3654785 -5.78 0.000 -2.827943 -1.395294
2037 -3.028686 .4278557 -7.08 0.000 -3.867268 -2.190104
2038 -3.449829 .2670184 -12.92  0.000 -3.973176  -2.926483
2039 -.6624494 .44865 -1.48 0.140 -1.541787 .2168884
2040 -.7575068 .2816374 -2.69 0.007 -1.309506 -.2055078
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We see the treatment effects for each one of the posttreatment periods. As before, we have the option
to look at the effects graphically. We just need to use the graph option.

. estat aggregation, time graph

ATET over time

—e— ATET
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Figure 2. ATETSs over time

b Example 4: Dynamic treatment effects

We could also ask what the evolution of the treatment effect is after treatment. For instance, we might
want to know what happens one period after the onset of treatment, two periods after treatment, and so
forth. It might be the case that treatment effects vanish over time or even change patterns. We might also
want to see whether, before treatment, we observe a treatment effect or a pattern that might suggest that
there is anticipation of treatment. estat aggregation allows us to answer these questions by using the
dynamic option.

. estat aggregation, dynamic graph

Duration of exposure ATET Number of obs = 16,725
(Std. err. adjusted for 40 clusters in schools)
Robust
Exposure ATET std. err. z P>|z| [95% conf. intervall
-5 -1.434451 .5163232 -2.78 0.005 -2.446426 -.422476
-4 1.010288 .4808165 2.10 0.036 .067905 1.952671
-3 .1338267  .3091619 0.43 0.665 -.4721195 739773
-2 -.4256324  .4292553 -0.99 0.321 -1.266957 .4156925
-1 .3727141 .3197563 1.17 0.244 —-.2539967 .999425
0 -2.285098  .3827362 -5.97 0.000 -3.035248  -1.534949
1 -2.344265  .3829047 -6.12  0.000 -3.094744  -1.593785
2 -2.045521 .3911543 -5.23 0.000 -2.81217 -1.278873
3 -1.045601 .6840119 -1.53 0.126 -2.38624 .2950372
4 -2.145004  .5952525 -3.60 0.000 -3.311678 -.978331
5 -.604415  .5929199 -1.02 0.308 -1.766517 .5576866
6 -.6522272  .3640416 -1.79 0.073 -1.365736 .0612812

Note: Base time for pretreatment ATETs is the previous period.
Note: Exposure is the number of periods since the first treatment time.
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Duration of exposure ATET
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Figure 3. ATET dynamics

In the three periods prior to treatment, there is no effect. This suggests no anticipation to treatment.
At the onset, the program reduces bmi, but the effect decreases for school districts that remain for more
than four years in the program.

d

b Example 5: TWFE estimation

The literature on heterogeneous DID started by pointing out the problems that arise when one assumes
erroneously that the treatment effects are homogeneous. It suggested that TWFE estimation was inade-
quate. Wooldridge (2021) suggests that fixed-effects estimation can be used if we extend it to include
interactions between treatment-time cohorts and time.

Another important insight of Wooldridge (2021) is that you can use pooled ordinary least squares
and add panel-level averages of covariates and obtain the same point estimates as one would get with
fixed-effects estimation in the context of DID estimation. This is an extension of the intuition by Mundlak
(1978). xthdidregress and hdidregress fit pooled ordinary least-squares models using these ideas.
Below, we present the results we obtain using the twfe estimator.



hdidregress — Heterogeneous difference in differences 254

. hdidregress twfe (bmi medu i.girl i.sports) (hhabit), group(schools) time(year)
note: variable _did_cohort, containing cohort indicators formed by treatment
variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Treatment and time information

Time variable: year
Time interval: 2032 to 2040

Control: _did_cohort = 0

Treatment: _did_cohort > 0O
_did_cohort

Number of cohorts 4

Number of obs

Never treated 11355
2034 1231
2036 2097
2038 2042
Heterogeneous treatment-effects regression Number of obs = 16,725
Data type: Repeated cross-sectional
Estimator: Two-way fixed effects
Treatment level: schools
Control group: Never treated
Heterogeneity: Cohort and time

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. t P>[t] [95% conf. intervall]
2034
year
2034 -.8057824 .2723491 -2.96 0.005 -1.35666 —.2549045
2035 -1.951481 .2098279 -9.30 0.000 -2.375898 -1.527064
2036 -2.091438 .2081903 -10.05 0.000 -2.512542 -1.670333
2037 -2.329408 .4674253 -4.98 0.000 -3.274865 -1.383952
2038 -3.623645 .4658056 -7.78 0.000 -4.565826 -2.681464
2039 -.1729334 .7543583 -0.23 0.820 -1.698767 1.3529
2040 -.2267266 .3344035 -0.68 0.502 -.9031216 .4496684
2036
year
2036 -1.671963 .3424563 -4.88 0.000 -2.364646 -.9792798
2037 -3.27542 .3496365 -9.37 0.000 -3.982627 -2.568213
2038 -2.995124 .2853544 -10.50 0.000 -3.572308 -2.41794
2039 -.0792949 .5152787 -0.15 0.878 -1.121544 .9629547
2040 -.9852905 .1856743 -5.31 0.000 -1.360852 -.6097289
2038
year
2038 -3.389082 .154181 -21.98 0.000 -3.700942 -3.077221
2039 -.7309226 .5173441 -1.41 0.166 -1.77735 .3155046
2040 -.6942153 .3558485 -1.95 0.058 -1.413987 .0255563

Note: ATET computed using covariates.
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The output is almost the same as the one for the ra estimator in example 1. There are a couple of
noteworthy differences. First, the estimator fits an extended TWFE regression. Second, the ATET param-
eters are shown for each cohort only at the time of treatment exposure and for the periods thereafter but
not for the pretreatment periods. As discussed in Wooldridge (2021), these are the parameters identified
using the parallel-trends assumption he derives.

As we did before, we could use estat aggregation to explore different ways of looking at our
treatment effects and estat atetplot to visualize the estimated ATETS.

N

b Example 6: Reducing model complexity

When we fit the aipw model, we had to estimate ATET parameters for each cohort over time. The
complexity of the model grows with the number of cohorts and the number of time periods. As is de-
scribed in Methods and formulas, the aipw estimator uses a different subset of the data to obtain each
parameter. To get a reliable estimator of each parameter, you need sufficient data for each subsample.
Sometimes, there are few observations for a given cohort in a given set of time periods.

We can ameliorate this problem by reducing the amount of heterogeneity we assume. For the twfe
estimator, the complexity of the model comes from the interactions between the observation-level treat-
ment with cohort and time and the interactions between the observation-level treatment, cohort, time, and
covariates. This allows us to decide which interactions to include in our model. We could, for instance,
allow for heterogeneity at the cohort level instead of at the cohort and time level. We use the hettype ()
option with the argument cohort to do this:

. hdidregress twfe (bmi medu i.girl i.sports) (hhabit), group(schools)

> time(year) hettype(cohort)

note: variable _did_cohort, containing cohort indicators formed by treatment
variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Treatment and time information

Time variable: year
Time interval: 2032 to 2040

Control: _did_cohort = 0

Treatment: _did_cohort > 0
_did_cohort

Number of cohorts 4

Number of obs

Never treated 11355
2034 1231
2036 2097

2038 2042
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Heterogeneous treatment-effects regression Number of obs = 16,725
Data type: Repeated cross-sectional

Estimator: Two-way fixed effects

Treatment level: schools

Control group: Never treated

Heterogeneity: Cohort

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET  std. err. t P>|t| [95% conf. intervall]
2034 -1.619553 .2223114 -7.29 0.000 -2.069221 -1.169886
2036 -1.832602 .1954433 -9.38 0.000 -2.227924 -1.437281
2038 -1.739144 .2152765 -8.08 0.000 -2.174582 -1.303706

Note: ATET computed using covariates.

You fit a regression model with fewer terms and obtain treatment effects only at the cohort level. You
could also have the treatment effect change over time but not over cohort by typing hettype (time).

For the estimators proposed by Callaway and Sant’ Anna (2021), heterogeneity is built in, so we need
to estimate all the ATET parameters.

d

b Example 7: Defining your own cohort

By default, hdidregress creates a cohort variable based on the estimation sample. Yet this might be
inadequate if a researcher has more information than is provided in the dataset. Suppose that our dataset
looked something like this for school district 1:

. list schools year hhabit in 100/105, noobs sepby(schools)

schools year hhabit
1 2033 No
1 2033 No
1 2035 Yes
1 2035 Yes
1 2035 Yes
1 2035 Yes

There is no information for the year 2034. If the school district participated in the healthy habits
program in 2034, it should belong to the 2034 cohort. However, hdidregress has no information about
the year 2034 in the estimation sample and will classify school district 1 as belonging to the 2035 cohort.
hdidregress’s inability to determine the proper cohort is not exclusive to situations with gaps in your
repeated cross-section. In fact, Stata excludes observations in your sample if any of the variables used
during estimation are missing. If all observations for the time period in which a group is first treated are
omitted because of missing values, hdidregress cannot assign the group to the appropriate cohort.

If you have information about the cohort values, instead of letting the command create a cohort vari-
able, you can provide the cohort variable with the usercohort () option. Suppose you had a cohort
variable, mycohort; then you could type

. hdidregress twfe (bmi) (hhabit), group(schools) time(year) usercohort(mycohort)
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Another possibility is to generate the cohort variable mycohort yourself using the gencohort com-
mand; this is helpful when you have missing information on covariates or the outcome but have enough
information about the treatment. Suppose you had missing information about the outcome variable bmi
but had information about the treatment variable. Below, we drop information about the 2034 cohort to
illustrate the point.

. replace bmi = . if year==2034 & schools==
(44 real changes made, 44 to missing)

These observations for year 2034 would not be used during estimation, but we have enough informa-
tion in them to create our own cohort variable.

. gencohort mycohort, treat(hhabit) time(year) group(schools)
. list schools year hhabit bmi mycohort in 100/105, noobs sepby(schools)

schools year hhabit bmi  mycohort
1 2033 No  20.14775 2034
1 2033 No  21.06941 2034
1 2034 Yes . 2034
1 2034 Yes . 2034
1 2034 Yes . 2034
1 2034 Yes . 2034

The mycohort variable can now be specified in the usercohort () option of hdidregress() to
properly treat school district 1 as belonging to cohort 2034.
N
Stored results

hdidregress stores the following in e ():

Scalars
e() number of observations
e(N_clust) number of clusters
e(tmin) first time period
e (tmax) last time period
e(rank) rank of e (V)

Macros
e(cmd) hdidregress

e(cmdline)
e(clustvar)
e(control_group)
e(het_type)
e(cohortvar)
e(usercohort)
e(ovar)
e(wtype)

e (wexp)
e(marginsnotok)
e(timevar)
e(treatname)
e(basetime)
e(estat_cmd)
e(vce)
e(vcetype)

command as typed

name of cluster variable

control group

heterogeneity type for twfe estimator
name of cohort variable

name of user-specified cohort variable
name of outcome variable

weight type

weight expression

predictions disallowed by margins
time variable

name of treatment variable

type of pretreatment base time
program used to implement estat
veetype specified in vce ()

title used to label Std. err.
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e(method) estimator method

e(properties) bV
Matrices

e(b) coefficient vector

e(\) variance—covariance matrix of the estimators

e(cohort_count) matrix with cohort count information
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r ():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values, and
confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when any
r-class command is run after the estimation command.

Methods and formulas

Methods and formulas are presented under the following headings:

Introduction
The RA, IPW, and AIPW estimators
The TWFE estimator

Introduction

hdidregress for repeated cross-sectional data implements the RA, IPW, and AIPW estimators, outlined
in Callaway and Sant’Anna (2021), and the TWFE estimator, outlined in Wooldridge (2021).

To reveal how the heterogeneous treatment effects evolve across cohorts and time, we are interested
in estimating the ATET for each combination of cohort and time. Cohorts are defined by the time a group
is treated, where time is denoted by ¢, where ¢t = 1,...,T. We denote a cohort by g and the individuals
in our sample by i, where i = 1,..., N. Let GG,/ be an indicator that equals one if unit i is first treated
at time g. Then the units in cohort g can be denoted by G, = 1. When a unit ¢ is never treated, we
denote G;; = 1. Thus, cohort 0 indicates all the units that are never treated. We assume that once a unit
is treated, it will remain treated. We also define d,, as an indicator for treatment of unit 4 at time ¢.

Let 6(g, t) be the ATET for cohort g at time ¢, which is defined as

0(g,t) = E{y,(9) —v:(0)|G, = 1} (ATET)

where y,(g) is the potential outcome at time ¢ for those first treated at time g, y,(0) is the potential
outcome for those that are never treated, and G, equals 1 if a unit belongs to cohort g. All the four
estimators provided in hdidregress estimate 6(g, t) in equation (ATET). We cannot directly estimate
(g, t) using equation (ATET) because the potential outcomes ¥, (¢g) and y,(0) are not observable.

Next, we will describe the RA, IPW, and AIPW estimators.
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The RA, IPW, and AIPW estimators

To estimate the ATET for cohort g at time ¢, the RA, IPW, and AIPW estimators transform the estimation
into a classical two groups and two periods difference-in-differences setup. Thus, we need to restrict
the data to an estimation sample with only two groups and only two periods based on the values of g
and ¢. For the two groups, one group comprises all observations in cohort g; the other group comprises
untreated observations not in cohort g, also known as a control group. For the two periods, one period is
the data in time ¢; the other period is a period when cohort g is not treated, also known as base time.

There are two ways to define the control group. One way is to use the units that are never treated as
the control group. Let CNEY be an indicator that equals one if a unit belongs to the never-treated group.
In particular, CNEV = G,. Another way is to use the units not in cohort g and not yet treated at time ¢ as
the control group. Let C’ be an indicator that equals one if a unit belongs to the not-yet-treated group
lg;tlme t. In particular, Cg t = (1—=G,)(1 —d,). To simplify, we indicate control, in both cases, as

gst-

The definitions of the RA, IPW, and AIPW estimators depend on the definition of C’;‘ +» which can either
be CNEV or C’ However, regardless of the control group’s choice, the estimators’ definitions can
always be ertten using the general notation C7 ,.

There are also two ways to define the base time. One way is to adaptively choose the base time for
the pretreatment periods. When the adaptive method is used to compute the ATET for cohort g at time ¢,
for the pretreatment periods, the base time is ¢ — 1; for the posttreatment periods, the base time is g — 1.
Another way is to use a common base time g — 1 for both pretreatment and posttreatment periods. The
common base time is useful for identifying a violation of the parallel trends assumption in event studies
as discussed in Roth (2024). To simplify the notation, we indicate the base time in both cases as ¢,.

For each unit i in the pooled sample, we observe {7;,y; . ,X, , ,d, , ,Z; . }, where y; is the outcome,
X, are pretreatment covariates for the outcome model, d; is a treatment indicator, z, are covariates for the
treatment assignment model, and 7; € {1,..., T} is a categorical variable indicating the time when unit
1 is observed. Let T, equal one if the unit is observed at time ¢ and zero otherwise.

The estimands also require the following notation,

mi(x) = E(ylx, Gy = 1,7 = 5)
mER(x) = B(ylx, Oy, = 1,7 = 5)
oy = E<TTGG>
s g
) = — 7 P

T, Tipg,:(2)Cq .« ,(Z
E{ 1=pg,( }
where p,, ;(z) is defined by
pyi(z) = Pr(G, =1|z,G,+ C;, =1) (Pz)

and the superscript refers to the group we are conditioning on, either the treated group (treat) or the
control or comparison group (comp).
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The RA estimand is

bua(0:0) = B (s [(m ) = it 0) = G0 = mih 0}] ) e

The IPW estimand is
Opw (9,1) = B { (wiet — wist )y} — B [{wih (2) — win® ,(2)}y] (1PW)

The AIPW estimand is

g)

AIPW
ety — i) — st (y— mist ()] (A

G comj com
Oumy(:0) = E (s [0 = st 00} = (720 — iy, )]
+E[w
—E [} (2){y — miT ()} — wie®y (2){y —mi ety ,(x)}]

E
E

Under some regularity conditions, Callaway and Sant’Anna (2021) showed that the estimand for RA,
IPW, and AIPW is the same as 6(g, t) in equation (ATET). In other words,

0(g,t) = Oralg,t) = Opw(g,t) = 9A1PW(97 t)

Furthermore, the estimands in equations (AIPW) are estimable because they are all based on observed
variables. The identification of the estimators sheds light on how to estimate 6(g, ¢). The estimator can
be generally divided into three steps:

1. Restrict the sample to time ¢ and {,, and keep only the units in cohort g or in control group Cy ,
When option basetime (adaptive) is specified, t, = g—1ift > gort, =t —1ift < g. When
option basetime (common) is specified, t, = g — 1.

2. Use a parametric model to estimate the nuisance functions.

comp
9,8t

treat

o (x), and mSo® (x).

a. For outcomes: linear regression to estimate my*(x), m 9:.to

(x), m
b. For propensity: logit regression to estimate p, ;(z).

treat treat comp

comp
gt > Wty Wy,st

c. For probability weights: w 9,5.t0

scores T, and G ;.

(z), and w (z) to estimate using propensity

3. Plug in the nuisance function estimates into the estimating equation in equations (IPW), (AIPW), or
(RA). Notice that the expectation operator E(-) is replaced by the sample average.

The variance—covariance matrix for the estimates is computed using the influence-function approach
proposed in Callaway and Sant’Anna (2021). The influence function approach is numerically equivalent
to the generalized method of moments approach. However, it is much faster because it avoids computing
the covariance matrix for the parameters in the nuisance functions. For more discussions on influence
functions, see Hampel et al. (1986), Newey and McFadden (1994), and Jann (2020).
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The TWFE estimator

A TWFE estimator for repeated cross-sections fits
Yi :ah+7t+xi,3+di7+ei

Above, h denotes the group level at which treatment occurs. Wooldridge (2021) extends this model to
incorporate interactions between the observation-level treatment, d;, cohort, G, > posttreatment periods,
and covariates. We define indicators for the posttreatment period as f, with s going from ¢ to 7, where
q is the first time period we observe treatment. For instance, f, equals 1 if we are in time-period ¢ and 0
otherwise. To simplify this notation, we show the model without covariates. The extended fixed-effects
model is given by

T T T T
Yi =1 + Z Gigeg + Z fS’YS + Z Z diGigfsTgs + €; (TWFE)
9=q =2

9=q s=g9

We can fit equation (TWFE) using pooled ordinary least squares or a within estimator. We are going to
use the estimator proposed by Mundlak (1978). This gives the same point estimates as using the within
estimator with h as the panel level for the parameters in equation (TWFE) but has different degrees of
freedom because of the additional terms added by the Mundlak approach. Unlike within estimation,
the Mundlak approach works for both repeated cross-sectional data as well as for panel data. Also, it
has good properties to obtain partial effect under various data-generating processes, as pointed out in
Wooldridge (2019).

Above, the Tys AIC the cohort-time treatment effects. When we have covariates, we interact them with
all the relevant variables in the model. To get the treatment effects in this case, we need to control for

the variation in the covariates. We can obtain both effects using margins by typing

. margins, dydx(d) at(year=q ... year=T) over(cohort) vce(unconditional)

where d is the treatment indicator, year indicates treatment times at which treatment will be evaluated
using at (), and cohort is the treatment-time cohorts. We use vce (unconditional) to account for the
variation in the covariates.

In practice, hdidregress computes the treatment effects analytically rather than by use of margins.
Specifically, a modified Mundlak regression model is fit. The modified regression interacts treatment
indicators with covariates demeaned by cohort-specific means instead of the covariates themselves.
Treatment-effect parameters can be estimated as coefficients of this regression rather than as linear com-
binations of regression coefficients, even when covariates are present.

The modified Mundlak regression is treated as being fit following a set of first-stage regres-
sions of each covariate on cohort indicators. GMM-style standard errors account for variation in
these first-stage regressions and are equivalent to the standard errors produced by margins with the
vce(unconditional) option.

With the hettype () option, we reduce the complexity of (TWFE). In particular, if we ask for
hettype(time), we have

T T T
Y; :77+ZG“79(/+Z]2’7§ +Zdif.s7—s +Ei
g=q s=2 s=q
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Now treatment varies over time but not over cohort, that is, 7,. If we use the hettype (cohort) option,
we have

T T T
Yy =1 + Z Gigag + Z fs’)/s + Z diGing + it
9=q 5=2 9=q
Now treatment varies over cohort but not over time, that is, Ty

When the controlgroup(notyet) option is specified, the G, indicator excludes the last treated
cohort. As discussed in Wooldridge (2021), when every group is eventually treated, we cannot identify
the treatment effect for this cohort. It is therefore sensible to use the last treated cohort as a control group.
When some of the units in our sample are never treated, we can always identify all cohorts, and the twfe
estimator will always revert to using controlgroup (never).
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Postestimation commands estat Remarks and examples Stored results
Methods and formulas Reference Also see

Postestimation commands

The following postestimation commands are of special interest after hdidregress and
xthdidregress:

Command Description
estat ptrends parallel-trends test
estat atetplot plot the coefficients of ATET for each cohort

festat aggregation  aggregate the ATETS to characterize the heterogeneity of treatment effects
*estat sci multiplier bootstrap for simultaneous confidence intervals

festat aggregation is not allowed after estimation with bootstrap or jackknife standard errors.
*estat sci may not be used after estimation using TWFE.

The following postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

264
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estat

Description for estat

estat ptrends tests that all pretreatment periods are equal to zero.
estat atetplot plots the coefficients of ATET for each cohort across different periods.

estat aggregation aggregates the cohort-period ATETs to characterize the heterogeneity of treatment
effects. Aggregation may be within cohorts, time periods, time exposed to treatment, or within cohort
and time periods. You may display the output of estat aggregation simultaneously as a table and
a graph. The default is the tabular output.

estat sci provides the simultaneous confidence intervals for ATETs using the multiplier bootstrap
method proposed in Callaway and Sant’Anna (2021). It may not be used after estimation using the
TWFE estimator.

Menu for estat

Statistics > Postestimation

Syntax for estat
Tests that all pretreatment periods are zero

estat ptrends

Plot coefficients for ATETs

estat atetplot [cohori_list] [, ateiplot_options |

Aggregate ATETs

estat aggregation |, aggregation_options |

Simultaneous confidence intervals
estat sci [, level(#) sci_options |
cohort_list is a subset of all the cohorts when estimating the ATETs. By default, the cohort_list con-

tains all the cohorts. cohort_list is not allowed when the TWFE estimator is combined with option
hettype(time) or hettype (cohort).
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atetplot_options Description
level(#) set confidence level
*sci[ (sci_options) | use multiplier bootstrap to compute the simultaneous

confidence intervals

Graph options

Main
noci do not plot the confidence intervals
* preteopts (scatter_opts) affect rendition of the pretreatment scatterplot
postteopts (scatter_opts) affect rendition of the posttreatment scatterplot
[no]zeroline suppress the y-axis reference line passing through zero
zerolineopts (refline—_opts)  affect rendition of the y-axis reference line passing through zero
f [no]cohortline suppress the x-axis reference line passing through the time

when the treatment began for each cohort

T cohortlineopts (refline_opts) affect rendition of the x-axis reference line passing
through the time when the treatment began for each cohort

Cl plot
ciopts (area_opts) affect rendition of the confidence interval
Y axis, X axis, Titles, Legend, Overall
Toyopts (byopts) affect rendition of the graph by cohorts
twoway_options any options other than by () documented in [G-3] twoway_options

*These options are not allowed for the TWFE estimators.

TThese options are not allowed when the TWFE estimator is combined with option hettype (time) or hettype (cohort).

aggregation_options Description
overall aggregate ATETs within cohorts and time periods; the default
dynamic|[ (event_list) ] aggregate ATETs within exposures to the treatment
time| (time_list) | aggregate ATETs within time periods
cohort| (cohort_list) | aggregate ATETs within cohorts
[no |graph whether to suppress or display the aggregation plot;
nograph is the default
graph| (graph_opts) | affect rendition of the aggregation plot
level(#) set confidence level
*sci (sci_options) | use multiplier bootstrap to compute the simultaneous

confidence intervals

Only one of overall, dynamic (), cohort (), or time () is allowed.
*This option is not allowed after the TWFE estimator.

sci_options Description

rseed (#) set random-number seed to #

reps(#) perform # multiplier bootstrap replications; default is reps (999)
scatter_opts Description

connect_options change the look of lines or connecting method

marker_options change the look of markers (color, size, etc.)
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refline_opts Description
style (addedlinestyle) overall style of added line
[no]extend extend line through plot region’s margins
1style (/inestyle) overall style of line
lpattern(linepatternstyle) line pattern (solid, dashed, etc.)
lwidth (linewidthstyle) thickness of line
1lcolor (colorstyle) color and opacity of line
graph_opts Description
Main
noci do not plot the confidence intervals

Marker options

marker_options change the look of markers (color, size, etc.)
Line options

connect_options change the look of lines or connecting method
Cl plot

ciopts (area_options) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall
twoway_options any options other than by () documented in [G-3] twoway_options

Options for estat

Options for estat are presented under the following headings:

Options for estat atetplot
Options for estat aggregation
Options for estat sci

Options for estat atetplot

level (#) specifies the confidence level, as a percentage, for CIs. The default is 1evel (95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

sci or sci(sci—options) plots the simultaneous confidence intervals (SCIs) using the multiplier bootstrap
method proposed in Callaway and Sant’ Anna (2021). SCIs simultaneously cover the true values of all
the ATETs with a predefined probability level. By default, specifying sci implies using 999 bootstrap
replications to construct the SCIs.

sci (sci_options) specifies the number of replications and the seed for the multiplier bootstrap when
computing SCIs. sci—_options may be rseed (#) or reps (#). For the definition of these options,
see Options for estat sci.

Option sci or sci() is not allowed after the TWFE estimator in hdidregress and xthdidregress.
In addition, it is not allowed after estimation with bootstrap or jackknife standard errors for RA, IPW,
and AIPW estimators.

By default, estat atetplot plots the pointwise CIs.
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Main

noci removes plots of the CIs. The default is to plot the CIs.

preteopts (scatter_opts) affects the rendition of the scatterplot for pretreatment periods. This option
is not allowed after the TWFE estimator in hdidregress and xthdidregress. scatter_opts may be
the following:

connect_options specify how points on a graph are to be connected; [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size,
color, and outline; see [G-3]| marker_options.

postteopts (scatter_opts) affects the rendition of the scatterplot for posttreatment periods. scat-
ter_opts may be the following:

connect_options specify how points on a graph are to be connected; [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size,
color, and outline; see [G-3] marker_options.

nozeroline suppresses the y-axis reference line passing through zero. After estimation with
hdidregress and the RA, IPW, or AIPW estimator, the default is to plot this reference line. After
estimation with the TWFE estimator, the default is not to plot this reference line.

zerolineopts (refline_opts) affects the rendition of the reference line passing through zero. re-
fline_opts may be the following:

style(addedlinestyle) specifies the overall style of the added line, which includes [ no |extend and
1style (linestyle) documented below. See [G-4] addedlinestyle. The [no |extend and 1style()
options allow you to change the added line’s attributes individually, but style () is the starting
point.

You need not specify style () just because there is something that you want to change, and in fact,
most people seldom specify the style () option. You specify style () when another style exists
that is exactly what you desire or when another style would allow you to specify fewer changes to
obtain what you want.

extend and noextend specify whether the line should extend through the plot region’s margin and
touch the axis; see [G-3] region_options. Usually, noextend is the default, and extend is the op-
tion, but that is determined by the overall style () and, of course, the scheme; see [G-4] Schemes
intro.

1style (linestyle), lpattern (linepatternstyle), lwidth (linewidthstyle),
lalign(linealignmentstyle) ,and Lcolor (colorstyle) specify the look of the line; see [G-2] graph
twoway line.

nocohortline suppresses the z-axis reference line passing through the time when the treatment began
for each cohort. The default is to plot this reference line. This option is not allowed after the TWFE
estimator.
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cohortlineopts (refline_opts) affects the rendition of the reference line passing through the time when
the treatment began for each cohort. This option is not allowed after the TWFE estimator. refline_opts
may be the following:

style (addedlinestyle) specifies the overall style of the added line, which includes [ no Jextend and
1style (/inestyle) documented below. See [G-4] addedlinestyle. The [no |extend and 1style ()
options allow you to change the added line’s attributes individually, but style () is the starting
point.

You need not specify style () just because there is something that you want to change, and in fact,
most people seldom specify the style () option. You specify style () when another style exists
that is exactly what you desire or when another style would allow you to specify fewer changes to
obtain what you want.

extend and noextend specify whether the line should extend through the plot region’s margin and
touch the axis; see [G-3] region_options. Usually, noextend is the default, and extend is the op-
tion, but that is determined by the overall style () and, of course, the scheme; see [G-4] Schemes
intro.

1style (linestyle), lpattern (linepatternstyle) , lwidth (linewidthstyle),
lalign (linealignmentstyle) ,and Lcolor (colorstyle) specify the look of the line; see [G-2] graph
twoway line.

_ [Gipat]

ciopts (area_options) affects the rendition of the CIs; see [G-3] area_options.

Y axis, X axis, Titles, Legend, Overall W

byopts (byopts) affects the rendition of the graph combined by cohorts. For byopts, see [G-3] by_option.
This option is not allowed after the TWFE estimator.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving_option).

Options for estat aggregation

overall aggregates ATETs within all the cohorts and time periods; it is the default.

dynamic or dynamic (event_list) aggregates ATETs within exposure to the treatment. For example,
two periods of exposure to the treatment means two periods after the treatment started. Specifying
dynamic implies aggregating ATETs within all the estimable exposures to the treatment.

dynamic (event_list) aggregates ATETs within the exposure to the treatment specified by event_list.
event_list is a numlist specifying length of exposures to the treatment.

time or time (time_list) aggregates ATETs within time periods. Specifying time implies aggregating
ATETs within all the estimable time periods.

time (time_list) aggregates ATETs within the time specified by time_list. time_list is a numlist spec-
ifying time periods.
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cohort or cohort (cohort_list) aggregates ATETs within cohort. Specifying cohort implies aggregat-
ing ATETs within all the estimable cohorts.

cohort (cohort_list) aggregates ATETs within the cohorts specified by cohort_list. cohort_list is a
numlist specifying cohorts.

nograph and graph specifies whether to suppress or display the plot of aggregation of ATETs. nograph
is the default.

graph (graph_opts) affects the rendition of the aggregation plot. graph_opts may be the following:
noci removes plots of the CIs. The default is to plot the CIs.
connect_options specify how points on a graph are to be connected; [G-3] connect_options.

marker_options affect the rendition of markers drawn at the plotted points, including their shape, size,
color, and outline; see [G-3]| marker_options.

ciopts (area_options) affects the rendition of the CIs; see [G-3] area_options.

twoway_options are any of the options documented in [G-3] twoway_options, excluding by (). These
include options for titling the graph (see [G-3] title_options) and for saving the graph to disk (see
[G-3] saving__option).

level (#) specifies the confidence level, as a percentage, for CTs. The default is 1level (95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

sciorsci(sci_options) plots the simultaneous confidence intervals (SCIs) using the multiplier bootstrap
method proposed in Callaway and Sant’Anna (2021). SCIs simultaneously cover the true values of
aggregations of ATETs with a predefined probability level. By default, specifying sci implies using
999 bootstrap replications to construct the SCIs.

sci (sci—options) specifies the number of replications and the seed for the multiplier bootstrap when
computing SCIs. sci_options may be rseed (#) or reps (#). For the definition of these options,
see Options for estat sci.

Option sci or sci() is not allowed after the TWFE estimator in hdidregress and xthdidregress.

By default, estat aggregation plots the pointwise Cls if option graph () is specified.

Options for estat sci

level (#) specifies the confidence level, as a percentage, for CIs. The default is level (95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

rseed (#) sets the random-number seed. Specifying this option makes the results reproducible because
the critical values are drawn from a bootstrap sample.

reps (#) specifies the number of bootstrap replications to get the critical values of the test. The default
is reps (999).

Remarks and examples

For examples of the estat commands above, see [CAUSAL] hdidregress and [CAUSAL] xth-
didregress. Both entries have examples that illustrate how the estimation and postestimation commands
work together.
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Stored results

estat ptrends stores the following in r ():

Scalars
r(F) Fstatistic
r(chi2) x?
r(df) test constraints degrees of freedom
r(p) two-sided p-value
r(df_r) residual degrees of freedom
r(drop) 1 if constraints were dropped, O otherwise

estat aggregation stores the following in r ():

Scalars
r(reps) number of replications
Macros
r(agg_type) aggregation type
Matrices
r(b) coefficient vector
r (V) variance—covariance matrix of the estimators
r(table) matrix containing test statistics and critical values

estat atetplot stores the following inr():

Macros
r(table) matrix containing test statistics and critical values

estat sci stores the following inr ():

Scalars
r(reps) number of replications
Matrices
r(table) matrix containing coefficients, bootstrap standard errors, and SCIs

Methods and formulas

Methods and formulas are presented under the following headings:

Test for all pretreatment period ATETS being zero
Aggregations for the RA, IPW, and AIPW estimators
Aggregations for the TWFE estimator

SClIs

Test for all pretreatment period ATETs being zero

estat ptrends tests that all pretreatment period ATETs are zero. This should be satisfied if both
parallel trends and no anticipation of treatment hold for the pretreatment period.

For the RA, IPW, and AIPW estimators, estat ptrends is equivalent to a Wald test of all the pre-
treatment ATET estimates equaling zero. For methods and formulas on the Wald test, see Methods and
formulas in [R] test.
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Below, we will use the notation from Methods and formulas in [CAUSAL] xthdidregress. For the
TWEFE estimator, we fit the augmented model:

T q—

q— 1
Yir =1 + Z ng g + Z fs’)/s + Z dzthgfs gs + Z Zdzthgfsdgs + €t
g

1
g=2 s= =q s=g

We then jointly test if the w, terms are zero by using test.

Aggregations for the RA, IPW, and AIPW estimators

Denote 6(g, t) as ATET(g, t). These are the parameters computed during estimation. Instead of looking
at all of these parameters, we can aggregate them to explore heterogeneity in different dimensions. We
denote 6§ as aggregations of ATETs. Regardless of whether we use cohort, time, or dynamic aggregation,
we can always write 6 as a weighted sum of (g, t) as follows

T

0= Z Zw(g, t)8(g,t

geG t=2
where G is the set of all the possible cohort values and w(g, t) is the cohort-time weights. The type of
questions of interest determines the definitions of w(g, t).

One popular question in DID with multiple time periods set up is to study the dynamics of treatment
effects: how do the average treatment effects vary with the length of exposure to the treatment? In
literature, it is also known as the event study. Let e = ¢t — g be the length of exposure to the treatment.
We can summarize ATETS as

O40e) =Y Hg+e< TIP{G =g|G+e<T}0(g,9+e)

where I(-) is an indicator function and G is a random categorical variable for a cohort. 6,(e) is computed
when the dynamic option is specified.
To account for the heterogeneous treatment effects across cohorts, we consider the following aggre-
gation:
T
0.(9) = 0(g,1)P(G = g|G =g,t > g)
t=g
0.(g) is computed when the cohort option is specified.

Time effects characterize treatment-effects heterogeneity across time. The average effect of partici-
pating in the treatment in a period ¢ (among cohorts that are treated by time ?) is

0,(t) = > 1t > g)P(G = g|G < 1)0(g,1)

geG

0,(t) is computed when the time option is specified.
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The overall aggregation is the average of all the identified posttreatment ATETs. It is defined as

ZZ (t > g)P(G = g|G < T)0(g,t)

g€G t=
where k = dec 23:2 I(t > g)P(G = ¢g|G < T). 0, is computed when the overall option is
specified.

The variance—covariance matrix for the estimates of 6 is computed using the influence function ap-
proach outlined in section 4.2 in Callaway and Sant’Anna (2021).

When the sci option is specified, the SCIs are computed using the multiplier bootstrap proposed in
section 4.2 in Callaway and Sant’Anna (2021).

Aggregations for the TWFE estimator

Aggregation after TWFE uses margins after the Mundlak estimation of the model. Let treat de-
note the observation-level treatment, cohort denote the variable that contains treat-time cohorts, and
exposure denote a variable that indicates the time exposed to treatment.

For estat aggregation, overall:

. margins r.treat, subpop(if treat==1) vce(unconditional)
For estat aggregation, cohort:

. margins, subpop(if treat==1) dydx(treat) over(cohort) vce(unconditional)
For estat aggregation, time:

. margins, subpop(if treat==1) dydx(treat) over(time) vce(unconditional)
For estat aggregation, dynamic:

. margins, subpop(if treat==1) dydx(treat) over(exposure) vce(unconditional)

SCls

After the RA, IPW, and ATPW estimators, estat sci can provide the SCIs that are guaranteed to cover
all the ATETs with a specified probability. estat sci computes the SCIs using the multiplier bootstrap
approach outlined in section 4.1 in Callaway and Sant’ Anna (2021).

Unlike the traditional bootstrap, the multiplier bootstrap resamples the influence functions (which are
already computed in the estimation step). Thus, the multiplier bootstrap is much faster than the traditional
bootstrap because there is no need to recompute the estimators.

The influence function is a linear representation of the estimator. Let (g,t) be the RA, IPW, and ATPW
estimators, and denote 6(g, t) the true ATET for cohort g at time ¢. Then the linear representation of these
estimators can be written as

=15y, m) +o,1)

i=1

0(g,t) — =

SM—‘

where ¢, () is the influence function, n is the sample size of the estimation sample for 0(g,t), w, are the
data, and 0,,(1) is a term that vanishes to zero in probability as n grows. For a more detailed discussion
on influence functions, see section 4.1 in Callaway and Sant’Anna (2021).
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~ — ~ ~b
Denote 0 as estimates of all the ATETS, and let ¥ be estimates of the influence functions for 6. Let 6
be the bth bootstrap draw, which is defined as

~b ~
0 =0+

3=

SV,
=1

where {V;} is a Bernoulli draw with P(V = 1—5) = n/V/5, P(V =) = 1—n/v/Sandn = (v/5+1)/2.
Then the SCIs can be computed in the following steps:

~b
1. Draw B samples of {V;},_; _,,and compute 6 using each sample.

2. Compute the bootstrap diagonal of ¥'/2 as

12 _ 90.75(9,t) — 40.25(9, 1)
gt —

20.75 — ?0.25
where g, (g, t) is the pth sample quantile of J/%gt =n {éb(g, t) — 6(g, t)} in B draws and z,
is the pth sample quantile of standard normal distribution.

3. For each bootstrap draw, compute the ¢ test’ as

~1/2

b S
ttest” = max | Ry 4[5,

4. Compute the critical values ¢,_ , as the 1 — /2 quantile of the B draws of ¢ test®.

5. Construct the simultaneous bootstrap confidence intervals for é(g, t) as

Clg.t) = {09, 1) = & _oppSii VR, B(g,0) + 810 Sy I/}
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Options Remarks and examples Stored results Methods and formulas
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Description

mediate fits causal mediation models and estimates effects of a treatment on an outcome. The treat-
ment effect can occur both directly and indirectly through another variable, a mediator. The outcome
and mediator variables may be continuous, binary, or count. The treatment may be binary, multivalued,
or continuous. The estimated direct, indirect, and total effects have a causal interpretation provided that
assumptions pertaining to causal mediation models are met.

Quick start

Fit the mediation model with continuous outcome y1, continuous mediator m1, and categorical treatment
t1, and estimate the total effect, natural direct effect, and natural indirect effect

mediate (y1) (m1) (t1)

Same as above, but with covariates in both the outcome and the mediator equations
mediate (y1 x1x2) (mlx1x3) (t1)

Same as above, but with probit model for binary outcome y2 and Poisson model for count mediator m2
mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t1)

Same as above, but estimate only the natural indirect effect (NIE)
mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (tl1), nie

Same as above, but also estimate potential-outcome means

mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t1), nie pomeans

Fit the mediation model with continuous treatment t2, and evaluate at values 0 and 4 of the treatment
with 0 as the control

mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t2, continuous(0 4))

Menu

Statistics > Causal inference/treatment effects > Continuous outcomes > Causal mediation
Statistics > Causal inference/treatment effects > Binary outcomes > Causal mediation
Statistics > Causal inference/treatment effects > Count outcomes > Causal mediation

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Causal mediation

275
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Syntax

mediate (ovar [omvarlist, omodel noconstant |)
(mvar [mmvarlist, mmodel noconstant])

(tvar |, continuous (numlist) |) [if | [in] [weight] [, stat options

ovar is a continuous, binary, or count outcome of interest.

omvarlist specifies the covariates in the outcome model.

mvar is the mediator variable and may be continuous, binary, or count.
mmyvarlist specifies the covariates in the mediator model.

tvar is the treatment variable and may be binary, multivalued, or continuous.

omodel Description

Model
linear linear model; the default
expmean exponential-mean model
logit logistic regression model
probit probit regression model
poisson Poisson model

omodel specifies the model for the outcome variable.

mmodel Description

Model
linear linear model; the default
expmean exponential-mean model
logit logistic regression model
probit probit regression model
poisson Poisson model

mmodel specifies the model for the mediator variable.

The logit outcome model may not be combined with the 1inear or expmean mediator model; probit rather than logit
may be used in these cases.
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stat Description
Stat
Pearl’s labeling of effects
nie natural indirect effect
nde natural direct effect
te total effect
pnie pure natural indirect effect
tnde total natural direct effect
ATE labeling of effects
aite average indirect treatment effect; synonym for nie
adte average direct treatment effect; synonym for nde
ate total average treatment effect; synonym for te
aitec average indirect treatment effect with respect to controls; synonym for pnie
adtet average direct treatment effect with respect to the treated; synonym for tnde
pomeans potential-outcome means
all all effects and potential-outcome means

Multiple effects may be specified; default is nie nde te.

options Description
Model
nointeraction exclude interaction of mediator and treatment

control (#]|label) specify the level of tvar that is the control; default is first treatment level

SE/Robust
vce (veetype) veetype may be robust, cluster clustvar, bootstrap, or jackknife
nose do not estimate standard errors -
Reporting
level(#) set confidence level; default is 1evel (95)
ateterms use ATE terminology to label effects
aequations display auxiliary-equation results
nolegend suppress table legend
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
Optimization

optimization_options control the optimization process; seldom used

Advanced
force force estimation when the number of treatment groups exceeds 10

coeflegend display legend instead of statistics
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omvarlist and mmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
Weights are not allowed with the bootstrap prefix; see [R] bootstrap.

pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
Options
Model

noconstant; see [R] Estimation options.

continuous (numlist) specifies that the treatment variable is continuous; numlist specifies the values at
which the potential-outcome means are to be evaluated, where the first value in the list is taken as the
control.

nointeraction excludes the interaction between the treatment and the mediator; by default, the model
includes the treatment-mediator interaction.

control (#| label) specifies the level of tvar that is the control. The default is the first treatment level.
You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric
level. control() may not be specified with continuous treatments.

Stat

r

stat specifies the statistics to be estimated. You may select from among five effects, each of which can
be labeled according to terminology used by Pearl and others or by ATE terminology. In addition to
effects, you may request that potential-outcome means be reported. The default is nie nde te.

stat may be one or more of the following:

stat Definition

nie natural indirect effect

nde natural direct effect

te total effect

pnie pure natural indirect effect

tnde total natural direct effect

aite average indirect treatment effect; synonym for nie

adte average direct treatment effect; synonym for nde

ate average treatment effect; synonym for te

aitec average indirect treatment effect with respect to controls; synonym for pnie
adtet average direct treatment effect with respect to the treated; synonym for tnde
pomeans potential-outcome means

all specifies that all effects and potential-outcome means be estimated; specifying all is equiv-
alent to specifying nie nde te pnie tnde pomeans. When option ateterms is specified, all
is equivalent to specifying aite adte ate aitec adtet pomeans.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are robust to some
kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that
use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce_option.

nose suppresses calculation of the variance—covariance matrix and standard errors.

Reporting

level (#); see [R] Estimation options.

ateterms specifies that ATE terminology be used to label effects. ateterms is strictly a labeling option.
This option may not be specified on replay.

aequations specifies that the estimation results for the outcome model and the mediator model be
displayed. By default, they are not displayed.

nolegend suppresses the display of the table legend.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (},fint), pformat (%fint),
sformat (%fmt), and nolstretch; see [R] Estimation options.

optimization_options: conv_maxiter (), conv_ptol(), conv_vtol(), tracelevel(), and
[no]log. See [M-5] optimize().
conv_maxiter (#) specifies the maximum number of iterations. The default is the number set using
set maxiter, which by default is 300.

conv_ptol (#) specifies the convergence criteria for the parameters. The default is
conv_ptol(le-6).

conv_vtol (#) specifies the convergence criteria for the gradient. The default is
conv_vtol(le-7).

tracelevel (tracelevel) allows you to display additional information about the iterative process in
the iteration log. tracelevel may be none, value, tolerance, step, params, or gradient. See
tracelevel in [M-5] optimize() for details.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default
unless you used set iterlog off to suppress it; see set iterlog in [R] set ifer.

Advanced

force forces estimation when the number of treatment groups exceeds 10. By default, only 10 groups
are allowed for multivalued treatments. Do not use the force option if the treatment is continuous;
instead, use the continuous () option.

The following option is available with mediate but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Remarks are presented under the following headings:

Introduction
Approaches to mediation analysis
Workflow for causal mediation
Forming research questions
Potential outcomes and effect decompositions
Evaluating assumptions for causal inference
Estimation of effects
Technical overview of causal mediation
Mediation analysis in the potential-outcomes framework
Total, direct, and indirect effects
Comparison of potential outcomes and classical mediation analysis
Accounting for treatment—mediator interaction
Assumptions for causal identification
Examples
Example 1: A simple causal mediation model
Example 2: Including covariates and relaxing the no-interaction assumption
Example 3: Referring to treatment effects using an alternative naming scheme
Example 4: Causal mediation model with a binary mediator
Example 5: Causal mediation model with a binary outcome
Example 6: Causal mediation model with a binary mediator and binary outcome
Example 7: Causal mediation model with a count mediator
Example 8: Causal mediation model with an exponential-mean outcome
Example 9: Causal mediation model with multivalued treatment
Example 10: Causal mediation model with continuous treatment
Example 11: Estimating controlled direct effects
Example 12: Estimating treatment effects on different scales

Introduction

Causal inference is an essential goal in many research areas and aims at identifying and quantifying
causal effects. For example, we might wish to find out whether physical exercise leads to an improvement
in self-perceived well-being, and if so, to what extent. Causality in this context typically means that there
is some cause 7' that has an effect on some outcome Y. We could visualize this relation with a simple

causal diagram:

Figure 1

If T'is a measure of exercise and Y is well-being, then under certain assumptions, we could use the
above causal model to identify the total effect of exercise on well-being (by means of a randomized
controlled trial, for instance). However, a question that we cannot answer empirically with our simple
causal model is why exercise may increase well-being. Perhaps exercising causes an increase in certain
chemicals or hormones in the human body, which in turn affects perceptions of well-being. To assess
such intermediary effects, we need to expand our simple causal model by adding variables that lie on the
causal pathway between T"and Y-

O

Figure 2

Suppose that, in our exercise example, the variable M represents the production of a certain chemical
in the human body. With this new model, we now hypothesize that exercising leads to the production
of this chemical, which in turn leads to an increase in well-being. However, it might be unrealistic to
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assume that the effect of exercise on well-being hinges exclusively on the production of that chemical.
Perhaps we would like to allow for the possibility that exercise has an effect on well-being beyond its
path through the mediating variable, and so a better model might be

Figure 3

Here, we include a direct path from 7"to Y'in addition to the indirect path of T'to Y via M. In other
words, we assume that exercise produces a particular chemical that affects well-being, but we also allow
for the possibility of a direct effect of exercise on well-being that is not related to the chemical. This is
the classical mediation model that decomposes the total effect into a direct and an indirect effect. Causal
mediation analysis aims to identify these direct and indirect effects and give them a causal interpretation.

Approaches to mediation analysis

Mediation analysis can be performed in a variety of ways. The classical approach of Baron and
Kenny (1986) fits two linear regression models, one for M and one for Y, and estimates direct, indirect,
and total effects as functions of the coefficients. Estimation can be simplified by fitting the models for M
and Y'simultaneously via structural equation modeling as discussed in [SEM| Example 42g. In Stata, you
can use semn to fit linear models for the outcome and mediator, and you can then use estat teffects
to obtain a decomposition of direct and indirect effects based on the results from sem. Note that this
classical approach relies on the specification of a particular model at the outset of the process.

Another approach to mediation analysis is based on the potential-outcomes framework. The potential
outcomes are values of the outcome that would be obtained under different conditions, such as when the
treatment occurs. Differences in potential outcomes yield direct, indirect, and total effects of interest.
This is the approach typically referred to as causal mediation analysis and is the one implemented in
mediate.

The causal mediation framework allows much flexibility. In this framework, it is common to allow
the mediator and the treatment to interact; thus, we do not assume that the effect of the mediator on
the outcome is the same for the treated and untreated groups. The total effect of the treatment on the
outcome can be decomposed into direct and indirect effects in two ways, and the researcher can select
the decomposition that matches his or her research question. The effects are defined in a model-free
manner, so the researcher can select an estimation method that is appropriate for his or her data and then
compute estimates of the effects of interest.

In the situation where both the outcome and the mediator are modeled using linear regression and
there is no treatment—mediator interaction, the classical approach and causal mediation via the potential-
outcomes framework will lead to the same results.
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Workflow for causal mediation

The general workflow for researchers performing causal mediation analysis is as follows:

AN U B W N =

. Specify your research question.

. Identify the treatment, mediator, and outcome variables to be analyzed.

. Determine which effect decomposition can be used to answer your research question.
. Evaluate whether assumptions for causal interpretation are appropriate.

. Select a method for estimating the causal effects of interest.

. Interpret the results.

In our introductory discussion, we provided an example of step 2 by using exercise, chemical pro-
duction, and well-being as the treatment, mediator, and outcome variables, respectively. Below, we will
provide a conceptual introduction to steps 1, 3, 4, and 5. In Examples, we will interpret the results in
different scenarios.

Forming research questions

Before performing causal mediation analysis, we must decide which research questions motivated the
desire to perform the analysis. Here are some types of research questions that may arise:

L.

A scenario in which the primary interest is to determine whether there is an indirect effect and,
if so, to quantify it. In our example above, we might assume there will be some direct impact of
exercise on well-being, but we also wonder if and to what extent there is an indirect effect, such as
exercise increasing production of a chemical which in turn increases well-being. In this case, we
would be interested in decomposing the effects according to ATE decomposition 1.

. A scenario in which the primary interest is to determine whether there is a direct effect and, if so,

to quantify it. Continuing with our example, perhaps we expect an indirect effect, but we also wish
to determine if there are any other ways in which exercise causes changes in well-being. In this
case, we would be interested in decomposing the effects according to ATE decomposition 2.

. A scenario in which the primary interest is to determine how the total effect can be decomposed

into direct and indirect effects, with focus remaining on all effects and not just direct or just indirect
effects. In our example, we simply want to explore the breakdown of the total effect of exercise on
well-being into all possible direct and indirect effects. In this case, we would likely be interested
in looking at both decompositions, ATE decomposition 1 and ATE decomposition 2.

. A scenario in which we want to determine the effect of the treatment on the outcome when the

mediator is set to a specific value. In our example, we might want to know the effect of exercise
on well-being for individuals whose level of this particular chemical is 10, which is the mean value
in the population. In this case, we would be interested in controlled direct effects.

Potential outcomes and effect decompositions

Below, we introduce statistics that may be of interest when performing causal mediation analysis.
Many of these statistics have a variety of names in the causal mediation literature. See, for instance,
Robins and Greenland (1992), VanderWeele (2015), and Pearl and MacKenzie (2018) for some of the
various terminology.
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1. Potential-outcome means. These estimate the population-average value of the outcome that
would be expected if everyone was given the treatment (denoted here as Y[1, M(1)]) or if ev-
eryone was given the control (denoted Y'[0, M (0)]). In our example, Y[1, M(1)] is the expected
average well-being if everyone exercises, and Y'[0, M (0)] is the expected average well-being if no
one exercises.

In addition, there are two cross-world potential outcomes. These are a bit less intuitive because
they correspond to situations that do not exist for any individual in the population. The first is the
expected value of the outcome when everyone is treated but counterfactually experiences the value
of the mediator associated with being untreated (denoted Y1, M (0)]). The second is the expected
value of the outcome when everyone is untreated but counterfactually experiences the value of the
mediator associated with being treated (denoted Y'[0, M (1)]). In our example, Y1, M (0)] is the
expected well-being if everyone was treated but experiencing the chemical level as if untreated.
Y'[0, M(1)] is the expected value if everyone was untreated but experiencing the chemical level as
if treated.

The mediate command reports these potential-outcome means when the pomeans option is spec-
ified.

2. Total effect (TE). This estimates the average difference in outcomes that we expect when everyone
receives the treatment versus when no one receives the treatment. In our case, it estimates the
improvement in well-being that we would expect if everyone exercises versus if no one exercises.

The total effect is also referred to as the average treatment effect (ATE), the total average treatment
effect, or the marginal total effect.

The mediate command reports this statistic when the te option or its synonym ate is specified.

The total effect can be decomposed into direct and indirect effects in two ways when we allow for
a treatment—mediator interaction.

Decomposition 1. This decomposition separates the direct effect under the untreated mediator con-
dition from the total indirect effect. Nguyen, Schmid, and Stuart (2021) recommend using this de-
composition when a direct effect is assumed and the researcher is questioning whether a mediation
effect also exists. In our example, we would be interested in this decomposition if we expect that
exercise has a direct effect on well-being but want to determine whether a portion of the total effect
can be attributed to the increase in the chemical (and if so, how much of the total effect is due to this
mediation effect).

3. Natural direct effect (NDE). This estimates the average direct effect of the treatment on the out-
come when the mediator is held at its value associated with being untreated. It is the difference
Y1, M(0)] = Y[0, M(0)].

This effect is sometimes referred to as the pure natural direct effect or the average direct treatment
effect (ADTE). All remaining effects of the treatment on the outcome are included in the natural
indirect effect.

The mediate command reports this statistic when the nde option or its synonym adte is specified.

4. Natural indirect effect (NIE). This estimates the average indirect effect through a mediator. It is
the difference Y'[1, M (1)] — Y[1, M(0)].

This effect is sometimes referred to as the total natural indirect effect, causal mediation effect, or
average indirect treatment effect (AITE).

The mediate command reports this statistic when the nie option or its synonym aite is specified.
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Decomposition 2. This decomposition separates the indirect effect under the untreated condition
from the total direct effect. Nguyen, Schmid, and Stuart (2021) recommend using this decomposition
when an indirect effect is assumed and the researcher is questioning whether a direct effect also exists.
In our example, we would be interested in this decomposition if we believe that exercise increases
production of the chemical which in turn increases well-being but want to determine if there is also
some change in well-being that is not caused by this mediation effect (and if so, how much of the total
effect is not due to the mediation effect).

5. Pure natural indirect effect (PNIE). This estimates the average indirect effect of a mediator under
the untreated/control condition. It is the difference Y0, M (1)] — Y[0, M (0)].

This is sometimes referred to as the average indirect treatment effect with respect to controls
(AITEC). All remaining effects of the treatment on the outcome are included in the total natural
direct effect.

The mediate command reports this statistic when the pnie option or its synonym aitec is spec-
ified.

6. Total natural direct effect (TNDE). This estimates the average direct treatment effect when the
mediator is held at its value associated with being treated. It is the difference Y1, M(1)] —
Y0, M(1)].

This effect is sometimes referred to as the average direct treatment effect with respect to the treated
(ADTET).

The mediate command reports this statistic when the tnde option or its synonym adtet is spec-
ified.

When no prior assumptions are made about the existence of direct and indirect effects, Nguyen,
Schmid, and Stuart (2021) recommend reporting both Decomposition 1 and Decomposition 2.

7. Controlled direct effects. These are the direct effects when the mediator is controlled by setting it
to a specific value. After fitting your model with mediate, you can estimate the average controlled
direct effect with the mediator set to your selected value by using estat cde; see Example 11:
Estimating controlled direct effects. In our well-being example, controlled direct effects provide
the direct effect of exercise on well-being when the chemical is assumed to be a specific value.

Evaluating assumptions for causal inference

Before proceeding to estimation and interpretation of the effects of interest, we need to verify that it
is reasonable to give them a causal interpretation in our particular research context.

General assumptions for causal inference are discussed in [CAUSAL] Intro, and more precise defini-
tions in the context of mediation are provided in Assumptions for causal identification below.
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To evaluate whether assumptions of causality are met for our mediation model, we must first con-
sider all potential variables, both observed and unobserved, that could affect the relationships among our
treatment, mediator, and outcome. If we anticipate that there are confounders (variables that affect both
an outcome and a predictor), we must determine whether these confounders will lead to biased results in
the estimation of effects from our mediation analysis. In particular, we want to assume that

1. There is no unobserved confounding in the treatment—outcome relationship, and observed con-
founders are included as covariates in the outcome model.

2. There is no unobserved confounding in the mediator—outcome relationship, and observed con-
founders are included as covariates in the outcome model.

3. There is no unmeasured confounding in the treatment—mediator relationship, and observed con-
founders are included as covariates in the mediator model.

4. There are no confounders in the mediator—outcome relationship that are caused by the treatment.
No variable exists that affects both the mediator and the outcome and that itself is caused by the
treatment.

Estimation of effects

When assumptions are met, the mediate command can be used to estimate the causal parameters of
interest.

While the effects derived under the potential-outcomes framework required no particular model, we
now need to decide how to model our data to obtain estimates.

We first select models for the outcome and the mediator. Outcomes can be continuous, binary, or
counts and can be modeled using a linear, exponential-mean, logistic, probit, or Poisson model. Media-
tors can also be continuous, binary, or counts and can also be modeled using a linear, exponential-mean,
logistic, probit, or Poisson model. Covariates can be included in the outcome and mediator models. The
treatment may be binary, categorical (multivalued), or continuous.

As a simple example of the mediate command, say that we have a binary outcome y, a continuous
mediator m, and a binary treatment t. We can fit a mediation model by typing
. mediate (y, probit) (m, linear) (t)
The first set of parentheses specifies a model for the outcome. The second set of parentheses specifies

the model for the mediator. The third set of parentheses defines the treatment. By default, the TE and its
decomposition into NDE and NIE are reported in the output.

If we would instead like to see the second type of decomposition, we can obtain the TE, PNIE, and
TNDE by typing

. mediate (y, probit) (m, linear) (t), te pnie tnde

Many combinations of models and effects can be obtained. See Examples below for additional syntax
examples as well as interpretation of the results.

Technical overview of causal mediation

Above, we provided a conceptual introduction to the concepts in causal mediation analysis. Here we
more formally define the potential-outcomes framework; explain total, direct, and indirect effects; and
introduce the assumptions necessary for causal inference. If you are familiar with the technical aspects
of causal mediation and are ready to see mediate demonstrated, go directly to Examples.
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Mediation analysis in the potential-outcomes framework

The potential-outcomes framework is commonly employed for identifying causal effects. If we go
back to the model associated with figure 1 and assume 7'is a binary treatment, we can identify two sets
of potential outcomes, Y; (1) and Y;(0). Y;(¢) is the outcome that would be realized if the ith individual
were exposed to treatment level ¢.

Consider a randomized experiment where the experimental group exercises while the control group
spends the same amount of time in a resting state. The outcome is subjective well-being that is measured
after exercising/resting. If it were possible to observe an individual in both states at the same time, we
would observe one outcome value under treatment, Y;(1), and one value under the control condition,
Y;(0). Then the treatment effect would be the difference 7, = Y;(1) — Y;(0). In other words, there is a
potential outcome for each treatment level that could be administered. Averaging the difference over all
individuals in the sample would yield an estimate of the ATE 7 = E[Y;(1)—Y;(0)] = E[Y;(1)]—E[Y;(0)].

However, it is not possible to observe the same individual under both conditions at the same time; we
can only observe one of these while the other is missing. If an individual is treated, we observe Y;(1), and
if not, we observe Y;(0). This has been coined the “fundamental problem of causal inference” (Holland
1986). Much of the treatment effects and causal inference literature deals with the question of how to
estimate an ATE in the presence of this problem.

In a simple experiment where treatment is randomly assigned, the potential outcomes are independent
of treatment assignment and the missing potential outcomes are missing completely at random. In this
case, the average of the treatment group outcomes are a valid estimate of E[Y;(1)], and the average
of the control group outcomes are a valid estimate of E[Y;(0)]. Then 7 = E[Y;(1)] — E[Y;(0)] where
E[Y;(t)] = 1/N, ZNt 1(T;, = t)Y, is a valid estimator of the ATE. This estimation strategy follows from
the identification result that E[Y;(t)] = E(Y;|T; = t) such that 7 = E[Y;(1)] — E[Y;(0)] = E[Y;|T; =
1] - E[Y;|T; = 0].

With observational rather than experimental data, however, the potential outcomes are not indepen-
dent of the treatment assignment process, and the causal effect is not identifiable without imposing further
assumptions such as conditional independence. Stata’s teffects suite of commands provides a variety
of estimators from this class of treatment-effects estimators.

For further information about identification and estimation in the context of causal models as well as
an overview of estimators implemented in Stata, see [CAUSAL] Intro. Here we focus on causal inference
and potential outcomes specifically for mediation analysis. In this situation, we have another set of
potential outcomes, M, (1) and M, (0), because M is also affected by the treatment. That is, we can only
observe M;(1) for the group of individuals who were treated, and we can only observe M;(0) for the
controls. If we let ¢ denote the treatment level with respect to the outcome and let ¢’ be the treatment
level with respect to the mediator, then the potential outcomes become Y;[t, M, (t)].

Similar to the nonmediation case above, we can define a treatment effect as a difference between
potential outcomes. The treatment effect is identified if

E[Yi(t: M,(t/))] = EArIz\Ti:t/E[}/;|Mia T, = t]

where E; 1 _ is the expectation of the mediator conditional on the treatment taking on the value t’
and where E [Y;|M;, T, = t] is the expectation of the outcome conditional on the mediator and treatment
taking on the value ¢.
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Total, direct, and indirect effects

In mediation analysis, we are interested not only in the total treatment effect but also in its decompo-
sition into direct effects and indirect effects.

Notice that if ¢ = ¢’ for a given potential outcome, the resulting potential outcome is equivalent to
Y, (t). Assuming again a binary treatment, we have that

7= E[Y;(1)] = E[Y;(0)] = E[Y;(1, M;(1))] — E[Y;(0, M;(0))]

In the context of mediation analysis, this treatment effect is also referred to as the total effect.

The total effect can be decomposed further into direct and indirect effects using contrasts between
potential-outcome means. The contrasts yielding direct and indirect effects use potential outcomes for
which ¢ # ', which means we set the treatment level to ¢ and set the mediator to its potential value under
treatment level ¢'.

The natural indirect effect is then defined as
§(t) = BY;(t, M;(1))] — E[Y;(t, M;(0))], te€{0,1}

Notice that here we “switch” the treatment from on to off in its effect on the mediator but keep the
treatment fixed at value ¢ in its effect on the outcome. This natural indirect effect is also sometimes
referred to as the causal mediation effect (Imai, Keele, and Tingley 2010).

Likewise, the natural direct effect can be defined as

<<t) = E[}/;(lsz(t))] - E[}/;(O’ Ml(t))}7 te {07 1}

Comparison of potential outcomes and classical mediation analysis

For those familiar with classical mediation analysis for linear models, it may be helpful to see how
the calculation of total, direct, and indirect effects in the potential-outcomes framework relates to the
classical product-of-coefficients approach.

We first write our mediation model corresponding with figure 3 as
Yi =00+ B1M; + BT + ¢
M; = oy + oy T; + v
where ¢; and v; are uncorrelated error terms with means 0 and variances o2 and o2, respectively.

Let’s consider the indirect effect (1). To calculate §(1) in the potential-outcomes framework, we
need estimates for the potential-outcome means E[Y;(1, M,(1))] and E[Y;(1, M,(0))]. Intuitively, what
we want is a world where everyone in the population is exposed to the treatment, that is, Y; (1), but where
we can switch the treatment on and off in regard to the effect of the treatment on the mediator, that is,
M, (1) and M, (0). The difference when going from the treatment switched on to the treatment switched
off will inform us about the effect of the treatment on the outcome that goes through the mediator. First,
we write the above model in reduced form:

E[Y;|M;,T;] = By + By (g + ,T;) + BT,
= By + Brag + Bray T + B, T

This yields the conditional expectation E[Y;|M;, T;] that we can observe from the data.
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To obtain the potential-outcome means, we can modify the reduced-form model by replacing M,
with the expectation of M, that we would observe if T}, had taken on the value ¢" for every unit in the
population. That is,

BlY;(t, M;(t'))] = By + BLE[M;(t')] + Byt, t€{0,1}

Thus, to compute the potential-outcome mean E[Y;(1, M;(1))], we must set the treatment T, to 1 in both
the outcome and the mediator equations. In other words, we fix both ¢ and ¢’ at 1:

BlY;(1,M;(1))] = By + B E[M;(t')] + Bot, t=t =1
=y + Brog + Brag x 1+ By x1
= By + Brag + Brag + By

However, to compute E[Y;(1, M;(0))], we need to set treatment 7} to 1 in the outcome equation and
need to set it to 0 in the mediator equation. Specifically, we fix t' = 0 and ¢t = 1:

E[Y;(1, M;(0))] = By + B E[M;(t")] + Bot, t=1;¢ =0
= By + Brag + Bra; x 0+ B, x 1
= By + Brag + B

Calculating the difference between these two potential-outcome means yields the indirect treatment effect

0(1) = (By + Brag + By + Ba) — (By + Brag + B)
=By + Brag + Bray + By — By — Brag — B

=By

In this case of a linear model, the indirect treatment effect is the product of the treatment coefficient
from the mediator equation and the mediator coefficient from the outcome equation. This is congruent
with the indirect effect definition in the product-of-coefficients method for mediation as proposed by the
classical mediation literature; see Baron and Kenny (1986).

Accounting for treatment-mediator interaction

Notice that the indirect effect we estimated above would be the same if we had estimated §(0) instead.
Thus far, we assumed that the effect of the mediator on the outcome is the same for both treatment groups.
Presumably, a more realistic assumption would be to allow the mediator effects to vary by treatment. This
can be achieved by including a treatment—mediator interaction term.

When we allow an interaction, §(0) # §(1). Now we have two indirect effects, one with respect to
treatment [0(1)] and one with respect to controls [6(0)]. In the following, we will refer to 6(1) as the NIE
and to 6(0) as the PNIE.
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To illustrate computation of the NIE under inclusion of a treatment—mediator interaction, we write a
new model

Y; = Bo + 61 M; + o T + B MiT; + ¢
M, =ay+ T, + v,
Here, NIE = E[Y;(1, M;(1)) — Y;(1, M;(0))], whereas PNIE = E[Y;(0, M, (1)) — Y;(0, M,(0))].

As before, to calculate NIE, we need potential-outcome means E[Y;(1, M;(1))] and E[Y;(1, M;(0))].
Writing the model in reduced form, we get

EY;|M;, T;] = By + BoT; + Brlag + v T;) + BsTi (g + iy T5)
= Bo + BoT; + (By + B3T;) (g + 0y T))
Fixing the values for the treatment in both equations accordingly, we have potential-outcome means
BlY;(1, M;(1))] = By + Bo x 1+ (By + B3 x 1)(ag + oy x 1)
=By + Ba + (By + B3) (g + )
and
BlY;(1, M;(0))] = By + Bo x 1+ (By + B3 x 1)(ag + oy x 0)
=By + B2+ (B + B3)y

Taking the difference yields the NIE
EY;(1, M;(1))] = E[Y;(1, M;(0))] = (B1 + B3)a

We could proceed similarly for the other direct and indirect treatment effects. In this case
with treatment—-mediator interaction, we also have two direct treatment effects. We have NDE =
E[Y;(1, M;(0)) = Y;[0, M;(0))] and TNDE = E[Y;(1, M;(1)) — Y;(0, M;(1))].

Notice that both treatment-effect decompositions—NIE and NDE as well as PNIE and TNDE—sum to
the total treatment effect (or, as we will call it, the TE).

TE = E[Y;(1, M;(1)) — Y;(0, M;(0))]

For further details and discussion on the different direct and indirect effects, as well as a discussion on
the differences between causal inference and traditional mediation approaches, see Nguyen, Schmid, and
Stuart (2021).

Assumptions for causal identification

The above discussion shows that the estimands of interest are the result of contrasts between potential-
outcome means, which are conditional expectations of the outcome with respect to counterfactuals in both
the outcome and the mediator equations. In other words, once we can estimate E[Y; (¢, M;(t"))], we can
estimate all direct and indirect treatment effects of interest.

The general form for causal mediation potential-outcome means, which includes covariates X, can
be written as the integral of the conditional expectation of the outcome with respect to the conditional
distribution of the mediator (see Imai, Keele, and Tingley [2010]):

B[Y;(t, My(t'))| X, = 2] = / E[Y,|M; = m, T, = t, X, = 2] dFm|T; = ', X; = ]
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This is a general, nonparametric solution that applies regardless of the underlying outcome and me-
diator models. Stata’s mediate command uses analytical solutions of this integral for a variety of para-
metric outcome and mediator model combinations. Also, while so far we assumed a binary treatment
for simplicity purposes, this approach generalizes straightforwardly to multivalued as well as continuous
treatments.

As is the case with nonmediation causal inference, there are assumptions to be met for the estimated
effects to be given a causal interpretation. Most notably, a crucial assumption in the nonmediation case
is the conditional independence assumption, also known as conditional ignorability assumption, uncon-
foundedness, or selection on observables. This assumption states that potential outcomes are independent
of treatment assignment after conditioning on a set of observed covariates that affect both the outcome
and the selection into treatment (see Imbens [2004]). Intuitively, we have a model that resembles an
experiment once we account for observable characteristics. More formally, we have that

Yi(t) LTI,

In the mediation case, however, we have an additional selection process because “selection” into the
mediator is also typically not based on random assignment. This leads to the following two conditional
independence assumptions:

Yilt,m] L M(#)|T, =t X, =

The first assumption states that treatment assignment is independent of potential outcomes and potential
mediators after conditioning on observed (pretreatment) covariates, or confounders. The second assump-
tion states that potential mediators are independent of the potential outcomes given the observed treatment
and observed (pretreatment) covariates. Because these assumptions are being made sequentially, this has
also been coined the sequential ignorability assumption (Imai, Keele, and Tingley 2010).

Similarly, there is an additional overlap assumption with causal mediation models. In the nonmedia-
tion case, the overlap assumption states that each individual has a positive probability of receiving each
treatment:

0< Pr(T; =tX,=2), te{0,1}

In the mediation case, the same principle applies to the mediator:

0<pM;(t)=m|T,=1t,X,=x), te€{0,1}

Finally, as is the case with nonmediation treatment-effects models, causal mediation models rely on
the stable unit treatment-value assumption, which states that potential outcomes do not depend on treat-
ments assigned to other individuals. For a detailed overview of effect identification and assumptions for
causal mediation analysis, see Nguyen et al. (2022).

Examples

Example 1: A simple causal mediation model

Suppose we wish to find out whether exercise affects perceptions of well-being among some popu-
lation of individuals. To the extent that there is such a causal relationship, we also wish to find out why
exercise affects well-being.
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We have fictional data from a randomized controlled trial with individuals randomized into two
groups—one group performs physical exercise and the other group spends the same amount of time
in a resting state. Subjective well-being is measured before and after treatment sessions. In addition, the
level of the (fictional) hormone bonotonin is measured. The researchers wish to determine whether exer-
cise leads to an increase in bonotonin levels, which in turn has a positive effect on subjective well-being.
Here is an excerpt from our dataset:

. use https://www.stata-press.com/data/r19/wellbeing
(Fictional well-being data)

. list wellbeing bonotonin exercise age gender in 1/5, abbreviate(12)

wellbeing  bonotonin exercise age  gender
1. 71.73816 196.5467 Control 58 Male
2. 68.66573 195.8572 Exercise 38 Female
3. 71.05155 228.6035 Exercise 53 Female
4. 69.44469 206.6651 Exercise 44 Female
5. 75.62035 261.6855 Exercise 28 Female

To estimate the treatment effects with mediate, we specify wellbeing as the outcome variable
in the first set of parentheses, bonotonin as the mediator variable in the second set of parentheses,
and exercise as the binary treatment variable in the third set of parentheses. Although inclusion of a
treatment—mediator interaction is commonly recommended, we specify the nointeraction option here
to omit the interaction and fit the simplest model possible.

. mediate (wellbeing) (bonotonin) (exercise), nointeraction

EE criterion = 1.627e-25
EE criterion = 3.061e-28

Causal mediation analysis

Iteration O:
Iteration 1:

Number of obs = 2,000

Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary
Robust
wellbeing | Coefficient std. err. z P>|z]| [95% conf. interval]
NIE
exercise
(Exercise
Vs
Control) 9.694617 .377312 25.69 0.000 8.955099 10.43413
NDE
exercise
(Exercise
Vs
Control) 2.996658 .2109357 14.21 0.000 2.583231 3.410084
TE
exercise
(Exercise
vs
Control) 12.69127 .4005769 31.68 0.000 11.90616 13.47639
Note: Outcome equation does not include treatment-mediator interaction.
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In the header of the output, we see that mediate fit linear models (the default) for both the outcome
and the mediator. Three treatment-effect estimates are reported in the table. TE is the total effect of
exercise on well-being and is estimated to be 12.7. The interpretation is the same as for the ATE in
the nonmediation case: if everyone in the population exercised, their well-being would be, on average,
12.7 points higher than their well-being would be if no one exercised. The decomposition of the TE
into direct and indirect effects is of primary interest. The NIE is estimated to be 9.7, whereas the NDE is
estimated to be 3.0. These sum to the total effect of 12.7. The indirect effect is much larger than the direct
effect, indicating that the effect of exercise on well-being is largely due to exercise affecting bonotonin
levels, which in turn affect well-being. The direct effect of 3.0 is the effect of exercise on well-being
beyond the effect through bonotonin.

Instead of comparing estimates of the direct and indirect effects, we might ask what proportion of the
total effect is due to mediation. We can answer this question by using estat proportion.

. estat proportion

Proportion mediated Number of obs = 2,000
Robust
wellbeing | Proportion  std. err. z P>|z]| [95% conf. interval]
exercise
(exercise
vs
control) .7638805 .0154928 49.31 0.000 .7335151 . 7942459

The indirect effect via bonotonin accounts for 76% of the effect of physical activity on well-being, and
the remaining 24% is due to other mechanisms.

Example 2: Including covariates and relaxing the no-interaction assumption

The previous example was somewhat unrealistic. For causal inference, we must evaluate the potential
of confounding. With causal mediation models, there are three types of confounders we should consider:
treatment—outcome confounders, treatment-mediator confounders, and mediator—outcome confounders.
A treatment—outcome confounder, for example, is a variable that affects both the selection into treatment
and the outcome. If confounders exist and we observe them in our data, we can add them as covariates
to the model to prevent biased results.

Above, we noted that the wellbeing data come from a randomized controlled trial. In this case, we
do not have to worry about treatment—outcome and treatment—mediator confounders because treatment
assignment is random. We do, however, need to consider variables such as age, gender, and hstatus
(a person’s health status) that affect both the mediator and the outcome. We include these variables as
covariates in the model for well-being. We also make our model a bit more realistic by including baseline
well-being in the outcome equation and baseline bonotonin level in the mediator equation. In addition,
we omit the nointeraction option to allow the bonotonin coefficients to vary across treatment groups.
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. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise)

Iteration 0: EE criterion = 1.664e-25
Iteration 1: EE criterion = 1.192e-28

Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary
Robust
wellbeing | Coefficient std. err. z P>|z]| [95% conf. interval]
NIE
exercise
(Exercise
vs
Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375
NDE
exercise
(Exercise
vs
Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393
TE
exercise
(Exercise
vs
Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment-mediator interaction.

The interpretation of the treatment effects is the same as before. The total effect of exercise on well-
being is 13.0. Of this effect, 3.1 is attributed to the direct effect, while the remaining 9.9 is due to the
indirect path via bonotonin. These results are similar to our simpler model above.
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We find that the expected effect of exercise on well-being is 13.0, but what is the expected well-being
when everyone exercises? When no one exercises? We can estimate four such potential-outcome means
by specifying the pomeans option:

. mediate (wellbeing age gender i.hstatus basewell)

> (bonotonin basebono)
> (exercise), pomeans

Iteration 0: EE criterion = 1.660e-25
Iteration 1: EE criterion = 1.473e-28

Causal mediation analysis Number of obs = 2,000

Outcome model: Linear

Mediator model: Linear

Mediator variable: bonotonin

Treatment type: Binary

Robust
wellbeing | Coefficient std. err. z P>|z]| [95% conf. intervall

POmeans
YOMO 56.94195 .2300492 247.52 0.000 56.49107 57.39284
Y1MO 60.02567 .2571311 233.44 0.000 59.52171 60.52964
YOM1 66.78952 .2642177 252.78 0.000 66.27167 67.30738
YiM1 69.96708 .232508 300.92 0.000 69.51137 70.42278

Note: Outcome equation includes treatment-mediator interaction.

Y1M1 is an estimate of the potential-outcome mean E[Y;(1, M;(1))]. If everyone in the population
exercised, we would expect the average of well-being to be around 70. The values labeled Y1M0 and YOM1
are estimates of the “cross-world” potential-outcome means E[Y;(1, M;(0))] and E[Y;(0, M,(1))]. For
these, we set different counterfactuals in the outcome and mediator equations. In this case, the Y1MO
estimate tells us the expected average well-being if, for the outcome equation, we assume that everyone
in the population exercised, but we assume that no one exercised in regard to the effect of treatment on
the mediator. If we compare the Y1M1 and Y1MO estimates, we imagine a world where everyone received
the treatment, except that the treatment is switched on and off in its effect on the mediator. The difference
between these is 69.96708 — 60.02567 = 9.94141, which is our NIE reported above.

By default, the TE, NIE, and NDE are computed, but we can request specific effects. For example, we
could estimate only the NIE by typing
. mediate (wellbeing age gender i.hstatus basewell)

> (bonotonin basebono)
> (exercise), nie
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Alternatively, we could estimate all available effects and potential-outcome means at once by speci-
fying the all option:
. mediate (wellbeing age gender i.hstatus basewell)

> (bonotonin basebono)
> (exercise), all

Iteration 0: EE criterion = 1.668e-25
Iteration 1: EE criterion = 1.532e-28

Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary
Robust
wellbeing | Coefficient std. err. z P>|z]| [95% conf. intervall
POmeans
YOMO 56.94195 .2300492  247.52  0.000 56.49107 57.39284
Y1MO 60.02567 .2571311 233.44 0.000 59.52171 60.52964
YOM1 66.78952 .2642177  252.78  0.000 66.27167 67.30738
YiM1 69.96708 .232508 300.92  0.000 69.51137 70.42278
NIE
exercise
(Exercise
Vs
Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375
NDE
exercise
(Exercise
vs
Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393
PNIE
exercise
(Exercise
Vs
Control) 9.84757 .2318329 42.48 0.000 9.393186 10.30195
TNDE
exercise
(Exercise
vs
Control) 3.177554 .1800896 17.64 0.000 2.824585 3.530523
TE
exercise
(Exercise
vs
Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment-mediator interaction.

Here we obtain estimates for two additional effects, PNIE and TNDE, which provide a different decompo-
sition of the TE into direct and indirect effects. In this case, PNIE and TNDE are similar to NIE and NDE,
respectively, because the coefficient on the treatment—-mediator interaction term is quite small in the
model for well-being. We can see the results for the underlying models, including this small coefficient
0f 0.002, if we add the aequations option to our mediate command.
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Example 3: Referring to treatment effects using an alternative naming scheme

The effects we have discussed so far are sometimes referred to by different names. The default naming
conventions originate in the works of Pearl and others. However, we can instead use terminology more
closely tied to ATEs if we specify the ateterms option:

. mediate (wellbeing age gender i.hstatus basewell)

> (bonotonin basebono)
> (exercise), all ateterms

Iteration 0: EE criterion = 1.668e-25
Iteration 1: EE criterion = 1.532e-28

Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary
Robust
wellbeing | Coefficient std. err. z P>|z| [95% conf. intervall
POmeans
YOMO 56.94195 .2300492 247.52 0.000 56.49107 57.39284
Y1MO 60.02567 .2571311 233.44 0.000 59.52171 60.52964
YOM1 66.78952 .2642177 252.78 0.000 66.27167 67.30738
YiM1 69.96708 .232508 300.92 0.000 69.51137 70.42278
AITE
exercise
(Exercise
vs
Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375
ADTE
exercise
(Exercise
Vs
Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393
AITEC
exercise
(Exercise
Vs
Control) 9.84757 .2318329 42.48 0.000 9.393186 10.30195
ADTET
exercise
(Exercise
vs
Control) 3.177554 .1800896 17.64 0.000 2.824585 3.530523
ATE
exercise
(Exercise
Vs
Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment-mediator interaction.

Using this notation, ATE can be decomposed into AITE and ADTE or into AITEC and ADTET. Notice that
the estimates are the same as in the previous example; they now just have different names.
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Example 4: Causal mediation model with a binary mediator

In the previous examples, both outcome and mediator variables were continuous. We now look at
the case where the mediator variable is binary. To this end, we use the binary variable bbonotonin, an
indicator of higher bonotonin levels after exercise, where improvement is defined as an increase of at
least 10%. We could use a probit or a logit model for this mediator; we choose a logit model:

. mediate (wellbeing age gender i.hstatus basewell)

> (bbonotonin, logit)
> (exercise)

Iteration O: EE criterion = 8.253e-18
Iteration 1: EE criterion = 8.223e-18 (backed up)

Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary
Robust
wellbeing | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE
exercise
(Exercise
vs
Control) 4.41435 .4666635 9.46  0.000 3.499706 5.328994
NDE
exercise
(Exercise
vs
Control) 8.429238 .5696256 14.80 0.000 7.312792 9.545683
TE
exercise
(Exercise
Vs
Control) 12.84359 .3712965 34.59  0.000 12.11586 13.57132

Note: Outcome equation includes treatment-mediator interaction.

Direct and indirect effect estimates differ from previous results because we used a different bonotonin
measure as our mediator variable. However, because we still have the continuous well-being outcome,
the interpretation of the effects is the same as before. Here we estimate a total effect of 12.8 with direct
and indirect effects of 8.4 and 4.4, respectively. That is, we expect an increase of 12.8 in well-being due
to treatment, of which 4.4 is due to an increase in bonotonin levels whereas the remaining 8.4 is due to
other mechanisms.
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Example 5: Causal mediation model with a binary outcome

Interpretation of effects did not change with a binary mediator, but interpretation does change when
we specify a different type of outcome.

To demonstrate, we return to the continuous mediator but use a binary outcome variable. The outcome
bwellbeing indicates higher well-being and is defined as an increase in well-being of at least 10%
compared with the baseline measurement. Using bwellbeing as the outcome variable and specifying a
probit outcome model, we get

. mediate (bwellbeing age gender i.hstatus, probit)

> (bonotonin basebono, linear)
> (exercise)

Iteration 0: EE criterion 2.177e-25
Iteration 1: EE criterion = 9.728e-29

Causal mediation analysis Number of obs = 2,000
Outcome model: Probit
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary
Robust
bwellbeing | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE
exercise
(Exercise
Vs
Control) .2346259 .0145763 16.10 0.000 .2060568 .263195
NDE
exercise
(Exercise
Vs
Control) .033732 .0237585 1.42 0.156 -.0128338 .0802978
TE
exercise
(Exercise
Vs
Control) .2683579 .0200872 13.36 0.000 .2289877 .3077281

Note: Outcome equation includes treatment-mediator interaction.

We interpret the effects as expected differences measured on the probability scale, sometimes referred
to as risk differences. The TE of 0.27 indicates that if everyone in the population exercised, we would
expect the probability of increased well-being to be 0.27 higher than the probability of increased well-
being if no one exercised. In other words, the chance of experiencing an increase in well-being goes up
by 27 percentage points when exposed to the exercise treatment. We can see that about 23 points are due
to the indirect path via bonotonin, and about 3 points are due to other mechanisms.
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Example 6: Causal mediation model with a binary mediator and binary outcome

We could also have the case where both the outcome and the mediator are binary. Here we use a logit
model for both:
. mediate (bwellbeing age gender i.hstatus, logit)
> (bbonotonin, logit)
> (exercise)

Iteration 0: EE criterion = 4.223e-16
Iteration 1: EE criterion = 2.037e-30

Causal mediation analysis Number of obs = 2,000
Outcome model: Logit
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary
Robust
bwellbeing | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE
exercise
(Exercise
vs
Control) .0959618 .0288699 3.32 0.001 .0393778 . 15625457
NDE
exercise
(Exercise
Vs
Control) .1676141 .0358902 4.67 0.000 .0972706 .2379577
TE
exercise
(Exercise
Vs
Control) .2635759 .0212488 12.40 0.000 .221929 .3052228

Note: Outcome equation includes treatment-mediator interaction.

The interpretation is again in terms of differences in probabilities. We observe a TE of around 0.26, which
is partially due to the indirect effect via bbonotonin (0.10) and partially due to other mechanisms (0.17).

Example 7: Causal mediation model with a count mediator

We use a fictional dataset on birthweights and demonstrate how to perform causal mediation analysis
when using a Poisson model for a count mediator.

We now pretend to have observational data instead of experimental data. The sample includes women
who gave birth to a child. We wish to find out whether socioeconomic status and education of the
mother affects the child’s health. The outcome variable is the birthweight of the baby (bweight), and
the treatment variable is whether or not the mother has a college degree (college). The mediator variable
is the number of cigarettes smoked per day during pregnancy (ncigs). The hypothesis is that women
with a higher educational degree are likely to smoke fewer cigarettes and that smoking during pregnancy
has negative effects on birthweight. Here is an excerpt from the dataset:
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. use https://www.stata-press.com/data/r19/birthweight, clear

(Fictional birthweight data)

. list bweight ncigs college ses sespar age in 1/5

(2 VI SR

bweight ncigs college ses sespar age
3621 1 No 5.3581  3.308523 29
3278 0 Yes  9.556957  4.376035 38
3073 1 No  3.980829 6.580275 39
3306 0 Yes 11.17643  12.12075 30
4517 0 Yes  9.026146  4.738766 28

We fit a linear model for the outcome bweight and a Poisson model for the mediator ncigs, and
we specify college as the binary treatment variable. Because we have fully observational data, where
selection into treatment is no longer completely random, we have to be concerned about all confounder
types as mentioned in Example 2: Including covariates and relaxing the no-interaction assumption. We
specify several potential confounders as covariates in both equations.

We do not assume that the adverse effects of smoking are different between women with a college
degree and women without a college degree. Therefore, we use the nointeraction option.

. mediate (bweight sespar c.age##c.age)
(ncigs sespar c.age##fc.age, poisson)
(college), nointeract

>
>

Iteration O:
Iteration 1:

EE criterion
EE criterion

Causal mediation analysis

Outcome model:

Mediator model:

Linear
Poisson

Mediator variable: ncigs

1.939%e-21
1.937e-21 (backed up)

Number of obs = 2,000

Treatment type: Binary
Robust

bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE

college
(Yes vs No) 167.3075 21.36134 7.83 0.000 125.4401 209.175
NDE

college
(Yes vs No) 347.3375  34.44561 10.08  0.000 279.8253 414.8496
TE

college
(Yes vs No) 514.645  28.65043 17.96  0.000 458.4912 570.7988
Note: Outcome equation does not include treatment-mediator interaction.

As before, the type of model we use for the mediator does not affect the interpretation of the estimated
treatment effects. Effects are expected differences on the scale of the outcome variable. The TE indicates
that if all women had a college degree, the average birthweight of newborn babies would be almost 515
grams higher than the average birthweight if no woman had a college degree. Of this weight increase,
around 167 grams are due to women with higher educational degrees smoking less, while 347 grams are
due to other mechanisms.
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Example 8: Causal mediation model with an exponential-mean outcome

Here we use an exponential-mean model for the outcome bweight.

. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.aget#itc.age, poisson)
> (college), nointeract

Iteration 0: EE criterion = 3.250e-13
Iteration 1: EE criterion = 1.159e-17

Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean
Mediator model: Poisson
Mediator variable: ncigs
Treatment type: Binary
Robust

bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE

college
(Yes vs No) 198.978  23.53279 8.46  0.000 152.8546 245.1014
NDE

college
(Yes vs No) 320.3318  34.47792 9.29  0.000 252.7563 387.9072
TE

college
(Yes vs No) 519.3098  28.70435 18.09  0.000 463.0503 575.5693

Note: Outcome equation does not include treatment-mediator interaction.

Because we are still modeling a continuous outcome, the interpretation does not change. The TE is about
519 grams, of which 199 grams are due to women with a college degree smoking less.

Example 9: Causal mediation model with multivalued treatment

So far we have only dealt with treatments that are binary. However, experiments often have more than
two treatment arms, or an observational treatment could consist of multiple categories. Then we would
refer to the treatment as multivalued.

To demonstrate, we return to our well-being data and use treatment variable mexercise, which cap-
tures three treatment groups: a control group, a group where individuals exercised for 45 minutes, and
a group where individuals exercised for 90 minutes. Such a design would allow the researcher to find
out whether and how the duration of exercise affects bonotonin levels and thereby well-being. Here we
use a linear model for both the outcome and the mediator, and we include the multivalued treatment
mexercise as our treatment variable:
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. use https://www.stata-press.com/data/r19/wellbeing, clear
(Fictional well-being data)

. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (mexercise)

Iteration 0: EE criterion = 1.697e-25
Iteration 1: EE criterion = 2.577e-26

Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear

Mediator variable: bonotonin
Treatment type: Multivalued

Robust
wellbeing | Coefficient std. err. z P>|z| [95% conf. intervall

NIE
mexercise
(45 minutes
Vs
Control) 5.128899 .3505171 14.63 0.000 4.441898 5.815899
(90 minutes
Vs
Control) 9.780537 .2880877 33.95 0.000 9.215895 10.34518

NDE
mexercise
(45 minutes
vs
Control) 1.197498 .1750038 6.84 0.000 .8544965 1.540499
(90 minutes
vs
Control) 3.051084 .2071236 14.73 0.000 2.645129 3.457039

TE
mexercise
(45 minutes
vs
Control) 6.326396 .3894269 16.25 0.000 5.563134 7.089659
(90 minutes
vs
Control) 12.83162 .2967962 43.23 0.000 12.24991 13.41333

Note: Outcome equation includes treatment—mediator interaction.

We now have two effects per estimand because we compare the two treated groups to the control group.
Starting with the TE, we expect nearly a 13-point increase in well-being if everyone in the population
exercised for 90 minutes. Of these 13 points, around 10 points are due to the increase in bonotonin
levels and 3 points are due to other mechanisms. The results for the 45-minute treatment arm, though
expectedly smaller in magnitude, are interpreted similarly.

Example 10: Causal mediation model with continuous treatment

Instead of a binary or multivalued treatment, we could have a continuous treatment variable. With
continuous treatments, we have to specify at least two values, one to be the treatment and another to
be the control. We return to our birthweight data and use socioeconomic status (ses) as our continuous
treatment variable. Here are some summary statistics for ses:
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. use https://www.stata-press.com/data/r19/birthweight
(Fictional birthweight data)

. summarize ses

Variable ‘ Obs Mean Std. dev. Min Max

ses ‘ 2,000 7.804412 2.287496 1.304026 16.27844

We can see that ses ranges from around 1 to 16 and has a mean of about 8. These values, however, do
not tell us much because the variable is measured on an arbitrary scale. Therefore, we standardize it so
that the resulting variable has a mean of 0 and a standard deviation of 1:

. generate std_ses = (ses-r(mean))/r(sd)

We will use the new variable, std_ses, as our treatment variable. We include the continuous ()
option within the third set of parentheses where we define the treatment. This option tells mediate
to treat the variable as continuous and to use the values specified within the option as the control and
treatment points. The first value is the control, and the remaining values are treatments that are compared
with the control. Here we will specify one standard deviation below the mean as our control value and
one standard deviation above the mean as our treatment value:

. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.age#tfc.age, poisson)
> (std_ses, continuous(-1 1)), nointeract

Iteration 0: EE criterion = 1.470e-12
Iteration 1: EE criterion = 1.986e-17

Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean

Mediator model: Poisson

Mediator variable: ncigs

Treatment type: Continuous

Continuous treatment levels:
0: std_ses = -1 (control)
1: std_ses = 1

Robust
bweight | Coefficient std. err. z P>|z]| [95% conf. interval]
NIE
std_ses
(1 vs 0) 171.3015 14.68778 11.66  0.000 142.514 200.089
NDE
std_ses
(1 vs 0) 170.0598  32.14841 5.29  0.000 107.05 233.0695
TE
std_ses
(1 vs 0) 341.3613  31.73741 10.76  0.000 279.1571 403.5655

Note: Outcome equation does not include treatment-mediator interaction.

Even though we used a continuous treatment variable, we interpret the results as before: if everyone
in the population had a socioeconomic status one standard deviation above the mean, the birthweight of
newborn children would be about 341 grams higher than the birthweight if everyone’s status value is one
standard deviation below the mean. Of these 341 grams, roughly half is due to women with a higher
status smoking less, and the other half is due to other mechanisms.
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We could also evaluate the treatment effects at more than two values. Here we use the mean (0) of
the standardized variable as the base, and we evaluate the treatment effects at —2, —1, 1, and 2:

. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.age##fc.age, poisson)
> (std_ses, continuous(0 -2 -1 1 2)), nointeract

Iteration 0: EE criterion = 1.470e-12
Iteration 1: EE criterion = 2.767e-17

Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean

Mediator model: Poisson

Mediator variable: ncigs

Treatment type: Continuous

Continuous treatment levels:
0: std_ses = 0 (control)

1: std_ses = -2
2: std_ses = -1
3: std_ses = 1
4: std_ses = 2
Robust
bweight | Coefficient std. err. z P>|z]| [95% conf. intervall
NIE
std_ses
(1 vs 0) -276.2757  27.69004 -9.98 0.000 -330.5471  -222.0042
(2 vs 0) -100.1165  9.1705666 -10.92  0.000 -118.0894  -82.14148
(3 vs 0) 65.84585  5.423096 12.14  0.000 55.21678 76.47493
(4 vs 0) 110.1346  8.724232 12.62  0.000 93.03538 127.2337
NDE
std_ses
(1 vs 0) -170.9012  31.33649 -5.45 0.000 -232.3196 -109.4828
(2 vs 0) -86.56069  16.08129 -5.38 0.000 -118.0794 -55.04193
(3 vs 0) 88.83929  16.94031 5.24 0.000 55.6369 122.0417
(4 vs 0) 180.0172  34.77372 5.18 0.000 111.8619 248.1724
TE
std_ses
(1 vs 0) -447.1769  35.41401 -12.63  0.000 -516.5871  -377.7667
(2 vs 0) -186.6761 156.73291  -11.87  0.000 -217.5121  -155.8402
(3 vs 0) 154.6851 16.31969 9.48 0.000 122.6991 186.6712
(4 vs 0) 290.1517  33.85571 8.57 0.000 223.7958 356.5077

Note: Outcome equation does not include treatment-mediator interaction.
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We now get four effect estimates for each treatment effect, which capture the expected differences in
the outcome with respect to the control point. With multiple effect estimates, it can be convenient to plot
the results. We use the postestimation command estat effectsplot to do so:

. estat effectsplot

Effects plot

400
200
. 07 —— NIE
% —e— NDE
-200 TE
-400
-600
T T T T T
-2 -1 0 1 2
std_ses

For more information about estat effectsplot, see [CAUSAL] mediate postestimation.

Example 11: Estimating controlled direct effects

Controlled direct effects (CDEs) are different from the other estimands we have dealt with so far. Here,
rather than having potential outcomes of the form Y; (¢, M, (t")), we have potential outcomes of the form
Y, (t|M; = m). That is, we have potential outcomes for each treatment level that are evaluated at set
values of the mediator. Thus, CDEs only use the results of the outcome equation. Assuming a binary
treatment, the CDE for value m of the mediator is CDE(m) = Y;(1|M; = m) — Y;(0|M; = m). CDEs
can be estimated using