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Intro — Introduction to causal inference and treatment-effects estimation

Description Remarks and examples References

Description
This entry provides an introduction to causal inference and treatment-effects estimation. It presents

concepts, frameworks, and assumptions that researchers consider when they wish to draw causal infer-

ences in their analyses.

For information on Stata commands that estimate treatment effects and that are specifically designed

for causal inference, see [CAUSAL] Causal inference commands.

For more in-depth introductions to causal inference, see Imbens and Rubin (2015), Robins and Green-

land (1992), Hernán and Robins (2020), and Pearl (2009).

Remarks and examples
Remarks are presented under the following headings:

Motivation: Causation versus association
Causal inference workflow
Potential-outcomes framework

Treatment-effect estimands
Assumptions required in potential-outcomes framework
Relaxing causal assumptions

Causal diagrams
Importance of identification before estimation

Motivation: Causation versus association
Research may be driven by the desire to evaluate causation or association. Causal questions explore

changes in the outcome when we change a variable under our control or examine what would happen to

the outcome if a variable of interest had not changed. For example:

• Does receiving a treatment cure the illness?

• What would have happened to the inflation rate if the Federal Reserve had not increased interest rates?

• Does smoking reduce fetal growth?

• Does raising the minimum wage decrease unemployment?

In contrast, associative questions observe patterns in data. For example:

• How does the cure rate between patients who received treatment and those who did not receive treat-

ment compare?

• Is there a correlation between interest rates and inflation?

• Is there a difference in the mean birthweight of infants born to mothers who smoke versus those born

to mothers who do not smoke?

• What is the difference in the unemployment rate between states that have implemented an increase in

minimum wage and those that have not?

1



Intro — Introduction to causal inference and treatment-effects estimation 2

The first set of questions asks what happens when there is an intervention or imagine a scenario where

a variable changes versus does not change. The second set of questions observe only the pattern without

intervention.

To examine some of the considerations we must face when performing causal inference, we consider

a hypothetical study, conducted by a software company called Statanium, that examines the relationship

between the number of breaks taken by software developers and their productivity. The company wants

to find out whether the number of breaks impacts productivity. As a user of Statanium and an expert in

causality, you are hired to advise the company whether it should encourage developers to take additional

breaks during their workday. The question the company is interested in is causal because it aims to com-

pare the productivity when the number of breaks is increased versus the productivity when the number of

breaks (and other possible factors) remains unchanged. If the two outcomes of productivity are different,

then the action of increasing the number of breaks has a causal effect. In causal inference literature, the

action of increasing the number of breaks is referred to as a treatment or an intervention.

You could estimate an association between increased breaks and productivity via correlation or many

other statistical methods that estimate dependence. However, the interest is in estimation of causal ef-

fect. The well-known expression “association is not causation” suggests that for any given amount of

association, only some part or none of it is causal. Thus, a challenge in causal inference is to identify

and eliminate relationships that are only associative. To perform causal inference in our case, we want

to create a hypothetical scenario where the number of breaks is increased and all other factors that may

influence productivity remain fixed. Then we can determine the causal effect of the additional break.

When it is possible, randomized experiments are a popular method to estimate causal effects because

the treatment (number of breaks) is controlled by the experimenter. Therefore, the treatment assignment

is guaranteed to be random and unrelated to all other factors that may determine the outcome. This can

be represented using causal diagrams, as in figure 1, where 𝑇 represents the treatment, 𝑌 represents the

productivity or outcome, and 𝑋 represents all other factors. The absence of an arrow between 𝑋 and 𝑇
indicates that 𝑋 does not affect 𝑇.

X

T Y

Figure 1.

However, randomized experiments are not always feasible, and causal effects need to be inferred

from observational data. In the observational data case, the experimenter does not have control over the

treatment assignment, and the assumption that all other factors are held constant in both the observed

and hypothetical worlds may not hold. This is due to the presence of confounding factors (for example,

job satisfaction) that affect both the treatment and outcome. This is reflected in the causal diagram in

figure 2 by arrows from 𝑋 to both 𝑇 and 𝑌.
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X

T Y

Figure 2.

Here the measured total association between 𝑇 and 𝑌 contains both causal path 𝑇 → 𝑌 and association

path 𝑇 ← 𝑋 → 𝑌, highlighted in red. To identify the causal effect and make further causal inference,

you need to eliminate the association represented by the red path by accounting or adjusting for other

confounding factors.

The following highlights the significance of adjusting for confounding variables. Suppose that in

figure 3 you plot the productivity of software developers as a function of the average number of breaks.
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Figure 3.

The plot shows a positive association between the number of breaks and productivity, implying that

taking more breaks leads to higher productivity. The questions of interest are whether this association

can be considered causal and whether Statanium should motivate its hardworking developers to take

more breaks during the workday. The conclusion that more breaks are beneficial would be valid if the

model assumed is as shown in figure 1. However, as an expert, you believe that there are confounding

factors, such as workload or job satisfaction, that need to be considered, as shown in figure 2. To account

for the effect of job satisfaction, in figure 4, you plot the productivity of software developers against

the average number of breaks they take, considering different levels of job satisfaction—dissatisfied

(orange), satisfied (red), and highly satisfied (yellow).
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Figure 4.

The plot shows that when job satisfaction is accounted for, the effect of the number of breaks on

productivity changes from positive to negative. This phenomenon is known as Simpson’s paradox (Blyth

1972), where the overall effect appears to be positive but, when it is adjusted for a confounder, the effect

sign changes direction.

The above example illustrates the fundamental difference between causation and association. For

example, if for some reason the researcher does not account for the job satisfaction or it is not observed,

then the estimated association cannot be interpreted as causal.

Below, we introduce the workflow, popular causal inference frameworks, and assumptions that allow

researchers to draw causal inferences rather than merely find associations.

Causal inference workflow
The causal inference literature recommends the following three-phase workflow (Pearl 2009; Imbens

2020; and Heckman and Pinto 2022) when a research question is causal in nature:

1. Hypothetical modeling: Researchers make assumptions about relationships among variables based

on their understanding and expertise. These assumptions are related not only to the treatment variable

and the outcome of interest but also to any variables that might be related to the treatment or the

outcome. The assumptions regarding these relationships cannot be tested from data; therefore, the

validity of these assumptions must come from previous theory or the researcher’s own expertise.

2. Causal effect identification: Based on the assumptions made in the first phase, the researcher tries to

determine whether the causal effect can be identified.

3. Parameter estimation: If the answer to the second phase is positive, the researcher can then use var-

ious estimation techniques, such as those provided by the commands discussed in [CAUSAL] Causal

inference commands, to estimate the causal effect.

Potential-outcomes framework
The potential-outcomes framework is one of the most commonly used theories for understanding and

evaluating causal inference. The foundation of this framework is motivated by the idea of a natural ex-

periment (Imbens 2020), which focuses on finding settings and identification strategies under which the

assignment of a treatment can be considered as good as random even though the data are observational

rather than from a randomized experiment. The roots of the potential-outcomes framework trace back to
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a seminal paper by Splawa-Neyman (1923), and the framework was formally introduced in Rubin (1974).

Fisher (1925) built upon Neyman’s ideas and introduced the idea of physical randomization, which for-

mally defines the concept of a treatment-assignment mechanism. For further reading, see Imbens and

Rubin (2015).

As discussed earlier, the goal of causal inference is to estimate the change in an outcome as the

treatment varies. In the Statanium example, we now assume that the treatment (number of breaks) and

the outcome (productivity) are binary. That is, 𝑇𝑖 = 1 means the Statanium developer takes additional

breaks, and 𝑇𝑖 = 0 otherwise. Similarly, 𝑌𝑖 = 1 if a developer’s productivity increases, and 𝑌𝑖 =
0 otherwise. Thus, we are interested in estimating the change in productivity if the developer takes

additional breaks, 𝑇𝑖 = 1, versus if the developer does not take additional breaks, 𝑇𝑖 = 0. However,

for a given developer, we can observe only one outcome. This is known as the fundamental problem of

causal inference (Holland 1986). The potential-outcomes framework provides tools and assumptions to

solve this problem.

The important concepts in potential outcomes are the unit, treatment, and outcome. A unit is the

research object to which treatment is assigned. It can be, for example, a person, a company, a school, or

a county. Treatment is the action that we apply to a unit. In this entry, treatment is denoted as 𝑇. For
binary treatment, the units to which treatment is applied (𝑇 = 1) are called the treated group, and the

units to which the treatment is not applied (𝑇 = 0) are called the control group. The potential outcome

of treatment with value 𝑡 for unit 𝑖 is denoted by 𝑌𝑖(𝑇𝑖 = 𝑡) or 𝑌𝑖(𝑡). In our running example, the unit is

the developer, treatment is taking additional breaks, and the outcome is whether productivity improves.

The observed outcome is related to the potential outcome through 𝑌𝑖 = 𝑇𝑖𝑌𝑖(1) + (1 − 𝑇𝑖)𝑌𝑖(0).
That is, if the unit receives the treatment 𝑇𝑖 = 1, then 𝑌𝑖 = 𝑌𝑖(1) and 𝑌𝑖(0) otherwise.

A potential outcome that is not observed is called a counterfactual outcome. For example, for the

developer who took additional breaks, 𝑌𝑖(1) is the observed outcome and 𝑌𝑖(0) is the counterfactual

outcome.

Treatment-effect estimands

Individual treatment effect (ITE). For each developer or unit 𝑖, the ITE is defined as

𝑌𝑖(𝑇𝑖 = 1) − 𝑌𝑖(𝑇𝑖 = 0)

Because only one of the potential outcomes is observed, we cannot identify this quantity directly

from the data without making assumptions about the unobserved counterfactuals and the assignment

to treatment. However, estimates of individual effects can be useful for providing insight into how a

treatment may affect an individual. For instance, in epidemiology, estimated ITEs could help determine

whether a treatment is likely to be helpful for a particular patient.

We can also define and estimate effects that allow us to draw interesting causal inferences for the

population instead of for each individual.

Average treatment effect (ATE). The ATE is also known as the average causal effect. The ATE at

the population level can be defined as the mean difference in potential outcomes when units received a

treatment versus when units did not receive any treatment,

ATE = 𝐸[𝑌 (1) − 𝑌 (0)] = 𝐸[𝑌 (1)] − 𝐸[𝑌 (0)] (1)

where 𝑌 (𝑡) = 𝑌 (𝑇 = 𝑡), for 𝑡 = {0, 1}. We say that the ATE of treatment 𝑇 on outcome 𝑌 exists if

𝐸[𝑌 (1)] ≠ 𝐸[𝑌 (0)].
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The ATE provides an estimate of the expected average effect in the population and can therefore be

used to answermany interesting questions that could help policymakersmake decisions. In our Statanium

example, the ATE is the expected difference in productivity if all developers took extra breaks versus

none taking extra breaks. Statanium could determine whether extra breaks are beneficial and set break

policies based on the estimatedATE. Similarly, we interpret theATE for a couple of our motivating causal

questions. When investigating whether a treatment cures an illness, we could interpret the ATE as the

expected difference in the proportion of individuals who were cured from an illness when everyone

received the treatment versus when no one received the treatment. When evaluating a raise in minimum

wage, we could interpret theATE as the expected change in unemployment rate when the minimum wage

is raised for everyone versus when the minimum wage stays the same.

When the ATE is of interest, we must use an appropriate method that leads to an estimate of this

quantity. Wemight be tempted to use association difference to estimateATE, where association difference

is the conditional mean difference of outcomes between treatment and not treated units. The treatment

𝑇 and 𝑌 are associated if 𝐸[𝑌 |𝑇 = 1] ≠ 𝐸[𝑌 |𝑇 = 0]. Thus, one might try to estimate the causal

quantity in (1) with the statistical quantity 𝐸[𝑌 |𝑇 = 1] − 𝐸[𝑌 |𝑇 = 0]. For the Statanium example, this

quantity could be estimated from the data by contrasting the sample average of the developers that took

the treatment with the ones that did not. Mathematically,

∑𝑁
𝑖=1 𝑌𝑖𝑇𝑖

∑𝑁
𝑖=1 𝑇𝑖

−
∑𝑁

𝑖=1 𝑌𝑖(1 − 𝑇𝑖)

∑𝑁
𝑖=1(1 − 𝑇𝑖)

However, in general, ATE and association difference are different; otherwise, association would be

causation. Figure 5 highlights the causation–association difference.

Population Causation

T = 1T = 0 E[Y(T = 1)]

E[Y(T = 0)]

Association

E[Y|T = 1]

E[Y|T = 0]

T = 1T = 0

Figure 5.

To infer causation, we imagine that each treatment or intervention is applied to the entire population,

and the difference between the red and white circles is observed in the same population. In contrast, to

infer association, we condition on 𝑇 = 𝑡 and estimate the difference between subsets of populations.



Intro — Introduction to causal inference and treatment-effects estimation 7

Average treatment effect on the treated (ATET). For the treated group, the treatment-effect esti-

mand is the ATET:

ATET = 𝐸[𝑌 (1)|𝑇 = 1] − 𝐸[𝑌 (0)|𝑇 = 1]

The ATET is useful when researchers are interested in the effect on those who received the treatment.

This effect may be of particular interest when the goal is to understand how a treatment performs for the

subpopulation at which the treatment was targeted. The effect is a comparison with what would have

happened in this subpopulation if they had not received the treatment. In our Statanium example, we

estimate the expected difference in productivity for developers who took extra breaks compared with

the productivity of these developers if they had not taken extra breaks. When we investigate whether a

treatment cures an illness, the ATET is focused only on those who received the treatment. For this group,

what is the expected difference in the proportion of individuals who were cured when given the treatment

versus the proportion cured if they had not received the treatment? When evaluating a raise in minimum

wage, we might be interested in the effect for states that enacted a minimum wage increase. The ATET

is the expected difference in unemployment rate for these states compared with a situation where these

states did not raise minimum wage.

Additional estimands. In specific situations, there are several other treatment-effect estimands that

may be of interest and that can be defined in the potential-outcomes framework. We briefly mention a

few here.

Sometimes, it is assumed that the effect of 𝑇 on 𝑌may involve both a direct effect and an indirect effect

such that 𝑇 has an effect on another variable 𝑀, known as a mediator, and that 𝑀 in turn has an effect on

𝑌. In the Statanium example, we might believe that increased breaks could improve the developers’ focus

while working and that improved focus leads to increased productivity. In such a situation, comparisons

of average direct treatment effects and average indirect treatment effects may be of interest. See Robins

and Greenland (1992), VanderWeele (2015), and Pearl and MacKenzie (2018) for discussions of causal

mediation analysis and definitions of applicable direct and indirect effect estimands.

Recently, there has been a surge of interest in estimating the treatment effect when it differs between

subgroups, also known as the heterogeneous treatment effect (Athey and Imbens 2016; Künzel et al. 2019

; and Nie and Wager 2021). At the subgroup level, the treatment-effect estimand is called conditional

average treatment effect (CATE),

CATE = 𝐸[𝑌 (1)|𝑋 = 𝑥] − 𝐸[𝑌 (0)|𝑋 = 𝑥]

where 𝑌 (𝑡)|𝑋 = 𝑥 for 𝑡 = {0, 1} are the potential outcomes of the subgroup 𝑋 = 𝑥.

Assumptions required in potential-outcomes framework

At this point, it is natural to ask under which conditions treatment effects can be estimated from

observational data. For illustration purposes, our focus will be on ATE. We are interested in assumptions

for which

ATE = 𝐸[𝑌 (1)] − 𝐸[𝑌 (0)] = 𝐸[𝑌 |𝑇 = 1] − 𝐸[𝑌 |𝑇 = 0]

A causal quantity, that is, ATE, is “identifiable” if it can be computed from a statistical quantity

𝐸[𝑌 |𝑇 = 𝑡]. By statistical quantity, we mean an object that can be estimated from data.

In the potential-outcome framework, commonly used assumptions are the stable unit treatment value

assumption (SUTVA), unconfoundedness assumption, and overlap assumption.
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SUTVA. The SUTVA, along with consistency, states that for a given unit, the treatment of other units

does not affect the outcome of the treatment received by that unit. Consequently, there are two different

sources in which SUTVA could be violated. The first source is a violation of the consistency condition,

which might not hold in some studies (Cole and Frangakis 2009; and Schwartz, Gatto, and Campbell

2011). Usually, the problem arises from the vagueness of the assigned treatment. For example, for

the Statanium example, if the treatment is additional breaks, this may be one additional break or three

additional breaks. If we observe onlywhether a treatment has been assigned, the counterfactual𝑌 (𝑇 = 𝑡)
is not well defined because different numbers of breaks have different causal effects. The second source

of violation arises if some units are influenced by the assignment of the treatment of other units. For

example, if some developers in the control group noticed that the developers in the treatment group are

less productive, they might change their lifestyle and start taking fewer breaks, which can lead to an

increase in productivity. Typically, interference can occur because of spillover effects or noncompliance

or because the units are members of a social network. For details, see Hernán and Robins (2020, chap. 3).

Unconfoundedness assumption. The unconfoundedness assumption goes bymany names, including

the conditional-independence assumption, the ignorability assumption, and the exchangeability assump-

tion. The impetus behind this assumption is to make the treatment and control group comparable within

strata defined by 𝑋. It states that the probability of a positive outcome in the control group (white group

in the figure above) would be the same as the probability of a positive outcome in the treatment group

(red group) had units in the control group received the treatment given to those in the treatment group.

In other words, under unconfoundedness, if by accident the treatment were given to the white group

instead of the red group, then the ATE would remain the same. Mathematically, this is represented by

(𝑌 (1), 𝑌 (0)) ⟂⟂ 𝑇 |𝑋, where ⟂⟂ denotes (conditional) independence and 𝑋 are potential confounders.

It is important to differentiate between 𝑌 (𝑡) ⟂⟂ 𝑇 |𝑋, which utilizes potential outcomes, and 𝑌 ⟂⟂ 𝑇 |𝑋.

The unconfoundedness assumption does not imply that 𝑌 ⟂⟂ 𝑇 |𝑋. On the contrary, if the ATE is not

zero, then 𝑌 and 𝑇 are associated. In the context of the Statanium example, the underlying intuition is

that for two developers 𝑖 and 𝑗, their potential outcomes should be independent of the treatment assign-

ment 𝑃(𝑌𝑖(0), 𝑌𝑖(1)|𝑇 = 𝑡𝑖, 𝑋) = 𝑃(𝑌𝑗(0), 𝑌𝑗(1)|𝑇 = 𝑡𝑗, 𝑋), for 𝑡𝑖, 𝑡𝑗 ∈ {0, 1}.
Overlap assumption. Finally, the overlap or positivity assumption 𝑃(𝑇 = 𝑡|𝑋 = 𝑥) > 0 implies

that the treatment assignment should be stochastic. For example, if the developers who are highly sat-

isfied are always assigned treatment 𝑇 = 1, then there is no meaning in studying the treatment 𝑇 = 0.

In contrast to unconfoundedness, the overlap assumption can sometimes be verified from the data. For

details, see Hernán and Robins (2020, chap. 12).

When these three main assumptions in the potential-outcome framework are satisfied, then theATE is

identified, and estimation methods available in the teffects suite of commands can be used.

Relaxing causal assumptions

One of the crucial questions in causal inference is whether all confounders have been accounted for

in the study. Unfortunately, the unconfoundedness is not testable from data. There are observable and

unobservable confounders that, unaccounted for, will lead to incorrect conclusions. This problem of

unobserved confounders or endogeneity is usually addressed using estimators that account for an en-

dogenous treatment or instrumental-variable method.

Discussions of these issues can be found in Imbens and Rubin (2015). For a general treatment, see

Wooldridge (2010) and Angrist and Pischke (2009).
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The potential-outcome framework is not restricted only to models in which identification relies on

conditional unconfoundedness, which is sometimes referred to as selection on observables. It also allows

us to recover theATET by controlling for individual and time-varying unobservables, without the need to

control for covariates. One example of this is the difference-in-differences method, which can be used

to estimate ATET by comparing the change in outcomes between the treatment and control groups over

time.

Causal diagrams
In Motivation: Causation versus association, we used causal diagrams, specifically directed acyclic

graphs (DAGs), to represent our assumptions about causal relationships. DAGs are helpful in phases 1

and 2 described in Causal inference workflow. The intellectual predecessor of causal diagrams, or more

generally, the structural causal models (SCMs) framework, goes back to the pioneering work of geneti-

cist Wright (1921, 1934) and econometricians Frisch and Waugh (1933) and Haavelmo (1944) and the

references therein. Early econometricians were attempting to conceptualize the fact that, unlike correla-

tion, the regression of a variable 𝑌 on 𝑇 has a natural direction and is different from the regression of 𝑇
on 𝑌. This distinction led to the development of causal frameworks by Pearl (2009) and Heckman and

Pinto (2022). Furthermore, this differentiation is linked to the concept known as “the ladder of causal-

ity” (Pearl and MacKenzie 2018), where the lowest rung signifies association and higher rungs address

causal queries. Here our focus is on causal diagrams. We provide only a brief introduction and explore

the usefulness of causal diagrams in determining causal-effect identification before estimating treatment

effects using one of Stata’s estimation commands. We will mention some of the common terminology

used in SCM, but for more detailed descriptions of these terms and additional details on SCM, we refer

you to Pearl (2009), Peters, Janzing, and Schölkopf (2017), Bareinboim et al. (2022), and the references

therein.

DAGs are characterized by nodes and directed edges between the nodes (shown as circles and arrows,

respectively, in diagrams below), which represent causal relationships. The absence of edges between

nodes indicates that there is no direct causal effect between those nodes. Unlike path diagrams in SEM,

independent unobserved error terms are not depicted in DAGs.

For the Statanium example, we capture our assumptions using the DAG in the left panel of figure 6.

X

T Y

XZ

T Y

Figure 6. (left) Unconfoundedness and (right) Instrumental variable

Here 𝑋 is a confounder in the causal relationship for 𝑇 and 𝑌, and because 𝑋 is observed, we can

control or adjust for it by including it as a covariate in our model when we estimate the causal effect.

With this adjustment, we eliminate associative paths and identify the causal relationship between 𝑇 and

𝑌. In the causal diagram literature, the path 𝑇 ← 𝑋 → 𝑌 is known as a backdoor path because it contains

an arrow that goes to the back of node 𝑇 (hence, the name “backdoor”). If we do not condition on 𝑋, we

say that we are leaving the path open, and we cannot estimate the causal effect. In this situation, we meet

what is known as the backdoor path criterion because, by adjusting for 𝑋, we close all paths entering 𝑇.
In comparison, in the DAG shown on the right of figure 6, 𝑋 is an unobserved confounder, which is

indicated by shading the node for this variable. In this case, we cannot condition on 𝑋 by including it

as a covariate when we estimate the causal effect. Thus, the backdoor path criterion is not satisfied, and

the causal effect of 𝑇 on 𝑌 cannot be identified in this way. Fortunately, in this case, the assumed DAG
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still allows us to estimate the causal effect because 𝑍 can be used as an instrumental variable. A proper

instrumental variable can be included as a predictor of the treatment to eliminate unobserved sources of

confounding such as that from 𝑋 here. 𝑍 can be used as a proper instrumental variable because there is

no direct effect of 𝑍 on the outcome 𝑌 and there are no unobserved confounders between 𝑍 and 𝑋 or 𝑍
and 𝑌.

For our simple DAGs, we were able to evaluate identification easily by considering the relationships

among the few variables. For more complex situations, there exist several algorithms and criteria that are

designed to check and achieve causal effect identification using a graphical approach. We do not discuss

those algorithms here; we instead refer the interested reader to Shpitser and Pearl (2008), Pearl (2009),

Maathuis and Colombo (2015), Perković et al. (2015), and van der Zander, Liśkiewicz, andTextor (2019).

These algorithms can select variables that form a valid adjustment set that can be used for treatment-effect

estimation. Once the valid adjustment set is selected, researchers can use their preferred treatment-effect

estimation method from the list of commands in [CAUSAL] Causal inference commands.

Below, we demonstrate how a DAG can be used in the phases discussed in the Causal inference work-

flow. Consider a study that examines the effect on five-year mortality of polycystic kidney disease (PKD)

among patients undergoing peritoneal dialysis (PD). Recall that in phase 1 of the workflow, we construct

a hypothetical model that represents researchers’ assumptions. We begin our causal analysis by drawing

a DAG that represents our assumptions about the causal effects we are interested in estimating and the

relationship among all variables, observed and unobserved, that may affect the variables of interest. Here

we borrow the hypothetical model from Evans et al. (2012), illustrated in figure 6.

A ATG

CI

PKD M

PD DT

Figure 6.

The goal of phase 2 is to check whether the causal effect of the treatment variable PKD on mortality

M is identifiable. For the variable definitions, see table 2. The gray node in the graph indicates that the

variable AT is not observed.

Table 2. Variable definitions� �
PKD - polycystic kidney disease; treatment variable

M - mortality; outcome variable

A - patient age

G - patient gender

C - patient’s comorbidities summary index

PD - indicator for patients undergoing peritoneal dialysis

AT - type of medical assistance

DT - type of peritoneal dialysis� �
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Note that if all variables in the causal graph are observed, then the causal effect can be identified using

backdoor path criteria (Pearl 2009).

However, in our example, AT is not observed, and there are unblocked noncausal (backdoor) paths

that hinder identification:

P1: PKD ← CI → AT → M

P2: PKD ← A → AT → M

P3: PKD ← CI ← G → AT → M

Note that, despite a common misconception, conditioning on all observed variables does not mitigate the

identification issue. For example, consider the path PKD → DT ← AT. This type of path is known as a

v-structure, and DT is called a collider. PKD and AT are unrelated because the collider closes or blocks

the path. However, we would not want to include DT in the model because conditioning on the collider

DT introduces a selection bias through PKD → DT ← AT → M. For more examples, see Importance of

identification before estimation. Interestingly, the above noncausal paths P1, P2, and P3 can be blocked

if we condition on variables CI andA. In fact, CI andA are the necessary minimal sufficient set that makes

the causal effect of PKD to M identifiable. Now that we know that the causal effect is identified, we are

ready tomove to phase 3, estimation of the treatment effect. In this case, CI andAcan be used as covariates

in, for instance, the inverse-probability weighting estimator. For details, see [CAUSAL] teffects ipw.

. teffects ipw (M) (PKD CI A)
(output omitted )

Importance of identification before estimation
In this section, we provide numerical examples that reemphasize the importance of the identifica-

tion step. If a causal effect is not identified, the results of any treatment-effect estimation method are

unreliable. We illustrate this point with two simple examples, which also aim to clear up the common

misconception that it is harmless to control for more variables in treatment-effect estimation. For more

examples, the reader is referred to Cinelli, Forney, and Pearl (2024) and Hünermund, Louw, and Caspi

(2021).

Example 1
The presumed relationship among variables in figure 7 is well known for introducing collider bias,

sometimes called selection bias, in the estimated effect of 𝑇 on 𝑌. In the causal diagram literature, the

represented DAG is known as a v-structure, and the variable 𝑋 as a collider. A v-structure 𝑇 → 𝑋 ← 𝑌
has an interesting characteristic that the causal effect of 𝑇 on 𝑌 is 0 because the collider𝑋 blocks the path.

If we adjust for 𝑋, we introduce a selection bias because the adjustment results in an induced association

between 𝑇 and 𝑌.

X

T Y

Figure 7.
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Suppose the data come from the data-generation process as

𝑇 ∶= 𝜖𝑇

𝑌 ∶= 𝜖𝑌

𝑋 ∶= 2 × 𝑇 − 0.5 × 𝑌 + 𝜖𝑋

where 𝜖𝑇, 𝜖𝑌, 𝜖𝑋 ∼ 𝑁(0, 1). The regression of 𝑌 on 𝑇 and 𝑋 shows that 𝑇 and 𝑋 are for prediction

purposes if we were to determine this on the basis of their 𝑝-values. However, the 𝑋 is a bad control in

terms of answering a causal question about the effect of 𝑇 on 𝑌.
. regress Y T X

Source SS df MS Number of obs = 1,000
F(2, 997) = 111.51

Model 187.350778 2 93.675389 Prob > F = 0.0000
Residual 837.504999 997 .840025074 R-squared = 0.1828

Adj R-squared = 0.1812
Total 1024.85578 999 1.02588166 Root MSE = .91653

Y Coefficient Std. err. t P>|t| [95% conf. interval]

T .8088171 .0607918 13.30 0.000 .6895225 .9281117
X -.3942266 .0263994 -14.93 0.000 -.4460314 -.3424219

_cons .0345212 .0289833 1.19 0.234 -.0223541 .0913965

Fortunately, the true causal effect 0 is recovered if we do not control for 𝑋.

. regress Y T
Source SS df MS Number of obs = 1,000

F(1, 998) = 0.02
Model .025504326 1 .025504326 Prob > F = 0.8748

Residual 1024.83027 998 1.02688404 R-squared = 0.0000
Adj R-squared = -0.0010

Total 1024.85578 999 1.02588166 Root MSE = 1.0134

Y Coefficient Std. err. t P>|t| [95% conf. interval]

T .0049212 .0312266 0.16 0.875 -.0563562 .0661986
_cons .0347662 .0320452 1.08 0.278 -.0281175 .0976498

Example 2
Here we demonstrate another type of bias that can be induced in the estimated effect of 𝑇 on 𝑌.

XT

Y

Figure 8.

Compared with the previous example, the harmfulness for controlling 𝑋 is not explicit. Recall that in

the previous section, we mentioned that the nodes for unobserved error terms (𝜖𝑇, 𝜖𝑌) are omitted from

the causal graph, but they are there. If we imagine that the error term for 𝑌 is there, then 𝑌 would be a
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collider because 𝑇 → 𝑌 ← 𝜖𝑌. We also see 𝑌 → 𝑋, so we can say that 𝑋 is a descendant of the collider

𝑌. It turns out that by controlling on the descendant 𝑋 of collider 𝑌, we induce an association between 𝑇
and 𝜖𝑌 (Pearl 2009, sec. 11.3). This conditioning opens a backdoor path between 𝑇 and 𝑌, which makes

the causal effect of 𝑇 on 𝑌 unidentified.

Suppose the data arise from the following data-generation process:

𝑇 ∶= 𝜖𝑇

𝑌 ∶= 2 × 𝑇 + 𝜖𝑌

𝑋 ∶= −0.5 × 𝑌 + 𝜖𝑋

Then the causal effect of 𝑇 on 𝑌 is 2. Similar to the previous example, even though 𝑋 is good for

prediction purposes, it is a bad control for causality.

. regress Y T X
Source SS df MS Number of obs = 1,000

F(2, 997) = 2631.17
Model 4420.49975 2 2210.24987 Prob > F = 0.0000

Residual 837.504998 997 .840025073 R-squared = 0.8407
Adj R-squared = 0.8404

Total 5258.00474 999 5.26326801 Root MSE = .91653

Y Coefficient Std. err. t P>|t| [95% conf. interval]

T 1.626137 .0379613 42.84 0.000 1.551644 1.700631
X -.3942266 .0263994 -14.93 0.000 -.4460314 -.3424219

_cons .0345212 .0289833 1.19 0.234 -.0223541 .0913965

Again, the true causal effect is recovered if we do not control for 𝑋.

. regress Y T
Source SS df MS Number of obs = 1,000

F(1, 998) = 4122.35
Model 4233.17448 1 4233.17448 Prob > F = 0.0000

Residual 1024.83027 998 1.02688404 R-squared = 0.8051
Adj R-squared = 0.8049

Total 5258.00474 999 5.26326801 Root MSE = 1.0134

Y Coefficient Std. err. t P>|t| [95% conf. interval]

T 2.004921 .0312266 64.21 0.000 1.943644 2.066199
_cons .0347662 .0320452 1.08 0.278 -.0281175 .0976498

These examples demonstrate that, before estimating a treatment effect, we must determine whether

and how the effect can be identified based on our assumed relationships among variables. Once we have

evaluated identification, we can select an appropriate method for estimating the causal effect. In these

examples, we used linear regression. Actually, many of Stata’s regression commands can be used for

estimating treatment effects, provided that identification assumptions hold. Stata also offers estimation

commands that are specifically designed for estimating treatment effects in various situations. For more

information on these specialized commands, see [CAUSAL] Causal inference commands.
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Causal inference commands — Introduction to causal inference commands

Description Remarks and examples Also see

Description
In this entry, we give you an overview of the estimation commands in Stata that are designed for

causal inference. We provide important details about each command so that readers can select the one

that best fits their data and research needs.

Here we assume that you are familiar with causal inference and the most common assumptions. For

an introduction to these concepts, see [CAUSAL] Intro.

Remarks and examples
Below, we introduce Stata commands that are specifically designed for causal inference. For each

command, we provide information on the type of data required and the necessary assumptions. In addi-

tion, we outline the type of statistics that can be estimated—typically one ormore of the average treatment

effect (ATE), the average treatment effect on the treated (ATET), or the potential-outcome means (POM).

We also indicate the type of outcome variable (continuous, binary, count, fractional, or nonnegative) and

the type of treatment (binary, multivalued, or continuous) that each command supports. Finally, we note

which models must be specified: a model for the outcome, a model for the treatment, both, or none.

Remarks are presented under the following headings:

teffects
stteffects
telasso
cate
Difference in differences
Endogenous treatment
Causal mediation
Extended regression models
margins

teffects
The teffects suite of commands is useful for estimating treatment effects from cross-sectional

data. These commands rely on the stable unit treatment value assumption (SUTVA), unconfoundedness

(conditional-independence) assumption, and overlap assumption.

The commands in the teffects suite and the type of estimator provided by each are as follows:

teffects ra Regression adjustment

teffects ipw Inverse-probability weighting

teffects ipwra Inverse-probability-weighted regression adjustment

teffects aipw Augmented inverse-probability weighting

teffects nnmatch Nearest-neighbor matching

teffects psmatch Propensity-score matching

16
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Details on the available estimands, types of outcomes and treatments supported, and the models to be

specified are given below:

Outcome Treatment Models

Command Estimand types types specified

teffects ra ATE continuous binary outcome

ATET binary multivalued

POM count

fractional

nonnegative

teffects ipw ATE continuous binary treatment

ATET binary multivalued

POM count

fractional

nonnegative

teffects ipwra ATE continuous binary outcome

ATET binary multivalued treatment

POM count

fractional

nonnegative

teffects aipw ATE continuous binary outcome

ATET binary multivalued treatment

POM count

fractional

nonnegative

teffects psmatch ATE continuous binary treatment

ATET binary

count

fractional

nonnegative

teffects nnmatch ATE continuous binary outcome∗

ATET binary

count

fractional

nonnegative

∗nnmatch includes covariates for modeling the outcome but does not require specification of a functional form for the outcome
model.

For further information on these commands and the properties of the estimators that they implement,

see [CAUSAL] teffects intro.
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stteffects
The stteffects suite of commands is useful for estimating treatment effects from survival-time data.

These commands rely on the SUTVA, unconfoundedness (conditional-independence) assumption, and

overlap assumption. They also rely on an assumption that the correct adjustment is made for censoring.

The commands in the stteffects suite and the type of estimator provided by each are as follows:

stteffects ra Survival-time regression adjustment

stteffects wra Survival-time weighted regression adjustment

stteffects ipw Survival-time inverse-probability weighting

stteffects ipwra Survival-time inverse-probability-weighted regression adjustment

Details on the available estimands, types and treatments supported, and the models to be specified are

given below:

Treatment Models

Command Estimand types specified

stteffects ra ATE binary outcome

ATET multivalued

POM

stteffects wra ATE binary outcome

ATET multivalued censoring

POM

stteffects ipw ATE binary treatment

ATET multivalued censoring

POM

stteffects ipwra ATE binary outcome

ATET multivalued treatment

POM censoring (optional)

For further information on these commands and the properties of the estimators that they implement,

see [CAUSAL] stteffects intro.

telasso
The telasso command is useful for estimating treatment effects from cross-sectional data and using

lasso to select from among many potential control variables to be included in the model. This estimator

relies on the SUTVA, unconfoundedness (conditional-independence) assumption, and overlap assumption.

telasso allows a continuous, binary, count, or nonnegative outcome and requires a binary treatment

variable. Models are specified for both the outcome and the treatment. The ATE, ATET, or POM may be

requested.

For further information on this command and the properties of the estimator that it implements, see

[CAUSAL] telasso.
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cate
The cate suite of commands is useful for estimating the average treatment effects conditional on a

set of variables, known as conditional average treatment effects (CATEs). cate provides three differ-

ent CATE estimates: individualized average treatment effects (IATEs), group average treatment effects

(GATEs), and sorted group average treatment effects (GATESs). IATEs are treatment effects conditional

on observation-level characteristics. There is one IATE for each observation in the data. GATEs are treat-

ment effects conditional on prespecified groups. There is a treatment effect for each group. GATESs are

average treatment effects for a prespecified number of groups. The groups are determined by quantiles

of individual-level treatment-effects values. Estimating CATEs allows us to study the treatment-effect

heterogeneity and evaluate the treatment-assignment policy.

These commands rely on the stable unit treatment value assumption (SUTVA), unconfoundedness

(conditional-independence) assumption, and overlap assumption.

cate allows a continuous outcome and requires a binary treatment variable. cate estimates a CATE

function, an outcome model, and a treatment-assignment model. The CATE function is estimated by

the partialing-out (PO) estimator or the augmented inverse-probability weighting (AIPW) estimator via

random forest or parametric regression. The outcome and the treatment models can be estimated using

cross-fitting via lasso, random forest, or parametric regression.

For further information on this command and the properties of the estimator that it implements, see

[CAUSAL] cate.

Difference in differences
The difference-in-differences suite of commands is useful for estimating treatment effects from data in

which some of the units are observed both before and after a treatment and some units remain untreated.

The difference-in-differences suite comprises the following commands:

didregress Difference in differences

xtdidregress Difference in differences for panel data

hdidregress Heterogeneous difference in differences

xthdidregress Heterogeneous difference in differences for panel data

gencohort Create a cohort variable for heterogeneous difference in differences

The didregress and hdidregress commands estimate treatment effects for repeated cross-

sectional data, while xtdidregress and xthdidregress estimate treatment effects for panel data.

The didregress and xtdidregress commands estimate a single ATET. The hdidregress and

xthdidregress commands allow for heterogeneous treatment effects and report separate ATETs for

each time and treatment cohort.

These estimators rely on the SUTVA, unconfoundedness (conditional-independence) assumption, and

overlap assumption. In addition, they rely on an assumption of parallel trends in the treatment and control

groups.

For further information on these commands and the properties of the estimators that they implement,

see [CAUSAL] DID intro.
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Endogenous treatment
The et commands are useful for estimating treatment effects from cross-sectional data in cases where

the unconfoundedness (conditional-independence) assumption is violated because treatment assignment

is not independent of the potential outcomes. The et commands comprise the following:

eteffects Endogenous treatment-effects estimation

etpoisson Poisson regression with endogenous treatment effects

etregress Linear regression with endogenous treatment effects

Details on the estimands, types of outcomes and treatments supported, and the models to be specified

are given below:

Outcome Treatment Models

Command Estimand types types specified

eteffects ATE continuous binary outcome

ATET binary treatment

POM count

fractional

nonnegative

etpoisson ATE count binary outcome

ATET nonnegative treatment

POM

etregress ATE continuous binary outcome

ATET treatment

POM

Note that eteffects provides theATE,ATET, and POM directly. etregress estimates theATE directly,

while the ATET and POM can be obtained from margins after estimation. For etpoisson, ATE, ATET,
and POM can all be obtained from margins after estimation.

For further information on these commands and the properties of the estimators that they implement,

see [CAUSAL] eteffects, [CAUSAL] etpoisson, and [CAUSAL] etregress.

Causal mediation
The mediate command is useful for estimating direct, indirect, and total treatment effects from cross-

sectional data in some cases where the treatment may affect an outcome both directly and indirectly. An

indirect effect is one in which the treatment affects another variable, called a mediator, and the mediator

in turn affects the outcome.

The mediate command allows both outcome and mediator variables to be continuous, binary, count,

and nonnegative. The treatment may be binary, multivalued, or continuous. Models may be specified

for the treatment and the mediator.

This estimator relies on the SUTVA, unconfoundedness (conditional-independence) assumption, and

overlap assumption.
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mediate provides estimates of the following statistics:

Estimand Synonym

average indirect treatment effect (AITE) natural indirect effect (NIE)

average direct treatment effect (ADTE) natural direct effect (NDE)

total average treatment effect (ATE) marginal total effect (MTE)

average indirect treatment effect with respect to controls (AITEC) pure natural indirect effect (PNIE)

average direct treatment effect with respect to the treated (ADTET) total natural direct effect (TNDE)

For further information on this command and the properties of the estimator that it implements, see

[CAUSAL] mediate.

Extended regression models
The extended regression model (ERM) suite of commands is designed to account for treatment (ex-

ogenous or endogenous), endogenous covariates, and nonrandom sample selection one at a time or in

combination. Commands are available for both cross-sectional and panel data. The following commands

are comprised in the ERM suite:

eregress Extended linear regression

eintreg Extended interval regression

eprobit Extended probit regression

eoprobit Extended ordered probit regression

xteregress Extended linear regression for panel data

xteintreg Extended interval regression for panel data

xteprobit Extended probit regression for panel data

xteoprobit Extended ordered probit regression for panel data

eregress and xteregress fit models for continuous outcomes. eintreg and xteintreg fit models

for interval-censored outcomes. eprobit and xteprobit fit models for binary outcomes. eoprobit
and xteoprobit fit models for ordinal outcomes. All commands allow binary and multivalued treat-

ments.

After fitting a model that accounts for endogenous or exogenous treatment with one of the ERM com-

mands, you can use estat teffects to estimate the ATE, ATET, or POM.

For further information on these commands and the properties of the estimators that they implement,

see [ERM] Intro 1.

Other commands in Stata provide some of the features found in the ERM commands. For instance,

when you account only for endogenous covariates, eregress and ivregress provide equivalent param-

eter estimates. Instrumental-variable commands—ivregress, ivprobit, ivpoisson, and ivtobit—
are designed to account for endogeneity (unobserved confounding) and provide consistent parameter

estimates in this situation. Thus, these commands are used when the goal is causal inference. In some

cases, a parameter estimated by these commands can be directly interpreted as the causal effect of interest,

and in other cases, postestimation commands can be used to obtain the ATE, ATET, and POM.



Causal inference commands — Introduction to causal inference commands 22

margins
The margins command is available after many estimation commands in Stata. When a researcher

has determined that appropriate assumptions have been satisfied for performing causal inference, many

estimation commands can be used in combination with margins to estimate theATE,ATET, and POM. As

a simple example, you may type

. regress y c.x##i.trt, vce(robust)

to fit a linear regression of y on treatment trt and adjusted for covariate x. To estimate the POM, you

could type

. margins trt, vce(unconditional)

The ATE is a contrast of the POM, and margins uses the r. operator to request such a contrast:

. margins r.trt, vce(unconditional)

The margins command can be used similarly after other estimation commands, and the results can

be interpreted causally when proper assumptions for causal inference have been met.

For more information on margins, see [R] margins.

Also see
[CAUSAL] Intro — Introduction to causal inference and treatment-effects estimation

[CAUSAL] Glossary



cate — Conditional average treatment-effects estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
cate estimates conditional average treatment effects (CATEs), which are average treatment effects

(ATEs) conditional on a set of variables for which the treatment effects may vary. Estimating CATEs

allows us to study treatment-effect heterogeneity and evaluate treatment-assignment policies.

cate provides three different CATE estimates: individualized average treatment effects (IATEs), group

average treatment effects (GATEs), and sorted group average treatment effects (GATESs). IATEs are treat-

ment effects conditional on observation-level characteristics; there is one IATE for each observation in

the data. GATEs are treatment effects conditional on prespecified groups; there is a treatment effect for

each group. GATESs are treatment effects for a prespecified number of groups, where the groups are

determined by the quantiles of the IATEs.

To estimate CATEs, cate fits an outcome model and a treatment-assignment model. These models can

be fit using cross-fitting via lasso, random forest, or parametric regression. The CATEs themselves can

be estimated using a partialing-out (PO) estimator or an augmented inverse-probability weighting (AIPW)

estimator, either via random forest or linear regression.

Quick start
Estimate the IATE function for outcome y and treatment treat, conditioning on covariates x1-x5 and

i.group1, using the PO estimator, and report the ATE

cate po (y x1-x5 i.group1) (treat)

Same as above, but add variables w1-w100 as control variables in the outcome and treatment models

cate po (y x1-x5 i.group1) (treat), controls(w1-w100)

Same as above, but use the AIPW estimator

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100)

Estimate the GATEs for the groups defined by variable group2
cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) group(group2)

Same as above, but reestimate the GATEs for groups defined by variable group1 without refitting the

IATE function

cate, reestimate group(group1)

Divide the data into five groups based on quintiles of the IATE estimates, and estimate the GATESs for

those groups

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) group(5)

Same as above, but divide the data into four groups (quartiles of the IATE estimates), and reestimate the

GATESs for these groups

cate, reestimate group(4)

23
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Perform cross-fitting with five folds instead of the default ten folds

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) xfolds(5)

Perform random forest for the outcome and treatment models

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) ///
omethod(rforest) tmethod(rforest)

Same as above, but use the out-of-bag prediction-based algorithm instead of cross-fitting

cate aipw (y x1-x5 i.group1) (treat), controls(w1-w100) ///
omethod(rforest) tmethod(rforest) oob

Use linear regression to fit the outcome model, logit regression to fit the treatment model, and linear

regression to fit the CATE model

cate aipw (y x1-x5 i.group1) (treat), ///
omethod(regress) tmethod(logit) cmethod(regress)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Conditional average treatment effects

Syntax

Partialing-out estimator

cate po (ovar catevarlist) (tvar) [ if ] [ in ] [ , options ]

Augmented inverse-probability weighting estimator

cate aipw (ovar catevarlist) (tvar) [ if ] [ in ] [ , options ]

ovar is a continuous outcome of interest.

catevarlist specifies the covariates of the CATE model—the conditioning variables for the treatment ef-

fects. catevarlist may contain factor variables; see [U] 11.4.3 Factor variables.

tvar must be a binary variable representing the treatment levels.
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options Description

Model

controls(varlist) specify the control variables for the outcome and treatment models
∗ group(varname) compute the GATE for each group defined by varname
∗ group(#) divide the data into # groups based on IATEs and compute the GATES

for each group

rseed(#) set random-number seed

xfolds(#) use cross-fitting algorithm with # folds; default is xfolds(10)

Method

omethod(om spec) specify estimation method for outcome model;
default is omethod(lasso)

tmethod(tm spec) specify estimation method for treatment model;
default is tmethod(lasso)

cmethod(cm spec) specify estimation method for CATE model; default is
cmethod(rforest)

Advanced
† reestimate reestimate GATEs or GATESs with a new specification in group()

and without refitting IATE function
‡ oob use out-of-bag prediction-based algorithm instead of cross-fitting

treatcontrols(varlist) use variables in varlist as controls for treatment model instead
of variables specified in controls() (AIPW estimator only)

pstolerance(#) set tolerance for overlap assumption; default is pstolerance(1e-5)
osample(newvar) generate newvar to identify observations that violate the

overlap assumption

rflistwise omit observations with missing covariate values when random forest
is used for all models

Reporting

level(#) set confidence level; default is level(95)
[ no ]log suppress iteration log

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

∗Only one of group(varname) or group(#) may be specified.
†reestimate may be specified with group(#) only if group(#) has been specified in the previous cate estimation. If

reestimate is specified with group(new varname), where new varname is different than the previous group(var-
name), then new varname must have been a factor variable in catevarlist in the previous cate estimation.

‡oob may not be specified with group(#) or xfolds(). oob is only allowed if the random forest method has been specified
for both the outcome and the treatment models (omethod(rforest) and tmethod(rforest)).

collect is allowed; see [U] 11.1.10 Prefix commands.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

om spec Description

lasso[ , lasso options ] use linear lasso to fit the outcome model; the default

sqrtlasso[ , lasso options ] use square-root lasso to fit the outcome model

rforest[ , rforest options ] use random forest to fit the outcome model

regress use linear regression to fit the outcome model
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tm spec Description

lasso[ , lasso options ] use logit lasso to fit the treatment model; the default

rforest[ , rforest options ] use random forest to fit the treatment model

logit use logit regression to fit the treatment model

probit use probit regression to fit the treatment model

cm spec Description

rforest[ , rforest options ] use random forest to fit the CATE model; the default

regress use linear regression to fit the CATE model

rforest options Description

samprate(#) specify sampling rate for observations; default is samprate(0.5)
ntrees(#) specify number of trees in the forest; default is ntrees(2000)
cintrees(#) specify number of trees in each group to compute the confidence

intervals; default is cintrees(2)
splitminobs(#) specify minimum number of observations to split a node; default is

splitminobs(6)
splitmeanvars(#) specify mean number of variables to be split in each node;

default is splitmeanvars(ceil(sqrt(𝑝) + 20))
with 𝑝 as the dimension of catevarlist

nohonest do not use an honest tree

honestrate(#) set sampling rate for honest tree; default is honestrate(0.5)

Options

� � �
Model �

controls(varlist) specifies the control variables for the outcome and treatment models. catevarlist

and the specified control variables are the covariates in the outcome and the treatment models. If no

control variables are specified, then the variables specified in catevarlist will be the only covariates

for both models.

group(varname) computes the GATE for each group defined by the levels of varname. TheATE for each

level in the group variable will be estimated. The grouping variable will be added as a factor variable

in catevarlist. Only one of group(varname) or group(#) may be specified.

group(#) computes the GATESs by dividing the observations into # groups. The groups are generated

from the quantiles of the estimates of the IATEs. The observations are sorted based on the IATEs and

grouped into # levels. For example, if we specify group(4), the data would be divided into four

groups. The first group will contain observations with IATE estimates greater than the 75th percentile

of the overall IATE estimates, the second group will contain observations that lie between the 50th and

the 75th percentiles, the third group will contain those between the 25th and 50th percentiles, and the

last group will contain those below the 25th percentile. Once the groups are formed, cate computes

the ATE for each group. Only one of group(#) or group(varname) may be specified.

rseed(#) sets the random-number seed. rseed(#) is equivalent to typing set seed # prior to running

cate. Random numbers are used to produce split samples for cross-fitting. To reproduce results, you

must either use this option or use set seed. See [R] set seed.
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xfolds(#) specifies the number of folds for cross-fitting. The default is xfolds(10); that is, cross-
fitting is done by randomly dividing the original data into 10 folds.

� � �
Method �

omethod(om spec) specifies the estimation method for the outcome model. om specmay be lasso[ ,
lasso options ]; sqrtlasso[ , lasso options ]; rforest[ , rforest options ]; or regress. The de-
fault is omethod(lasso).

lasso[ , lasso options ] specifies that linear lasso be used to fit the outcome model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then

selection(plugin) is assumed; that is, the plugin penalty parameter is used.

sqrtlasso[ , lasso options ] specifies that square-root lasso be used to fit the outcome model.

lasso options are selection(), grid(), stop(), cvtolerance(), bictolerance(),
tolerance(), and dtolerance(); see [LASSO] lasso options. If selection() is not specified,
then selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[ , rforest options ] specifies that random forest be used to fit the outcome model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate().

samprate(#) sets the sampling rate for observations when drawing the random sample for each

tree. The sampling is without replacement. The sampling rate must be in the range (0, 1). The

default is samprate(0.5), meaning that half of the estimation sample is used to construct each

tree. Using a random sample to construct each tree makes the random forest more robust to the

overfitting issues.

ntrees(#) sets the number of trees in the random forest. The default is ntrees(2000). Using
more trees in the random forest usually implies more stable estimates, but it also requires longer

computational time.

cintrees(#) sets the number of trees in each group or bag when using the bootstrap of little bags

to compute the confidence intervals of the random forest’s predictions. Each tree in the same

bag draws a random sample from the same half-size sample, which allows us to estimate the

variance of the random forest’s prediction. The default is cintrees(2), two trees in each bag.

splitminobs(#) sets the minimum number of observations to perform a split in a node. A node

must have at least # observations to be split. The default is splitminobs(6).

splitmeanvars(#) sets the mean number of variables to be split in each node. In each tree

node in a random forest, only a random subset of variables is searched to find the best split-

ting variable and value. The number of variables in this subset is also random and equals

max(min(𝑚, 𝑝), 1), where 𝑝 is the dimension of catevarlist and 𝑚 follows a Poisson distribu-

tion with mean #. The default is splitmeanvars(ceil(sqrt(𝑝) + 20)).

nohonest specifies not to use an honest tree. Honest splitting in an honest tree is the critical fea-
ture that allows us to make inferences on the random forest’s prediction. Confidence intervals

and standard errors for the random forest’s prediction cannot be estimated when nohonest is

specified.

honestrate(#) specifies the fraction of the sample used for splitting the honest tree. For a

random sample 𝑆 drawn to create a tree, an honest tree divides sample 𝑆 into two disjoint parts

𝐴 and 𝐵. Part 𝐴 is used to split the tree and part 𝐵 is used to label the tree. honestrate()
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specifies the fraction of the sample 𝑆 to be used as part𝐴. Honest splitting is the key feature that

allows inference on the random forest’s prediction. The default is honestrate(0.5), where
half of the data in 𝑆 is used to split the tree and the other half is used to label the tree.

regress specifies that linear regression be used to fit the outcome model. Thus, this option imposes

a parametric assumption on the outcome model.

tmethod(tm spec) specifies the estimation method for the treatment model. tm spec may be lasso[ ,
lasso options ], rforest[ , rforest options ], logit, or probit. The default is tmethod(lasso).
lasso[ , lasso options ] specifies that logit lasso be used to fit the treatment model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(),
and dtolerance(); see [LASSO] lasso options. If selection() is not specified, then

selection(plugin) is assumed; that is, the plugin penalty parameter is used.

rforest[ , rforest options ] specifies that random forest be used to fit the treatment model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate(); see rforest options.

logit specifies that a logit model be used to fit the treatment model. Thus, this option imposes a

parametric assumption on the treatment model.

probit specifies that a probit model be used to fit the treatment model. Thus, this option imposes a

parametric assumption on the treatment model.

cmethod(cm spec) specifies the estimation method for the CATE model. cm spec may be rforest[ ,
rforest options ] or regress. The default is cmethod(rforest).
rforest[ , rforest options ] specifies that random forest be used to fit the CATE model. rfor-

est options are samprate(), ntrees(), cintrees(), splitminobs(), splitmeanvars(),
nohonest, and honestrate(); see rforest options.

regress specifies that linear regression be used to fit the CATE model. Thus, this option assumes a

parametric assumption on the CATE model.

� � �
Advanced �

reestimate reestimates GATEs or GATESs with a new specification in group(). It is much faster than

estimating GATEs or GATESs from scratch because it uses existing results from the previous cate
estimation for the estimates of the IATE function. The typical usages of this option are the following:

reestimate with the group(new varname) option reestimates the GATEs with the group variable

new varname. This syntax requires that the group variable new varnamewas specified as a factor

variable in catevarlist in the previous cate estimation. For example, after using cate to estimate

the GATE for each level of group variable group1,

cate (y x1 x2 i.group2) (treat), group(group1)

we can estimate the GATE for each level of group variable group2:

cate, reestimate group(group2)

Notice above that group2 is specified as a factor variable in catevarlist.
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reestimatewith the group(#) option reestimates theGATESs with # data-driven groups. This syntax

requires that option group(#) has been specified in the previous cate estimation. For example,

after using cate to estimate the GATESs with 4 data-driven groups,

cate (y x1 x2) (treat), group(4)

we can estimate the GATESs with 5 data-driven groups:

cate, reestimate group(5)

Notice that we specified option group(#) in the previous cate specification.

oob uses the out-of-bag prediction-based algorithm instead of cross-fitting. It requires that the random

forest is used to fit the outcome model and the treatment model; that is, both omethod(rforest)
and tmethod(rforest) must be specified with oob. The out-of-bag prediction-based algorithm

is generally faster than cross-fitting under the same setup. However, this algorithm does not allow

computing the GATESs; thus, oob may not be combined with group(#).

treatcontrols(varlist) specifies that varlist be used as controls in the treatment model instead

of the variables specified in controls(). This option is only allowed for the AIPW estimator.

If treatcontrols() is not specified, then the variables in catevarlist and the variables speci-

fied in controls() are used as covariates in both the outcome and the treatment models. If

treatcontrols(varlist) is specified, then the treatment model instead uses varlist as covariates.

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). cate will exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) generates indicator variable newvar identifying observations that violate the overlap
assumption.

rflistwise specifies that listwise deletion be used when the random forest method is used for all mod-

els. By default, when omethod(rforest), tmethod(rforest), and cmethod(rforest) are all

specified, observations with missing covariate values will be used because the random forest method

can use missing covariate values in estimation. See Generalized random forest in Methods and for-

mulas.

When rflistwise is specified, observations with missing covariate values are not used to estimate

the CATEs. If one of omethod(), tmethod(), or cmethod() does not use rforest, then observations
with missing covariate values will not be used for estimating the CATEs.

� � �
Reporting �

level(#); see [R] Estimation options.

[ no ]log displays or suppresses a log showing the progress of the estimation. The log is displayed by

default unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
What is a CATE?
Different versions of the CATE
Overview of the cate suite

Workflows
Workflow 1: Exploiting the IATE function heterogeneity
Workflow 2: Prespecified group hypothesis testing
Workflow 3: Data-driven group hypothesis testing
Workflow 4: Evaluation of counterfactual policies
Workflow 5: Evaluating policies designed using the IATE estimates

Examples
Example 1: Explore treatment-effect heterogeneity
Example 2: Add high-dimensional controls
Example 3: Estimate the ATEs over prespecified groups
Example 4: Estimate the ATEs over values of a continuous variable
Example 5: Use the AIPW estimator
Example 6: Data-driven group hypothesis testing
Example 7: Flexible models
Example 8: Treatment-assignment policy evaluation

Introduction
Treatment effects estimate the causal effect of a treatment on an outcome. This effect may be constant

or it may vary across different subpopulations. For example, a labor economist may want to know if the

earnings of immigrants and nonimmigrants are affected differently by a job training program and, if

so, by how much. An online shopping company may want to know the effect of a price discount on

purchasing behavior for customers with different demographic characteristics such as age or income. A

medical team may want to measure the effect of smoking on stress levels for individuals in different age

groups.

The ATE is a popular way to summarize the treatment effects by taking the mean of the effects over

the population. The ATE characterizes the whole distribution of treatment effects when the treatment

effect is constant across the population. However, when the treatment effects are heterogeneous and the

units react differently to the same treatment, estimating only the mean of treatment effects may mask the

underlying mechanism of how the treatment affects different units. For example, the estimated ATE may

be close to zero when some groups experience positive effects while other groups experience adverse

effects.

In contrast to the ATE, the CATEs help us better understand the heterogeneous nature of treatment

effects. Like the ATE, the CATEs are averages of treatment effects, but unlike the ATE, the averages are

taken over population subgroups. Imagine that we have a microscope to observe the treatment effects.

The ATE only allows us to look at the effects at the most coarse precision, but the CATEs allow us to

zoom in on particular parts of the population. Furthermore, once we understand the heterogeneity of

treatment effects, we can evaluate different treatment-assignment policies that may shed light on which

policy would result in better overall outcomes for different groups in the population.

In summary, the advantage of studying the CATEs is, at least, two-fold:

1. It improves understanding of the treatment-effect heterogeneity.

2. It builds a foundation to optimize the assignment to treatment.
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What is a CATE?

So what is a CATE precisely? Under the potential outcome framework, we define 𝑦𝑖(1) to be the

potential outcome if unit 𝑖 is treated and define 𝑦𝑖(0) to be the potential outcome if unit 𝑖 is not treated.
x𝑖 is a vector of characteristics for unit 𝑖. The CATE is defined as

CATE ≡ 𝜏(x) = 𝐸{𝑦𝑖(1) − 𝑦𝑖(0)|x𝑖 = x}

That is, the CATE is the expectation of the difference between the treated and untreated potential outcomes

conditional on the characteristics, x𝑖, being equal to x.

We can identify 𝜏(x) via either a partial linear or a fully interactive model. Here we build intuition by

focusing on identification of the CATE via the partial linear model. For notational simplicity, we drop the

subscript 𝑖 indicating the 𝑖th observation to refer to a random variable. We refer to the observed outcome

as 𝑦 and the binary treatment indicator as 𝑑.
In the simplest case, when the treatment effects are constant or when we are interested in estimating

the ATE, the partial linear model is

𝑦 = 𝑑 ∗ 𝜏 + 𝑔(x,w) + 𝜖
𝑑 = 𝑓(x,w) + 𝑢

Here we divide the variables into two groups: x and w. We will differentiate the two shortly. The

outcome model is partial linear because the observed outcome is a sum of the treatment effects 𝑑 ∗ 𝜏,
a nonparametric function 𝑔(x,w), and the error term 𝜖. The treatment assignment is modeled by the

function 𝑓(x,w) and an additive error term 𝑢. By definition, we can write the potential outcome models

as

𝑦(1) = 𝜏 + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, 𝜏 characterizes the ATE.
ATE ≡ 𝐸{𝑦(1) − 𝑦(0)} = 𝜏

Now let’s go one step further. Suppose the treatment effects are heterogeneous and depend on x. We

can rewrite the outcome model as

𝑦 = 𝑑 ∗ 𝜏(x) + 𝑔(x,w) + 𝜖

where x is a vector of conditioning variables for the treatment effects. 𝜏(x) is a function of x that inter-
acts with the treatment 𝑑. Notice that 𝜏(x) is a function of x but not of w. w is an optional vector of

additional control variables for the outcome and treatment-assignment models, which can potentially be

high-dimensional. This model is flexible and general because it does not impose parametric assumptions

on 𝜏(x) or 𝑔(x,w). The potential outcomes now become

𝑦(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, the CATE is 𝜏(x).
𝐸{𝑦(1) − 𝑦(0)|x} = 𝜏(x)
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If we impose parametric assumptions such as 𝜏(x) = x′𝛽 and 𝑔(x,w) = x′𝛾1 +w′𝛾2, we can estimate

this special model by running a regression of 𝑦 on x, w, and the interaction between 𝑑 and x. However,

this parametric assumption may be too strong and hard to satisfy with our data. In the implementation of

cate, we focus on a more general case that does not impose a parametric form on 𝜏(x) or the nuisance
parameters 𝑔(x,w) and 𝑓(x,w). The parameter of interest, 𝜏(x), can be estimated nonparametrically via

the generalized random forest proposed in Athey, Tibshirani, andWager (2019). The nuisance parameters

can be estimated using lasso or random forest. However, if we want to impose a parametric assumption

on either 𝜏(x) or the nuisance parameters, cate can also fit such models.

Different versions of the CATE

The granularity of the conditional set x𝑖 determines the subpopulation. Thus, the CATE has different

versions or names depending on the definition of the conditional set x𝑖.

IATE: At the finest level, when x𝑖 refers to the characteristics of a specific observation, the CATEmeasures

the expected treatment effect for individuals with the same characteristics as this observation. This

version of CATE is also called IATE. In literature, people often refer to IATE as CATE, even though

IATE is a special version of CATE. In our terminology, we use IATEwhen we refer to the finest level

of CATE.

Under the unconfoundedness assumption, it is possible to identify and estimate 𝜏(x) if we are
willing to impose some restrictions on 𝜏(x). In particular, when x is a low-dimensional vector

and 𝜏(x) is smooth enough as defined in Athey, Tibshirani, and Wager (2019), we can nonpara-

metrically estimate the IATE and provide confidence intervals using the generalized random forest

proposed in Athey, Tibshirani, and Wager (2019).

GATE: If x𝑖 is a prespecified grouping, denoted by 𝐺𝑖, the CATE measures the ATE for each group. This

version of CATE is also called GATE.

In particular, the GATE is defined as

𝜏(𝑔) = 𝐸{𝑦𝑖(1) − 𝑦𝑖(0)|𝐺𝑖 = 𝑔}

where 𝐺𝑖 is a prespecified grouping and 𝑔 is a specific group. The GATEs are coarser than the

IATEs because they focus on group effects instead of individual effects.

For the GATEs, we must specify the group variable, 𝐺𝑖, before analyzing the data to avoid

𝑝-value hacking, as discussed in Head et al. (2015).

GATES: Sometimes, we do not have a group variable to specify but still want to understand the underlying

treatment-effect heterogeneity. In such cases, we can discover the groups in a data-driven way by

using the sorted IATEs. This version of CATE is known as GATES.

The groups are generated by the quantiles of the IATE estimates. For example, let’s say we

want to divide the data into four groups. The first group will consist of the observations with

IATE estimates greater than the 75th percentile of the overall IATE estimates, the second group will

include observations whose estimates lie between the 50th and 75th percentiles, the third group

will contain observations with estimates between the 25th and 50th percentile, and the last group

will contain observations with estimates below the 25th percentile.

Once we have the groups as above, we can estimate the GATEs as usual.
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The cate command estimates IATEs, GATEs with prespecified groups, and GATESs, for which groups

are determined in a data-driven way. cate helps us answer questions about treatment heterogeneity, such

as the following:

1. Are the treatment effects heterogeneous?

2. How do the treatment effects vary with some variables?

3. Do the treatment effects vary between prespecified groups?

4. Do the data discover groups where treatment effects are different?

Additionally, we can use the estimates obtained from cate to measure the effect of counterfac-

tual treatment-assignment policies on the outcome by using postestimation commands such as estat
policyeval and estat ate. Suppose a hypothetical treatment-assignment policy assigns some indi-

viduals in the sample to be treated and some others not to be treated. Using estat policyeval and

estat ate postestimation commands, we may answer questions such as the following:

1. If we implement such a policy, how would the average outcome in the population change?

2. Which policy is better among a candidate set of policies?

Overview of the cate suite

Here we outline the Stata commands to estimate, predict, visualize, and make inferences about the

CATEs. In particular, these Stata commands can be grouped into the following categories:

Estimation: cate po estimates the IATE function by using the PO estimator discussed in
Nie and Wager (2021) via the generalized random forest proposed in
Athey, Tibshirani, and Wager (2019). This method is the default and is
also known as causal forest.

cate aipw estimates the IATE function by using the AIPW estimator discussed
in Knaus (2022) and Kennedy (2023) via the honest regression random
forest proposed in Wager and Athey (2018) by default.

cate with option group(varname) estimates the GATEs by taking the means of
the AIPW scores implied by the model (the estimates of the individual-level
treatment effects) over the group variable varname. This method is
discussed in Semenova and Chernozhukov (2021) and Knaus (2022).

cate with option group(#) estimates the GATESs for # groups with levels based
on the rankings of the IATE estimates. This method is discussed in
Chernozhukov et al. (2006). Once the groups
are discovered, the GATESs are estimated as the GATEs.

Prediction: predict predicts the IATE function 𝜏(x), its standard errors, and the lower
and upper bounds of the pointwise confidence intervals. The estimates of
standard errors and confidence intervals are computed using the bootstrap of
little bags proposed in Athey, Tibshirani, and Wager (2019).
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Visualization: categraph histogram plots the histogram of estimated IATEs and shows how
the IATEs are distributed. This histogram can serve as a preliminary
visualization of the treatment-effect heterogeneity.

categraph gateplot plots the estimate of the GATE or GATES and its confidence
interval for each group. It visualizes the trend of the GATE or GATES function.

categraph iateplot plots the IATE function with varying values of x.
If x is a vector, we can allow one variable to vary, fix the values of the other
variables, and then use categraph iateplot to plot the function.

Inference: estat heterogeneity tests whether the treatment effects are heterogeneous using
the method proposed by Chernozhukov et al. (2006).

estat gatetest tests whether the estimated GATEs or GATESs are equal
across the groups.

estat classification compares the means of a variable in the group with the largest
treatment effect and the group with the smallest treatment effect. It is used to compare
the properties of the subpopulations with the largest and smallest effects.

estat ate computes the ATE for a subpopulation. This command can be useful
for policy evaluations.

estat projection fits a linear regression of the estimated IATE on a vector of
variables. It provides a linear approximation of the IATE function.

estat series fits a nonparametric series regression of the estimated IATE on a
vector of variables using B-spline, piecewise polynomial spline, or polynomial
basis. It provides a nonparametric approximation of the IATE function, as discussed
in Semenova and Chernozhukov (2021).

estat policyeval evaluates and compares the prespecified treatment-assignment
policy. In particular, it computes the value of a treatment-assignment policy or
compares the difference of two policies’ values if specified.

Workflows
Here we provide possible workflows that may be useful, depending on the question of interest. Work-

flows 1 to 3 help us to answer questions regarding the treatment-effects heterogeneity, and workflows 4

and 5 help us to evaluate treatment-assignment policies. Below, we list the questions of interest for each

workflow. Then, we will discuss the details of the workflows.

1. Understand treatment-effect heterogeneity:

• Workflow 1: Exploiting the IATE function heterogeneity

Given an estimate of the IATE function, are the treatment effects heterogeneous?

• Workflow 2: Prespecified group hypothesis testing

We have some prespecified groups and we want to test whether the treatment effects are

the same across these groups or study how the effects differ across them.
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• Workflow 3: Data-driven group hypothesis testing

We do not know the groups for which the treatment effects may vary, so we ask the data

to discover these groups and study whether certain variables may be correlated with the

treatment-effect heterogeneity.

2. Policy evaluation:

• Workflow 4: Evaluation of counterfactual policies

We want to evaluate some prespecified treatment-assignment policies and compare them.

• Workflow 5: Evaluating policies designed using the IATE estimates

We want to evaluate a policy that is designed based on the IATE estimates. For example,

we want to treat all units with an IATE greater than a fixed cost and evaluate the effect of

such a policy on the outcome.

Workflow 1: Exploiting the IATE function heterogeneity

1. Suppose the outcome variable is y, the CATE covariates are x1-x5, the treatment variable is treat,
and the control variables are w1-w100. Estimate the IATE function. (We demonstrate using the PO

estimator but could also use the AIPW estimator.)

cate po (y x1-x5) (treat), controls(w1-w100)

2. Plot the histogram of IATE estimates.

categraph histogram

3. Test whether the effects are heterogeneous.

estat heterogeneity

4. Regress the estimated IATE function on variables that may impact treatment effects to understand

the mechanism underlying the treatment-effect heterogeneity.

estat projection x1-x5

5. Estimate theATE for a subpopulation of interest. Suppose we suspect that the variable x1 positively
affects the treatment effects; we can estimate the ATE for the subpopulation where x1 is greater

than 0.8.

estat ate if x1 > 0.8

6. Plot the IATE function for x1 while the other variables are fixed at specific values, such as their

means.

estat iateplot x1, at((mean) x2-x5)
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Workflow 2: Prespecified group hypothesis testing

1. Estimate the GATE function over the levels of group variable gvar. (We demonstrate using the

AIPW estimator but could also use the PO estimator.)

cate aipw (y x1-x5) (treat), controls(w1-w100) group(gvar)

2. Visualize the GATE estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATEs are the same across groups.

estat gatetest

Workflow 3: Data-driven group hypothesis testing

1. Estimate the GATES function for five groups created by dividing data into groups based on rank-

ings of the IATE estimates. (We demonstrate using the AIPW estimator but could also use the PO

estimator.)

cate aipw (y x1-x5) (treat), controls(w1-w100) group(5)

2. Visualize the GATES estimates and their confidence intervals.

categraph gateplot

3. Test whether the GATESs are the same across groups.

estat gatetest

4. Compare the mean of x1 in the groups with the smallest and largest treatment effects.

estat classification x1

Workflow 4: Evaluation of counterfactual policies

1. Estimate the IATE function. (We demonstrate using the PO estimator but could also use the AIPW

estimator.)

cate po (y x1-x5) (treat), controls(w1-w100)

2. Estimate the average outcome in the population for a potential policy. Suppose the policy1
variable stores the treatment assignments for each observation under a counterfactual policy; we

estimate the average outcome for policy1.

estat policyeval policy1

3. Compare the average outcomes in the population for multiple potential policies. Suppose the

policy2 variable stores the treatment assignments for an alternative policy; we compare average

outcomes for policy1 and policy2.

estat policyeval policy1 policy2
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Workflow 5: Evaluating policies designed using the IATE estimates

1. Split the sample into training and testing data.

splitsample, split(0.6 0.4) generate(group)

2. Estimate the IATE function using the training data, group = 1. (We demonstrate using the PO

estimator but could also use the AIPW estimator.)

cate po (y x1-x5) (treat) if group == 1 , controls(w1-w100)

3. Predict the IATE function in the testing data, group = 2; the predicted IATE function is used to

construct the policy rule.

predict tauhat if group == 2

4. Estimate the IATE function using the testing data; the AIPW scores will be to compute the ATE in

the testing sample.

cate po (y x1-x5) (treat) if group == 2, controls(w1-w100)

5. Estimate the ATE for the entire testing sample.

estat ate if group == 2

6. Estimate the ATE for a subset of units in the testing sample based on the IATE predictions. For

instance, estimate the ATE for units with predicted IATEs greater than 50 in the testing sample.

estat ate if group == 2 & tauhat >= 50

Examples
In the following examples, we illustrate how to use cate to study treatment-effect heterogeneity and

to evaluate treatment-assignment policies. In particular, in examples 1 to 7, we demonstrate commands

to evaluate the effects of 401(k) program eligibility on net financial wealth. Suppose that we want to

answer the following questions:

1. Are the effects of 401(k) eligibility on net wealth heterogeneous? In other words, do the treatment

effects vary across individuals or groups?

2. If the treatment effects are heterogeneous, how do they vary across levels of prespecified group

variables, such as income category, home ownership, or education level?

3. Do the data discover groups in which the treatment effects are particularly high or low?

In example 8, we demonstrate commands to evaluate the effects of two types of lung transplants on

patients’ health outcomes. Supposing a doctor has a treatment-assignment recommendation rule, we

want to evaluate the overall outcomes if this treatment-assignment rule is implemented.
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Example 1: Explore treatment-effect heterogeneity

Suppose we want to estimate the effect of 401(k) eligibility (e401k) on net financial assets (asset)
using data reported by Chernozhukov and Hansen (2004). These data are from a sample of households in

the 1990 Survey of Income and Program Participation (SIPP). The data contain information on the head

of the household: income level category (incomecat), age (age), years of education (educ), whether
they receive pension benefits (pension), marital status (married), whether they participate in an IRA

(ira), whether they own a home (ownhome), and whether there are two earners in the same household

(twoearn).

We believe that the treatment effects of e401k on asset could vary based on incomecat, age, educ,
pension, married, ira, ownhome, and twoearn, which we denote as x. asset(1) represents the poten-
tial outcomes (net financial assets) of being eligible for a 401(k), and asset(0) represents the potential
outcomes of not being eligible for a 401(k). We want to estimate the effects of 401(k) eligibility on assets

conditional on the variables x. In other words, we are interested in estimating the effects as a function of

x. Precisely, we want to estimate

𝐸{asset(1) − asset(0)|x}

This version of CATEs is also known as individualized average treatment effects (IATEs) because x refers

to individual characteristics. In the syntax of cate, x is referred to as the catevarlist.

In this example, we use the PO estimator in the partial linear model to estimate the IATE function.

Without assuming any additional control variables, the partial linear model for asset is

asset = e401k ∗ 𝜏(x) + 𝑔(x) + 𝜖

where 𝜏(x) is a function of x that interacts with the treatment e401k, 𝑔(x) is a nonparametric nuisance

function, and 𝜖 is the error term for the outcome. The treatment-assignment model for the treatment

e401k is
e401k = 𝑓(x) + 𝑢

where 𝑓(x) is a nonparametric nuisance function and 𝑢 is an error term for the treatment.

The potential outcomes are

asset(1) = 𝜏(x) + 𝑔(x) + 𝜖
asset(0) = 𝑔(x) + 𝜖

Thus, the function 𝜏(x) identifies the IATE function.

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

Notice that we do not assume any functional form of 𝜏(x), and it can be as simple as a linear model or

any arbitrary function of x. Here we want the data to tell us what this function 𝜏(x) looks like instead of
assuming a specific functional form. We can use cate to estimate the function 𝜏(x) nonparametrically

via the generalized random forest proposed in Athey, Tibshirani, and Wager (2019); this method is also

known as causal forest and is the default method used by cate.

First, we open the assets3 data. To save some typing later, we define a global macro, catecovars,
to represent the IATE conditioning variables x.

. use https://www.stata-press.com/data/r19/assets3
(Excerpt from Chernozhukov and Hansen (2004))
. global catecovars age educ i.(incomecat pension married twoearn ira ownhome)
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We are ready to fit the model using cate. We specify po to use the partialing-out estimator. We

specify the outcome variable asset and catevarlist (the x variables) in the first set of parentheses and

the treatment-assignment variable e401k in the second set. We also specify the rseed() option to make

the results reproducible. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671)
Cross-fit fold 1 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
(output omitted )

Cross-fit fold 10 of 10 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...

This iteration log corresponds to the cross-fitting process that is used to fit the outcome model for

assets and the treatment model for e401k. To estimate the IATE function 𝜏(x), the PO estimator needs

to partial out the nuisance functions 𝑔(x) and 𝑓(x). To do this, cate needs to estimate the expectation

of the outcome and the treatment variable conditional on x. By default, the lasso for the linear model is

used to estimate the outcome assets, and the lasso for the logit model is used to estimate the treatment

e401k. To guard against errors when fitting the nuisance functions (variable selection errors when using
lasso and prediction errors when using random forest), cate uses cross-fitting. By default, ten-fold

cross-fitting is used. See Methods and formulas for details.

We can also use other alternatives, such as a random forest or a parametric model, to estimate the

outcome and the treatment models. Here, we use the default lasso for both models.

The remaining output is

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 17
Treatment model: Logit lasso Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 7937.182 1153.017 6.88 0.000 5677.309 10197.05

POmean
e401k

Not eligi.. 14016.38 833.4423 16.82 0.000 12382.87 15649.9

We see that a random forest is used to estimate the IATE function once the cross-fitting is finished. It

then estimates the AIPW scores, not to be confused with the AIPW estimator. The AIPW scores are doubly

robust estimates of individual-level treatment effects. The average of these AIPW scores is the ATE. The

estimated ATE indicates that if everyone in the population is eligible for a 401(k), the net financial assets
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will, on average, be $7,937 larger than the net financial assets if no one is eligible for a 401(k). The

potential outcome mean indicates that net financial assets are expected to be $14,016 if no one is eligible

for a 401(k).

In addition to the ATE that we see in the output, cate also estimates the IATE function 𝜏(x), and we

can use it to predict the treatment effects for each observation. We can use categraph histogram to

draw a histogram of the predicted 𝜏(x) function and see its distribution.
. categraph histogram
(bin=39, start=-40204.13, width=2975.4332)
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The graph shows that treatment effects are mostly positive but have a fat right tail. Thus, theATEmay

underestimate the effect of 401(k) eligibility on assets for some groups.

Although the histogram above allows us to inspect the distribution of treatment effects visually, we

should not use it as conclusive evidence to support treatment-effect heterogeneity. For example, when

the number of observations in the sample is small or when the number of the CATE conditioning variables

x is very large, we will likely see a well-spread histogram of IATE predictions due to the estimation noise

even if the actual CATE function is constant.

To statistically test whether the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.11
Prob > chi2 = 0.0427

We find evidence against the null hypothesis that the treatment effects are homogeneous.
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To further explore the heterogeneity of treatment effects, we want to know whether a variable posi-

tively or negatively affects the treatment effects. One way to do this is by linearly projecting the AIPW

scores, the individual-level treatment effects estimated by cate, on the variables of interest. We use

estat projection.

. estat projection
Treatment-effects linear projection Number of obs = 9,913

F(11, 9901) = 4.90
Prob > F = 0.0000
R-squared = 0.0045
Adj R-squared = 0.0034
Root MSE = 1.146e+05

Robust
Coefficient std. err. t P>|t| [95% conf. interval]

age 205.1206 117.9809 1.74 0.082 -26.14605 436.3873
educ -442.4583 488.4721 -0.91 0.365 -1399.963 515.0466

incomecat
1 -2439.222 2013.522 -1.21 0.226 -6386.136 1507.692
2 1874.817 2295.155 0.82 0.414 -2624.154 6373.788
3 5707.689 3298.341 1.73 0.084 -757.7313 12173.11
4 18194.6 5398.391 3.37 0.001 7612.651 28776.54

pension
Receives .. 3817.355 2454.437 1.56 0.120 -993.8419 8628.553

married
Married -2399.333 3403.066 -0.71 0.481 -9070.035 4271.37

twoearn
Yes -1428.041 4347.025 -0.33 0.743 -9949.094 7093.013

ira
Yes -2438.404 3619.217 -0.67 0.500 -9532.807 4656

ownhome
Yes 3162.649 1669.587 1.89 0.058 -110.081 6435.379
_cons 232.7251 8072.023 0.03 0.977 -15590.08 16055.53

Without specifying any variables, estat projection projects the AIPW scores on all the variables

defined in x. In other words, it performs a regression of 𝜏(x) on the conditioning variables in our model.

We can interpret the coefficients as the effects of variables on the linear approximation of treatment

effects. For example, the coefficient for 4.incomecat is 18,195. We can say that being in the highest

income category increases the 401(k) eligibility effects on assets by $18,195 over being in the lowest

income category if the treatment effects are linearly approximated by the variables defined in x.

We can also plot the estimated IATE function by allowing one variable to vary and fixing the other

variables to set values. For example, we can plot the function 𝜏(x) by allowing educ to vary and fixing
the values of the other variables.
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We use categraph iateplot. We specify the variable educ to allow the IATE function to vary with

educ. By default, the continuous variables, such as age, are fixed at their sample means, and the factor

variables are fixed at their base levels.

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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categraph iateplot plots the prediction of the IATE function at different education levels while

holding other variables fixed. It also plots the 95% pointwise confidence interval for each prediction.

Below 10 years of education, the effects seem constant. The treatment effects are larger for people with

12 to 14 years of education and then vary for 15 or more years of education. However, with the wide

confidence intervals for the IATEs, especially at the higher education levels, we cannot conclude that the

IATEs vary across education levels when the other variables are fixed at these levels.

Example 2: Add high-dimensional controls

In the previous example, the control variables for the outcome and the treatment-assignment model

coincide with catevarlist or the x variables. In this example, we want to allow more flexible models for

the outcome and the treatment-assignment by adding high-dimensional controls.

The partial linear model with high-dimensional controls is defined as

asset = e401k ∗ 𝜏(x) + 𝑔(x,w) + 𝜖
e401k = 𝑓(x,w) + 𝑢

where w is a vector of additional control variables. The nuisance functions 𝑔(x,w) and 𝑓(x,w) now

depend on both x and w.
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The potential outcomes are now

asset(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
asset(0) = 𝑔(x,w) + 𝜖

Thus, the function 𝜏(x) identifies the IATE function.

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

Here we want to include the interactions between the continuous variables (age and educ) and the fac-
tor variables (incomecat, pension, married, twoearn, ira, and ownhome) as controls in the outcome

and treatment-assignment models. We define a global macro, controls, to represent the interaction

terms.

. global fvars incomecat pension married twoearn ira ownhome

. global controls c.(educ age)#i.($fvars)

We add the controls() option to our cate command to include the additional control variables in

both the outcome and the treatment model. We also specify option nolog to suppress the iteration log.

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

The header shows that there are now 47 control variables for both the outcome and the treatment

model. After accounting for these controls, the ATE indicates that if everyone in the population were

eligible for a 401(k), the net financial assets would be $8,108 more than if no one in the population were

eligible. This is a larger estimated effect of 401(k) eligibility on financial assets than the ATE of $7,937

estimated in example 1.
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We can again use categraph histogram to visualize the distribution of the predicted IATE function.

. categraph histogram
(bin=39, start=-41089.941, width=2938.3059)
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The IATE predictions are primarily positive, and the distribution has a fat right tail. This may imply

that the ATE underestimates the treatment effects for some groups in the population. To statistically test

if the treatment effects are heterogeneous, we use estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.19
Prob > chi2 = 0.0406

We find evidence against the null hypothesis that the treatment effects are homogeneous, which is the

same conclusion as in example 1.

Finally, we can use categraph iateplot to plot the IATE function by allowing one variable to vary

and fixing the other variables at some values. We plot the IATE function with respect to the level of

education (educ).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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The graph shows that the treatment effects are larger for people with 12 to 14 years of education while

holding other variables fixed. Again, the confidence intervals for the IATEs are wide, especially at the

highest education levels.

Example 3: Estimate the ATEs over prespecified groups

In examples 1 and 2, we learned that the treatment effects of 401(k) eligibility on financial assets are

heterogeneous. To further characterize this heterogeneity, we want to know how the ATEs vary across

population groups defined by variables such as income category or home ownership.

In general, we refer to a group variable as 𝐺 and a specific level of the group variable as 𝑔. We want

to estimate the ATE conditional on belonging to group 𝑔, that is, 𝐺 = 𝑔. We are interested in estimating

𝜏(𝑔) = 𝐸{asset(1) − asset(0)|𝐺 = 𝑔}

The function 𝜏(𝑔) is referred to as the GATE function. In our case, the first 𝐺 variable of interest is the

income category (incomecat). We will consider the home ownership indicator (ownhome) later.

We use table to report the minimum, maximum, and median income for the five income categories.

. table incomecat, stat(min income) stat(max income) stat(median income) nototal

Minimum value Maximum value Median

Income category
0 0 17196 12240
1 17214 26523 21735
2 26526 37275 31482
3 37296 53841 44379
4 53844 242124 69612

Levels 0 and 1 are low-income groups, levels 2 and 3 are middle-income groups, and level 4 is the

high-income group.
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The GATEs are summaries of the IATE function over the groups defined by variable 𝐺. Because we

already estimated the IATE function in example 2, there is no need to estimate it again. By specifying the

option reestimate, we can reuse the IATE function and only reestimate the effects reported, here the

GATEs for incomecat. With this option, cate will require less computational time than estimating the

GATEs from scratch. We specify group(incomecat) to estimate GATEs for the income categories.

. cate, group(incomecat) reestimate
Estimating GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATE
incomecat

0 4089.228 900.535 4.54 0.000 2324.212 5854.244
1 830.3422 1687.517 0.49 0.623 -2477.13 4137.815
2 5602.296 1300.555 4.31 0.000 3053.256 8151.336
3 9084.531 2265.143 4.01 0.000 4644.933 13524.13
4 20929.77 4706.377 4.45 0.000 11705.44 30154.1

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

The results show both the ATE and the GATEs. For example, the GATE estimate for the high-income

group (level 4) is $20,930. For those in the high-income group, being eligible for a 401(k) is expected to

increase net financial assets by $20,930 compared with the net financial assets if not eligible for a 401(k).

In contrast, the GATE estimate for the lowest income group (level 0) is only $4,089. In other words,

people who earn more benefit more from working for a company with a 401(k) plan. The ATE estimate

indicates that the treatment effects for the population are expected to be $8,108. The variation in the

estimated GATEs across income categories indicates that using the ATE alone does not fully characterize

the treatment effects.
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We can use categraph gateplot to visualize the GATE estimates and see if there is any trend.

. categraph gateplot
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The graph illustrates the upward trend between the income group and the treatment effects.

To further test whether the treatment effects are heterogeneous across income groups, we use estat
gatetest.

. estat gatetest
Group treatment-effects heterogeneity test
H0: Group average treatment effects are homogeneous
( 1) [GATE]0bn.incomecat - [GATE]1.incomecat = 0
( 2) [GATE]0bn.incomecat - [GATE]2.incomecat = 0
( 3) [GATE]0bn.incomecat - [GATE]3.incomecat = 0
( 4) [GATE]0bn.incomecat - [GATE]4.incomecat = 0

chi2(4) = 21.84
Prob > chi2 = 0.0002

We find evidence that the group treatment effects are not homogeneous.
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To compare the treatment-effects difference between groups, we use contrast.

. contrast r.incomecat
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

GATE
incomecat
(1 vs 0) 1 2.90 0.0884
(2 vs 0) 1 0.91 0.3388
(3 vs 0) 1 4.20 0.0404
(4 vs 0) 1 12.35 0.0004

Joint 4 21.84 0.0002

Contrast Std. err. [95% conf. interval]

GATE
incomecat
(1 vs 0) -3258.886 1912.767 -7007.84 490.0682
(2 vs 0) 1513.068 1581.899 -1587.397 4613.534
(3 vs 0) 4995.303 2437.588 217.7184 9772.887
(4 vs 0) 16840.54 4791.758 7448.869 26232.22

The output shows the difference in each group’s ATE compared with the lowest income group (level 0).

Except for income group 1, we see that the difference in GATEs increases as income level increases,

which corresponds with our conjecture that people who earn more benefit more from being eligible for

a 401(k).
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Similarly, we can estimate the GATEs for home ownership. We again specify option reestimate to

reuse the cate estimation results and specify option group(ownhome) to estimate the GATEs for home

ownership categories.

. cate, group(ownhome) reestimate
Estimating GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATE
ownhome

0 3319.503 795.4385 4.17 0.000 1760.472 4878.534
1 10858.26 1742.672 6.23 0.000 7442.69 14273.84

ATE
e401k

(Eligible
vs

Not elig..) 8107.563 1144.817 7.08 0.000 5863.763 10351.36

POmean
e401k

Not eligi.. 13902.88 838.5924 16.58 0.000 12259.27 15546.49

Among people who own a home, being eligible for a 401(k) is expected to increase their net finan-

cial assets by $10,858 compared with the net financial assets if not eligible for a 401(k). This effect is

substantially larger than $8,108, the ATE in the population.

We use estat gatetest to test whether the GATEs are heterogeneous.

. estat gatetest
Group treatment-effects heterogeneity test
H0: Group average treatment effects are homogeneous
( 1) [GATE]0bn.ownhome - [GATE]1.ownhome = 0

chi2(1) = 15.49
Prob > chi2 = 0.0001

We find evidence that the GATEs are not homogeneous.

Finally, we use contrast to further quantify the difference of the effects between the groups.

. contrast r.ownhome
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

df chi2 P>chi2

GATE
ownhome 1 15.49 0.0001
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Contrast Std. err. [95% conf. interval]

GATE
ownhome

(Yes vs No) 7538.76 1915.627 3784.201 11293.32

For homeowners, the GATE of 401(k) eligibility on financial assets is $7,539 more than that for the

nonhomeowners.

Example 4: Estimate the ATEs over values of a continuous variable

In example 3, we estimated the ATEs over levels of categorical variables. Sometimes, however, we

want to estimate theATEs over values of a continuous variable. For example, we may want to know how

the effects of 401(k) eligibility vary with income (not with income categories).

For a continuous variable 𝑍 and a specific value 𝑧 of variable 𝑍, we are interested in estimating

𝜏(𝑧) = 𝐸{asset(1) − asset(0)|𝑍 = 𝑧}

Semenova and Chernozhukov (2021) proposed the use of nonparametric series regression to approximate

the function 𝜏(𝑧). Specifically, they suggest running a series regression of the AIPW scores estimated in

cate on the variable 𝑍. To do this after cate, we use estat series. We specify income after estat
series to indicate that we want to estimate the ATEs over values of income. We also specify the graph
option to plot the estimated function. To reduce the impact of outliers (very high incomes) on estimation,

we restrict the sample to incomes less than or equal to $150,000, which is the 99th percentile of incomes

in the sample. We also specify the option knots(5) to choose five knots in the generated B-spline terms.

. estat series income if income <= 150000, graph knots(5)
Computing approximating function

Computing average derivatives
Nonparametric series regression for IATE
Cubic B-spline estimation Number of obs = 9,884

Number of knots = 5

Robust
Effect std. err. z P>|z| [95% conf. interval]

income .1966117 .0521898 3.77 0.000 .0943216 .2989018

Note: Effect estimates are averages of derivatives.

The estimate shows the marginal effect of income on the 401(k) eligibility treatment effects on the

net financial assets. Thus, the average marginal effect of a change in income on the treatment effects

is $0.20, indicating that people who earn more benefit more from working in a company with a 401(k)

plan.
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Because we specified the graph option, we obtain the following graph that illustrates how the treat-

ment effect changes with income.
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Each point in the plot corresponds to the estimated ATE at a given income level. It also plots the 95%

confidence interval. The graph shows an upward trend between income level and the treatment effects,

especially at higher income levels. However, the confidence intervals for the ATEs are also wide at the

higher income levels. Compared with the categraph gateplot we used for the income category in

example 3, the series graph reveals a more nuanced and nonlinear relationship between income and the

treatment effects.

Example 5: Use the AIPW estimator

In addition to the PO estimator in a partial linear model, we can also estimate the IATE function in a

fully interactive model by using the AIPW estimator. For example, let’s estimate the IATE function as in

example 2 but using the AIPW estimator.

The IATE function we want to estimate is

𝜏(x) = 𝐸{asset(1) − asset(0)|x}

where asset(1) and asset(0) are the treated and untreated potential outcomes, respectively. x are the

treatment-effects covariates.

The fully interactive model is

asset(1) = 𝑔1(x,w) + 𝜖1

asset(0) = 𝑔0(x,w) + 𝜖2

e401k = 𝑓(x,w2) + 𝑢

where w and w2 are vectors of additional control variables for the outcome and treatment models, re-

spectively. By default, w2 is the same as w, but it can be different if specified. 𝑔1(x,w) and 𝑔0(x,w)
are the nonparametric models for the treated and untreated potential outcomes, respectively. 𝜖1 and 𝜖2
are the error terms. 𝑓(x,w2) is a nonparametric model for the treatment, and 𝑢 is the error term. The

fully interactive model allows the treatment effect to interact with both x and w; thus, it is more general

than the partial linear model. Note that estimating 𝜏(x) now requires that we also estimate three nuisance

functions: 𝑔1(x,w), 𝑔0(x,w), and 𝑓(x,w2).
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We specify aipw after cate to invoke the AIPW estimator. The first portion of the output is

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
Cross-fit fold 1 of 10 ...
Estimating lasso for outcome assets if e401k = 0 ...
Estimating lasso for outcome assets if e401k = 1 ...
Performing lasso for treatment e401k ...

⋮
(output omitted )

⋮
Cross-fit fold 10 of 10 ...
Estimating lasso for outcome assets if e401k = 0 ...
Estimating lasso for outcome assets if e401k = 1 ...
Performing lasso for treatment e401k ...

The iteration log shows that two potential outcome models and a treatment model are fit using ten-

fold cross-fitting. By default, the potential outcome models are estimated using a linear lasso and the

treatment model is estimated with a logit lasso.

The remaining portion of the output is

Estimating AIPW scores ...
Estimating random forest for IATE ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8164.364 1151.125 7.09 0.000 5908.2 10420.53

POmean
e401k

Not eligi.. 13910.87 842.0945 16.52 0.000 12260.39 15561.34

We see that random forest is used to estimate the IATE function once the cross-fitting is finished. Then

the AIPW scores implied by the fully interactive model are computed, and the ATE is an average of the

AIPW scores. The estimated ATE indicates that if everyone in the population is eligible for a 401(k), the

net financial assets will, on average, be $8,164 more than if no one in the population is eligible for a

401(k). The $8,164 ATE estimate is similar to the $8,108 result in example 2.

Both the PO and theAIPW estimators are Neyman orthogonal, implying that theATE estimation results

are robust in response to the machine learning estimation errors in the outcome and the treatment model.

However, theAIPW estimator is asymptoticallymore efficient than the PO estimator (seeKennedy [2023]).

In addition, the AIPW estimator enjoys a doubly robust property, meaning that only one of the outcome

model or the treatment-assignment model needs to be correctly specified to consistently estimate theATE

(see Chernozhukov et al. [2018]).
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Another advantage of the AIPW estimator over the PO estimator is that it allows us to use different

control variables in the outcome and the treatment model. For example, suppose we want to add the

square of age as an additional control in the treatment-assignment model. In cate, we specify the option
treatcontrols($controls c.age#c.age) to use c.age#c.age as the additional control variable in
the treatment model.

. cate aipw (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> treatcontrols($controls c.age#c.age) nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 48
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8164.364 1151.125 7.09 0.000 5908.2 10420.53

POmean
e401k

Not eligi.. 13910.87 842.0945 16.52 0.000 12260.39 15561.34

The ATE estimate does not change in this case even though the outcome model has one extra control

variable. The results in this example imply that our results are robust to a different control specification.

We can use the same set of postestimation commands to explore, summarize, and visualize the treat-

ment effects afterAIPW estimation as we did after PO estimation. The conclusions for our example would

be similar; thus, we will not repeat those postestimation commands here.

Example 6: Data-driven group hypothesis testing

In example 3, we summarized the heterogeneous treatment effects by estimating the ATEs for the

prespecified groups of income category and home ownership. We emphasize that these group variables

must be prespecified before the data collection and analysis to avoid 𝑝-value hacking as discussed in

Head et al. (2015). This scenario is suitable when researchers know a priori across which groups they

would like to explore treatment-effect heterogeneity.

However, we sometimes do not knowwhich variable is linked to the heterogeneity of treatment effects;

we want the data to discover these variables. Chernozhukov et al. (2006) suggest ranking the treatment

effects first and then performing a classification analysis based on the groups induced by the treatment-

effects ranking.

For example, suppose we estimate the IATE of 401(k) eligibility on net financial assets for each obser-

vation, and we divide the data into four groups based on the IATE prediction’s ranking. The first group

is the people in the top 25% of the treatment effects in the data, and the last group is the people in the

bottom 25% of the treatment effects in the data. We want to know whether the mean income differs for

the groups with the largest and the smallest treatment effects.
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In cate, we specify the group(#) option to rank the data based on the estimated IATEs. In the fol-

lowing example, we specify group(4) to divide the data into four groups based on the IATE ranking. We

also specify the option xfolds(5) to use five-fold cross-fitting. The first portion of the output is

. cate po (assets $catecovars) (e401k), rseed(12345671) controls($controls)
> group(4) xfolds(5)
Cross-fit fold 1 of 5 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
Estimating IATE rankings ...
Estimating AIPW scores ...

⋮
(output omitted )

⋮
Cross-fit fold 5 of 5 ...
Performing lasso for outcome assets ...
Performing lasso for treatment e401k ...
Estimating IATE rankings ...
Estimating AIPW scores ...

The iteration logs show that the IATE rankings are computed using cross-fitting. This procedure is

necessary because it avoids the overfitting issues by using one sample to estimate the IATE function and

a different sample to predict the IATE function.

The remaining output is as follows:

Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating sorted GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATES
rank

1 13529.88 3792.728 3.57 0.000 6096.266 20963.49
2 11190.14 1646.548 6.80 0.000 7962.962 14417.31
3 4026.967 1154.876 3.49 0.000 1763.452 6290.481
4 3993.897 1627.408 2.45 0.014 804.236 7183.558

ATE
e401k

(Eligible
vs

Not elig..) 8183.327 1148.204 7.13 0.000 5932.888 10433.77

POmean
e401k

Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

The remaining output shows the ATEs for the groups sorted by IATE predictions, also known as the

GATESs. The GATES for the group with the largest treatment effects is $13,530. The results show a

substantial difference of GATESs estimates between the most and the least affected groups.
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In some cases, however, the highest-ranking group does not necessarily have a greater GATES estimate

than the lowest-ranking group because the rankings are generated using cross-fitting to avoid overfitting.

The rankings depend on the IATE estimates’ quantiles in each cross-fitting fold but not the whole sample.

Thus, an observation with a higher ranking implies only that this observation has greater IATE estimates

compared with other observations in a particular fold; it does not necessarily mean that it has greater IATE

estimates compared with the full sample. If the treatment effects are genuinely homogeneous, we would

observe GATES estimates that are similar across ranking levels. See Methods and formulas for details.

We can visualize the GATES estimates using categraph gateplot.

. categraph gateplot
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To test whether the treatment effects are homogeneous across the group, we use estat gatetest.
We specify levels 1 and 4 to compare the groups with the largest and smallest effects.

. estat gatetest 1 4
Sorted group treatment-effects heterogeneity test
H0: Sorted group average treatment effects are homogeneous
( 1) [GATES]1bn.rank - [GATES]4.rank = 0

chi2(1) = 5.34
Prob > chi2 = 0.0209

We find evidence that the GATESs are not homogeneous across the groups with the largest and smallest

effects.
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We can use estat classification to test whether the means of some variables are different be-

tween the groups with the largest and smallest effects. For example, we can test whether the income

level has different means in groups ranked 1 and 4.

. estat classification income
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 62522.61 513.3117 25562.71 61516.05 63529.17
4 2,475 26420.44 367.1063 18263.31 25700.57 27140.31

Combined 4,955 44489.74 406.6722 28626.37 43692.48 45287

diff 36102.17 631.2817 34864.58 37339.76

diff = mean(1) - mean(4) t = 57.1887
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

The income levels are higher in the group with the largest effects than in the group with the smallest

effects.

We can do a similar classification analysis for age and ownhome.

. estat classification ownhome
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 .8584677 .0070009 .3486401 .8447396 .8721959
4 2,475 .4056566 .0098718 .4911179 .3862986 .4250145

Combined 4,955 .6322906 .0068507 .4822304 .6188603 .645721

diff .4528112 .0120983 .4290932 .4765291

diff = mean(1) - mean(4) t = 37.4278
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000

. estat classification age
Classification t test with equal variances

Group Obs Mean Std. err. Std. dev. [95% conf. interval]

1 2,480 45.16815 .1808494 9.006225 44.81351 45.52278
4 2,475 35.26747 .2175367 10.82231 34.8409 35.69405

Combined 4,955 40.22281 .1579318 11.1171 39.91319 40.53242

diff 9.90067 .2828416 9.346176 10.45517

diff = mean(1) - mean(4) t = 35.0043
H0: diff = 0 Degrees of freedom = 4953

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 1.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 0.0000
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More people in group 1 own homes than in group 4, and people are older in group 1 than people in

group 4.

The analysis suggests that individuals who are older, have a home, and have a higher income see a

more substantial effect of 401(k) eligibility on net financial assets. Without any ex-ante assumptions

about the effect of eligibility, we can learn from the data which subpopulations defined by covariates

would benefit more with greater access to a 401(k).

Finally, we can specify the group(#) option with reestimate if we want to divide the data into a

different number of ranking groups but want to avoid recomputing the IATE function. It is much faster

than estimating GATESs from scratch. Here, we specify the group(2) option to divide the data into two
ranking levels.

. cate, group(2) reestimate
Estimating sorted GATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 5
Outcome model: Linear lasso Number of outcome controls = 47
Treatment model: Logit lasso Number of treatment controls = 47
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

GATES
rank

1 12360.48 2067.996 5.98 0.000 8307.28 16413.68
2 4010.449 997.4399 4.02 0.000 2055.502 5965.395

ATE
e401k

(Eligible
vs

Not elig..) 8183.327 1148.204 7.13 0.000 5932.888 10433.77

POmean
e401k

Not eligi.. 13881.65 840.706 16.51 0.000 12233.89 15529.4

Example 7: Flexible models

In the CATE estimation, we need to specify the estimation methods in three different models: the out-

come model, the treatment-assignment model, and the CATE model. The outcome and treatment models

are the nuisance parameters, which we are not interested in making inferences about. The CATE model

is the object of interest, and we want to make inferences on IATEs, ATEs, GATEs, and GATESs.

In the previous examples, we used the lasso linear model for the outcome model, the lasso logit model

for the treatmentmodel, and the random forest for the IATE function 𝜏(x), the default in cate. Sometimes,

however, we want to use different techniques to explore data based on different assumptions. For the

outcome and treatment models, we can use a semi-parametric method such as lasso, a nonparametric

method such as random forest, or a purely parametric method such as linear or logistic regression. For

the IATE function, we can use either a nonparametric method, such as random forest, or a parametric

method, such as linear regression. We can try different models to see how sensitive the results are to the

modeling methods and assumptions.
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In the case of our 401(k) eligibility example, we will try the parametric models, which are estimated

using parametric methods, and the nonparametric models, which are estimated using random forest.

Parametric models like linear regression are easier to compute and interpret than nonparametric mod-

els such as a random forest. However, the assumptions of a parametricmodel are less likely to be satisfied.

Nevertheless, we can use it as a benchmark. For example, suppose we assume a linear model for the out-

come, a logit model for the treatment, and the linear model for the IATE. Under these assumptions, the

IATE function is

𝜏(x) = x′𝛽

Thus, the outcome and treatment models under these parametric assumptions become

asset = e401k ∗ (x′𝛽) + x′𝛾1 + 𝜖

Pr(e401k = 1|x) = exp(x′𝛾2)
1 + exp(x′𝛾2)

In cate, we specify the omethod(regress) option to use linear regression for the outcome, the

tmethod(logit) option to use a logit model for the treatment, and the cmethod(regress) option to

use linear regression for the IATE function.

. cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(regress) tmethod(logit) cmethod(regress) nolog
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 10
Outcome model: Linear regression Number of outcome controls = 17
Treatment model: Logit Number of treatment controls = 17
CATE model: Linear regression Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 7904.218 1155.565 6.84 0.000 5639.351 10169.08

POmean
e401k

Not eligi.. 13977.45 831.0932 16.82 0.000 12348.54 15606.37
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We can interpret the results as before. If we plot the IATE function over one variable, such as educ,
we see a straight line, which is expected due to the parametric assumption on the IATE function 𝜏(x).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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Interestingly, the graph shows a downward trend between the years of education and the IATEs, and the

estimates of the IATEs are not different from zero (the confidence intervals include zero for all education

levels). This conclusion is very different from that in examples 1 and 2 when we use the random forest

to estimate the IATE function. It may imply that the parametric assumptions on the IATE function are too

strong.

In contrast to the pure parametric model, we can use the random forest in the outcome, the treatment,

and the IATE models. Random forest allows us to model flexibly without imposing restrictive assump-

tions. Another advantage is that we can use the out-of-bag predictions from the random forest to avoid

using cross-fitting, which may be time consuming.

We specify the omethod(rforest) and tmethod(rforest) options to use the random forest model

for both the outcome and the treatment models. The default method for the IATE estimation is already a

random forest, so we do not need to specify the cmethod() option here. In addition, to use the out-of-bag
prediction-based algorithm, we specify the oob option.
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. cate po (assets $catecovars) (e401k), rseed(12345671)
> omethod(rforest) tmethod(rforest) oob
Performing random forest for outcome assets ...
Performing random forest for treatment e401k ...
Performing random forest for IATE ...
Estimating AIPW scores ...
Estimating ATE ...
Conditional average treatment effects Number of observations = 9,913
Estimator: Partialing out Number of folds in cross-fit = 1
Outcome model: Random forest Number of outcome controls = 17
Treatment model: Random forest Number of treatment controls = 17
CATE model: Random forest Number of CATE variables = 17

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8225.258 1173.862 7.01 0.000 5924.53 10525.99

POmean
e401k

Not eligi.. 14016.34 850.1257 16.49 0.000 12350.13 15682.56

The results are a little different from those in examples 1 and 2. This is expected because, in exam-

ples 1 and 2, we used the lasso methods for the outcome and treatment models.

We can test whether the treatment effects are heterogeneous using estat heterogeneity.

. estat heterogeneity
Treatment-effects heterogeneity test
H0: Treatment effects are homogeneous

chi2(1) = 4.07
Prob > chi2 = 0.0437

We find evidence that the treatment effects are not homogeneous.

To compare with the parametric model, we can also plot the IATE function with respect to education

(educ).

. categraph iateplot educ
Note: IATE estimated at fixed values of covariates other than educ.

Variable Statistic Value Type

age mean 41.05891 continuous
incomecat base 0 factor

ira base 0 factor
married base 0 factor
ownhome base 0 factor
pension base 0 factor
twoearn base 0 factor
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Compared with the parametric IATE function, the graph shows a nonlinear form, and the treatment effects

are more substantial for people with 12 to 15 years of education while holding other variables fixed.

The random forest method puts less restrictive assumptions on the data generating process (DGP) than

the lasso method, and thus, random forest may model the real-world data better. However, the caveats

are that the random forest can not handle high-dimensional controls like lasso, and it takes much longer

to compute when there are many observations in the data. In contrast, lasso can be considered a semi-

parametric model by approximating a function using a set of basis functions. It can approximate the

DGP reasonably well when the underlying function is sparse, meaning only a few terms among high-

dimensional controls have nonzero coefficients.

Example 8: Treatment-assignment policy evaluation

In examples 1 to 7, we use cate to study the treatment-effects heterogeneity from different per-

spectives, such as IATEs, GATEs, and GATESs. Sometimes, researchers are not interested in the treatment-

effects heterogeneity itself but instead want to use the estimated treatment effects to evaluate a treatment-

assignment policy.

We want to evaluate the policy by answering questions such as the following:

1. If we implement such a policy, what is the average outcome of the population?

2. If we have alternative policies, which one is better?

For the first question, we compute the average outcome if the treatment is assigned according to the

policy, which is also known as the policy’s value. Precisely, the value of the treatment-assignment policy,

Π(𝜋), is defined as
Π(𝜋) = 𝐸{𝜋𝑖𝑦𝑖(1) + (1 − 𝜋𝑖) 𝑦𝑖(0)}

where 𝜋𝑖 ∈ [0, 1] is a prespecified treatment-assignment probability for the 𝑖th observation. Thus, 𝜋𝑖
is referred to as the policy. 𝑦𝑖(1) and 𝑦𝑖(0) are the potential outcomes for being treated or not treated,

respectively.
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For the second question, we compute the value difference between the two policies,

Π(𝜋𝐴) − Π(𝜋𝐵)

where 𝜋𝐴 and 𝜋𝐵 are two different treatment-assignment policies.

We illustrate how to use cate to evaluate a hypothetical treatment-assignment policy that assigns

patients to two types of lung transplants. Bilateral lung transplant (BLT) is usually associatedwith a higher

death rate in the short term after the operation but with a more significant improvement in the quality of

life compared with a single lung transplant (SLT). Suppose a doctor has a simple treatment-assignment

rule, which assigns a patient to BLT if the patient’s walking distance is greater than 500 meters in six

minutes and if the patient does not have diabetes. The doctor wants to evaluate this policy by answering

the following two questions:

1. What would be the average outcome if this policy is implemented?

2. Is this policy better than the treatment assignment observed in the data?

We have a fictional dataset (lung.dta) inspired by Koch, Vock, andWolfson (2018). An individual’s

forced expiratory volume in one second (FEV1) measures a patient’s quality of life. The outcome of

interest is the percentage of FEV1 that a patient has relative to a healthy person with similar characteristics,

FEV1% (fev1p), measured one year after the operation. The treatment variable (transtype) indicates
whether the treatment is BLT or SLT.
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To open the dataset and describe it, we type

. use https://www.stata-press.com/data/r19/lung, clear
(Fictional data on lung transplant)
. describe *, short
Variable Storage Display Value

name type format label Variable label

agep byte %10.0g Patient age (years)
bmip double %10.0g Patient body mass index
diabetesp byte %12.0g lbdiab Patient diabetes status
heightp double %10.0g Patient height (cm)
o2amt double %10.0g Oxygen delivered
karn byte %8.0g lbyes Karnofsky score > 60
lungals double %10.0g Lung allocation score
racep byte %8.0g lbrace Patient race
sexp byte %8.0g lbsex Patient gender
lifesvent byte %8.0g lbyes Life support ventilator needed
assisvent byte %8.0g lbyes Assisted ventilation needed
centervol double %10.0g Center volume
walkdist double %10.0g Walking distance in 6 minutes
o2rest byte %8.0g lbyes Oxygen needed at rest
aged byte %10.0g Donor age (years)
raced byte %8.0g lbrace Donor race
bmid double %10.0g Donor body mass index
smoked byte %8.0g lbyes Donor if has history of smoking
cmv byte %8.0g lbyes Positive cytomegalovirus test
deathcause byte %8.0g lbyes Cause of death - traumatic brain

injury
diabetesd byte %12.0g lbdiab Donor diabetes status
expandd byte %8.0g lbyes Expanded donor needed
heightd double %10.0g Donor height (cm)
sexd byte %8.0g lbsex Donor gender
distd int %10.0g Donor to treatment center

distance
lungpo2 double %10.0g Lung PO2
lungalloc byte %8.0g lballo Lung allocation status
hratio double %10.0g Height ratio
ischemict double %10.0g Ischemic time
genderm byte %19.0g lbgm Matching gender status
racem byte %17.0g lbrm Matching race status
transtype byte %8.0g lbtau Lung transplant type
fev1p double %10.0g Percentage of predicted value of

FEV1

Thirty-one variables measure characteristics of the patients and donors. To construct catevarlist and

the control variables, we want to use these variables and the interactions among them. The following

commands create global macro catecovars to represent the covariates in the IATE function and global

macro controls to represent the additional control variables in the outcome and treatment models.

. global cvars bmip heightp o2amt lungals centervol walkdist bmid heightd
> distd lungpo2 hratio ischemict
. global fvars diabetesp karn racep sexp lifesvent assisvent o2rest raced
> smoked cmv deathcause diabetesd expandd sexd lungalloc genderm racem
. global catecovars c.($cvars) i.($fvars)
. global controls c.($cvars)#i.($fvars)
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The hypothetical policy variable policy1 assigns a patient to BLT if the patient’s walking distance is

more than 500 meters and if the patient does not have diabetes.

. generate policy1 = walkdist > 500 & !diabetesp & !missing(walkdist)

To evaluate policy1, we first need to use cate and estimate the potential outcomes for each individ-

ual.

. cate aipw (fev1p $catecovars) (transtype), rseed(12345671) controls($controls)
> nolog
Conditional average treatment effects Number of observations = 937
Estimator: Augmented IPW Number of folds in cross-fit = 10
Outcome model: Linear lasso Number of outcome controls = 454
Treatment model: Logit lasso Number of treatment controls = 454
CATE model: Random forest Number of CATE variables = 46

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.5243 .1646795 227.86 0.000 37.20153 37.84707

POmean
transtype

SLT 46.49502 .2025403 229.56 0.000 46.09805 46.892

The FEV1% if all the patients were to be assigned to BLT is expected to be 38 percentage points higher

than the 46% average expected if all patients were to be assigned to SLT.

TheATE is a special version of policy evaluation. TheATE estimates the difference in average outcomes

between the two policies: everyone is treated versus everyone is untreated. Here is an illustration.
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We create the variable treatall representing a policy that assigns each patient to BLT treatment. In

contrast, variable treatnone represents a policy that assigns each patient to SLT treatment.

. generate treatall = 1

. generate treatnone = 0

We can use estat policyeval to compare these treatment policies.

. estat policyeval treatall treatnone
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

treatall 84.01932 .3085432 272.31 0.000 83.41459 84.62406
treatnone 46.49502 .2025403 229.56 0.000 46.09805 46.892

Contrast
policy

(treatall
vs

treatnone) 37.5243 .1646795 227.86 0.000 37.20153 37.84707

The value of a policy is the average outcome if the policy is implemented. For example, the value of

treatnone is 46.5, which means that the expected FEV1% is 46.5% if all patients are assigned to SLT.

By definition, the value of treatnone corresponds to the potential outcome mean if the treatment status

is SLT, and in the cate output, the POmean for SLT is indeed 46.5. That is,

Π(treatnone) = 𝐸{0 ∗ fev1p(1) + 1 ∗ fev1p(0)} = 𝐸{fev1p(0)}

Similarly, the value of treatall is the potential outcome if all patients are assigned to BLT. That is,

Π(treatall) = 𝐸{1 ∗ fev1p(1) + 0 ∗ fev1p(0)} = 𝐸{fev1p(1)}

The contrast is the difference in the values of the two policies. The contrast between treatall and

treatnone is 37.5, which means that the FEV1% is 37.5% higher if all patients are assigned to BLT over

SLT. By definition, the contrast between treatall and treatnone is the ATE, and the ATE estimate in

the cate output is indeed 37.5. That is,

Π(treatall) − Π(treatnone) = 𝐸{fev1p(1) − fev1p(0)} = ATE

Now we are ready to evaluate the hypothetical policy policy1, which assigns a patient to BLT if the

patient’s walking distance is greater than 500 meters and the patient does not have diabetes.

. estat policyeval policy1
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

policy1 72.66426 .714435 101.71 0.000 71.26399 74.06452
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The average FEV1% is 72.6% if this policy is implemented. We can compare this with the observed

treatment policy (transtype).

. estat policyeval policy1 transtype
Treatment-assignment policy evaluation Number of obs = 937

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

Value
policy

policy1 72.66426 .714435 101.71 0.000 71.26399 74.06452
transtype 66.53891 .5149955 129.20 0.000 65.52954 67.54828

Contrast
policy

(policy1
vs

transtype) 6.125348 .9130896 6.71 0.000 4.335725 7.91497

The average FEV1% is 6.1% higher if policy1 is implemented compared with the actual treatment-

assignment policy transtype.

Stored results
cate stores the following in e():

Scalars

e(N) number of observations

e(n xfolds) number of folds for cross-fitting

e(k controls om) number of controls in the outcome model

e(k controls tm) number of controls in the treatment model

e(k cate covars) number of covariates in the CATE model

e(gateslevel) number of sub-levels in the data-driven group if group(#) specified
e(samprate om) sampling rate for outcome model, if omethod(rforest) specified
e(ntrees om) number of trees for outcome model, if omethod(rforest) specified
e(cintrees om) number of trees in each group for outcome model, if omethod(rforest) specified
e(splitminobs om) minimum number of observations to split a node for outcome model, if

omethod(rforest) specified
e(splitmeanvars om) mean number of variables to be split in each node for outcome model, if

omethod(rforest) specified
e(honestrate om) sampling rate for honest tree for outcome model, if omethod(rforest) specified
e(samprate tm) sampling rate for treatment model, if tmethod(rforest) specified
e(ntrees tm) number of trees for treatment model, if tmethod(rforest) specified
e(cintrees tm) number of trees in each group for treatment model, if tmethod(rforest) specified
e(splitminobs tm) minimum number of observations to split a node for treatment model, if

tmethod(rforest) specified
e(splitmeanvars tm) mean number of variables to be split in each node for treatment model, if

tmethod(rforest) specified
e(honestrate tm) sampling rate for honest tree for treatment model, if tmethod(rforest) specified
e(samprate cm) sampling rate for CATE model, if cmethod(rforest) specified
e(ntrees cm) number of trees for CATE model, if cmethod(rforest) specified
e(cintrees cm) number of trees in each bag for CATE model, if cmethod(rforest) specified
e(splitminobs cm) minimum number of observations to split a node for CATE model, if

cmethod(rforest) specified
e(splitmeanvars cm) mean number of variables to be split in each node for CATE model, if

cmethod(rforest) specified
e(honestrate cm) sampling rate for honest tree for CATE model, if cmethod(rforest) specified
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Macros

e(cmd) cate
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(gate var) GATE variable

e(cate covars) name of CATE covariates

e(covars om) covariates for outcome model

e(covars tm) covariates for treatment model

e(lasso selection om) lasso selection method for outcome model

e(lasso selection tm) lasso selection method for treatment model

e(estimator) name of estimator

e(omethod) estimation method for outcome model

e(tmethod) estimation method for treatment model

e(cmethod) estimation method for CATE model

e(title) title in estimation output

e(predict) program used to implement predict
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas are presented under the following headings:

PO for the partial linear model
PO IATE estimator
PO GATE estimator with prespecified groups
PO GATES estimator with data-driven groups

AIPW for the fully interactive model
AIPW IATE estimator
AIPW GATE estimator with prespecified groups
AIPW GATES estimator with data-driven groups

Generalized random forest
Honest tree
Honest random forest
Confidence intervals
Missing values

We can group the estimation methods by the outcome model. The outcome model can be expressed

as a partial linear or fully interactive model. For the partial linear model, the estimation method is the

PO estimator proposed in Nie and Wager (2021). The fully interactive model’s estimation methods are
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built around theAIPW estimator discussed in Knaus (2022) and Kennedy (2023). We will briefly discuss

the features of these two estimators and compare them. For notational simplicity, we drop the subscript

𝑖 indicating the 𝑖th observation to refer to a random variable.

PO for the partial linear model
The partial linear model is

𝑦 = 𝑑 ∗ 𝜏(x) + 𝑔(x,w) + 𝜖
𝑑 = 𝑓(x,w) + 𝑢

where 𝑦 is the outcome variable, 𝑑 is a binary treatment, x is a vector of covariates for the IATE function,

w are optional controls for both the outcome and the treatment models, and 𝑔(x,w) and 𝑓(x,w) are

nuisance functions for the outcome and the treatment, respectively. 𝜖 and 𝑢 are the error terms.

Let 𝑦(1) be the potential outcome when the unit is treated and 𝑦(0) be the potential outcome when

the unit is not treated. By definition, the potential outcomes are

𝑦(1) = 𝜏(x) + 𝑔(x,w) + 𝜖
𝑦(0) = 𝑔(x,w) + 𝜖

Thus, the IATE function is 𝜏(x) = 𝐸{𝑦(1) − 𝑦(0)|x}.
To estimate 𝜏(x), we need to partial-out the nuisance functions 𝑔(x,w) and 𝑓(x,w). To do this, we

need to construct residuals of the outcome and the treatment that are independent of w and x. First, we

take the expectation of 𝑦 conditional on x and w. That is,

𝐸(𝑦|x,w) = 𝑓(x,w)𝜏(x) + 𝑔(x,w)

Note that unconfoundedness implies that 𝐸(𝜖|x,w) = 𝐸(𝑢|x,w) = 0, and therefore we have

𝐸(𝑑|x,w) = 𝑓(x,w). Thus, subtracting 𝐸(𝑦|x,w) from 𝑦 removes the term 𝑔(x,w).

𝑦 − 𝐸(𝑦|x,w) = {𝑑 − 𝑓(x,w)}𝜏(x) + 𝜖

We can estimate 𝐸(𝑦|x,w) and 𝑓(x,w) via lasso, random forest, or parametric regression. Then we

use the residuals to estimate 𝜏(x). Let ℎ(x,w) = 𝐸(𝑦|x,w), and let ℎ̂(x,w) and ̂𝑓(x,w) be the estimates

for ℎ(x,w) and 𝑓(x,w), respectively. We construct the PO version of 𝑦 and 𝑑 as

̃𝑦 = 𝑦 − ℎ̂(x,w)
̃𝑑 = 𝑑 − ̂𝑓(x,w)

One way we can estimate 𝜏(x) is by solving the local moment condition

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖 {𝑦𝑖 − 𝑑𝑖𝜏(x)}] = 0

where 𝛼(𝑥𝑖) defines the local weights that attach more weight to observations that are close to x. We

use the generalized random forest proposed in Athey, Tibshirani, andWager (2019) to solve this moment

condition. For details on causal forest, see Generalized random forest.
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Another way to estimate 𝜏(x) is by assuming a linear functional form for the CATE, 𝜏(x) = x𝛽, and
estimating 𝛽 using linear regression.

Next we discuss the PO estimator for IATEs, GATEs, and GATESs.

PO IATE estimator

In practice, the partialed-out residuals ̃𝑑 and ̃𝑦 are constructed using the out-of-sample prediction.

In particular, ℎ̂(x𝑖,w𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction of 𝑦𝑖, with ℎ̂(−𝑖)(x,w) estimated

using data that exclude observation 𝑖. Similarly, ̂𝑓(x𝑖,w𝑖) = ̂𝑓 (−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction

of 𝑑𝑖.

The residuals are based on the out-of-sample prediction.

𝑦𝑖
(−𝑖) = 𝑦𝑖 − ℎ̂(−𝑖)(x𝑖,w𝑖)

𝑑𝑖
(−𝑖)

= 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)

Thus, in practice, we solve the moment condition

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

We can construct the out-of-sample prediction using the cross-fitting technique. We split the data into

𝐾 folds, define the main sample as the observations in the 𝑘th fold, and define the auxiliary sample as the

observations not in the 𝑘th fold. We estimate all the nuisance functions using the auxiliary sample and get

the out-of-sample predictions in the main sample. After circulating through all the folds, we eventually

compute the out-of-sample predictions for the full sample. For details of the cross-fitting version of the

PO estimator for the IATE, see algorithm 1 below.

Algorithm 1: PO for the IATE using cross-fitting

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of probability forest, lasso,

probit, or logit.

2. Do the cross-fitting to construct the residuals.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct outcome residuals.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ℎ̂𝐴(x,w).
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B. Based on ℎ̂𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ̂𝑦𝑀.

C. Compute outcome residuals in the main sample ̃𝑦𝑀 = 𝑦 − ̂𝑦𝑀.

iii. Construct treatment residuals.

A. Using the auxiliary sample 𝑆𝐴, train the treatment model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ̂𝑑𝑀.

C. Compute treatment residuals in the main sample ̃𝑑𝑀 = 𝑑 − ̂𝑑𝑀.

3. Using the full sample, estimate the function 𝜏(x) via linear regression or via generalized random
forest as in Athey, Tibshirani, and Wager (2019):

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is

computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular

case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to

construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees

in the random forest that do not contain this observation. See Generalized random forest for more details.

This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-

bag prediction-based PO estimator for the IATE, see algorithm 2 below.

Algorithm 2: PO for the IATE using out-of-bag prediction

1. Construct outcome residuals.

(a) Use the full sample, fit a regression forest for the outcome model, and denote it as ℎ̂(x,w).
(b) Based on ℎ̂(x,w), compute the out-of-bag prediction for the full sample, and denote it as

̂𝑦(oob).

(c) Compute the outcome residuals for the full sample: ̃𝑦 = 𝑦 − ̂𝑦(oob).

2. Construct treatment residuals.

(a) Use the full sample, fit a probability forest for the treatment model, and denote it as ̂𝑓(x,w).
(b) Based on ̂𝑓(x,w), compute the out-of-bag prediction for the full sample, and denote it as

̂𝑑(oob).

(c) Compute the treatment residuals for the full sample: ̃𝑑 = 𝑑 − ̂𝑑(oob).

3. Using the full sample, estimate the function 𝜏(x) via linear regression or via generalized random
forest:

𝑁
∑
𝑖=1

[𝛼(𝑥𝑖)𝑑𝑖
(−𝑖)

{𝑦𝑖
(−𝑖) − 𝑑𝑖

(−𝑖)
𝜏(x)}] = 0

cate po implements both algorithms 1 and 2, and the cross-fitting-based PO estimator in algorithm 1

is the default. In algorithm 2, the oob option specifies to use the out-of-bag prediction, and it also requires
that options omethod() and tmethod() be specified with random forest.
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In practice, we need to specify the following points in cate po for the IATE estimation:

1. The outcome variable 𝑦 and the treatment variable 𝑑.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of

cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod() option with the estimation method for the IATE function 𝜏(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod() option with the estimation method for 𝐸(𝑦|x,w), which can be lasso, random

forest, or linear regression. The default is lasso.

6. The tmethod() option with the estimation method for the treatment model 𝑓(x,w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Here is a general note on choosing between random forest, lasso, and parametric regression: Random

forest is suitable when the number of covariates is low-dimensional relative to the number of observations

and the function is smooth enough. Lasso is suitable when the model can be approximated by a sparse

function, which can be very useful in the presence of high-dimensional controls. Parametric regression

is easy to compute and interpret but imposes strong assumptions that may be too hard to satisfy with

real-world data. In terms of computational speed, lasso is generally faster than random forest.

PO GATE estimator with prespecified groups

The GATE estimator is constructed by regressing the AIPW scores implied by the partial linear model

on the group dummy variables, following Semenova and Chernozhukov (2021). In the partial linear

model, the AIPW score is defined as

Γ𝑖 = ̂𝜏 (−𝑖)(x𝑖) + 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)
̂𝑓 (−𝑖)(x𝑖,w𝑖) {1 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)}

{𝑦𝑖 − ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖)}

where

1. ̂𝜏 (−𝑖)(x𝑖) is the out-of-bag prediction of IATE produced by predict after cate po. If CATE is

estimated by linear regression, then ̂𝜏 (−𝑖)(x𝑖) is the linear prediction.

2. 𝑑𝑖 is the treatment indicator.

3. ̂𝑓 (−𝑖)(x𝑖,w𝑖) is the prediction of propensity scores. These out-of-sample predictions are already

produced in the cross-fitting algorithm 1 or the out-of-bag prediction algorithm 2.

4. 𝑦𝑖 is the outcome.

5. ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) is the out-of-sample prediction of the outcome mean conditional on both the con-

trols and the treatment status. It is defined as

̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)} ̂𝜏 (−𝑖)(x𝑖)

where ℎ̂(−𝑖)(x𝑖,w𝑖) is the out-of-sample prediction of 𝐸(𝑦|x,w), which are already computed in

either algorithm 1 or 2 when estimating the IATE function.
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Here we derive ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖). By the definition of the partial linear model, ℎ(x,w) = 𝐸(𝑦|x,w) =
𝜏(x)𝑓(x,w)+𝑔(x,w). Denote 𝜇0(x,w) as the conditional expected value of the potential outcome when

it is not treated. It is defined as

𝜇0(x,w) = 𝑔(x,w) = ℎ(x,w) − 𝜏(x)𝑓(x,w)

Denote𝜇1(x,w) as the conditional expected value of the potential outcomewhen it is treated. It is defined

as

𝜇1(x,w) = 𝜇0(x,w) + 𝜏(x) = ℎ(x,w) + {1 − 𝑓(x,w)}𝜏(x)

Thus, the cross-fitting version of 𝜇(x,w, 𝑑) is defined as above.
We already computed all the necessary terms when fitting the IATE function, so it is computationally

convenient to compute the AIPW scores. Once we get the AIPW scores, computing the GATE is easy. Just

run a linear regression of the AIPW scores on the group indicators. For details on estimating the GATE in

the partial linear model, see algorithm 3 below.

Algorithm 3: PO for the GATE with a prespecified group

1. Set the group indicator variable 𝐺.

2. Run either algorithm 1 or algorithm 2 to get the following terms:

(a) 𝑦𝑖
(−𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖)

(b) 𝑑𝑖
(−𝑖)

= ̂𝑓 (−𝑖)(x𝑖,w𝑖)

3. Compute the out-of-bag prediction of the IATE ̂𝜏 (−𝑖)(x𝑖).

4. Compute the AIPW scores for the partial linear model:

Γ𝑖 = ̂𝜏 (−𝑖)(x𝑖) + 𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)
̂𝑓 (−𝑖)(x𝑖,w𝑖) {1 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)}

{𝑦𝑖 − ̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖)}

with

̂𝜇(−𝑖)(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂(−𝑖)(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓 (−𝑖)(x𝑖,w𝑖)} ̂𝜏 (−𝑖)(x𝑖)

5. Run ordinary least-squares (OLS) regression of theAIPW scores Γ𝑖 on the group dummy indicators

based on 𝐺. The coefficients estimated on these indicators are the GATEs.

PO GATES estimator with data-driven groups

Suppose we do not know which groups we should condition on when computing the GATEs. We can

ask the data to discover the groups based on the sorted estimates of the IATEs. The groups are generated

by the quantiles of IATE estimates. For example, if we want to divide the IATEs into four groups, the

first group will be observations with IATE estimates greater than the 75th percentile of the overall IATE

estimates; the second group will be observations with estimates between the 50th and 75th percentiles;

the third group will be between the 25th and 50th percentiles; and the last group will be below the 25th

percentile.
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We use the cross-fitting technique to generate the group’s ranking to avoid overfitting. Suppose we

split the data into 𝐾 folds. For each fold, we do the following. Observations in the 𝑘th fold are defined
as the main sample, and observations in the other folds are defined as the auxiliary sample. First, we

train an IATE model using the auxiliary sample. Second, we predict the IATE function 𝜏(x) in the main

sample and denote the prediction as ̂𝜏 (x)(𝑘). The ranking in the main sample depends on the quantile of

̂𝜏 (x)(𝑘). After circulating all the folds, we divide the full sample into the prespecified number of groups.

Because of the nature of cross-fitting, using the data to discover groups is time consuming. In addition,

it requires a large sample because we need to fit a separate random forest model for the IATE in each fold.

Once the group is discovered, we run an OLS regression of the AIPW scores, which is generated in the

cross-fitting procedure, to the group indicator. For details of the GATES estimator with the data-driven

group for the partial linear model, see algorithm 4. For a discussion of using the sorted effects to generate

the group, see Chernozhukov et al. (2006, sec. E) and Golub Capital Social Impact Lab (2023, chap. 4).

Algorithm 4: GATES estimator for data-driven group for partial linear model

1. Define the input.

(a) Set number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,

logit, or probit.

(d) Set the number of groups 𝐺 to divide.

2. Do the cross-fitting to construct the AIPW scores and group ranking.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct the outcome prediction.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ℎ̂𝐴(x,w).
B. Based on ℎ̂𝐴(x,w), predict the outcome in the main sample 𝑆𝑀. Denote the pre-

diction as ℎ̂𝑀(x𝑖,w𝑖).
iii. Construct the treatment prediction.

A. Using the auxiliary sample 𝑆𝐴, train the treatment model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑓𝑀(x𝑖,w𝑖).
iv. Construct the IATE ranking.

A. Using the auxiliary sample 𝑆𝐴, fit the IATE model ̂𝜏 (x)𝐴 using algorithm 1.

B. Based on ̂𝜏 (x)𝐴, predict 𝜏(x) in the main sample and denote it as ̂𝜏 (x)𝑀.

C. Generate the ranking in the main sample using the quantiles of ̂𝜏 (x)𝑀.
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v. Construct the AIPW scores in the main sample:

Γ𝑀
𝑖 = ̂𝜏𝑀(x𝑖) + 𝑑𝑖 − ̂𝑓𝑀(x𝑖,w𝑖)

̂𝑓𝑀(x𝑖,w𝑖) {1 − ̂𝑓𝑀(x𝑖,w𝑖)}
{𝑦𝑖 − ̂𝜇𝑀(x𝑖,w𝑖, 𝑑𝑖)}

with

̂𝜇𝑀(x𝑖,w𝑖, 𝑑𝑖) = ℎ̂𝑀(x𝑖,w𝑖) + {𝑑𝑖 − ̂𝑓𝑀(x𝑖,w𝑖)} ̂𝜏𝑀(x𝑖)

3. Regress theAIPW scores on the group dummies based on the IATE quantiles to estimate the GATESs.

AIPW for the fully interactive model
The fully interactive model is

𝑦(1) = 𝑔1(x,w) + 𝜖1

𝑦(0) = 𝑔0(x,w) + 𝜖0

𝑑 = 𝑓(x,w2) + 𝑢

where 𝑔1(x,w) and 𝑔0(x,w) are the models for the potential outcomes 𝑦(1) and 𝑦(0), respectively. 𝜖1
and 𝜖0 are the error terms. w2 is a vector of control variables for the treatment model. By default, w2 is

equal to w. However, it can be different if specified. The other terms, 𝑑, x, w, and 𝑓(x,w2), are the same

as seen in the partial linear model. The fully interactive model allows the treatment effect to interact with

both x and w; thus, it is more general than the partial linear model.

By definition, the IATE function 𝜏(x) is

𝜏(x) = 𝐸{𝑦(1) − 𝑦(0)|x} = 𝐸{𝑔1(x,w) − 𝑔0(x,w)|x}

Intuitively, we can regress 𝑔1(x,w) − 𝑔0(x,w) on x to estimate 𝜏(x). This method is also known

as regression adjustment (RA). However, RA is vulnerable to machine learning mistakes made when

estimating 𝑔1(x,w) and 𝑔0(x,w). Similarly, the inverse-probability weighting (IPW) estimator is also a

bad choice. In contrast, the classical AIPW estimator, known as a doubly robust estimator, is Neyman

orthogonal (see Chernozhukov et al. [2018] and Knaus [2022]). The AIPW version of the potential

outcomes are

𝑦(1)AIPW = 𝑔1(x,w) + 𝐼(𝑑 = 1){𝑦 − 𝑔1(x,w)}
𝑓(x,w2)

𝑦(0)AIPW = 𝑔0(x,w) + 𝐼(𝑑 = 0){𝑦 − 𝑔0(x,w)}
1 − 𝑓(x,w2)

Thus, 𝜏(x) can also be written as

𝜏(x) = 𝐸 {𝑦(1)AIPW − 𝑦(0)AIPW|x}

Given the estimates of 𝑔1(x,w), 𝑔0(x,w), and 𝑓(x,w2), let 𝑦(1)
AIPW

and 𝑦(0)
AIPW

be estimates of

𝑦(1)AIPW and 𝑦(0)AIPW, respectively. Let Γ̂ = 𝑦(1)
AIPW

− 𝑦(0)
AIPW

be an estimate of the AIPW scores.

We estimate 𝜏(x) by solving the local moment condition

𝑁
∑
𝑖=1

[𝛼(x𝑖) {Γ̂𝑖 − 𝜏(x)}] = 0
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where 𝛼(x𝑖) defines the local weights that attach more weight to observations that are close to x. To

solve this moment condition, we use the honest regression forest proposed in Wager and Athey (2018)

and implement it using the generalized random forest in Athey, Tibshirani, andWager (2019). For details

on honest regression forest, see Generalized random forest.

AIPW IATE estimator

To guard against machine learning estimation bias in the nuisance function, we need to construct the

AIPW scores using the out-of-sample prediction. We estimate the IATE function 𝜏(x) by solving
𝑁

∑
𝑖=1

[𝛼(x𝑖) {Γ̂(−𝑖)
𝑖 − 𝜃(x)}] = 0

where Γ̂(−𝑖)
𝑖 are predictions of the AIPW scores for the 𝑖th observation via estimation of the nuisance

function using observations excluding the 𝑖th observation.
We can construct the out-of-sample prediction using the cross-fitting technique. We split the data

into 𝐾 folds, define the main sample as the observations in the 𝑘th fold, and define the auxiliary sample

as the observations not in the 𝑘th fold. We estimate all the nuisance functions by using the auxiliary

sample and get the out-of-sample predictions in the main sample. After circulating through all the folds,

we eventually compute the out-of-sample predictions for the full sample. For details of the cross-fitting

version of the AIPW estimator for the IATE, see algorithm 5 below.

Algorithm 5: AIPW estimator for the IATE using cross-fitting

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Set the estimation method for the outcome model. It can be one of random forest, lasso,

square-root lasso, or linear regression.

(c) Set the estimation method for the treatment model. It can be one of random forest, lasso,

logit, or probit.

2. Do the cross-fitting to construct the AIPW scores.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in the 𝑘th fold and the auxiliary sample

𝑆𝐴 as the observations not in the 𝑘th fold.
ii. Construct 𝑔1(x,w).

A. Using the auxiliary sample 𝑆𝐴 and treated observations (𝑑𝑖 = 1), train the outcome

model ̂𝑔𝐴
1 (x,w).

B. Based on ̂𝑔𝐴
1 (x,w), predict the treated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(1)
𝑀
.

iii. Construct 𝑔0(x,w).
A. Using the auxiliary sample 𝑆𝐴 and untreated observations (𝑑𝑖 = 0), train the out-

come model ̂𝑔𝐴
0 (x,w).

B. Based on ̂𝑔𝐴
0 (x,w), predict the untreated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(0)
𝑀
.
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iv. Construct the propensity score.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑑𝑀.

v. Construct the AIPW score in the main sample 𝑆𝑀 as

Γ𝑀
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
𝑀

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

𝑀

𝑖 }

̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
𝑀

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

𝑀

𝑖 }

1 − ̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

3. Fit an honest random forest regression of Γ on x using the generalized random forest in Athey,

Tibshirani, and Wager (2019) or fit a linear regression of Γ on x.

Cross-fitting can be applied to generic machine learning techniques. However, by construction, it is

computationally demanding.

When the outcome and treatment models are estimated using random forest, we can use a particular

case of cross-fitting that saves computational time. That is, we can use the out-of-bag predictions to

construct the residuals. The out-of-bag prediction for an observation is constructed using only the trees

in the random forest that do not contain this observation. See Generalized random forest for more details.

This procedure is equivalent to cross-fitting but has a faster computation time. For details of the out-of-

bag prediction-based PO estimator for the IATE, see algorithm 6 below.

Algorithm 6: AIPW estimator for the IATE using out-of-bag prediction

1. Construct 𝑔1(x,w).

(a) Using the full sample and the treated observations (𝑑𝑖 = 1), fit a regression forest for the

outcome model. Denote it as ̂𝑔1(x,w).
(b) Based on ̂𝑔1(x,w), predict the treated potential outcome for the full sample using the out-

of-bag prediction. Denote it as 𝑦(1)
(oob)

.

2. Construct 𝑔0(x,w).

(a) Using the full sample and the untreated observations (𝑑𝑖 = 0), fit a regression forest for the

outcome model. Denote it as ̂𝑔0(x,w).
(b) Based on ̂𝑔0(x,w), predict the treated potential outcome for the full sample using the out-

of-bag prediction. Denote it as 𝑦(0)
(oob)

.

3. Construct the propensity score.

(a) Using the full sample, fit a probability forest for the treatment model. Denote it as ̂𝑓(x,w).
(b) Based on ̂𝑓(x,w), predict the propensity score for the full sample using the out-of-bag pre-

diction. Denote it as ̂𝑑(oob).

4. Construct the AIPW scores as

Γ𝑖 =
⎡
⎢⎢
⎣

𝑦(1)
(oob)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(oob)

𝑖 }

̂𝑑(oob)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(oob)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(oob)

𝑖 }

1 − ̂𝑑(oob)
𝑖

⎤
⎥⎥
⎦
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5. Fit a random forest regression of Γ on x using the generalized random forest in Athey, Tibshirani,

and Wager (2019) or fit a linear regression of Γ on x.

cate aipw implements both algorithms 5 and 6, and the cross-fitting-based AIPW estimator in algo-

rithm 5 is the default. The oob option specifies to use the out-of-bag prediction in algorithm 6, and it

requires that options omethod() and tmethod() be specified with random forest.

In practice, we must specify the following points in cate aipw for the IATE estimation:

1. The outcome variable 𝑦 and the treatment variable 𝑑.

2. The treatment-effects conditioning variables x, which correspond to catevarlist in the syntax of

cate.

3. The controls() option with the control variables w, which are empty by default.

4. The cmethod() option with the estimation method for the IATE function 𝜏(x), which can be either
random forest or linear regression. The default is random forest.

5. The omethod() option with the estimation method for 𝑔1(x,w) and 𝑔0(x,w) can be lasso, random
forest, or linear regression. The default is lasso.

6. The tmethod() option with the estimation method for the treatment model 𝑓(x,w), which can be
logit, probit, lasso, or random forest. The default is lasso.

At minimum, we must specify points 1 and 2 and use the default settings for the other points.

Both PO and AIPW are consistent estimators of 𝜏(x) under similar regularity conditions, and they are

Neyman orthogonal in the sense that the estimates are robust to the machine learning mistakes made in

the nuisance parameters, such as 𝑔(x,w) or 𝑓(x,w).
The AIPW estimator is more efficient than the PO estimator. That is, in large samples, the AIPW esti-

mates of the IATE function are more precise than the PO estimates (see Kennedy [2023]). In addition, the

AIPW estimator has double robustness; that is, the estimator is still consistent even if the outcome model

or the treatment model is misspecified (see Chernozhukov et al. [2018]).

However, the PO estimator is more robust than theAIPW estimator when there are some nearly perfect

predictions of the propensity score 𝑓(x,w). More precisely, the AIPW estimator needs to compute the

inverse of propensity score 𝑓(x,w) or 1−𝑓(x,w), which lies between 0 and 1. Thus, theAIPW estimator

may be undefined whenever the propensity score 𝑓(x,w) estimates are close to 0 or 1. In contrast, the

PO estimator does not have these issues.

AIPW GATE estimator with prespecified groups

The GATE estimator for the fully interactive model is the OLS estimate for theAIPW scores on the group

indicator, following Semenova and Chernozhukov (2021).

In the full interactive model, the AIPW score is defined as

Γ𝑖 =
⎡
⎢⎢
⎣

𝑦(1)
(−𝑖)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(−𝑖)

𝑖 }

̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(−𝑖)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(−𝑖)

𝑖 }

1 − ̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦
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where

1. 𝑦𝑖 is the observed outcome.

2. 𝑑𝑖 is the observed treatment indicator.

3. 𝑦(1)
(−𝑖)

𝑖 is the out-of-sample prediction of the treated potential outcome.

4. 𝑦(0)
(−𝑖)

𝑖 is the out-of-sample prediction of the untreated potential outcome.

5. ̂𝑑(−𝑖)
𝑖 is the out-of-sample prediction of the propensity score.

The scores can be obtained using either the cross-fitting AIPW estimator in algorithm 5 or the out-

of-bag prediction-based AIPW estimator in algorithm 6. After the AIPW scores are obtained, the GATE

estimator is just the OLS estimate of scores on the group indicator. For details of estimating the GATE in

the fully interactive model, see algorithm 7 below.

Algorithm 7: GATE estimator with a prespecified group

1. Select the group variable 𝐺.

2. Run either algorithm 5 or algorithm 6 to obtain the AIPW scores Γ(−𝑖)
𝑖 .

Γ(−𝑖)
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
(−𝑖)

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

(−𝑖)

𝑖 }

̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
(−𝑖)

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

(−𝑖)

𝑖 }

1 − ̂𝑑(−𝑖)
𝑖

⎤
⎥⎥
⎦

3. Run OLS of Γ on the group indicators based on 𝐺.

AIPW GATES estimator with data-driven groups

In the fully interactive model, the procedure to compute the GATESs with data-driven groups is very

similar to that for the partial linear model. The only difference is using the AIPW scores implied by

the fully interactive model. For details of estimating the GATESs with data-driven groups for the fully

interactive model, see algorithm 8.

Algorithm 8: GATES estimator with data-driven groups in fully interactive model

1. Define the input.

(a) Set the number of cross-fitting folds 𝐾.

(b) Select the estimation method for the outcome and treatment models.

2. Perform cross-fitting to construct the AIPW scores.

(a) Randomly split the data into 𝐾 folds.

(b) For each fold 𝑘 = 1 to 𝐾, do the following:

i. Define the main sample 𝑆𝑀 as the observations in folds 𝑘 and the auxiliary sample 𝑆𝐴

as the observations not in folds 𝑘.
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ii. Construct 𝑔1(x,w).
A. Using the auxiliary sample 𝑆𝐴 and treated observations (𝑑𝑖 = 1), train the outcome

model ̂𝑔𝐴
1 (x,w).

B. Based on ̂𝑔𝐴
1 (x,w), predict the treated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(1)
𝑀
.

iii. Construct 𝑔0(x,w).
A. Using the auxiliary sample 𝑆𝐴 and untreated observations (𝑑𝑖 = 0), train the out-

come model ̂𝑔𝐴
0 (x,w).

B. Based on ̂𝑔𝐴
0 (x,w), predict the untreated potential outcome in the main sample 𝑆𝑀.

Denote the prediction as 𝑦(0)
𝑀
.

iv. Construct the propensity score.

A. Using the auxiliary sample 𝑆𝐴, train the outcome model ̂𝑓𝐴(x,w).
B. Based on ̂𝑓𝐴(x,w), predict the propensity score in the main sample 𝑆𝑀. Denote

the prediction as ̂𝑑𝑀.

v. Construct the AIPW score in the main sample 𝑆𝑀 as

Γ𝑀
𝑖 =

⎡
⎢⎢
⎣

𝑦(1)
𝑀

𝑖 +
𝑑𝑖 {𝑦𝑖 − 𝑦(1)

𝑀

𝑖 }

̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

−
⎡
⎢⎢
⎣

𝑦(0)
𝑀

𝑖 +
(1 − 𝑑𝑖) {𝑦𝑖 − 𝑦(0)

𝑀

𝑖 }

1 − ̂𝑑𝑀
𝑖

⎤
⎥⎥
⎦

vi. Construct the IATE ranking.

A. Using the auxiliary sample 𝑆𝐴, train the IATE model ̂𝜏 (x)𝐴 using algorithm 5.

B. Based on ̂𝜏 (x)𝐴, predict 𝜏(x) in the main sample, and denote it as ̂𝜏 (x)𝑀.

C. Generate the ranking in the main sample based on the quantiles of ̂𝜏 (x)𝑀.

3. Run an OLS regression of the AIPW scores on the generated groups’ indicator dummies.

Generalized random forest
The generalized random forest, proposed in Athey, Tibshirani, and Wager (2019), solves the moment

condition

𝐸 {𝜓𝜃(x)(o𝑖)|x𝑖 = x} = 0

where 𝜃(x) is a parameter of interest, o𝑖 is a vector of variables including the outcome variable and some

covariates, and x𝑖 is a vector of covariates in the function 𝜃(x).
The form of 𝜓𝜃(x)(o𝑖) varies depending on the context. For example, in the regression or probability

random forest, the parameter of interest is 𝜃(x) = 𝐸(𝑦|x), and the moment condition is

𝐸 {𝑦𝑖 − 𝜃(x)|x𝑖 = x} = 0

In the causal random forest, the parameter of interest is 𝜃(x) = 𝜏(x), and the moment condition is

𝐸 [ ̃𝑑𝑖 { ̃𝑦𝑖 − 𝜃(x) ̃𝑑𝑖} ∣x𝑖 = x] = 0

where ̃𝑑 and ̃𝑦 are partialed-out residuals of 𝑑 and 𝑦 discussed in the PO estimator.



cate — Conditional average treatment-effects estimation 80

To estimate 𝜃(x), generalized random forest solves the empirical moment condition

𝑁
∑
𝑖=1

𝛼𝑖(x)𝜓𝜃(x)(o𝑖) = 0

where 𝛼𝑖(x) defines the local weights that attach more weight to observations close to 𝑥. Generalized
random forest obtains 𝛼𝑖(x) by averaging the neighborhood implied by a forest. See Athey, Tibshirani,

and Wager (2019, sec. 2) for a detailed discussion.

The generalized random forest is an ensemble of honest trees, which we explain next.

Honest tree

A tree is an algorithm that divides the data into different parts, such that each part consists of obser-

vations that are as similar as possible. The following graph illustrates a regular regression tree:

x15 <= -0.58  

x19 <= 0.36   x20 <= 0.42   

x10 <= 1.78   
size = 5

 Y = 1.40   
x11 <= -1.22  

size = 9
 Y = 5.42   

size = 9
 Y = -4.06  

size = 1
 Y = 2.67   

size = 1
 Y = -5.94  

x12 <= -0.52  

size = 2
 Y = -2.54  

size = 8
 Y = 1.69   

For example, in the above graph, we first look at variable 𝑥15 to determine how to divide the data.

If its value is smaller than or equal to −0.58, that observation goes to the left; otherwise, it goes to the

right. Each time we split the data, it is represented by a node. We recursively continue this procedure

until we hit a “leaf” node, which means we cannot find a variable to split the data.

The leaf nodes in the graph are represented as a blue rectangle. A leaf node defines a part of the tree

partition. For example, the leftmost leaf has 9 observations (size = 9 and 𝑌 = −4.06 in the graph). We

can travel to this leaf by finding observations satisfying three conditions: 𝑥15 ≤ −0.58, 𝑥19 ≤ 0.36, and

𝑥10 ≤ 1.78. These three conditions correspond to the three nodes from the top to the bottom, enabling

us to travel from the top to the particular leaf.
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In each leaf node, the mean of the outcome within a leaf is used to label the leaf or attach a value to it.

Thus, constructing a tree involves two main steps: splitting the tree and labeling the tree. More precisely,

tree construction involves the following:

1. Splitting the tree: For each node, find a splitting variable 𝑥𝑠 and a value 𝑣𝑠 such that the resulting

divisions are as different as possible. In particular, we find 𝑥𝑠 and 𝑣𝑠 by solving

(𝑥𝑠, 𝑣𝑠) = argmin(𝑥𝑚,𝑣𝑚)∈x×𝐷(𝑥𝑚) {cost(𝑥𝑚 ≤ 𝑣𝑚) + cost(𝑥𝑚 > 𝑣𝑚)}

where cost(⋅) is a cost function that characterizes the node’s homogeneity and its definition varies

depending on the context. For example, in the regression forest, the cost function is the mean

squared error of the outcome; in the probability forest, the cost function is the Gini index for the

outcome; in the causal forest, the cost function is the squared sum of the influence function implied

by the causal forest moment condition. For details, see Athey, Tibshirani, andWager (2019, sec. 2).

2. When there are not enough observations in any node, the algorithm stops searching. The

splitminobs() option specifies the minimum number of observations needed to perform a split.

3. Labeling the tree: In each leaf, attach a value or a label to the leaf. The labeling formula varies

depending on the context. In the regression or probability forest, the label is the outcome’s mean

within a leaf. In the causal forest, the label consists of the means of the outcome, the treatment,

and their interactions. For details, see Athey, Tibshirani, and Wager (2019, sec. 2).

An honest tree differs from a regular tree by dividing the sample into two subsamples. One is used to

split the tree, and the other is used to label the leaves. For details, see algorithm 9 below.

Algorithm 9: Honest tree

1. Split the data into two parts: 𝐴 and 𝐵. The honestrate() option specifies the fraction of the

data used to construct 𝐴.

2. Use sample 𝐴 to split the tree.

3. Use sample 𝐵 to label the tree.

Honest random forest

The honest random forest is an ensemble of honest trees with some requirements on the randomness

of the tree. There are two main requirements: first, each tree must use a random subsample of the data;

second, for each node in the tree, only a random subset of the variables may be searched to find the best

variable to split. For more details on the honest random forest, see algorithm 10 below.

Algorithm 10: Honest random forest

1. Define 𝐵 as the number of trees, which can be specified in the ntrees() option.

2. For each tree 𝑏 = 1 to 𝐵, do the following:

(a) Draw a random sample 𝑆𝑏 of the full data. The samprate() option specifies the fraction of
the sample.
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(b) Based on 𝑆𝑏, construct an honest tree using algorithm 9. In each node of the honest tree, only

a random subset of variables is searched to find the best variable to split. Themean number of

this variable set follows a Poisson distribution with expectation 𝜇. The splitmeanvars()
option specifies 𝜇.

3. Use the forest to construct local weights 𝛼𝑖(x), and then estimate 𝜃(x) by solving the moment

condition ∑𝑁
𝑖=1 𝛼𝑖(x)𝜓𝜃(x)(o𝑖) = 0.

Confidence intervals

The confidence intervals of the estimate 𝜃(x) in generalized random forest are constructed using the

delta method, as discussed in Athey, Tibshirani, and Wager (2019, sec. 4). In particular, the confidence

intervals with significance level 𝛼 are defined as

lim𝑛→∞𝐸 [𝜃(x) ∈ { ̂𝜃(x) ± Φ−1(1 − 𝛼/2)𝜎̂(x)}] = 𝛼

where Φ−1(⋅) is the inverse function of the Gaussian cumulative distribution function and 𝜎̂(x) is an

estimate of the standard errors of ̂𝜃(x).
The variance of 𝜃(x) is defined as

𝑉 𝑎𝑟{𝜃(x)} = 𝜉′𝑉 (x)−1𝐻(x)𝑉 (x)−1𝜉

where 𝑉 (x) = 𝜕𝐸{𝜓𝜃(x)(o)|x𝑖=x}
𝜕𝜃(x) , 𝜉 is the subvector selector, and 𝐻(x) = 𝑉 𝑎𝑟 {∑𝑁

𝑖=1 𝛼𝑖𝜓𝜃(x)(o𝑖)}. See
Athey, Tibshirani, andWager (2019, sec. 4) for a detailed discussion on 𝑉 (x) and 𝜉. We use the bootstrap

of little bags to estimate 𝐻(x). See algorithm 11 for details.

Algorithm 11: Bootstrap of little bags

1. Define the number of trees in each bag, 𝑙, which can be specified in the cintrees() option.

2. Define the number of trees in the forest, 𝐵, which can be specified in the ntrees() option.

3. For each bag, 𝑔 = 1, . . . , ⌈𝐵/𝑙⌉, draw a random half-sample 𝐻𝑔 ⊂ {1, . . . , 𝑛} of size ⌈𝑛/2⌉,
where 𝑛 is the total number of observations.

4. For each tree, 𝑏 = 1, . . . , 𝐵, draw a random sample 𝐼𝑏 ⊆ 𝐻⌈𝑏/𝑙⌉, and build an honest tree using 𝐼𝑏.

This step implies that the trees in the same bag are drawing samples from the same half-sample

𝐻𝑔.

5. Define Ψ𝑏{𝜃(x)} = ∑𝑛
𝑖=1 𝛼𝑏𝑖(x)𝜓𝜃(x)(o𝑖), where 𝛼𝑏𝑖(x) is the tree-level local weight. Similarly,

define Ψ{𝜃(x)} = ∑𝑛
𝑖=1 𝛼𝑖(x)𝜓𝜃(x)(o𝑖), where 𝛼𝑖(x) is the forest-level local weight. Estimate

𝐻(x) as

𝐻(x) = 𝐸
⎧{
⎨{⎩

(1
𝑙

𝑙
∑
𝑏=1

Ψ𝑏 − Ψ)
2⎫}
⎬}⎭

− 1
𝑙 − 1

𝐸
⎧{
⎨{⎩

1
𝑙

𝑙
∑
𝑏=1

(Ψ𝑏 − 1
𝑙

𝑙
∑
𝑏=1

Ψ𝑏)
2⎫}
⎬}⎭

where the expectation is taken over the bags.

See Athey, Tibshirani, and Wager (2019, sec. 4.1) for a detailed discussion on the consistency of the

bootstrap of little bags.
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Missing values

Random forest can handle missing values in covariates. When facing a missing value of a covariate,

there are three possible scenarios for splitting a node. All three scenarios are computed for every variable

in the random subset of variables to search, and the one with the best cost function is used. For more

discussion, see Twala, Jones, and Hand (2008).

1. Scenario 1: All observations that are not missing in a specific covariate are sent to the left node,

and all the other observations are sent to the right node.

Missing values can provide information on the dependent variable, and potentially, a missing value

of a covariate can be used to split a node in the tree.

2. We use the optimal nonmissing value of the specific covariate (the value that minimizes the cost)

to split observations and then proceed as follows:

(a) Scenario 2: The observations with missing values are sent to the right node.

(b) Scenario 3: The observations with missing values are sent to the left node.

In cate, the observations with missing covariate values are kept if the random forest is used in all

the models, that is, when omethod(), tmethod(), and cmethod() all use rforest. Specifying the

rflistwise option will drop the observations with missing covariate values when all the models are

estimated using random forest.

In contrast, if one of omethod(), tmethod(), or cmethod() does not use rforest, the observations
with missing covariates will be dropped before any computation. This is because estimation methods

such as lasso, regress, and probit will predict missing values if one of the covariates is missing,

and the predicted missing values make the dependent variable of the IATE estimation missing. Because

random forest cannot handle missing dependent variable values, these observations will be dropped even-

tually.
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Postestimation commands predict estat categraph
Remarks and examples Stored results Methods and formulas References
Also see

Postestimation commands
The following postestimation commands are of special interest after cate:

Command Description

estat heterogeneity test for treatment-effects heterogeneity

estat gatetest test for group treatment-effects heterogeneity

estat ate compute the average treatment effect (ATE) for a subpopulation

estat projection fit a linear projection of the individualized average treatment effect (IATE)
estimates on variables

estat series fit a nonparametric series regression of the IATE estimates on variables

estat policyeval evaluate treatment-assignment policy

estat tassigneval synonym of estat policyeval
estat classification perform classification analysis of the data-driven groups

categraph histogram histogram of the IATE predictions

categraph gateplot plot of the group average treatment effect (GATE) or sorted GATE (GATES)
estimates

categraph iateplot plot of the IATE function estimates

The following postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combina-
tions of parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear com-
binations of parameters

predict predict the IATE function or its confidence intervals

predictnl point estimates, standard errors, testing, and inference for generalized pre-
dictions

pwcompare pairwise comparisons of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

85
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predict

Description for predict
predict predicts the observation-level IATE function, the standard errors, or the IATE confidence

intervals.

Menu for predict
Statistics > Postestimation

Syntax for predict

Syntax for predicting the IATE or the standard errors

predict [ type ] newvar [ if ] [ in ] [ , iate stdp ]

Syntax for predicting the IATE confidence intervals

predict [ type ] newvarll [ type ] newvarul [ if ] [ in ], ci [ level(#) ]

newvarll and newvarul specify new variables for the lower and upper bounds of confidence intervals,

respectively.

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for the estimation
sample.

Options for predict
iate, the default, predicts the IATE function point estimates for each observation. The prediction can

be from either a random forest or a parametric regression, which depends on the specification of

cmethod() in cate. If the cmethod(rforest) option is specified in cate, the IATE prediction

is computed using the generalized random forest. If the cmethod(regress) option is specified in

cate, the IATE prediction is computed using a parametric linear regression. By default, a random

forest prediction of the IATE function is computed.

stdp predicts the standard errors of the predictions of the IATE function. For the IATE predictions based

on random forest, the standard errors are computed using a bootstrap of little bags, and for the IATE

predictions based on linear regression, they are computed using the parametric delta method.

ci predicts the confidence intervals of the predictions of the IATE function.

level(#), available only with ci, sets the confidence levels of the confidence intervals; the default is
level(95).
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estat

Description for estat
estat heterogeneity tests the null hypothesis that the treatment effects are homogeneous.

estat gatetest tests the null hypothesis that the ATEs are the same among the specified subgroups.

This command is allowed only when the group() option is specified in cate.

estat ate computes the ATE for a subpopulation defined by an if or in qualifier.

estat projection fits a linear projection of the estimated IATE function on specified variables.

estat series performs nonparametric series regression of the estimated IATE function on specified

variables using a B-spline, piecewise polynomial spline, or polynomial basis.

estat policyeval evaluates the prespecified treatment-assignment rule. In particular, it computes

the value of the policy and compares the difference of the two policies’values if two policies are specified.

estat tassigneval is a synonym of estat policyeval.

estat classification performs a classification analysis of the groups constructed based on the

sorted IATE estimates. It performs a two-sample 𝑡 test to compare the mean of a variable between the

group with the largest treatment effects and the group with the smallest treatment effects. It is only

allowed when the group() option is specified in cate.

Menu for estat
Statistics > Postestimation

Syntax for estat

Perform test of treatment-effects heterogeneity

estat heterogeneity

Perform test of group treatment-effects heterogeneity

estat gatetest [ grnumlist ] [ , gatetest option ]

grnumlist is a numlist that specifies the group levels to be tested. If none are specified, all levels are

used.

Compute the ATE for a subpopulation

estat ate [ if ] [ in ] [ , ate options ]

Fit a linear projection of the IATE estimates on variables

estat projection [ varlist ] [ if ] [ in ] [ , projection options ]

If varlist is not specified, then catevarlist specified in cate will be used.



cate postestimation — Postestimation tools for cate 88

Fit a nonparametric series regression of the IATE estimates on variables

estat series indepvarsseries [ if ] [ in ] [ , series options ]

indepvarsseries is a list of independent variables for which a basis function will be formed.

Evaluate treatment-assignment policy

estat policyeval policyvar1 [ policyvar2 ] [ if ] [ in ] [ , policy options ]

policyvar1 and policyvar2 are variables specifying the probability of assigning each observation to treat-

ment. If two policyvars are specified, estat policyeval computes the values of each policy and

their difference.

Perform classification analysis of the data-driven groups

estat classification varname [ if ] [ in ] [ , classification options ]

gatetest option Description

mtest[ (mtest options) ] test each condition separately

mtest options Description

noadjust no adjustment is to be made; the default

bonferroni Bonferroni’s method

holm Holm’s method

sidak Šidák’s method

Specifying mtest without an argument is equivalent to mtest(noadjust).

ate options Description

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

projection options Description

vce(vcetype) vcetype can be one of ols or robust
level(#) set confidence level; default is level(95)
noconstant suppress the constant term

post post the results as the estimation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
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series options Description

Model

bspline use a third-order B-spline basis; the default

bspline(#) use a B-spline basis of order #

spline use a third-order piecewise polynomial spline basis

spline(#) use a piecewise polynomial spline basis of order #

polynomial use a polynomial basis

polynomial(#) use a polynomial basis of order #

asis(varlist) include varlist in model as specified; do not use in basis

nointeract(seriesvarlist) use seriesvarlist in basis without interactions

criterion(crittype) criterion to use; crittype may be cv, gcv, aic, bic, or mallows
knots(#) use a piecewise polynomial spline or B-spline basis function

with # knots

knotsmat(matname) use knots in matrix matname for piecewise polynomial spline or
B-spline estimation

distinct(#) minimum number of distinct values allowed in continuous covariates;
default is distinct(10)

SE

vce(vcetype) vcetype can be one of ols or robust; default is vce(robust)

Graph
∗ graph[ (seriesgraph opts) ] plot the prediction of conditional ATEs (CATEs)

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary regression coefficients

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

∗ When graph or graph() is specified, only one variable is allowed in indepvarsseries.

seriesgraph opts Description

noci do not plot the confidence intervals

cateopts(scatter opts) affect rendition of the predicted CATE point estimates

ciopts(area opts) affect rendition of the confidence interval

twoway options any options other than by() documented in [G-3] twoway options

scatter opts Description

connect options change the look of lines or connecting method

marker options change the look of markers (color, size, etc.)

policy options Description

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling
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classification options Description

unequal data have unequal variances

welch use Welch’s approximation

level(#) set confidence level; default is level(95)

Options for estat
Options for estat are presented under the following headings:

Options for estat gatetest
Options for estat ate
Options for estat projection
Options for estat series
Options for estat policyeval
Options for estat classification

Options for estat gatetest

mtest[(mtest options)] specifies that tests be performed for each condition separately. mtest options

specifies the method for adjusting 𝑝-values for multiple tests and can be the following:

noadjust specifies that no adjustment is to be made.

bonferroni specifies that Bonferroni’s method be used.

holm specifies that Holm’s method be used.

sidak specifies that Šidák’s method be used.

Specifying mtest without an argument is equivalent to specifying mtest(noadjust).

Options for estat ate

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat projection

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (ols) or that are robust to some kinds of misspecification (robust); see
[R] vce option. The default is vce(robust).

vce(ols) uses the standard variance estimator for ordinary least-squares regression.

level(#); see [R] Estimation options.

noconstant suppresses the constant term.

post posts the results as the estimation results, so all postestimation commands after regress will be

available; see [R] regress postestimation.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat series

� � �
Model �

bspline specifies that a third-order B-spline be selected as the basis. It is the default basis.

bspline(#) specifies that a B-spline of order # be used as the basis. The order may be 1, 2, or 3.

spline specifies that a third-order piecewise polynomial spline be selected as the basis.

spline(#) specifies that a piecewise polynomial spline of order # be used as the basis. The order may

be 1, 2, or 3.

polynomial specifies that a polynomial be selected as the basis.

polynomial(#) specifies that a polynomial of order # be used as the basis. The order may be an integer

between 1 and 16.

asis(varlist) specifies that variables in varlist be included as independent variables in themodel without

any transformation. No B-spline, piecewise polynomial spline, or polynomial basis function will be

formed from these variables. Variables in varlist may not be specified in indepvarsseries.

nointeract(seriesvarlist) specifies that the terms in the basis function formed from variables in se-

riesvarlist not be interacted with the terms of the basis function formed from other variables in inde-

pvarsseries. Covariates specified in seriesvarlist must be in indepvarsseries.

criterion(crittype) specifies that crittype be used to select the optimal number of terms in the ba-

sis function. crittype may be one of the following: cv (cross-validation), gcv (generalized cross-

validation), aic (Akaike’s information criterion), bic (Schwarz’s Bayesian information criterion), or

mallows (Mallows’s 𝐶𝑝). The default is criterion(cv).

knots(#) specifies that a piecewise polynomial spline or B-spline basis function with # knots be used.

The minimum number of knots must be an integer greater than or equal to 1. The maximum number

of knots is either 4,096 or two-thirds of the sample size, whichever is smaller.

knotsmat(matname) specifies that the knots for each continuous covariate be the values in each row

of matname. The number of knots should be the same for each covariate, and there must be as many

rows as there are continuous covariates. If rows ofmatname are not labeled with varnames, then rows

are assumed to be in the order of indepvarsseries.

distinct(#) specifies the minimum number of distinct values allowed in continuous variables. By

default, continuous variables that enter the basis through either indepvarsseries or seriesvarlist are

required to have at least 10 distinct values. Continuous variables with few distinct values provide

little information for determining an appropriate basis function and may produce unreliable estimates.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that assume homoskedasticity (ols); see [R] vce option. The

default is vce(robust).
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� � �
Graph �

graph[ (seriesgraph opts) ] plots the prediction of CATEs. seriesgraph opts may be the following:

noci specifies not to plot the confidence intervals.

cateopts(scatter opts) affects the rendition of the predicted CATE point estimates. scatter opts

may be the following:

connect options specify how points on a graph are to be connected; see [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape,

size, color, and outline; see [G-3] marker options.

ciopts(area options) affects the rendition of the confidence intervals; see [G-3] area options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

When graph or graph() is specified, only one variable is allowed in indepvarsseries.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the auxiliary regression coefficients be reported. By default, only the average
marginal effects of the covariates on the treatment effects are reported.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat policyeval

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat classification

unequal specifies that the unpaired data not be assumed to have equal variances.

welch specifies that the approximate degrees of freedom for the test be obtained from Welch’s (1947)

formula rather than from Satterthwaite’s (1946) approximation formula, which is the default when

unequal is specified. Specifying welch implies unequal.

level(#); see [R] Estimation options.
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categraph

Description for categraph
categraph histogram plots the histogram of the IATE predictions.

categraph gateplot plots the GATE or GATES estimates and their confidence intervals.

categraph iateplot plots the IATE function and the pointwise confidence intervals when one vari-

able is varying and the other variables are fixed at specific values.

Menu for categraph
Statistics > Postestimation

Syntax for categraph

Histogram of the IATE predictions

categraph histogram [ if ] [ in ] [ , histogram options ]

Plot of the GATE or GATES estimates

categraph gateplot [ , gateplot options ]

Plot of the IATE function estimates

categraph iateplot xvar [ if ] [ in ] [ , iateplot options ]

xvar is a variable name specified in catevarlist of cate. It can be a regular variable or a factor variable,
but interaction and product notations are not allowed.

gateplot options Description

Main

level(#) set confidence level; default is level(95)
noci do not plot the confidence intervals

Scatter options

gateopts(scatter opts) affect rendition of the predicted GATE or GATES point estimates

CI options

ciopts(area opts) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

scatter opts Description

connect options change the look of lines or connecting method

marker options change the look of markers (color, size, etc.)
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iateplot options Description

Model
∗ range(# min # max) plot IATE function over xvar equal to # min to # max; the default sets

minimum and maximum of xvar in the current dataset
∗ range(varname) plot IATE function over xvar equal to minimum and maximum of varname
∗ n(#) evaluate at # points; default is 300 points

level(#) set confidence level; default is level(95)
at(atspec) set values for all catevarlist except xvar

IATE plot

iateopts(scatter opts) affect rendition of the predicted IATE point estimates

CI

noci do not plot the confidence intervals

ciopts(area opts) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

∗range() and n() are not allowed if xvar is a factor variable in catevarlist of cate.

Options for categraph
Options for categraph are presented under the following headings:

Options for categraph histogram
Options for categraph gateplot
Options for categraph iateplot

Options for categraph histogram

histogram options are options in [R] histogram.

Options for categraph gateplot

� � �
Main �

level(#); see [R] Estimation options.

noci specifies not to plot the confidence intervals.

� � �
Scatter options �

gateopts(scatter opts) affects the rendition of the predicted GATE or GATES point estimates. scat-

ter opts may be the following:

connect options specify how points on a graph are to be connected; see [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
CI options �

ciopts(area options) affects the rendition of the confidence intervals; see [G-3] area options.



cate postestimation — Postestimation tools for cate 95

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for categraph iateplot

� � �
Model �

range(# min # max) or range(varname) plots the IATE function over xvar between # min and # max

or between the minimum or maximum of varname, respectively, while holding other variables in

catevarlist of cate fixed at some values. The default sets # min and # max to the minimum and

maximum of xvar in the current dataset. See at() below for details on fixing values for the variables

other than xvar.

n(#) evaluates the IATE function at # points. The points on xvar are evenly spaced between the minimum

and the maximum specified in range(). The other variables in catevarlist are fixed at some values

specified in at(). The default is n(300).

level(#); see [R] Estimation options.

at(atspec) specifies values for all the covariates (except xvar) in catevarlist of cate to be treated as

fixed.

atspec may contain one or more of the following specifications:

(stat) varlist

varname = #

where

1. Variable names (whether in varlist or varname) must be the covariates in catevarlist other than

xvar in the cate estimation.

2. Variable names may be continuous variables or factor variables.

3. varlist may also be one of three standard lists:

(a) all (all covariates),

(b) factor (all factor-variable covariates), or

(c) continuous (all continuous covariates).
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4. stat may be any of the following:

Variables

stat Description allowed

mean means (default for continuous variables) continuous

base base level (default for factor variables) factors

median medians continuous

p1 1st percentile continuous

p2 2nd percentile continuous

. . . 3rd–49th percentiles continuous

p50 50th percentile (same as median) continuous

. . . 51st–97th percentiles continuous

p98 98th percentile continuous

p99 99th percentile continuous

min minimums continuous

max maximums continuous

zero fixed at zero continuous

� � �
IATE plot �

iateopts(scatter opts) affects the rendition of the predicted IATE point estimates. scatter opts may

be the following:

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

� � �
CI �

noci specifies not to plot the confidence intervals.

ciopts(area options) affects the rendition of the confidence intervals; see [G-3] area options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
For an overview of cate postestimation tools and the examples that demonstrate how to use the cate

command and its postestimation tools, see details in Remarks and examples in [CAUSAL] cate.

The estimates commands after the cate command work the same as they do after other estimation

commands with only one difference: estimates save filename saves three files, not just one. file-

name.ster, filename.stgrf, and filename.stxer are saved. See [R] estimates for details.
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Stored results
estat heterogeneity stores the following in r():

Scalars

r(p) two-sided 𝑝-value
r(df) test constraints degrees of freedom

r(chi2) 𝜒2

Matrices

r(b) coefficient vector in the best linear prediction of IATE

r(V) variance–covariance matrix of the estimators

estat gatetest stores the following in r():

Scalars

r(p) two-sided 𝑝-value
r(df) test constraints degrees of freedom

r(chi2) 𝜒2

r(drop) 1 if constraints were dropped, 0 otherwise

estat ate stores the following in r():

Scalars

r(N) number of observations

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

estat projection stores the following in r():

Scalars

r(N) number of observations

r(mss) model sum of squares

r(df m) model degrees of freedom

r(rss) residual sum of squares

r(df r) residual degrees of freedom

r(r2) 𝑅2

r(r2 a) adjusted 𝑅2

r(F) 𝐹 statistic

r(rmse) root mean squared error

r(ll) log likelihood under additional assumption of independent and identically distributed nor-

mal errors
r(ll 0) log likelihood, constant-only model

r(rank) rank of r(V)

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(beta) standardized coefficients

r(V modelbased) model-based variance

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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estat projection with the post option stores the following in e():

Scalars

e(N) number of observations

e(mss) model sum of squares

e(df m) model degrees of freedom

e(rss) residual sum of squares

e(df r) residual degrees of freedom

e(r2) 𝑅2

e(r2 a) adjusted 𝑅2

e(F) 𝐹 statistic

e(rmse) root mean squared error

e(ll) log likelihood under additional assumption of i.i.d. normal errors

e(ll 0) log likelihood, constant-only model

e(rank) rank of e(V)

Macros

e(cmd) regress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(model) ols
e(title) title in estimation output when vce() is not ols
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(beta) standardized coefficients

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample

estat series stores the following in r():

Scalars

r(N) number of observations

r(converged) 1 if converged, 0 otherwise
r(order) order of basis function

r(rank) rank of r(V)

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(V modelbased) model-based variance

r(ilog) iteration log (up to 20 iterations)

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals
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estat policyeval stores the following in r():

Scalars

r(N) number of observations

Macros

r(policy var1) first policy variable name

r(policy var2) second policy variable name

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

estat classification stores the following in r():

Scalars

r(N 1) sample size 𝑛1
r(N 2) sample size 𝑛2
r(p l) lower one-sided 𝑝-value
r(p u) upper one-sided 𝑝-value
r(p) two-sided 𝑝-value
r(se) estimate of standard error

r(t) 𝑡 statistic
r(sd 1) standard deviation for population 1

r(sd 2) standard deviation for population 2

r(sd) combined standard deviation

r(mu 1) 𝑥1 mean for population 1

r(mu 2) 𝑥2 mean for population 2

r(df t) degrees of freedom

r(level) confidence level

categraph iateplot stores the following in r():

Macros

r(xvar) variable allowed to vary

r(vtype list) types of variables other than r(xvar)
r(vname list) names of variables other than r(xvar)
r(stat list) statistics of variables other than r(xvar)

Matrices

r(at) matrix of values from the at() options

Methods and formulas
Methods and formulas are presented under the following headings:

IATE predictions
Test of treatment-effects heterogeneity
Test of group-level treatment-effects heterogeneity
ATE for a subsample
Linear or nonparametric series projection of the IATE on variables
Treatment-assignment policy evaluation
Classification analysis

For notational simplicity, we drop the subscript 𝑖 indicating the 𝑖th observation to refer to a random

variable.
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IATE predictions
predict predicts the IATEs, their standard errors, or the IATE confidence intervals. The IATEs can be

estimated by either a generalized random forest or a parametric linear regression, which is specified in

the cmethod() option of cate. For details of the random-forest-based IATE predictions, their standard

errors, and the confidence intervals, see Generalized random forest in [CAUSAL] cate. For details on

linear-regression-based predictions and their standard errors, see the discussions inMethods and formulas

of [R] predict; the confidence intervals are obtained via the delta method.

Test of treatment-effects heterogeneity
estat heterogeneity tests the null hypothesis that the treatment effects are homogeneous. In par-

ticular, it implements the test proposed in Chernozhukov et al. (2006). Let 𝜏0(x) be the true IATE function,
̂𝜏 (x) be an estimate of the IATE function, 𝜏 be E{ ̂𝜏(x)}, and ̌𝜏 be the sample average of ̂𝜏 (x). Then the

best linear prediction of 𝜏0(x) conditional on ̂𝜏 (x) is given by

𝜏0(x) = 𝛾1𝜏 + 𝛾2{ ̂𝜏(x) − 𝜏} + 𝜖

where 𝜖 is the error term.

If 𝛾2 = 0, it implies that the ̂𝜏 (x) predictions are pure noise, and it also means that 𝜏0(x) is constant or
homogeneous. Thus, to test the null hypothesis that the treatment effects are homogeneous, we perform

a Wald test of 𝛾2 = 0.

In the partialing-out estimator, the coefficients of 𝛾1 and 𝛾2 can be identified by fitting the following

regression:

𝑦 − ℎ̂(x,w) = 𝛾1 ̌𝜏{𝑑 − ̂𝑓(x,w)} + 𝛾2{ ̂𝜏(x) − ̌𝜏}{𝑑 − ̂𝑓(x,w)} + 𝜖

where 𝑦 is the outcome variable, ℎ̂(x,w) estimates E(𝑦|x,w), 𝑑 is the treatment variable, and ̂𝑓(x,w)
estimates E(𝑑|x,w) ≡ P(𝑑 = 1|x,w).

In the augmented inverse-probability weighting (AIPW) estimator, the best linear prediction of 𝜏0(x)
conditional on ̂𝜏 (x) can be obtained by regressing the AIPW scores implied by the full interactive model

on ̌𝜏 and ̂𝜏 (x) − ̌𝜏.

Test of group-level treatment-effects heterogeneity
estat gatetest tests the null hypothesis that the ATEs are the same among the specified subgroup

levels. It performsWald tests on the GATE estimates’ coefficients. For details of Wald tests, see Methods

and formulas in [R] test.

ATE for a subsample
estat ate computes the ATE for a subsample by taking the average of the AIPW scores implied by

the model over the subsample, which is proposed in Chernozhukov et al. (2018) and Knaus (2022). For

details of theAIPW scores in the partial linear and the fully interactive models, see Methods and formulas

in [CAUSAL] cate.
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Linear or nonparametric series projection of the IATE on variables
estat projection computes the linear projection of the IATE function on the specified variables.

Similarly, estat series computes the nonparametric series projection of the IATE function on the basis

functions formed by the specified variables. The linear projection is a special case of the series projection

that uses the basis functions as the variables themselves. Thus, we only need to discuss the methods for

estat series, because estat projection is just a special case.

estat series implements themethods proposed by Semenova and Chernozhukov (2021) by running

a series regression of theAIPW scores implied by the model on the basis functions formed by the specified

variables. For details of theAIPW scores in the partial linear and the fully interactive models, seeMethods

and formulas in [CAUSAL] cate. For a discussion of nonparametric series regression, see Methods and

formulas in [R] npregress series.

Treatment-assignment policy evaluation
estat policyeval or estat tassigneval evaluates treatment-assignment policies. Suppose a

treatment-assignment rule assigns individuals to be treated or not treated. We want to evaluate this

treatment-assignment rule by answering questions such as the following:

1. If we implement such a rule, what is the average outcome of the population?

2. Furthermore, if we have two different rules, which is better?

For the first question, we compute the average of the outcome if the treatment is assigned according

to a rule. We estimate

Π(𝜋) = E[𝜋(x)𝑦(1) + {1 − 𝜋(x)} 𝑦(0)]

where 𝑦(1) is the potential outcome when it is treated, 𝑦(0) is the potential outcome when it is not treated,

and 𝜋(x) ∈ [0, 1] is a prespecified treatment-assignment probability, which is also known as a policy.

Π(𝜋) is also called the value of the policy 𝜋.
For the second question, we compute the difference of the values between two policies, 𝜋1 and 𝜋2. In

particular, we compute the contrast of the values between the two treatment-assignment policies.

Π(𝜋1) − Π(𝜋2)

For details of the potential outcomes in the partial linear and the fully interactive models, see Methods

and formulas in [CAUSAL] cate.

Classification analysis
estat classification performs a classification analysis of the groups constructed based on the

sorted IATE estimates. It performs a two-sample 𝑡 test to compare the mean of a variable between the

least and the most affected groups. For details of 𝑡 tests on the equality of means, see Methods and

formulas in [R] ttest.
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Description Remarks and examples References Also see

Description
Difference in differences (DID) is a method to estimate the average effect of a treatment on those who

receive the treatment. The method can be applied to two types of observational data: repeated cross-

sections, in which different individuals are observed at different time points, and panel data, in which

the same individuals are observed over time. We provide commands that estimate the average treatment

effect on the treated (ATET). The effect may be the same for all (homogeneous) or may differ across time

and across groups (heterogeneous). didregress and xtdidregress are for homogeneous treatment

effects; hdidregress and xthdidregress are for heterogeneous treatment effects.

didregress and xtdidregress estimate the ATET of a binary or continuous treatment on a contin-

uous outcome by fitting a linear model with time fixed effects and group or panel fixed effects. These

commands also estimate difference in difference in differences (DDD), in which we augment the DID

framework to include additional control groups to obtain the ATET.

hdidregress and xthdidregress estimate ATETs that vary over time and over treatment cohorts.

Treatment cohorts are groups that are subject to intervention at different points in time. As in the homo-

geneous case, we can fit a linear model with time fixed effects and group or panel fixed effects, but we

also incorporate interactions of the treatment with time and treatment cohorts. We fit these models us-

ing the two-way fixed-effects (TWFE) estimator. hdidregress and xthdidregress additionally allow
for regression adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-probability

weighting (AIPW) to estimate the ATETs. See [CAUSAL] teffects intro for a discussion of RA, AIPW, and

IPW estimators.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Intuition for estimating effects
DID with heterogeneous treatment effects
Standard error considerations
Different types of data and specification

Specifying groups and time as binary indicators
Excluding group and time effects
Exploring treatment-effect heterogeneity

Conclusion

This entry presents the intuition and some of the technical details for the estimators in didregress,
xtdidregress, hdidregress, and xthdidregress and the diagnostics available after estimation. See

[CAUSAL] didregress, [CAUSAL] didregress postestimation, [CAUSAL] hdidregress, [CAUSAL] xth-

didregress, and [CAUSAL] hdidregress postestimation for details on the syntax and worked examples.

For a more complete discussion and references on homogeneous DID, see Angrist and Pischke (2009),

Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner (2011), Angrist and Pischke (2015),

Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018). For more details on hetero-

geneous DID, see Roth et al. (2022) and de Chaisemartin and D’Haultfœuille (2023) and the references

therein.
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Introduction
DID is one of themost venerable causal inferencemethods used by researchers. DID provides estimates

of treatment effects on those that receive a treatment. Examples of such treatment effects are the effect of

a minimum-wage increase on employment for those that see their minimum wage increase or the effect

of water pollution on health outcomes for those that were exposed to water pollution.

Unlike the treatment-effects estimators described in [CAUSAL] teffects, which are applied to data

from one cross-section, DID allows us to consider variation over time. For example, DID allows for panel

data, for which we observe the same unit over time. It also works for repeated cross-sections, for which

individuals sampled within groups differ across time periods but the groups sampled are the same. An

appealing feature of DID is that our model specification does not require us to control for individual

characteristics to identify treatment effects, something that is fundamental to the estimators described in

[CAUSAL] teffects.

When thinking about ATETs in a DID framework, we compare a group before and after the treatment,

perhaps by looking at a graph such as the one below:
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Figure 1.

A treatment occurred in the year 2010. This might be a government policy, a change in medicine

dosage, or any other intervention of interest. We would like to know if the treatment had a causal effect.

It is clear from the graph that the outcome of interest changed after 2010. Is this due to the treatment or

is something else occurring? Perhaps there are unobserved time effects that affect the treatment group

after the treatment. For instance, there could have been a change in weather conditions or an economic

downfall that affected the treatment group but was not captured in the model or the data. If this is the

case, it does not suffice to look at the treatment group before and after the policy. DID addresses this by

finding a control group, that is, a group that was subject to the same unobserved time effects but was

not exposed to the treatment. Comparing the treatment group with the control group before and after

the treatment might give us a better understanding of whether the treatment made a difference. A graph

looking at a treatment and control group might look like this:
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Figure 2.

For both the treatment and the control group, we see that there was a decrease in the mean of the outcome

after 2010. Therefore, the decrease we saw in the treatment group cannot be attributable entirely to the

treatment. (In fact, these are simulated data, and we know the treatment has no effect.)

In a DID setup, if the treated group had not received the treatment, we would expect the treated and

control groups to experience the same trends. A treatment effect implies a systematic deviation from a

common trend that can be observed graphically. This is what we observe:
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Figure 3.

Here both groups experienced a decrease after 2010, but the treatment-group decrease was more sub-

stantial. The difference in the decreases across groups may indicate the effect of the treatment.

Researchers may motivate their analysis with such graphs. However, graphical evidence is not

enough. We need statistical validation, so we fit a model.
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TheATET is consistently estimated by differencing the average outcome for the treatment and control

groups over time to eliminate time-invariant unobserved characteristics and also differencing the average

outcome of these groups to eliminate time-varying unobserved effects common to both groups. These

two differences give the method its name and highlight its intuitive appeal. More appealing is the fact

that you can get the effect of interest, the ATET, from one parameter in a linear regression.

When talking about DID, people cite Snow (1849) and Snow (1855) as the first known applications.

Snow claimed that cholerawas not transmitted by contaminated air or contaminated blood, as was thought

by some academics of his time. Snow hypothesized the disease was communicated via water that had

been polluted with sewage. Below, he describes how he came up with an idea for a natural experiment

to validate his hypothesis:

In Thomas Street, Horsleydown, there are two courts close together, consisting of a num-

ber of small houses or cottages, inhabited by poor people. The houses occupy one side of

each court or alley—the south side of Trusscott’s Court, and the north side of the other,

which is called Surrey Buildings, being placed back to back, with an intervening space,

divided into small back areas, in which are situated the privies of both the courts, communi-

cating with the same drain, and there is an open sewer which passes the further end of both

courts. Now, in Surrey’s buildings the cholera has committed fearful devastation, whilst in

the adjoining court there has been but one fatal case, and another case that ended in recovery.

In the former court the slops of dirty water poured down by the inhabitants into a channel

in front of the houses got into the well from which they obtained their water, this being the

only difference . . . .

In the first edition (1849) of the text, Snow reports the deaths from cholera from September 23, 1848,

to August 25, 1849, for five London districts. The number of deaths is higher in the South and East

districts relative to the other three districts, arising from the source of their water supply. Snow obtains

a clear motivation for his theory. In the second edition (1855), he collects data before and after a pump

with contaminated water in Broadstreet, London, is closed. It is then that he can compare a treated with

a control group before and after a treatment to establish a treatment effect.
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� �
John Snow (1813–1858) was born in York, England. From age 14, he worked as an apprentice

and assistant to surgeons in northeast England and Yorkshire. In 1836, Snow moved to London;

he was admitted to the Royal College of Surgeons in 1838 and the Royal College of Physicians in

1850. He made outstanding contributions to the adoption of anesthesia and is considered one of the

originators of modern epidemiology. Snow died following a stroke in 1858.

Snow calculated dosages for ether and chloroform. He personally administered chloroform toQueen

Victoria for the births of her last two children, which helped obstetric anesthesia gain wider accep-

tance.

Snow was skeptical of the miasma theory that cholera was caused by foul air. His essay On the

Mode of Communication of Cholera was first published in 1849 and then greatly enlarged in 1855

with the results of his very detailed investigation of the role of water supply in the epidemic of 1854

in the Soho district of London. Snow identified the source of the outbreak as the public water pump

on Broad Street (now Broadwick Street), leading the local council to remove the pump handle. It

was later discovered that the well had been dug very close to an old cesspit. He also mapped the

clustering of cholera cases around the pump and related mortality to water sources, clearly showing

higher deathrates in areas supplied by the Southwark and Vauxhall Waterworks Company, which

was taking water from sewage-polluted sections of the River Thames. Snow is widely regarded as

a pioneer in public health, epidemiology, and medical geography.� �
Intuition for estimating effects

We can build our intuition about the causal inference implied by the DID setup by using the potential-

outcomes framework described in [CAUSAL] Intro, [CAUSAL] teffects intro, and [CAUSAL] teffects intro

advanced. We consider individual-level data for which we sample different individuals at different

points in time, that is, a repeated cross-section. The treatment occurs at the group level. For example,

the treatment may occur at the state, county, or hospital level. All individuals in a given state, county, or

hospital either are treated or are controls at a given point in time. We index individuals by 𝑖, groups by 𝑔,
and time by 𝑡. We are interested in the effect of a treatment, 𝐷𝑖𝑔𝑡 ∈ {0, 1}, on an outcome, 𝑌𝑖𝑔𝑡. Suppose

the potential-outcome mean of an individual in group 𝑔 at time 𝑡 that does not receive the treatment is

given by the following:

𝐸 {𝑌𝑖𝑔𝑡 (0) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 (1)

Above,𝛄𝑔 denotes the group effects, and𝛄𝑡 denotes the time effects. Also suppose the potential-outcome

mean for someone who receives the treatment is given by the following:

𝐸 {𝑌𝑖𝑔𝑡 (1) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 + 𝛿 (2)

The potential outcomes described above allow us to think of the regression model

𝑌𝑖𝑔𝑡 = 𝛄𝑔 + 𝛄𝑡 + 𝐷𝑔𝑡𝛿 + 𝜖𝑖𝑔𝑡

A regression estimate of 𝛿, the coefficient on the indicator of treatment, consistently estimates the

ATET in this simplified framework, if we meet the overlap assumption, the stable unit treatment value

assumption, and conditional independence (described in [CAUSAL] Intro and [CAUSAL] teffects intro

advanced), plus one additional assumption.

https://www.stata.com/giftshop/bookmarks/series8/snow/
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To introduce this additional assumption, we think it is sometimes more intuitive to look at a two-

period, two-group example. In this case, 𝑔 ∈ {0, 1}, where 0 is the control group and 1 is the treatment

group, and 𝑡 ∈ {0, 1}, where 0 is the period before the treatment and 1 occurs after the treatment. To

guarantee a consistent estimate of the ATET, we need to make the parallel-trends assumption:

𝐸(𝑌𝑖𝑔1 (0) | 𝐷𝑔𝑡 = 1) − 𝐸(𝑌𝑖𝑔0 (0) | 𝐷𝑔𝑡 = 1) = 𝐸(𝑌𝑖𝑔1 (0) | 𝐷𝑔𝑡 = 0) − 𝐸(𝑌𝑖𝑔0 (0) | 𝐷𝑔𝑡 = 0)

The parallel-trends assumption is stated in terms of the potential outcomes of not being treated, 𝑌𝑖𝑔𝑡(0),
conditional on treatment, 𝐷𝑔𝑡. It implies that if the treated had not received the treatment, the groups

defined by 𝐷𝑔𝑡 = 1 and 𝐷𝑔𝑡 = 0 would have the same trends. For this to be true, we need group effects

to be time invariant and time effects to be group invariant. The simple framework described in (1) and

(2) satisfies the parallel-trends assumption.

The parallel-trends assumption has a graphical representation. Let’s think again about the case with

multiple time periods. The parallel-trends assumption implies the paths of the outcome variable over time

are parallel between the control and treatment groups prior to the date of the treatment. We can visually

check this assumption by plotting the means of the outcome over time for both groups or by visualizing

the results of the linear trends model. For instance, we might use a graph like the one in figure 2, where

we plotted the means over time. After fitting a model using didregress and xtdidregress, you can
get both the mean outcome plot and the trends plot by typing

. estat trendplots

Another way to think about the parallel-trends assumption in the pretreatment period is that treatment

and control groups do not change their behavior in anticipation of the treatment. We can think of the

parallel-trends assumption as implying that there should be no treatment effect in anticipation of the

treatment. To test this assumption, we could fit a Granger-type causality model where we augment

our model with dummies for each pretreatment period for the treated observations. A joint test of the

coefficients on these dummies against 0 can be used as a test of the null hypothesis that no anticipatory

effects have taken place. We can perform this test by typing

. estat granger

DID with heterogeneous treatment effects
When we introduced DID estimation above, we built our intuition for a case in which the treatment

effect is the same for every group and in which the treatment effect does not change over time. We

imposed this when we wrote

𝐸 {𝑌𝑖𝑔𝑡 (0) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡

𝐸 {𝑌𝑖𝑔𝑡 (1) | 𝑔, 𝑡} = 𝛄𝑔 + 𝛄𝑡 + 𝛿

Also, we discussed the model using two groups and two time periods, a 2 × 2 model. But nothing

precludes us from thinking of a set of treatment effects, say, 𝛿𝑔𝑡, that varies over multiple groups, 𝑔,
and time periods, 𝑡. More importantly, when we assume that the effect is homogeneous but the true

model is heterogeneous, our treatment-effect estimates are going to be inconsistent, as was shown by

de Chaisemartin and D’Haultfœuille (2020), Borusyak, Jaravel, and Spiess (2021), Sun and Abraham

(2021), and Goodman-Bacon (2021).

Goodman-Bacon (2021) characterizes the ATET estimate obtained from a DID of the form

𝑌𝑖𝑔𝑡 = 𝛄𝑔 + 𝛄𝑡 + 𝐷𝑔𝑡𝛿 + 𝜖𝑖𝑔𝑡
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when there are multiple time periods and treatment occurs at different points in time as a deviation from

the 2 × 2 framework. He shows the estimated coefficient, ̂𝛿, is a weighted average of contrasts between
groups treated at different points in time and groups that are not treated. When contrasts occur over

time between treated groups and groups that are never treated or not yet treated, the comparisons are

informative. When contrasts occur between groups that are both already treated, this component of the

weighted average is not a treatment effect and thus introduces bias. The bias can be significant and

change not only the magnitude but also the sign of the coefficient.

Goodman-Bacon (2021) decomposes ̂𝛿 and estimates all contrasts and weights that lead to the homo-

geneous estimate. For balanced-panel datasets, after xtdidregress, you can get the decomposition of

the ATET by typing

. estat bdecomp

The result will let you know if the homogeneity assumption is warranted. This would be the case if the

coefficients of the different contrasts are similar to theATET estimate. If the contrasts differ substantially

from the ATET estimate, our estimates are misleading.

If the decomposition suggests the homogeneous treatment effect is unwarranted or you do not want

to impose homogeneity in treatment, you may use xthdidregress. If you are concerned about hetero-
geneity, you may choose from two workflows. With balanced panels, you might choose to fit the model

for homogeneous treatment effects first and use estat bdecomp to determine whether effects are hetero-

geneous. With any panel or repeated cross-sectional data, you can fit a heterogeneous treatment-effects

model and then use estat aggregation to ascertain whether effects are heterogeneous.

The treatment effects you are estimating using hdidregress and xthdidregress are of the form

ATET (𝑐, 𝑡)

where 𝑐 corresponds to the moment in time when a group receives the treatment, a cohort, and 𝑡 corre-
sponds to time. For example, a policy might be administered at the state level starting in 1995 for some

states and in 1998 for other states. In this case, we would have treatment effects of the form ATET(1995, 𝑡)
and ATET(1998, 𝑡). We are saying that the effect of the policy is different for states treated in 1995 than

it is for those treated in 1998. Also, we are saying that the effect changes over time. Thus, if our sample

goes from 1993 to 2000, for the 1995 cohort, we have treatment effects of the form ATET(1995, 1993),
ATET(1995, 1994), . . . , ATET(1995, 2000).

As is the case for homogeneous treatment, we need to satisfy a parallel-trends assumption and no

anticipation of treatment. Both of these assumptions now need to hold for each cohort. As with the

homogeneous treatment effects, we provide graphical diagnostics and tests. For a test of parallel trends,

we have the command

. estat ptrends

For graphical inspection, you may type

. estat atetplot

which results in a graph for each cohort before and after treatment that lets you see whether there is no

treatment effect, before treatment, for each cohort.

For a discussion of these assumptions and the requirements needed for consistency of the heteroge-

neous treatment implemented in hdidregress and xthdidregress, see Wooldridge (2021), Callaway

and Sant’Anna (2021), and Roth et al. (2022).
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Standard error considerations
While a standard linear regression model can be used to estimate the ATET in the homogeneous case,

when assuming homogeneous treatment, the best estimate of the standard error requires some consider-

ation. Many standard-error estimates have been proposed, and each one performs differently depending

on the type of DID model being fit and the structure of the data. Below, we provide a discussion of

some of the issues centered on the available standard-error estimates for hdidregress, didregress,
xthdidregress, and xtdidregress. For a more complete discussion of inference for the homoge-

neous treatment-effect estimators, see Cameron and Miller (2015) and MacKinnon (2019) and the ref-

erences therein. For a more complete discussion of the heterogeneous case, see Wooldridge (2021),

Callaway and Sant’Anna (2021), and Roth et al. (2022). We begin our discussion with didregress and
xtdidregress.

Bertrand, Duflo, and Mullainathan (2004) show that the standard errors for DID estimates are incon-

sistent if they do not account for the serial correlation of the outcome of interest. Because the outcomes

studied usually vary at the group and time levels, it makes sense to correct for serial correlation. The

authors show that using cluster–robust standard errors at the group level where treatment occurs provides

correct coverage in the presence of serial correlation when the number of groups is not too small. Bester,

Conley, and Hansen (2011) further show that using cluster–robust standard errors and using critical val-

ues of a 𝑡 distribution with 𝐺−1 degrees of freedom, where 𝐺 is the number of groups, is asymptotically

valid for a fixed number of groups and a growing sample size. In other words, you do not need the num-

ber of groups to be arbitrarily large, that is, to grow asymptotically. Cluster–robust standard errors with

𝐺 − 1 degrees of freedom are the default standard errors of didregress and xtdidregress.

The results of Bertrand, Duflo, and Mullainathan (2004) and Bester, Conley, and Hansen (2011)

demonstrate that we could still obtain reliable standard errors even when the number of groups was

not large. But what about data with a very small number of groups? Several simulation and theoret-

ical results suggest that cluster–robust standard errors may still have poor coverage when the number

of groups is very small or when the number of treated groups is small relative to the number of con-

trol groups. These scenarios with small group sizes are common in DID studies, and another method of

standard error estimation should be considered in these situations.

When the number of groups is small, we provide three alternatives. The first alternative is to use

the wild cluster bootstrap that imposes the null hypothesis that the ATET is 0. Cameron, Gelbach, and

Miller (2008) and MacKinnon and Webb (2018) show that the wild cluster bootstrap provides better

inference than using cluster–robust standard errors with 𝑡(𝐺 − 1) critical values. The second alternative
comes from Imbens and Kolesár (2016), who show that with a small number of groups, you may use

bias-corrected standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaffrey

(2002). For the third alternative, you may use aggregation-type methods like those proposed by Donald

and Lang (2007); they show that their method works well when the number of groups is small but the

number of individuals in each group is large.

When the disparity between treatment and control groups is large, for example, because there is only

one treated group or because the group sizes vary greatly, cluster–robust standard errors and the other

methods mentioned above underperform. Yet the bias-corrected and cluster–bootstrap methods provide

an improvement over the cluster–robust standard errors.

What we said above for didregress and xtdidregress applies to hdidregress and

xthdidregresswhen the underlying estimator is a linear regression. Considerations are different when

we talk about the RA, AIPW, and IPW estimators implemented by the heterogeneous DID commands.

These last three estimators can be understood as estimates from a multiple-equation model, in which
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each ATET(𝑐, 𝑡) could have been estimated separately. The standard errors of the estimates are, by de-

fault, equivalent to what you would obtain using a method of moments estimator and clustering at the

group level where the treatment is administered; see [R] gmm.

Because heterogeneous DID has multiple equations and parameters, you may want to consider infer-

ence of all the ATET(𝑐, 𝑡) estimates simultaneously: uniform inference. For such a scenario, you may use

the bootstrap procedure suggested by Callaway and Sant’Anna (2021) by typing

. estat sci

after hdidregress and xthdidregress to obtain simultaneous confidence intervals.

Different types of data and specification
We allow for DID estimation of ATETs with two types of data: repeated cross-sections and panel data.

The type of estimator to use depends on the assumptions you would like to make about the model and

what type of data you have. Below, we walk you through the different types of models you may want to

fit and how to fit them with didregress, hdidregress, xtdidregress, and xthdidregress.

Suppose you have a repeated cross-section of individuals 𝑖 over a period of time 𝑡. The treatment is

implemented at the state level, 𝑠, and it is denoted by 𝐷𝑠𝑡, where 𝐷𝑠𝑡 = 1 for all observations that are

subject to the treatment in state 𝑠 at time 𝑡. The indexing of the treatment makes clear that all individuals

in the state at a given time are either treated or untreated. The model to be fit is given by

𝑦𝑖𝑠𝑡 = 𝛄𝑠 + 𝛄𝑡 + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (3)

In the expression above, 𝑦𝑖𝑠𝑡 is the outcome, y in our data; z𝑖𝑠𝑡 are individual-level characteristics, given

by z1 and z2; and 𝐷𝑠𝑡 is given by the variable d. To obtain the ATET, we type
. didregress (y z1 z2) (d), group(state) time(year)

Within the first set of parentheses, we list the outcome and covariates z𝑖𝑠𝑡 from (3). In the second

set of parentheses, we specify the treatment variable. Group and time effects are included in the model

through the group() and time() options, respectively. Also, by default, cluster–robust standard errors
are computed at the state level. The command above is equivalent to typing

. regress y z1 z2 i.year i.state d, vce(cluster state)

The model we fit above assumes the treatment effect is homogeneous. Yet we may want to allow the

treatment effect to vary over treatment-time cohort and over time. If this is the case, we may type

. hdidregress twfe (y) (d), group(state) time(year)

or, instead of twfe, we could specify ra, ipw, or aipw. All of these estimators will provide multiple

cohort-time treatment effects instead of one ATET parameter. Notice that we excluded z1 and z2 in the

specification above. Depending on the estimator we select, we could include them in either of the sets

of parentheses. If we include them only in the first parentheses, we are modeling the outcome. If we

include them in the second parentheses, we are modeling the treatment. If we include regressors in both

parentheses, we are modeling the treatment and the outcome. This is equivalent to what we specify when

we use the estimators discussed in [CAUSAL] teffects ra, [CAUSAL] teffects ipw, and [CAUSAL] teffects

aipw.

didregress also allows us to specify a DDDmodel for situations in which we would like to augment

the DID framework to include another control group. For instance, starting from (3), let’s assume the

treatment occurs at the state level but also varies for people older than 65 versus people who are younger,

defined by a binary variable 𝑔. The DDD model is now given by

𝑦𝑖𝑠𝑔𝑡 = 𝛄𝑠 + 𝛄𝑔 + 𝛄𝑡 + 𝛄𝑠𝛄𝑡 + 𝛄𝑔𝛄𝑡 + 𝛄𝑠𝛄𝑔 + z𝑖𝑠𝑔𝑡β + 𝐷𝑠𝑔𝑡𝛿 + 𝜖𝑖𝑠𝑔𝑡
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To fit this model, we would type

. didregress (y z1 z2) (d), group(state g) time(year)

Although the model has a large set of interactions and looks much more complex than the DID model,

the only difference in what we type is the addition of g to the set of group variables. The cluster–robust
standard errors are computed at the highest level of clustering, in this case, state.

In some cases, data do not include a time component but rather multiple grouping variables across

which differences may be taken. You could fit DDD models for three groups or DID for two groups. For

DDD with state, g1, and g2, you could type

. didregress (y z1 z2) (d), group(state g1 g2)

Or you could fit a DID by typing

. didregress (y z1 z2) (d), group(g1 g2)

With these last two specifications, diagnostics that rely on time variables are not available.

With panel data, the basic model is given by

𝑦𝑖𝑠𝑡 = 𝛄𝑖 + 𝛄𝑡 + z𝑖𝑠𝑡𝛽 + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (4)

Again, 𝑖 denotes the individual (panel), 𝑡 is the time period, and 𝑠 is a group-level index. Individuals are
assumed to be nested within the group, and treatment occurs at the group and time levels.

The specification is analogous to the one in (3) , except that instead of 𝛄𝑠 we have 𝛄𝑖. Suppose that

our data now include a panel identifier variable, id, that corresponds to 𝑖 in (4). To fit the model above,

we would type

. xtset id

. xtdidregress (y z1 z2) (d), group(state) time(year)

In this model, the group variable is different from the xtset identifying variable. The group variable

defines the level of clustering, whereas the xtset variable defines the panel identifier. In other words,

we are fitting a fixed-effects model with individual fixed effects, not one with state fixed effects. Of

course, the group and xtset variables could be the same, but they do not need to be.

If we want to assume heterogeneous treatment, we must xtset our data with respect to the panel

variable and with respect to time. The heterogeneous estimates rely on first differences of the outcome

variable. For the RA estimator, you would type

. xtset id time

. xthdidregress ra (y z1 z2) (d), group(state)

Again, the panel variable and the group variable need not be the same, but the group and panel variable

need to be related.

Specifying groups and time as binary indicators

The cross-sectional and panel-data models discussed above for homogeneous treatment are referred

to as generalized DID models by Wing, Simon, and Bello-Gomez (2018). They are a generalization of

the two-period, two-group specification that is usually discussed in the literature. This is also the way

Angrist and Pischke (2009) write the model.
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It is not uncommon, however, to write the DID model in terms of binary indicators. Instead of having

group effects and time effects in the model for all groups and times in the data, you could instead include

only a posttreatment effect and a treatment-group effect. To do this, you would create and include an

indicator in your model that takes the value of 1 if the observation belongs to a treated group and 0

otherwise as well as an indicator that is 1 if the period considered occurs after the treatment. You can

specify this model by using the nogteffects option and including your own indicators.

Say, for example, you create a time-constant indicator, gtreated, that is 1 if a group is treated and

0 otherwise, as well as an indicator, post, that is 1 after the policy was implemented and 0 before. You

would type

. didregress (y z1 z2 i.post i.gtreated) (d), group(state) time(year) nogteffects

The syntax, in which we include indicators and use nogteffects, is equivalent for xtdidregress.

The model you specify in this case is given by

𝑦𝑖𝑠𝑡 = 1 {𝑠 = treated} + 1 {𝑡 = post} + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡

where 1 {𝑠 = treated} is an indicator function that is 1 if group 𝑠 receives the treatment and 0 otherwise.

Similarly, 1 {𝑡 = post} indicates that we are in the period for which the treatment is active. In the ex-

pression above, we still specify the group() and time() options to obtain the correct standard errors,

to validate the assumptions of the DID specification, and to obtain group- and time-level statistics.

Excluding group and time effects

didregress and xthdidregress allow you to forgo the group and time effects that are generated

by default. In this case, you would have to add your own group and time effects or omit them entirely

by using the nogteffects option, which excludes group and time effects from your specification. For

DDD models, you may also use the nointeract option, which will exclude group and time interactions

from your model. Combining both options excludes group and time effects altogether. You may type

. didregress (y z) (d), group(s g) time(t) nogteffects nointeract

You would then fit

𝑦𝑖𝑠𝑔𝑡 = 𝛽0 + z𝑖𝑔𝑠𝑡𝛽 + 𝐷𝑠𝑔𝑡𝛿 + 𝜖𝑖𝑠𝑡

You could still include group and time interactions by adding them in the first set of parentheses.
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Exploring treatment-effect heterogeneity

The heterogeneous treatment-effect estimators assume that the treatment effect changes over cohorts

and over time. Yet we may want to see how the treatment effects vary only in one of those dimen-

sions. For instance, we may want to look at the average of the treatment effects for the 1995 cohort

ATET(1995, 𝑡) within all time periods. We could also average within cohorts at a given point in time to

get a treatment effect for a particular year. Or even more, we might average over cohort and over time

to get back one single ATET. After estimation, we can do this using the estat aggregation command;

see [CAUSAL] hdidregress postestimation.

For the twfe estimator, we can additionally decide at the estimation stage what level of heterogeneity

we want to impose to our model. We can decide whether we want to allow for time heterogeneity or

cohort-level heterogeneity using the hettype() option. For instance, if we wanted to disregard time

heterogeneity but model cohort heterogeneity, we would type

. hdidregress ..., ... hettype(cohort)

Conclusion
didregress and xtdidregress compute the ATET using DID and DDD for panel data and repeated

cross-sections. Additionally, hdidregress and xthdidregress estimate ATETs that vary over time

and over treatment cohorts. All four commands offer standard error computations that address some

of the issues that researchers face, such as a small number of groups. After you fit models with these

commands, diagnostics and tests to validate the assumptions and internal validity of the DID and DDD

results are available.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
didregress estimates the average treatment effect on the treated (ATET) from observational data by

difference-in-differences (DID) or difference-in-difference-in-differences (DDD). TheATET of a binary or

continuous treatment on a continuous outcome is estimated by fitting a linear model with time and group

fixed effects. The DID and DDD estimation performed by didregress can be applied to data comprising

repeated cross-sections in which different groups of individuals are observed at each time period.

xtdidregress estimates the ATET from observational data by DID or DDD for panel data. The ATET

of a binary or continuous treatment on a continuous outcome is estimated by fitting a linear model with

time and panel fixed effects.

Quick start
DID estimate of the ATET of treat1 on outcome y1 modeled using covariates x1 and x2, and grpvar1

and tvar fixed effects, with the treatment occurring at the grpvar1 and tvar levels
didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar)

Same as above, but compute wild cluster–bootstrap 𝑝-values and confidence intervals with grpvar1 as
the clustering variable

didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///
wildbootstrap

Aggregate data at the grpvar1 and tvar levels to estimate the ATET

didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///
aggregate(standard)

Same as above, but use the Donald and Lang (2007) method to compute the ATET and standard errors

didregress (y1 x1 x2) (treat1), group(grpvar1) time(tvar) ///
aggregate(dlang)

DDD estimate of theATET of treat2 on outcome y2modeled using covariates x1 and x2 and fixed effects
defined by two-way interactions for grpvar1, grpvar2, and tvar, with the treatment occurring at

the grpvar1, grpvar2, and tvar levels
didregress (y2 x1 x2) (treat2), group(grpvar1 grpvar2) time(tvar)

DID estimate of ATET of treat3 on outcome y3 using xtset data; y3 modeled using covariates x1 and

x2, and individual (panel) and tvar fixed effects, with the treatment occurring at the grpvar1 and

tvar levels
xtdidregress (y3 x1 x2) (treat3), group(grpvar1) time(tvar)
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Menu
didregress
Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > DID

xtdidregress
Statistics > Causal inference/treatment effects > Continuous outcomes > Difference in differences (DID) > Panel-
data DID (FE)

Syntax
DID for repeated cross-sectional data

didregress (ovar omvarlist) (tvar [ , continuous ]) [ if ] [ in ] [weight ],
group(groupvars) [ time(timevar) options ]

DID for panel data

xtdidregress (ovar omvarlist) (tvar [ , continuous ]) [ if ] [ in ] [weight ],
group(groupvars) [ time(timevar) options ]

ovar is the outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see

[U] 11.4.3 Factor variables.

tvarmust be a binary variable indicating observations subject to treatment or a continuous variable mea-

suring treatment intensity.

groupvars are categorical variables that indicate the group level at which the treatment occurs. At least

one group variable must be specified. If timevar is specified, at most two group variables may be

specified. If timevar is not specified, at most three group variables may be specified.

timevar is a time variable. It must be specified if groupvar has only one variable.
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options Description

Model
∗ group(groupvars) specify group variables
‡ time(timevar) specify time variable

nointeract exclude group() and time() interactions
nogteffects do not include group and time effects in the model

aggregate(aggmethod) aggregate to the levels defined by interacting groupvars and timevar

wildbootstrap[ (wildopts) ] compute confidence intervals and 𝑝-values with the wild bootstrap

SE/Robust

vce(vcetype) vcetype may be cluster clustvar, robust, hc2, or bootstrap

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗group(groupvars) is required.
‡ time(timevar) is required when only one group is specified.
For xtdidregress, a panel variable must be specified using xtset; see [XT] xtset.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

aggmethod Description

standard aggregate data and fit model

dlang[ , dlopt ] aggregate data and fit model using Donald and Lang method

wildopts Description

errorweight(edtype) specify the error weight type edtype; default is
errorweight(rademacher)

reps(#) perform # wild bootstrap replications; default is reps(1000)
rseed(#) set random-number seed to #

blocksize(#) perform wild bootstrap in blocks of # replications
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Options

� � �
Model �

group(groupvars) specifies group variables. It indicates the group level at which the treatment occurs.

groupvars may be, for example, states, counties, or hospitals. groupvars define the group levels for

which group effects are included in the model used to perform DID estimation and for which group

interactions are included in the model used to perform DDD estimation. group() also defines the

level clustering for the default cluster–robust standard errors. group() is required.

You may specify at most two group variables if you also specify a time variable in the time() option
or at most three group variables if no time variable is specified.

time(timevar) specifies the time variable. You may specify time() when one or two group variables

are specified in the group() option. time() is required when only one group variable is specified in
the group() option.

nointeract excludes groupvars and timevar interactions from being included in the model. By default,

didregress and xtdidregress include group and time interactions for your specification if there

is more than one group variable.

nogteffects specifies to not include group and time effects. By default, didregress adds group and

time dummies to the regression specification. By default, xtdidregress adds time dummies to the

fixed-effects specification.

aggregate(aggmethod) fits the model by aggregating data at the groupvars and timevar levels. ag-

gmethod may be either standard or dlang[ , dlopt ].
standard specifies that aggregation is performed using the standard aggregation method. In this

case, a regression model is fit of the original outcome on covariates that vary within levels of

the groupvars and timevar interaction. The estimates of the group-time level effects from this

regression are used to construct a new dependent variable. These effects along with the remaining

covariates are then aggregated to the level of the of the groupvars and timevar interaction. The

final results are obtained by regressing the estimated group-time level effects on the remaining

covariates with this aggregated dataset and estimating group-level cluster–robust standard errors.

dlang[ , dlopt ] aggregates data using methods proposed by Donald and Lang (2007). dlopt may be

either constant or varying.

constant requests that standard errors be estimated using the standard ordinary least-squares

method, as suggested by Donald and Lang (2007). With this method, as with the standard
aggregation method, a single regression model is fit in the first step, so the coefficient estimates

are constant across levels of the groupvars and timevar interaction.

varying specifies that the aggregation method allow for varying coefficients on the covariates.

Specifically, in this case, separate regression models of the original outcome on covariates that

vary within levels of groupvars and timevar are fit for each level of the groupvars and timevar

interaction. Thus, this method allows the coefficients on these variables to vary. The constant

from each of these regressions forms the new dependent variable. The final regression and

standard error computations are equivalent to those used by the constant method.
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wildbootstrap[ (wildopts) ] computes confidence intervals and 𝑝-values with the wild bootstrap. The
wild bootstrap is constructed imposing the null hypothesis that the ATET is 0; that is, it is a restricted

wild bootstrap. Confidence intervals are computed separately from the 𝑝-values. The bounds of the
confidence interval are computed using a bisection optimization algorithm described in Methods and

formulas. wildopts are errorweight(edtype), reps(#), rseed(#), and blocksize(#).

errorweight(edtype) defines the error weight used to draw residuals from thewild bootstrap. edtype

is one of rademacher (the default), mammen, webb, normal, or gamma.

rademachermultiplies the residuals at each bootstrap replication with a randomly generated vari-

able that takes the value of 1 with probability 0.5 and the value of −1 with probability 0.5.

errorweight(rademacher) is the default.

mammen multiplies the residuals at each bootstrap replication with a randomly generated variable

that takes the value of 1 − 𝜙 with probability 𝜙/
√
5 and 𝜙 otherwise, where 𝜙 = (1 +

√
5)/2.

webbmultiplies the residuals at each bootstrap replication with a randomly generated variable that

takes the values −√3/2, −√2/2, −√1/2, √1/2, √2/2, and √3/2, each with probability

1/6.
normal multiplies the residuals at each bootstrap replication with a randomly generated normal

distribution variable with the first four moments given by 0, 1, 0, and 3.

gamma multiplies the residuals at each bootstrap replication with a randomly generated gamma

distribution variable with shape parameter 4 and scale parameter 1/2.
reps(#) performs # wild bootstrap replications. The default is reps(1000).

rseed(#) sets the random-number seed to #.

blocksize(#) specifies that the wild bootstrap be performed in blocks, with # replications

per block. The wild bootstrap computation requires a matrix with dimensions (# groups) ×
(# replications). If this is too large, you can reduce the matrix to (# groups) × (# block size) and
loop (# replications)/(# block size) times. When the same random seed is set, using a different

block size does not change the numerical results; it only modifies the computation method. The

block size must be less than or equal to the number of bootstrap replications.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that allow for intra-

group correlation (cluster clustvar), that are robust to some kinds of misspecification (robust),
that are bias-corrected cluster–robust using the degrees-of-freedom adjustment proposed by Bell and

McCaffrey (2002) (hc2), and that use bootstrap sampling done at the group level (bootstrap); see
[R] vce option.

vce(cluster clustvar), the default, uses the first variable specified in the group(groupvars) option.

vce(hc2) specifies bias-corrected cluster–robust standard errors with the degrees-of-freedom adjust-

ment proposed by Bell and McCaffrey (2002). As with vce(hc2) in [R] regress, the residuals are

rescaled by the projection matrix to improve the small-sample properties of the variance estimates.

For more details, see Methods and formulas.

Specifying vce(robust) is equivalent to specifying vce(cluster clustvar), where clustvar is the

first variable specified in the group(groupvars) option.
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� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model parameters be displayed. By default, the

results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with didregress and xtdidregress but is not shown in the dialog

box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Introduction
DID estimation
Graphical diagnostics and tests
Specifying a 2-by-2 DID
Standard error considerations
Default cluster–robust standard errors

Introduction
DID is one of the most venerable causal inference methods used by researchers. DID estimates the

average treatment effect on the treated group (ATET).

To obtain the ATET using DID, one must compute the difference of the mean outcome for the treat-

ment and the control groups before and after the treatment. This eliminates time-invariant unobservable

group characteristics that confound the ATET; however, this is not enough to identify an effect. There

may be time-varying unobservable confounders with an effect on the treatment group even after we con-

trol for time-invariant unobservable group characteristics. DID eliminates time-varying confounders by

including a control group that is subject to the same time-varying confounders as the treatment group.

TheATET is then consistently estimated, differencing the mean outcome for the treatment and control

groups over time to eliminate time-invariant unobservable characteristics and also differencing the mean

outcome of these groups to eliminate time-varying unobservable effects common to both groups. These

two differences give the DID method its name and highlight its intuitive appeal. More appealing is the

fact that you can get the effect of interest, the ATET, from one parameter in a linear regression.

Below, we illustrate how to use didregress and xtdidregress. For more information about the

methods used below, see [CAUSAL] DID intro. For general discussions of the DID methodology, see

Angrist and Pischke (2009, 2015), Blundell and Dias (2009), Imbens and Wooldridge (2009), Lechner

(2011), Abadie and Cattaneo (2018), and Wing, Simon, and Bello-Gomez (2018) and the references

therein.
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DID estimation

Example 1: Fitting a DID model
A health provider is interested in studying the effect of a new hospital admissions procedure on the

satisfaction of patients. The provider has monthly data on patients from January to July. The new ad-

missions procedure was implemented in April by hospitals that were under new management. Of the 46

hospitals in the study, 18 implemented the new procedure.

The health provider will use a DID regression to analyze the effect of the new admissions procedure

on the hospitals that participated in the program. The outcome of interest is patient satisfaction, satis,
which is recorded as an average of the responses to a set of four questions asked to patients. satis
may take values between 0 and 10, where 10 is the greatest possible level of satisfaction and 0 is utter

disappointment. The procedure variable marks the treated observations; it is 1 if a surveyed individual

was admitted to the hospital using the new procedure after March and 0 otherwise. To get the ATET on

the outcome satis, we type
. didregress (satis) (procedure), group(hospital) time(month)

The first set of parentheses is used to specify the outcome of interest followed by the covariates in

the model. In this case, there are no covariates, just the outcome, satis. The second set of parentheses
is used to specify the binary variable that indicates the treated observations, procedure. The group()
and time() options are used to construct group and time fixed effects that are included in the model.

The variable specified in group() is also important because it defines the level of clustering for the

default cluster–robust standard errors; in this case, we cluster at the hospital level. The results from this

command are as follows:

. use https://www.stata-press.com/data/r19/hospdd
(Artificial hospital admission procedure data)
. didregress (satis) (procedure), group(hospital) time(month)
Treatment and time information
Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4
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Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0321121 26.41 0.000 .7833108 .912665

Note: ATET estimate adjusted for group effects and time effects.

The first table gives information about the treated and control groups and about treatment timing. The

first segment with the title Group tells us the number of treated and control hospitals: 28 hospitals were

using the old procedure and 18 hospitals were using the new one. The second segment of the table gives

information about the first time we observe hospitals in the control group and the first time we observe

the treatment (the new admission procedure) for hospitals in the treatment group. In this example, all

hospitals that adopted the new procedure did so in April, time period 4. If some hospitals had adopted

the policy later, the minimum and maximum time of first treatment would differ.

TheATET is 0.85, almost a 1-point increase in satisfaction relative to the case where none of the treated

hospitals enacted the new procedure. In other words, if the hospitals that implemented the new admission

procedure had not done so, their satisfaction ratings would be lower by almost one point on average.

We now explore whether the trajectories of satis are parallel for the control and treatment groups

prior to the date when the new procedure was implemented. We are checking what is known as the

parallel-trends or common-trends assumption, an important assumption of the DID model, as discussed

in [CAUSAL] DID intro. A visual diagnostic of this assumption can be obtained by plotting the means of

the outcome over time for both groups or by visualizing the results of the linear-trends model. We can

perform both of these diagnostic checks by using estat trendplots. To obtain figure 1 below, we type

. estat trendplots

3.4

3.6

3.8

4

4.2

4.4

P
at

ie
nt

 s
at

is
fa

ct
io

n 
sc

or
e

1 2 3 4 5 6 7
Month

Observed means

3.4

3.6

3.8

4

4.2

4.4

P
at

ie
nt

 s
at

is
fa

ct
io

n 
sc

or
e

1 2 3 4 5 6 7
Month

Linear-trends model

Graphical diagnostics for parallel trends

Control
Treatment

Figure 1.



didregress — Difference-in-differences estimation 124

The graph seems to indicate that the parallel-trends assumption is satisfied. Prior to the policy imple-

mentation, treated and control hospitals followed a parallel path.

We could also perform a test to see if the trajectories are parallel by augmenting our original model

to include variables representing time trends before and after the treatment for both groups of hospitals.

The linear-trends model estimates a coefficient for the differences in linear trends prior to treatment, and

if that coefficient is 0, the linear pretreatment trends are parallel. Otherwise, identification of the ATET

may become questionable.

We can perform this test by using estat ptrends:

. estat ptrends
Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel
F(1, 45) = 0.55
Prob > F = 0.4615

We do not have evidence to reject the null hypothesis of parallel trends in this case. Both the test and

the graphical analysis support the parallel-trends assumption and, therefore, our ATET estimate.

Example 2: Fitting a DDD model
The results in example 1 could come into question if they could be the consequence of other un-

observed variables rather than the consequence of the new hospital admissions procedure. The health

provider administrators believe that responses to the survey are related to the frequency of individuals’

hospital visits. The patients may have unobserved characteristics that affect both how frequently they

visit the hospital and how they feel about the admissions procedure. In other words, there might be

unobserved characteristics that confound the effect of the new hospital admissions procedure. The ad-

ministrators decide to obtain theATET by using aDDDmodel. Theywant to estimate the average treatment

effect on patients who visit the hospital with high or very high frequencies.

To do this, wewill first create a new variable hightrt to be our new treatment identifier. Observations

are now marked as treated (hightrt = 1) if hospital visit frequency by an individual is high or very

high (frequency = 3 or 4) and if the hospital implemented the new admissions procedure in April.

. generate hightrt = procedure==1 & (frequency==3 | frequency==4)

. label define trt 0 ”Untreated” 1 ”Treated”

. label values hightrt trt
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The DDD model will incorporate both hospital and frequency of usage effects as well as their interac-

tion with time effects. To fit the model, we incorporate a new group variable, frequency:

. didregress (satis) (hightrt), group(hospital frequency) time(month)
(output omitted )

Treatment and time information
Time variable: month
Control: hightrt = 0
Treatment: hightrt = 1

Control Treatment

Group
hospital 28 18

frequency 2 2

Time
Minimum 1 4
Maximum 1 4

Triple-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
hightrt

(Treated
vs

Untreated) .764154 .0402603 18.98 0.000 .6830655 .8452425

Note: ATET estimate adjusted for group effects, time effects, and group- and
time-effects interactions.

The omitted output after the command corresponds to the factor-variable interactions that include the

base categories. This is common when you fit DDDmodels that by default include group interactions and

group and time interactions.

The first table above has information on the second group variable, frequency, for which low and

medium frequencies are controls and high and very high frequencies are treated. The second table shows

that the ATET is now smaller, but the policies still increase satisfaction.
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Example 3: DID for panel-data model
Moser and Voena (2012) look at the effect of compulsory licensing on domestic inventions. Compul-

sory licensing allows firms in developing countries to produce foreign inventions without the consent of

foreign patent owners. Having access to foreign technology may discourage domestic inventions, but it

could also enhance local production.

Moser andVoena consider legislation that occurred duringWorldWar I calledTradingWith the Enemy

Act (TWEA). By 1919, German-owned patents were systematically licensed to US companies. In Moser

and Voena (2012), the treated observations correspond to a subclass in the chemical industry that was

granted at least one of the TWEA patents after 1918, as reported by United States Patent and Trademark

Office (USPTO). A subclass is a group of firms in an industry that employ similar technologies, as defined

by the USPTO.

The outcome of interest is the number of patents granted to inventors from the US in that subclass,

uspatents. This measures domestic innovation. Moser and Voena also include the number of non-

TWEA patents granted to the subclass that were from foreign inventors, fpatents. fpatents measure

innovation in the subclass that is not from US inventors. We observe the same subclasses at each point

in time from 1875 to 1939. Thus, we have a panel dataset.

To fit the model, we first xtset our data at the subclass level, classid:

. use https://www.stata-press.com/data/r19/patents
(Excerpt from Moser and Voena (2012))
. xtset classid
Panel variable: classid (balanced)
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Below, we fit a DIDmodel for the number of patents granted to US inventors in a subclass, controlling

for the number of non-TWEA patents granted to foreign inventors. The treatment indicator gotpatent
is 1 if the subclass received a TWEA patent after 1918 and is 0 otherwise. The model includes year fixed

effects and subclass fixed effects.

. xtdidregress (uspatents fpatents) (gotpatent), group(classid) time(year)
Treatment and time information
Time variable: year
Control: gotpatent = 0
Treatment: gotpatent = 1

Control Treatment

Group
classid 6912 336

Time
Minimum 1875 1919
Maximum 1875 1919

Difference-in-differences regression Number of obs = 471,120
Data type: Longitudinal

(Std. err. adjusted for 7,248 clusters in classid)

Robust
uspatents Coefficient std. err. t P>|t| [95% conf. interval]

ATET
gotpatent
(Patent

vs
None) .150516 .0356081 4.23 0.000 .0807137 .2203183

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

The ATET is 0.15, which means that in subclasses that were awarded one or more patents, domestic

inventors produced an average of 0.15 additional patents after the TWEA compared with the scenario in

which no patents are awarded for those subclasses.

Graphical diagnostics and tests

Example 4: DID diagnostic graphs and tests
As illustrated in example 1, when conducting a DID study, it is common to complement the regression

analysis with graphical diagnostics and tests that provide evidence of whether an estimated effect can be

given a causal interpretation. As discussed in [CAUSAL] DID intro, we would like to observe that the

treated and control groups had mean outcomes that evolved similarly to each other over time prior to the

treatment. This is usually referred to as a parallel-trends or common-trends assumption. We would also

like to ascertain that neither the control nor the treatment group changed their behavior in anticipation of

the treatment. This is assessed using a Granger-type test.

Below, we use simulated data to illustrate the diagnostics and tests available after didregress and

xtdidregress. Simulated data helps us know exactly what we should expect and how to interpret it.
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Suppose we have a panel dataset with 10 time points, denoted by t1, where a treatment has taken

place between t1 = 5 and t1 = 6. We have a set of covariates, x1 and x2, and an outcome, y1. The
outcome could be something like patient satisfaction, as in example 1, or the number of patents filed by

US inventors, as in example 3.

We fit the model:

. use https://www.stata-press.com/data/r19/parallelt
(Simulated data to test parallel-trends assumption)
. xtset id1
Panel variable: id1 (unbalanced)
. xtdidregress (y1 c.x1##c.x2) (treated1), group(id1) time(t1)
Treatment and time information
Time variable: t1
Control: treated1 = 0
Treatment: treated1 = 1

Control Treatment

Group
id1 102 98

Time
Minimum 1 6
Maximum 1 6

Difference-in-differences regression Number of obs = 2,000
Data type: Longitudinal

(Std. err. adjusted for 200 clusters in id1)

Robust
y1 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated1

(Treated
vs

Untreated) .5069426 .0220218 23.02 0.000 .4635166 .5503686

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Is this result valid? We can first explore the assumption of parallel trends graphically, comparing the

trajectories of the outcome variable for the control and treatment groups prior to the date of treatment.

We can check this assumption by plotting the means of the outcome over time for both groups or by

visualizing the results of the linear-trends model. We can perform both of these diagnostic checks by

using estat trendplots.
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. estat trendplots
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Figure 2.

Looking at the plotted observedmeans (left side of figure 2), the outcome trajectories in the control and

treatment groups prior to the treatment are somewhat different. While we can observe declining trends

in both groups, it looks as though the decline is progressing more rapidly in the control group, especially

between time points three and five. We can get a clearer picture of this by looking at the results of the

linear-trends model on the right side of figure 2. The group-level trajectories are shown with respect to

a common reference point, t1 = 1, which makes it easy to discern whether they are parallel. In this

case, we can see that they are not. The differences between the treatment and control groups are growing

larger over time up to t1 = 5 (posttreatment time periods are not relevant when assessing the parallel-

trends assumption). Judging by figure 2 alone, we should be concerned about whether the parallel-trends

assumption holds for our effect estimate.

Amore formal way to assess whether the pretreatment trajectories are parallel is to perform a test on

the linear-trendsmodel coefficient that captures the differences in the trends between treated and controls.

If the pretreatment trends are actually linear in both groups, then this coefficient will be 0 because there

are no differences in the slopes between the two groups. Thus, by testing this coefficient against 0, we

have a test of the null hypothesis that the pretreatment period trajectories are parallel. We can perform

this test by using estat ptrends:

. estat ptrends
Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel
F(1, 199) = 39.97
Prob > F = 0.0000

We reject the null hypothesis of the linear trends being parallel.
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We can also think of nonparallel as an indication of an anticipatory treatment effect. We saw that the

trends were not parallel before the treatment took place, which could indicate a treatment effect even

before the treatment is implemented. Thus, another way to state our parallel-trends assumption is that

there should be no treatment effect in anticipation of the treatment. To test this assumption, we could fit a

Granger-type causality model where we augment our model with dummies that indicate future treatment

status for each time period prior to the treatment. A joint test of the coefficients on these dummies

against 0 can be used as a test of the null hypothesis that no anticipatory effects have taken place. We

can perform this test by using estat granger:

. estat granger
Granger causality test
H0: No effect in anticipation of treatment
F(4, 199) = 18.17
Prob > F = 0.0000

The result suggests that we reject the null hypothesis of no anticipatory effects prior to treatment.

Thus, based on the results of both estat ptrends and estat granger, we conclude that we should be
concerned about identification of ATET.

Notice that the parallel-trends𝐹 test consumes only 1 numerator degree of freedom, while the Granger

causality 𝐹 test consumes 4. That is because we have five pretreatment time periods and thus four

coefficients to test. In this example, both tests would be appropriate, but the parallel-trends test has

higher statistical power. However, as we will see below, the less-powered Granger test is more flexible

and can be used in situations where the differences between treatment and control groups are nonlinear

in pretreatment periods.
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Example 5: DID diagnostics and tests with nonlinear mean outcome differences
We now look at a different outcome and policy using the same simulated dataset as in example 4. We

fit the same model but with the new variables:

. xtset id2
Panel variable: id2 (balanced)
. xtdidregress (y2 c.z1##c.z2) (treated2), group(id2) time(t2)
Treatment and time information
Time variable: t2
Control: treated2 = 0
Treatment: treated2 = 1

Control Treatment

Group
id2 480 520

Time
Minimum 1 6
Maximum 1 6

Difference-in-differences regression Number of obs = 10,000
Data type: Longitudinal

(Std. err. adjusted for 1,000 clusters in id2)

Robust
y2 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated2

(Treated
vs

Untreated) .2636651 .0097188 27.13 0.000 .2445936 .2827367

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Here is the diagnostic plot produced by estat trendplots:
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Inspecting the observed means over the pretreatment time periods, we can see that no considerable

change has occurred in the outcome of the treatment group over time. For the control group, on the other

hand, we observe a somewhat U-shaped trajectory in advance of the treatment. However, if we look at

the plot from the linear-trends model, both trajectories appear somewhat U-shaped, and the trends appear

to be almost parallel. Indeed, if we use estat ptrends, we fail to reject the null hypothesis of parallel
trends:

. estat ptrends
Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel
F(1, 999) = 2.13
Prob > F = 0.1446

The Granger causality test can handle cases in which the trajectories are nonlinear and for which

estat ptrends will fail to reject the null hypothesis when it should:

. estat granger
Granger causality test
H0: No effect in anticipation of treatment
F(4, 999) = 9.86
Prob > F = 0.0000

We correctly reject the null hypothesis of no effect in anticipation of the treatment.

Example 6: Diagnostics and tests when parallel-trends assumption is satisfied
Finally, we look at a case where the assumption of parallel trends is satisfied. Again, we use the

simulated dataset from example 4. We fit the following model:

. xtset id3
Panel variable: id3 (balanced)
. xtdidregress (y3 c.w1##c.w2) (treated3), group(id3) time(t3)
Treatment and time information
Time variable: t3
Control: treated3 = 0
Treatment: treated3 = 1

Control Treatment

Group
id3 502 498

Time
Minimum 1 6
Maximum 1 6
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Difference-in-differences regression Number of obs = 10,000
Data type: Longitudinal

(Std. err. adjusted for 1,000 clusters in id3)

Robust
y3 Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated3

(Treated
vs

Untreated) .4996049 .0102458 48.76 0.000 .4794991 .5197107

Note: ATET estimate adjusted for covariates, panel effects, and time effects.

Using estat trendplots, we obtain
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Figure 4.

This time, the trajectories of the observed means appear to be parallel before the treatment occurs.

Both follow a declining trend up to the last pretreatment time point. Looking at the results from the

linear-trends model, the pretreatment trajectories appear to be the same. Using estat ptrends yields

the following result:

. estat ptrends
Parallel-trends test (pretreatment time period)
H0: Linear trends are parallel
F(1, 999) = 0.00
Prob > F = 0.9688

We cannot reject the null hypothesis of parallel linear trends. Likewise, using estat granger, we
do not reject the null hypothesis of the absence of anticipatory effects:

. estat granger
Granger causality test
H0: No effect in anticipation of treatment
F(4, 999) = 0.52
Prob > F = 0.7220
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Example 7: Time-specific treatment effects
As we have seen in the previous examples, we can use estat granger to test for treatment effects

occurring prior to the point at which treatment has been administered. Beyond the particular purpose

of this test, however, it can be instructive to inspect not only pretreatment effects but also posttreatment

effects that are allowed to vary over time. That is, rather than relying on a single treatment-effect estimate

that is assumed to be constant over time, it can be instructive to check whether treatment effects change as

time unfolds. We can fit a model that includes lags and leads of an indicator for the time period in which

the treatment began. The coefficients on the lags can be used to assess whether there is any change in

the treatment effect during posttreatment time periods. We can use the postestimation command estat
grangerplot to fit such a model and plot the resulting coefficients. This model is also sometimes

referred to as an event study model in the literature; see Schmidheiny and Siegloch (2019) and Clarke

and Tapia-Schythe (2021).

We start by fitting the following DID model:

. use https://www.stata-press.com/data/r19/hospdd
(Artificial hospital admission procedure data)
. didregress (satis) (procedure), group(hospital) time(month)
Treatment and time information
Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0321121 26.41 0.000 .7833108 .912665

Note: ATET estimate adjusted for group effects and time effects.
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We can now simply use estat grangerplot to plot pre- and postintervention treatment effects:

. estat grangerplot

This yields the following graph:
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Figure 5.

By default, estat grangerplot uses all available leads and lags, and in this case, we have estimates

for two leads and four lags. For identification purposes, we must omit one of the indicator variables. By

default, estat grangerplot omits the first lead, which sets the coefficient to 0 that corresponds to the

time period prior to treatment administration. Thus, the plotted effects are normalized with respect to

that time period. If we wanted, we could change the baseline period by using the baseline() option.

We can see that the coefficients on the leads that correspond to the first two months are both close to 0,

which shows that there are no substantial effects in the pretreatment era. The posttreatment effects for

months 4 to 7 range between around 0.8 and 0.9. When we account for the uncertainty of these estimates,

as indicated by the plotted 95% confidence intervals, it appears as though the treatment effects are rather

stable over time in this example.
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Rather than just plotting the coefficients, we could be interested in looking at a table with the numeric

results. We can obtain the underlying results by specifying the verbose option. We are also using the

nodraw option to see only the numeric results and not draw the graph again:

. estat grangerplot, nodraw verbose
Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(12, 45) = 94.68
Prob > F = 0.0000
R-squared = 0.5334
Adj R-squared = 0.5298
Root MSE = 0.7240

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.007044 .0263953 -0.27 0.791 -.0602068 .0461188

March .0335696 .0255925 1.31 0.196 -.0179764 .0851156
April .0187852 .0250623 0.75 0.457 -.0316927 .0692632
May -.0211152 .0269569 -0.78 0.438 -.0754092 .0331788
June .0091208 .0179016 0.51 0.613 -.026935 .0451766
July -.0203444 .0306266 -0.66 0.510 -.0820296 .0413407

_lead3 .027897 .035569 0.78 0.437 -.0437426 .0995367
_lead2 .0217322 .0380076 0.57 0.570 -.054819 .0982833
_lag0 .8228153 .0494933 16.62 0.000 .7231307 .9224999
_lag1 .9040498 .0469682 19.25 0.000 .8094511 .9986486
_lag2 .844724 .0608006 13.89 0.000 .7222654 .9671826
_lag3 .8978885 .0511588 17.55 0.000 .7948494 1.000928
_cons 3.433074 .0198449 173.00 0.000 3.393104 3.473044

The coefficients on the variables that begin with lead and lag are the ones that are plotted in our
graph.
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As an interesting side note, notice that our original DID model is a special case of the model that we

fit with estat grangerplot. Specifically, it is the model that includes only a single lead and no lags.

To reproduce our original DID result, we can use the nleads() and nlags() options:

. estat grangerplot, nodraw verbose nleads(1) nlags(0)
Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(7, 45) = 138.73
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5299
Root MSE = 0.7238

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.0096077 .0184317 -0.52 0.605 -.0467311 .0275158

March .0219686 .018251 1.20 0.235 -.0147907 .0587279
April -.0032839 .0221028 -0.15 0.883 -.0478013 .0412335
May -.0094027 .0232399 -0.40 0.688 -.0562103 .0374048
June -.0038375 .0190634 -0.20 0.841 -.0422332 .0345581
July -.0111941 .0230029 -0.49 0.629 -.0575244 .0351361

_lag0 .8479879 .0321121 26.41 0.000 .7833108 .912665
_cons 3.444675 .011354 303.39 0.000 3.421807 3.467543

As we can see, the results match the ones we obtained earlier with didregress.
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Notice also that the model used by estat granger is a special case as well; it is the model with all

available leads and no lags. To re-create the test result from estat granger, we use the post option to
store the results:

. estat grangerplot, nodraw verbose post nlags(0)
Linear regression, absorbing indicators Number of obs = 7,368
Absorbed variable: hospital No. of categories = 46

F(9, 45) = 113.78
Prob > F = 0.0000
R-squared = 0.5333
Adj R-squared = 0.5298
Root MSE = 0.7239

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

month
February -.007044 .0263899 -0.27 0.791 -.0601959 .0461079

March .0335696 .0255873 1.31 0.196 -.0179658 .085105
April .0002573 .0243547 0.01 0.992 -.0487955 .0493101
May -.0058616 .0249982 -0.23 0.816 -.0562105 .0444874
June -.0002964 .0199414 -0.01 0.988 -.0404605 .0398678
July -.007653 .0251828 -0.30 0.763 -.0583738 .0430679

_lead3 .027897 .0355617 0.78 0.437 -.043728 .099522
_lead2 .0217322 .0379998 0.57 0.570 -.0548033 .0982676
_lag0 .8673694 .0424929 20.41 0.000 .7817844 .9529544
_cons 3.433074 .0198408 173.03 0.000 3.393113 3.473035

We can now test whether the coefficients on the leads are jointly 0:

. test _lead3 _lead2
( 1) _lead3 = 0
( 2) _lead2 = 0

F( 2, 45) = 0.33
Prob > F = 0.7239

The test result indicates that we cannot reject the null hypothesis that the coefficients are jointly 0. We

fit our original model again to compare the results with the ones from estat granger:

. quietly didregress (satis) (procedure), group(hospital) time(month)

. estat granger
Granger causality test
H0: No effect in anticipation of treatment
F(2, 45) = 0.33
Prob > F = 0.7239

As we can see, the results are the same. Using estat grangerplot followed by test allows us to

perform additional tests of lags and leads that are not available through estat granger.
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Specifying a 2-by-2 DID

Example 8: Specifying a 2-by-2 DID
didregress and xtdidregress by default fit generalizedDIDmodels, also known as two-way fixed-

effects models. Yet DID models sometimes are viewed from a two-period and two-group perspective, a

2-by-2 DID. You can also fit a 2-by-2 DID using didregress and xtdidregress. In fact, you will get
equivalent results using a 2-by-2 DID or a generalized DID. The generalized DID is the default because it

allows for a wider range of specifications that would not be feasible within the 2-by-2 framework, such

as cases when the intervention occurs at different points in time.

In example 1, we got theATET for hospitals that instituted a new admissions procedure. We typed the

following:

. use https://www.stata-press.com/data/r19/hospdd

. didregress (satis) (procedure), group(hospital) time(month)

This implies that we are regressing satis on procedure and indicators for hospitals and for months.

The indicators are created and added as regressors to our model by default. To fit a 2-by-2 model, we

need to omit the hospital and month indicators and instead add an indicator for the period after treatment

and an indicator for groups that are treated.

This is what we do below. We create the treatment-group indicator based on the fact that the variable

procedure is 1 for individuals that experienced the new procedure and 0 otherwise; this variable iden-

tifies treated hospitals. We create the posttreatment indicator based on the fact that the new procedures

are established after March, which has a value of 3 in the data.

. bysort hospital: egen treated = max(procedure)

. generate post = month>3

We now fit

. didregress (satis i.treated i.post) (procedure), nogteffects
> group(hospital) time(month)
Treatment and time information
Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4
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Difference-in-differences regression Number of obs = 7,368
Data type: Repeated cross-sectional

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0320051 26.50 0.000 .7835263 .9124494

Note: ATET estimate adjusted for covariates.

We add the new indicators to our list of covariates and use the nogteffects option to exclude the

group and time indicators that were included by default.

The point estimates are identical. What changes are the standard errors. They change because we

have a different number of regressors.

Standard error considerations

Example 9: Standard errors and data aggregation
In example 3, we had 336 treated subclasses and 7,248 subclasses in total. However, many studies

face the challenge of having very few elements per group. In fact, sometimes the data analyzed consist

of only two groups—the treatment group in which treatment is administered to members of the group

and the controls group in which no treatment is administered. Think, for example, of an analysis at the

state level where one state is treated and one state is controlled. As discussed in [CAUSAL] DID intro,

these scenarios with few elements pose a challenge for inference. For a good discussion on these issues,

see MacKinnon (2019).

didregress and xtdidregress provide alternatives in such cases. One alternative is to compute

standard errors by using the wild cluster–bootstrap. Another alternative is to use bias-corrected clustered

standard errors with the degrees-of-freedom adjustment proposed by Bell and McCaffrey (2002). A final

alternative is to aggregate your data and then compute effects and standard errors such as proposed by

Donald and Lang (2007) or use bias-corrected standard errors.

Below, we explore these options using simulated data. We created a dataset with 2,000 individuals

and five time periods. The treatment occurs at the county level and there are six counties. Two of the

counties, county 1 and county 2, receive the treatment and the remaining four counties do not. The true

value of the ATET is −1.0. As we see below, the groups are unbalanced.
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. use https://www.stata-press.com/data/r19/smallg
(Simulated data with a small number of groups)
. tab county

County Freq. Percent Cum.

1 715 7.15 7.15
2 2,570 25.70 32.85
3 3,410 34.10 66.95
4 2,285 22.85 89.80
5 920 9.20 99.00
6 100 1.00 100.00

Total 10,000 100.00

First, we fit the model using the default standard errors, which perform well with many balanced

groups but not necessarily well with data like these. We compare the other results with these results.

. didregress (outcome x i.b) (treated), group(county) time(year)
Treatment and time information
Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 10,000
Data type: Repeated cross-sectional

(Std. err. adjusted for 6 clusters in county)

Robust
outcome Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9394987 .0884134 -10.63 0.000 -1.166773 -.7122247

Note: ATET estimate adjusted for covariates, group effects, and time effects.

For this draw, the point estimates are reasonably close to the true value of −1.0, and the true values

are contained inside the confidence interval.

Next, we use the wild cluster–bootstrap. For a good introduction to the methodology, see Cameron,

Gelbach, and Miller (2008), MacKinnon and Webb (2018), and Roodman et al. (2019). The wild clus-

ter–bootstrap works well in scenarios like the one above, where there are few groups.
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We use the wild cluster bootstrap to construct 𝑝-values and confidence intervals, imposing the null

hypothesis that the ATET is 0. We describe both computations in Methods and formulas. Here are the

results:

. didregress (outcome x i.b) (treated), group(county) time(year)
> wildbootstrap(rseed(123) errorweight(webb))
Performing 1,000 replications for p-value for constraint

treated = 0 ...
Computing confidence interval for treated
Lower bound: .........10.........20...... done (26)

note: lower-bound CI achieved F(-1.25) = 0.0240, but target is F(x) = .025.
note: the sorted bootstrap t statistics have at least two tied values

adjacent to the t statistic under the null; this prevents the CI bound
from converging to the target.

Upper bound: .........10.........20..... done (25)
Treatment and time information
Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

DID with wild-cluster bootstrap inference Number of obs = 10,000
Replications = 1,000

Data type: Repeated cross-sectional
Error weight: webb

outcome Coefficient t P>|t| [95.10% conf. interval]

ATET
treated

(Treated vs Untreated) -.9394987 -10.63 0.020 -1.248532 -.5549851

Note: 95.10% confidence interval is wider than requested.
Note: ATET estimate adjusted for covariates, group effects, and time effects.

Above, we first see the iterations used to find the confidence interval lower bound and upper bound.

The optimization algorithm sometimes converges to a level that is below the test size. In such cases,

the confidence interval is conservative. In the example above, instead of a 95% confidence interval,

you obtain a 95.1% confidence interval. If there are 𝑡 statistics that have exactly the same value across

bootstrap replications, the algorithm will not solve exactly for the requested confidence level. We also

use errorweight() with error weight webb to compute the wild bootstrap. This is best in cases with

less than 10 groups, as suggested by Roodman et al. (2019). The results from the wild bootstrap suggest

more uncertainty than the default confidence interval.
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Now we look at two data aggregation methods. In both cases, data aggregation occurs in two steps.

In the first step, we regress the outcome on the set of covariates that vary at the individual, group, and

time levels. We then estimate the group–time fixed effects from this procedure to use in a second stage

as the new dependent variable. In the second stage, we aggregate the remaining covariates and the

new dependent variable at the group and time levels and run a regression. This aggregation strategy

is described in more detail in Bertrand, Duflo, and Mullainathan (2004), Donald and Lang (2007), and

Cameron and Miller (2015). We also describe the aggregation methods in Methods and formulas.

Below, we aggregate the data as described above and estimate bias-corrected standard errors by using

the degrees-of-freedom adjustment suggested by Bell and McCaffrey (2002). This method of getting

standard errors is computationally intensive, so it is well suited for cases where the dimensionality of the

problem is reduced via aggregation.

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(standard) vce(hc2)
Computing degrees of freedom ...
Treatment and time information
Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 30
No. of clusters = 6

Data type: Repeated cross-sectional
Aggregation: Standard

Robust HC2
outcome Coefficient std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9958521 .1373277 -7.25 0.017 -1.566242 -.4254624

Note: ATET estimate adjusted for covariates, group effects, and time effects.

We see that the confidence intervals are again wider than with the default standard errors. It is also

worth noticing that we went from 10,000 observations to 30. This is because we aggregated at the county

and year levels. We have six counties and five years.
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We could also aggregate our data and compute the 𝑡 statistics using the degrees of freedom proposed

by Donald and Lang (2007). This gives us

. didregress (outcome x i.b) (treated), group(county) time(year)
> aggregate(dlang)
Treatment and time information
Time variable: year
Control: treated = 0
Treatment: treated = 1

Control Treatment

Group
county 4 2

Time
Minimum 2011 2013
Maximum 2011 2013

Difference-in-differences regression Number of obs = 30
Data type: Repeated cross-sectional
Aggregation: Donald--Lang

outcome Coefficient Std. err. t P>|t| [95% conf. interval]

ATET
treated

(Treated
vs

Untreated) -.9958521 .1224496 -8.13 0.000 -1.248576 -.7431287

Note: ATET estimate adjusted for covariates, group effects, and time effects.

Again, we see wider confidence intervals.

Whenever you have few elements for each group and the groups are unbalanced, as in this example,

you should be careful not to base your conclusions solely on the default cluster–robust standard errors.

As was mentioned in [CAUSAL] DID intro, you should validate your conclusions by using one of the

standard error computations suggested above.
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Default cluster–robust standard errors

Example 10: Default cluster–robust standard errors with didregress and xtdidregress
We have stated that didregress was designed to handle repeated cross-sections and xtdidregress

was designed to handle panel datasets. However, you can use xtdidregress when you have repeated

cross-sections. For instance, for the hospital dataset in example 1, you may have typed

. use https://www.stata-press.com/data/r19/hospdd
(Artificial hospital admission procedure data)
. xtset hospital
Panel variable: hospital (unbalanced)
. xtdidregress (satis) (procedure), group(hospital) time(month)
Treatment and time information
Time variable: month
Control: procedure = 0
Treatment: procedure = 1

Control Treatment

Group
hospital 28 18

Time
Minimum 1 4
Maximum 1 4

Difference-in-differences regression Number of obs = 7,368
Data type: Longitudinal

(Std. err. adjusted for 46 clusters in hospital)

Robust
satis Coefficient std. err. t P>|t| [95% conf. interval]

ATET
procedure

(New
vs

Old) .8479879 .0320138 26.49 0.000 .7835088 .9124669

Note: ATET estimate adjusted for panel effects and time effects.

You will get the same point estimate as you would get with didregress but different standard er-

rors. The reason is that xtdidregress with cluster–robust standard errors does not count the group

variables as regressors in the degrees-of-freedom correction used to compute standard errors. It relies

on the asymptotic theory of fixed-effects regression, where the number of group effects are expected to

grow with the sample size. Put differently, xtdidregress is using xtreg, fe to compute the default

cluster–robust standard errors. didregress uses areg, which assumes the number of groups is fixed

and counts them in the degrees-of-freedom computation.

As a practical matter, these standard errors are going to be close to each other when the number of

observations per cluster is large, as is the case for this example. As the number of observations per cluster

becomes smaller, however, the standard errors will differ more, with standard errors of didregress
tending to be larger.
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Which estimator to use depends on the assumptions you would like to make about your data. If you

think your data should be treated as panel data, with the number of groups growing with the sample size,

then even if you have repeated cross-sections, you should use xtdidregress.

More in-depth discussions about cluster–robust standard errors can be found in Cameron and Miller

(2015) and Wooldridge (2010).

Stored results
didregress stores the following in e():
Scalars

e(N) number of observations

e(N clust) number of clusters

e(tmin) minimum of first observed treatment time across groups

e(tmax) maximum of first observed treatment time across groups

e(N reps) number of bootstrap replications

e(df r) residual degrees of freedom

e(blocksize) block size used in wild bootstrap computations

Macros

e(cmd) didregress
e(cmdline) command as typed

e(depvar) name of outcome variable

e(treatment) indicator for treated observations

e(treatment type) binary or continuous
e(wtype) weight type

e(wexp) weight expression

e(wb weight) wild bootstrap error weight

e(datatype) data type

e(groupvars) group variables

e(clustvar) name of cluster variable

e(timevar) time variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e( contrast not ok) prediction disallowed by contrast

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(group count) matrix with number of groups and treatment time

e(fwboot) wild bootstrap estimates

e(wboot) wild bootstrap statistics and constraint

e(aggmethod) aggregation method

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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xtdidregress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(tmin) minimum of first observed treatment time across groups

e(tmax) maximum of first observed treatment time across groups

e(N reps) number of bootstrap replications

e(df r) residual degrees of freedom

e(blocksize) block size used in wild bootstrap computations

Macros

e(cmd) xtdidregress
e(cmdline) command as typed

e(depvar) name of outcome variable

e(treatment) indicator for treated observations

e(treatment type) binary or continuous
e(wtype) weight type

e(wexp) weight expression

e(wb weight) wild bootstrap error weight

e(datatype) data type

e(groupvars) group variables

e(clustvar) name of cluster variable

e(panelvar) panel variable

e(timevar) time variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e( contrast not ok) prediction disallowed by contrast

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(group count) matrix with number of groups and treatment time

e(fwboot) wild bootstrap estimates

e(wboot) wild bootstrap statistics and constraint

e(aggmethod) aggregation method

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

DID for repeated cross-sectional data
DDD model

DID and DDD models with longitudinal data
Aggregation estimators
Wild bootstrap confidence intervals and p-values
Bias-corrected clustered standard error

DID for repeated cross-sectional data
The DID model for repeated cross-sectional data fit by didregress is given by

𝑦𝑖𝑠𝑡 = 𝛾𝑠 + 𝛾𝑡 + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (1)

where 𝑖 is the observation-level index, 𝑠 is a group-level index, and 𝑡 is a time-level index. For example,

we might have yearly repeated cross-sectional data for individuals living in different states; in this case,

𝑖 denotes the individual, 𝑠 the state, and 𝑡 the year. In (1) above, 𝛾𝑠 are group fixed effects and 𝛾𝑡 are

time fixed effects. z𝑖𝑠𝑡 are the covariates, and 𝜖𝑖𝑠𝑡 is the error term. 𝐷𝑠𝑡 is the treatment that varies at

the group and time levels. 𝐷𝑠𝑡 could be binary or continuous.

If 𝑦𝑖𝑠𝑡 is y in the data, then z𝑖𝑠𝑡 are z1 and z2, 𝐷𝑠𝑡 is d, the group is state, and time is year. To fit
the model, you would type

didregress (y z1 z2) (d), group(state) time(year)

which is equivalent to typing

areg y z1 z2 i.year d, absorb(state) vce(cluster state)

The methods and formulas for this model are those of a linear regression and can be found in Methods

and formulas in [R] areg.

DDD model

The DDD model is given by

𝑦𝑖𝑠𝑔𝑡 = 𝛾𝑠 + 𝛾𝑔 + 𝛾𝑡 + 𝛾𝑠𝛾𝑡 + 𝛾𝑔𝛾𝑡 + 𝛾𝑠𝛾𝑔 + z𝑖𝑠𝑔𝑡β + 𝐷𝑠𝑔𝑡𝛿 + 𝜖𝑖𝑠𝑔𝑡 (2)

where 𝑖 is the observation-level index, 𝑠 and 𝑔 are group-level indices, and 𝑡 is a time-level index. For

example, we might have yearly repeated cross-sectional data for older and younger individuals living

in different states. In this case, 𝑖 denotes the individual, 𝑠 the state, 𝑔 age group, and 𝑡 the year. In (2)

above, 𝛾𝑠 are group 𝑠 fixed effects, 𝛾𝑔 are group 𝑔 fixed effects, and 𝛾𝑡 are time fixed effects. z𝑖𝑠𝑡 are

the covariates, and 𝜖𝑖𝑠𝑔𝑡 is the error term. 𝐷𝑠𝑔𝑡 denotes the treatment that varies at the group 𝑠, group 𝑔,
and time levels. 𝐷𝑠𝑔𝑡 could be binary or continuous.
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Say you now want to fit a DDD, where the treatment occurs for group2 in some of the states, state.
You would type

didregress (y z1 z2) (d), group(state group2) time(year)

didregress would construct the group and time interactions in (2) and fit a linear regression. The

methods and formulas for the specification are the same as those in Methods and formulas in [R] areg.

DID and DDD models with longitudinal data
The DID model for longitudinal data fit by xtdidregress is given by

𝑦𝑖𝑠𝑡 = 𝛼𝑖 + 𝛾𝑡 + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡 (3)

where 𝑖 is the observation-level index, 𝑠 is a group-level index, and 𝑡 is a time-level index. For example,

we might have a longitudinal dataset of individuals over time living in a given state; in this case, 𝑖 denotes
the individual, 𝑠 the state, and 𝑡 the year. In (3) above, 𝛼𝑖 are individual fixed effects and 𝛾𝑡 are time

fixed effects. z𝑖𝑠𝑡 are the covariates, and 𝜖𝑖𝑠𝑡 is the error term. 𝐷𝑠𝑡 denotes the treatment that varies at

the group and time levels. 𝐷𝑠𝑡 could be binary or continuous. Individuals, 𝑖, are assumed to be nested

within the group; thus, group effects are subsumed by the individual effects.

If 𝑦𝑖𝑠𝑡 is y in the data, then z𝑖𝑠𝑡 are z1 and z2, 𝐷𝑠𝑡 is d, the group is state, time is year, and
individuals are denoted by id. To fit the model, you would type

xtset id year
xtdidregress (y z1 z2) (d), group(state) time(year)

which is equivalent to typing

xtreg y z1 z2 i.year d, fe vce(cluster state)

The methods and formulas for this model are those of a within estimator computed by xtreg, fe and
can be found in Methods and formulas in [XT] xtreg.

The DDD model is given by

𝑦𝑖𝑠𝑔𝑡 = 𝛼𝑖 + 𝛾𝑡 + 𝛾𝑡𝛾𝑠 + 𝛾𝑡𝛾𝑔 + z𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑔𝑡
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Aggregation estimators
To discuss the aggregation estimators, it is instructive to rewrite the covariate vector z𝑖𝑠𝑡 as consisting

of group and time invariant components z1𝑠𝑡 and time-, group-, and individual-varying components z2𝑖𝑠𝑡.

The DID model can now be expressed as

𝑦𝑖𝑠𝑡 = 𝛾𝑠 + 𝛾𝑡 + z1𝑠𝑡β1 + z2𝑖𝑠𝑡β2 + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡

𝑦𝑖𝑠𝑡 = z2𝑖𝑠𝑡β2 + 𝐶𝑠𝑡 + 𝜖𝑖𝑠𝑡 (4)

𝐶𝑠𝑡 = 𝛾𝑠 + 𝛾𝑡 + z1𝑠𝑡β1 + 𝐷𝑠𝑡𝛿 + 𝜈𝑠𝑡 (5)

The standard and dlang, constant aggregationmethods regress 𝑦𝑖𝑠𝑡 on z2𝑖𝑠𝑡 in (4) and then obtain

an estimate of 𝐶𝑠𝑡, 𝐶𝑠𝑡. After we regress 𝑦𝑖𝑠𝑡 on z2𝑖𝑠𝑡, we get an estimate of the group–time effects 𝐶𝑠𝑡
from 𝑦𝑖𝑠𝑡 − z2𝑖𝑠𝑡β̂2 − ̂𝜖𝑖𝑠𝑡. These effect estimates come from using predict with option d after areg.
We then aggregate the data at the 𝑠 and 𝑡 levels. With the aggregated data, we run a regression of 𝐶𝑠𝑡
on z1𝑠𝑡 and on 𝐷𝑠𝑡 using group and time fixed effects in (5). The dlang method computes the ordinary

least-squares standard errors from this second stage. The standardmethod uses cluster–robust standard

errors clustered at the group level by default.

The dlang, varying method runs a regression for each group defined by 𝑠 and 𝑡 and obtains an

estimate of 𝐶𝑠𝑡 as the set of constants for each regression. Whereas in the first case β2 was the same

vector across the sample, in this case, we will get a different estimate of the slope coefficient for each

group. The second step is the same as for dlang, constant.

Wild bootstrap confidence intervals and p-values
The wild cluster–bootstrap is a bit different from the conventional bootstrap in that it keeps the covari-

ates fixed and constructs the new dependent variables using the residuals from the original regression.

The wild bootstrap procedure proceeds as follows:

1. Fit a restricted model, where the ATET is constrained to be 0. In other words, imposing the

null hypothesis that the ATET is 0. Obtain the predicted values, ŷ𝑟, and residuals, û𝑟, from the

restricted model, where the subscript 𝑟 refers to the bootstrap replicates. Also fit the unrestricted
model and compute the 𝑡 statistic, 𝑡, testing the null hypothesis ATET = 0.

2. At each of the subsequent 𝐵 − 1 bootstrap steps, compute y∗ = ŷ𝑟 + û𝑟 ⊙ (Kw), where w is a

column vector of length 𝑆, the number of clusters, containing the wild bootstrap weights, and

K is an 𝑁 × 𝑆 matrix with elements 𝑘𝑖,𝑗 = 1 if observation 𝑖, 𝑖 = 1, . . . , 𝑁, is in group 𝑗 and
0 otherwise. The operator ⊙ is the Hadamard product that performs elementwise multiplica-

tion. By default, 𝑤𝑗 = 1 with probability 0.5 and 𝑤𝑗 = −1 with probability 0.5, that is, the

rademacher error weights.

Alternatively, use one of the following error weights 𝑤:
• mammen, which is 1−𝜙 with probability 𝜙/

√
5 and 𝜙 otherwise, where 𝜙 = (1 +

√
5)/2.

• webb, which takes the values −√3/2, −√2/2,−√1/2, √1/2, √2/2, and √3/2, each
with probability 1/6.

• normal, which is a normal distribution with the first four moments given by 0, 1, 0, and 3.

• gamma, which is a gamma distribution with shape parameter 4 and scale parameter 1/2.
3. For each bootstrap sample, compute the unrestricted model and the null hypothesis 𝑡 statistic,

𝑡∗. Include the observed 𝑡 statistic, 𝑡 in this set.
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4. Given the 𝐵 bootstrapped 𝑡 statistics 𝑡∗
𝑏, 𝑏 = 1, . . . , 𝐵, compute the wild bootstrap lower-tail

𝑝-value

𝑃𝑙(𝑡) = 1
𝐵

𝐵
∑
𝑏=1

𝐼(|𝑡| < |𝑡∗
𝑏|)

and the upper-tail 𝑝-value

𝑃𝑢(𝑡) = 1
𝐵

𝐵
∑
𝑏=1

𝐼(|𝑡| > |𝑡∗
𝑏|)

The reported equal-tail 𝑝-value is 𝑃𝑒𝑡(𝑡) = 2min{𝑃𝑙(𝑡), 𝑃𝑢(𝑡)}.
5. Compute the wild bootstrap confidence interval by searching for the lower limit and upper limit

separately using the bisection root-finding algorithm. In doing so, find the quantities ATET = 𝑐𝑙
and ATET = 𝑐𝑢, 𝑐𝑙 < 𝑐𝑢, such that (100 − 𝐿)/2% of the bootstrapped distribution of the 𝑡
statistics testing ATET = 𝑐 is contained in either the lower or the upper tail. By default, 𝐿 = 95.

The search algorithm does not always generate an 𝐿% confidence interval. One reason for this

situation is if 𝐵(100 − 𝐿)/200 is not an integer, then there is not a slot in the sorted vector t∗ that
corresponds to the upper- or lower-tail area (100 − 𝐿)/200. See Roodman et al. (2019, 8) for a

good discussion.

Also, although a low-probability event, if at least one of the computed t∗ is (numerically) equal

to the 𝑡 testing ATET = 𝑐, or if there are ties between other computed values in t∗ adjacent to the 𝑡
testing ATET = 𝑐, then the algorithm will not achieve the optimal coverage. In this case, we choose

the confidence interval that is more conservative than requested. The achieved confidence level is

reported in the ATET coefficient table.

The chance of ties in t∗ increases if the number of clusters, 𝑆, is small and the rademacher
error weights are used, because there are 2𝑆 possible combinations of the two values 1 and −1 in

the weight vector w. For example, if 𝑆 = 10, then there are 1,024 possible combinations.

Bias-corrected clustered standard error
Let there be 𝑆 clusters, 𝑠 = 1, . . . , 𝑆, each with 𝑁𝑠 observations, and let 𝑁 be the number of obser-

vations in the data. Let X𝑠 be the covariate matrix for cluster 𝑠, and let X be the covariate matrix for all

observations with dimension𝑁×𝐿. Also, define I𝑁𝑠
to be an identitymatrix of dimension𝑁𝑠, and define

P𝑠𝑠 = X𝑠 (X′X)−1
X′

𝑠 as a projection matrix for cluster 𝑠. Finally, let ̂ε𝑠 be the residuals corresponding

to cluster 𝑠. The bias-corrected cluster variance–covariance matrix is given by the following:

V = (
𝑆

∑
𝑠=1

X′
𝑠X𝑠)

−1 𝑆
∑
𝑠=1

X′
𝑠 (I𝑁𝑠

− P𝑠𝑠)
−1/2

̂ε𝑠 ̂ε′
𝑠 {(I𝑁𝑠

− P𝑠𝑠)
−1/2

}
′
X𝑠 (

𝑆
∑
𝑠=1

X′
𝑠X𝑠)

−1

(6)

Let P be the projection matrix for all the data, and let (I𝑁 − P)𝑠 be an 𝑁𝑠 × 𝑁 matrix of rows of the

𝑁 × 𝑁 matrix (I𝑁 − P). Finally, let e𝐿,𝑘 be an 𝐿 vector with 𝑘th component equal to 1 and equal to 0

elsewhere. We define the matrix G as the matrix with 𝑠th column given by

G𝑠 = (I𝑁 − P)′
𝑠 (I𝑁𝑠

− P𝑠𝑠)
−1/2

X𝑠 (X′X)−1
e𝐿,𝑘
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We compute the degrees-of-freedom adjustment proposed by Bell and McCaffrey (2002), 𝐾BM, as

follows,

𝐾BM = tr (G′G)2

tr{(G′G)2}

=
(∑𝑆

𝑖=1 𝜆𝑖)
2

∑𝑆
𝑖=1 𝜆2

𝑖

where tr(⋅) is the trace function and 𝜆𝑖 is the 𝑖th eigenvalue of the matrix G′G.

When 𝑆 is large, computing the eigenvalues can be time consuming. We define

a𝑠 = (I𝑁𝑠
− P𝑠𝑠)

− 1
2
X𝑠 (X′X)−1

e𝐿,𝑘

b𝑠 = P𝑠a𝑠

A = (a′
1a1, . . . , a′

𝑆a𝑆)′ = (𝐴1, 𝐴2, . . . , 𝐴𝑆)′

B = (b1, . . . ,b𝑆) = ⎛⎜
⎝

𝐵1,1 𝐵1,2 · · · 𝐵1,𝑆
⋮ ⋮ ⋱ ⋮

𝐵𝑁,1 𝐵𝑁,2 · · · 𝐵𝑁,𝑆

⎞⎟
⎠

where P𝑠 = X(X′X)−1X′
𝑠 and 𝐵𝑖,𝑠, 𝑖 = 1, . . . , 𝑁, are the elements of the vectors b𝑠, 𝑠 = 1, . . . , 𝑆.

Then G′G = diag(A) − B′B. We now express the adjusted degrees of freedom (Kolesár 2023) as

𝐾BM = (∑𝑆
𝑠=1 𝐴𝑠 − ∑𝑁

𝑖=1 ∑𝑆
𝑠=1 𝐵2

𝑖,𝑠)
2

∑𝑆
𝑠=1 𝐴2

𝑠 − 2 ∑𝑆
𝑠=1 𝐴𝑠 ∑𝑁

𝑖=1 𝐵2
𝑖,𝑠 + ∑𝑆

𝑠1=1 ∑𝑆
𝑠2=1 (b′

𝑠1
b𝑠2

)
2

which can be computed efficiently in Mata and using QR decomposition. For example, by decomposing

X = QR, where Q is 𝑛 × 𝑘 and orthonormal and R is 𝑘 × 𝑘 and upper triangular. The matrix B can be

rewritten so that it has dimension 𝑘 × 𝑆 instead of 𝑁 × 𝑆. We can do even better if the column rank of

X is 𝑟 ≤ 𝑘 by taking advantage of QR column pivoting.

When weights are specified, we use the weighted-covariate matrix X̃ = diag(w) 1
2X and its corre-

sponding projection matrix ̃P, as well as the cluster covariance matrices X̃𝑠, their projection matrices
̃P𝑠𝑠, and weighted residuals ̃ε𝑠 = diag(w𝑠) 1

2 ̂ε𝑠.

For the ATET coefficient, we use the standard errors from (6) and the degrees of freedom in 𝐾BM to

construct confidence intervals.
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[CAUSAL] didregress postestimation — Postestimation tools for didregress and xtdidregress

[CAUSAL] DID intro — Introduction to difference-in-differences estimation
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[CAUSAL] teffects intro — Introduction to treatment effects for observational data

[CAUSAL] teffects intro advanced —Advanced introduction to treatment effects for observational data

[CAUSAL] xthdidregress — Heterogeneous difference in differences for panel data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict estat
Remarks and examples Stored results Methods and formulas
References Also see

Postestimation commands
The following postestimation commands are of special interest after didregress and

xtdidregress:

Command Description

estat trendplots graphical diagnostics for parallel trends

estat ptrends parallel-trends test

estat granger Granger causality test

estat grangerplot time-specific treatment effects

estat bdecomp treatment-effect decomposition

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict linear predictions and residuals

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictors and residuals.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic ]

statistic Description

Main

xb linear predictor; the default

residuals residuals

Options for predict

� � �
Main �

xb, the default, calculates the linear predictor. It excludes the effect of the first group or of the panel

identifier. All other effects, including the time fixed effects, are included in the linear predictor.

residuals calculates the overall residuals. It is the difference of the outcome and the linear predictor,

including all group, panel, and time effects. In other words, it is not just the difference of the outcome

and the linear predictor.
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estat

Description for estat
estat trendplots produces two diagnostic plots for assessing the parallel-trends assumption that

is required for consistent estimation of the ATET using didregress or xtdidregress. The first plot
consists of two lines showing the mean of the outcome over time for the treatment and the control groups.

The second plot augments the DID model to include interactions of time with an indicator of treatment

and plots the predicted values of this augmented model for the treatment and control groups. Both plots

include a vertical line one period before treatment.

estat ptrends performs a test of whether the linear trends in the outcome variable are parallel be-

tween control and treatment groups during the pretreatment period.

estat granger performs a test of whether treatment effects can be observed in anticipation of the

treatment.

estat grangerplot produces a graph of time-specific treatment effects by plotting coefficients from

leads and lags of the treatment indicator variable.

estat bdecomp performs a treatment-effect (Bacon) decomposition into all 2-by-2 treatment-effect

components when there are multiple cohorts, each with a different treatment timing. Optionally, the

components can be plotted against their weights. estat bdecomp requires that the data be strongly

balanced. That is, units defined by the group variable must have the same number of observations, and

observation times must be the same across all units.

Menu for estat
Statistics > Postestimation

Syntax for estat
Graphical diagnostics for parallel trends

estat trendplots [ , trend options plot options ]

Parallel-trends test

estat ptrends

Granger causality test

estat granger

Time-specific treatment effects

estat grangerplot [ , grangerplot options ]

Treatment-effect decomposition

estat bdecomp [ , bdecomp options ]
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trend options Description

omeans draw graph showing observed means

omeans(plot options) draw observed-means graph and affect its rendition

ltrends draw graph showing linear trends

ltrends(plot options) draw linear-trends graph and affect its rendition

notitle suppress overall title

noxline suppress treatment-time reference line

nocommonlegend display two individual legends

legendfrom(#) specify which legend to use

plot options Description

Plot

cline options affect rendition of the plotted trend lines; see [G-3] cline options

line1opts(cline options) affect rendition of the line for controls

line2opts(cline options) affect rendition of the line for treated

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

grangerplot options Description

nleads(#) number of leads

nlags(#) number of lags

baseline(#) baseline period

lagview show lags instead of time units

verbose display results of the underlying regression

post post the results of the underlying regression in e()
noci do not plot confidence intervals

noyline suppress 𝑦-axis reference line

CI plot

recastci(plottype) plot confidence intervals using plottype

ciopts(rcap options) affect rendition of confidence intervals

level(#) set confidence level; default is level(95)

Add plots

addplot(plot) add other plots to the graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options
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bdecomp options Description

summaryonly show decomposition summary only

fulldecomponly show full decomposition only

noheader suppress the table header in the output

notable suppress the table in the output

graph plot individual components against their weights

Plot

copts(marker options) change look of markers for cohorts

tnopts(marker options) change look of markers for treated versus never treated

laopts(marker options) change look of markers for later versus always treated

leopts(marker options) change look of markers for later versus earlier treated

elopts(marker options) change look of markers for earlier versus later treated

atetlineopts(cline options) change look of the ATET reference line

noatetline suppress ATET reference line

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for estat trendplots
omeans, omeans(plot options), ltrends, and ltrends(plot options) specify which graphs are to be

included and how they should be individually rendered. The default is omeans ltrends, meaning

that both graphs are included without any modifications.

omeans specifies that the observed-means graph be included. Specifying omeans suppresses the

linear-trends model graph unless ltrends or ltrends(plot options) is also specified.

omeans(plot options) specifies that the observed-means graph be included and affects its rendition.

Specifying omeans(plot options) suppresses the linear-trends model graph unless ltrends or

ltrends(plot options) is also specified.

ltrends specifies that the linear-trends model graph be included. Specifying ltrends suppresses

the observed-means graph unless omeans or omeans(plot options) is also specified.

ltrends(plot options) specifies that the linear-trends model graph be included and affects its ren-

dition. Specifying ltrends(plot options) suppresses the observed-means graph unless omeans
or omeans(plot options) is also specified.

notitle suppresses the overall title of the rendered graph.

noxline suppresses rendering of the treatment-time reference line.

nocommonlegend suppresses the display of one common legend and renders two individual legends.

legendfrom(#) specifies which legend to use; the default is legendfrom(1), which refers to the legend
of the first plot (observed means). legendfrom(#) is not allowed with the nocommonlegend option.
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� � �
Plot �

cline options affect the rendition of the plotted trend lines, including their style, size, and color; see

[G-3] cline options.

line1opts(cline options) affect the rendition of the plotted trend lines for the group of controls, in-

cluding their style, size, and color; see [G-3] cline options.

line2opts(cline options) affect the rendition of the plotted trend lines for the group of treated, includ-
ing their style, size, and color; see [G-3] cline options.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for estat grangerplot
nleads(#) specifies the number of leads to be included in themodel and plotted. By default, all available

leads are included. The number of leads must be greater than 0.

nlags(#) specifies the number of lags to be included in the model and plotted. By default, all available

lags are included. The number of lags must be greater than or equal to 0.

baseline(#) specifies the baseline period for which the corresponding lead or lag is omitted. By default,

the first lead is omitted, which corresponds to the time period prior to intervention.

lagview specifies to show the values of the 𝑥 axis in terms of lags. If this option is not specified, time

values are shown.

verbose specifies to display the output of the underlying regression model.

post posts the results of the underlying regression as estimation results in e().

noci removes the pointwise confidence intervals. The default is to plot the confidence intervals.

noyline suppresses rendering of the reference line.

� � �
CI plot �

recastci(plottype) specifies that confidence intervals be plotted using plottype. plottype may be

rarea, rbar, rspike, rcap, rcapsym, rline, rconnected, or rscatter; see [G-2] graph twoway.
When recastci() is specified, the plot-rendition options appropriate to the specified plottypemay be

used in lieu of rcap options. For details on those options, follow the appropriate link from [G-2] graph

twoway.

ciopts(rcap options) affects the rendition of confidence intervals; see [G-3] rcap options.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.
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� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for estat bdecomp
summaryonly displays the decomposition summary only.

fulldecomponly displays the results of the full decomposition only.

noheader suppresses the table header in the output.

notable suppresses the results table in the output.

graph specifies to plot the treatment-effect components against their weights.

� � �
Plot �

copts(marker options) affect the rendition of the markers for the plotted cohort coefficients, including

their style, size, and color; see [G-3] marker options.

tnopts(marker options) affect the rendition of themarkers for the plotted coefficients for treated versus

never treated, including their style, size, and color; see [G-3] marker options.

laopts(marker options) affect the rendition of the markers for the plotted coefficients for later versus

always treated, including their style, size, and color; see [G-3] marker options.

leopts(marker options) affect the rendition of the markers for the plotted coefficients for later versus

earlier treated, including their style, size, and color; see [G-3] marker options.

elopts(marker options) affect the rendition of the markers for the plotted coefficients for earlier versus

later treated, including their style, size, and color; see [G-3] marker options.

atetlineopts(cline options) affect the rendition of the plottedATET reference line, including its style,
size, and color; see [G-3] cline options.

noatetline suppresses rendering of the ATET reference line.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples
In the following, we discuss the treatment-effect decomposition approach implemented in estat

bdecomp. To see examples of estat trendplots, estat ptrends, and estat granger, see exam-

ples 1, 4, 5, and 6 in [CAUSAL] didregress. An example of estat grangerplot is shown in example 7

in [CAUSAL] didregress.

A simple 2-by-2 DID design is characterized by two time periods (a period before and a period after a

treatment or intervention occurs) and two groups (a treatment and a control group). Under this design, all

treated units receive the treatment at the same time. A staggered DID design, on the other hand, involves

multiple time points at which the treatment is administered. Goodman-Bacon (2021) has shown that, in

this case, theATET is a weighted average of all possible 2-by-2 DID estimators that compare treatment co-

horts with each other. Decomposing an overallATET into these 2-by-2 components provides a diagnostic

tool to assess the validity of the two-way fixed-effects DID estimator implemented in didregress and

xtdidregress when treatment timing varies.

Consider the case of a DID design with two treatment times so that the data consist of three groups: an

earlier-treated group, a later-treated group, and a never-treated group. Under this scenario, there would

be four 2-by-2 comparisons. Two of these come from comparing the group that was treated first with the

never-treated group and comparing the group that was treated second with the never-treated group. The

third compares the earlier-treated group with the later-treated group (before the later-treated group was

treated). The fourth compares the later-treated group with the earlier-treated group (beginning at the point

where the earlier-treated group received treatment). This fourth comparison is of particular concern if the

2-by-2DID estimate substantially differs from the overallATET estimate and if the correspondingweight is

considerably large. In that case, this 2-by-2 estimate induces bias in the overallATET estimate. The Bacon

decomposition implemented in estat bdecomp offers insight into which 2-by-2 comparisons are driving

the overall ATET estimate. With this decomposition, we can identify sources of variation that potentially

bias the overall effect estimate. In cases of suspected bias, users may consider using hdidregress or

xthdidregress to account for treatment-effect heterogeneity.

The decomposition requires that the data be strongly balanced with respect to the observed times

per unit. Specifically, units defined by the group variable that is specified in the group() option of

didregress or xtdidregressmust have an equal number of observations, and observation times given

by the variable specified in the time() option of didregress or xtdidregressmust be the same across

all units.

For further theoretical and empirical details, see Goodman-Bacon (2021). A summary of the Bacon

treatment-effect decomposition is provided in Baker, Larcker, and Wang (2022). Applications of the

Bacon decomposition can be found in Rabideau et al. 2021 and Strasseri, Oggenfuss, andWolter (2022).
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Example 1: DID treatment-effect decomposition for designs with variation in treatment
timing

We use a (fictional) dataset where the units are dog breeds for which registration numbers at the

American Kennel Club are observed over the course of 10 years. We wish to find out whether the

registration numbers change in response to a breed being featured in a widely shown movie. Here is

an excerpt of the data:

. use https://www.stata-press.com/data/r19/akc
(Fictional dog breed and AKC registration data)
. list in 981/1000, sepby(breed) abbreviate(10) noobs

year breed movie best registered

2031 Old English Sheepdog 0 0 1324
2032 Old English Sheepdog 0 0 878
2033 Old English Sheepdog 0 0 699
2034 Old English Sheepdog 0 0 645
2035 Old English Sheepdog 0 0 1762
2036 Old English Sheepdog 0 0 1182
2037 Old English Sheepdog 1 0 1816
2038 Old English Sheepdog 1 0 4171
2039 Old English Sheepdog 1 0 3755
2040 Old English Sheepdog 1 0 4054

2031 Otterhound 0 0 692
2032 Otterhound 0 0 598
2033 Otterhound 0 0 670
2034 Otterhound 0 0 1642
2035 Otterhound 0 0 1311
2036 Otterhound 0 0 572
2037 Otterhound 0 0 1167
2038 Otterhound 0 0 620
2039 Otterhound 0 0 511
2040 Otterhound 0 0 1065
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We list the data for two breeds, the Old English Sheepdog and the Otterhound. We can see that the Old

English Sheepdog is featured in a movie that is released in the year 2037 and, thus, is a treated unit. The
Otterhound breed has no such luck and belongs to the group that is never treated. Our outcome variable

registeredmeasures the number of registrations at theAmerican Kennel Club. We use xtdidregress
to fit a two-way fixed-effects DID model:

. xtset breed
Panel variable: breed (balanced)
. xtdidregress (registered) (movie), group(breed) time(year)
Treatment and time information
Time variable: year
Control: movie = 0
Treatment: movie = 1

Control Treatment

Group
breed 119 22

Time
Minimum 2031 2034
Maximum 2031 2037

Difference-in-differences regression Number of obs = 1,410
Data type: Longitudinal

(Std. err. adjusted for 141 clusters in breed)

Robust
registered Coefficient std. err. t P>|t| [95% conf. interval]

ATET
movie

(1 vs 0) 2129.655 78.16241 27.25 0.000 1975.124 2284.186

Note: ATET estimate adjusted for panel effects and time effects.
Note: Treatment occurs at different times.
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We can see that our overall ATET estimate is around 2,130, which is to say that we expect the number

of dog registrations to increase by 2,130 if a member of their breed is featured as a movie protagonist.

We can now use estat bdecomp to decompose this number into its constituent 2-by-2 parts:

. estat bdecomp
DID treatment-effect decomposition
ATET = 2129.655 Number of obs = 1,410

Number of groups = 141
Number of cohorts = 4

ATET decomposition summary ATET component Weight

Treated vs never treated 2166.021 0.970810
Treated earlier vs later 936.70729 0.013157
Treated later vs earlier 906.60588 0.016033

Full ATET decomposition 2x2 coefficient Weight

Treated vs never treated
2034 vs never treated 1673.5688 0.157125
2036 vs never treated 1999.2515 0.140290
2037 vs never treated 2315.6702 0.673394

Treated earlier vs later
2034 vs 2036 580.59722 0.001132
2034 vs 2037 836.17778 0.008488
2036 vs 2037 1291.9333 0.003537

Treated later vs earlier
2036 vs 2034 542.825 0.001886
2037 vs 2034 831.70833 0.011318
2037 vs 2036 1448.7167 0.002829

Note: Number of cohorts includes never treated.
Note: The ATET reported by xtdidregress is a weighted average of the ATET

components. If any component is substantially different from the ATET
reported by xtdidregress and the weight is large, consider accounting
for treatment-effect heterogeneity by using xthdidregress.

In the table header, we see that we have 1,410 observations from 141 groups (breeds) and that we

have four cohorts. The four cohorts consist of groups of breeds that are treated at three different times

(2034, 2036, and 2037) and a group that is never treated. The first table shows a decomposition summary

where the estimatedATET is decomposed into components due to comparisons between treated and never

treated, between earlier treated and later treated, and between later treated and earlier treated. The results

in the second table decompose the summary results further into the individual 2-by-2 comparisons.

From the summary results, we see that the component due to comparisons between treated and never

treated is close to the overall effect estimate and that its weight is large. Specifically, the weight is around

0.97, which indicates that 97% of the overall ATET estimate is due to comparisons between treated and

never treated. The other two components are not close to the overall effect. This would be a potential

concern, especially for the later- versus earlier-treated comparisons, if the corresponding weight was

considerably large. However, the weights are small here. The later- versus earlier-treated and earlier-

versus later-treated components together account for only 3% of the overall ATET.

In the full decomposition results, we see the three components from the summary broken down further.

For example, if we look at the treated versus never-treated component, we see that around two thirds of

that component is driven by the group that received treatment last. We also see that the 2-by-2 coefficients

are increasing, which provides some indication that the treatment effect may be changing over time.



didregress postestimation — Postestimation tools for didregress and xtdidregress 166

In this example, the number of treatment times is relatively small. However, if that number is large,

it can be instructive to plot the 2-by-2 coefficients against their weights. We do this by using the graph
option of estat bdecomp. Because we do not need to see the numerical results again, we also specify

the notable and noheader options:

. estat bdecomp, graph notable noheader
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Difference-in-differences treatment-effect decomposition

The blue circles are the 2-by-2 coefficients from the treated versus never-treated component; the red

diamonds are the 2-by-2 coefficients from the earlier- versus later-treated component; and the green

triangles are the 2-by-2 coefficients from the later- versus earlier-treated component. The triangles and

diamonds, while being substantially different from the overall ATET (indicated by the dashed reference

line), are all very close to zero weight. This indicates that the contribution of these coefficients to the

overall ATET is negligible.
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Stored results
estat ptrends stores the following results for the test of linear trends in r():

Scalars

r(N) number of observations

r(F) test statistic

r(df r) number of degrees of freedom of the residuals for the 𝐹 distribution under 𝐻0
r(p) 𝑝-value
r(df m) number of degrees of freedom of the test for the 𝐹 distribution under 𝐻0

estat granger stores the following results for the test of treatment anticipation in r():

Scalars

r(N) number of observations

r(F) test statistic

r(df r) number of degrees of freedom of the residuals for the 𝐹 distribution under 𝐻0
r(p) 𝑝-value
r(df m) number of degrees of freedom of the test for the 𝐹 distribution under 𝐻0

estat grangerplot, when used with option post, stores results from the underlying regression

model in e() and r().

estat bdecomp stores the following results in r():

Scalars

r(N groups) number of panels

r(N obs) number of observations

r(N cohorts) number of cohorts

r(atet) overall ATET

r(atet between b) between component

r(atet within b) within component

r(atet between w) weight of between component

r(atet within w) weight of within component

Macros

r(ttimes) times of treatment

Matrices

r(atet comp b) ATET components

r(atet comp w) weights of ATET components

r(coefs) individual 2-by-2 coefficients

r(wgts) weights of individual 2-by-2 coefficients

Methods and formulas
The tests performed with estat ptrends and estat granger are based on augmented difference-

in-differences (DID) models. With estat ptrends, we augment the DID model with terms that capture

the differences in slopes between treated and controls. With estat granger, we augment the model by

interacting the dummy variable that marks treated observations with dummy variables for time periods

prior to the treatment to capture any potential anticipatory treatment effects.

Let’s consider the case of panel data for individuals over time, in which individuals belong to a group

𝑠. Groups could be states, occupational categories, districts, etc. Let 𝑦𝑖𝑡𝑠 be the outcome of individual 𝑖,
who belongs to group 𝑠, at time 𝑡, where 𝑖 = 1, . . . , 𝑁, 𝑡 = 1, . . . , 𝑇, and 𝑠 = 1, . . . , 𝑆.
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We can write the DID model for such setups as follows:

𝑦𝑖𝑠𝑡 = 𝛾𝑖 + 𝛾𝑡 + x𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡

Here 𝛾𝑖 are individual fixed effects, 𝛾𝑡 are time fixed effects, x𝑖𝑠𝑡 are covariates, 𝐷𝑠𝑡 is a variable that

is 1 if an individual belongs to a group 𝑠 that is treated at time 𝑡 and is 0 otherwise, and 𝜖𝑖𝑠𝑡 is an error

term. The coefficient 𝛿 represents the average treatment effect on the treated (ATET).

To simplify the exposition below, we rewrite the model as follows:

𝑦𝑖𝑠𝑡 = 𝛾𝑖 + 𝛾𝑡 + x𝑖𝑠𝑡β + 𝐷𝑠𝑡𝛿 + 𝜖𝑖𝑠𝑡

𝑦𝑖𝑠𝑡 = DID𝑖𝑠𝑡 + 𝜖𝑖𝑠𝑡 (1)

The linear-trends model that is used for the parallel-trends test with estat ptrends augments the

above model with two more terms. Let 𝑑𝑡,0 = 1(𝑑𝑡 = 0) be a variable indicating pretreatment time

periods, and let 𝑑𝑡,1 = 1(𝑑𝑡 = 1) be a variable indicating posttreatment time periods. Also, let 𝑤𝑖 be a

variable that is 1 if the individual belongs to a treated group and is 0 otherwise. The augmentation terms

then consist of two 3-way interactions between 𝑑𝑡,0, 𝑤𝑖, and 𝑡, and 𝑑𝑡,1, 𝑤𝑖, and 𝑡:

𝑦𝑖𝑠𝑡 = DID𝑖𝑠𝑡 + 𝑤𝑖𝑑𝑡,0𝑡𝜁1 + 𝑤𝑖𝑑𝑡,1𝑡𝜁2 + 𝜖𝑖𝑠𝑡 (2)

Under this specification, the coefficient 𝜁1 captures the differences in slopes between treatment group

and control group in pretreatment periods, while 𝜁2 captures the differences in slopes in posttreatment

periods. If 𝜁1 is 0, the linear trends in the outcome are parallel during pretreatment periods. The same is

true for 𝜁2 with respect to the posttreatment period; however, posttreatment differences in trends are not

relevant for assessing the parallel-trends assumption. estat ptrends uses a Wald test of 𝜁1 against 0

to assess whether the linear trends are parallel prior to treatment. Thus, the null hypothesis of this test is

that the linear trends are parallel.

estat granger performs a Granger-type causality test to assess whether treatment effects are ob-

served prior to the treatment. To illustrate this, suppose the treatment took place at time 𝑡 = 𝑗. We

could express 𝐷𝑠𝑡 as 𝐷𝑠𝑡 = 1(𝑡 ≥ 𝑗)𝑤𝑖. The Granger-type test augments the model with counterfactual

treatment-time indicators. For example, if the treatment occurred at time 𝑗 − 1, then we could construct

a new treatment as 1(𝑡𝑖𝑡 ≥ 𝑗 − 1)𝑤𝑖, and if we have sufficient time points, we could construct another

counterfactual treatment as 1(𝑡𝑖𝑡 ≥ 𝑗 − 2)𝑤𝑖, and so on. These terms are referred to as leads in the

DID literature. The model used by estat granger uses the model in (1) and augments it with all leads

leaving out one for identification purposes. Let 𝐽 index the time at which the treatment occurs.

𝑦𝑖𝑠𝑡 = DID𝑖𝑠𝑡 +
𝐽−1
∑
𝑗=2

1(𝑡𝑖𝑡 ≥ 𝑗)𝑤𝑖𝜆𝑗 + 𝜈𝑖𝑠𝑡 (3)

The test result is then obtained by performing a joint Wald test on the coefficients 𝜆𝑗. Thus, the null

hypothesis for this test is that the coefficients in 𝜆𝑗 are jointly 0, which is to say there are no anticipatory

effects.
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estat grangerplot fits a generalization of the DIDmodel in (1) and plots the estimated coefficients

from this model, including their 95% confidence intervals. The model is similar to (3), but this model

parameterizes the leads differently and includes lags in addition to leads. Let 𝐼𝑠 be the time of treatment,

𝑚 < 0 be the number of time periods prior to 𝐼𝑠, 𝑞 ≥ 0 be the number of periods after 𝐼𝑠, and 𝑏 be the
baseline period. The model is

𝑦𝑖𝑠𝑡 = 𝛾𝑖 + 𝛾𝑡 + x𝑖𝑠𝑡β +
𝑞

∑
𝑘=𝑚,𝑘≠𝑏

𝐵𝑘
𝑠𝑡𝑤𝑖𝜆𝑘 + 𝜖𝑖𝑠𝑡

where

𝐵𝑘
𝑠𝑡 =

⎧{
⎨{⎩

1(𝑡𝑖𝑡 ≤ 𝐼𝑠 + 𝑘), if 𝑘 = 𝑚
1(𝑡𝑖𝑡 = 𝐼𝑠 + 𝑘), if 𝑚 < 𝑘 < 𝑞
1(𝑡𝑖𝑡 ≥ 𝐼𝑠 + 𝑘), if 𝑘 = 𝑞

This yields a model with |𝑚| leads and 𝑞 lags. By default, estat grangerplot uses all available leads
and lags. If, without loss of generality, we set the base to the period prior to treatment, 𝑏 = −1 (the

default), then with 𝑡 = 1, . . . , 𝑇 and 𝐼𝑠 = 𝐽, a maximum of 𝑛leads = 𝐽 − 2 leads and 𝑛lags = 𝑇 − 𝐽 + 1

lags is available. Notice that, if all available leads and lags are used, 𝐵𝑘
𝑠𝑡 reduces to𝐵𝑘

𝑠𝑡 = 1(𝑡𝑖𝑡 = 𝐼𝑠+𝑘)
because there are no periods before or after 𝐼𝑠 + 𝑘. With fewer than available leads and lags, that is,

|𝑚| < 𝑛leads or 𝑞 < 𝑛lags, notice that the corresponding indicator variables capture the periods beyond

the endpoints that correspond to 𝑚 and 𝑞.
At a minimum, the model has to include a single lead. In that case, we have that 𝑚 = −1 and 𝑞 = 0.

After omitting the base, we have that 𝑘 = 0 and 𝐵𝑘
𝑠𝑡 reduces to 𝐵𝑘

𝑠𝑡 = 1(𝑡𝑖𝑡 ≥ 𝐼𝑠). Notice that 𝐵𝑘
𝑠𝑡𝑤𝑖

now yields our original treatment indicator 𝐷𝑠𝑡. In other words, the model with a single lead and no lags

yields the special case of the DID model in (1). Notice also that the model in (3) is a special case, too.

It is equivalent to the model fit by estat grangerplot with all available leads and no lags. However,

(3) uses a different parameterization because the indicator variables are constructed differently. estat
grangerplot plots the coefficients 𝜆𝑘 against the corresponding time periods.

The estat trendplots command produces two plots. The first plot is simply plotting the observed

means for each treatment group at each point in time. The second plot is based on the model in (2), which

is the model used for the parallel-trends test, but this model centers the continuous time variable around

its minimum value:

𝑦𝑖𝑠𝑡 = DID𝑖𝑠𝑡 + 𝑤𝑖𝑑𝑡,0{𝑡 − min(𝑡)}𝜁1 + 𝑤𝑖𝑑𝑡,1{𝑡 − min(𝑡)}𝜁2 + 𝜇𝑖𝑠𝑡

Centering around the minimum time value provides a common reference point at the first observed time

point such that deviations from parallelism are easily detectable. The graph then shows the predicted

values from this model, evaluated at all observed time points for each of the treatment groups and at the

means of the covariates.

While the formulas above are shown for the case of panel data, these methods work the same way for

data that consist of repeated cross-sections.
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The estat bdecomp command may be used in cases where units get treatment at different times. The

command performs a decomposition of the estimated DID treatment effect into components that come

from all possible 2-by-2 cohort comparisons. Cohorts are defined by the times of treatment administration

and also include a group of never treated and potentially a group of always treated. Cohorts are also

referred to as timing groups. estat bdecomp results are based on the derivation in Goodman-Bacon

(2021).

For a DID model without covariates, we have the two-way fixed-effects model

𝑦𝑖𝑡 = 𝛾𝑖 + 𝛾𝑡 + 𝐷𝑖𝑡𝛿DD + 𝜖𝑖𝑡

where 𝛿DD is the overall treatment effect from the DIDmodel. Let 𝑡𝑖 denote the time when unit 𝑖 receives
treatment. If unit 𝑖 was never treated, we set 𝑡𝑖 = 𝑈 > 𝑇 and say that the unit belongs to cohort 𝑈 (where

𝑇 is the latest time period for which we have data). If unit 𝑖 was treated in period 𝑘 ∈ {1, 2, . . .𝑇 }, that
is, 𝑡𝑖 = 𝑘, we say that the unit belongs to cohort 𝑘. Let 𝐾 denote the set of all cohorts (including 𝑈).

Goodman-Bacon (2021) show that we can decompose the estimated ̂𝛿DD into the weighted sum of the

DID coefficients that comes from all possible 2-by-2 cohort pairs,

̂𝛿DD = ∑
𝑘≠𝑈

𝑤𝑘𝑈
̂𝛿2×2
𝑘𝑈 + ∑

𝑘≠𝑈
∑
𝑙>𝑘

[𝑤𝑘
𝑘𝑙

̂𝛿2×2,𝑘
𝑘𝑙 + 𝑤𝑙

𝑘𝑙
̂𝛿2×2,𝑙
𝑘𝑙 ]

where ̂𝛿2×2
𝑘𝑈 is the coefficient from the 2-by-2 DID model that uses cohorts 𝑘 and 𝑈 as treatment and

control, respectively, and ̂𝛿2×2,𝑘
𝑘𝑙 is the coefficient from the model that uses cohorts 𝑘 and 𝑙 as treatment

and control, respectively. The weights 𝑤 are given by

𝑤𝑘𝑈 = (𝑠𝑘 + 𝑠𝑈)2𝑠𝑘𝑈(1 − 𝑠𝑘𝑈)𝐷𝑘(1 − 𝐷𝑘)
̂𝑉 𝐷

𝑤𝑘
𝑘𝑙 =

[(𝑠𝑘 + 𝑠𝑙)(1 − 𝐷𝑙)]
2 𝑠𝑘𝑙(1 − 𝑠𝑘𝑙)

𝐷𝑘−𝐷𝑙
1−𝐷𝑙

1−𝐷𝑘
1−𝐷𝑙

̂𝑉 𝐷

𝑤𝑙
𝑘𝑙 =

[(𝑠𝑘 + 𝑠𝑙)𝐷𝑘]2 𝑠𝑘𝑙(1 − 𝑠𝑘𝑙)
𝐷𝑙
𝐷𝑘

𝐷𝑘−𝐷𝑙
𝐷𝑘

̂𝑉 𝐷

where 𝑠𝑗 ≡ ∑𝑖 1(𝑡𝑖 = 𝑗)/𝑁 is the share of cohort 𝑗 ∈ 𝐾, 𝑠𝑎𝑏 ≡ 𝑠𝑎/(𝑠𝑎 + 𝑠𝑏) is the relative size of
cohort 𝑎 with respect to cohort 𝑏, 𝐷𝑗 ≡ ∑𝑡 1(𝑡 ≥ 𝑗)/𝑇 is the proportion of time spent in treatment by

cohort 𝑗 ∈ 𝐾, and ̂𝑉 𝐷 is the sample variance of the treatment indicator demeaned with respect to both

group and time fixed effects. The weights 𝑤 sum to unity: ∑𝑘≠𝑈 𝑤𝑘𝑈 + ∑𝑘≠𝑈 ∑𝑙>𝑘 [𝑤𝑘
𝑘𝑙 + 𝑤𝑙

𝑘𝑙] = 1.

For a model that includes time-varying covariates, x𝑖𝑡, a similar decomposition result holds. Consider

the model

𝑦𝑖𝑡 = 𝛾𝑖 + 𝛾𝑡 + x𝑖𝑡β + 𝐷𝑖𝑡𝛿DD|x + 𝜖𝑖𝑡

where 𝛿DD|x denotes the covariate-adjustedATET. In this case, we can decompose ̂𝛿DD|x into a within and

a between component,
̂𝛿DD|x = Ω ̂𝛿𝑝

𝑤 + (1 − Ω) ̂𝛿𝑑
𝑏
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To estimate the within and between components, we first fit a linear model that partials the covariates

out of 𝐷𝑖𝑡; that is,

𝐷̃𝑖𝑡 = x̃𝑖𝑡Γ̂ + ̃𝑑𝑖𝑡 = ̃𝑝𝑖𝑡 + ̃𝑑𝑖𝑡 (4)

where 𝐷̃𝑖𝑡 and x̃𝑖𝑡 are respectively the treatment indicator and the covariates demeaned with respect to

both group and time fixed effects. The resulting residuals can then be separated into a within component,
̃𝑑𝑖(𝑘)𝑡, and a between component, ̃𝑑𝑘𝑡, so that

̃𝑑𝑖𝑡 = ̃𝑑𝑖(𝑘)𝑡 + ̃𝑑𝑘𝑡.

The within component of ̃𝑑𝑖𝑡 is defined as
̃𝑑𝑖(𝑘)𝑡 = (𝑑𝑖𝑡 − 𝑑𝑖) − (𝑑𝑘𝑡 − 𝑑𝑘), where 𝑑𝑖𝑡 = 𝐷𝑖𝑡 − Γ̂x𝑖𝑡

is the treatment status adjusted by covariates only; and 𝑑𝑖, 𝑑𝑘, and 𝑑𝑘𝑡 are respectively the averages of

𝑑𝑖𝑡 by individual, cohort, and cohort by year. This component captures deviations of 𝑑𝑖𝑡 from cohort

averages and cohort-by-year averages.

The between component of ̃𝑑𝑖𝑡 is defined as ̃𝑑𝑘𝑡 = (𝑑𝑘𝑡 − 𝑑𝑘) − (𝑑𝑡 − 𝑑), where 𝑑𝑡 and 𝑑 are the

averages of 𝑑𝑖𝑡 by year and in the whole sample, respectively.

The within and between components of the DID treatment effect, ̂𝛿𝑝
𝑤 and ̂𝛿𝑑

𝑏 , can be obtained by sepa-

rately regressing the outcome variable 𝑦𝑖𝑡 on
̃𝑑𝑖(𝑘)𝑡 and

̃𝑑𝑘𝑡, respectively. Thus, 𝑦𝑖𝑡 = 𝑎𝑤 + ̃𝑑𝑖(𝑘)𝑡
̂𝛿𝑝
𝑤 +𝜈𝑖𝑡

and 𝑦𝑖𝑡 = 𝑎𝑏 + ̃𝑑𝑘𝑡
̂𝛿𝑑
𝑏 + 𝜂𝑖𝑡. The weight Ω is given by the ratio of the variances Ω = ̂𝑉 𝑑

𝑤/ ̂𝑉 𝑑, where ̂𝑉 𝑑
𝑤

and ̂𝑉 𝑑 are the sample variances of ̃𝑑𝑖(𝑘)𝑡 and
̃𝑑𝑖𝑡, respectively.

The between component ̂𝛿𝑑
𝑏 can be decomposed further into 2-by-2 components

̂𝛿𝑑
𝑏 = ∑

𝑘
∑
𝑙>𝑘

𝑤𝑏|x
𝑘𝑙

̂𝛿2×2|𝑑
𝑘𝑙

where

̂𝛿2×2|𝑑
𝑘𝑙 =

̂𝑉 𝐷
𝑘𝑙

̂𝛿2×2
𝑘𝑙 − ̂𝑉 𝑝

𝑏,𝑘𝑙
̂𝛿𝑝
𝑏,𝑘𝑙

̂𝑉 𝑑
𝑏,𝑘𝑙

and

𝑤𝑏|x
𝑘𝑙 = (𝑠𝑘 + 𝑠𝑙)2

̂𝑉 𝑑
𝑏,𝑘𝑙
̂𝑉 𝑑
𝑏

In the formulas above, ̂𝑉 𝑑
𝑏 and ̂𝑉 𝑑

𝑏,𝑘𝑙 are the sample variances of ̃𝑑𝑘𝑡 in the whole sample and in the

subsample consisting of cohorts 𝑘 and 𝑙, respectively. ̂𝑉 𝐷
𝑘𝑙 and ̂𝑉 𝑝

𝑏,𝑘𝑙 are the sample variances of 𝐷̃𝑖𝑡

and ̃𝑝𝑖𝑡, respectively, in the subsample consisting of cohorts 𝑘 and 𝑙. Finally, ̂𝛿2×2
𝑘𝑙 and ̂𝛿𝑝

𝑏,𝑘𝑙 are the

coefficients from a regression of 𝑦𝑖𝑡 on 𝐷̃𝑖𝑡 and from a regression of 𝑦𝑖𝑡 on ̃𝑝𝑖𝑡, respectively, in the

subsample consisting of cohorts 𝑘 and 𝑙.
Thus, the full decomposition for a DID specification with controls is

̂𝛿DD|x = Ω ̂𝛿𝑝
𝑤 + (1 − Ω) ∑

𝑘
∑
𝑙>𝑘

𝑤𝑏|x
𝑘𝑙

̂𝛿2×2|𝑑
𝑘𝑙
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eteffects — Endogenous treatment-effects estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description
eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data when treatment assignment

is correlated with the potential outcomes. It allows for continuous, binary, count, fractional, and non-

negative outcomes and requires a binary treatment. To control for the endogeneity of the treatment

assignment, the estimator includes residuals from the treatment model in the models for the potential

outcomes, known as a control-function approach.

Quick start
ATE of binary treatment treat using a linear model for outcome y1 on x and the residuals from a probit

model for treat on x and z
eteffects (y1 x) (treat x z)

Same as above, but estimate ATET

eteffects (y1 x) (treat x z), atet

Same as above, but estimate POMs

eteffects (y1 x) (treat x z), pomeans

Same as above, and show parameters from auxiliary equations

eteffects (y1 x) (treat x z), pomeans aequations

ATE of treat using an exponential-mean model for y1
eteffects (y1 x, exponential) (treat x z)

Same as above, but for count outcome y2
eteffects (y2 x, exponential) (treat x z)

Same as above, but use a probit model for binary outcome y3
eteffects (y3 x, probit) (treat x z)

Same as above, but use a fractional probit model for y4 ranging from 0 to 1

eteffects (y4 x, fractional) (treat x z)

173
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Menu
Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Continu-
ous outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Binary
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Count
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Fractional
outcomes

Statistics > Causal inference/treatment effects > Endogenous treatment > Control function estimator > Nonneg-
ative outcomes

Syntax
eteffects (ovar omvarlist [ , omodel noconstant ])

(tvar tmvarlist [ , noconstant ]) [ if ] [ in ] [weight ] [ , stat options ]

ovar is the depvar of the outcome model.

omvarlist is the list of exogenous indepvars in the outcome model.

tvar is the binary treatment variable.

tmvarlist is the list of covariates that predict treatment assignment.

omodel Description

Model

linear linear outcome model; the default

fractional fractional probit outcome model

probit probit outcome model

exponential exponential-mean outcome model

stat Description

Model

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

Model

noconstant suppress constant term

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or
jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) generate newvar to mark observations that violate the overlap assumption

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.
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aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). eteffects will exit with an error if an observation has an estimated propen-

sity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

The following option is available with eteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
If you are unfamiliar with treatment-effects estimators for observational data or the teffects com-

mands, we recommend that you look at [CAUSAL] teffects intro. For the intuition behind some of the

concepts discussed below, we recommend that you read Defining treatment effects in [CAUSAL] teffects

intro advanced.

The estimators implemented in eteffects extend the regression adjustment (RA) estimators im-

plemented in teffects ra to allow for endogenous treatments, that is, when treatment assignment is

not independent of outcomes. This endogeneity is a violation of the conditional mean independence

assumption used by teffects ra, as discussed in The potential-outcome model in [CAUSAL] teffects

intro advanced.

eteffects estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs). It uses a linear, a probit, a fractional probit, or an

exponential-mean model for the potential outcomes and a probit model for treatment assignment. After

conditioning on the observable covariates, eteffects allows some remaining unobservable components

to affect both treatment assignment and the potential outcomes. The treatment assignment process is

endogenous because these unobservable components affect both treatment assignment and the potential

outcomes.
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To control for the endogeneity of the treatment assignment, eteffects uses a control-function ap-

proach. This method controls for endogeneity by including the residuals from the treatment-assignment

model as a regressor in the models for the potential outcome. The implementation in eteffects follows
Wooldridge (2010), who provides an excellent discussion of the control-function approach that addresses

endogeneity problems in a treatment-effects context.

The control-function approach estimates the parameters of the conditional means of the potential

outcomes. Sample averages of the conditional means are used to estimate the unconditional ATE, ATET,

or POMs. This method is known as RA.

Taken collectively, the estimators implemented in eteffects are control-function RA estimators. See

Methods and formulas below for details about the estimation procedure.

Example 1: Linear outcome estimates for ATE
Suppose we want to know the effect of a mother smoking while pregnant on the birthweight of her

infant. We use an extract from Cattaneo (2010) in which bweight records the baby’s birthweight and

mbsmoke is the variable (0 or 1) indicating whether a mother smoked while pregnant.

We may believe that birthweight (the potential outcome) is influenced by whether the mother had

a prenatal exam in the first trimester, whether the mother is married, the mother’s age, whether this is

the first birth, and the education level of the father. We may also believe that the smoking decision (the

treatment) is influenced by the mother’s marital status, the education level of the mother, her age, whether

she had a prenatal exam in the first trimester, and whether this baby is her first baby.

Thus we condition on different sets of covariates in the models for treatment assignment and the

potential outcomes. In the probit model for smoking status (mbsmoke), we condition on marital status

(mmarried), age (mage), mother’s education level (medu), father’s education level (fedu), and whether
it was the mother’s first baby (fbaby). We model birthweight (bweight) as a linear function of whether
the mother had a first-trimester prenatal exam (prenatal1), mmarried, mage, and fbaby. We can

estimate the ATE of smoking status using one of the teffects estimators if we believe that there are

no unobservable components that affect both the decision to smoke while pregnant and the potential

birthweights.

If we believe there is some unobservable factor that affects both assignment to treatment and the

potential outcome, we must select another estimator. For example, we do not observe a mother’s health

consciousness, which affects both the smoking decision and each potential birthweight through other

behaviors such as intake of prenatal vitamins. Under these assumptions, the estimators in eteffects
consistently estimate the ATE, but the estimators in [CAUSAL] teffects yield inconsistent estimates.
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. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. eteffects (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)
Iteration 0: EE criterion = 4.739e-24
Iteration 1: EE criterion = 2.524e-25
Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model: linear
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -455.9119 212.4393 -2.15 0.032 -872.2853 -39.53852

POmean
mbsmoke

Nonsmoker 3437.964 31.21145 110.15 0.000 3376.791 3499.138

When no mother smokes, the average birthweight is 3,438 grams. The average birthweight is 456

grams less when all mothers smoke than when no mother smokes.

We can compare these results with those obtained if we ignore the endogeneity of the smoking deci-

sion. Below we estimate theATE using the inverse-probability-weighted regression-adjustment estimator

in [CAUSAL] teffects ipwra.

. teffects ipwra (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu)
Iteration 0: EE criterion = 3.036e-22
Iteration 1: EE criterion = 3.755e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: logit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -233.6835 25.07695 -9.32 0.000 -282.8335 -184.5336

POmean
mbsmoke

Nonsmoker 3403.191 9.529709 357.11 0.000 3384.513 3421.869

In magnitude, the estimated ATE is more than half the estimate that allows for endogenous treatment

assignment. If there is endogeneity, disregarding it underestimates the effect of smoking on birthweight.

We show how to test for endogeneity in example 1 of [CAUSAL] eteffects postestimation.
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Example 2: Estimating the ATET
Continuing example 1, we can use the atet option to estimate the ATET.

. eteffects (bweight i.prenatal1 i.mmarried mage i.fbaby)
> (mbsmoke i.mmarried mage i.fbaby medu fedu), atet
Iteration 0: EE criterion = 4.659e-24
Iteration 1: EE criterion = 1.479e-25
Endogenous treatment-effects estimation Number of obs = 4,642
Outcome model: linear
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke
(Smoker

vs
Nonsmoker) -409.8527 161.4816 -2.54 0.011 -726.3507 -93.35466

POmean
mbsmoke

Nonsmoker 3547.512 160.0595 22.16 0.000 3233.801 3861.223

In the population of mothers who smoke, the average infant birthweight would be 3,548 grams if none

of these mothers smoked. For the mothers who smoke, the average infant birthweight is 410 grams less

than if none of these mothers smoked.
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Example 3: Exponential-mean outcomes
We estimate the ATE of living in an urban area on monthly earnings (wage), using a subset of the

National Longitudinal Survey in 1980 found in Wooldridge (2010). We assume that once we condition

on work experience (exper), whether education level attained is college or higher (college), and IQ

(iq), individual wages follow an exponential mean. The variables used to predict residence in an urban

area (urban) are college and whether the respondent’s father attained a bachelor’s degree or higher

(fcollege).

. use https://www.stata-press.com/data/r19/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)
Iteration 0: EE criterion = 2.903e-25
Iteration 1: EE criterion = 2.903e-25 (backed up)
Endogenous treatment-effects estimation Number of obs = 935
Outcome model: exponential
Treatment model: probit

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATE
urban

(1 vs 0) 481.0465 31.74882 15.15 0.000 418.82 543.2731

POmean
urban

0 233.8083 13.51028 17.31 0.000 207.3286 260.288

When everyone lives outside urban areas, wages are $234 a month on average. Wages are $481 a

month greater, on average, when everyone lives in urban areas.
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Stored results
eteffects stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) eteffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(omodel) fractional, linear, probit, or exponential
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
The treatment-effects models considered in eteffects are given by

𝑦𝑖0 = 𝐸 (𝑦𝑖0|x𝑖) + 𝜖𝑖0 (1)

𝑦𝑖1 = 𝐸 (𝑦𝑖1|x𝑖) + 𝜖𝑖1 (2)

𝑡𝑖 = 𝐸 (𝑡𝑖|z𝑖) + 𝜈𝑖 (3)

𝑦𝑖 = 𝑡𝑖𝑦𝑖1 + (1 − 𝑡𝑖)𝑦𝑖0 (4)

𝐸 (𝜖𝑖𝑗|x𝑖, z𝑖) = 𝐸 (𝜖𝑖𝑗|z𝑖) = 𝐸 (𝜖𝑖𝑗|x𝑖) = 0 for 𝑗 ∈ {0, 1} (5)

𝐸 (𝜖𝑖𝑗|𝑡) ≠ 0 for 𝑗 ∈ {0, 1} (6)

where the subscript 𝑖 denotes individual level observations, 𝑦𝑖1 is the potential outcome of receiving

the treatment, 𝑦𝑖0 is the potential outcome when the treatment is not received, 𝑡𝑖 is the observed binary

treatment, and 𝑦𝑖 is the observed outcome. Each one of the potential outcomes is determined by its

expected value conditional on a set of regressors x𝑖 and an unobserved random component 𝜖𝑖𝑗, for 𝑗 ∈
{0, 1}. Similarly, the treatment is given by its expectation conditional on a set of regressors z𝑖, which

does not need to differ from x𝑖, and an unobserved component 𝜈𝑖.

Equations (1)–(5) describe the parametric treatment-effects models in [CAUSAL] teffects. Equation

(6) adds endogeneity to the framework. It states that the unobservables in the potential-outcome equations

are correlated to treatment status. For our birthweight example, this would happen if mothers who do not

smoke are more health conscious than those who smoke and if we do not observe health awareness in our

data. If we do not observe health awareness, the decision to smoke or not to smoke is not independent

of the infant’s birthweight.

Equations (3), (5), and (6) are the basis of the control-function estimator implemented by eteffects.
Equation (5) states that the unobserved components in the potential outcome are independent of z𝑖. There-

fore, the correlation between 𝑡𝑖 and the unobserved components must be equivalent to the correlation

between 𝜖𝑖𝑗 and 𝜈𝑖. Another way of stating this is

from (3) 𝐸 (𝜖𝑖𝑗|𝑡𝑖) = 𝐸 (𝜖𝑖𝑗|𝐸 (𝑡|z𝑖) + 𝜈𝑖)
from (5) = 𝐸 (𝜖𝑖𝑗|𝜈𝑖)

= 𝜈𝑖β2𝑗

We fit (3) using a probit estimator. We then obtain ̂𝜈𝑖 as the difference between the treatment and our

estimate of 𝐸 (𝑡𝑖|z𝑖) and use this statistic to compute an estimate of 𝐸 (𝑦𝑖𝑗|x𝑖, 𝜈𝑖, 𝑡𝑖) for 𝑗 ∈ {0, 1}. If
the outcome is linear, for instance,

𝐸 (𝑦𝑖𝑗|x𝑖, 𝜈𝑖, 𝑡𝑖 = 𝑗) = x′
𝑖β1𝑗 + ν𝑖β2𝑗 for 𝑗 ∈ {0, 1} (7)

For the probit and exponential-mean cases, respectively, we have the following:

𝐸 (𝑦𝑖𝑗|x𝑖, 𝜈𝑖, 𝑡𝑖 = 𝑗) = 𝚽 (x′
𝑖β1𝑗 + 𝜈𝑖β2𝑗) (8)

𝐸 (𝑦𝑖𝑗|x𝑖, 𝜈𝑖, 𝑡𝑖 = 𝑗) = exp (x′
𝑖β1𝑗 + 𝜈𝑖β2𝑗) (9)
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The parameters of (3) and (7)–(9), and the ATE, ATET, and POMs are estimated using the gener-

alized method of moments (GMM). The moment equations used in GMM are the sample analogs of

𝐸 {w′
𝑖𝜖𝑖(𝜃)} = 0, where w𝑖 are the instruments, 𝜖𝑖(𝜃) are residuals, and 𝜃 are the parameters of the

model (see [R] gmm). The moment conditions in the GMM estimation for the linear model are given by

1
𝑛

𝑛
∑
𝑖=1

x′
𝑖(𝑦𝑖 − x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)𝑡𝑖 = 0 (10)

1
𝑛

𝑛
∑
𝑖=1

x′
𝑖(𝑦𝑖 − x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)(1 − 𝑡𝑖) = 0 (11)

1
𝑛

𝑛
∑
𝑖=1

z′
𝑖 {𝑡𝑖

φ (z′
𝑖 ̂𝜋)

𝚽 (z′
𝑖 ̂𝜋)

− (1 − 𝑡𝑖)
φ (z′

𝑖 ̂𝜋)
1 − 𝚽 (z′

𝑖 ̂𝜋)
} = 0 (12)

1
𝑛

𝑛
∑
𝑖=1

{(x′
𝑖β̂10 + ̂𝜈𝑖

̂𝛽20) − P̂OM0} = 0

1
𝑛

𝑛
∑
𝑖=1

{(x′
𝑖

̂𝛽11 + ̂𝜈𝑖β̂21) − P̂OM0 − ÂTE} = 0 (13)

where ̂𝜈𝑖 = 𝑡𝑖 − 𝚽 (z′
𝑖 ̂𝜋), 𝑛 is the number of observations, and β̂11, β̂10, β̂21, β̂20, ̂𝜋, ÂTE, and P̂OM0 are

the parameters. If we want to estimate the ATET, we replace (13) with

1
𝑛

𝑛
∑
𝑖=1

{(x′
𝑖

̂𝛽11 + ̂𝜈𝑖β̂21) 𝑛
𝑛𝑡

− P̂OM0
𝑛
𝑛𝑡

− ÂTET} = 0

and if we want to estimate the potential-outcome means, we replace (13) with

1
𝑛

𝑛
∑
𝑖=1

{(x′
𝑖β̂11 + ̂𝜈𝑖

̂𝛽21) − P̂OM1} = 0 (14)

where ÂTET and P̂OM1 are the parameters of the model, and 𝑛𝑡 is the number of treated units.

For the exponential-mean outcome model, we replace x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗 with exp(x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗) to

obtain the residual equations in (10)–(14). For the probit outcome model, we replace (10) and (11) with

the following:

1
𝑛

𝑛
∑
𝑖=1

𝑡𝑖x
′
𝑖

⎧{
⎨{⎩

𝑦𝑖
φ (x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

𝚽 (x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

− (1 − 𝑦𝑖)
φ (x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

1 − 𝚽 (x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

⎫}
⎬}⎭

= 0

1
𝑛

𝑛
∑
𝑖=1

(1 − 𝑡𝑖)x′
𝑖

⎧{
⎨{⎩

𝑦𝑖
φ (x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

𝚽 (x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

− (1 − 𝑦𝑖)
φ (x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

1 − 𝚽 (x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗)

⎫}
⎬}⎭

= 0

For the remaining equations, x′
𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗 is replaced with Φ(x′

𝑖β̂1𝑗 + ̂𝜈𝑖β̂2𝑗). The fractional probit
model uses the same moment conditions as the probit model.
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Postestimation commands predict estat Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after eteffects:

Command Description

estat endogenous perform tests of endogeneity

The following standard postestimation commands are available after eteffects:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict treatment effects, conditional means at treatment, propensity scores, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

185
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predict

Description for predict
predict creates a new variable containing predictions such as treatment effects, conditional means,

propensity scores, and linear predictions.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ] [ , statistic tlevel ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

ps propensity score

xb linear prediction

psxb linear prediction for propensity score

xbtotal linear prediction, using residuals from treatment model

Specify one new variable with te; specify one or two new variables with cmean, ps, and xb.

Options for predict

� � �
Main �

te, the default, calculates the treatment effect.

cmean calculates the conditional mean for the control group. To also obtain the conditional mean for

the treatment group, specify two variables. If you want the conditional mean for only the treatment

group, specify the tlevel option.

ps calculates the probability of being in the control group. To also obtain the probability of being in the
treatment group, specify two variables. If you want the probability of being in the treatment group

only, specify the tlevel option.

xb calculates the linear prediction for the control group. To also obtain the linear prediction for the

treatment group, specify two variables. If you want the linear prediction for only the treatment group,

specify the tlevel option.

psxb calculates the linear prediction for the propensity score.

xbtotal calculates the linear prediction for the control group, including the residuals from the treatment

model as regressors. To also obtain the linear prediction for the treatment group, specify two variables.

If you want the linear prediction, including the residuals from the treatment model as regressors, only

for the treatment group, specify the tlevel option.
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tlevel specifies that the statistic be calculated for the treatment group; the default is to calculate the

statistic for the control group.

scores calculates the score variables. For eteffects, this is the same as the residuals in the moment

conditions used by the generalized method of moments (see [R] gmm). For the average treatment

effect, the average treatment effect on the treated, and the potential-outcome means, parameter-level

scores are computed. For the auxiliary equations, equation-level scores are computed.

estat

Description for estat
estat endogenous performs a Wald test to determine whether the estimated correlations between

the treatment-assignment and potential-outcome models are different from zero. The null hypothesis is

that the correlations are jointly zero. Rejection of the null hypothesis suggests endogeneity.

Menu for estat
Statistics > Postestimation

Syntax for estat
estat endogenous

collect is allowed with estat endogenous; see [U] 11.1.10 Prefix commands.

Remarks and examples

Example 1: Testing for endogeneity
In example 3 of [CAUSAL] eteffects, endogeneity could arise if unobservable factors that determine

wages are correlated with the decision to live in an urban area. If there is no endogeneity, we would prefer

to use one of the teffects estimators because they will give us the more efficient standard errors. The

control-function approach used by eteffects allows us to test for endogeneity.

The control-function approach estimates the correlation between the unobservables of the treatment-

assignment and potential-outcome models. If there is no correlation between the unobservables, then

there is no endogeneity. We test for correlation, and thus for endogeneity, by typing

. use https://www.stata-press.com/data/r19/nlsy80

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege)
(output omitted )

. estat endogenous
Test of endogeneity
H0: Treatment and outcome unobservables are uncorrelated

chi2( 2) = 275.36
Prob > chi2 = 0.0000
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We reject the null hypothesis of no endogeneity. This suggests that unobservable factors that deter-

mine wages mediate the decision to live in an urban area.

Technical note
The estimated correlations between the unobservables of the treatment-assignment and potential-

outcome models are auxiliary parameters. They appear under the headings TEOM0 and TEOM1, which
refer to treatment residuals (TE) for outcome model 0 (OM0) and outcome model 1 (OM1), when the option
aequations is specified.

For the model in example 3 of [CAUSAL] eteffects with the aequations option, the results are the

following:

. eteffects (wage exper iq i.college, exponential nocons)
> (urban i.college fcollege), aequations
Iteration 0: EE criterion = 2.903e-25
Iteration 1: EE criterion = 2.903e-25 (backed up)
Endogenous treatment-effects estimation Number of obs = 935
Outcome model: exponential
Treatment model: probit

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATE
urban

(1 vs 0) 481.0465 31.74882 15.15 0.000 418.82 543.2731

POmean
urban

0 233.8083 13.51028 17.31 0.000 207.3286 260.288

TME1
college

1 .195811 .1012119 1.93 0.053 -.0025607 .3941827
fcollege .1069748 .0992075 1.08 0.281 -.0874683 .3014179

_cons .498012 .056408 8.83 0.000 .3874543 .6085698

OME0
exper .0193244 .0085633 2.26 0.024 .0025405 .0361082

iq .0099473 .0036949 2.69 0.007 .0027053 .0171892

college
1 -.3718598 .2678636 -1.39 0.165 -.8968629 .1531433

OME1
exper .0238566 .017597 1.36 0.175 -.0106329 .058346

iq .0148581 .0113311 1.31 0.190 -.0073505 .0370667

college
1 1.236947 .6401383 1.93 0.053 -.0177013 2.491595

TEOM0
_cons -7.771932 .6406251 -12.13 0.000 -9.027534 -6.51633

TEOM1
_cons 16.7739 4.777519 3.51 0.000 7.410131 26.13766
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Among other things, we can use these correlations to test the joint significance of the coefficients

on the residuals from the treatment-assignment models. This is equivalent to the endogeneity test in

example 1. We type

. test [TEOM0]_cons [TEOM1]_cons
( 1) [TEOM0]_cons = 0
( 2) [TEOM1]_cons = 0

chi2( 2) = 275.36
Prob > chi2 = 0.0000

Also see
[CAUSAL] eteffects — Endogenous treatment-effects estimation

[U] 20 Estimation and postestimation commands



etpoisson — Poisson regression with endogenous treatment effects

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
etpoisson estimates the parameters of a Poisson regression model in which one of the regressors is

an endogenous binary treatment. Both the average treatment effect and the average treatment effect on

the treated can be estimated with etpoisson.

Quick start
Poisson model of y on x and endogenous binary treatment treat modeled by x and w

etpoisson y x, treat(treat = x w)

With robust standard errors

etpoisson y x, treat(treat = x w) vce(robust)

Average treatment effect after etpoisson with the required vce(robust) option
margins r.treat, vce(unconditional)

Same as above, but calculate average treatment effect on the treated

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu
Statistics > Causal inference/treatment effects > Endogenous treatment > Maximum likelihood estimator > Count
outcomes

190
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Syntax
etpoisson depvar [ indepvars ] [ if ] [ in ] [weight ] ,

treat(depvar𝑡 = indepvars𝑡 [ , noconstant offset(varname𝑜) ]) [ options ]

options Description

Model
∗ treat() equation for treatment effects

noconstant suppress constant term

exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

offset(varname𝑜) include varname𝑜 in model with coefficient constrained to 1

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
irr report incidence-rate ratios

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration

intpoints(#) use # Gauss–Hermite quadrature points; default is intpoints(24)

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗treat( ) is required.
The full specification is treat(depvar𝑡 = indepvars𝑡 [ , noconstant offset(varname𝑜) ]).

indepvars and indepvarst may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, depvar𝑡, indepvars, and indepvarst may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayesboot, bootstrap, by, collect, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix com-

mands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
vce() and weights are not allowed with the svy prefix; see [SVY] svy.
fweights, aweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

� � �
Model �

treat(depvar𝑡 = indepvars𝑡 [ , noconstant offset(varname𝑜) ]) specifies the variables and options
for the treatment equation. It is an integral part of specifying a treatment-effects model and is required.

The indicator of treatment, depvar𝑡, should be coded as 0 or 1.

noconstant, exposure(varname𝑒), offset(varname𝑜), constraints(constraints); see [R] Esti-

mation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

irr reports estimated coefficients transformed to incidence-rate ratios, that is, 𝑒𝛽𝑖 rather than 𝛽𝑖. Stan-

dard errors and confidence intervals are similarly transformed. This option affects how results are

displayed, not how they are estimated or stored. irr may be specified at estimation or when replay-

ing previously estimated results.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Integration �

intpoints(#) specifies the number of integration points to use for integration by quadrature. The

default is intpoints(24); the maximum is intpoints(128). Increasing this value improves the

accuracy but also increases computation time. Computation time is roughly proportional to its value.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with etpoisson but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Overview
Basic example
Average treatment effect (ATE)
Average treatment effect on the treated (ATET)

Overview
etpoisson estimates the parameters of a Poisson regression model that includes an endogenous

binary-treatment variable. The dependent variable must be a Poisson distributed count. The parame-

ters estimated by etpoisson can be used to estimate the average treatment effect (ATE) and average

treatment effect on the treated (ATET).

We call the model fit by etpoisson an endogenous treatment-regression model, although it is also

known as an endogenous binary-variable model or as an endogenous dummy-variable model. The

endogenous treatment-regression model fit by etpoisson is a specific endogenous treatment-effects

model; it uses a nonlinear model for the outcome and a constrained normal distribution to model the

deviation from the conditional independence assumption imposed by the estimators implemented by

teffects; see [CAUSAL] teffects intro. In treatment-effects jargon, the endogenous binary-variable

model fit by etpoisson is a nonlinear potential-outcome model that allows for a specific correlation

structure between the unobservables that affect the treatment and the unobservables that affect the po-

tential outcomes. See [CAUSAL] etregress for an estimator that allows for a linear-outcome model and a

similar model for the endogeneity of the treatment.

More formally, we have an equation for outcome 𝑦𝑗 and an equation for treatment 𝑡𝑗:

𝐸(𝑦𝑗|x𝑗, 𝑡𝑗, 𝜖𝑗) = exp(x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗)

𝑡𝑗 = {1, w𝑗𝛄 + 𝑢𝑗 > 0

0, otherwise

The x𝑗 are the covariates used to model the outcome, w𝑗 are the covariates used to model treatment

assignment, and error terms 𝜖𝑗 and 𝑢𝑗 are bivariate normal with mean 0 and covariance matrix

[𝜎2 𝜎𝜌
𝜎𝜌 1 ]

The covariates x𝑗 and w𝑗 are unrelated to the error terms; in other words, they are exogenous. Note that

𝑦𝑗 may be a count or continuous and nonnegative in this specification.

Terza (1998) describes the maximum likelihood estimator used in etpoisson. Terza (1998) catego-
rized the model fit by etpoisson as an endogenous-switching model. These models involve a binary

switch that is endogenous for the outcome. Calculation of the maximum likelihood estimate involves

numeric approximation of integrals via Gauss–Hermite quadrature. This is computationally intensive,

but the computational costs are reasonable on modern computers.
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Basic example

Example 1
In this example, we observe a simulated random sample of 5,000 households. The outcome of interest

is the number of trips taken by members of the household in the 24-hour period immediately prior to the

interview time.

We have fictional household level data on the following variables: number of trips taken in the past

24 hours (trips), distance to the central business district from the household (cbd), distance from the

household to a public transit node (ptn), an indicator of whether there is a full-time worker in the house-

hold (worker), an indicator of whether the examined period is on a weekend (weekend), the ratio of the
household income to the median income of the census tract (realinc), and an indicator of car owner-

ship (owncar). We suspect that unobservables that affect the number of trips also affect the household’s

propensity to own a car.

We use etpoisson to estimate the parameters of a Poisson regression model for the number of trips

with car ownership as an endogenous treatment. In subsequent examples, we will use margins (see

[R] margins) to estimate the ATE and the ATET of car ownership on the number of trips taken by the

household. In the etpoisson command below, we specify the vce(robust) option because we need to
specify vce(unconditional) when we use margins later.
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. use https://www.stata-press.com/data/r19/trip1
(Household trips, car ownership)
. etpoisson trips cbd ptn worker weekend,
> treat(owncar = cbd ptn worker realinc) vce(robust)
Iteration 0: Log pseudolikelihood = -14845.147 (not concave)
Iteration 1: Log pseudolikelihood = -14562.997 (not concave)
Iteration 2: Log pseudolikelihood = -13655.592 (not concave)
Iteration 3: Log pseudolikelihood = -12847.219 (not concave)
Iteration 4: Log pseudolikelihood = -12566.037
Iteration 5: Log pseudolikelihood = -12440.974
Iteration 6: Log pseudolikelihood = -12413.485
Iteration 7: Log pseudolikelihood = -12412.699
Iteration 8: Log pseudolikelihood = -12412.696
Iteration 9: Log pseudolikelihood = -12412.696
Poisson regression with endogenous treatment Number of obs = 5,000
(24 quadrature points) Wald chi2(5) = 397.94
Log pseudolikelihood = -12412.696 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

trips
cbd -.0100919 .0020071 -5.03 0.000 -.0140258 -.006158
ptn -.0204038 .0020289 -10.06 0.000 -.0243805 -.0164272

worker .692301 .0548559 12.62 0.000 .5847854 .7998166
weekend .0930517 .034538 2.69 0.007 .0253585 .160745
1.owncar .5264713 .1124157 4.68 0.000 .3061406 .746802

_cons -.2340772 .0810812 -2.89 0.004 -.3929934 -.0751609

owncar
cbd .007218 .00239 3.02 0.003 .0025337 .0119023
ptn .0084769 .0024518 3.46 0.001 .0036714 .0132824

worker .543643 .0504267 10.78 0.000 .4448085 .6424774
realinc .176479 .0108746 16.23 0.000 .1551652 .1977928
_cons -.4611246 .0592161 -7.79 0.000 -.5771859 -.3450633

/athrho .5741169 .0957832 5.99 0.000 .3863852 .7618486
/lnsigma -.2182037 .0256281 -8.51 0.000 -.2684338 -.1679735

rho .5183763 .0700449 .3682398 .6421645
sigma .8039617 .020604 .764576 .8453762

Wald test of indep. eqns. (rho = 0): chi2(1) = 35.93 Prob > chi2 = 0.0000

The Wald test in the header is highly significant, indicating a good model fit. All the covariates are

statistically significant, and the Wald test in the footer indicates that we can reject the null hypothesis of

no correlation between the treatment errors and the outcome errors.

We can interpret the coefficient on 1.owncar as the logarithm of the ratio of the treatment potential-

outcome mean to the control potential-outcome mean. The treatment variable did not interact with any

of the outcome covariates, so the effect of each regressor is the same in the two regimes and will cancel

from the ratio of potential-outcome means. This means the ratio is equivalent to the exponentiated coef-

ficient on 1.owncar. After discussing the other parameters, we will use lincom to obtain this ratio. See
[R] lincom for more information.

The estimated correlation between the treatment-assignment errors and the outcome errors is 0.518,

indicating that unobservables that increase the number of trips tend to occur with unobservables that

increase the chance of car ownership.
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The results for the two ancillary parameters require explanation. etpoisson estimates the inverse

hyperbolic tangent of 𝜌,
atanh 𝜌 = 1

2
ln(1 + 𝜌

1 − 𝜌
)

and ln𝜎 rather than 𝜌 and 𝜎. For numerical stability during optimization, etpoisson does not directly

estimate 𝜌 and 𝜎.
Now we use lincom and the eform option to estimate the exponentiated coefficient for 1.owncar.

This corresponds to the ratio of the treatment regime potential-outcome mean to the control regime

potential-outcome mean.

. lincom [trips]_b[1.owncar], eform
( 1) [trips]1.owncar = 0

exp(b) Std. err. z P>|z| [95% conf. interval]

(1) 1.692948 .1903139 4.68 0.000 1.358173 2.110241

The potential-outcome mean for the treatment regime is 1.69 times the potential-outcome mean for

the control regime. So the average number of trips in the treatment regime is over one and a half times

the average number of trips in the control regime.

By interacting the treatment, owncar, with the other regressors, we could estimate different coeffi-

cients for the regressors in the treatment and control regimes. In the current model, there are no treatment

interactions, so the coefficients are the same in each regime.

Average treatment effect (ATE)
The parameter estimates from etpoisson can be used by margins to estimate the ATE, the average

difference of the treatment and control potential outcomes.

Example 2
Continuing with example 1, we use margins to estimate the ATE of car ownership on the number of

trips taken in a 24-hour period.

We can estimate the ATE of car ownership by using the potential-outcome means obtained through

the predict, pomean command and the margins command; see Methods and formulas below and

[CAUSAL] etpoisson postestimation for more details about the use of predict after etpoisson.
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The r. notation indicates that the potential-outcome means for treatment and control will be con-

trasted. We specify the contrast(nowald) option to suppress the Wald tests that margins displays by
default for contrasts.

. margins r.owncar, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 5,000
Expression: Potential-outcome mean, predict()

Unconditional
Contrast std. err. [95% conf. interval]

owncar
(1 vs 0) 1.058914 .1922909 .6820309 1.435797

The estimatedATE of car ownership on the number of trips taken is 1.06. The average household will

take 1.06 more trips when it owns a car.

Average treatment effect on the treated (ATET)
The parameter estimates from etpoisson can be used by margins to estimate the ATET, the average

difference of the treatment and control potential outcomes in the treated population.

Example 3
Continuing with the previous example, we use margins to estimate theATET of car ownership on the

number of trips taken in a 24-hour period.

We can estimate the ATET of car ownership by using the conditional treatment effect (conditional

on exogenous covariates and treatment level) obtained through the predict, cte command and the

margins command; see Methods and formulas below and [CAUSAL] etpoisson postestimation for more

details about the use of predict after etpoisson.

We estimate the ATET with margins. We specify cte in the predict() option. Estimation is re-

stricted to the treated subpopulation by specifying owncar in the subpop() option.
. margins, predict(cte) vce(unconditional) subpop(owncar)
Predictive margins Number of obs = 5,000

Subpop. no. obs = 3,504
Expression: Conditional treatment effect, predict(cte)

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

_cons 1.251971 .2059201 6.08 0.000 .8483747 1.655567

The estimatedATET of car ownership on the number of trips taken is 1.25. Thus the average household

in the treated population will take 1.25 more trips than it would if it did not own a car. This number is

higher than the ATE. In this model, the ATE and ATET will only coincide when there is no correlation be-

tween the treatment errors and outcome errors and the exogenous covariates x have the same distribution

in the general population and treated subpopulation. See Methods and formulas for more details.



etpoisson — Poisson regression with endogenous treatment effects 198

Stored results
etpoisson stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(N clust) number of clusters

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison, 𝜌 = 0 test

e(n quad) number of quadrature points

e(p) 𝑝-value for model test

e(p c) 𝑝-value for comparison test

e(rank) rank of e(V)
e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) etpoisson
e(cmdline) command as typed

e(depvar) name of dependent variable

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title2) secondary title in estimation output

e(clustvar) name of cluster variable

e(offset1) offset for regression equation

e(offset2) offset for treatment equation

e(chi2type) Wald; type of model 𝜒2 test

e(chi2 ct) Wald; type of comparison 𝜒2 test

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Terza (1998) derives the maximum likelihood estimator implemented here. We provide some details

of the derivation and then explain how the model is nested in a more general potential-outcomes model.

Then the ATE and ATET are derived.

Let x𝑗 be the covariates used to model the outcome, and let w𝑗 be the covariates used to model treat-

ment assignment. Define z𝑗 = (w𝑗, x𝑗). The vector z𝑗 contains all the exogenous covariates in the

model. When offsets 𝑜𝛽
𝑗 are used in the outcome variable equation, the following formulas apply with

x𝑗β changed to x𝑗β+ 𝑜𝛽
𝑗 . Similarly, when offsets 𝑜𝛾

𝑗 are used in the endogenous treatment equation, the

following formulas apply with w𝑗𝛄 changed to w𝑗𝛄 + 𝑜𝛾
𝑗 . If offsets are used in either equation, they are

included in the vector of exogenous covariates z𝑗.

For treatment 𝑡𝑗, z𝑗, and 𝜖𝑗, outcome 𝑦𝑗 of this model has conditional mean

𝐸(𝑦𝑗|x𝑗, 𝑡𝑗, 𝜖𝑗) = exp(x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗) (1)

The probability density function of 𝑦𝑗 for this model, conditioned on treatment 𝑡𝑗, z𝑗, and 𝜖𝑗, is given

by

𝑓(𝑦𝑗|z𝑗, 𝑡𝑗, 𝜖𝑗) =
exp{− exp(x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗)}{ exp(x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗)}𝑦𝑗

𝑦𝑗!

The treatment 𝑡𝑗 is determined by

𝑡𝑗 = {1, if w𝑗𝛄 + 𝑢𝑗 > 0

0, otherwise

The error terms 𝜖𝑗 and 𝑢𝑗 are bivariate normal with mean zero and covariance matrix

[𝜎2 𝜎𝜌
𝜎𝜌 1 ]

Conditional on 𝜖𝑗, 𝑢𝑗 is normal with mean 𝜖𝑗𝜌/𝜎 and variance (1− 𝜌2); thus we obtain the following
conditional probability density for 𝑡𝑗:

Pr(𝑡𝑗|z𝑗, 𝜖𝑗) = 𝑡𝑗Φ {
w𝑗𝛄 + (𝜌/𝜎)𝜖𝑗

√1 − 𝜌2
} + (1 − 𝑡𝑗) [1 − Φ {

w𝑗𝛄 + (𝜌/𝜎)𝜖𝑗

√1 − 𝜌2
}]

Φ denotes the standard normal cumulative distribution function. This leads to the following joint density

of 𝑦𝑗, 𝑡𝑗, and 𝜖𝑗:

𝑓(𝑦𝑗, 𝑡𝑗, 𝜖𝑗|z𝑗) = 𝑓(𝑦𝑗|z𝑗, 𝑡𝑗, 𝜖𝑗)𝑃 (𝑡𝑗|z𝑗, 𝜖𝑗)𝑓(𝜖𝑗)
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The density of 𝑦𝑗 and 𝑡𝑗, conditioned on z𝑗, is obtained by integrating the above with respect to 𝜖𝑗.

Recall that 𝜖𝑗 is normal with mean 0 and variance 𝜎2.

𝑓(𝑦𝑗, 𝑡𝑗|z𝑗) = ∫
∞

−∞
𝑓(𝑦𝑗|z𝑗, 𝑡𝑗, 𝜖𝑗)𝑃 (𝑡𝑗|z𝑗, 𝜖𝑗)

1
𝜎

√
2𝜋

exp{− (
𝜖𝑗

𝜎
√

2
)

2

} 𝑑𝜖𝑗

𝑓(𝑦𝑗, 𝑡𝑗|z𝑗) cannot be evaluated in a closed form. We change the variable of integration from 𝜖𝑗 to

𝜂𝑗 = 𝜖𝑗/(𝜎
√
2), which yields

𝑓(𝑦𝑗, 𝑡𝑗|z𝑗) = 1√
𝜋

∫
∞

−∞
𝑓(𝑦𝑗|z𝑗, 𝑡𝑗,

√
2𝜎𝜂𝑗)𝑃 (𝑡𝑗|z𝑗,

√
2𝜎𝜂𝑗) exp(−𝜂2

𝑗 ) 𝑑𝜂𝑗

We approximate this integral by Gauss–Hermite quadrature. Observing a sample of 𝑡𝑗, 𝑦𝑗, and z𝑗, we

calculate the log likelihood as the following:

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 ln{𝑓(𝑦𝑗, 𝑡𝑗|z𝑗)}

The 𝑤𝑗 terms denote optional weights.

In the maximum likelihood estimation, 𝜎 and 𝜌 are not directly estimated. Directly estimated are ln𝜎
and atanh 𝜌:

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

Now we present formulas for the ATE and ATET. First, we nest the endogenous-treatment Poisson re-

gression model in a potential-outcome model. A potential-outcome model specifies what each individual

would obtain in each treatment level.

A potential-outcome model that nests the endogenous-treatment Poisson regression fit by etpoisson
is

𝐸(𝑦0𝑗|x𝑗, 𝜖𝑗) = exp(x𝑗β0 + 𝜖0𝑗)
𝐸(𝑦1𝑗|x𝑗, 𝜖𝑗) = exp(x𝑗β1 + 𝜖1𝑗)

𝑡𝑗 = {1, if w𝑗𝛾 + 𝑢𝑗 > 0

0, otherwise

where 𝑦0𝑗 is the outcome that person 𝑗 obtains if person 𝑗 selects treatment 0, and 𝑦1𝑗 is the outcome

that person 𝑗 obtains if person 𝑗 selects treatment 1. This formulation allows differing coefficients for

the control (β0) and treatment (β1) regimes. The constant intercept for the control group is 𝛽00. The

constant intercept for the treatment group is 𝛽11 = 𝛽00 + 𝛿, where 𝛿 is the coefficient for treatment 𝑡𝑗 in

the outcome (1). The remaining notation was defined above.

We may allow other coefficients to differ across regimes in the outcome (1) by adding interactions

between the treatment 𝑡𝑗 and covariates x𝑗 to the model. To be concise, we use two coefficient vectors

β0 and β1 here rather than a single coefficient vector with interactions between the treatment 𝑡𝑗 and

covariates x𝑗. The two formulations are equivalent.
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We never observe both 𝑦0𝑗 and 𝑦1𝑗, only one or the other. We observe

𝑦𝑗 = 𝑡𝑗𝑦1𝑗 + (1 − 𝑡𝑗)𝑦0𝑗

The vector of error terms (𝜖0𝑗, 𝜖1𝑗, 𝑢𝑗)′ comes from a mean zero trivariate normal distribution with

covariance matrix

⎡⎢
⎣

𝜎2 𝜃 𝜎𝜌
𝜃 𝜎2 𝜎𝜌

𝜎𝜌 𝜎𝜌 1
⎤⎥
⎦

The parameters 𝜎 and 𝜌 were discussed earlier. The parameter 𝜃 is the covariance between the two

potential outcomes. We cannot estimate 𝜃 because we have no observations in which an individual is

observed in both potential outcomes. Fortunately, 𝜃 is not required for the calculations that we present.

The ATE is the difference in means of the potential outcomes. The mean of each potential outcome

accounts for each individual’s contribution, regardless of whether that individual selects that treatment

level.

The conditional means of the potential outcomes 𝑦𝑡𝑗, 𝑡 ∈ (0, 1) for exogenous covariates z𝑗 are

𝐸(𝑦𝑡𝑗|z𝑗) = exp(x𝑗β𝑡 + 𝜎2

2
)

We can see that when the coefficients are the same across the regimes, the ratio of potential-outcome

means will be equal to exp(𝛿); this is true of the conditional and marginal potential-outcome means.

The difference in potential-outcome means or treatment effect at exogenous covariates z𝑗 is

𝐸(𝑦1𝑗 − 𝑦0𝑗|z𝑗) = { exp (x𝑗β1) − exp (x𝑗β0)} exp(𝜎2

2
)

By the law of iterated expectations, the ATE is

𝐸(𝑦1𝑗 − 𝑦0𝑗) = 𝐸{𝐸(𝑦1𝑗 − 𝑦0𝑗|z𝑗)}

= 𝐸 [{ exp (x𝑗β1) − exp (x𝑗β0)} exp(𝜎2

2
)]

This expectation can be estimated as a predictive margin.

Now we will derive an expression for the ATET.

The conditional means of the potential outcomes 𝑦𝑡𝑗, 𝑡 ∈ (0, 1) for exogenous covariates z𝑗 and

treatment 𝑡𝑗 are

𝐸(𝑦𝑡𝑗|z𝑗, 𝑡𝑗) = exp(x𝑗β𝑡 + 𝜎2

2
) {

Φ (𝜌𝜎 + w𝑗𝛄)
Φ (w𝑗𝛄)

}
𝑡𝑗

{
1 − Φ (𝜌𝜎 + w𝑗𝛄)

1 − Φ (w𝑗𝛄)
}

1−𝑡𝑗



etpoisson — Poisson regression with endogenous treatment effects 202

Rather than the conditional potential-outcome means, the conditional mean of the observed outcome

may be of interest. The conditional mean of the observed outcome 𝑦𝑗 for endogenous treatment indicator

𝑡𝑗 and exogenous covariates z𝑗 is given by

𝐸(𝑦𝑗|z𝑗, 𝑡𝑗) = 𝑡𝑗 exp(x𝑗β1 + 𝜎2

2
)

Φ (𝜌𝜎 + w𝑗𝛄)
Φ (w𝑗𝛄)

+ (1 − 𝑡𝑗) exp(x𝑗β0 + 𝜎2

2
)

1 − Φ (𝜌𝜎 + w𝑗𝛄)
1 − Φ (w𝑗𝛄)

The treatment effect at exogenous covariates z𝑗 and treatment 𝑡𝑗 is

𝐸(𝑦1𝑗 − 𝑦0𝑗|z𝑗, 𝑡𝑗) =

{ exp (x𝑗β1) − exp (x𝑗β0)} exp(𝜎2

2
) {

Φ (𝜌𝜎 + w′
𝑗𝛄)

Φ (w𝑗𝛄)
}

𝑡𝑗

{
1 − Φ (𝜌𝜎 + w𝑗𝛄)

1 − Φ (w′
𝑗𝛄)

}
1−𝑡𝑗

By the law of iterated expectations, the ATET is

𝐸(𝑦1𝑗 − 𝑦0𝑗|𝑡𝑗 = 1) = 𝐸{𝐸(𝑦1𝑗 − 𝑦0𝑗|z𝑗, 𝑡𝑗 = 1)|𝑡𝑗 = 1}

= 𝐸 [{ exp (x𝑗β1) − exp (x𝑗β0)} exp(𝜎2

2
)

Φ (𝜌𝜎 + w𝑗𝛄)
Φ (w𝑗𝛄)

∣𝑡𝑗 = 1]

This can be estimated as a predictive margin on the treated subpopulation.

We note that when 𝜌 = 0, the correction factor involving Φ will disappear from the ATET. Then the

ATE and ATET will be equivalent if the distribution of x𝑗 under the treated population is identical to the

distribution over the entire population.

The probability of 𝑦𝑗 conditional on 𝑡𝑗 and z𝑗 is

Pr(𝑦𝑗 = 𝑛|z𝑗, 𝑡𝑗) =
𝑓(𝑦𝑗 = 𝑛, 𝑡𝑗|z𝑗)

Φ (w𝑗𝛄)𝑡𝑗 Φ (−w𝑗𝛄)1−𝑡𝑗

As discussed earlier, we approximate 𝑓(𝑦𝑗, 𝑡𝑗|z𝑗) using Gauss–Hermite quadrature.
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Also see
[CAUSAL] etpoisson postestimation — Postestimation tools for etpoisson

[CAUSAL] etregress — Linear regression with endogenous treatment effects

[R] heckpoisson — Poisson regression with sample selection

[R] ivpoisson — Poisson model with continuous endogenous covariates

[R] ivprobit — Probit model with continuous endogenous covariates

[R] ivregress — Single-equation instrumental-variables regression

[R] ivtobit — Tobit model with continuous endogenous covariates

[R] poisson — Poisson regression

[SVY] svy estimation — Estimation commands for survey data

[U] 20 Estimation and postestimation commands
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Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands
The following standard postestimation commands are available after etpoisson:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters

estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-
mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict potential-outcome means, observed-outcome means, conditional treatment effects,
etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters

suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗hausman and lrtest are not appropriate with svy estimation results.

204
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predict

Description for predict
predict creates a new variable containing predictions such as counts, conditional treatment effects,

probabilities, and linear predictions.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] newvar [ if ] [ in ] [ , statistic nooffset ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

pomean potential-outcome mean (the predicted count); the default

omean observed-outcome mean (the predicted count)

cte conditional treatment effect at treatment level

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

xbtreat linear prediction for treatment equation

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.
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Options for predict

� � �
Main �

pomean, the default, calculates the potential-outcome mean.

omean calculates the observed-outcome mean.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment

level.

pr(n) calculates the probability Pr(𝑦𝑗 = n), where n is a nonnegative integer that may be specified as

a number or a variable.

pr(a,b) calculates the probability Pr(a ≤ 𝑦𝑗 ≤ b), where a and b are nonnegative integers that may be

specified as numbers or variables;

b missing (b ≥ .) means +∞;

pr(20,.) calculates Pr(𝑦𝑗 ≥ 20);
pr(20,b) calculates Pr(𝑦𝑗 ≥ 20) in observations for which b ≥ . and calculates
Pr(20 ≤ 𝑦𝑗 ≤ b) elsewhere.
pr(.,b) produces a syntax error. Amissing value in an observation of the variable a causes a missing

value in that observation for pr(a,b).

xb calculates the linear prediction for the dependent count variable, which is x𝑗β if neither offset()
nor exposure() was specified; x𝑗β+ offset

𝛽
𝑗 if offset() was specified; or x𝑗β+ ln(exposure𝑗) if

exposure() was specified.

xbtreat calculates the linear prediction for the endogenous treatment equation, which is w𝑗𝛄 if

offset() was not specified in treat() and w𝑗𝛄 + offset𝛼𝑗 if offset() was specified in treat().

nooffset is relevant only if you specified offset() or exposure()when you fit the model. It modifies

the calculations made by predict so that they ignore the offset or exposure variable. nooffset
removes the offset from calculations involving both the treat() equation and the dependent count

variable.

scores calculates equation-level score variables.

The first new variable will contain 𝜕 ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕 ln𝐿/𝜕(w𝑗𝛄).
The third new variable will contain 𝜕 ln𝐿/𝜕 atanh 𝜌.
The fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎.
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margins

Description for margins
margins estimates margins of response for counts, conditional treatment effects, probabilities, and

linear predictions.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

statistic Description

pomean potential-outcome mean (the predicted count); the default

omean observed-outcome mean (the predicted count)

cte conditional treatment effect at treatment level

pr(n) probability Pr(𝑦𝑗 = n)
pr(a,b) probability Pr(a ≤ 𝑦𝑗 ≤ b)
xb linear prediction

xbtreat linear prediction for treatment equation

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples
The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the

parameters most frequently estimated by postestimation techniques after etpoisson.

You can use the margins command (see [R]margins) after etpoisson to estimate the ATE or ATET.

See example 2 of [CAUSAL] etpoisson for an example ofATE estimation. See example 3 of [CAUSAL] et-

poisson for an example of ATET estimation.

See example 1 of [CAUSAL] etpoisson for an example using lincom after etpoisson.

Methods and formulas
See Methods and formulas of [CAUSAL] etpoisson for details.

Also see
[CAUSAL] etpoisson — Poisson regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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Description Quick start
Menu Syntax
Options for maximum likelihood estimates Options for two-step consistent estimates
Options for control-function estimates Remarks and examples
Stored results Methods and formulas
References Also see

Description
etregress estimates an average treatment effect (ATE) and the other parameters of a linear regres-

sion model augmented with an endogenous binary-treatment variable. Estimation is by full maximum

likelihood, a two-step consistent estimator, or a control-function estimator.

In addition to the ATE, etregress can be used to estimate the average treatment effect on the treated

(ATET) when the outcome may not be conditionally independent of the treatment.

Quick start
ATE andATET from a linear regression model of y on x and endogenous binary treatment treatmodeled

by x and w
etregress y x, treat(treat = x w)

Same as above, but use a control-function estimator

etregress y x, treat(treat = x w) cfunction

With robust standard errors

etregress y x, treat(treat = x w) vce(robust)

Add the interaction between treat and continuous covariate x using factor variables
etregress y x i.treat#c.x, treat(treat = x w) vce(robust)

ATE after etregresswith the required vce(robust) option and endogenous treatment interaction terms

margins r.treat, vce(unconditional)

Same as above, but calculate ATET

margins, vce(unconditional) predict(cte) subpop(if treat==1)

Menu
Statistics > Causal inference/treatment effects > Endogenous treatment > Maximum likelihood estimator > Con-
tinuous outcomes

208
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Syntax
Basic syntax

etregress depvar [ indepvars ], treat(depvar𝑡 = indepvars𝑡) [ twostep | cfunction ]

Full syntax for maximum likelihood estimates only

etregress depvar [ indepvars ] [ if ] [ in ] [weight ] ,
treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) [ etregress ml options ]

Full syntax for two-step consistent estimates only

etregress depvar [ indepvars ] [ if ] [ in ] ,
treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) twostep [ etregress ts options ]

Full syntax for control-function estimates only

etregress depvar [ indepvars ] [ if ] [ in ] ,
treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) cfunction [ etregress cf options ]
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etregress ml options Description

Model
∗ treat() equation for treatment effects

noconstant suppress constant term

poutcomes use potential-outcome model with separate treatment and control
group variance and correlation parameters

constraints(constraints) apply specified linear constraints

SE/Robust

vce(vcetype) vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

hazard(newvar) create newvar containing hazard from treatment equation

lrmodel perform the likelihood-ratio model test instead of the default Wald test

nocnsreport do not display constraints

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

collinear keep collinear variables

coeflegend display legend instead of statistics

∗treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) is required.

etregress ts options Description

Model
∗ treat() equation for treatment effects
∗ twostep produce two-step consistent estimate

noconstant suppress constant term

SE

vce(vcetype) vcetype may be conventional, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

hazard(newvar) create newvar containing hazard from treatment equation

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

∗treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) and twostep are required.



etregress — Linear regression with endogenous treatment effects 211

etregress cf options Description

Model
∗ treat() equation for treatment effects
∗ cfunction produce control-function estimate

noconstant suppress constant term

poutcomes use potential-outcome model with separate treatment and control
group variance and correlation parameters

SE

vce(vcetype) vcetype may be robust, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
first report first-step probit estimates

hazard(newvar) create newvar containing hazard from treatment equation

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

coeflegend display legend instead of statistics

∗treat(depvar𝑡 = indepvars𝑡 [ , noconstant ]) and cfunction are required.

indepvars and indepvars𝑡 may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvar𝑡, and indepvars𝑡 may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bayesboot, bootstrap, by, collect, fp, jackknife, rolling, statsby, and svy are allowed; see [U] 11.1.10 Prefix
commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
aweights are not allowed with the jackknife prefix; see [R] jackknife.
twostep, cfunction, vce(), first, hazard(), lrmodel, and weights are not allowed with the svy prefix; see [SVY] svy.
pweights, aweights, fweights, and iweights are allowed with both maximum likelihood and control-function estimation;

see [U] 11.1.6 weight. No weights are allowed if twostep is specified.
collinear and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for maximum likelihood estimates

� � �
Model �

treat(depvar𝑡 = indepvars𝑡[ , noconstant ]) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

noconstant; see [R] Estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters

for each of the treatment and control groups be used.

constraints(constraints); see [R] Estimation options.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived from

asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that al-
low for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods

(bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-

tion.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The

hazard is computed from the estimated parameters of the treatment equation.

lrmodel, nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are

seldom used.

Setting the optimization type to technique(bhhh) resets the default vcetype to vce(opg).

The following options are available with etregress but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.
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Options for two-step consistent estimates

� � �
Model �

treat(depvar𝑡 = indepvars𝑡[ , noconstant ]) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

twostep specifies that two-step consistent estimates of the parameters, standard errors, and covariance

matrix be produced, instead of the default maximum likelihood estimates.

noconstant; see [R] Estimation options.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are derived

from asymptotic theory (conventional) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.

vce(conventional), the default, uses the conventionally derived variance estimator for the two-step

estimator of the treatment-effects model.� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-

tion.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The

hazard is computed from the estimated parameters of the treatment equation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for control-function estimates

� � �
Model �

treat(depvar𝑡 = indepvars𝑡[ , noconstant ]) specifies the variables and options for the treatment

equation. It is an integral part of specifying a treatment-effects model and is required.

cfunction specifies that control-function estimates of the parameters, standard errors, and covariance

matrix be produced instead of the default maximum likelihood estimates. cfunction is required.

noconstant; see [R] Estimation options.

poutcomes specifies that a potential-outcome model with separate variance and correlation parameters

for each of the treatment and control groups be used.

� � �
SE �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to

some kinds of misspecification (robust) and that use bootstrap or jackknife methods (bootstrap,
jackknife); see [R] vce option.
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� � �
Reporting �

level(#); see [R] Estimation options.

first specifies that the first-step probit estimates of the treatment equation be displayed before estima-

tion.

hazard(newvar) will create a new variable containing the hazard from the treatment equation. The

hazard is computed from the estimated parameters of the treatment equation.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ # . . . ] copy

The following option is available with etregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Basic examples
Average treatment effect (ATE)
Average treatment effect on the treated (ATET)

Overview
etregress estimates an ATE and the other parameters of a linear regression model that also includes

an endogenous binary-treatment variable. In addition to theATE, the parameters estimated by etregress
can be used to estimate the ATET when the outcome is not conditionally independent of the treatment.

We call the model fit by etregress an endogenous treatment-regression model, although it is also

known as an endogenous binary-variable model or as an endogenous dummy-variable model. The en-

dogenous treatment-regression model is a specific endogenous treatment-effects model; it uses a linear

model for the outcome and a normal distribution to model the deviation from the conditional indepen-

dence assumption imposed by the estimators implemented in teffects; see [CAUSAL] teffects intro.
In treatment-effects jargon, the endogenous binary-variable model is a linear potential-outcome model

that allows for a specific correlation structure between the unobservables that affect the treatment and the

unobservables that affect the potential outcomes. See [CAUSAL] etpoisson for an estimator that allows

for a nonlinear outcome model and a similar model for the endogeneity of the treatment.
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Heckman (1976, 1978) brought this model into the modern literature. Maddala (1983) derives the

maximum likelihood and the control-function (CF) estimators of the model. Maddala (1983) also reviews

some empirical applications and describes it as an endogenous-switching model. Barnow, Cain, and

Goldberger (1981) provide another useful derivation of this model. They concentrate on deriving the

conditions for which the self-selection bias of the simple OLS estimator of the treatment effect, 𝛿, is
nonzero and of a specific sign. Cameron and Trivedi (2005, sec. 16.7 and 25.3.4) and Wooldridge (2010,

sec. 21.4.1) discuss the endogenous binary-variable model as an endogenous treatment-effects model and

link it to recent work.

etregress performs CF estimation in one step by using the generalized method of moments (GMM)

with stacked moments. See Newey (1984) and Wooldridge (2010, sec. 14.2) for a description of this

technique. Many econometric and statistical models can be expressed as conditions on the population

moments. The parameter estimates produced by GMM estimators make the sample-moment conditions

as true as possible given the data. See [R] gmm for further information on GMM estimation and how

Stata performs it. Two-step CF estimation is also supported by etregress.

Formally, the endogenous treatment-regression model is composed of an equation for the outcome 𝑦𝑗
and an equation for the endogenous treatment 𝑡𝑗. The variables x𝑗 are used to model the outcome. When

there are no interactions between 𝑡𝑗 and x𝑗, we have

𝑦𝑗 = x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗

𝑡𝑗 = {1, if w𝑗𝛄 + 𝑢𝑗 > 0
0, otherwise

where w𝑗 are the covariates used to model treatment assignment, and the error terms 𝜖𝑗 and 𝑢𝑗 are bi-

variate normal with mean zero and covariance matrix

[𝜎2 𝜌𝜎
𝜌𝜎 1 ]

The covariates x𝑗 andw𝑗 are unrelated to the error terms; in other words, they are exogenous. We call this

the constrained model because the variance and correlation parameters are identical across the treatment

and control groups.

This model can be generalized to a potential-outcome model with separate variance and correlation

parameters for the treatment and control groups. The generalized model is

𝑦0𝑗 = x𝑗β0 + 𝜖0𝑗

𝑦1𝑗 = x𝑗β1 + 𝜖1𝑗

𝑡𝑗 = {1, if w𝑗𝛄 + 𝑢𝑗 > 0
0, otherwise

where 𝑦0𝑗 is the outcome that person 𝑗 obtains if person 𝑗 selects treatment 0, and 𝑦1𝑗 is the outcome that

person 𝑗 obtains if person 𝑗 selects treatment 1. We never observe both 𝑦0𝑗 and 𝑦1𝑗, only one or the other.

We observe

𝑦𝑗 = 𝑡𝑗𝑦1𝑗 + (1 − 𝑡𝑗)𝑦0𝑗
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In this unconstrained model, the vector of error terms (𝜖0𝑗, 𝜖1𝑗, 𝑢𝑗)′ comes from a mean zero trivariate

normal distribution with covariance matrix

⎡⎢
⎣

𝜎2
0 𝜎01 𝜎0𝜌0

𝜎01 𝜎2
1 𝜎1𝜌1

𝜎0𝜌0 𝜎1𝜌1 1
⎤⎥
⎦

The covariance 𝜎01 cannot be identified because we never observe both 𝑦1𝑗 and 𝑦0𝑗. However, iden-

tification of 𝜎01 is not necessary to estimate the other parameters because all covariates and the outcome

are observed in observations from each group. We normalize the treatment error variance to be 1 because

we observe only whether an outcome occurs under treatment. More details are found in Methods and

formulas.

Rather than showing two separate regression equations, etregress reports one outcome equation

with interaction terms between the treatment and outcome covariates. etregress can fit the constrained
and generalized potential-outcome models using either the default maximum likelihood estimator or the

one-step CF estimator obtained with option cfunction. The two-step CF estimator provides consistent

estimates for the constrained model.

Basic examples
When there are no interactions between the treatment variable and the outcome covariates in the

constrained model, etregress directly estimates the ATE and the ATET.

Example 1: Basic example
We estimate the ATE of being a union member on wages of women in 1972 from a nonrepresentative

extract of the National Longitudinal Survey on young women who were ages 14–26 in 1968. We will

use the variables wage (wage), grade (years of schooling completed), smsa (an indicator for living

in an SMSA—standard metropolitan statistical area), black (an indicator for being African-American),

tenure (tenure at current job), and south (an indicator for living in the South).
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We use etregress to estimate the parameters of the endogenous treatment-regression model.

. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)
. etregress wage age grade smsa black tenure, treat(union = south black tenure)
Iteration 0: Log likelihood = -3140.811
Iteration 1: Log likelihood = -3053.6629
Iteration 2: Log likelihood = -3051.5847
Iteration 3: Log likelihood = -3051.575
Iteration 4: Log likelihood = -3051.575
Linear regression with endogenous treatment Number of obs = 1,210
Estimator: Maximum likelihood Wald chi2(6) = 681.89
Log likelihood = -3051.575 Prob > chi2 = 0.0000

Coefficient Std. err. z P>|z| [95% conf. interval]

wage
age .1487409 .0193291 7.70 0.000 .1108566 .1866252

grade .4205658 .0293577 14.33 0.000 .3630258 .4781058
smsa .9117044 .1249041 7.30 0.000 .6668969 1.156512
black -.7882471 .1367078 -5.77 0.000 -1.05619 -.5203048
tenure .1524015 .0369596 4.12 0.000 .0799621 .2248409

1.union 2.945815 .2749621 10.71 0.000 2.4069 3.484731
_cons -4.351572 .5283952 -8.24 0.000 -5.387208 -3.315936

union
south -.5807419 .0851111 -6.82 0.000 -.7475566 -.4139271
black .4557499 .0958042 4.76 0.000 .2679771 .6435226
tenure .0871536 .0232483 3.75 0.000 .0415878 .1327195
_cons -.8855758 .0724506 -12.22 0.000 -1.027576 -.7435753

/athrho -.6544347 .0910314 -7.19 0.000 -.832853 -.4760164
/lnsigma .7026769 .0293372 23.95 0.000 .645177 .7601767

rho -.5746478 .060971 -.682005 -.4430476
sigma 2.019151 .0592362 1.906325 2.138654
lambda -1.1603 .1495097 -1.453334 -.8672668

LR test of indep. eqns. (rho = 0): chi2(1) = 19.84 Prob > chi2 = 0.0000

The likelihood-ratio test in the footer indicates that we can reject the null hypothesis of no correlation

between the treatment-assignment errors and the outcome errors. The estimated correlation between the

treatment-assignment errors and the outcome errors, 𝜌, is−0.575. The negative relationship indicates that

unobservables that raise observed wages tend to occur with unobservables that lower union membership.

We discuss some details about this parameter in the technical note below.

The estimated ATE of being a union member is 2.95. The ATET is the same as the ATE in this case

because the treatment indicator variable has not been interacted with any of the outcome covariates, and

the correlation and variance parameters are identical across the control and treatment groups.
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Technical note
The results for the ancillary parameters 𝜌 and 𝜎 require explanation. For numerical stability during

optimization, etregress does not directly estimate 𝜌 or 𝜎. Instead, etregress estimates the inverse

hyperbolic tangent of 𝜌,
atanh 𝜌 = 1

2
ln(1 + 𝜌

1 − 𝜌
)

and ln𝜎. Also etregress reports 𝜆 = 𝜌𝜎, along with an estimate of the standard error of the estimate

and the confidence interval.

In contrast to the constrained model, etregress directly estimates the ATE only when there are no

interactions between the treatment variable and the outcome covariates in the unconstrained model.

Example 2: Allowing group-specific variance and correlation
We estimate the ATE of having health insurance on the natural logarithm of total out-of-pocket pre-

scription drug expenditures from a simulated random sample of individuals between the ages of 25 and

64. We will use the variables lndrug (natural logarithm of spending on prescription drugs), age (age

of the individual), chron (whether the individual has a chronic condition), lninc (natural logarithm of

income), married (marriage status), and work (employment status). Our treatment is whether the per-

son has health insurance, ins. We allow the outcome error variance and correlation parameters to vary

between the treated (insured) and control (uninsured) groups in this example, rather than constraining

them to be equal as in example 1.

We use etregress to estimate the parameters of the endogenous treatment-effects model. To estimate

separate variance and correlation parameters for each of the control and treatment groups, we specify the

poutcomes option. We specify the cfunction option to use the CF estimator.
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. use https://www.stata-press.com/data/r19/drugexp
(Prescription drug expenditures)
. etregress lndrug chron age lninc, treat(ins=age married lninc work) poutcomes
> cfunction
Iteration 0: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 1.842e-28
Linear regression with endogenous treatment Number of obs = 6,000
Estimator: Control function

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
chron .4671725 .0319731 14.61 0.000 .4045064 .5298387

age .1021359 .00292 34.98 0.000 .0964128 .1078589
lninc .0550672 .0225036 2.45 0.014 .0109609 .0991735
1.ins -.8598836 .3483648 -2.47 0.014 -1.542666 -.1771011
_cons 1.665539 .2527527 6.59 0.000 1.170153 2.160925

ins
age .021142 .0022961 9.21 0.000 .0166416 .0256424

married .084631 .0359713 2.35 0.019 .0141286 .1551334
lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -5.73 0.000 -.8362273 -.4097587

/athrho0 .4035094 .1724539 2.34 0.019 .0655059 .7415129
/lnsigma0 .3159269 .0500476 6.31 0.000 .2178353 .4140184
/athrho1 .7929459 .2986601 2.66 0.008 .2075829 1.378309

/lnsigma1 .1865347 .0613124 3.04 0.002 .0663646 .3067048

rho0 .3829477 .1471637 .0654124 .6300583
sigma0 1.37153 .0686418 1.243382 1.512885

lambda0 .5252243 .226367 .0815532 .9688954
rho1 .6600746 .1685343 .2046518 .880572

sigma1 1.205066 .0738855 1.068616 1.35894
lambda1 .7954338 .2513036 .3028878 1.28798

Wald test of indep. (rho0 = rho1 = 0): chi2(2) = 8.88 Prob > chi2 = 0.0118

The Wald test reported in the footer indicates that we can reject the null hypothesis of no correlation

between the treatment-assignment errors and the outcome errors for the control and treatment groups.

The estimate of the correlation of the treatment-assignment errors for the control group (𝜌0) is positive,

indicating that unobservables that increase spending on prescription drugs tend to occur with unobserv-

ables that increase health insurance coverage. Because 𝜌1 is also positive, we make the same interpreta-

tion for individuals with insurance. The estimate 𝜌1 is larger than the estimate 𝜌0, indicating a stronger

relationship between the unobservables and treatment outcomes in the treated group.

The estimated ATE of having health insurance is −0.86. Note that while the ATE and ATET were the

same in example 1, that is not the case here. We show how to calculate theATET for a potential-outcome

model in example 6.

The estimate of the outcome error standard-deviation parameter for the control group (𝜎0) is slightly

larger than that of the treatment-group parameter (𝜎1), indicating a greater variability in the unobservables

among the untreated group.
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Average treatment effect (ATE)
When there is a treatment variable and outcome covariate interaction, the parameter estimates from

etregress can be used by margins to estimate theATE, the average difference of the treatment potential

outcomes and the control potential outcomes.

Example 3: Allowing interactions between treatment and outcome covariates, ATE
In example 1, the coefficients on the outcome covariates do not vary by treatment level. The differ-

ences in wages between union members and nonmembers are modeled as a level shift captured by the

coefficient on the indicator for union membership. In this example, we use factor-variable notation to

allow some of the coefficients to vary over treatment level and then use margins (see [R] margins) to

estimate the ATE. (See [U] 11.4.3 Factor variables for an introduction to factor-variable notation.)

We begin by estimating the parameters of the model in which the coefficients on black and tenure
differ for union members and nonmembers. We specify the vce(robust) option because we need to

specify vce(unconditional) when we use margins below.
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. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)
. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)
Iteration 0: Log pseudolikelihood = -3614.6714
Iteration 1: Log pseudolikelihood = -3218.8152
Iteration 2: Log pseudolikelihood = -3057.0115
Iteration 3: Log pseudolikelihood = -3049.3081
Iteration 4: Log pseudolikelihood = -3049.2838
Iteration 5: Log pseudolikelihood = -3049.2838
Linear regression with endogenous treatment Number of obs = 1,210
Estimator: Maximum likelihood Wald chi2(8) = 493.40
Log pseudolikelihood = -3049.2838 Prob > chi2 = 0.0000

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

wage
age .1489075 .0207283 7.18 0.000 .1082809 .1895342

grade .4200493 .0377621 11.12 0.000 .3460371 .4940616
smsa .9232615 .1201486 7.68 0.000 .6877746 1.158748

union#
c.black

0 -.6685582 .1444213 -4.63 0.000 -.9516187 -.3854977
1 -1.1831 .2574817 -4.59 0.000 -1.687755 -.6784455

union#
c.tenure

0 .168746 .0503107 3.35 0.001 .0701388 .2673532
1 .0836367 .0903669 0.93 0.355 -.0934792 .2607526

1.union 3.342859 .5586863 5.98 0.000 2.247854 4.437864
_cons -4.42566 .6493003 -6.82 0.000 -5.698265 -3.153055

union
south -.5844678 .0833069 -7.02 0.000 -.7477464 -.4211893
black .4740688 .093241 5.08 0.000 .2913197 .6568178
tenure .0874297 .0253892 3.44 0.001 .0376678 .1371916
_cons -.8910484 .0746329 -11.94 0.000 -1.037326 -.7447706

/athrho -.6733149 .2215328 -3.04 0.002 -1.107511 -.2391185
/lnsigma .7055907 .0749711 9.41 0.000 .55865 .8525313

rho -.5871562 .1451589 -.8031809 -.234663
sigma 2.025042 .1518197 1.748311 2.345577
lambda -1.189016 .3631079 -1.900695 -.4773378

Wald test of indep. eqns. (rho = 0): chi2(1) = 9.24 Prob > chi2 = 0.0024

The results indicate that the coefficients on black differ by union membership and that the coefficient

on tenure for nonmembers is positive, while the coefficient on tenure for members is 0. The model fits

well overall, so we proceed with interpretation. Because we interacted the treatment variable with two of

the covariates, the estimated coefficient on the treatment level is not an estimate of theATE. Below we use

margins to estimate the ATE from these results. We specify the vce(unconditional) option to obtain
the standard errors for the populationATE instead of the sampleATE. We specify the contrast(nowald)
option to suppress the Wald tests, which margins displays by default for contrasts.
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. margins r.union, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 1,210
Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. interval]

union
(1 vs 0) 3.042688 .5305151 2.002898 4.082478

The ATE estimate is essentially the same as the one produced by the constrained model in example 1.

We can use the same methods above to obtain the ATE in an unconstrained model.

Example 4: Treatment interactions and group-specific variance and correlation, ATE
In example 2, the coefficients on the outcome covariates do not vary by treatment level. Suppose

we believe that the effect of having a chronic condition on out-of-pocket spending differs between the

insured and uninsured. Again, we use an interaction term. Because we are using a CF estimator, the

variance–covariance of the estimator (VCE) is already robust so we do not specify vce(robust).
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. use https://www.stata-press.com/data/r19/drugexp
(Prescription drug expenditures)
. etregress lndrug i.ins#i.chron age lninc, treat(ins=age married lninc work)
> poutcomes cfunction
Iteration 0: GMM criterion Q(b) = 2.279e-15
Iteration 1: GMM criterion Q(b) = 2.883e-28
Linear regression with endogenous treatment Number of obs = 6,000
Estimator: Control function

Robust
Coefficient std. err. z P>|z| [95% conf. interval]

lndrug
ins#chron

0 1 .3798705 .0720713 5.27 0.000 .2386132 .5211277
1 1 .4957773 .0352571 14.06 0.000 .4266746 .5648801

age .1022045 .0029228 34.97 0.000 .0964758 .1079331
lninc .0548917 .0225219 2.44 0.015 .0107497 .0990337
1.ins -.89703 .3493058 -2.57 0.010 -1.581657 -.2124031
_cons 1.691336 .2531222 6.68 0.000 1.195225 2.187446

ins
age .021142 .0022961 9.21 0.000 .0166416 .0256424

married .084631 .0359713 2.35 0.019 .0141286 .1551334
lninc .1023032 .0225009 4.55 0.000 .0582022 .1464041
work .288418 .0372281 7.75 0.000 .2154522 .3613837
_cons -.622993 .108795 -5.73 0.000 -.8362273 -.4097587

/athrho0 .4046007 .1725597 2.34 0.019 .0663899 .7428115
/lnsigma0 .3157561 .0501956 6.29 0.000 .2173746 .4141376
/athrho1 .7950592 .2992825 2.66 0.008 .2084763 1.381642

/lnsigma1 .1868903 .0614281 3.04 0.002 .0664934 .3072871

rho0 .3838786 .1471308 .0662925 .6308408
sigma0 1.371296 .0688329 1.24281 1.513065

lambda0 .5264111 .2264197 .0826366 .9701856
rho1 .6612655 .1684146 .2055076 .8813184

sigma1 1.205495 .0740512 1.068754 1.359731
lambda1 .7971523 .2514293 .3043599 1.289945

Wald test of indep. (rho0 = rho1 = 0): chi2(2) = 8.90 Prob > chi2 = 0.0117

The results indicate that the coefficient on chron differs by whether an individual has insurance. The
model fits well overall, so we proceed with interpretation.

Because we interacted the treatment variable with one of the covariates, the estimated coefficient on

the treatment level is not an estimate of the ATE. Below we use margins to estimate the ATE from these

results. We specify the vce(unconditional) option to obtain the standard errors for the population

ATE instead of the sample ATE. We specify the contrast(nowald) option to suppress the Wald tests.
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. margins r.ins, vce(unconditional) contrast(nowald)
Contrasts of predictive margins Number of obs = 6,000
Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. interval]

ins
(1 vs 0) -.8632045 .3484924 -1.546237 -.1801718

The ATE estimate is similar to the one produced by the constrained model in example 2.

Average treatment effect on the treated (ATET)
When there is a treatment variable and outcome covariate interaction, the parameter estimates from

etregress can be used by margins to estimate theATET, the average difference of the treatment potential

outcomes and the control potential outcomes on the treated population.

Example 5: Allowing interactions between treatment and outcome covariates, ATET
TheATETmay differ from theATE in example 3 because the interaction between the treatment variable

and some outcome covariates makes theATE and theATET vary over outcome covariate values. Belowwe

use margins to estimate the ATET by specifying the subpop(union) option, which restricts the sample

used by margins to union members.

. use https://www.stata-press.com/data/r19/union3
(NLS Women 14-24 in 1968)
. etregress wage age grade smsa i.union#c.(black tenure),
> treat(union = south black tenure) vce(robust)
(output omitted )

. margins r.union, vce(unconditional) contrast(nowald) subpop(union)
Contrasts of predictive margins Number of obs = 1,210

Subpop. no. obs = 253
Expression: Linear prediction, predict()

Unconditional
Contrast std. err. [95% conf. interval]

union
(1 vs 0) 2.968977 .5358456 1.918739 4.019215

The estimatedATET andATE are close, indicating that the average predicted outcome for the treatment

group is similar to the average predicted outcome for the whole population.
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Example 6: Treatment interactions and group-specific variance and correlation, ATET
The ATET may differ from the ATE in example 4 because the interaction between the treatment vari-

able and some outcome covariates makes the ATE and the ATET vary over values of the covariate in the

outcome equation. Even if there is no interaction between treatment assignment and a covariate in the

outcome equation, the estimatedATE andATETwill differ if the variances of the outcome errors and their

correlations with the treatment-assignment errors differ across the control and treatment groups.

We can estimate theATET of having health insurance by using the conditional treatment effect (condi-

tional on exogenous covariates and treatment level) obtained using the predict, cte and the margins
commands; see Methods and formulas below and [CAUSAL] etregress postestimation for more details

about the use of predict after etregress.

We restrict estimation to the treated subpopulation by specifying the subpop(ins) option with

margins.

. use https://www.stata-press.com/data/r19/drugexp
(Prescription drug expenditures)
. etregress lndrug i.ins#i.chron age lninc,
> treat(ins = age married lninc work) poutcomes cfunction
(output omitted )

. margins, predict(cte) subpop(ins) vce(unconditional)
Predictive margins Number of obs = 6,000

Subpop. no. obs = 4,556
Expression: Conditional treatment effect, predict(cte)

Unconditional
Margin std. err. z P>|z| [95% conf. interval]

_cons -.7558373 .3827579 -1.97 0.048 -1.506029 -.0056457

In absolute value, the treatment effect on the treated of −0.76 is smaller than the population average

effect of −0.86 that we found in example 4.

Stored results
etregress (maximum likelihood) stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k eq model) number of equations in overall model test

e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(df m) model degrees of freedom

e(ll) log likelihood

e(ll 0) log likelihood, constant-only model (lrmodel only)
e(N clust) number of clusters

e(lambda) estimate of 𝜆 in constrained model

e(selambda) standard error of 𝜆 in constrained model

e(sigma) estimate of 𝜎 in constrained model

e(lambda0) estimate of 𝜆0 in potential-outcome model

e(selambda0) standard error of 𝜆0 in potential-outcome model
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e(sigma0) estimate of 𝜎0 in potential-outcome model

e(lambda1) estimate of 𝜆1 in potential-outcome model

e(selambda1) standard error of 𝜆1 in potential-outcome model

e(sigma1) estimate of 𝜎1 in potential-outcome model

e(chi2) 𝜒2

e(chi2 c) 𝜒2 for comparison test

e(p) 𝑝-value for model test

e(p c) 𝑝-value for comparison test

e(rho) estimate of 𝜌 in constrained model

e(rho0) estimate of 𝜌0 in potential-outcome model

e(rho1) estimate of 𝜌1 in potential-outcome model

e(rank) rank of e(V)
e(rank0) rank of e(V) for constant-only model

e(ic) number of iterations

e(rc) return code

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) etregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(hazard) variable containing hazard

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title2) secondary title in estimation output

e(clustvar) name of cluster variable

e(chi2type) Wald or LR; type of model 𝜒2 test

e(chi2 ct) Wald or LR; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(opt) type of optimization

e(which) max or min; whether optimizer is to perform maximization or minimization

e(method) ml
e(ml method) type of ml method

e(user) name of likelihood-evaluator program

e(technique) maximization technique

e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log (up to 20 iterations)

e(gradient) gradient vector

e(V) variance–covariance matrix of the estimators

e(V modelbased) model-based variance

Functions

e(sample) marks estimation sample
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In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

etregress (two-step) stores the following in e():

Scalars

e(N) number of observations

e(df m) model degrees of freedom

e(lambda) 𝜆
e(selambda) standard error of 𝜆
e(sigma) estimate of sigma

e(chi2) 𝜒2

e(p) 𝑝-value for model test

e(rho) 𝜌
e(rank) rank of e(V)

Macros

e(cmd) etregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(hazard) variable containing hazard

e(title) title in estimation output

e(title2) secondary title in estimation output

e(chi2type) Wald or LR; type of model 𝜒2 test

e(vce) vcetype specified in vce()
e(method) twostep
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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etregress (control-function) stores the following in e():

Scalars

e(N) number of observations

e(k) number of parameters

e(k eq) number of equations in e(b)
e(k aux) number of auxiliary parameters

e(k dv) number of dependent variables

e(lambda) estimate of 𝜆 in constrained model

e(selambda) standard error of 𝜆 in constrained model

e(sigma) estimate of 𝜎 in constrained model

e(lambda0) estimate of 𝜆0 in potential-outcome model

e(selambda0) standard error of 𝜆0 in potential-outcome model

e(sigma0) estimate of 𝜎0 in potential-outcome model

e(lambda1) estimate of 𝜆1 in potential-outcome model

e(selambda1) standard error of 𝜆1 in potential-outcome model

e(sigma1) estimate of 𝜎1 in potential-outcome model

e(chi2 c) 𝜒2 for comparison test

e(p c) 𝑝-value for comparison test

e(rho) estimate of 𝜌 in constrained model

e(rho0) estimate of 𝜌0 in potential-outcome model

e(rho1) estimate of 𝜌1 in potential-outcome model

e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) etregress
e(cmdline) command as typed

e(depvar) name of dependent variable

e(hazard) variable containing hazard

e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(title2) secondary title in estimation output

e(chi2 ct) Wald; type of model 𝜒2 test corresponding to e(chi2 c)
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) cfunction
e(properties) b V
e(predict) program used to implement predict
e(footnote) program used to implement the footnote display

e(marginsok) predictions allowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Maddala (1983, 117–122 and 223–228) derives both the maximum likelihood and the CF estimators

implemented here. Greene (2012, 890–894) also provides an introduction to the treatment-effects model.

Cameron and Trivedi (2005, sections 16.7 and 25.3.4) and Wooldridge (2010, section 21.4.1) discuss the

endogenous binary-variable model as an endogenous treatment-effects model and link it to recent work.

Methods and formulas are presented under the following headings:

Constrained model
General potential-outcome model
Average treatment effect
Average treatment effect on the treated

Constrained model
The primary regression equation of interest is

𝑦𝑗 = x𝑗β + 𝛿𝑡𝑗 + 𝜖𝑗 (1)

where 𝑡𝑗 is a binary-treatment variable that is assumed to stem from an unobservable latent variable:

𝑡∗
𝑗 = w𝑗𝛄 + 𝑢𝑗

The decision to obtain the treatment is made according to the rule

𝑡𝑗 = {1, if 𝑡∗
𝑗 > 0

0, otherwise

where 𝜖 and 𝑢 are bivariate normal with mean zero and covariance matrix

[𝜎2 𝜌𝜎
𝜌𝜎 1 ]

Interactions between x𝑗 and the treatment 𝑡𝑗 are also allowed in (1). The likelihood function for this

model is given in Maddala (1983, 122). Greene (2000, 180) discusses the standard method of reducing

a bivariate normal to a function of a univariate normal and the correlation 𝜌. The following is the log

likelihood for observation 𝑗,

ln𝐿𝑗 =

⎧{{{
⎨{{{⎩

lnΦ {
w𝑗𝛄 + (𝑦𝑗 − x𝑗β − 𝛿)𝜌/𝜎

√1 − 𝜌2
} − 1

2
(

𝑦𝑗 − x𝑗β − 𝛿
𝜎

)
2

− ln(
√

2𝜋𝜎) 𝑡𝑗 = 1

lnΦ {
−w𝑗𝛄 − (𝑦𝑗 − x𝑗β)𝜌/𝜎

√1 − 𝜌2
} − 1

2
(

𝑦𝑗 − x𝑗β

𝜎
)

2

− ln(
√

2𝜋𝜎) 𝑡𝑗 = 0

where Φ(⋅) is the cumulative distribution function of the standard normal distribution.
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In the maximum likelihood estimation, 𝜎 and 𝜌 are not directly estimated. Rather ln𝜎 and atanh 𝜌 are

directly estimated, where

atanh 𝜌 = 1
2
ln(1 + 𝜌

1 − 𝜌
)

The standard error of 𝜆 = 𝜌𝜎 is approximated through the delta method, which is given by

Var(𝜆) ≈ DVar{(atanh 𝜌 ln𝜎)}D′

where D is the Jacobian of 𝜆 with respect to atanh 𝜌 and ln𝜎.
Maddala (1983, 120–122) also derives the CF estimator as a two-step estimator. This estimator is

implemented here. We will discuss it and then discuss the one-step CF estimator that is also implemented.

For the two-step estimator, probit estimates of the treatment equation

Pr(𝑡𝑗 = 1 | w𝑗) = Φ(w𝑗𝛄)

are obtained in the first stage. From these estimates, the hazard, ℎ𝑗, for each observation 𝑗 is computed

as

ℎ𝑗 =
⎧{
⎨{⎩

𝜙(w𝑗𝛄̂)/Φ(w𝑗𝛄̂) 𝑡𝑗 = 1

−𝜙(w𝑗𝛄̂)/{1 − Φ(w𝑗𝛄̂)} 𝑡𝑗 = 0

where 𝜙 is the standard normal density function. If

𝑑𝑗 = ℎ𝑗(ℎ𝑗 + w𝑗𝛄̂)

then

𝐸 (𝑦𝑗 | 𝑡𝑗, x𝑗,w𝑗) = x𝑗β + 𝛿𝑡𝑗 + 𝜌𝜎ℎ𝑗

Var (𝑦𝑗 | 𝑡𝑗, x𝑗,w𝑗) = 𝜎2 (1 − 𝜌2𝑑𝑗)

The two-step parameter estimates of β and 𝛿 are obtained by augmenting the regression equation with

the hazard ℎ. Thus the regressors become [ x t ℎ ], and the additional parameter estimate 𝛽ℎ is obtained

on the variable containing the hazard. A consistent estimate of the regression disturbance variance is

obtained using the residuals from the augmented regression and the parameter estimate on the hazard

𝜎̂ 2 =
e′e + 𝛽2

ℎ ∑𝑁
𝑗=1 𝑑𝑗

𝑁
The two-step estimate of 𝜌 is then

̂𝜌 = 𝛽ℎ
𝜎̂

To understand how the consistent estimates of the coefficient covariance matrix based on the aug-

mented regression are derived, let A = [ x t ℎ ] and D be a square diagonal matrix of size 𝑁 with

(1 − ̂𝜌 2𝑑𝑗) on the diagonal elements. The conventional VCE is

Vtwostep = 𝜎̂ 2(A′A)−1(A′DA + Q)(A′A)−1

where

Q = ̂𝜌 2(A′DA)Vp(A′DA)

and Vp is the variance–covariance estimate from the probit estimation of the treatment equation.
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The one-step CF estimator is a GMM estimator with stacked moments. See Newey (1984) and

Wooldridge (2010, sec. 14.2) for a description of this technique. Many econometric and statistical mod-

els can be expressed as conditions on the population moments. The parameter estimates produced by

GMM estimators make the sample-moment conditions as true as possible given the data.

Under CF estimation, as in maximum likelihood estimation, we directly estimate atanh 𝜌 and ln𝜎
rather than 𝜌 and 𝜎, so the parameter vector is

θ = (β′, 𝛿, 𝛄′, atanh 𝜌, ln𝜎)′

In this case, we have separate error functions for the treatment assignment

𝑢𝑡(𝑡𝑗,w𝑗,θ) =
⎧{
⎨{⎩

𝜙(w𝑗𝛄)/Φ(w𝑗𝛄) 𝑡𝑗 = 1

−𝜙(w𝑗𝛄)/{1 − Φ(w𝑗𝛄)} 𝑡𝑗 = 0

for the outcome mean

𝑢𝑚(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = 𝑦𝑖 − x𝑗β − 𝛿𝑡𝑗 − 𝜌𝜎𝑢𝑡,𝑗

and for the outcome variance

𝑢𝑣(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = 𝑢2
𝑚,𝑗 − 𝜎2 [1 − 𝜌2 {𝑢𝑡,𝑗(𝑢𝑡,𝑗 + w𝑗𝛄)}]

We calculate the hazard, ℎ𝑗, prior to estimation from a probit regression of the treatment 𝑡𝑗 on the

treatment covariates w𝑗. Let ̃z𝑗 = (x𝑗, 𝑡𝑗, ℎ𝑗). Now we define

Z𝑗 = ⎡⎢
⎣

̃z𝑗 0 0
0 w𝑗 0
0 0 1

⎤⎥
⎦

and

𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = Z′
𝑗
⎡⎢
⎣

𝑢𝑚,𝑗
𝑢𝑡,𝑗
𝑢𝑣,𝑗

⎤⎥
⎦

The CF estimator θ̂ is the value of θ that satisfies the sample-moment conditions

0 = 1
𝑁

∑
𝑖
s𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)

The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,

chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is

V̂ = (1/𝑁)G S G ′

where

G = {(1/𝑁) ∑
𝑖

𝜕𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)
𝜕θ̂

}
−1

and

S = (1/𝑁) ∑
𝑖

𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)′
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The matrix G is not symmetric because our estimator comes from stacking the moment conditions

instead of optimizing one objective function. The implication is that the robust formula should always

be used because, even under correct specification, the nonsymmetricG and the symmetric S converge to

different matrices.

General potential-outcome model
Equation (1) can be generalized to a potential-outcome model with separate variance and correlation

parameters for the control and treatment groups.

The generalized model is

𝑦0𝑗 = x𝑗β0 + 𝜖0𝑗

𝑦1𝑗 = x𝑗β1 + 𝜖1𝑗

𝑡𝑗 = {1, if w𝑗𝛄 + 𝑢𝑗 > 0
0, otherwise

where 𝑦0𝑗 is the outcome that person 𝑗 obtains if person 𝑗 selects treatment 0, and 𝑦1𝑗 is the outcome that

person 𝑗 obtains if person 𝑗 selects treatment 1. We never observe both 𝑦0𝑗 and 𝑦1𝑗, only one or the other.

We observe

𝑦𝑗 = 𝑡𝑗𝑦1𝑗 + (1 − 𝑡𝑗)𝑦0𝑗

In this unconstrained model, the vector of error terms (𝜖0𝑗, 𝜖1𝑗, 𝑢𝑗)′ comes from a mean zero trivariate

normal distribution with covariance matrix

⎡⎢
⎣

𝜎2
0 𝜎01 𝜎0𝜌0

𝜎01 𝜎2
1 𝜎1𝜌1

𝜎0𝜌0 𝜎1𝜌1 1
⎤⎥
⎦

The likelihood function for this model is given in Maddala (1983, 224).

ln𝑓𝑗 =

⎧{{{
⎨{{{⎩

lnΦ {
w𝑗𝛄 + (𝑦𝑗 − x𝑗β1)𝜌1/𝜎1

√1 − 𝜌2
1

} − 1
2

(
𝑦𝑗 − x𝑗β1

𝜎1
)

2

− ln(
√

2𝜋𝜎1), 𝑡𝑗 = 1

lnΦ {
−w𝑗𝛄 − (𝑦𝑗 − x𝑗β0)𝜌0/𝜎0

√1 − 𝜌2
0

} − 1
2

(
𝑦𝑗 − x𝑗β0

𝜎0
)

2

− ln(
√

2𝜋𝜎0), 𝑡𝑗 = 0

ln𝐿 =
𝑛

∑
𝑗=1

𝑤𝑗 ln𝑓𝑗

where Φ(⋅) is the cumulative distribution function of the standard normal distribution, and 𝑤𝑗 is an

optional weight. The covariance between 𝜖0𝑗 and 𝜖1𝑗, 𝜎01, cannot be estimated because the potential

outcomes 𝑦0𝑗 and 𝑦1𝑗 are never observed simultaneously.

As in the constrained model, 𝜎0 and 𝜎1 are not directly estimated in the maximum likelihood estima-

tion; rather, ln𝜎0 and ln𝜎1 are estimated.

The parameters 𝜌0 and 𝜌1 are also not directly estimated; rather, atanh 𝜌0 and atanh 𝜌1 are directly

estimated.



etregress — Linear regression with endogenous treatment effects 233

The new parameter vector is

θ = (β′
0,β′

1, 𝛄′, atanh 𝜌0, ln𝜎0, atanh 𝜌1, ln𝜎1)′

The CF estimator for this potential-outcome model uses new error functions for the outcome mean

𝑢𝑚(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = 𝑦𝑖−𝑡𝑗(x𝑗β1 + 𝜌1𝜎1𝑢𝑡,𝑗)
−(1 − 𝑡𝑗)(x𝑗β0 + 𝜌0𝜎0𝑢𝑡,𝑗)

and for the outcome variances

𝑢𝑣,0(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = (1 − 𝑡𝑗) (𝑢2
𝑚,𝑗 − 𝜎2

0 [1 − 𝜌2
0 {𝑢𝑡,𝑗(𝑢𝑡,𝑗 + w𝑗𝛄)}])

𝑢𝑣,1(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = 𝑡𝑗 (𝑢2
𝑚,𝑗 − 𝜎2

1 [1 − 𝜌2
1 {𝑢𝑡,𝑗(𝑢𝑡,𝑗 + w𝑗𝛄)}])

These error functions are derived based on the identities

𝐸 (𝑦𝑗 | 𝑡𝑗, x𝑗,w𝑗) = 𝑡𝑗(x𝑗β1 + 𝜌1𝜎1𝑢𝑡,𝑗) + (1 − 𝑡𝑗)(x𝑗β0 + 𝜌0𝜎0𝑢𝑡,𝑗)
Var (𝑦𝑗 | 𝑡𝑗 = 0, x𝑗,w𝑗) = 𝜎2

0 [1 − 𝜌2
0 {𝑢𝑡,𝑗(𝑢𝑡,𝑗 + w𝑗𝛄)}]

Var (𝑦𝑗 | 𝑡𝑗 = 1, x𝑗,w𝑗) = 𝜎2
1 [1 − 𝜌2

1 {𝑢𝑡,𝑗(𝑢𝑡,𝑗 + w𝑗𝛄)}]

We calculate the hazard, ℎ𝑗, prior to estimation from a probit regression of the treatment, 𝑡𝑗, on the

treatment covariates, w𝑗. Let ̃z𝑗 = {x𝑗, 𝑡𝑗ℎ𝑗, (1 − 𝑡𝑗)ℎ𝑗}. Now we define

Z𝑗 =
⎡
⎢
⎢
⎣

̃z𝑗 0 0 0
0 w𝑗 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎦

and

𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ) = Z′
𝑗

⎡
⎢
⎢
⎣

𝑢𝑚,𝑗
𝑢𝑡,𝑗

𝑢𝑣,0,𝑗
𝑢𝑣,1,𝑗

⎤
⎥
⎥
⎦

The CF estimator θ̂ is the value of θ that satisfies the sample-moment conditions

0 = 1
𝑁

∑
𝑖
s𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)
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The Huber/White/robust sandwich estimator is consistent for the VCE. See Wooldridge (2010,

chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994).

The formula is

V̂ = (1/𝑁)G S G ′

where

G = {(1/𝑁) ∑
𝑖

𝜕𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)
𝜕θ̂

}
−1

and

S = (1/𝑁) ∑
𝑖

𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)𝑠𝑗(𝑦𝑗, 𝑡𝑗, x𝑗,w𝑗,θ)′

The matrix G is not symmetric because our estimator comes from stacking the moment conditions

instead of optimizing one objective function. The implication is that the robust formula should always

be used because, even under correct specification, the nonsymmetricG and the symmetric S converge to

different matrices.

Average treatment effect
TheATE is the average difference of the treated potential outcomes and the control potential outcomes.

By the law of iterated expectations, the ATE is

𝐸(𝑦1𝑗 − 𝑦0𝑗) = 𝐸{𝐸(𝑦1𝑗 − 𝑦0𝑗|x𝑗, 𝜖0𝑗, 𝜖1𝑗)}
= 𝐸(x𝑗β1 + 𝜖1 − x𝑗β0 − 𝜖0)
= 𝐸 {x𝑗(β1 − β0)}

This expectation can be estimated as a predictive margin when x𝑗(β1 − β0) varies in x𝑗. Otherwise,

the ATE is estimated as the coefficient of 𝑡𝑗 in the model.

Average treatment effect on the treated
TheATE is the average difference of the treated potential outcomes and the control potential outcomes

on the treated population.

The conditional means of the potential outcomes 𝑦𝑡𝑗, 𝑡 ∈ (0, 1) for exogenous covariates x𝑗 and

treatment covariates w𝑗 at treatment 𝑡𝑗 = 1 are

𝐸(𝑦𝑡𝑗|x𝑗,w𝑗, 𝑡𝑗 = 1) = x𝑗β𝑡 + 𝜌𝑡𝜎𝑡𝜙(w𝑗𝛄)/Φ(w𝑗𝛄)

By the law of iterated expectations, the ATET is

𝐸(𝑦1𝑗 − 𝑦0𝑗|𝑡𝑗 = 1) = 𝐸{𝐸(𝑦1𝑗 − 𝑦0𝑗|x𝑗,w𝑗, 𝑡𝑗 = 1)}

= 𝐸{x𝑗(β1 − β0) + (𝜌1𝜎1 − 𝜌0𝜎0)𝜙(w𝑗𝛄)/Φ(w𝑗𝛄)|𝑡𝑗 = 1}

This expectation can be estimated as a predictive margin on the treated population when x𝑗(β1 −β0)
varies in x𝑗 or when the variance and correlation parameters differ by treatment group. Otherwise, the

ATET is estimated as the coefficient of 𝑡𝑗 in the model.
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Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands
The following standard postestimation commands are available after etregress:

Command Description

contrast contrasts and ANOVA-style joint tests of parameters
∗ estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian infor-

mation criteria (AIC, CAIC, AICc, and BIC, respectively)

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estat (svy) postestimation statistics for survey data

estimates cataloging estimation results

etable table of estimation results
∗ hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

∗ lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal

effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict conditional treatment effects, linear predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of parameters
∗ suest seemingly unrelated estimation

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

∗estat ic, lrtest, and suest are not appropriate after etregress, twostep or etregress, cfunction.
hausman and lrtest are not appropriate with svy estimation results.
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predict

Description for predict
predict creates a new variable containing predictions such as linear predictions, conditional treat-

ment effects, standard errors, expected values, and probabilities.

Menu for predict
Statistics > Postestimation

Syntax for predict
After ML, twostep, or cfunction

predict [ type ] newvar [ if ] [ in ] [ , statistic ]

After ML or cfunction

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

xb linear prediction; the default

cte conditional treatment effect at treatment level

stdp standard error of the prediction

stdf standard error of the forecast

yctrt 𝐸(𝑦𝑗 | treatment = 1)
ycntrt 𝐸(𝑦𝑗 | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation

stdptrt standard error of the linear prediction for treatment equation

These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted
only for the estimation sample.

stdf is not allowed with svy estimation results.

Options for predict

� � �
Main �

xb, the default, calculates the linear prediction, x𝑗b.

cte calculates the treatment effect, the difference of potential-outcome means, conditioned on treatment

level.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of the
predicted expected value or mean for the observation’s covariate pattern. The standard error of the

prediction is also referred to as the standard error of the fitted value.



etregress postestimation — Postestimation tools for etregress 238

stdf calculates the standard error of the forecast, which is the standard error of the point prediction for
one observation. It is commonly referred to as the standard error of the future or forecast value. By

construction, the standard errors produced by stdf are always larger than those produced by stdp;
see Methods and formulas in [R] regress postestimation.

yctrt calculates the expected value of the dependent variable conditional on the presence of the treat-

ment: 𝐸(𝑦𝑗 | treatment = 1).
ycntrt calculates the expected value of the dependent variable conditional on the absence of the treat-

ment: 𝐸(𝑦𝑗 | treatment = 0).
ptrt calculates the probability of the presence of the treatment:

Pr(treatment = 1) = Pr(w𝑗𝛄 + 𝑢𝑗 > 0).
xbtrt calculates the linear prediction for the treatment equation.

stdptrt calculates the standard error of the linear prediction for the treatment equation.

scores, not available with twostep, calculates equation-level score variables.

The first new variable will contain 𝜕 ln𝐿/𝜕(x𝑗β).
The second new variable will contain 𝜕 ln𝐿/𝜕(w𝑗𝛄).
Under the constrained model, the third new variable will contain 𝜕 ln𝐿/𝜕 atanh 𝜌.
Under the constrained model, the fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎.
Under the general potential-outcome model, the third new variable will contain

𝜕 ln𝐿/𝜕 atanh 𝜌0.

Under the general potential-outcome model, the fourth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎0.

Under the general potential-outcome model, the fifth new variable will contain 𝜕 ln𝐿/𝜕 atanh 𝜌1.

Under the general potential-outcome model, the sixth new variable will contain 𝜕 ln𝐿/𝜕 ln𝜎1.
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margins

Description for margins
margins estimates margins of response for linear predictions, conditional treatment effects, expected

values, and probabilities.

Menu for margins
Statistics > Postestimation

Syntax for margins
margins [marginlist ] [ , options ]
margins [marginlist ] , predict(statistic ...) [ predict(statistic ...) ... ] [ options ]

Maximum likelihood and control-function estimation results

statistic Description

xb linear prediction; the default

cte conditional treatment effect at treatment level

yctrt 𝐸(𝑦𝑗 | treatment = 1)
ycntrt 𝐸(𝑦𝑗 | treatment = 0)
ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation

stdp not allowed with margins
stdf not allowed with margins
stdptrt not allowed with margins

Two-step estimation results

statistic Description

xb linear prediction; the default

ptrt Pr(treatment = 1)
xbtrt linear prediction for treatment equation

cte not allowed with margins
yctrt not allowed with margins
ycntrt not allowed with margins
stdp not allowed with margins
stdf not allowed with margins
stdptrt not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.
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Remarks and examples
The average treatment effect (ATE) and the average treatment effect on the treated (ATET) are the

parameters most frequently estimated by postestimation techniques after etregress.

When there are no interactions between the treatment variable and the outcome covariates in

the constrained model, etregress directly estimates the ATE and the ATET; see example 1 of

[CAUSAL] etregress.

When there are no interactions between the treatment variable and the outcome covariates in

the general potential-outcome model, etregress directly estimates the ATE; see example 2 of

[CAUSAL] etregress.

When there are interactions between the treatment variable and the outcome covariates, you can use

margins after etregress to estimate theATE. See example 3 and example 4 of [CAUSAL] etregress for

examples of ATE estimation.

When there are interactions between the treatment variable and the outcome covariates in the

constrained model, you can use margins after etregress to estimate the ATET. See example 5 of

[CAUSAL] etregress for an example of ATET estimation in the constrained model.

In the general potential-outcome model, you can use margins after etregress to estimate theATET.

See example 6 of [CAUSAL] etregress for an example ofATET estimation in the general potential-outcome

model.

Also see
[CAUSAL] etregress — Linear regression with endogenous treatment effects

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Also see

Description
gencohort creates a categorical variable indicating the first time period at which units within a group

are treated, that is, a cohort variable. Cohort variables created by gencohort are meant to be used as

inputs for the hdidregress and xthdidregress commands.

Quick start
Create a cohort variable with name mycohort using group variable country, time variable year, and

binary treatment variable policy
gencohort mycohort, group(country) time(year) treat(policy)

Same as above, but only if outcome variable y is positive
gencohort mycohort if y>0, group(country) time(year) treat(policy)

Menu
Data > Create or change data > Other variable-creation commands > Create cohort variable

Syntax
gencohort newvar [ if ] [ in ], group(groupvar) time(timevar) treat(tvar)

groupvar is a categorical variable that indicates the group level at which the treatment occurs.

timevar is a time variable.

tvar must be a binary variable indicating observations subject to treatment.

Options

� � �
Main �

group(groupvar) specifies a group variable that indicates the group level at which the treatment occurs.

groupvar may be, for example, states, counties, or hospitals. group() is required.

time(timevar) specifies the time variable used to define treatment-time cohorts. time() is required.

treat(tvar) specifies the binary variable that indicates which observations are subject to treatment.

treat() is required.

Remarks and examples
For examples, see Remarks and examples in [CAUSAL] hdidregress and Remarks and examples in

[CAUSAL] xthdidregress.
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Also see
[CAUSAL] hdidregress — Heterogeneous difference in differences

[CAUSAL] xthdidregress — Heterogeneous difference in differences for panel data



hdidregress — Heterogeneous difference in differences

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
hdidregress estimates average treatment effects on the treated (ATETs) that may vary over time and

over treatment cohorts. Treatment cohorts are groups subject to treatment at different points in time.

hdidregress provides four estimators: extended two-way fixed effects (TWFE), regression adjustment

(RA), inverse-probability weighting (IPW), and augmented inverse-probability weighting (AIPW). See

[CAUSAL] teffects intro for a discussion of RA, IPW, and AIPW estimators.

hdidregress is for repeated cross-sectional data. For panel data, see [CAUSAL] xthdidregress.

Quick start
EstimateATETs of treatment treat on outcome ywith group grpvar and time tvar; use the RA estimator

and model y using covariate x
hdidregress ra (y x) (treat), group(grpvar) time(tvar)

Same as above, but use the TWFE estimator

hdidregress twfe (y x) (treat), group(grpvar) time(tvar)

Use the IPW estimator and model treat using covariate z
hdidregress ipw (y) (treat z), group(grpvar) time(tvar)

Use the AIPW estimator, model y using covariate x, and model treat using covariate z
hdidregress aipw (y x) (treat z), group(grpvar) time(tvar)

Same as above, but use the not-yet-treated group as the control group

hdidregress aipw (y x) (treat z), group(grpvar) time(tvar) ///
controlgroup(notyet)

Same as above, but cluster at the county level
hdidregress aipw (y x) (treat z), group(grpvar) time(tvar) ///

controlgroup(notyet) vce(cluster county)
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Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (TWFE)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (RA)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (IPW)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Heterogeneous
DID (AIPW)

Syntax

Two-way fixed effects

hdidregress twfe (ovar [ omvarlist ]) (tvar) [ if ] [ in ] [weight ],
group(groupvar) time(timevar) [ options ]

Regression adjustment

hdidregress ra (ovar [ omvarlist ]) (tvar) [ if ] [ in ] [weight ],
group(groupvar) time(timevar) [ options ]

Inverse-probability weighting

hdidregress ipw (ovar) (tvar [ tmvarlist ]) [ if ] [ in ] [weight ],
group(groupvar) time(timevar) [ options ]

Augmented inverse-probability weighting

hdidregress aipw (ovar [ omvarlist ]) (tvar [ tmvarlist ]) [ if ] [ in ] [weight ],
group(groupvar) time(timevar) [ options ]

ovar is a continuous outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see

[U] 11.4.3 Factor variables.

tvar must be a binary variable indicating observations subject to treatment.

tmvarlist specifies the covariates in the treatment model and may contain factor variables; see

[U] 11.4.3 Factor variables.

groupvar is a categorical variable that indicates the group level at which the treatment occurs.

timevar is a time variable.
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options Description

Model
∗ group(groupvar) specify group variable
∗ time(timevar) specify time variable

controlgroup(cgtype) specify the type of control group; default is
controlgroup(never)

cohortvar(cvar [ , replace ]) specify the variable name for the generated cohort

usercohort(varname) specify name of cohort variable to be used for estimation
† basetime(btspec) specify the type of base time for pretreatment periods; default

is basetime(adaptive)
‡ hettype(hetspec) specify the type of heterogeneity; default is

hettype(timecohort)

SE/Robust

vce(vcetype) vcetype may be cluster clustvar, robust,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
[ no ]log suppress iteration log

nodots suppress replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

cgtype Description

never use the never-treated group as the control group; the default

notyet use the not-yet-treated group as the control group

btspec Description

adaptive specify the adaptive base time for pretreatment ATETs;
the default

common specify a common base time for all pretreatment ATETs

hetspec Description

timecohort heterogeneous treatment effects over time and cohort; the default

time heterogeneous treatment effects over time

cohort heterogeneous treatment effects over cohort
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∗group() and time() are required.
†basetime() may be specified only when ra, ipw, or aipw is specified.
‡hettype() may be specified only when twfe is specified.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

group(groupvar) specifies a group variable that indicates the group level at which the treatment occurs.

groupvar may be, for example, states, counties, or hospitals. group() also defines the clusters for

the default cluster–robust standard errors. group() is required. You may specify only one group

variable.

time(timevar) specifies the time variable used to define treatment-time cohorts. time() is required.

controlgroup(cgtype) specifies the type of control group. Acontrol group can be either a never-treated

group or a not-yet-treated group. A never-treated group refers to the units that are untreated from the

first to the last period. A not-yet-treated group refers to the units that are untreated up to a specific

period. cgtype can be one of never, referring to the never-treated group, or notyet, referring to the
not-yet-treated group. By default, cgtype is never.

cohortvar(cvar [ , replace ]) specifies the variable name cvar for the generated cohort variable. The

cohort variable is a categorical variable indicating the period when the unit is first treated. By default,

did cohort is used as the name of the cohort variable. If did cohort already exists in the dataset,
it is replaced if option cohortvar() is not specified.

If suboption replace is specified, cvar is replaced.

usercohort(varname) specifies a variable to be used as a cohort indicator during estimation. By de-

fault, a cohort variable is generated using the information in the estimation sample to indicate the

period when a unit is first treated. usercohort() overrides this default and allows you to provide a
cohort indicator. This is useful, for instance, when there are gaps in the estimation sample, but you

know a group was treated at the time when the gap is present in the data.

basetime(btspec) specifies how the base time is chosen when computing the pretreatment ATETs with

the ra, ipw, or aipw estimator. btspec is one of adaptive (the default) or common.

adaptive specifies that the base time for pretreatmentATETs be chosen adaptively. The base time for

each pretreatment period 𝑡 for cohort 𝑔 is the previous period, 𝑡 − 1.

common specifies that a common base time of 𝑔 − 1 be used for all pretreatmentATETs for cohort 𝑔. A
long-run violation of the parallel trends assumption is easier to identify when using this common

base time.

The base time for posttreatment periods is 𝑔 −1, regardless of whether the adaptive or common base
time is used for pretreatment periods.

hettype(hetspec) specifies time or cohort heterogeneity for the twfe estimator. By default, treatment

is interacted with time and cohort. You may choose to keep one of time or cohort interactions using

hetspec.
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hetspec may be one of timecohort for heterogeneous treatment effects over both time and cohort,

time for heterogeneous treatment effects over time only, or cohort for heterogeneous treatment

effects over cohort only. By default, hetspec is timecohort.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that allow for intra-

group correlation (cluster clustvar), that are robust to intragroup correlation among group variable

(robust), and that use bootstrap or jackknife sampling done at the individual level (bootstrap,
jackknife); see [R] vce option.

vce(cluster clustvar), the default, uses the variable specified in group(groupvar).

� � �
Reporting �

level(#); see [R] Estimation options.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

The following option is available with hdidregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
It is common to study the effects of a treatment, for example, a policy or intervention, on a group.

hdidregress is for data where the treated groups are subject to the treatment at different points in time

and they remain exposed to the treatment. For example, a health policy such as an increase in the age

to purchase cigarettes is implemented in a given region, and over time, other regions decide to imitate

the initiative. Another example is change in work policies across industries. Perhaps airlines implement

a minimum number of hours between shifts for safety reasons. The policy is subsequently adopted by

other similar industries. Some similar industries may never adopt the policy, remaining untreated, or it

might be that all similar industries eventually adopt the policy.

hdidregress estimatesATET parameters that change over time and treatment cohorts (groups treated

at different points in time). Each one of these ATETs has the same interpretation that the parameters of a

two-time two-group difference-in-differences (DID) parameter would have. Because there are multiple

DID parameters, we refer to them as heterogeneous treatment effects or as heterogeneous DID. This is in

contrast to estimating only one ATET, which assumes there is no variation across time or cohort. If you

assume no variation across time or cohort, you may use didregress; see [CAUSAL] didregress.

hdidregress provides four estimators: TWFE, outlined in Wooldridge (2021); RA, IPW, and AIPW,

outlined in Callaway and Sant’Anna (2021). Each one of these estimators fits a model for the outcome of

interest, a model for the treatment, or a model for both. For example, RA and TWFE model the outcome;

IPW models the treatment; and AIPW models both. If the model for the outcome is correctly specified,

RA and TWFE are best, with TWFE being more efficient. If the treatment model is correctly specified,

IPW should be best. AIPW models both treatment and outcome. If at least one of the models is correctly
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specified, it provides consistent estimates. Thus, it allows us to misspecify one of the models and still get

consistent estimates, a property called double robustness. See [CAUSAL] teffects intro for a discussion

of RA, IPW, and AIPW estimators.

hdidregress is for repeated cross-sectional data. For panel data, see [CAUSAL] xthdidregress. Be-
low, we illustrate how to use hdidregress. For a general overview of DID and more information about

the methods used below, see [CAUSAL] DID intro. For general discussions about the methods, see Roth

et al. (2022) and de Chaisemartin and D’Haultfœuille (2023) and the references therein.

Example 1: Heterogeneous DID for repeated cross-sections
We are interested in knowing if a school-district-level program, HealthyHabits, reduces the bodymass

index (BMI) for students in the school district. We have fictional data on the Healthy Habits program. This

program incorporates more exercise time and augments the intakes of fruits and vegetables. Our data

are at the school-district level and include information on whether a school participates in the program,

hhabit, and the BMI of students in the district, bmi. We have repeated samples of students ages 11 to 14

from 40 school districts from the year 2032 to the year 2040.

. use https://www.stata-press.com/data/r19/hhabits
(Fictional children BMI and school district data)

We are going to use the aipw estimator, which allows us to model the outcome and the treatment. If

we had selected another estimator and specified the outcome incorrectly, the treatment effects would be

inconsistent; see [CAUSAL] teffects aipw. With the aipw estimator, as long as one of the treatment or

outcome model is correctly specified, we will get a consistent estimate of the ATET—a property called

double robustness.

We model hhabit using the number of parks in the district, parksd. We conjecture that school

districts with more parks consider exercise spaces more important in their urban planning than those

with fewer parks. These districts are therefore more amenable to the Healthy Habits program.

For the outcome variable, we believe that mother’s education, medu, is a good predictor of the health
habits of children. We also believe that participation in sports, sports, affects bmi. Finally, we control
for whether the student is a girl to account for behavioral differences and differences in body types of

boys and girls at this age.

In the first set of parentheses, we define the outcome, bmi, and any covariates that affect the outcome

directly. In the second set of parentheses, we define the observation-level treatment variable, hhabit,
and the covariates that affect it. After the comma, we must define the group variable in group(); this is
a required option. The group variable defines at which level the treatment occurs and also identifies the

clustering variable, which in this case is schools. We also need to specify a time variable in time().
We fit the following model:

. hdidregress aipw (bmi medu i.girl i.sports) (hhabit parksd),
> group(schools) time(year)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Computing ATET for each cohort and time:
Cohort 2034 (8): ........ done
Cohort 2036 (8): ........ done
Cohort 2038 (8): ........ done
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Treatment and time information
Time variable: year
Time interval: 2032 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 11355

2034 1231
2036 2097
2038 2042

Heterogeneous treatment-effects regression Number of obs = 16,725
Estimator: Augmented IPW
Treatment level: schools
Control group: Never treated

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. z P>|z| [95% conf. interval]

2034
year
2033 .6544681 .5946048 1.10 0.271 -.5109359 1.819872
2034 -1.226451 .379168 -3.23 0.001 -1.969607 -.4832957
2035 -2.491842 .4169657 -5.98 0.000 -3.30908 -1.674605
2036 -2.72486 .2363878 -11.53 0.000 -3.188171 -2.261548
2037 -2.786634 .6672867 -4.18 0.000 -4.094492 -1.478776
2038 -3.980456 .2993279 -13.30 0.000 -4.567127 -3.393784
2039 -.604415 .5929199 -1.02 0.308 -1.766517 .5576866
2040 -.6522272 .3640416 -1.79 0.073 -1.365736 .0612812

2036
year
2033 .6635794 .3089663 2.15 0.032 .0580167 1.269142
2034 -1.3933 .3871204 -3.60 0.000 -2.152042 -.6345582
2035 .5947865 .4065947 1.46 0.144 -.2021245 1.391697
2036 -1.71427 .4565384 -3.75 0.000 -2.609069 -.8194714
2037 -3.170542 .5221368 -6.07 0.000 -4.193912 -2.147173
2038 -2.967701 .4247053 -6.99 0.000 -3.800108 -2.135294
2039 .0360098 .6868764 0.05 0.958 -1.310243 1.382263
2040 -.957117 .3510986 -2.73 0.006 -1.645258 -.2689763

2038
year
2033 -1.434451 .5163232 -2.78 0.005 -2.446426 -.422476
2034 1.010288 .4808165 2.10 0.036 .067905 1.952671
2035 -.3809733 .4336764 -0.88 0.380 -1.230963 .4690169
2036 .5199519 .4849723 1.07 0.284 -.4305763 1.47048
2037 -.0315794 .5863875 -0.05 0.957 -1.180878 1.117719
2038 -3.602114 .3498692 -10.30 0.000 -4.287845 -2.916383
2039 -1.388906 .6765493 -2.05 0.040 -2.714919 -.0628943
2040 -.6222491 .5510466 -1.13 0.259 -1.70228 .4577824

Note: ATET computed using covariates.
Note: Base time for pretreatment ATETs is the previous period.
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Notice the note below the command. A variable with the name did cohort has been generated.

Using the group variable and the observation-level treatment, hdidregress generated treatment-time

cohorts. The new variable creates treatment groups based on the time when a group was first treated. For

instance, if two schools adopt the Healthy Habits program in 2034, they are grouped in the 2034 cohort.

The variable also contains a category for a control group. In this case, the control group is formed by

the schools that never participate in the program. Cohorts are an important input for estimation and

for postestimation commands. You do not need to adhere to the default name, did cohort, and may

provide your own name using the cohortvar() option.

Next appears a table that gives you a sense of the treatment groups and time. You see the time variable,

year, and its range, 2032 to 2040. Then we see what defines a treated or a control group. The table

after provides group-level information about the cohort-time groups. The first row tells you the number

of cohorts. Following the number of cohorts is a tabulation showing how many observations are in each

cohort. For instance, 11,355 observations are never treated in our data. The table gives you a sense of the

amount of information available in each cohort and might hint at the variability of cohort-level estimates.

The next table presents the ATET estimates. The first panel shows the ATETs for the 2034 cohort. We

first have the 2033 ATET of 0.65, and the confidence interval includes 0. This is as expected; before

treatment, the effect should be 0. We should interpret the ATET to mean that among the school districts

that adopted the Healthy Habits program in 2034, the expected bmi is 0.65 higher than if the districts

had never participated in the program. At treatment onset, in 2034, we observe a treatment effect is a

decrease of the bmi of 1.23. In the last two periods, the effect of the treatment has diminished for the

2034 cohort; the confidence intervals for the effects in 2039 and 2040 again include 0. We interpret the

results for the other cohorts similarly.

Example 2: Visualizing estimation results
In the example above, we had four cohorts and nine time periods. There is a lot of information to

process, and it can get even more daunting if we had more cohorts and time periods. To better visualize

the results, we can use estat atetplot:

. estat atetplot
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Figure 1. ATETs by cohort over time
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The graph shows the pretreatment and the posttreatment ATETs for each cohort and their pointwise

confidence intervals. For the 2034 cohort, we see that the program reduces bmi by approximately 2 to 4

points but this tendency seems to start reverting in 2038. A similar pattern emerges over the other two

cohorts.

Example 3: Less heterogeneity; aggregating and summarizing treatment effects
So far, we have allowed treatment effects to change over cohort and over time. But we might want

to obtain only one treatment effect for each cohort, abstracting away from time variation within cohorts.

You would get this using the postestimation command estat aggregation.

. estat aggregation, cohort
ATET over cohort Number of obs = 16,725

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. z P>|z| [95% conf. interval]

2034 -2.065755 .1999412 -10.33 0.000 -2.457633 -1.673877
2036 -1.7781 .4013978 -4.43 0.000 -2.564825 -.9913744
2038 -1.869405 .4650349 -4.02 0.000 -2.780857 -.9579538

Note that aggregation occurs only for the posttreatment periods and not for the pretreatment periods.

The 2034 estimate is a weighted average of all the treatment-effect estimates after 2034 for the 2034

cohort; see [CAUSAL] hdidregress postestimation for more details.

Aggregated estimates are easier to digest; now we have 3 treatment effects to analyze instead of 24.

For the 2034 cohort, we have a treatment effect of −2.1. For the 2036 cohort, the effect is −1.8, and for

the 2038 cohort, it is −1.9. We cannot see how the treatment evolves over time for each cohort, but we

have a sense of the average effect over time for each of them.

We could instead want to see the treatment effect at each point in time, abstracting from cohort-level

variation.

. estat aggregation, time
ATET over time Number of obs = 16,725

(Std. err. adjusted for 40 clusters in schools)

Robust
Time ATET std. err. z P>|z| [95% conf. interval]

2034 -1.226451 .379168 -3.23 0.001 -1.969607 -.4832957
2035 -2.491842 .4169657 -5.98 0.000 -3.30908 -1.674605
2036 -2.111619 .3654785 -5.78 0.000 -2.827943 -1.395294
2037 -3.028686 .4278557 -7.08 0.000 -3.867268 -2.190104
2038 -3.449829 .2670184 -12.92 0.000 -3.973176 -2.926483
2039 -.6624494 .44865 -1.48 0.140 -1.541787 .2168884
2040 -.7575068 .2816374 -2.69 0.007 -1.309506 -.2055078
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We see the treatment effects for each one of the posttreatment periods. As before, we have the option

to look at the effects graphically. We just need to use the graph option.

. estat aggregation, time graph
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Figure 2. ATETs over time

Example 4: Dynamic treatment effects
We could also ask what the evolution of the treatment effect is after treatment. For instance, we might

want to know what happens one period after the onset of treatment, two periods after treatment, and so

forth. It might be the case that treatment effects vanish over time or even change patterns. We might also

want to see whether, before treatment, we observe a treatment effect or a pattern that might suggest that

there is anticipation of treatment. estat aggregation allows us to answer these questions by using the
dynamic option.

. estat aggregation, dynamic graph
Duration of exposure ATET Number of obs = 16,725

(Std. err. adjusted for 40 clusters in schools)

Robust
Exposure ATET std. err. z P>|z| [95% conf. interval]

-5 -1.434451 .5163232 -2.78 0.005 -2.446426 -.422476
-4 1.010288 .4808165 2.10 0.036 .067905 1.952671
-3 .1338267 .3091619 0.43 0.665 -.4721195 .739773
-2 -.4256324 .4292553 -0.99 0.321 -1.266957 .4156925
-1 .3727141 .3197563 1.17 0.244 -.2539967 .999425
0 -2.285098 .3827362 -5.97 0.000 -3.035248 -1.534949
1 -2.344265 .3829047 -6.12 0.000 -3.094744 -1.593785
2 -2.045521 .3911543 -5.23 0.000 -2.81217 -1.278873
3 -1.045601 .6840119 -1.53 0.126 -2.38624 .2950372
4 -2.145004 .5952525 -3.60 0.000 -3.311678 -.978331
5 -.604415 .5929199 -1.02 0.308 -1.766517 .5576866
6 -.6522272 .3640416 -1.79 0.073 -1.365736 .0612812

Note: Base time for pretreatment ATETs is the previous period.
Note: Exposure is the number of periods since the first treatment time.
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Figure 3. ATET dynamics

In the three periods prior to treatment, there is no effect. This suggests no anticipation to treatment.

At the onset, the program reduces bmi, but the effect decreases for school districts that remain for more

than four years in the program.

Example 5: TWFE estimation
The literature on heterogeneous DID started by pointing out the problems that arise when one assumes

erroneously that the treatment effects are homogeneous. It suggested that TWFE estimation was inade-

quate. Wooldridge (2021) suggests that fixed-effects estimation can be used if we extend it to include

interactions between treatment-time cohorts and time.

Another important insight of Wooldridge (2021) is that you can use pooled ordinary least squares

and add panel-level averages of covariates and obtain the same point estimates as one would get with

fixed-effects estimation in the context of DID estimation. This is an extension of the intuition byMundlak

(1978). xthdidregress and hdidregress fit pooled ordinary least-squares models using these ideas.

Below, we present the results we obtain using the twfe estimator.
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. hdidregress twfe (bmi medu i.girl i.sports) (hhabit), group(schools) time(year)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Treatment and time information
Time variable: year
Time interval: 2032 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 11355

2034 1231
2036 2097
2038 2042

Heterogeneous treatment-effects regression Number of obs = 16,725
Data type: Repeated cross-sectional
Estimator: Two-way fixed effects
Treatment level: schools
Control group: Never treated
Heterogeneity: Cohort and time

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. t P>|t| [95% conf. interval]

2034
year
2034 -.8057824 .2723491 -2.96 0.005 -1.35666 -.2549045
2035 -1.951481 .2098279 -9.30 0.000 -2.375898 -1.527064
2036 -2.091438 .2081903 -10.05 0.000 -2.512542 -1.670333
2037 -2.329408 .4674253 -4.98 0.000 -3.274865 -1.383952
2038 -3.623645 .4658056 -7.78 0.000 -4.565826 -2.681464
2039 -.1729334 .7543583 -0.23 0.820 -1.698767 1.3529
2040 -.2267266 .3344035 -0.68 0.502 -.9031216 .4496684

2036
year
2036 -1.671963 .3424563 -4.88 0.000 -2.364646 -.9792798
2037 -3.27542 .3496365 -9.37 0.000 -3.982627 -2.568213
2038 -2.995124 .2853544 -10.50 0.000 -3.572308 -2.41794
2039 -.0792949 .5152787 -0.15 0.878 -1.121544 .9629547
2040 -.9852905 .1856743 -5.31 0.000 -1.360852 -.6097289

2038
year
2038 -3.389082 .154181 -21.98 0.000 -3.700942 -3.077221
2039 -.7309226 .5173441 -1.41 0.166 -1.77735 .3155046
2040 -.6942153 .3558485 -1.95 0.058 -1.413987 .0255563

Note: ATET computed using covariates.
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The output is almost the same as the one for the ra estimator in example 1. There are a couple of

noteworthy differences. First, the estimator fits an extended TWFE regression. Second, the ATET param-

eters are shown for each cohort only at the time of treatment exposure and for the periods thereafter but

not for the pretreatment periods. As discussed in Wooldridge (2021), these are the parameters identified

using the parallel-trends assumption he derives.

As we did before, we could use estat aggregation to explore different ways of looking at our

treatment effects and estat atetplot to visualize the estimated ATETs.

Example 6: Reducing model complexity
When we fit the aipw model, we had to estimate ATET parameters for each cohort over time. The

complexity of the model grows with the number of cohorts and the number of time periods. As is de-

scribed in Methods and formulas, the aipw estimator uses a different subset of the data to obtain each

parameter. To get a reliable estimator of each parameter, you need sufficient data for each subsample.

Sometimes, there are few observations for a given cohort in a given set of time periods.

We can ameliorate this problem by reducing the amount of heterogeneity we assume. For the twfe
estimator, the complexity of the model comes from the interactions between the observation-level treat-

ment with cohort and time and the interactions between the observation-level treatment, cohort, time, and

covariates. This allows us to decide which interactions to include in our model. We could, for instance,

allow for heterogeneity at the cohort level instead of at the cohort and time level. We use the hettype()
option with the argument cohort to do this:

. hdidregress twfe (bmi medu i.girl i.sports) (hhabit), group(schools)
> time(year) hettype(cohort)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable hhabit and group variable schools, was added to the dataset
using the estimation sample.

Treatment and time information
Time variable: year
Time interval: 2032 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 11355

2034 1231
2036 2097
2038 2042
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Heterogeneous treatment-effects regression Number of obs = 16,725
Data type: Repeated cross-sectional
Estimator: Two-way fixed effects
Treatment level: schools
Control group: Never treated
Heterogeneity: Cohort

(Std. err. adjusted for 40 clusters in schools)

Robust
Cohort ATET std. err. t P>|t| [95% conf. interval]

2034 -1.619553 .2223114 -7.29 0.000 -2.069221 -1.169886
2036 -1.832602 .1954433 -9.38 0.000 -2.227924 -1.437281
2038 -1.739144 .2152765 -8.08 0.000 -2.174582 -1.303706

Note: ATET computed using covariates.

You fit a regression model with fewer terms and obtain treatment effects only at the cohort level. You

could also have the treatment effect change over time but not over cohort by typing hettype(time).

For the estimators proposed by Callaway and Sant’Anna (2021), heterogeneity is built in, so we need

to estimate all the ATET parameters.

Example 7: Defining your own cohort
By default, hdidregress creates a cohort variable based on the estimation sample. Yet this might be

inadequate if a researcher has more information than is provided in the dataset. Suppose that our dataset

looked something like this for school district 1:

. list schools year hhabit in 100/105, noobs sepby(schools)

schools year hhabit

1 2033 No
1 2033 No
1 2035 Yes
1 2035 Yes
1 2035 Yes
1 2035 Yes

There is no information for the year 2034. If the school district participated in the healthy habits

program in 2034, it should belong to the 2034 cohort. However, hdidregress has no information about

the year 2034 in the estimation sample and will classify school district 1 as belonging to the 2035 cohort.

hdidregress’s inability to determine the proper cohort is not exclusive to situations with gaps in your

repeated cross-section. In fact, Stata excludes observations in your sample if any of the variables used

during estimation are missing. If all observations for the time period in which a group is first treated are

omitted because of missing values, hdidregress cannot assign the group to the appropriate cohort.

If you have information about the cohort values, instead of letting the command create a cohort vari-

able, you can provide the cohort variable with the usercohort() option. Suppose you had a cohort

variable, mycohort; then you could type

. hdidregress twfe (bmi) (hhabit), group(schools) time(year) usercohort(mycohort)
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Another possibility is to generate the cohort variable mycohort yourself using the gencohort com-

mand; this is helpful when you have missing information on covariates or the outcome but have enough

information about the treatment. Suppose you had missing information about the outcome variable bmi
but had information about the treatment variable. Below, we drop information about the 2034 cohort to

illustrate the point.

. replace bmi = . if year==2034 & schools==1
(44 real changes made, 44 to missing)

These observations for year 2034 would not be used during estimation, but we have enough informa-

tion in them to create our own cohort variable.

. gencohort mycohort, treat(hhabit) time(year) group(schools)

. list schools year hhabit bmi mycohort in 100/105, noobs sepby(schools)

schools year hhabit bmi mycohort

1 2033 No 20.14775 2034
1 2033 No 21.06941 2034
1 2034 Yes . 2034
1 2034 Yes . 2034
1 2034 Yes . 2034
1 2034 Yes . 2034

The mycohort variable can now be specified in the usercohort() option of hdidregress() to

properly treat school district 1 as belonging to cohort 2034.

Stored results
hdidregress stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(tmin) first time period

e(tmax) last time period

e(rank) rank of e(V)

Macros

e(cmd) hdidregress
e(cmdline) command as typed

e(clustvar) name of cluster variable

e(control group) control group

e(het type) heterogeneity type for twfe estimator

e(cohortvar) name of cohort variable

e(usercohort) name of user-specified cohort variable

e(ovar) name of outcome variable

e(wtype) weight type

e(wexp) weight expression

e(marginsnotok) predictions disallowed by margins
e(timevar) time variable

e(treatname) name of treatment variable

e(basetime) type of pretreatment base time

e(estat cmd) program used to implement estat
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
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e(method) estimator method

e(properties) b V

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(cohort count) matrix with cohort count information

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
The RA, IPW, and AIPW estimators
The TWFE estimator

Introduction
hdidregress for repeated cross-sectional data implements the RA, IPW, andAIPW estimators, outlined

in Callaway and Sant’Anna (2021), and the TWFE estimator, outlined in Wooldridge (2021).

To reveal how the heterogeneous treatment effects evolve across cohorts and time, we are interested

in estimating theATET for each combination of cohort and time. Cohorts are defined by the time a group

is treated, where time is denoted by 𝑡, where 𝑡 = 1, . . . , 𝑇. We denote a cohort by 𝑔 and the individuals

in our sample by 𝑖, where 𝑖 = 1, . . . , 𝑁. Let 𝐺𝑖𝑔 be an indicator that equals one if unit 𝑖 is first treated
at time 𝑔. Then the units in cohort 𝑔 can be denoted by 𝐺𝑖𝑔 = 1. When a unit 𝑖 is never treated, we
denote 𝐺𝑖0 = 1. Thus, cohort 0 indicates all the units that are never treated. We assume that once a unit

is treated, it will remain treated. We also define 𝑑𝑖𝑡 as an indicator for treatment of unit 𝑖 at time 𝑡.
Let 𝜃(𝑔, 𝑡) be the ATET for cohort 𝑔 at time 𝑡, which is defined as

𝜃(𝑔, 𝑡) = E{𝑦𝑡(𝑔) − 𝑦𝑡(0)|𝐺𝑔 = 1} (ATET)

where 𝑦𝑡(𝑔) is the potential outcome at time 𝑡 for those first treated at time 𝑔, 𝑦𝑡(0) is the potential

outcome for those that are never treated, and 𝐺𝑔 equals 1 if a unit belongs to cohort 𝑔. All the four

estimators provided in hdidregress estimate 𝜃(𝑔, 𝑡) in equation (ATET). We cannot directly estimate

𝜃(𝑔, 𝑡) using equation (ATET) because the potential outcomes 𝑦𝑡(𝑔) and 𝑦𝑡(0) are not observable.
Next, we will describe the RA, IPW, and AIPW estimators.
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The RA, IPW, and AIPW estimators
To estimate theATET for cohort 𝑔 at time 𝑡, the RA, IPW, andAIPW estimators transform the estimation

into a classical two groups and two periods difference-in-differences setup. Thus, we need to restrict

the data to an estimation sample with only two groups and only two periods based on the values of 𝑔
and 𝑡. For the two groups, one group comprises all observations in cohort 𝑔; the other group comprises

untreated observations not in cohort 𝑔, also known as a control group. For the two periods, one period is
the data in time 𝑡; the other period is a period when cohort 𝑔 is not treated, also known as base time.

There are two ways to define the control group. One way is to use the units that are never treated as

the control group. Let 𝐶NEV be an indicator that equals one if a unit belongs to the never-treated group.

In particular, 𝐶NEV = 𝐺0. Another way is to use the units not in cohort 𝑔 and not yet treated at time 𝑡 as
the control group. Let 𝐶NY

𝑔,𝑡 be an indicator that equals one if a unit belongs to the not-yet-treated group

by time 𝑡. In particular, 𝐶NY
𝑔,𝑡 = (1 − 𝐺𝑔)(1 − 𝑑𝑡). To simplify, we indicate control, in both cases, as

𝐶∗
𝑔,𝑡.

The definitions of the RA, IPW, andAIPW estimators depend on the definition of 𝐶∗
𝑔,𝑡, which can either

be 𝐶NEV or 𝐶NY
𝑔,𝑡 . However, regardless of the control group’s choice, the estimators’ definitions can

always be written using the general notation 𝐶∗
𝑔,𝑡.

There are also two ways to define the base time. One way is to adaptively choose the base time for

the pretreatment periods. When the adaptive method is used to compute the ATET for cohort 𝑔 at time 𝑡,
for the pretreatment periods, the base time is 𝑡 − 1; for the posttreatment periods, the base time is 𝑔 − 1.

Another way is to use a common base time 𝑔 − 1 for both pretreatment and posttreatment periods. The

common base time is useful for identifying a violation of the parallel trends assumption in event studies

as discussed in Roth (2024). To simplify the notation, we indicate the base time in both cases as 𝑡0.

For each unit 𝑖 in the pooled sample, we observe {𝜏𝑖, 𝑦𝑖,𝜏𝑖
, x𝑖,𝜏𝑖

, 𝑑𝑖,𝜏𝑖
, z𝑖,𝜏𝑖

}, where 𝑦𝑖 is the outcome,

x𝑖 are pretreatment covariates for the outcome model, 𝑑𝑖 is a treatment indicator, z𝑖 are covariates for the

treatment assignment model, and 𝜏𝑖 ∈ {1, . . . , 𝑇 } is a categorical variable indicating the time when unit

𝑖 is observed. Let 𝑇𝑡 equal one if the unit is observed at time 𝑡 and zero otherwise.
The estimands also require the following notation,

𝑚treat
𝑔,𝑠 (x) = E(𝑦|x, 𝐺𝑔 = 1, 𝜏 = 𝑠)

𝑚comp
𝑔,𝑠,𝑡(x) = E(𝑦|x, 𝐶∗

𝑔,𝑡 = 1, 𝜏 = 𝑠)

𝑤treat
𝑔,𝑠 =

𝑇𝑠𝐺𝑔

E(𝑇𝑠𝐺𝑔)

𝑤comp
𝑔,𝑠,𝑡(z) =

𝑇𝑠𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z)

E{ 𝑇𝑠𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z) }

where 𝑝𝑔,𝑡(z) is defined by

𝑝𝑔,𝑡(z) = Pr(𝐺𝑔 = 1|z, 𝐺𝑔 + 𝐶∗
𝑔,𝑡 = 1) (Pz)

and the superscript refers to the group we are conditioning on, either the treated group (treat) or the

control or comparison group (comp).
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The RA estimand is

𝜃RA(𝑔, 𝑡) = E(
𝐺𝑔

E(𝐺𝑔)
[{𝑚treat

𝑔,𝑡 (x) − 𝑚treat
𝑔,𝑔−1(x)} − {𝑚comp

𝑔,𝑡,𝑡 (x) − 𝑚comp
𝑔,𝑔−1,𝑡(x)}]) (RA)

The IPW estimand is

𝜃IPW(𝑔, 𝑡) = E{(𝑤treat
𝑔,𝑡 − 𝑤treat

𝑔,𝑔−1) 𝑦} − E [{𝑤comp
𝑔,𝑡,𝑡 (z) − 𝑤comp

𝑔,𝑔−1,𝑡(z)}𝑦] (IPW)

The AIPW estimand is

𝜃AIPW(𝑔, 𝑡) = E(
𝐺𝑔

E(𝐺𝑔)
[{𝑚treat

𝑔,𝑡 (x) − 𝑚treat
𝑔,𝑔−1(x)} − {𝑚comp

𝑔,𝑡,𝑡 (x) − 𝑚comp
𝑔,𝑔−1,𝑡(x)}])

+ E [𝑤treat
𝑔,𝑡 {𝑦 − 𝑚treat

𝑔,𝑡 (x)} − 𝑤treat
𝑔,𝑔−1{𝑦 − 𝑚treat

𝑔,𝑔−1(x)}]

− E [𝑤comp
𝑔,𝑡,𝑡 (z){𝑦 − 𝑚comp

𝑔,𝑡,𝑡 (x)} − 𝑤comp
𝑔,𝑔−1,𝑡(z){𝑦 − 𝑚comp

𝑔,𝑔−1,𝑡(x)}]

(AIPW)

Under some regularity conditions, Callaway and Sant’Anna (2021) showed that the estimand for RA,

IPW, and AIPW is the same as 𝜃(𝑔, 𝑡) in equation (ATET). In other words,

𝜃(𝑔, 𝑡) = 𝜃RA(𝑔, 𝑡) = 𝜃IPW(𝑔, 𝑡) = 𝜃AIPW(𝑔, 𝑡)

Furthermore, the estimands in equations (AIPW) are estimable because they are all based on observed

variables. The identification of the estimators sheds light on how to estimate 𝜃(𝑔, 𝑡). The estimator can

be generally divided into three steps:

1. Restrict the sample to time 𝑡 and 𝑡0, and keep only the units in cohort 𝑔 or in control group 𝐶∗
𝑔,𝑡.

When option basetime(adaptive) is specified, 𝑡0 = 𝑔 −1 if 𝑡 ≥ 𝑔 or 𝑡0 = 𝑡−1 if 𝑡 < 𝑔. When

option basetime(common) is specified, 𝑡0 = 𝑔 − 1.

2. Use a parametric model to estimate the nuisance functions.

a. For outcomes: linear regression to estimate 𝑚treat
𝑔,𝑡 (x), 𝑚treat

𝑔,𝑡0
(x), 𝑚comp

𝑔,𝑠,𝑡(x), and 𝑚comp
𝑔,𝑠,𝑡0

(x).

b. For propensity: logit regression to estimate 𝑝𝑔,𝑡(z).

c. For probability weights: 𝑤treat
𝑔,𝑡 , 𝑤treat

𝑔,𝑡0
, 𝑤comp

𝑔,𝑠,𝑡(z), and 𝑤comp
𝑔,𝑠,𝑡0

(z) to estimate using propensity

scores 𝑇𝑡 and 𝐺𝑔.

3. Plug in the nuisance function estimates into the estimating equation in equations (IPW), (AIPW), or

(RA). Notice that the expectation operator E(⋅) is replaced by the sample average.

The variance–covariance matrix for the estimates is computed using the influence-function approach

proposed in Callaway and Sant’Anna (2021). The influence function approach is numerically equivalent

to the generalized method of moments approach. However, it is much faster because it avoids computing

the covariance matrix for the parameters in the nuisance functions. For more discussions on influence

functions, see Hampel et al. (1986), Newey and McFadden (1994), and Jann (2020).
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The TWFE estimator
A TWFE estimator for repeated cross-sections fits

𝑦𝑖 = 𝛼ℎ + 𝛾𝑡 + x𝑖β + 𝑑𝑖𝜏 + 𝜖𝑖

Above, ℎ denotes the group level at which treatment occurs. Wooldridge (2021) extends this model to

incorporate interactions between the observation-level treatment, 𝑑𝑖, cohort, 𝐺𝑖𝑔, posttreatment periods,

and covariates. We define indicators for the posttreatment period as 𝑓𝑠 with 𝑠 going from 𝑞 to 𝑇, where
𝑞 is the first time period we observe treatment. For instance, 𝑓𝑞 equals 1 if we are in time-period 𝑞 and 0
otherwise. To simplify this notation, we show the model without covariates. The extended fixed-effects

model is given by

𝑦𝑖 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝜃𝑔 +
𝑇

∑
𝑠=2

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑔=𝑞

𝑇
∑
𝑠=𝑔

𝑑𝑖𝐺𝑖𝑔𝑓𝑠𝜏𝑔𝑠 + 𝜖𝑖 (TWFE)

We can fit equation (TWFE) using pooled ordinary least squares or a within estimator. We are going to

use the estimator proposed by Mundlak (1978). This gives the same point estimates as using the within

estimator with ℎ as the panel level for the parameters in equation (TWFE) but has different degrees of

freedom because of the additional terms added by the Mundlak approach. Unlike within estimation,

the Mundlak approach works for both repeated cross-sectional data as well as for panel data. Also, it

has good properties to obtain partial effect under various data-generating processes, as pointed out in

Wooldridge (2019).

Above, the 𝜏𝑔𝑠 are the cohort-time treatment effects. When we have covariates, we interact them with

all the relevant variables in the model. To get the treatment effects in this case, we need to control for

the variation in the covariates. We can obtain both effects using margins by typing
. margins, dydx(d) at(year=q ... year=T) over(cohort) vce(unconditional)

where d is the treatment indicator, year indicates treatment times at which treatment will be evaluated

using at(), and cohort is the treatment-time cohorts. We use vce(unconditional) to account for the
variation in the covariates.

In practice, hdidregress computes the treatment effects analytically rather than by use of margins.
Specifically, a modified Mundlak regression model is fit. The modified regression interacts treatment

indicators with covariates demeaned by cohort-specific means instead of the covariates themselves.

Treatment-effect parameters can be estimated as coefficients of this regression rather than as linear com-

binations of regression coefficients, even when covariates are present.

The modified Mundlak regression is treated as being fit following a set of first-stage regres-

sions of each covariate on cohort indicators. GMM-style standard errors account for variation in

these first-stage regressions and are equivalent to the standard errors produced by margins with the

vce(unconditional) option.

With the hettype() option, we reduce the complexity of (TWFE). In particular, if we ask for

hettype(time), we have

𝑦𝑖 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝜃𝑔 +
𝑇

∑
𝑠=2

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑠=𝑞

𝑑𝑖𝑓𝑠𝜏𝑠 + 𝜖𝑖
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Now treatment varies over time but not over cohort, that is, 𝜏𝑠. If we use the hettype(cohort) option,
we have

𝑦𝑖 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝜃𝑔 +
𝑇

∑
𝑠=2

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑔=𝑞

𝑑𝑖𝐺𝑖𝑔𝜏𝑔 + 𝜖𝑖𝑡

Now treatment varies over cohort but not over time, that is, 𝜏𝑔.

When the controlgroup(notyet) option is specified, the 𝐺𝑖𝑔 indicator excludes the last treated

cohort. As discussed in Wooldridge (2021), when every group is eventually treated, we cannot identify

the treatment effect for this cohort. It is therefore sensible to use the last treated cohort as a control group.

When some of the units in our sample are never treated, we can always identify all cohorts, and the twfe
estimator will always revert to using controlgroup(never).
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Postestimation commands estat Remarks and examples Stored results
Methods and formulas Reference Also see

Postestimation commands
The following postestimation commands are of special interest after hdidregress and

xthdidregress:

Command Description

estat ptrends parallel-trends test

estat atetplot plot the coefficients of ATET for each cohort
† estat aggregation aggregate the ATETs to characterize the heterogeneity of treatment effects
∗ estat sci multiplier bootstrap for simultaneous confidence intervals

†estat aggregation is not allowed after estimation with bootstrap or jackknife standard errors.
∗estat sci may not be used after estimation using TWFE.

The following postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

264
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estat

Description for estat
estat ptrends tests that all pretreatment periods are equal to zero.

estat atetplot plots the coefficients of ATET for each cohort across different periods.

estat aggregation aggregates the cohort-period ATETs to characterize the heterogeneity of treatment

effects. Aggregation may be within cohorts, time periods, time exposed to treatment, or within cohort

and time periods. You may display the output of estat aggregation simultaneously as a table and

a graph. The default is the tabular output.

estat sci provides the simultaneous confidence intervals for ATETs using the multiplier bootstrap

method proposed in Callaway and Sant’Anna (2021). It may not be used after estimation using the

TWFE estimator.

Menu for estat
Statistics > Postestimation

Syntax for estat
Tests that all pretreatment periods are zero

estat ptrends

Plot coefficients for ATETs

estat atetplot [ cohort list ] [ , atetplot options ]

Aggregate ATETs

estat aggregation [ , aggregation options ]

Simultaneous confidence intervals

estat sci [ , level(#) sci options ]

cohort list is a subset of all the cohorts when estimating the ATETs. By default, the cohort list con-

tains all the cohorts. cohort list is not allowed when the TWFE estimator is combined with option

hettype(time) or hettype(cohort).
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atetplot options Description

level(#) set confidence level
∗ sci[ (sci options) ] use multiplier bootstrap to compute the simultaneous

confidence intervals

Graph options

Main

noci do not plot the confidence intervals
∗ preteopts(scatter opts) affect rendition of the pretreatment scatterplot

postteopts(scatter opts) affect rendition of the posttreatment scatterplot

[ no ]zeroline suppress the 𝑦-axis reference line passing through zero
zerolineopts(refline opts) affect rendition of the 𝑦-axis reference line passing through zero

† [ no ]cohortline suppress the 𝑥-axis reference line passing through the time
when the treatment began for each cohort

† cohortlineopts(refline opts) affect rendition of the 𝑥-axis reference line passing
through the time when the treatment began for each cohort

CI plot

ciopts(area opts) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall
† byopts(byopts) affect rendition of the graph by cohorts

twoway options any options other than by() documented in [G-3] twoway options

∗These options are not allowed for the TWFE estimators.
†These options are not allowed when the TWFE estimator is combined with option hettype(time) or hettype(cohort).

aggregation options Description

overall aggregate ATETs within cohorts and time periods; the default

dynamic[ (event list) ] aggregate ATETs within exposures to the treatment

time[ (time list) ] aggregate ATETs within time periods

cohort[ (cohort list) ] aggregate ATETs within cohorts

[ no ]graph whether to suppress or display the aggregation plot;
nograph is the default

graph[ (graph opts) ] affect rendition of the aggregation plot

level(#) set confidence level
∗ sci[ (sci options) ] use multiplier bootstrap to compute the simultaneous

confidence intervals

Only one of overall, dynamic(), cohort(), or time() is allowed.
∗This option is not allowed after the TWFE estimator.

sci options Description

rseed(#) set random-number seed to #

reps(#) perform # multiplier bootstrap replications; default is reps(999)

scatter opts Description

connect options change the look of lines or connecting method

marker options change the look of markers (color, size, etc.)
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refline opts Description

style(addedlinestyle) overall style of added line

[ no ]extend extend line through plot region’s margins

lstyle(linestyle) overall style of line

lpattern(linepatternstyle) line pattern (solid, dashed, etc.)

lwidth(linewidthstyle) thickness of line

lcolor(colorstyle) color and opacity of line

graph opts Description

Main

noci do not plot the confidence intervals

Marker options

marker options change the look of markers (color, size, etc.)

Line options

connect options change the look of lines or connecting method

CI plot

ciopts(area options) affect rendition of the confidence interval

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

Options for estat
Options for estat are presented under the following headings:

Options for estat atetplot
Options for estat aggregation
Options for estat sci

Options for estat atetplot

level(#) specifies the confidence level, as a percentage, for CIs. The default is level(95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

sci or sci(sci options) plots the simultaneous confidence intervals (SCIs) using themultiplier bootstrap

method proposed in Callaway and Sant’Anna (2021). SCIs simultaneously cover the true values of all

theATETs with a predefined probability level. By default, specifying sci implies using 999 bootstrap

replications to construct the SCIs.

sci(sci options) specifies the number of replications and the seed for the multiplier bootstrap when

computing SCIs. sci options may be rseed(#) or reps(#). For the definition of these options,

see Options for estat sci.

Option sci or sci() is not allowed after the TWFE estimator in hdidregress and xthdidregress.
In addition, it is not allowed after estimation with bootstrap or jackknife standard errors for RA, IPW,

and AIPW estimators.

By default, estat atetplot plots the pointwise CIs.
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� � �
Main �

noci removes plots of the CIs. The default is to plot the CIs.

preteopts(scatter opts) affects the rendition of the scatterplot for pretreatment periods. This option

is not allowed after the TWFE estimator in hdidregress and xthdidregress. scatter opts may be

the following:

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

postteopts(scatter opts) affects the rendition of the scatterplot for posttreatment periods. scat-

ter opts may be the following:

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

nozeroline suppresses the 𝑦-axis reference line passing through zero. After estimation with

hdidregress and the RA, IPW, or AIPW estimator, the default is to plot this reference line. After

estimation with the TWFE estimator, the default is not to plot this reference line.

zerolineopts(refline opts) affects the rendition of the reference line passing through zero. re-

fline opts may be the following:

style(addedlinestyle) specifies the overall style of the added line, which includes [ no ]extend and
lstyle(linestyle) documented below. See [G-4] addedlinestyle. The [ no ]extend and lstyle()
options allow you to change the added line’s attributes individually, but style() is the starting

point.

You need not specify style() just because there is something that you want to change, and in fact,

most people seldom specify the style() option. You specify style() when another style exists
that is exactly what you desire or when another style would allow you to specify fewer changes to

obtain what you want.

extend and noextend specify whether the line should extend through the plot region’s margin and

touch the axis; see [G-3] region options. Usually, noextend is the default, and extend is the op-
tion, but that is determined by the overall style() and, of course, the scheme; see [G-4] Schemes

intro.

lstyle(linestyle), lpattern(linepatternstyle), lwidth(linewidthstyle),
lalign(linealignmentstyle), and lcolor(colorstyle) specify the look of the line; see [G-2] graph
twoway line.

nocohortline suppresses the 𝑥-axis reference line passing through the time when the treatment began

for each cohort. The default is to plot this reference line. This option is not allowed after the TWFE

estimator.
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cohortlineopts(refline opts) affects the rendition of the reference line passing through the time when

the treatment began for each cohort. This option is not allowed after the TWFE estimator. refline opts

may be the following:

style(addedlinestyle) specifies the overall style of the added line, which includes [ no ]extend and
lstyle(linestyle) documented below. See [G-4] addedlinestyle. The [ no ]extend and lstyle()
options allow you to change the added line’s attributes individually, but style() is the starting

point.

You need not specify style() just because there is something that you want to change, and in fact,

most people seldom specify the style() option. You specify style() when another style exists
that is exactly what you desire or when another style would allow you to specify fewer changes to

obtain what you want.

extend and noextend specify whether the line should extend through the plot region’s margin and

touch the axis; see [G-3] region options. Usually, noextend is the default, and extend is the op-
tion, but that is determined by the overall style() and, of course, the scheme; see [G-4] Schemes

intro.

lstyle(linestyle), lpattern(linepatternstyle), lwidth(linewidthstyle),
lalign(linealignmentstyle), and lcolor(colorstyle) specify the look of the line; see [G-2] graph
twoway line.

� � �
CI plot �

ciopts(area options) affects the rendition of the CIs; see [G-3] area options.

� � �
Y axis, X axis, Titles, Legend, Overall �

byopts(byopts) affects the rendition of the graph combined by cohorts. For byopts, see [G-3] by option.

This option is not allowed after the TWFE estimator.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Options for estat aggregation

overall aggregates ATETs within all the cohorts and time periods; it is the default.

dynamic or dynamic(event list) aggregates ATETs within exposure to the treatment. For example,

two periods of exposure to the treatment means two periods after the treatment started. Specifying

dynamic implies aggregating ATETs within all the estimable exposures to the treatment.

dynamic(event list) aggregates ATETs within the exposure to the treatment specified by event list.

event list is a numlist specifying length of exposures to the treatment.

time or time(time list) aggregates ATETs within time periods. Specifying time implies aggregating

ATETs within all the estimable time periods.

time(time list) aggregates ATETs within the time specified by time list. time list is a numlist spec-

ifying time periods.
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cohort or cohort(cohort list) aggregates ATETs within cohort. Specifying cohort implies aggregat-

ing ATETs within all the estimable cohorts.

cohort(cohort list) aggregates ATETs within the cohorts specified by cohort list. cohort list is a

numlist specifying cohorts.

nograph and graph specifies whether to suppress or display the plot of aggregation of ATETs. nograph
is the default.

graph(graph opts) affects the rendition of the aggregation plot. graph opts may be the following:

noci removes plots of the CIs. The default is to plot the CIs.

connect options specify how points on a graph are to be connected; [G-3] connect options.

marker options affect the rendition of markers drawn at the plotted points, including their shape, size,

color, and outline; see [G-3] marker options.

ciopts(area options) affects the rendition of the CIs; see [G-3] area options.

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

level(#) specifies the confidence level, as a percentage, for CIs. The default is level(95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

sci or sci(sci options) plots the simultaneous confidence intervals (SCIs) using themultiplier bootstrap

method proposed in Callaway and Sant’Anna (2021). SCIs simultaneously cover the true values of

aggregations of ATETs with a predefined probability level. By default, specifying sci implies using

999 bootstrap replications to construct the SCIs.

sci(sci options) specifies the number of replications and the seed for the multiplier bootstrap when

computing SCIs. sci options may be rseed(#) or reps(#). For the definition of these options,

see Options for estat sci.

Option sci or sci() is not allowed after the TWFE estimator in hdidregress and xthdidregress.

By default, estat aggregation plots the pointwise CIs if option graph() is specified.

Options for estat sci

level(#) specifies the confidence level, as a percentage, for CIs. The default is level(95) or as set by
set level; see [U] 20.8 Specifying the width of confidence intervals.

rseed(#) sets the random-number seed. Specifying this option makes the results reproducible because

the critical values are drawn from a bootstrap sample.

reps(#) specifies the number of bootstrap replications to get the critical values of the test. The default

is reps(999).

Remarks and examples
For examples of the estat commands above, see [CAUSAL] hdidregress and [CAUSAL] xth-

didregress. Both entries have examples that illustrate how the estimation and postestimation commands

work together.
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Stored results
estat ptrends stores the following in r():

Scalars

r(F) 𝐹 statistic

r(chi2) 𝜒2

r(df) test constraints degrees of freedom

r(p) two-sided 𝑝-value
r(df r) residual degrees of freedom

r(drop) 1 if constraints were dropped, 0 otherwise

estat aggregation stores the following in r():

Scalars

r(reps) number of replications

Macros

r(agg type) aggregation type

Matrices

r(b) coefficient vector

r(V) variance–covariance matrix of the estimators

r(table) matrix containing test statistics and critical values

estat atetplot stores the following in r():

Macros

r(table) matrix containing test statistics and critical values

estat sci stores the following in r():

Scalars

r(reps) number of replications

Matrices

r(table) matrix containing coefficients, bootstrap standard errors, and SCIs

Methods and formulas
Methods and formulas are presented under the following headings:

Test for all pretreatment period ATETs being zero
Aggregations for the RA, IPW, and AIPW estimators
Aggregations for the TWFE estimator
SCIs

Test for all pretreatment period ATETs being zero
estat ptrends tests that all pretreatment period ATETs are zero. This should be satisfied if both

parallel trends and no anticipation of treatment hold for the pretreatment period.

For the RA, IPW, and AIPW estimators, estat ptrends is equivalent to a Wald test of all the pre-

treatment ATET estimates equaling zero. For methods and formulas on the Wald test, see Methods and

formulas in [R] test.
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Below, we will use the notation from Methods and formulas in [CAUSAL] xthdidregress. For the

TWFE estimator, we fit the augmented model:

𝑦𝑖𝑡 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝛼𝑔 +
𝑇

∑
𝑠=𝑞

𝑓𝑠𝛾𝑠 +
𝑞−1

∑
𝑔=2

𝑞−1

∑
𝑠=𝑔

𝑑𝑖𝑡𝐺𝑖𝑔𝑓𝑠𝜔𝑔𝑠 +
𝑇

∑
𝑔=𝑞

𝑇
∑
𝑠=𝑔

𝑑𝑖𝑡𝐺𝑖𝑔𝑓𝑠𝛿𝑔𝑠 + 𝜖𝑖𝑡

We then jointly test if the 𝜔𝑔𝑠 terms are zero by using test.

Aggregations for the RA, IPW, and AIPW estimators
Denote 𝜃(𝑔, 𝑡) asATET(𝑔, 𝑡). These are the parameters computed during estimation. Instead of looking

at all of these parameters, we can aggregate them to explore heterogeneity in different dimensions. We

denote 𝜃 as aggregations of ATETs. Regardless of whether we use cohort, time, or dynamic aggregation,

we can always write 𝜃 as a weighted sum of 𝜃(𝑔, 𝑡) as follows

𝜃 = ∑
𝑔∈G

𝑇
∑
𝑡=2

𝑤(𝑔, 𝑡)𝜃(𝑔, 𝑡)

where G is the set of all the possible cohort values and 𝑤(𝑔, 𝑡) is the cohort-time weights. The type of

questions of interest determines the definitions of 𝑤(𝑔, 𝑡).
One popular question in DID with multiple time periods set up is to study the dynamics of treatment

effects: how do the average treatment effects vary with the length of exposure to the treatment? In

literature, it is also known as the event study. Let 𝑒 = 𝑡 − 𝑔 be the length of exposure to the treatment.

We can summarize ATETs as

𝜃𝑑(𝑒) = ∑
𝑔∈G

I{𝑔 + 𝑒 ≤ 𝑇 }𝑃{𝐺 = 𝑔|𝐺 + 𝑒 ≤ 𝑇 }𝜃(𝑔, 𝑔 + 𝑒)

where I(⋅) is an indicator function and 𝐺 is a random categorical variable for a cohort. 𝜃𝑑(𝑒) is computed

when the dynamic option is specified.

To account for the heterogeneous treatment effects across cohorts, we consider the following aggre-

gation:

𝜃𝑐(𝑔) =
𝑇

∑
𝑡=𝑔

𝜃(𝑔, 𝑡)𝑃 (𝐺 = 𝑔|𝐺 = 𝑔, 𝑡 ≥ 𝑔)

𝜃𝑐(𝑔) is computed when the cohort option is specified.

Time effects characterize treatment-effects heterogeneity across time. The average effect of partici-

pating in the treatment in a period 𝑡 (among cohorts that are treated by time 𝑡) is

𝜃𝑡(𝑡) = ∑
𝑔∈G

I(𝑡 ≥ 𝑔)𝑃(𝐺 = 𝑔|𝐺 ≤ 𝑡)𝜃(𝑔, 𝑡)

𝜃𝑡(𝑡) is computed when the time option is specified.
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The overall aggregation is the average of all the identified posttreatment ATETs. It is defined as

𝜃𝑜 = 1
𝜅

∑
𝑔∈G

𝑇
∑
𝑡=2

I(𝑡 ≥ 𝑔)𝑃(𝐺 = 𝑔|𝐺 ≤ 𝑇 )𝜃(𝑔, 𝑡)

where 𝜅 = ∑𝑔∈G ∑𝑇
𝑡=2 I(𝑡 ≥ 𝑔)𝑃(𝐺 = 𝑔|𝐺 ≤ 𝑇 ). 𝜃𝑜 is computed when the overall option is

specified.

The variance–covariance matrix for the estimates of 𝜃 is computed using the influence function ap-

proach outlined in section 4.2 in Callaway and Sant’Anna (2021).

When the sci option is specified, the SCIs are computed using the multiplier bootstrap proposed in

section 4.2 in Callaway and Sant’Anna (2021).

Aggregations for the TWFE estimator
Aggregation after TWFE uses margins after the Mundlak estimation of the model. Let treat de-

note the observation-level treatment, cohort denote the variable that contains treat-time cohorts, and

exposure denote a variable that indicates the time exposed to treatment.

For estat aggregation, overall:
. margins r.treat, subpop(if treat==1) vce(unconditional)

For estat aggregation, cohort:

. margins, subpop(if treat==1) dydx(treat) over(cohort) vce(unconditional)

For estat aggregation, time:

. margins, subpop(if treat==1) dydx(treat) over(time) vce(unconditional)

For estat aggregation, dynamic:

. margins, subpop(if treat==1) dydx(treat) over(exposure) vce(unconditional)

SCIs
After the RA, IPW, and AIPW estimators, estat sci can provide the SCIs that are guaranteed to cover

all the ATETs with a specified probability. estat sci computes the SCIs using the multiplier bootstrap

approach outlined in section 4.1 in Callaway and Sant’Anna (2021).

Unlike the traditional bootstrap, the multiplier bootstrap resamples the influence functions (which are

already computed in the estimation step). Thus, the multiplier bootstrap is much faster than the traditional

bootstrap because there is no need to recompute the estimators.

The influence function is a linear representation of the estimator. Let ̂𝜃(𝑔, 𝑡) be the RA, IPW, andAIPW

estimators, and denote 𝜃(𝑔, 𝑡) the trueATET for cohort 𝑔 at time 𝑡. Then the linear representation of these
estimators can be written as

̂𝜃(𝑔, 𝑡) − 𝜃(𝑔, 𝑡) = 1
𝑛

𝑛
∑
𝑖=1

𝜓𝑔,𝑡(w𝑖) + 𝑜𝑝(1)

where 𝜓𝑔,𝑡() is the influence function, 𝑛 is the sample size of the estimation sample for ̂𝜃(𝑔, 𝑡),w𝑖 are the

data, and 𝑜𝑝(1) is a term that vanishes to zero in probability as 𝑛 grows. For a more detailed discussion

on influence functions, see section 4.1 in Callaway and Sant’Anna (2021).



hdidregress postestimation — Postestimation tools for hdidregress and xthdidregress 274

Denote θ̂ as estimates of all the ATETs, and let Ψ̂ be estimates of the influence functions for θ̂. Let θ̂
𝑏

be the 𝑏th bootstrap draw, which is defined as

θ̂
𝑏

= θ̂ + 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖 ⋅ Ψ̂𝑖

where {𝑉𝑖} is a Bernoulli drawwith𝑃(𝑉 = 1−𝜂) = 𝜂/
√
5,𝑃(𝑉 = 𝜂) = 1−𝜂/

√
5 and 𝜂 = (

√
5+1)/2.

Then the SCIs can be computed in the following steps:

1. Draw 𝐵 samples of {𝑉𝑖}𝑖=1,...,𝑛, and compute θ̂
𝑏
using each sample.

2. Compute the bootstrap diagonal of Σ1/2 as

Σ̂1/2
𝑔,𝑡 = 𝑞0.75(𝑔, 𝑡) − 𝑞0.25(𝑔, 𝑡)

𝑧0.75 − 𝑧0.25

where 𝑞𝑝(𝑔, 𝑡) is the 𝑝th sample quantile of 𝑅̂𝑏
𝑔,𝑡 =

√
𝑛 { ̂𝜃𝑏(𝑔, 𝑡) − ̂𝜃(𝑔, 𝑡)} in 𝐵 draws and 𝑧𝑝

is the 𝑝th sample quantile of standard normal distribution.

3. For each bootstrap draw, compute the 𝑡 test𝑏 as

𝑡 test𝑏 = max(𝑔,𝑡)|𝑅̂𝑏
𝑔,𝑡|Σ̂

−1/2
𝑔,𝑡

4. Compute the critical values ̂𝑐1−𝛼/2 as the 1 − 𝛼/2 quantile of the 𝐵 draws of 𝑡 test𝑏.

5. Construct the simultaneous bootstrap confidence intervals for ̂𝜃(𝑔, 𝑡) as

𝐶(𝑔, 𝑡) = { ̂𝜃(𝑔, 𝑡) − ̂𝑐1−𝛼/2Σ̂1/2
𝑔,𝑡 /

√
𝑛, ̂𝜃(𝑔, 𝑡) + ̂𝑐1−𝛼/2Σ̂1/2

𝑔,𝑡 /
√

𝑛}
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
mediate fits causal mediation models and estimates effects of a treatment on an outcome. The treat-

ment effect can occur both directly and indirectly through another variable, a mediator. The outcome

and mediator variables may be continuous, binary, or count. The treatment may be binary, multivalued,

or continuous. The estimated direct, indirect, and total effects have a causal interpretation provided that

assumptions pertaining to causal mediation models are met.

Quick start
Fit the mediation model with continuous outcome y1, continuous mediator m1, and categorical treatment

t1, and estimate the total effect, natural direct effect, and natural indirect effect

mediate (y1) (m1) (t1)

Same as above, but with covariates in both the outcome and the mediator equations

mediate (y1 x1 x2) (m1 x1 x3) (t1)

Same as above, but with probit model for binary outcome y2 and Poisson model for count mediator m2
mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t1)

Same as above, but estimate only the natural indirect effect (NIE)

mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t1), nie

Same as above, but also estimate potential-outcome means

mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t1), nie pomeans

Fit the mediation model with continuous treatment t2, and evaluate at values 0 and 4 of the treatment

with 0 as the control

mediate (y2 x1 x2, probit) (m2 x1 x3, poisson) (t2, continuous(0 4))

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Causal mediation

Statistics > Causal inference/treatment effects > Binary outcomes > Causal mediation

Statistics > Causal inference/treatment effects > Count outcomes > Causal mediation

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Causal mediation

275
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Syntax
mediate (ovar [ omvarlist, omodel noconstant ])

(mvar [mmvarlist, mmodel noconstant ])
(tvar [ , continuous(numlist) ]) [ if ] [ in ] [weight ] [ , stat options ]

ovar is a continuous, binary, or count outcome of interest.

omvarlist specifies the covariates in the outcome model.

mvar is the mediator variable and may be continuous, binary, or count.

mmvarlist specifies the covariates in the mediator model.

tvar is the treatment variable and may be binary, multivalued, or continuous.

omodel Description

Model

linear linear model; the default

expmean exponential-mean model

logit logistic regression model

probit probit regression model

poisson Poisson model

omodel specifies the model for the outcome variable.

mmodel Description

Model

linear linear model; the default

expmean exponential-mean model

logit logistic regression model

probit probit regression model

poisson Poisson model

mmodel specifies the model for the mediator variable.

The logit outcome model may not be combined with the linear or expmean mediator model; probit rather than logit
may be used in these cases.
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stat Description

Stat

Pearl’s labeling of effects

nie natural indirect effect

nde natural direct effect

te total effect

pnie pure natural indirect effect

tnde total natural direct effect

ATE labeling of effects

aite average indirect treatment effect; synonym for nie
adte average direct treatment effect; synonym for nde
ate total average treatment effect; synonym for te
aitec average indirect treatment effect with respect to controls; synonym for pnie
adtet average direct treatment effect with respect to the treated; synonym for tnde

pomeans potential-outcome means

all all effects and potential-outcome means

Multiple effects may be specified; default is nie nde te.

options Description

Model

nointeraction exclude interaction of mediator and treatment

control(# | label) specify the level of tvar that is the control; default is first treatment level

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife
nose do not estimate standard errors

Reporting

level(#) set confidence level; default is level(95)
ateterms use ATE terminology to label effects

aequations display auxiliary-equation results

nolegend suppress table legend

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

optimization options control the optimization process; seldom used

Advanced

force force estimation when the number of treatment groups exceeds 10

coeflegend display legend instead of statistics
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omvarlist and mmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
pweights, fweights, and iweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

continuous(numlist) specifies that the treatment variable is continuous; numlist specifies the values at

which the potential-outcome means are to be evaluated, where the first value in the list is taken as the

control.

nointeraction excludes the interaction between the treatment and the mediator; by default, the model

includes the treatment–mediator interaction.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with continuous treatments.

� � �
Stat �

stat specifies the statistics to be estimated. You may select from among five effects, each of which can

be labeled according to terminology used by Pearl and others or by ATE terminology. In addition to

effects, you may request that potential-outcome means be reported. The default is nie nde te.

stat may be one or more of the following:

stat Definition

nie natural indirect effect

nde natural direct effect

te total effect

pnie pure natural indirect effect

tnde total natural direct effect

aite average indirect treatment effect; synonym for nie
adte average direct treatment effect; synonym for nde
ate average treatment effect; synonym for te
aitec average indirect treatment effect with respect to controls; synonym for pnie
adtet average direct treatment effect with respect to the treated; synonym for tnde
pomeans potential-outcome means

all specifies that all effects and potential-outcome means be estimated; specifying all is equiv-
alent to specifying nie nde te pnie tnde pomeans. When option ateterms is specified, all
is equivalent to specifying aite adte ate aitec adtet pomeans.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

nose suppresses calculation of the variance–covariance matrix and standard errors.

� � �
Reporting �

level(#); see [R] Estimation options.

ateterms specifies thatATE terminology be used to label effects. ateterms is strictly a labeling option.
This option may not be specified on replay.

aequations specifies that the estimation results for the outcome model and the mediator model be

displayed. By default, they are not displayed.

nolegend suppresses the display of the table legend.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

optimization options: conv maxiter(), conv ptol(), conv vtol(), tracelevel(), and
[ no ]log. See [M-5] optimize( ).

conv maxiter(#) specifies the maximum number of iterations. The default is the number set using

set maxiter, which by default is 300.

conv ptol(#) specifies the convergence criteria for the parameters. The default is

conv ptol(1e-6).

conv vtol(#) specifies the convergence criteria for the gradient. The default is
conv vtol(1e-7).

tracelevel(tracelevel) allows you to display additional information about the iterative process in

the iteration log. tracelevel may be none, value, tolerance, step, params, or gradient. See
tracelevel in [M-5] optimize( ) for details.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

� � �
Advanced �

force forces estimation when the number of treatment groups exceeds 10. By default, only 10 groups

are allowed for multivalued treatments. Do not use the force option if the treatment is continuous;

instead, use the continuous() option.

The following option is available with mediate but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Introduction
Approaches to mediation analysis
Workflow for causal mediation
Forming research questions
Potential outcomes and effect decompositions
Evaluating assumptions for causal inference
Estimation of effects

Technical overview of causal mediation
Mediation analysis in the potential-outcomes framework
Total, direct, and indirect effects
Comparison of potential outcomes and classical mediation analysis
Accounting for treatment–mediator interaction
Assumptions for causal identification

Examples
Example 1: A simple causal mediation model
Example 2: Including covariates and relaxing the no-interaction assumption
Example 3: Referring to treatment effects using an alternative naming scheme
Example 4: Causal mediation model with a binary mediator
Example 5: Causal mediation model with a binary outcome
Example 6: Causal mediation model with a binary mediator and binary outcome
Example 7: Causal mediation model with a count mediator
Example 8: Causal mediation model with an exponential-mean outcome
Example 9: Causal mediation model with multivalued treatment
Example 10: Causal mediation model with continuous treatment
Example 11: Estimating controlled direct effects
Example 12: Estimating treatment effects on different scales

Introduction
Causal inference is an essential goal in many research areas and aims at identifying and quantifying

causal effects. For example, wemight wish to find out whether physical exercise leads to an improvement

in self-perceived well-being, and if so, to what extent. Causality in this context typically means that there

is some cause 𝑇 that has an effect on some outcome 𝑌. We could visualize this relation with a simple

causal diagram:

T Y

Figure 1

If 𝑇 is a measure of exercise and 𝑌 is well-being, then under certain assumptions, we could use the

above causal model to identify the total effect of exercise on well-being (by means of a randomized

controlled trial, for instance). However, a question that we cannot answer empirically with our simple

causal model is why exercise may increase well-being. Perhaps exercising causes an increase in certain

chemicals or hormones in the human body, which in turn affects perceptions of well-being. To assess

such intermediary effects, we need to expand our simple causal model by adding variables that lie on the

causal pathway between 𝑇 and 𝑌:

T M Y

Figure 2

Suppose that, in our exercise example, the variable 𝑀 represents the production of a certain chemical

in the human body. With this new model, we now hypothesize that exercising leads to the production

of this chemical, which in turn leads to an increase in well-being. However, it might be unrealistic to
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assume that the effect of exercise on well-being hinges exclusively on the production of that chemical.

Perhaps we would like to allow for the possibility that exercise has an effect on well-being beyond its

path through the mediating variable, and so a better model might be

M

T Y

Figure 3

Here, we include a direct path from 𝑇 to 𝑌 in addition to the indirect path of 𝑇 to 𝑌 via 𝑀. In other

words, we assume that exercise produces a particular chemical that affects well-being, but we also allow

for the possibility of a direct effect of exercise on well-being that is not related to the chemical. This is

the classical mediation model that decomposes the total effect into a direct and an indirect effect. Causal

mediation analysis aims to identify these direct and indirect effects and give them a causal interpretation.

Approaches to mediation analysis

Mediation analysis can be performed in a variety of ways. The classical approach of Baron and

Kenny (1986) fits two linear regression models, one for 𝑀 and one for 𝑌, and estimates direct, indirect,

and total effects as functions of the coefficients. Estimation can be simplified by fitting the models for 𝑀
and 𝑌 simultaneously via structural equation modeling as discussed in [SEM] Example 42g. In Stata, you

can use sem to fit linear models for the outcome and mediator, and you can then use estat teffects
to obtain a decomposition of direct and indirect effects based on the results from sem. Note that this

classical approach relies on the specification of a particular model at the outset of the process.

Another approach to mediation analysis is based on the potential-outcomes framework. The potential

outcomes are values of the outcome that would be obtained under different conditions, such as when the

treatment occurs. Differences in potential outcomes yield direct, indirect, and total effects of interest.

This is the approach typically referred to as causal mediation analysis and is the one implemented in

mediate.

The causal mediation framework allows much flexibility. In this framework, it is common to allow

the mediator and the treatment to interact; thus, we do not assume that the effect of the mediator on

the outcome is the same for the treated and untreated groups. The total effect of the treatment on the

outcome can be decomposed into direct and indirect effects in two ways, and the researcher can select

the decomposition that matches his or her research question. The effects are defined in a model-free

manner, so the researcher can select an estimation method that is appropriate for his or her data and then

compute estimates of the effects of interest.

In the situation where both the outcome and the mediator are modeled using linear regression and

there is no treatment–mediator interaction, the classical approach and causal mediation via the potential-

outcomes framework will lead to the same results.
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Workflow for causal mediation

The general workflow for researchers performing causal mediation analysis is as follows:

1. Specify your research question.

2. Identify the treatment, mediator, and outcome variables to be analyzed.

3. Determine which effect decomposition can be used to answer your research question.

4. Evaluate whether assumptions for causal interpretation are appropriate.

5. Select a method for estimating the causal effects of interest.

6. Interpret the results.

In our introductory discussion, we provided an example of step 2 by using exercise, chemical pro-

duction, and well-being as the treatment, mediator, and outcome variables, respectively. Below, we will

provide a conceptual introduction to steps 1, 3, 4, and 5. In Examples, we will interpret the results in

different scenarios.

Forming research questions

Before performing causal mediation analysis, we must decide which research questions motivated the

desire to perform the analysis. Here are some types of research questions that may arise:

1. A scenario in which the primary interest is to determine whether there is an indirect effect and,

if so, to quantify it. In our example above, we might assume there will be some direct impact of

exercise on well-being, but we also wonder if and to what extent there is an indirect effect, such as

exercise increasing production of a chemical which in turn increases well-being. In this case, we

would be interested in decomposing the effects according to ATE decomposition 1.

2. A scenario in which the primary interest is to determine whether there is a direct effect and, if so,

to quantify it. Continuing with our example, perhaps we expect an indirect effect, but we also wish

to determine if there are any other ways in which exercise causes changes in well-being. In this

case, we would be interested in decomposing the effects according to ATE decomposition 2.

3. A scenario in which the primary interest is to determine how the total effect can be decomposed

into direct and indirect effects, with focus remaining on all effects and not just direct or just indirect

effects. In our example, we simply want to explore the breakdown of the total effect of exercise on

well-being into all possible direct and indirect effects. In this case, we would likely be interested

in looking at both decompositions, ATE decomposition 1 and ATE decomposition 2.

4. A scenario in which we want to determine the effect of the treatment on the outcome when the

mediator is set to a specific value. In our example, we might want to know the effect of exercise

on well-being for individuals whose level of this particular chemical is 10, which is the mean value

in the population. In this case, we would be interested in controlled direct effects.

Potential outcomes and effect decompositions

Below, we introduce statistics that may be of interest when performing causal mediation analysis.

Many of these statistics have a variety of names in the causal mediation literature. See, for instance,

Robins and Greenland (1992), VanderWeele (2015), and Pearl and MacKenzie (2018) for some of the

various terminology.
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1. Potential-outcome means. These estimate the population-average value of the outcome that

would be expected if everyone was given the treatment (denoted here as 𝑌 [1, 𝑀(1)]) or if ev-
eryone was given the control (denoted 𝑌 [0, 𝑀(0)]). In our example, 𝑌 [1, 𝑀(1)] is the expected
average well-being if everyone exercises, and 𝑌 [0, 𝑀(0)] is the expected average well-being if no
one exercises.

In addition, there are two cross-world potential outcomes. These are a bit less intuitive because

they correspond to situations that do not exist for any individual in the population. The first is the

expected value of the outcome when everyone is treated but counterfactually experiences the value

of the mediator associated with being untreated (denoted 𝑌 [1, 𝑀(0)]). The second is the expected
value of the outcome when everyone is untreated but counterfactually experiences the value of the

mediator associated with being treated (denoted 𝑌 [0, 𝑀(1)]). In our example, 𝑌 [1, 𝑀(0)] is the
expected well-being if everyone was treated but experiencing the chemical level as if untreated.

𝑌 [0, 𝑀(1)] is the expected value if everyone was untreated but experiencing the chemical level as

if treated.

The mediate command reports these potential-outcome means when the pomeans option is spec-
ified.

2. Total effect (TE).This estimates the average difference in outcomes that we expect when everyone

receives the treatment versus when no one receives the treatment. In our case, it estimates the

improvement in well-being that we would expect if everyone exercises versus if no one exercises.

The total effect is also referred to as the average treatment effect (ATE), the total average treatment

effect, or the marginal total effect.

The mediate command reports this statistic when the te option or its synonym ate is specified.

The total effect can be decomposed into direct and indirect effects in two ways when we allow for

a treatment–mediator interaction.

Decomposition 1. This decomposition separates the direct effect under the untreated mediator con-

dition from the total indirect effect. Nguyen, Schmid, and Stuart (2021) recommend using this de-

composition when a direct effect is assumed and the researcher is questioning whether a mediation

effect also exists. In our example, we would be interested in this decomposition if we expect that

exercise has a direct effect on well-being but want to determine whether a portion of the total effect

can be attributed to the increase in the chemical (and if so, how much of the total effect is due to this

mediation effect).

3. Natural direct effect (NDE). This estimates the average direct effect of the treatment on the out-

come when the mediator is held at its value associated with being untreated. It is the difference

𝑌 [1, 𝑀(0)] − 𝑌 [0, 𝑀(0)].
This effect is sometimes referred to as the pure natural direct effect or the average direct treatment

effect (ADTE). All remaining effects of the treatment on the outcome are included in the natural

indirect effect.

The mediate command reports this statistic when the nde option or its synonym adte is specified.

4. Natural indirect effect (NIE). This estimates the average indirect effect through a mediator. It is

the difference 𝑌 [1, 𝑀(1)] − 𝑌 [1, 𝑀(0)].
This effect is sometimes referred to as the total natural indirect effect, causal mediation effect, or

average indirect treatment effect (AITE).

The mediate command reports this statistic when the nie option or its synonym aite is specified.
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Decomposition 2. This decomposition separates the indirect effect under the untreated condition

from the total direct effect. Nguyen, Schmid, and Stuart (2021) recommend using this decomposition

when an indirect effect is assumed and the researcher is questioning whether a direct effect also exists.

In our example, we would be interested in this decomposition if we believe that exercise increases

production of the chemical which in turn increases well-being but want to determine if there is also

some change in well-being that is not caused by this mediation effect (and if so, how much of the total

effect is not due to the mediation effect).

5. Pure natural indirect effect (PNIE).This estimates the average indirect effect of a mediator under

the untreated/control condition. It is the difference 𝑌 [0, 𝑀(1)] − 𝑌 [0, 𝑀(0)].
This is sometimes referred to as the average indirect treatment effect with respect to controls

(AITEC). All remaining effects of the treatment on the outcome are included in the total natural

direct effect.

The mediate command reports this statistic when the pnie option or its synonym aitec is spec-
ified.

6. Total natural direct effect (TNDE). This estimates the average direct treatment effect when the

mediator is held at its value associated with being treated. It is the difference 𝑌 [1, 𝑀(1)] −
𝑌 [0, 𝑀(1)].
This effect is sometimes referred to as the average direct treatment effect with respect to the treated

(ADTET).

The mediate command reports this statistic when the tnde option or its synonym adtet is spec-
ified.

When no prior assumptions are made about the existence of direct and indirect effects, Nguyen,

Schmid, and Stuart (2021) recommend reporting both Decomposition 1 and Decomposition 2.

7. Controlled direct effects. These are the direct effects when the mediator is controlled by setting it

to a specific value. After fitting your model with mediate, you can estimate the average controlled

direct effect with the mediator set to your selected value by using estat cde; see Example 11:

Estimating controlled direct effects. In our well-being example, controlled direct effects provide

the direct effect of exercise on well-being when the chemical is assumed to be a specific value.

Evaluating assumptions for causal inference

Before proceeding to estimation and interpretation of the effects of interest, we need to verify that it

is reasonable to give them a causal interpretation in our particular research context.

General assumptions for causal inference are discussed in [CAUSAL] Intro, and more precise defini-

tions in the context of mediation are provided in Assumptions for causal identification below.
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To evaluate whether assumptions of causality are met for our mediation model, we must first con-

sider all potential variables, both observed and unobserved, that could affect the relationships among our

treatment, mediator, and outcome. If we anticipate that there are confounders (variables that affect both

an outcome and a predictor), we must determine whether these confounders will lead to biased results in

the estimation of effects from our mediation analysis. In particular, we want to assume that

1. There is no unobserved confounding in the treatment–outcome relationship, and observed con-

founders are included as covariates in the outcome model.

2. There is no unobserved confounding in the mediator–outcome relationship, and observed con-

founders are included as covariates in the outcome model.

3. There is no unmeasured confounding in the treatment–mediator relationship, and observed con-

founders are included as covariates in the mediator model.

4. There are no confounders in the mediator–outcome relationship that are caused by the treatment.

No variable exists that affects both the mediator and the outcome and that itself is caused by the

treatment.

Estimation of effects

When assumptions are met, the mediate command can be used to estimate the causal parameters of

interest.

While the effects derived under the potential-outcomes framework required no particular model, we

now need to decide how to model our data to obtain estimates.

We first select models for the outcome and the mediator. Outcomes can be continuous, binary, or

counts and can be modeled using a linear, exponential-mean, logistic, probit, or Poisson model. Media-

tors can also be continuous, binary, or counts and can also be modeled using a linear, exponential-mean,

logistic, probit, or Poisson model. Covariates can be included in the outcome and mediator models. The

treatment may be binary, categorical (multivalued), or continuous.

As a simple example of the mediate command, say that we have a binary outcome y, a continuous
mediator m, and a binary treatment t. We can fit a mediation model by typing

. mediate (y, probit) (m, linear) (t)

The first set of parentheses specifies a model for the outcome. The second set of parentheses specifies

the model for the mediator. The third set of parentheses defines the treatment. By default, the TE and its

decomposition into NDE and NIE are reported in the output.

If we would instead like to see the second type of decomposition, we can obtain the TE, PNIE, and

TNDE by typing

. mediate (y, probit) (m, linear) (t), te pnie tnde

Many combinations of models and effects can be obtained. See Examples below for additional syntax

examples as well as interpretation of the results.

Technical overview of causal mediation
Above, we provided a conceptual introduction to the concepts in causal mediation analysis. Here we

more formally define the potential-outcomes framework; explain total, direct, and indirect effects; and

introduce the assumptions necessary for causal inference. If you are familiar with the technical aspects

of causal mediation and are ready to see mediate demonstrated, go directly to Examples.
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Mediation analysis in the potential-outcomes framework

The potential-outcomes framework is commonly employed for identifying causal effects. If we go

back to the model associated with figure 1 and assume 𝑇 is a binary treatment, we can identify two sets

of potential outcomes, 𝑌𝑖(1) and 𝑌𝑖(0). 𝑌𝑖(𝑡) is the outcome that would be realized if the 𝑖th individual
were exposed to treatment level 𝑡.

Consider a randomized experiment where the experimental group exercises while the control group

spends the same amount of time in a resting state. The outcome is subjective well-being that is measured

after exercising/resting. If it were possible to observe an individual in both states at the same time, we

would observe one outcome value under treatment, 𝑌𝑖(1), and one value under the control condition,

𝑌𝑖(0). Then the treatment effect would be the difference 𝜏𝑖 = 𝑌𝑖(1) − 𝑌𝑖(0). In other words, there is a
potential outcome for each treatment level that could be administered. Averaging the difference over all

individuals in the sample would yield an estimate of theATE 𝜏 = 𝐸[𝑌𝑖(1)−𝑌𝑖(0)] = 𝐸[𝑌𝑖(1)]−𝐸[𝑌𝑖(0)].
However, it is not possible to observe the same individual under both conditions at the same time; we

can only observe one of these while the other is missing. If an individual is treated, we observe 𝑌𝑖(1), and
if not, we observe 𝑌𝑖(0). This has been coined the “fundamental problem of causal inference” (Holland

1986). Much of the treatment effects and causal inference literature deals with the question of how to

estimate an ATE in the presence of this problem.

In a simple experiment where treatment is randomly assigned, the potential outcomes are independent

of treatment assignment and the missing potential outcomes are missing completely at random. In this

case, the average of the treatment group outcomes are a valid estimate of 𝐸[𝑌𝑖(1)], and the average

of the control group outcomes are a valid estimate of 𝐸[𝑌𝑖(0)]. Then ̂𝜏 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] where
𝐸[𝑌𝑖(𝑡)] = 1/𝑁𝑡 ∑𝑁𝑡

𝑖=1 1(𝑇𝑖 = 𝑡)𝑌𝑖 is a valid estimator of theATE. This estimation strategy follows from

the identification result that 𝐸[𝑌𝑖(𝑡)] = 𝐸(𝑌𝑖|𝑇𝑖 = 𝑡) such that 𝜏 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] = 𝐸[𝑌𝑖|𝑇𝑖 =
1] − 𝐸[𝑌𝑖|𝑇𝑖 = 0].

With observational rather than experimental data, however, the potential outcomes are not indepen-

dent of the treatment assignment process, and the causal effect is not identifiable without imposing further

assumptions such as conditional independence. Stata’s teffects suite of commands provides a variety

of estimators from this class of treatment-effects estimators.

For further information about identification and estimation in the context of causal models as well as

an overview of estimators implemented in Stata, see [CAUSAL] Intro. Here we focus on causal inference

and potential outcomes specifically for mediation analysis. In this situation, we have another set of

potential outcomes, 𝑀𝑖(1) and 𝑀𝑖(0), because 𝑀 is also affected by the treatment. That is, we can only

observe 𝑀𝑖(1) for the group of individuals who were treated, and we can only observe 𝑀𝑖(0) for the
controls. If we let 𝑡 denote the treatment level with respect to the outcome and let 𝑡′ be the treatment

level with respect to the mediator, then the potential outcomes become 𝑌𝑖[𝑡, 𝑀𝑖(𝑡′)].
Similar to the nonmediation case above, we can define a treatment effect as a difference between

potential outcomes. The treatment effect is identified if

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = 𝐸𝑀𝑖|𝑇𝑖=𝑡′𝐸[𝑌𝑖|𝑀𝑖, 𝑇𝑖 = 𝑡]

where 𝐸𝑀𝑖|𝑇𝑖=𝑡′ is the expectation of the mediator conditional on the treatment taking on the value 𝑡′

and where 𝐸[𝑌𝑖|𝑀𝑖, 𝑇𝑖 = 𝑡] is the expectation of the outcome conditional on the mediator and treatment

taking on the value 𝑡.
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Total, direct, and indirect effects

In mediation analysis, we are interested not only in the total treatment effect but also in its decompo-

sition into direct effects and indirect effects.

Notice that if 𝑡 = 𝑡′ for a given potential outcome, the resulting potential outcome is equivalent to

𝑌𝑖(𝑡). Assuming again a binary treatment, we have that

𝜏 = 𝐸[𝑌𝑖(1)] − 𝐸[𝑌𝑖(0)] = 𝐸[𝑌𝑖(1, 𝑀𝑖(1))] − 𝐸[𝑌𝑖(0, 𝑀𝑖(0))]

In the context of mediation analysis, this treatment effect is also referred to as the total effect.

The total effect can be decomposed further into direct and indirect effects using contrasts between

potential-outcome means. The contrasts yielding direct and indirect effects use potential outcomes for

which 𝑡 ≠ 𝑡′, which means we set the treatment level to 𝑡 and set the mediator to its potential value under

treatment level 𝑡′.

The natural indirect effect is then defined as

𝛿(𝑡) ≡ 𝐸[𝑌𝑖(𝑡, 𝑀𝑖(1))] − 𝐸[𝑌𝑖(𝑡, 𝑀𝑖(0))], 𝑡 ∈ {0, 1}

Notice that here we “switch” the treatment from on to off in its effect on the mediator but keep the

treatment fixed at value 𝑡 in its effect on the outcome. This natural indirect effect is also sometimes

referred to as the causal mediation effect (Imai, Keele, and Tingley 2010).

Likewise, the natural direct effect can be defined as

𝜁(𝑡) ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(𝑡))] − 𝐸[𝑌𝑖(0, 𝑀𝑖(𝑡))], 𝑡 ∈ {0, 1}

Comparison of potential outcomes and classical mediation analysis

For those familiar with classical mediation analysis for linear models, it may be helpful to see how

the calculation of total, direct, and indirect effects in the potential-outcomes framework relates to the

classical product-of-coefficients approach.

We first write our mediation model corresponding with figure 3 as

𝑌𝑖 = 𝛽0 + 𝛽1𝑀𝑖 + 𝛽2𝑇𝑖 + 𝜖𝑖

𝑀𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝜈𝑖

where 𝜖𝑖 and 𝜈𝑖 are uncorrelated error terms with means 0 and variances 𝜎2
𝜖 and 𝜎2

𝜈 , respectively.

Let’s consider the indirect effect 𝛿(1). To calculate 𝛿(1) in the potential-outcomes framework, we

need estimates for the potential-outcome means 𝐸[𝑌𝑖(1, 𝑀𝑖(1))] and 𝐸[𝑌𝑖(1, 𝑀𝑖(0))]. Intuitively, what
we want is a world where everyone in the population is exposed to the treatment, that is, 𝑌𝑖(1), but where
we can switch the treatment on and off in regard to the effect of the treatment on the mediator, that is,

𝑀𝑖(1) and 𝑀𝑖(0). The difference when going from the treatment switched on to the treatment switched

off will inform us about the effect of the treatment on the outcome that goes through the mediator. First,

we write the above model in reduced form:

𝐸[𝑌𝑖|𝑀𝑖, 𝑇𝑖] = 𝛽0 + 𝛽1(𝛼0 + 𝛼1𝑇𝑖) + 𝛽2𝑇𝑖

= 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1𝑇𝑖 + 𝛽2𝑇𝑖

This yields the conditional expectation 𝐸[𝑌𝑖|𝑀𝑖, 𝑇𝑖] that we can observe from the data.
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To obtain the potential-outcome means, we can modify the reduced-form model by replacing 𝑀𝑖
with the expectation of 𝑀𝑖 that we would observe if 𝑇𝑖 had taken on the value 𝑡′ for every unit in the

population. That is,

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = 𝛽0 + 𝛽1𝐸[𝑀𝑖(𝑡′)] + 𝛽2𝑡, 𝑡 ∈ {0, 1}

Thus, to compute the potential-outcome mean 𝐸[𝑌𝑖(1, 𝑀𝑖(1))], we must set the treatment 𝑇𝑖 to 1 in both

the outcome and the mediator equations. In other words, we fix both 𝑡 and 𝑡′ at 1:

𝐸[𝑌𝑖(1, 𝑀𝑖(1))] = 𝛽0 + 𝛽1𝐸[𝑀𝑖(𝑡′)] + 𝛽2𝑡, 𝑡 = 𝑡′ = 1
= 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1 × 1 + 𝛽2 × 1
= 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1 + 𝛽2

However, to compute 𝐸[𝑌𝑖(1, 𝑀𝑖(0))], we need to set treatment 𝑇𝑖 to 1 in the outcome equation and

need to set it to 0 in the mediator equation. Specifically, we fix 𝑡′ = 0 and 𝑡 = 1:

𝐸[𝑌𝑖(1, 𝑀𝑖(0))] = 𝛽0 + 𝛽1𝐸[𝑀𝑖(𝑡′)] + 𝛽2𝑡, 𝑡 = 1; 𝑡′ = 0
= 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1 × 0 + 𝛽2 × 1
= 𝛽0 + 𝛽1𝛼0 + 𝛽2

Calculating the difference between these two potential-outcomemeans yields the indirect treatment effect

𝛿(1) = (𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1 + 𝛽2) − (𝛽0 + 𝛽1𝛼0 + 𝛽2)
= 𝛽0 + 𝛽1𝛼0 + 𝛽1𝛼1 + 𝛽2 − 𝛽0 − 𝛽1𝛼0 − 𝛽2

= 𝛽1𝛼1

In this case of a linear model, the indirect treatment effect is the product of the treatment coefficient

from the mediator equation and the mediator coefficient from the outcome equation. This is congruent

with the indirect effect definition in the product-of-coefficients method for mediation as proposed by the

classical mediation literature; see Baron and Kenny (1986).

Accounting for treatment–mediator interaction

Notice that the indirect effect we estimated above would be the same if we had estimated 𝛿(0) instead.
Thus far, we assumed that the effect of the mediator on the outcome is the same for both treatment groups.

Presumably, a more realistic assumption would be to allow themediator effects to vary by treatment. This

can be achieved by including a treatment–mediator interaction term.

When we allow an interaction, 𝛿(0) ≠ 𝛿(1). Now we have two indirect effects, one with respect to

treatment [𝛿(1)] and one with respect to controls [𝛿(0)]. In the following, we will refer to 𝛿(1) as the NIE
and to 𝛿(0) as the PNIE.
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To illustrate computation of the NIE under inclusion of a treatment–mediator interaction, we write a

new model

𝑌𝑖 = 𝛽0 + 𝛽1𝑀𝑖 + 𝛽2𝑇𝑖 + 𝛽3𝑀𝑖𝑇𝑖 + 𝜖𝑖

𝑀𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + 𝜈𝑖

Here, NIE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(1, 𝑀𝑖(0))], whereas PNIE ≡ 𝐸[𝑌𝑖(0, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0))].
As before, to calculate NIE, we need potential-outcome means 𝐸[𝑌𝑖(1, 𝑀𝑖(1))] and 𝐸[𝑌𝑖(1, 𝑀𝑖(0))].

Writing the model in reduced form, we get

𝐸[𝑌𝑖|𝑀𝑖, 𝑇𝑖] = 𝛽0 + 𝛽2𝑇𝑖 + 𝛽1(𝛼0 + 𝛼1𝑇𝑖) + 𝛽3𝑇𝑖(𝛼0 + 𝛼1𝑇𝑖)
= 𝛽0 + 𝛽2𝑇𝑖 + (𝛽1 + 𝛽3𝑇𝑖)(𝛼0 + 𝛼1𝑇𝑖)

Fixing the values for the treatment in both equations accordingly, we have potential-outcome means

𝐸[𝑌𝑖(1, 𝑀𝑖(1))] = 𝛽0 + 𝛽2 × 1 + (𝛽1 + 𝛽3 × 1)(𝛼0 + 𝛼1 × 1)
= 𝛽0 + 𝛽2 + (𝛽1 + 𝛽3)(𝛼0 + 𝛼1)

and

𝐸[𝑌𝑖(1, 𝑀𝑖(0))] = 𝛽0 + 𝛽2 × 1 + (𝛽1 + 𝛽3 × 1)(𝛼0 + 𝛼1 × 0)
= 𝛽0 + 𝛽2 + (𝛽1 + 𝛽3)𝛼0

Taking the difference yields the NIE

𝐸[𝑌𝑖(1, 𝑀𝑖(1))] − 𝐸[𝑌𝑖(1, 𝑀𝑖(0))] = (𝛽1 + 𝛽3)𝛼1

We could proceed similarly for the other direct and indirect treatment effects. In this case

with treatment–mediator interaction, we also have two direct treatment effects. We have NDE ≡
𝐸[𝑌𝑖(1, 𝑀𝑖(0)) − 𝑌𝑖[0, 𝑀𝑖(0))] and TNDE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(1))].

Notice that both treatment-effect decompositions—NIE and NDE as well as PNIE and TNDE—sum to

the total treatment effect (or, as we will call it, the TE).

TE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0))]

For further details and discussion on the different direct and indirect effects, as well as a discussion on

the differences between causal inference and traditional mediation approaches, see Nguyen, Schmid, and

Stuart (2021).

Assumptions for causal identification

The above discussion shows that the estimands of interest are the result of contrasts between potential-

outcomemeans, which are conditional expectations of the outcomewith respect to counterfactuals in both

the outcome and the mediator equations. In other words, once we can estimate 𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))], we can
estimate all direct and indirect treatment effects of interest.

The general form for causal mediation potential-outcome means, which includes covariates 𝑋𝑖, can

be written as the integral of the conditional expectation of the outcome with respect to the conditional

distribution of the mediator (see Imai, Keele, and Tingley [2010]):

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))|𝑋𝑖 = 𝑥] = ∫ 𝐸[𝑌𝑖|𝑀𝑖 = 𝑚, 𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥] 𝑑𝐹 [𝑚|𝑇𝑖 = 𝑡′, 𝑋𝑖 = 𝑥]
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This is a general, nonparametric solution that applies regardless of the underlying outcome and me-

diator models. Stata’s mediate command uses analytical solutions of this integral for a variety of para-

metric outcome and mediator model combinations. Also, while so far we assumed a binary treatment

for simplicity purposes, this approach generalizes straightforwardly to multivalued as well as continuous

treatments.

As is the case with nonmediation causal inference, there are assumptions to be met for the estimated

effects to be given a causal interpretation. Most notably, a crucial assumption in the nonmediation case

is the conditional independence assumption, also known as conditional ignorability assumption, uncon-

foundedness, or selection on observables. This assumption states that potential outcomes are independent

of treatment assignment after conditioning on a set of observed covariates that affect both the outcome

and the selection into treatment (see Imbens [2004]). Intuitively, we have a model that resembles an

experiment once we account for observable characteristics. More formally, we have that

𝑌𝑖(𝑡) ⟂ 𝑇𝑖|𝑋𝑖

In the mediation case, however, we have an additional selection process because “selection” into the

mediator is also typically not based on random assignment. This leads to the following two conditional

independence assumptions:

{𝑌𝑖[𝑡, 𝑚], 𝑀𝑖(𝑡′)} ⟂ 𝑇𝑖|𝑋𝑖 = 𝑥
𝑌𝑖[𝑡, 𝑚] ⟂ 𝑀𝑖(𝑡′)|𝑇𝑖 = 𝑡′, 𝑋𝑖 = 𝑥

The first assumption states that treatment assignment is independent of potential outcomes and potential

mediators after conditioning on observed (pretreatment) covariates, or confounders. The second assump-

tion states that potential mediators are independent of the potential outcomes given the observed treatment

and observed (pretreatment) covariates. Because these assumptions are being made sequentially, this has

also been coined the sequential ignorability assumption (Imai, Keele, and Tingley 2010).

Similarly, there is an additional overlap assumption with causal mediation models. In the nonmedia-

tion case, the overlap assumption states that each individual has a positive probability of receiving each

treatment:

0 < Pr(𝑇𝑖 = 𝑡|𝑋𝑖 = 𝑥), 𝑡 ∈ {0, 1}

In the mediation case, the same principle applies to the mediator:

0 < 𝑝(𝑀𝑖(𝑡) = 𝑚|𝑇𝑖 = 𝑡, 𝑋𝑖 = 𝑥), 𝑡 ∈ {0, 1}

Finally, as is the case with nonmediation treatment-effects models, causal mediation models rely on

the stable unit treatment-value assumption, which states that potential outcomes do not depend on treat-

ments assigned to other individuals. For a detailed overview of effect identification and assumptions for

causal mediation analysis, see Nguyen et al. (2022).

Examples

Example 1: A simple causal mediation model

Suppose we wish to find out whether exercise affects perceptions of well-being among some popu-

lation of individuals. To the extent that there is such a causal relationship, we also wish to find out why

exercise affects well-being.



mediate — Causal mediation analysis 291

We have fictional data from a randomized controlled trial with individuals randomized into two

groups—one group performs physical exercise and the other group spends the same amount of time

in a resting state. Subjective well-being is measured before and after treatment sessions. In addition, the

level of the (fictional) hormone bonotonin is measured. The researchers wish to determine whether exer-

cise leads to an increase in bonotonin levels, which in turn has a positive effect on subjective well-being.

Here is an excerpt from our dataset:

. use https://www.stata-press.com/data/r19/wellbeing
(Fictional well-being data)
. list wellbeing bonotonin exercise age gender in 1/5, abbreviate(12)

wellbeing bonotonin exercise age gender

1. 71.73816 196.5467 Control 58 Male
2. 68.66573 195.8572 Exercise 38 Female
3. 71.05155 228.6035 Exercise 53 Female
4. 69.44469 206.6651 Exercise 44 Female
5. 75.62035 261.6855 Exercise 28 Female

To estimate the treatment effects with mediate, we specify wellbeing as the outcome variable

in the first set of parentheses, bonotonin as the mediator variable in the second set of parentheses,

and exercise as the binary treatment variable in the third set of parentheses. Although inclusion of a

treatment–mediator interaction is commonly recommended, we specify the nointeraction option here
to omit the interaction and fit the simplest model possible.

. mediate (wellbeing) (bonotonin) (exercise), nointeraction
Iteration 0: EE criterion = 1.627e-25
Iteration 1: EE criterion = 3.061e-28
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) 9.694617 .377312 25.69 0.000 8.955099 10.43413

NDE
exercise

(Exercise
vs

Control) 2.996658 .2109357 14.21 0.000 2.583231 3.410084

TE
exercise

(Exercise
vs

Control) 12.69127 .4005769 31.68 0.000 11.90616 13.47639

Note: Outcome equation does not include treatment--mediator interaction.
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In the header of the output, we see that mediate fit linear models (the default) for both the outcome

and the mediator. Three treatment-effect estimates are reported in the table. TE is the total effect of

exercise on well-being and is estimated to be 12.7. The interpretation is the same as for the ATE in

the nonmediation case: if everyone in the population exercised, their well-being would be, on average,

12.7 points higher than their well-being would be if no one exercised. The decomposition of the TE

into direct and indirect effects is of primary interest. The NIE is estimated to be 9.7, whereas the NDE is

estimated to be 3.0. These sum to the total effect of 12.7. The indirect effect is much larger than the direct

effect, indicating that the effect of exercise on well-being is largely due to exercise affecting bonotonin

levels, which in turn affect well-being. The direct effect of 3.0 is the effect of exercise on well-being

beyond the effect through bonotonin.

Instead of comparing estimates of the direct and indirect effects, we might ask what proportion of the

total effect is due to mediation. We can answer this question by using estat proportion.

. estat proportion
Proportion mediated Number of obs = 2,000

Robust
wellbeing Proportion std. err. z P>|z| [95% conf. interval]

exercise
(exercise

vs
control) .7638805 .0154928 49.31 0.000 .7335151 .7942459

The indirect effect via bonotonin accounts for 76% of the effect of physical activity on well-being, and

the remaining 24% is due to other mechanisms.

Example 2: Including covariates and relaxing the no-interaction assumption

The previous example was somewhat unrealistic. For causal inference, we must evaluate the potential

of confounding. With causal mediation models, there are three types of confounders we should consider:

treatment–outcome confounders, treatment–mediator confounders, and mediator–outcome confounders.

A treatment–outcome confounder, for example, is a variable that affects both the selection into treatment

and the outcome. If confounders exist and we observe them in our data, we can add them as covariates

to the model to prevent biased results.

Above, we noted that the wellbeing data come from a randomized controlled trial. In this case, we

do not have to worry about treatment–outcome and treatment–mediator confounders because treatment

assignment is random. We do, however, need to consider variables such as age, gender, and hstatus
(a person’s health status) that affect both the mediator and the outcome. We include these variables as

covariates in the model for well-being. We also make our model a bit more realistic by including baseline

well-being in the outcome equation and baseline bonotonin level in the mediator equation. In addition,

we omit the nointeraction option to allow the bonotonin coefficients to vary across treatment groups.
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. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise)
Iteration 0: EE criterion = 1.664e-25
Iteration 1: EE criterion = 1.192e-28
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375

NDE
exercise

(Exercise
vs

Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393

TE
exercise

(Exercise
vs

Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment--mediator interaction.

The interpretation of the treatment effects is the same as before. The total effect of exercise on well-

being is 13.0. Of this effect, 3.1 is attributed to the direct effect, while the remaining 9.9 is due to the

indirect path via bonotonin. These results are similar to our simpler model above.
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We find that the expected effect of exercise on well-being is 13.0, but what is the expected well-being

when everyone exercises? When no one exercises? We can estimate four such potential-outcome means

by specifying the pomeans option:

. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise), pomeans
Iteration 0: EE criterion = 1.660e-25
Iteration 1: EE criterion = 1.473e-28
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
Y0M0 56.94195 .2300492 247.52 0.000 56.49107 57.39284
Y1M0 60.02567 .2571311 233.44 0.000 59.52171 60.52964
Y0M1 66.78952 .2642177 252.78 0.000 66.27167 67.30738
Y1M1 69.96708 .232508 300.92 0.000 69.51137 70.42278

Note: Outcome equation includes treatment--mediator interaction.

Y1M1 is an estimate of the potential-outcome mean 𝐸[𝑌𝑖(1, 𝑀𝑖(1))]. If everyone in the population

exercised, we would expect the average of well-being to be around 70. The values labeled Y1M0 and Y0M1
are estimates of the “cross-world” potential-outcome means 𝐸[𝑌𝑖(1, 𝑀𝑖(0))] and 𝐸[𝑌𝑖(0, 𝑀𝑖(1))]. For
these, we set different counterfactuals in the outcome and mediator equations. In this case, the Y1M0
estimate tells us the expected average well-being if, for the outcome equation, we assume that everyone

in the population exercised, but we assume that no one exercised in regard to the effect of treatment on

the mediator. If we compare the Y1M1 and Y1M0 estimates, we imagine a world where everyone received

the treatment, except that the treatment is switched on and off in its effect on the mediator. The difference

between these is 69.96708 − 60.02567 = 9.94141, which is our NIE reported above.

By default, the TE, NIE, and NDE are computed, but we can request specific effects. For example, we

could estimate only the NIE by typing

. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise), nie
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Alternatively, we could estimate all available effects and potential-outcome means at once by speci-

fying the all option:

. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise), all
Iteration 0: EE criterion = 1.668e-25
Iteration 1: EE criterion = 1.532e-28
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
Y0M0 56.94195 .2300492 247.52 0.000 56.49107 57.39284
Y1M0 60.02567 .2571311 233.44 0.000 59.52171 60.52964
Y0M1 66.78952 .2642177 252.78 0.000 66.27167 67.30738
Y1M1 69.96708 .232508 300.92 0.000 69.51137 70.42278

NIE
exercise

(Exercise
vs

Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375

NDE
exercise

(Exercise
vs

Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393

PNIE
exercise

(Exercise
vs

Control) 9.84757 .2318329 42.48 0.000 9.393186 10.30195

TNDE
exercise

(Exercise
vs

Control) 3.177554 .1800896 17.64 0.000 2.824585 3.530523

TE
exercise

(Exercise
vs

Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment--mediator interaction.

Here we obtain estimates for two additional effects, PNIE and TNDE, which provide a different decompo-

sition of the TE into direct and indirect effects. In this case, PNIE and TNDE are similar to NIE and NDE,

respectively, because the coefficient on the treatment–mediator interaction term is quite small in the

model for well-being. We can see the results for the underlying models, including this small coefficient

of 0.002, if we add the aequations option to our mediate command.
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Example 3: Referring to treatment effects using an alternative naming scheme

The effects we have discussed so far are sometimes referred to by different names. The default naming

conventions originate in the works of Pearl and others. However, we can instead use terminology more

closely tied to ATEs if we specify the ateterms option:
. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (exercise), all ateterms
Iteration 0: EE criterion = 1.668e-25
Iteration 1: EE criterion = 1.532e-28
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
Y0M0 56.94195 .2300492 247.52 0.000 56.49107 57.39284
Y1M0 60.02567 .2571311 233.44 0.000 59.52171 60.52964
Y0M1 66.78952 .2642177 252.78 0.000 66.27167 67.30738
Y1M1 69.96708 .232508 300.92 0.000 69.51137 70.42278

AITE
exercise

(Exercise
vs

Control) 9.941404 .2307909 43.08 0.000 9.489062 10.39375

ADTE
exercise

(Exercise
vs

Control) 3.08372 .1684778 18.30 0.000 2.753509 3.41393

AITEC
exercise

(Exercise
vs

Control) 9.84757 .2318329 42.48 0.000 9.393186 10.30195

ADTET
exercise

(Exercise
vs

Control) 3.177554 .1800896 17.64 0.000 2.824585 3.530523

ATE
exercise

(Exercise
vs

Control) 13.02512 .2356989 55.26 0.000 12.56316 13.48709

Note: Outcome equation includes treatment--mediator interaction.

Using this notation, ATE can be decomposed into AITE and ADTE or into AITEC and ADTET. Notice that

the estimates are the same as in the previous example; they now just have different names.
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Example 4: Causal mediation model with a binary mediator

In the previous examples, both outcome and mediator variables were continuous. We now look at

the case where the mediator variable is binary. To this end, we use the binary variable bbonotonin, an
indicator of higher bonotonin levels after exercise, where improvement is defined as an increase of at

least 10%. We could use a probit or a logit model for this mediator; we choose a logit model:

. mediate (wellbeing age gender i.hstatus basewell)
> (bbonotonin, logit)
> (exercise)
Iteration 0: EE criterion = 8.253e-18
Iteration 1: EE criterion = 8.223e-18 (backed up)
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) 4.41435 .4666635 9.46 0.000 3.499706 5.328994

NDE
exercise

(Exercise
vs

Control) 8.429238 .5696256 14.80 0.000 7.312792 9.545683

TE
exercise

(Exercise
vs

Control) 12.84359 .3712965 34.59 0.000 12.11586 13.57132

Note: Outcome equation includes treatment--mediator interaction.

Direct and indirect effect estimates differ from previous results because we used a different bonotonin

measure as our mediator variable. However, because we still have the continuous well-being outcome,

the interpretation of the effects is the same as before. Here we estimate a total effect of 12.8 with direct

and indirect effects of 8.4 and 4.4, respectively. That is, we expect an increase of 12.8 in well-being due

to treatment, of which 4.4 is due to an increase in bonotonin levels whereas the remaining 8.4 is due to

other mechanisms.
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Example 5: Causal mediation model with a binary outcome

Interpretation of effects did not change with a binary mediator, but interpretation does change when

we specify a different type of outcome.

To demonstrate, we return to the continuous mediator but use a binary outcome variable. The outcome

bwellbeing indicates higher well-being and is defined as an increase in well-being of at least 10%

compared with the baseline measurement. Using bwellbeing as the outcome variable and specifying a

probit outcome model, we get

. mediate (bwellbeing age gender i.hstatus, probit)
> (bonotonin basebono, linear)
> (exercise)
Iteration 0: EE criterion = 2.177e-25
Iteration 1: EE criterion = 9.728e-29
Causal mediation analysis Number of obs = 2,000
Outcome model: Probit
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Binary

Robust
bwellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) .2346259 .0145763 16.10 0.000 .2060568 .263195

NDE
exercise

(Exercise
vs

Control) .033732 .0237585 1.42 0.156 -.0128338 .0802978

TE
exercise

(Exercise
vs

Control) .2683579 .0200872 13.36 0.000 .2289877 .3077281

Note: Outcome equation includes treatment--mediator interaction.

We interpret the effects as expected differences measured on the probability scale, sometimes referred

to as risk differences. The TE of 0.27 indicates that if everyone in the population exercised, we would

expect the probability of increased well-being to be 0.27 higher than the probability of increased well-

being if no one exercised. In other words, the chance of experiencing an increase in well-being goes up

by 27 percentage points when exposed to the exercise treatment. We can see that about 23 points are due

to the indirect path via bonotonin, and about 3 points are due to other mechanisms.
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Example 6: Causal mediation model with a binary mediator and binary outcome

We could also have the case where both the outcome and the mediator are binary. Here we use a logit

model for both:

. mediate (bwellbeing age gender i.hstatus, logit)
> (bbonotonin, logit)
> (exercise)
Iteration 0: EE criterion = 4.223e-16
Iteration 1: EE criterion = 2.037e-30
Causal mediation analysis Number of obs = 2,000
Outcome model: Logit
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary

Robust
bwellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) .0959618 .0288699 3.32 0.001 .0393778 .1525457

NDE
exercise

(Exercise
vs

Control) .1676141 .0358902 4.67 0.000 .0972706 .2379577

TE
exercise

(Exercise
vs

Control) .2635759 .0212488 12.40 0.000 .221929 .3052228

Note: Outcome equation includes treatment--mediator interaction.

The interpretation is again in terms of differences in probabilities. We observe a TE of around 0.26, which

is partially due to the indirect effect via bbonotonin (0.10) and partially due to other mechanisms (0.17).

Example 7: Causal mediation model with a count mediator

We use a fictional dataset on birthweights and demonstrate how to perform causal mediation analysis

when using a Poisson model for a count mediator.

We now pretend to have observational data instead of experimental data. The sample includes women

who gave birth to a child. We wish to find out whether socioeconomic status and education of the

mother affects the child’s health. The outcome variable is the birthweight of the baby (bweight), and
the treatment variable is whether or not themother has a college degree (college). Themediator variable

is the number of cigarettes smoked per day during pregnancy (ncigs). The hypothesis is that women

with a higher educational degree are likely to smoke fewer cigarettes and that smoking during pregnancy

has negative effects on birthweight. Here is an excerpt from the dataset:
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. use https://www.stata-press.com/data/r19/birthweight, clear
(Fictional birthweight data)
. list bweight ncigs college ses sespar age in 1/5

bweight ncigs college ses sespar age

1. 3621 1 No 5.3581 3.308523 29
2. 3278 0 Yes 9.556957 4.376035 38
3. 3073 1 No 3.980829 6.580275 39
4. 3306 0 Yes 11.17643 12.12075 30
5. 4517 0 Yes 9.026146 4.738766 28

We fit a linear model for the outcome bweight and a Poisson model for the mediator ncigs, and
we specify college as the binary treatment variable. Because we have fully observational data, where

selection into treatment is no longer completely random, we have to be concerned about all confounder

types as mentioned in Example 2: Including covariates and relaxing the no-interaction assumption. We

specify several potential confounders as covariates in both equations.

We do not assume that the adverse effects of smoking are different between women with a college

degree and women without a college degree. Therefore, we use the nointeraction option.

. mediate (bweight sespar c.age##c.age)
> (ncigs sespar c.age##c.age, poisson)
> (college), nointeract
Iteration 0: EE criterion = 1.939e-21
Iteration 1: EE criterion = 1.937e-21 (backed up)
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Poisson
Mediator variable: ncigs
Treatment type: Binary

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

NIE
college

(Yes vs No) 167.3075 21.36134 7.83 0.000 125.4401 209.175

NDE
college

(Yes vs No) 347.3375 34.44561 10.08 0.000 279.8253 414.8496

TE
college

(Yes vs No) 514.645 28.65043 17.96 0.000 458.4912 570.7988

Note: Outcome equation does not include treatment--mediator interaction.

As before, the type of model we use for the mediator does not affect the interpretation of the estimated

treatment effects. Effects are expected differences on the scale of the outcome variable. The TE indicates

that if all women had a college degree, the average birthweight of newborn babies would be almost 515

grams higher than the average birthweight if no woman had a college degree. Of this weight increase,

around 167 grams are due to women with higher educational degrees smoking less, while 347 grams are

due to other mechanisms.
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Example 8: Causal mediation model with an exponential-mean outcome

Here we use an exponential-mean model for the outcome bweight.
. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.age##c.age, poisson)
> (college), nointeract
Iteration 0: EE criterion = 3.250e-13
Iteration 1: EE criterion = 1.159e-17
Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean
Mediator model: Poisson
Mediator variable: ncigs
Treatment type: Binary

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

NIE
college

(Yes vs No) 198.978 23.53279 8.46 0.000 152.8546 245.1014

NDE
college

(Yes vs No) 320.3318 34.47792 9.29 0.000 252.7563 387.9072

TE
college

(Yes vs No) 519.3098 28.70435 18.09 0.000 463.0503 575.5693

Note: Outcome equation does not include treatment--mediator interaction.

Because we are still modeling a continuous outcome, the interpretation does not change. The TE is about

519 grams, of which 199 grams are due to women with a college degree smoking less.

Example 9: Causal mediation model with multivalued treatment

So far we have only dealt with treatments that are binary. However, experiments often have more than

two treatment arms, or an observational treatment could consist of multiple categories. Then we would

refer to the treatment as multivalued.

To demonstrate, we return to our well-being data and use treatment variable mexercise, which cap-
tures three treatment groups: a control group, a group where individuals exercised for 45 minutes, and

a group where individuals exercised for 90 minutes. Such a design would allow the researcher to find

out whether and how the duration of exercise affects bonotonin levels and thereby well-being. Here we

use a linear model for both the outcome and the mediator, and we include the multivalued treatment

mexercise as our treatment variable:
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. use https://www.stata-press.com/data/r19/wellbeing, clear
(Fictional well-being data)
. mediate (wellbeing age gender i.hstatus basewell)
> (bonotonin basebono)
> (mexercise)
Iteration 0: EE criterion = 1.697e-25
Iteration 1: EE criterion = 2.577e-26
Causal mediation analysis Number of obs = 2,000
Outcome model: Linear
Mediator model: Linear
Mediator variable: bonotonin
Treatment type: Multivalued

Robust
wellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
mexercise

(45 minutes
vs

Control) 5.128899 .3505171 14.63 0.000 4.441898 5.815899
(90 minutes

vs
Control) 9.780537 .2880877 33.95 0.000 9.215895 10.34518

NDE
mexercise

(45 minutes
vs

Control) 1.197498 .1750038 6.84 0.000 .8544965 1.540499
(90 minutes

vs
Control) 3.051084 .2071236 14.73 0.000 2.645129 3.457039

TE
mexercise

(45 minutes
vs

Control) 6.326396 .3894269 16.25 0.000 5.563134 7.089659
(90 minutes

vs
Control) 12.83162 .2967962 43.23 0.000 12.24991 13.41333

Note: Outcome equation includes treatment--mediator interaction.

Wenowhave two effects per estimand becausewe compare the two treated groups to the control group.

Starting with the TE, we expect nearly a 13-point increase in well-being if everyone in the population

exercised for 90 minutes. Of these 13 points, around 10 points are due to the increase in bonotonin

levels and 3 points are due to other mechanisms. The results for the 45-minute treatment arm, though

expectedly smaller in magnitude, are interpreted similarly.

Example 10: Causal mediation model with continuous treatment

Instead of a binary or multivalued treatment, we could have a continuous treatment variable. With

continuous treatments, we have to specify at least two values, one to be the treatment and another to

be the control. We return to our birthweight data and use socioeconomic status (ses) as our continuous
treatment variable. Here are some summary statistics for ses:
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. use https://www.stata-press.com/data/r19/birthweight
(Fictional birthweight data)
. summarize ses

Variable Obs Mean Std. dev. Min Max

ses 2,000 7.804412 2.287496 1.304026 16.27844

We can see that ses ranges from around 1 to 16 and has a mean of about 8. These values, however, do

not tell us much because the variable is measured on an arbitrary scale. Therefore, we standardize it so

that the resulting variable has a mean of 0 and a standard deviation of 1:

. generate std_ses = (ses-r(mean))/r(sd)

We will use the new variable, std ses, as our treatment variable. We include the continuous()
option within the third set of parentheses where we define the treatment. This option tells mediate
to treat the variable as continuous and to use the values specified within the option as the control and

treatment points. The first value is the control, and the remaining values are treatments that are compared

with the control. Here we will specify one standard deviation below the mean as our control value and

one standard deviation above the mean as our treatment value:

. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.age##c.age, poisson)
> (std_ses, continuous(-1 1)), nointeract
Iteration 0: EE criterion = 1.470e-12
Iteration 1: EE criterion = 1.986e-17
Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean
Mediator model: Poisson
Mediator variable: ncigs
Treatment type: Continuous
Continuous treatment levels:
0: std_ses = -1 (control)
1: std_ses = 1

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

NIE
std_ses

(1 vs 0) 171.3015 14.68778 11.66 0.000 142.514 200.089

NDE
std_ses

(1 vs 0) 170.0598 32.14841 5.29 0.000 107.05 233.0695

TE
std_ses

(1 vs 0) 341.3613 31.73741 10.76 0.000 279.1571 403.5655

Note: Outcome equation does not include treatment--mediator interaction.

Even though we used a continuous treatment variable, we interpret the results as before: if everyone

in the population had a socioeconomic status one standard deviation above the mean, the birthweight of

newborn children would be about 341 grams higher than the birthweight if everyone’s status value is one

standard deviation below the mean. Of these 341 grams, roughly half is due to women with a higher

status smoking less, and the other half is due to other mechanisms.
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We could also evaluate the treatment effects at more than two values. Here we use the mean (0) of

the standardized variable as the base, and we evaluate the treatment effects at −2, −1, 1, and 2:

. mediate (bweight sespar c.age##c.age, expmean)
> (ncigs sespar c.age##c.age, poisson)
> (std_ses, continuous(0 -2 -1 1 2)), nointeract
Iteration 0: EE criterion = 1.470e-12
Iteration 1: EE criterion = 2.767e-17
Causal mediation analysis Number of obs = 2,000
Outcome model: Exponential mean
Mediator model: Poisson
Mediator variable: ncigs
Treatment type: Continuous
Continuous treatment levels:
0: std_ses = 0 (control)
1: std_ses = -2
2: std_ses = -1
3: std_ses = 1
4: std_ses = 2

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

NIE
std_ses

(1 vs 0) -276.2757 27.69004 -9.98 0.000 -330.5471 -222.0042
(2 vs 0) -100.1155 9.170566 -10.92 0.000 -118.0894 -82.14148
(3 vs 0) 65.84585 5.423096 12.14 0.000 55.21678 76.47493
(4 vs 0) 110.1346 8.724232 12.62 0.000 93.03538 127.2337

NDE
std_ses

(1 vs 0) -170.9012 31.33649 -5.45 0.000 -232.3196 -109.4828
(2 vs 0) -86.56069 16.08129 -5.38 0.000 -118.0794 -55.04193
(3 vs 0) 88.83929 16.94031 5.24 0.000 55.6369 122.0417
(4 vs 0) 180.0172 34.77372 5.18 0.000 111.8619 248.1724

TE
std_ses

(1 vs 0) -447.1769 35.41401 -12.63 0.000 -516.5871 -377.7667
(2 vs 0) -186.6761 15.73291 -11.87 0.000 -217.5121 -155.8402
(3 vs 0) 154.6851 16.31969 9.48 0.000 122.6991 186.6712
(4 vs 0) 290.1517 33.85571 8.57 0.000 223.7958 356.5077

Note: Outcome equation does not include treatment--mediator interaction.
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We now get four effect estimates for each treatment effect, which capture the expected differences in

the outcome with respect to the control point. With multiple effect estimates, it can be convenient to plot

the results. We use the postestimation command estat effectsplot to do so:

. estat effectsplot
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Effects plot

For more information about estat effectsplot, see [CAUSAL] mediate postestimation.

Example 11: Estimating controlled direct effects

Controlled direct effects (CDEs) are different from the other estimands we have dealt with so far. Here,

rather than having potential outcomes of the form 𝑌𝑖(𝑡, 𝑀𝑖(𝑡′)), we have potential outcomes of the form

𝑌𝑖(𝑡|𝑀𝑖 = 𝑚). That is, we have potential outcomes for each treatment level that are evaluated at set

values of the mediator. Thus, CDEs only use the results of the outcome equation. Assuming a binary

treatment, the CDE for value 𝑚 of the mediator is CDE(𝑚) = 𝑌𝑖(1|𝑀𝑖 = 𝑚) − 𝑌𝑖(0|𝑀𝑖 = 𝑚). CDEs

can be estimated using the postestimation command estat cde.
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To demonstrate, we begin by fitting a mediation model using the well-being data:

. use https://www.stata-press.com/data/r19/wellbeing, clear
(Fictional well-being data)
. mediate (bwellbeing age gender i.hstatus, probit)
> (bbonotonin, probit)
> (exercise)
Iteration 0: EE criterion = 4.326e-19
Iteration 1: EE criterion = 6.955e-32
Causal mediation analysis Number of obs = 2,000
Outcome model: Probit
Mediator model: Probit
Mediator variable: bbonotonin
Treatment type: Binary

Robust
bwellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) .0962832 .0288905 3.33 0.001 .0396588 .1529076

NDE
exercise

(Exercise
vs

Control) .1672304 .0358936 4.66 0.000 .0968803 .2375805

TE
exercise

(Exercise
vs

Control) .2635137 .0212346 12.41 0.000 .2218946 .3051327

Note: Outcome equation includes treatment--mediator interaction.

We fit probit models for the outcome and the mediator, but the type of model is not important here; we

can use estat cde after any model fit with mediate.

What is the TE if everyone in the population has a mediator value of 0 (no improvement in bonotonin

levels)? To find out, we estimate CDE(0) by specifying the mvalue(0) option with estat cde:

. estat cde, mvalue(0)
Controlled direct effect Number of obs = 2,000
Mediator variable: bbonotonin
Mediator value = 0

Delta-method
CDE std. err. z P>|z| [95% conf. interval]

exercise
(Exercise

vs
Control) .1605355 .039731 4.04 0.000 .0826641 .2384068
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This CDE is around 0.16. The probability of increased well-being when everyone exercises is 0.16 higher

than the probability of increased well-being when no one exercises, provided that no one in the population

had at least a 10% increase in bonotonin levels.

We could perform the same analysis specifying multiple values for the mediator. Here we wish to

estimate both CDE(0) and CDE(1):

. estat cde, mvalue(0 1)
Controlled direct effect Number of obs = 2,000
Mediator variable: bbonotonin
Mediator values:
1._at: bbonotonin = 0
2._at: bbonotonin = 1

Delta-method
CDE std. err. z P>|z| [95% conf. interval]

exercise@_at
(Exercise

vs
Control)

1 .1605355 .039731 4.04 0.000 .0826641 .2384068
(Exercise

vs
Control)

2 .2224479 .0493025 4.51 0.000 .1258166 .3190791

If we “switch on” the mediator, the CDE is higher by around 0.06 points. We could also estimate this

difference directly by using the contrast option:

. estat cde, mvalue(0 1) contrast
Controlled direct effect Number of obs = 2,000
Mediator variable: bbonotonin
Mediator values:
1._at: bbonotonin = 0
2._at: bbonotonin = 1

Delta-method
CDE std. err. z P>|z| [95% conf. interval]

_at#exercise
(2 vs 1)
(Exercise

vs
Control) .0619124 .0630241 0.98 0.326 -.0616126 .1854373

See [CAUSAL] mediate postestimation for further information about estat cde.

Example 12: Estimating treatment effects on different scales

The mediate command estimates treatment effects on the natural scale of the outcome variable. How-

ever, some researchers may want to present their estimated effects on a different scale such as on the

odds-ratio or risk-ratio scale if the outcome variable is binary or on the incidence-rate–ratio scale if

the outcome variable is a count. The postestimation commands estat rr, estat or, and estat irr
transform estimated treatment effects onto these different scales.
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To see how this works, we first fit the following model with a binary outcome variable. We could use

a probit or logit model for the outcome variable; here we are using probit:

. mediate (bwellbeing age gender i.hstatus, probit)
> (bbonotonin, probit)
> (exercise), all
Iteration 0: EE criterion = 4.326e-19
Iteration 1: EE criterion = 7.545e-32
Causal mediation analysis Number of obs = 2,000
Outcome model: Probit
Mediator model: Probit
Mediator variable: bbonotonin
Treatment type: Binary

Robust
bwellbeing Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
Y0M0 .3014153 .0146737 20.54 0.000 .2726554 .3301752
Y1M0 .4686457 .0328309 14.27 0.000 .4042984 .5329931
Y0M1 .3536121 .0381972 9.26 0.000 .2787469 .4284773
Y1M1 .5649289 .0154435 36.58 0.000 .5346603 .5951976

NIE
exercise

(Exercise
vs

Control) .0962832 .0288905 3.33 0.001 .0396588 .1529076

NDE
exercise

(Exercise
vs

Control) .1672304 .0358936 4.66 0.000 .0968803 .2375805

PNIE
exercise

(Exercise
vs

Control) .0521968 .0348642 1.50 0.134 -.0161357 .1205293

TNDE
exercise

(Exercise
vs

Control) .2113169 .041136 5.14 0.000 .1306917 .291942

TE
exercise

(Exercise
vs

Control) .2635137 .0212346 12.41 0.000 .2218946 .3051327

Note: Outcome equation includes treatment--mediator interaction.
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Given that our outcome variable is binary and our outcome model is probit, the potential-outcome

means are averaged probabilities, and because the treatment effects are differences between potential-

outcome means, the estimated effects can be interpreted as risk differences. For example, the natural

indirect effect is the difference between potential-outcome means Y1M1 and Y1M0:

. display _b[POmeans:Y1M1]-_b[POmeans:Y1M0]

.09628322

If, instead of interpreting the effect on the risk-difference scale, we wanted to interpret it on the risk-ratio

scale, we could simply compute the ratio of the potential-outcome means:

. display _b[POmeans:Y1M1]/_b[POmeans:Y1M0]
1.2054499

This is what estat rr is doing:

. estat rr
Transformed treatment effects Number of obs = 2,000

Robust
bwellbeing Risk ratio std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) 1.20545 .0746555 3.02 0.003 1.06766 1.361023

NDE
exercise

(Exercise
vs

Control) 1.554817 .132328 5.19 0.000 1.315937 1.837062

PNIE
exercise

(Exercise
vs

Control) 1.173172 .1157431 1.62 0.105 .966905 1.423442

TNDE
exercise

(Exercise
vs

Control) 1.597595 .1778207 4.21 0.000 1.284469 1.987055

TE
exercise

(Exercise
vs

Control) 1.874254 .1043578 11.28 0.000 1.680482 2.09037

The total treatment effect is now decomposed into multiplicative components NIE and NDE as well as

PNIE and TNDE. That is, taking their product, rather than their sum, will yield the total effect.
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Similarly, we can express all effects on the odds-ratio scale by using estat or:

. estat or
Transformed treatment effects Number of obs = 2,000

Robust
bwellbeing Odds ratio std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) 1.472222 .1708025 3.33 0.001 1.172788 1.848106

NDE
exercise

(Exercise
vs

Control) 2.044157 .3042049 4.80 0.000 1.527008 2.736449

PNIE
exercise

(Exercise
vs

Control) 1.267908 .1933291 1.56 0.120 .9403671 1.709534

TNDE
exercise

(Exercise
vs

Control) 2.373558 .4231302 4.85 0.000 1.673622 3.366217

TE
exercise

(Exercise
vs

Control) 3.009452 .281479 11.78 0.000 2.505377 3.614945

Here the total average treatment effect is 3 on the odds-ratio scale and is composed of odds ratios 1.47

and 2.04 in regard to NIE and NDE, respectively, and of odds ratios 1.27 and 2.37 in regard to PNIE and

TNDE. Typically, the treatment effects can be interpreted more intuitively on the risk-difference scale, but

there may be applications where transforming them to the risk-ratio or odds-ratio scale is desirable.

Notice that estat rr, estat or, and estat irr require estimation of potential-outcome means with

mediate. If the fitted model does not contain potential-outcomemean estimates, these estat commands

will refit the model. The reestimation does not affect the results, but computation takes longer. See

[CAUSAL] mediate postestimation for further information about estat rr, estat or, and estat irr.
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Stored results
mediate stores the following in e():

Scalars

e(N) number of observations

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(rank) rank of e(V)
e(interact) 1 if treatment–mediator interaction included, 0 otherwise
e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) mediate
e(cmdline) command as typed

e(depvar) name of outcome variable

e(mvar) name of mediator variable

e(tvar) name of treatment variable

e(omodel) linear, logit, probit, poisson, or expmean
e(mmodel) linear, logit, probit, poisson, or expmean
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(tvartype) binary, multivalued, or continuous
e(control) control level

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
mediate fits causal mediation models and estimates direct, indirect, and total treatment effects. Us-

ing the potential-outcomes framework, the estimated treatment effects are the result of contrasts between

potential-outcome means. Without loss of generality, let 𝑇𝑖 be a binary treatment, 𝑡 ∈ {0, 1}, for obser-
vations 𝑖 = 1, . . . , 𝑁, and let 𝑌𝑖 be the outcome and 𝑀𝑖 be the mediator variable. The potential-outcome

means are

POM𝑡,𝑡′ ≡ 𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))]
The treatment effects are then defined as follows:

NIE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(1, 𝑀𝑖(0))]
NDE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(0)) − 𝑌𝑖(0, 𝑀𝑖(0))]
PNIE ≡ 𝐸[𝑌𝑖(0, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0))]
TNDE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(1))]

TE ≡ 𝐸[𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0))]

Synonyms for NIE, NDE, PNIE, TNDE, and TE are AITE, ADTE, AITEC, ADTET, and ATE, respectively.

The potential-outcomemeans are the result of an integral of the conditional expectation of the outcome

with respect to the conditional distribution of the mediator (Imai, Keele, and Tingley 2010):

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))|𝑋𝑖 = 𝑥] = ∫ 𝐸[𝑌𝑖|𝑀𝑖 = 𝑚, 𝑇𝑖 = 𝑡,X𝑖 = x] 𝑑𝐹 [𝑚|𝑇𝑖 = 𝑡′,X𝑖 = x] (1)

They are estimated as the sample average

P̂OM𝑡,𝑡′ = 1
𝑁

𝑁
∑
𝑖=1

𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))|X𝑖 = x

The estimated treatment effects are then the result of differences between estimated potential-outcome

means.

mediate uses analytical solutions for the integral in (1) for a variety of parametric outcome and

mediator model combinations. Let X𝑖 = {W𝑖,Z𝑖}, the index function of the outcome model is

𝜂𝑌
𝑖 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑀𝑖 + 𝛽3𝑇𝑖𝑀𝑖 + W𝑖𝛄 (2)

and that of the mediator model is

𝜂𝑀
𝑖 = 𝛼0 + 𝛼1𝑇𝑖 + Z𝑖ζ (3)

whereW𝑖 and Z𝑖 are potentially overlapping sets of covariates. If the nointeraction option is used,

𝜂𝑌
𝑖 reduces to the simpler function where 𝛽3 = 0. Depending on which model is specified, the expected

values of the outcome and mediator follow these functional forms:

Model Link function

linear 𝜂𝑖
exponential mean 𝑒𝜂𝑖

Poisson 𝑒𝜂𝑖

logit Π(𝜂𝑖)
probit Φ(𝜂𝑖)

Π and Φ are the cumulative logistic and cumulative normal distribution functions, respectively. Between

the outcome and mediator models, all combinations of the above functional forms are allowed with the

exception of logit outcome models in combination with linear or exponential-mean mediator models.
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mediate uses the estimated coefficients from (2) and (3) to estimate P̂OM𝑡,𝑡′ . Calculation of P̂OM𝑡,𝑡′

depends on the combination of functional forms of the outcome and mediator models. We define the

following terms, where 𝑡 represents counterfactual values for the treatment with respect to the outcome

equation and 𝑡′ represents treatment counterfactuals in regard to the mediator equation:

𝜈𝑡 = 𝛽0 + 𝛽1𝑡 + W𝑖𝛄
𝜉𝑡′ = 𝛼0 + 𝛼1𝑡′ + Z𝑖ζ

𝜅𝑡 = 𝛽2 + 𝛽3𝑡

If the outcome model is linear, we have

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = 𝜈𝑡 + Θ𝑚(𝜉𝑡′)𝜅𝑡

whereΘ𝑚(⋅) denotes the identity function if the mediator model is linear, the cumulative normal distribu-

tion function if probit, the cumulative logistic distribution function if logit, and the exponential function if

exponential mean or Poisson. In this case, exponential mean and Poisson are synonyms when specifying

the mediator model; notice, though, that this is not necessarily the case for other model combinations.

If the outcome model is probit and the mediator model is linear or exponential mean, we have

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = Φ [𝜈𝑡 + Γ𝑚(𝜉𝑡′)𝜅𝑡

√1 + 𝜅2
𝑡 𝜎2

𝑚
]

where Γ𝑚(⋅) denotes the identity function if the mediator model is linear and denotes the exponential

function if it is exponential mean, and 𝜎2
𝑚 is the error variance pertaining to the mediator model.

For probit and logit outcome models in combination with probit and logit mediator models, the po-

tential outcomes are

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = Λ𝑦(𝜈𝑡 + 𝜅𝑡)Λ𝑚(𝜉𝑡′) + Λ𝑦(𝜈𝑡){1 − Λ𝑚(𝜉𝑡′)}

where Λ𝑦(⋅) is the cumulative normal distribution function if the outcome model is probit and the cumu-

lative logistic distribution function if the outcome model is logit. Λ𝑚(⋅) denotes the cumulative normal

distribution function if the mediator model is probit and the cumulative logistic distribution function if

the mediator model is logit.

Regarding the outcome model, notice that, unlike the case of the mediator model, Poisson and expo-

nential mean always refer to the same model. Thus, we can use the terms Poisson and exponential mean

interchangeably in regard to the outcome model. The potential outcomes in the case of the exponential-

mean outcome model and the linear or exponential-mean mediator model are

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = 𝑒𝜈𝑡+𝜅𝑡Γ𝑚(𝜉𝑡′)+(𝜅2
𝑡 𝜎2

𝑚)/2

where Γ𝑚(⋅) is the identity function if the mediator model is linear and is the exponential function if the

mediator model is exponential mean. For probit and logit mediator models, the potential outcomes are

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] = Λ𝑚(𝜉𝑡′)𝑒𝜈𝑡+𝜅𝑡 + {1 − Λ𝑚(𝜉𝑡′)}𝑒𝜈𝑡

If the outcome model is exponential mean, probit, or logit, and if the mediator model is Poisson, the

potential outcomes are

𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))] =
𝐾

∑
𝑗=0

Ψ𝑦(𝜈𝑡 + 𝜅𝑡𝑗)𝑒𝑗𝜉𝑡′ 𝑒−𝑒𝜉𝑡′

𝑗!
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where 𝑗 indexes the counts of the mediator variable, and Ψ𝑦(⋅) denotes the exponential function if the

outcome model is exponential mean, denotes the cumulative normal distribution function if the outcome

model is probit, and denotes the cumulative logistic distribution function if the outcome model is logit.

mediate uses a method of moments estimator, also known as an estimating equations estimator,

to estimate all auxiliary and effect parameters as well as their variance–covariance matrix. For more

information about the underlying gmm command, see [R] gmm.

The postestimation commands estat or, estat rr, and estat irr calculate treatment effects on

different scales. If the outcome variable is binary and the model for the outcome variable is logit
or probit, estat or computes marginal treatment effects on the odds-ratio scale, whereas estat rr
computes marginal treatment effects on the risk-ratio scale. If the model for the outcome variable is

poisson or expmean, estat irr computes marginal treatment effects on the incidence-rate–ratio scale.

Let 𝑌𝑡𝑀𝑡′ be a shorthand for𝐸[𝑌𝑖(𝑡, 𝑀𝑖(𝑡′))]; the treatment effects on risk-ratio and incidence-rate–ratio

scales are ratios of potential-outcome means:

NIERR ≡ 𝑌1𝑀1
/𝑌1𝑀0

NDERR ≡ 𝑌1𝑀0
/𝑌0𝑀0

PNIERR ≡ 𝑌0𝑀1
/𝑌0𝑀0

TNDERR ≡ 𝑌1𝑀1
/𝑌0𝑀1

TERR ≡ 𝑌1𝑀1
/𝑌0𝑀0

For logit and probit outcome models, 𝑌𝑡𝑀𝑡′ are probabilities, and so the treatment effects on odds-ratio

scale are

NIEOR ≡ 𝑌1𝑀1
/(1 − 𝑌1𝑀1

)/{𝑌1𝑀0
/(1 − 𝑌1𝑀0

)}
NDEOR ≡ 𝑌1𝑀0

/(1 − 𝑌1𝑀0
)/{𝑌0𝑀0

/(1 − 𝑌0𝑀0
)}

PNIEOR ≡ 𝑌0𝑀1
/(1 − 𝑌0𝑀1

)/{𝑌0𝑀0
/(1 − 𝑌0𝑀0

)}
TNDEOR ≡ 𝑌1𝑀1

/(1 − 𝑌1𝑀1
)/{𝑌0𝑀1

/(1 − 𝑌0𝑀1
)}

TEOR ≡ 𝑌1𝑀1
/(1 − 𝑌1𝑀1

)/{𝑌0𝑀0
/(1 − 𝑌0𝑀0

)}

Notice that, with all three of these scales, the total effect is the product of direct and indirect effects,

rather than their sum.

CDEs use only the results of the outcome equation. Rather than having potential outcomes of the form

𝑌𝑖(𝑡, 𝑀𝑖(𝑡′)), here we have potential outcomes 𝑌𝑖(𝑡|𝑀𝑖 = 𝑚). That is, we have potential outcomes

for each treatment level 𝑡 that are evaluated at value 𝑚 of the mediator. CDE(m) then is the average

of the differences between potential outcomes. For binary treatment, CDE(m) is defined as 𝑌𝑖(1|𝑀𝑖 =
𝑚) − 𝑌𝑖(0|𝑀𝑖 = 𝑚). Letting 𝑌𝑡𝑚 be a shorthand for 𝑌𝑖(𝑡|𝑀𝑖 = 𝑚), we have that

CDE(m) ≡ 𝑌1𝑚 − 𝑌0𝑚

CDE(m)RR ≡ 𝑌1𝑚/𝑌0𝑚

CDE(m)IRR ≡ 𝑌1𝑚/𝑌0𝑚

CDE(m)OR ≡ 𝑌1𝑚/(1 − 𝑌1𝑚)/{𝑌0𝑚/(1 − 𝑌0𝑚)}
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Postestimation commands predict estat
Remarks and examples Stored results Also see

Postestimation commands
The following postestimation commands are of special interest after mediate:

Command Description

estat proportion proportion mediated

estat cde controlled direct effects

estat or effects on the odds-ratio scale

estat rr effects on the risk-ratio scale

estat irr effects on the incidence-rate–ratio scale

estat effectsplot effects plot

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations
of parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combina-
tions of parameters

predict treatment effects, conditional means, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predic-
tions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable (or variables) containing predictions such as treatment effects, con-

ditional means, linear predictions, and expected values.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]

[ , effect statistic tlevel(treat level) ]

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , po statistic polevels(t,t′) ]

predict [ type ] newvar [ if ] [ in ] [ , fitted statistic ]

effect statistic Description

Main

nie natural indirect effect; the default

nde natural direct effect

te total effect

pnie pure natural indirect effect

tnde total natural direct effect

ite indirect treatment effect; synonym for nie
dte direct treatment effect; synonym for nde
tte total treatment effect; synonym for te
itec indirect treatment effect with respect to controls; synonym for pnie
dtet direct treatment effect with respect to the treated; synonym for tnde

po statistic Description

Main

cmean conditional mean at treatment levels

fitted statistic Description

Main

xb linear prediction for outcome model

medxb linear prediction for mediator model

mu expected values for outcome model

medmu expected values for mediator model
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If you do not specify tlevel() and only specify one new variable, then effect statistics assume tlevel() specifies the
first noncontrol treatment level. You specify one or 𝑡 − 1 new variables with effect statistic, where 𝑡 is the number of
treatment levels.

If you do not specify polevels() and only specify one new variable, then polevels(c,c) is assumed, where c is the control
group. You specify one or d new variables with cmean, where d is the number of potential outcomes.

You specify one new variable with fitted statistic.

Options for predict

� � �
Main �

nie, the default, calculates the natural indirect effect for each noncontrol treatment level or for the treat-

ment level specified in tlevel(). If you specify the tlevel() option, you must specify only one

new variable; otherwise, you must specify a new variable for each treatment level (except the control

level).

nde calculates the natural direct effect for each noncontrol treatment level or for the treatment level

specified in tlevel(). If you specify the tlevel() option, you must specify only one new variable;

otherwise, you must specify a new variable for each treatment level (except the control level).

te calculates the total effect for each noncontrol treatment level or for the treatment level specified in

tlevel(). If you specify the tlevel() option, you must specify only one new variable; otherwise,

you must specify a new variable for each treatment level (except the control level).

pnie calculates the pure natural indirect effect for each noncontrol treatment level or for the treatment

level specified in tlevel(). If you specify the tlevel() option, you must specify only one new

variable; otherwise, you must specify a new variable for each treatment level (except the control

level).

tnde calculates the total natural direct effect for each noncontrol treatment level or for the treatment level

specified in tlevel(). If you specify the tlevel() option, you must specify only one new variable;

otherwise, you must specify a new variable for each treatment level (except the control level).

ite calculates the indirect treatment effect for each noncontrol treatment level or for the treatment level

specified in tlevel(). If you specify the tlevel() option, you must specify only one new variable;

otherwise, you must specify a new variable for each treatment level (except the control level).

dte calculates the direct treatment effect for each noncontrol treatment level or for the treatment level

specified in tlevel(). If you specify the tlevel() option, you must specify only one new variable;

otherwise, you must specify a new variable for each treatment level (except the control level).

tte calculates the total treatment effect for each noncontrol treatment level or for the treatment level

specified in tlevel(). If you specify the tlevel() option, you must specify only one new variable;

otherwise, you must specify a new variable for each treatment level (except the control level).

itec calculates the indirect treatment effect with respect to controls for each noncontrol treatment level

or for the treatment level specified in tlevel(). If you specify the tlevel() option, you must

specify only one new variable; otherwise, you must specify a new variable for each treatment level

(except the control level).
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dtet calculates the direct treatment effect with respect to the treated for each noncontrol treatment level

or for the treatment level specified in tlevel(). If you specify the tlevel() option, you must

specify only one new variable; otherwise, you must specify a new variable for each treatment level

(except the control level).

tlevel(treat level) specifies the treatment level for prediction.

cmean calculates the conditional mean for each potential outcome 𝑌 (𝑡, 𝑀(𝑡′)) or the potential outcome

specified in polevels(). If you specify the polevels() option, you must specify only one new

variable; otherwise, you must specify a new variable for each potential outcome.

polevels(t,t′) specifies the values of the treatment for which potential outcomes are to be calculated.

The first value, t, refers to the value that the treatment is set to in the outcome equation; the second

value, t′, refers to the value of the treatment in the mediator equation.

xb calculates the linear prediction for the outcome model.

medxb calculates the linear prediction for the mediator model.

mu calculates the expected values of the dependent variable of the outcome model.

medmu calculates the expected values of the dependent variable of the mediator model.
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estat

Description for estat
estat proportion calculates the indirect effect as a proportion of the total effect.

estat cde calculates controlled direct effects.

estat or calculates effects on the odds-ratio scale after mediatewith the logit or probit outcome

model.

estat rr calculates effects on the risk-ratio scale after mediate with the logit or probit outcome

model.

estat irr calculates effects on the incidence-rate–ratio scale after mediate with the poisson or

expmean outcome model.

estat effectsplot plots the estimated effects. Typically, this is useful if there are more than two

treatment groups in the case of a multivalued treatment or if a continuous treatment is evaluated at more

than two points. By default, estat effectsplot plots the effects estimated in the previous mediate
command.

Menu for estat
Statistics > Postestimation

Syntax for estat
Proportion mediated

estat proportion [ , prop options ]

Controlled direct effects

estat cde, mvalue(numlist) [ cde options ]

Effects on the odds-ratio scale

estat or [ , scale options ]

Effects on the risk-ratio scale

estat rr [ , scale options ]

Effects on the incidence-rate–ratio scale

estat irr [ , scale options ]

Effects plot

estat effectsplot [ , effectsplot options ]
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prop options Description

level(#) set confidence level; default is level(95)
percent display percentage instead of proportion

force force calculations to proceed in case of conflicting signs

nolegend suppress table legend

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

cde options Description

∗ mvalue(numlist) value of the mediator variable

rr controlled direct effect on risk-ratio scale

or controlled direct effect on odds-ratio scale

irr controlled direct effect on incidence-rate–ratio scale

level(#) set confidence level; default is level(95)
contrast differences of controlled direct effects

nolegend suppress table legend

atmeans controlled direct effect at the means of covariates

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

* mvalue(numlist) is required.

scale options Description

level(#) set confidence level; default is level(95)
nolegend suppress table legend

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

estat or, estat rr, and estat irr require estimation of potential-outcome means with mediate.
If no potential-outcome means were estimated, estat or, estat rr, and estat irrwill refit the model in the background;

the reestimation does not affect the results, but computation takes longer.
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effectsplot options Description

When mediate had Pearl’s labeling of effects

nie plot natural indirect effects

nde plot natural direct effects

te plot total effects

pnie plot pure natural indirect effects

tnde plot total natural direct effects

When mediate had ATE labeling of effects

aite plot average indirect treatment effects

adte plot average direct treatment effects

ate plot average treatment effects

aitec plot average indirect treatment effects with respect to controls

adtet plot average direct treatment effects with respect to the treated

Main

noci do not plot confidence intervals

Plot

plot options affect rendition of all effect plots

plot#opts(plot options) affect rendition of #th effect plot

recast(plottype) plot effects using plottype

CI plot

ciopts(rcap options) affect rendition of confidence intervals

ci#opts(rcap options) affect rendition of #th confidence interval plot

recastci(plottype) plot confidence intervals using plottype

level(#) set confidence level; default is level(95)

Add plots

addplot(plot) add other plots to the graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

plot options Description

marker options change look of markers (color, size, etc.)

marker label options add marker labels; change look or position

cline options change look of the line
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Options for estat proportion
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

percent specifies to calculate percentages. By default, estat proportion calculates proportions.

force forces calculations to proceed in case of conflicting signs. By default, estat proportion issues
an error message if opposite signs among indirect, direct, and total effects are detected. In that case,

the result is typically not interpretable in a meaningful way.

nolegend suppresses the display of the table legend.

display options: noci, nopvalues, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat cde
mvalue(numlist) specifies the value of the mediator variable at which to evaluate the controlled direct

effect. If the causal mediation model contained a continuous treatment variable, only a single value

may be specified. mvalue() is required.

rr specifies to calculate controlled direct effect on the risk-ratio scale after mediate with the logit or

probit outcome model.

or specifies to calculate controlled direct effect on the odds-ratio scale after mediate with the logit or
probit outcome model.

irr specifies to calculate controlled direct effect on the incidence-rate–ratio scale after mediate with

the poisson or expmean outcome model.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

contrast specifies to calculate differences of controlled direct effects between evaluations at different

points of the mediator, where the base effect is the one defined by the first value in mvalue(); this
option requires at least two evaluation points to be specified in mvalue().

nolegend suppresses the display of the table legend.

atmeans specifies to evaluate the controlled direct effect at the means of covariates. By default, the

counterfactual predictions are averaged over the covariates.

display options: noci, nopvalues, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.

Options for estat or, estat rr, and estat irr
level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

nolegend suppresses the display of the table legend.

display options: noci, nopvalues, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt),
pformat(% fmt), sformat(% fmt), and nolstretch; see [R] Estimation options.
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Options for estat effectsplot
nie, nde, te, pnie, tnde, aite, adte, ate, aitec, and adtet specify to plot the respective treatment

effects. For these effects to be plotted, they must be part of the model estimates. By default, estat
effectsplot plots the effects estimated in the previous mediate command.

� � �
Main �

noci removes plots of the pointwise confidence intervals. The default is to plot the confidence intervals.

� � �
Plot �

plot options affects the rendition of all effect plots. The plot options can affect the size and color of

markers, whether and how the markers are labeled, and whether and how the points are connected;

see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

These settings may be overridden for specific plots by using the plot#opts() option.

plot#opts(plot options) affects the rendition of the #th effect plot. The plot options can affect the

size and color of markers, whether and how the markers are labeled, and whether and how the points

are connected; see [G-3] marker options, [G-3] marker label options, and [G-3] cline options.

recast(plottype) specifies that effects be plotted using plottype. plottype may be scatter, line,
connected, bar, area, spike, dropline, or dot; see [G-2] graph twoway. When recast()
is specified, the plot-rendition options appropriate to the specified plottype may be used in lieu of

plot options. For details on those options, follow the appropriate link from [G-2] graph twoway.

� � �
CI plot �

ciopts(rcap options) affects the rendition of confidence intervals; see [G-3] rcap options.

These settings may be overridden for specific confidence interval plots with the ci#opts() option.

ci#opts(rcap options) affects the rendition of the #th confidence interval; see [G-3] rcap options.

recastci(plottype) specifies that confidence intervals be plotted using plottype. plottype may be

rarea, rbar, rspike, rcap, rcapsym, rline, rconnected, or rscatter; see [G-2] graph twoway.
When recastci() is specified, the plot-rendition options appropriate to the specified plottypemay be

used in lieu of rcap options. For details on those options, follow the appropriate link from [G-2] graph

twoway.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The default is

level(95) or as set by set level; see [U] 20.8 Specifying the width of confidence intervals.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph; see [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).
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Remarks and examples
Below we provide examples for predict. To see an example of estat proportion, see A sim-

ple causal mediation model in [CAUSAL] mediate. To see an example of estat cde, see Estimating

controlled direct effects in [CAUSAL] mediate. To see an example of estat effectsplot, see Causal
mediation model with continuous treatment in [CAUSAL]mediate. An example of estat rr and estat
or is shown in Estimating treatment effects on different scales in [CAUSAL] mediate.

Example 1: Predicting individual-level direct, indirect, and total effects
We can use predict to make a variety of predictions from the fitted mediation model, such as

individual-level direct, indirect, and total effects; potential outcomes; and linear predictions and expected

values of the outcome and mediator. Suppose we have the following mediation model with binary out-

come and binary mediator:

. use https://www.stata-press.com/data/r19/wellbeing
(Fictional well-being data)
. mediate (bwellbeing age gender i.hstatus basewell, logit)
> (bbonotonin, logit)
> (exercise)
Iteration 0: EE criterion = 8.253e-18
Iteration 1: EE criterion = 6.067e-33
Causal mediation analysis Number of obs = 2,000
Outcome model: Logit
Mediator model: Logit
Mediator variable: bbonotonin
Treatment type: Binary

Robust
bwellbeing Coefficient std. err. z P>|z| [95% conf. interval]

NIE
exercise

(Exercise
vs

Control) .1052971 .0170666 6.17 0.000 .0718472 .1387471

NDE
exercise

(Exercise
vs

Control) .1524917 .0208284 7.32 0.000 .1116689 .1933146

TE
exercise

(Exercise
vs

Control) .2577889 .0143 18.03 0.000 .2297613 .2858164

Note: Outcome equation includes treatment--mediator interaction.

Using predict without options yields estimated individual-level natural indirect effects:

. predict nie
(option nie assumed; natural indirect effect)
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We could go ahead and predict individual-level direct and total effects by using options nde and te,
respectively:

. predict nde, nde

. predict te, te

Here is an excerpt from the data showing the predicted effects for five individuals:

. list nie nde te in 1/5

nie nde te

1. .0504899 .2496191 .3001091
2. .1693522 .1037404 .2730926
3. .2145208 .3612216 .5757424
4. .0265223 .1576028 .1841251
5. .2005004 .3735286 .574029

We can see that the indirect and direct effects sum to the total effect for each individual. The differences

in effects between individuals are due to their differences in covariates. Had we fit the model without

covariates, the predicted effects would be constant over the sample.

If we look at the sample means of the newly generated variables nie, nde, and te, we can see that

their averages match the estimates from mediate for NIE, NDE, and TE, respectively:

. summarize nie nde te
Variable Obs Mean Std. dev. Min Max

nie 2,000 .1052971 .0883299 .000014 .2529227
nde 2,000 .1524917 .1354418 .0001044 .3877526
te 2,000 .2577889 .2037248 .0001184 .5757825

Example 2: Predicting potential outcomes
In addition to individual-level effects, we can also predict individual-level potential outcomes by using

the cmean option. By default, predict with cmean will compute the potential outcomes for the control

level of the treatment variable. For example, if the treatment variable is binary and takes on the values 0

and 1, where 0 is the control level, we will predict potential outcomes 𝑌𝑖[0, 𝑀𝑖(0)]:
. predict po_y0m0, cmean

Wecan also target other potential outcomes by using the polevels() option. For instance, to compute

potential outcomes 𝑌𝑖[1, 𝑀𝑖(0)], we specify option polevels(1,0):
. predict po_y1m0, cmean polevels(1,0)

If we wish to predict all potential outcomes at once, we can use the stub* notation:

. predict po_*, cmean
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In this case, there are four potential outcomes available, so Stata creates four new variables. Using

describe, we can also see that the new variables are labeled according to the estimated potential out-

come:

. describe po_?
Variable Storage Display Value

name type format label Variable label

po_1 float %9.0g Conditional mean, Y[0,M(0)]
po_2 float %9.0g Conditional mean, Y[1,M(0)]
po_3 float %9.0g Conditional mean, Y[0,M(1)]
po_4 float %9.0g Conditional mean, Y[1,M(1)]

Stored results
estat proportion stores the following results in r():

Scalars

r(N) number of observations

Macros

r(title) title in estimation output

Matrices

r(b) vector of estimated proportions or percentages

r(V) variance–covariance matrix of the estimates

r(table) matrix containing the estimates with their standard errors, test statistics, 𝑝-values, and confidence
intervals

estat cde stores the following results in r():

Scalars

r(N) number of observations

Macros

r(title) title in estimation output

Matrices

r(b) vector of estimated controlled direct effects or their contrasts

r(V) variance–covariance matrix of the estimates

r(table) matrix containing the estimates with their standard errors, test statistics, 𝑝-values, and confidence
intervals

estat or, estat rr, and estat irr store the following results in r():

Scalars

r(N) number of observations

r(level) confidence level

Matrices

r(b) vector of transformed treatment effects (log scale)

r(V) variance–covariance matrix of the estimates

r(table) matrix containing the estimates with their standard errors, test statistics, 𝑝-values, and confidence
intervals

Also see
[CAUSAL] mediate — Causal mediation analysis

[U] 20 Estimation and postestimation commands
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Description
stteffects estimates average treatment effects, average treatment effects on the treated, and

potential-outcome means using observational survival-time data. The available estimators are regression

adjustment, inverse-probability weighting, and more efficient methods that combine regression adjust-

ment and inverse-probability weighting.

For a brief description and example of each estimator, see Remarks and examples in [CAUSAL] sttef-

fects intro.

Syntax
stteffects subcommand . . . [ , options ]

subcommand Description

ra regression adjustment

ipw inverse-probability weighting

ipwra inverse-probability-weighted regression adjustment

wra weighted regression adjustment

Also see
[CAUSAL] stteffects intro — Introduction to treatment effects for observational survival-time data
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Description Remarks and examples Acknowledgments References Also see

Description
This entry provides an overview of the treatment-effects estimators that use observational survival-

time data and are implemented in stteffects. It also provides an overview of the potential-outcomes

framework and its application to survival-time data and to the interpretation of the treatment-effects

parameters estimated.

The stteffects command estimates average treatment effects (ATEs), average treatment effects on

the treated (ATETs), and potential-outcome means (POMs). Each of these effect parameters is discussed

in this entry. stteffects implements a variety of estimators for theATE,ATET, and POM. The treatment

effects can be estimated using regression adjustment (RA), inverse-probability weights (IPW), inverse-

probability-weighted regression adjustment (IPWRA), and weighted regression adjustment (WRA). This

entry also provides some intuition for the estimators and discusses the tradeoffs between them.

Remarks and examples
Remarks are presented under the following headings:

Introduction
A quick tour of the estimators

Regression adjustment
Inverse-probability weighting
Combinations of RA and IPW
Weighted regression adjustment

Average treatment effect on the treated
Comparison of treatment-effects estimators
Assumptions and tradeoffs

The conditional independence assumption
The sufficient overlap assumption
The correct adjustment for censoring assumption
Assumptions for the ATET

Specification diagnostics and tests
Multivalued treatments

Introduction
The stteffects command estimates treatment effects using observational survival-time data.

For some intuition about the methods implemented in the stteffects command, consider the fol-

lowing question: Does smoking decrease the time to a second heart attack in the population of women

aged 45–55 who have had one heart attack? Three aspects of this question stand out.

1. For ethical reasons, these data will be observational.

2. This question is about the time to an event, and such data are commonly known as survival-time

data or time-to-event data. These data are nonnegative and, frequently, right-censored.

3. Many researchers and practitioners want an effect estimate in easy-to-understand units of time.

Aspect 1 is one of the most common reasons for using observational data, and aspect 2 focuses interest

on survival-time data.
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We are most concerned with aspect 3 because it helps us define and understand the effect of interest.

In particular, we would like to know the average change in time to a second heart attack that would occur

in the population if all women smoked instead of if no women smoked. This effect is an ATE.

We must solve a missing-data problem to estimate the ATE. The ATE is the population average of the

contrast in outcomes when everyone gets the treatment and when no one gets the treatment. Formally,

we write this as

ATE = 𝐸(𝑡1 − 𝑡0)

where 𝑡1 is the survival time when a subject gets the treatment and 𝑡0 is the survival time when a subject

does not get the treatment. For each treatment level, there is a potential outcome that would be observed

if a subject received that treatment level: 𝑡1 is the potential outcome that would occur if someone gets

the treatment and 𝑡0 is the potential outcome that would occur if someone does not get the treatment. The

missing-data problem arises because each subject receives only one treatment level, and so we observe

only one of the two potential outcomes.

Much of the survival-time literature uses a hazard ratio as the effect of interest. The ATE has three

advantages over the hazard ratio as an effect measure.

1. The ATE measures the effect in the same time units as the outcome instead of in relative condi-

tional probabilities.

2. The ATE is much easier to explain to nontechnical audiences.

3. The models used to estimate the ATE can be much more flexible. Hazard ratios are useful for

population effects when they are constant, which occurs when the treatment enters linearly and

the distribution of the outcome has a proportional-hazards form. Neither linearity in treatment

nor proportional-hazards form is required for the ATE, and neither is imposed on the models fit

by the estimators implemented in stteffects.

The estimators implemented in stteffects use the common missing-data techniques of regression

modeling, weighting, and combinations thereof to account for data lost to censoring and to unobserved

potential outcomes.

Here we note only a few contributions and entry points to the vast literature on estimating ATEs.

The use of potential outcomes to define treatment effects has proved extraordinarily useful; see Holland

(1986), Rubin (1974), and Heckman (1997). Cameron and Trivedi (2005, chap. 25), Wooldridge (2010,

chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating

ATEs.

Technical note
Left-truncation would be another type of missing data. The estimators implemented in stteffects

do not adjust for left-truncation, so stteffects cannot be used with delayed-entry data.

stteffects cannot be used with time-varying covariates or multiple-record data because these add

a repeated-measure structure that significantly complicates the estimation problem.

A quick tour of the estimators
The stteffects command implements five estimators of treatment effects. We introduce each one

by showing the basic syntax used to apply it to a common example dataset. See each command’s entry

for detailed information.
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We have some fictional data on the time to a second heart attack among women aged 45–55 years.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain each woman’s

age at the time of her first heart attack (age), and indices of her exercise level (exercise), diet quality
(diet), and education attainment (education) prior to her first heart attack.

Like streg and other survival-time commands, stteffects uses the outcome variable and the failure

indicator computed by stset. In this dataset, atime is the observed time in years to the second heart

attack, and fail is the 0/1 indicator that a second heart attack was observed and recorded in atime.
(When fail is 1, atime records the time to the second attack; when fail is 0, atime records a censored
observation of the time to the second attack.)

We begin our examples by first reading in the data and then specifying the raw outcome and failure

variables to stset.
. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stset atime, failure(fail)
Survival-time data settings

Failure event: fail!=0 & fail<.
Observed time interval: (0, atime]

Exit on or before: failure

2,000 total observations
0 exclusions

2,000 observations remaining, representing
1,208 failures in single-record/single-failure data

3,795.226 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 34.17743

The output indicates that 1,208 of the 2,000 observations record actual time to a second heart attack.

The remaining observations were censored. Now that we have stset the data, we can use stteffects.

Regression adjustment

Regression modeling of the outcome variable is a venerable approach to solving the missing-data

problem in treatment-effects estimation. Known as the regression-adjustment (RA) estimator, this method

uses averages of predicted outcomes to estimate the ATE. If the outcome model is well specified, this

approach is surprisingly robust.
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Example 1: RA estimation
We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of age,

exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.302e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When all women in the population smoke, the average time to a second heart attack is estimated to be

1.96 years less than when no women smoke. The estimated average time to a second heart attack when

no women smoke is 4.24 years.

The output reports that a Weibull model was used for the outcome. The other outcome models avail-

able are exponential, gamma, and log normal. See example 2 in [CAUSAL] stteffects ra for an application

of the gamma parameterization to this model.

The ratio of the ATE to control-level POM measures the importance of the effect. In this example,

when all women smoke, the time to a second heart attack falls by an estimated 46% relative to the case

in which none of them smoke. See example 3 in [CAUSAL] stteffects ra for an example that uses nlcom
to compute a point estimate and a confidence interval for this ratio.

Unlike the IPW estimator discussed in the next section, RA does not model treatment assignment or

the censoring process. Treatment assignment is handled by fitting separate models for each treatment

level and averaging the predicted outcomes. As is standard in the survival-time literature, the censoring

term in the log-likelihood function accounts for censoring; see Kalbfleisch and Prentice (2002, chap. 3),

Cameron and Trivedi (2005, chap. 17), Cleves, Gould, and Marchenko (2016, chap. 13), andWooldridge

(2010, chap. 22).

See [CAUSAL] stteffects ra for further discussion of this command and the RA estimator.
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Inverse-probability weighting

Sometimes researchers are more comfortable modeling treatment assignment than the outcome.

Inverse-probability-weighted (IPW) estimators use weighted averages of the observed outcome to es-

timate the POMs and the ATE. The weights correct for the missing data. When there is no censoring, the

missing potential outcome is the only missing data, and the weights are constructed from a model of

treatment assignment. When the data may be censored, the weights must control for censoring and the

missing potential outcome. In this case, IPW estimators construct the weights from two models, one for

the censoring time and one for treatment assignment.

Example 2: IPW estimation
Here we use stteffects ipw to estimate the effect of smoking on the time to a second heart attack.

The model of assignment to the treatment smoke depends on age, exercise, diet, and education.
The time-to-censoring model also depends on age, exercise, diet, and education.

. stteffects ipw (smoke age exercise diet education)
> (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 2.488e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.187297 .6319837 -3.46 0.001 -3.425962 -.9486314

POmean
smoke

Nonsmoker 4.225331 .517501 8.16 0.000 3.211047 5.239614

When all women in the population smoke, the average time to a second heart attack is estimated to be

2.19 years less than when no women smoke. The estimated average time to a second heart attack when

no women smoke is 4.23 years. When all women smoke, the average time to a second heart attack falls

by an estimated 52% relative to the case when no women smoke.

The estimates have changed; however, the interpretation is the same as for the RA estimator because

the IPW and RA estimators are estimating the same population effects. Under correct model specification,

the estimates will differ in finite samples, but the size of these differences will decrease as the sample

size gets larger. For the case at hand, the estimated ATE and control-level POM are roughly similar to

those produced by the RA estimator using the Weibull model for the outcome.
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Recall that IPW estimators are weighted averages of observed outcomes and that the weights control

for the missing outcomes. Weights in survival-time data have two components: one for the missing

potential outcome and one for data lost to censoring. We used a logit model for treatment assignment, so

the component of the weights that controls for the missing potential outcome comes from the estimated

logit parameters. We used a Weibull model for the time to censoring, so the component of the weights

that controls for data lost to censoring comes from the estimated Weibull parameters.

Using weighting from an estimated treatment-assignment model to control for the missing potential

outcome is standard in the treatment-effects literature; for example, see [CAUSAL] teffects intro ad-

vanced, Wooldridge (2010, chap. 21), Vittinghoff et al. (2012, chap. 9), Hirano, Imbens, and Ridder

(2003), Cattaneo (2010), and Cattaneo, Drukker, and Holland (2013). Modeling the time to censoring is

specific to the survival-time treatment-effects literature; see Bai, Tsiatis, and O’Brien (2013) and Robins

and Rotnitzky (2006). See Methods and formulas in [CAUSAL] stteffects ipwra for more details.

See [CAUSAL] stteffects ipw for further discussion of this command and the IPW estimator.

Combinations of RA and IPW

More efficient estimators are obtained by combining IPW and RA, due to Wooldridge (2007) and

Wooldridge (2010, chap. 21) and denoted by IPWRA. Unlike the estimators discussed in Wooldridge

(2010, chap. 21), both the treatment and the outcome models must be correctly specified to estimate the

ATE.

The IPWRA estimator uses estimated weights that control for missing data to obtain missingness-

adjusted regression coefficients that are used to compute averages of predicted outcomes to estimate the

POMs. The estimated ATE is a contrast of the estimated POMs. These weights always involve a model

for treatment assignment. You choose whether to account for censoring by including a term in the log-

likelihood function or whether to use weights that also account for the data lost to censoring.
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Example 3: Likelihood-adjusted-censoring IPWRA estimation
We model the outcome (time to a second heart attack) as a function of age, exercise, diet, and

education. We model assignment to the treatment smoke as a function of the same covariates.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 6.476e-15
Iteration 1: EE criterion = 1.097e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.592494 .4872777 -3.27 0.001 -2.54754 -.637447

POmean
smoke

Nonsmoker 4.214523 .2600165 16.21 0.000 3.7049 4.724146

The estimatedATE of −1.59 and control-level POM of 4.21 are similar to the reported values of −1.96

and 4.24 in example 1.

We did not specify a model for the time to censoring, so censoring is handled by including a term in

the log-likelihood function in theWeibull outcome model. We denote this likelihood-adjusted-censoring

(LAC) version of the IPWRA estimator by LAC-IPWRA.
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Example 4: Weighted-adjusted-censoring IPWRA estimation
Instead of including a term in the log-likelihood function, the weighted-adjusted-censoring IPWRA

(WAC-IPWRA) estimator uses estimated weights to adjust for censoring. We model the time to a second

heart attack as a function of age, exercise, diet, and education; we model assignment to the treat-

ment smoke as a function of the same covariates; and we model the time to censoring as a function of

age, exercise, and diet.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education) (age exercise diet)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.797e-13
Iteration 1: EE criterion = 2.021e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.037944 .6032549 -3.38 0.001 -3.220302 -.855586

POmean
smoke

Nonsmoker 4.14284 .4811052 8.61 0.000 3.199891 5.085789

The estimatedATE of −2.04 and control-level POM of 4.14 are similar to the reported values of −1.96

and 4.24 in example 1.

The weights for censoring are constructed from the estimated parameters because we specified a time-

to-censoring model.

Under correct specification, both versions of the IPWRA estimator estimate the same ATE and control-

level POM as estimated by RA and IPW.

The addition of the time-to-censoring model makes the WAC-IPWRA somewhat less robust than the

LAC-IPWRA estimator. Weighting methods to control for censoring also place more restrictive assump-

tions on the censoring process. For example, the censoring time must be random, otherwise it would

be impossible to construct the weights. In Assumptions and tradeoffs below, we discuss the tradeoffs

among the estimators and the assumptions that each requires. For the moment, we note that we believe

the LAC-IPWRA estimator is more robust than theWAC-IPWRA estimator.

See [CAUSAL] stteffects ipwra for further discussion of this command and the IPWRA estimator.
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Weighted regression adjustment

When estimating the parameters of an outcome model, the weighted regression-adjustment (WRA)

estimator uses weights instead of a term in the log-likelihood function to adjust for censoring. These

weights are constructed from a model for the censoring process. The estimated parameters are sub-

sequently used to compute averages of predicted outcomes that estimate the POMs. A contrast of the

estimated POMs estimates the ATE.

Example 5: WRA estimation
Wemodel the time to a second heart attack as a function of age, exercise, diet, and education; we

specify that smoke is the treatment; and we model the time to censoring as a function of age, exercise,
and diet.

. stteffects wra (age exercise diet education) (smoke) (age exercise diet)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 7.116e-15
Iteration 1: EE criterion = 5.984e-27
Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.152014 .4986005 -4.32 0.000 -3.129253 -1.174775

POmean
smoke

Nonsmoker 4.079273 .4379517 9.31 0.000 3.220903 4.937642

The estimatedATE of −2.15 and control-level POM of 4.08 are similar to the reported values of −1.96

and 4.24 in example 1. Like the other estimators discussed, theWRA estimators estimate the same effect

parameters as the RA estimator, so the interpretation is the same.

In many survival-time applications, using weights to adjust for censoring is probably less robust than

just including a term in the log-likelihood function for the outcome model. The model used to construct

the weights is just as complicated as the outcome model, and including the term in the log-likelihood

function places fewer restrictions on the censoring process, as discussed in The correct adjustment for

censoring assumption below.

See [CAUSAL] stteffects wra for further discussion of this command and theWRA estimator.
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Average treatment effect on the treated
Intuitively, the average treatment effect on the treated (ATET) is the effect in a well-defined, at-risk

subpopulation. Sometimes the subpopulation that gets the treatment defines such an at-risk subpopula-

tion. For example, we may want to know the average change in time to a second heart attack among

female smokers aged 45–55 who have had a heart attack if they all became nonsmokers. This effect is

the ATET.

Below, we use stteffects ra to estimate the ATET by RA.

. stteffects ra (age exercise diet education) (smoke), atet
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.985e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602

POmean
smoke

Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

Now, all effects are calculated only for the subpopulation of women aged 45–55 years who smoke

after their first heart attack. If no women in the subpopulation were to smoke, the average time to a second

heart attack would be 3.44 years. When all women in the subpopulation smoke (the observed behavior),

the average time to a second heart attack is estimated to be 1.53 years less than if no women in the

subpopulation had smoked. In other words, if we could somehow turn all smokers in the subpopulation

into nonsmokers, the average time to a second heart attack would be 3.44 years instead of 1.91 years

(3.44 − 1.53 = 1.91).

These point estimates are a little different than those for the ATE and the control-level POM in the full

population of women aged 45–55 years who have had one heart attack. The difference indicates that this

particular health cost of smoking may be smaller among women who choose to smoke than in the full

population.

Comparison of treatment-effects estimators
We can classify the estimators implemented in stteffects into five categories: 1) estimators based

on a model for the outcome variable; 2) estimators based on models for the treatment assignment and the

censoring time; 3) estimators based on models for the outcome variable and the treatment assignment;

4) estimators based on models for the outcome variable, the treatment assignment, and the censoring

time; and 5) estimators based on models for the outcome variable and the censoring time.



stteffects intro — Introduction to treatment effects for observational survival-time data 339

Because there are several categories of estimators, the user must decide whether tomodel the outcome,

the probability of treatment, the time to censoring, or some combination thereof.

Each category of estimator contains a variety of choices about the functional forms for the models.

We now provide some intuition behind each category of estimator and discuss the relationships.

1. When modeling only the outcome, separate outcome models for each treatment level account

for treatment assignment, and censoring is adjusted for in the log-likelihood function. This

approach is used in the RA estimators.

2. Some researchers would rather avoid modeling the outcome. Some estimators use weighted

averages of the observed outcome to estimate the effect. When estimating treatment effects

from observational survival-time data, the weights used must account for treatment assignment

and censoring. Models for treatment assignment and time to censoring are used to construct

the weights. This approach is used in the IPW estimators.

3. When seeking a more efficient estimator, it is natural to model both the outcome and the treat-

ment and to adjust for censoring in the outcomemodel. This approach is used in the LAC-IPWRA

estimators.

4. When seeking a more efficient estimator, another natural approach is to model both the outcome

and the treatment and to adjust for censoring by weights that come from a time-to-censoring

model. This approach is used in theWAC-IPWRA estimators.

5. We could modify approach 1 to model the outcome and the time to censoring so that censoring

is handled by weighting and its own model instead of by likelihood adjustment. This approach

is used in theWRA estimators.

While researcher preferences over what to model largely dictate the approach selected, we quickly

note two points that could affect which approach works best. First, we can adjust for censoring by

weighting only when censoring time is random. Second, weighting estimators become unstable if the

weights get too large.

In the next section, we elaborate on the assumptions needed and the tradeoffs among the approaches

to estimation.

Assumptions and tradeoffs
The estimators implemented in stteffects require three assumptions: conditional independence,

sufficient overlap, and correct adjustment for censoring.

The conditional independence assumption

All estimators implemented in stteffects require the potential outcomes to be independent of the

treatment assignment after conditioning on the covariates. Randomized experiments and the Heckman

selection model are two motivating frameworks for the conditional independence assumption.

When the treatment is assigned randomly, the randomization ensures that the potential outcomes are

independent of the treatment assignment. In observational data, the treatment is not randomly assigned.

However, many important questions can only be answered using observational data because it would

be unethical to randomly allocate hazardous treatments, for example, smoking. The conditional inde-

pendence assumption in observational data says that treatment assignment is as good as random after

conditioning on the covariates.
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We can also understand conditional independence from a modeling framework. The Heckman se-

lection model specifies that each of the potential outcomes and the treatment assignment process are

functions of observable covariates and unobservable errors. The potential outcomes are conditionally

independent of the treatment assignment when the unobservable errors in the treatment-assignment pro-

cess are independent of the unobservable errors in each of the potential-outcome processes. See The CI

assumption in [CAUSAL] teffects intro advanced for a detailed example.

Both frameworks lead to the same conclusion: we need to observe and to condition on a sufficient

number of covariates.

Essentially, all the estimators in stteffects are equally susceptible to violations of the conditional

independence assumption. No one estimator is any more robust to the conditional independence assump-

tion than any other one.

Estimating the ATE among the subpopulation of those who get the treatment requires a significantly

weaker version of the CI assumption; see Assumptions for the ATET below.

For more details about the conditional independence assumption, see The CI assumption in

[CAUSAL] teffects intro advanced, and see Rosenbaum and Rubin (1983), Heckman (1997), Imbens

and Wooldridge (2009), Cameron and Trivedi (2005, sec. 25.2), Wooldridge (2010, chap. 21), and Vit-

tinghoff et al. (2012, chap. 9).

The sufficient overlap assumption

The sufficient overlap assumption requires that each individual have a sufficiently positive probability

of being assigned to each treatment level. We believe that the RA estimator is more robust than the other

estimators to near violations of the sufficient overlap condition, under correct model specification.

The overlap condition has no specification test, but using teoverlap and then summarizing the pre-

dicted treatment probabilities presents good diagnostics of overlap problems.

The correct adjustment for censoring assumption

The correct adjustment for censoring assumption has two parts. First, either the censoring time must

be fixed or the process must be conditionally-on-covariates independent of the potential outcomes and

the treatment-assignment process. This assumption is standard in survival analysis; see, for example,

Kalbfleisch and Prentice (2002, chap. 3).

Second, themethod used to adjust to censoringmust be correct. For the RAand LAC-IPWRAestimators,

which use likelihood-adjusted censoring, the second assumption is no more restrictive than assuming

correct specification of the outcome model. For the IPW,WAC-IPWRA, andWRA estimators, which adjust

by weighting, the second assumption requires that the censoring be random and that the censoring process

be correctly modeled.
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Under correct specification, all the estimators in stteffects perform well. However, we believe

that estimators that use likelihood adjustment instead of weighting are more robust for three reasons.

1. The estimators that use weighting to adjust for censoring cannot handle fixed censoring pro-

cesses. If the censoring process is not random, the weights are not well defined.

2. The estimators that use weighting to adjust for censoring do not allow the random censoring

process to vary by treatment level.

3. The estimators that use weighting to adjust for censoring require an additional sufficient overlap

condition: the probability of not being censored must be sufficiently greater than 0 or else the

weights that adjust for censoring get too large.

While the estimators that useWAC instead of LAC require a few more assumptions, some researchers

are more comfortable modeling the treatment and censoring than the outcome. In this case, the IPW or

WAC-IPWRA estimator would be the estimator of choice.

See Specification diagnostics and tests below for information about testing these assumptions.

Assumptions for the ATET

We noted in Average treatment effect on the treated that the ATET is sometimes more interesting than

the ATE. We can also estimate the ATET under less restrictive versions of the conditional independence

assumption and the sufficient overlap assumption than those required for the ATE.

While ATE estimation requires that the potential outcomes for both the treated and the not treated be

conditionally independent of treatment assignment, ATET estimation requires that only the not treated

potential outcome be conditionally independent of treatment assignment.

This weaker version of conditional independence allows the gains from the treatment to be related to

treatment assignment, after conditioning on the covariates. We can estimate the ATET, but not the ATE, if

some unobserved factor increases (or decreases) the likelihood of assignment to the treatment, increases

(or decreases) the time to event in the treatment group, and has no effect on the time to event when not

in the treatment group.

For example, suppose that smoking is an acquired taste and that individuals who acquire the taste for

smoking more easily are less adversely affected by smoking and otherwise similar to everyone else when

not smoking. Taste for smoking is unobservable, and our data have no measure of this variable. In this

case, we could estimate the ATET but not the ATE.

The weaker version of the sufficient overlap assumption only requires that each individual in the

treated subpopulation have a positive probability of not getting treated. In contrast, ATE estimation re-

quires that each individual in the population have a positive probability of getting each treatment level.

In particular, we can estimate the ATET, but not the ATE, when some individuals in the population have

zero chance of getting the treatment. For example, we could estimate the ATET, but not the ATE, if some

women will never smoke for religious reasons.

Even when the conditions forATE estimation hold, theATE andATETmay differ. Finding that theATET

is significantly different from the ATE does not mean that the ATE is incorrectly estimated.

See Heckman (1997) and Wooldridge (2010, 911–912) for more information about the assumptions

necessary to estimate the ATET.
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Specification diagnostics and tests
After stteffects ipw and stteffects ipwra, some specification checks for the treatment-

assignment model and the overlap condition are available.

The checks for the treatment-assignment model are known as balance checks. When the covariate

distributions are invariant to the treatment level, the covariates are said to be balanced. The concept

of balanced covariates comes from the experimental literature, in which random treatment assignment

ensures that the covariates are balanced.

In observational data, the covariates are almost never balanced in the raw data. Weightingmethods can

be viewed as using a treatment-assignment model to balance the covariates. If the treatment-assignment

model is well specified, the weights constructed from this model will balance the covariates. One of the

nice features of balance checks is that they do not depend on the outcome or its distribution. This fact

is especially useful for survival-time outcomes because censoring of the outcome has no effect on the

balance checks, so the balance checks implemented in tebalance work without modification.

Conditional on the treatment-assignment model being well specified, we can use the estimated prob-

abilities of treatment, known as the propensity scores, to look for signs that the overlap condition is

violated. These checks depend only on the estimated treatment probabilities and are not affected by any

censoring of the outcome, so the methods implemented in teoverlap work without modification.

We begin examining our model by using tebalance summarize after refitting the models used by

the LAC-IPWRA estimator.

. quietly stteffects ipwra (age exercise diet education)
> (smoke age exercise diet education)
. tebalance summarize
Covariate balance summary

Raw Weighted

Number of obs = 2,000 2,000.0
Treated obs = 738 994.1
Control obs = 1,262 1,005.9

Standardized differences Variance ratio
Raw Weighted Raw Weighted

age -.3122094 -.0184574 .8547308 .9370065
exercise -.4975269 -.0458412 .4966778 .8342339

diet -.2479756 .0021802 .7937645 1.095347
education -.4801442 -.0216366 .6015139 .978078

The weighted standardized differences are much closer to 0 than the raw standardized differences,

and the weighted variance ratios are much closer to 1 than the raw variance ratios. These results in-

dicate that the model-based treatment weights balanced the covariates; see [CAUSAL] tebalance and

[CAUSAL] tebalance summarize for details.
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The diagnostics presented by tebalance summarize are not a formal test. However, we can use

tebalance overid to conduct a formal test of the hypothesis that the weights constructed from the

treatment-assignment model balanced the covariates.

. tebalance overid
Iteration 0: Criterion = .22681884
Iteration 1: Criterion = .22692316 (backed up)
Iteration 2: Criterion = .23090157
Iteration 3: Criterion = .23114612
Iteration 4: Criterion = .23256286
Iteration 5: Criterion = .23286304
Iteration 6: Criterion = .23335857
Iteration 7: Criterion = .2335567
Iteration 8: Criterion = .2335671
Iteration 9: Criterion = .23356711
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(5) = 3.28142
Prob > chi2 = 0.6567

There is no significant evidence against the null hypothesis. The interpretation is that we do not reject

the null hypothesis that the treatment-assignment model is well specified; see [CAUSAL] tebalance and

[CAUSAL] tebalance overid for details.

Given that we do not reject the treatment-assignmentmodel, we can use thismodel to look for evidence

that the overlap condition is violated. We begin by using teoverlap.

. teoverlap, ptlevel(Smoker)

0

1

2

3

4

D
en

si
ty

0 .2 .4 .6
Propensity score for smoke = Smoker

smoke=Nonsmoker
smoke=Smoker

The densities of the propensity scores for the smokers and nonsmokers appear to have the same sup-

port, indicating that there is no violation of the overlap condition. The only indicator of a possible prob-

lem is that the support of the density for nonsmokers gets very close to 0. This problem would affectATE

estimation but not ATET estimation, as discussed in Assumptions and tradeoffs. To further investigate,

we compute and summarize the predicted propensity score by treatment level.
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. predict ps1, ps tlevel(Smoker)

. summarize ps1 if smoke == 0
Variable Obs Mean Std. dev. Min Max

ps1 1,262 .3410001 .1381673 .014819 .6161401
. summarize ps1 if smoke == 1

Variable Obs Mean Std. dev. Min Max

ps1 738 .4168805 .1107557 .0454891 .6216282

To interpret these results, recall that ATE estimation requires that the minimum propensity score for

each treatment level be sufficiently greater than 0 and that the maximum propensity score for each treat-

ment level be sufficiently less than 1. Also recall that ATET estimation only requires that the maximum

propensity score for each treatment level be sufficiently less than 1.

For ATE estimation, only the minimum predicted propensity score for nonsmokers presents a chal-

lenge, and 0.015 is probably not too small. For ATET estimation, neither maximum causes concern.

For information about choosing among the stteffects estimators and their functional forms for the

different models, see Model choice under Remarks and examples in [CAUSAL] teffects intro advanced.

Multivalued treatments
stteffects can estimate treatment effects for multivalued treatments; here we provide some exam-

ples. See [CAUSAL] teffects multivalued for an introduction to interpreting effects from multivalued

treatments.

Example 6: Multivalued ATE estimation
We have another fictional dataset that records the time to a second heart attack among women aged

45–55 years. In this dataset, atime is the observed time in years to the second heart attack, and fail
is the 0/1 indicator that a second heart attack was observed and recorded in atime. (When fail is 1,

atime records the time to the second attack; when fail is 0, atime records a censored observation of

the time to the second attack.)

These data also contain the age at the time of the first heart attack (age), and indices of each woman’s

exercise level (exercise), diet quality (diet), and education attainment (education) prior to her first
heart attack.

The treatment, smoking, is stored in the categorical variable smoke, which has the following value

labels. The women who never smoked are labeled as N; the women who previously smoked but quit

before their first heart attack are labeled as B; the women who previously smoked but quit after their first

heart attack are labeled as A; and the women who continued to smoke after their first heart attack are

labeled as S.
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We begin by first reading in the data and then reviewing information previously stored using stset.

. use https://www.stata-press.com/data/r19/sheartm, clear
(Time to second heart attack (fictional))
. stset
-> stset atime, failure(fail)
Survival-time data settings

Failure event: fail!=0 & fail<.
Observed time interval: (0, atime]

Exit on or before: failure

10,000 total observations
0 exclusions

10,000 observations remaining, representing
9,741 failures in single-record/single-failure data

27,999.155 total analysis time at risk and under observation
At risk from t = 0

Earliest observed entry t = 0
Last observed exit t = 17.40826

We continue by tabulating the treatment variable smoke.

. tabulate smoke
Smoking
level Freq. Percent Cum.

N 3,167 31.67 31.67
B 2,263 22.63 54.30
A 1,924 19.24 73.54
S 2,646 26.46 100.00

Total 10,000 100.00

We see that 31.67% of the women never smoked, 22.63% of the women previously smoked but quit

before their first heart attack, 19.24% of the women previously smoked but quit after their first heart

attack, and 26.46% of the women continued to smoke after their first heart attack.
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We now use stteffects ra to estimate the ATE by RA. We model the outcome as a function of age,
exercise, diet, and education, and we specify that smoke is the treatment variable.

. stteffects ra (age exercise diet education) (smoke)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.390e-20
Iteration 1: EE criterion = 1.375e-29
Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(B vs N) -.4129793 .0317 -13.03 0.000 -.47511 -.3508485
(A vs N) -1.281031 .032866 -38.98 0.000 -1.345447 -1.216614
(S vs N) -2.167359 .0338994 -63.93 0.000 -2.233801 -2.100917

POmean
smoke

N 3.745919 .0289014 129.61 0.000 3.689273 3.802565

The average time to a second heart attack is 0.41 years sooner when all the women smoked at some

point but quit before their first heart attack than when all the women never smoked. The average time to

a second heart attack is 1.28 years sooner when all the women smoked at some point but quit after their

first heart attack than when all the women never smoked. The average time to a second heart attack is

2.17 years sooner when all the women continued to smoke after their first heart attack than when all the

women never smoked.
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Example 7: Multivalued ATET estimation
In the at-risk subpopulation of women who continued to smoke, we want to estimate the effect of

continuing to smoke (S) versus quitting after the first heart attack (A). Below we estimate the ATETs by

RA, specifying A to be the control level and S to be the treatment level.

. stteffects ra (age exercise diet education) (smoke), atet control(A) tlevel(S)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.390e-20
Iteration 1: EE criterion = 1.372e-29
Survival treatment-effects estimation Number of obs = 10,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(N vs A) 1.290123 .0377552 34.17 0.000 1.216125 1.364122
(B vs A) .8748349 .0239595 36.51 0.000 .8278751 .9217946
(S vs A) -.8869257 .0272301 -32.57 0.000 -.9402958 -.8335557

POmean
smoke

A 2.500108 .0217833 114.77 0.000 2.457413 2.542802

The parameter (S vs A) is the one of interest. The estimate implies that the average time to a second

heart attack among women who continue to smoke is 0.89 years sooner when they all continue to smoke

than when they all quit smoking after their first heart attack.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
stteffects ipw estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with

random time to censoring. Estimation is by inverse-probability weighting (IPW). IPW estimators use

weighted averages of the observed outcome. The estimated weights correct for missing data on the po-

tential outcomes and for censored survival times. stteffects ipw offers several choices for the func-

tional forms of the treatment model and the time-to-censoring model. Binary and multivalued treatments

are accommodated.

See [CAUSAL] stteffects intro for an overview of estimating treatment effects from observational

survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treat2 on time by IPW using a logistic model of treat2 on x and w and using x and w in
a Weibull model for the censoring time

stteffects ipw (treat2 x w) (x w)

Same as above, but estimate the ATET

stteffects ipw (treat2 x w) (x w), atet

ATE of treat2 on time by IPW using a probit model of treat2 on x and w and using x and w in a gamma

model for the censoring time

stteffects ipw (treat2 x w, probit) (x w, gamma)

ATE for treatment levels 2 and 3 of three-valued treatment treat3
stteffects ipw (treat3 x w) (x w)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

stteffects ipw (treat3 x w) (x w), control(”MyControl”)

Menu
Statistics > Causal inference/treatment effects > Survival outcomes > Inverse-probability weighting (IPW)

349
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Syntax
stteffects ipw (tvar tmvarlist [ , tmoptions ]) (cmvarlist [ , cmoptions ])

[ if ] [ in ] [ , stat options ]

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

tmoptions Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set tolerance for the overlap assumption

osample(newvar) identify observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in [ST] stset.

However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist [ , noconstant ]) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] Estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipw from showing the key st variables. This option is rarely used because

most people type stset, show or stset, noshow to permanently set whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This

option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). stteffectswill exit with an error if an observation has an estimated propen-

sity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with the statistic pomeans. control() and tlevel() may

not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [CAUSAL] stteffects intro.

IPW estimators use contrasts of weighted averages of observed outcomes to estimate treatment ef-

fects. The estimated weights correct for data that are missing because each subject is only observed after

receiving one of the possible treatment levels and because some survival-time outcomes are censored.

The IPW estimators implemented in stteffects ipw use a three-step approach to estimating theATE:

1. Estimate the parameters of a treatment-assignment model, and compute the component of the

estimated weights that accounts for data missing because each subject is only observed after

receiving one of the possible treatment levels.

2. Estimate the parameters of a time-to-censoring model, and compute the component of the esti-

mated weights that accounts for data lost to censoring.

3. Use the estimated weights to compute weighted averages of the outcomes for each treatment

level.

To estimate the ATET, we use different weights in step 2.

The time to censoring must be random to use stteffects ipw because the model in step 2 is not

well defined if the time to censoring is fixed. See [CAUSAL] stteffects intro for more details. For

information about estimators that accommodate a fixed time to censoring, see [CAUSAL] stteffects ra

and [CAUSAL] stteffects ipwra.

Here we note only a few entry points to the vast literature on IPW estimators. Hirano, Imbens, and Rid-

der (2003), Imbens (2000, 2004), Imbens andWooldridge (2009), Rosenbaum and Rubin (1983), Robins

and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge

(2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to esti-

mating ATEs and to the IPW estimators in particular.

Like streg and other survival-time commands, stteffects ipw uses the outcome variable and the

failure indicator computed by, and optionally weights specified with, stset. stteffects ipw is not

appropriate for data with time-varying covariates, also known as multiple-record survival-time data, or

for delayed-entry data.

Example 1: Estimating the ATE
Suppose we wish to study the effect of smoking on the time to a second heart attack among women

aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second

heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed. (When

fail is 1, atime records the time to the second heart attack; when fail is 0, atime records a censored
observation of the time to a second heart attack.) We previously stset these data; see A quick tour of

the estimators in [CAUSAL] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the time

of the first heart attack (age), and indices of the level of exercise (exercise), diet quality (diet), and
education (education) prior to the first heart attack.

We can use stteffects ipw to estimate the ATE. We model treatment assignment using the default

logit model with covariates on age, exercise, and education. We model the time to censoring using

the default Weibull model with covariates on age, exercise, diet, and education.
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. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects ipw (smoke age exercise education) (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 1.890e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983

POmean
smoke

Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

When every woman smoked in the population of women aged 45–55 years who have had a heart

attack, the average time to a second heart attack is estimated to be 2.22 years less than when no women

in the population of interest smoked. The estimated average time to a second heart attack when nowomen

in the population of interest smoked is 4.24 years.

The ratio of the ATE to the control-level POM measures the importance of the effect. In this example,

when every woman smoked, the average time to a second heart attack falls by an estimated 52% relative

to the case when none of them smoked. See example 3 in [CAUSAL] stteffects ra for an example that

uses nlcom to compute a point estimate and a confidence interval for this ratio.
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Example 2: Different treatment and censoring models
Instead of a logit model for the treatment assignment, we could have used a probit or a heteroskedastic

probit model. Instead of a Weibull model for the censoring time, we could have used an exponential, a

gamma, or a lognormal model. For a quick comparison, we now estimate the ATE using a probit model

for the treatment assignment and using a gamma model for the censoring time.

. stteffects ipw (smoke age exercise education, probit)
> (age exercise diet education, gamma)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 3.534e-15
Iteration 1: EE criterion = 5.203e-27
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit
Censoring model: gamma

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.646808 .8368254 -3.16 0.002 -4.286956 -1.006661

POmean
smoke

Nonsmoker 4.702301 .7404567 6.35 0.000 3.251033 6.15357

The estimatedATE of −2.65 and control-level POM of 4.70 are similar to the values of −2.22 and 4.24

reported in example 1.
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Example 3: Estimating the ATET
Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes

the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the added

benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and tradeoffs

under Remarks and examples in [CAUSAL] stteffects intro.

. stteffects ipw (smoke age exercise education) (age exercise diet education),
> atet

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 1.017e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.846136 .5076872 -3.64 0.000 -2.841185 -.8510877

POmean
smoke

Nonsmoker 3.543788 .474395 7.47 0.000 2.613991 4.473585

When every woman in the subpopulation smoked, the average time to a second heart attack is esti-

mated to be 1.85 years less than when no women in the subpopulation smoked. The estimated average

time to a second heart attack when no women in the subpopulation smoked is 3.54 years.
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Stored results
stteffects ipw stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) stteffects
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(tvar) name of treatment variable

e(subcmd) ipw
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Themethods and formulas for the IPW estimators implemented in stteffects ipw are given inMeth-

ods and formulas of [CAUSAL] stteffects ipwra.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
stteffects ipwra estimates the average treatment effect (ATE), the average treatment effect on

the treated (ATET), and the potential-outcome means (POMs) from observational survival-time data

by inverse-probability-weighted regression adjustment (IPWRA). IPWRA estimators use missingness-

adjusted regression coefficients to compute averages of treatment-level predicted outcomes. Contrasts

of these averages estimate the treatment effects. stteffects ipwra offers several choices for the func-
tional forms of the outcome model, of the treatment model, and of the optional time-to-censoring model.

Binary and multivalued treatments are accommodated.

See [CAUSAL] stteffects intro for an overview of estimating treatment effects from observational

survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE of binary treatment treat2 estimated by IPWRA using a Weibull model for time on x1 and x2 and

a logistic model for treat2 on x1 and w
stteffects ipwra (x1 x2) (treat2 x1 w)

Same as above, but estimate the ATET

stteffects ipwra (x1 x2) (treat2 x1 w), atet

Gamma model for time and probit model for treat2
stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3
stteffects ipwra (x1 x2) (treat3 x1 w)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

stteffects ipwra (x1 x2) (treat3 x1 w), control(”MyControl”)

ATE of treat2 estimated by IPWRA using a Weibull model for time on x1 and x2, a logistic model for

treat2 on x1 and w, and a Weibull model for the time to censoring with covariates x1 and x2
stteffects ipwra (x1 x2) (treat2 x1 w) (x1 x2)

Gamma model for time, probit model for treat2, and gamma model for censoring

stteffects ipwra (x1 x2, gamma) (treat2 x1 w, probit) (x1 x2, gamma)

Menu
Statistics > Causal inference/treatment effects > Survival outcomes > Regression adjustment with IPW

359



stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment 360

Syntax
stteffects ipwra (omvarlist [ , omoptions ]) (tvar tmvarlist [ , tmoptions ])

[ (cmvarlist [ , cmoptions ]) ] [ if ] [ in ] [ , stat options ]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

tmoptions Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

noconstant suppress constant from treatment model

cmoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set tolerance for the overlap assumption

osample(newvar) identify observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, tmvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in [ST] stset.

However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist [ , noconstant ]) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the cen-

soring variable, or for both. If ancillary() is specified for both, the varlist used for each model

may be different.

noconstant; see [R] Estimation options.
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� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ipwra from showing the key st variables. This option is rarely used

because most people type stset, show or stset, noshow to permanently set whether they want to

see these variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This

option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). stteffectswill exit with an error if an observation has an estimated propen-

sity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with the statistic pomeans. control() and tlevel() may

not specify the same treatment level.
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [CAUSAL] stteffects intro.

IPWRA estimators use estimated weights to obtain missingness-adjusted outcome-regression pa-

rameters. The missingness-adjusted outcome-regression parameters are used to compute averages of

treatment-level predicted outcomes. Contrasts of these averages estimate the treatment effects.

The estimated weights account for the missing potential outcome and, optionally, for data lost to

censoring. The weights are estimated using a treatment-assignment model and, optionally, a model for

the censoring time. A term in the estimator for the outcome-regression parameters accounts for data lost

to censoring when estimated weights are not used.

There are two versions of the IPWRA estimator because there are two methods of accounting for the

data lost to censoring.

1. IPWRA estimators that adjust for censoring by including a term in the likelihood function for the

outcome-model parameters are known as likelihood-adjusted-censoring IPWRA (LAC-IPWRA)

estimators.

2. IPWRA estimators that adjust for censoring by weighting the likelihood function for the

outcome-model parameters by estimated inverse-probability-of-censoring weights are known

as weighted-adjusted-censoring IPWRA (WAC-IPWRA) estimators.

The LAC-IPWRA estimators require fewer assumptions than the WAC-IPWRA estimators. Outlining

the steps performed by LAC-IPWRA and WAC-IPWRA estimators allows us to be more specific about the

tradeoffs between the estimators.

LAC-IPWRA estimators use a three-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-

treatment weights.

2. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted

maximum likelihood estimators. Estimated inverse-probability-of-treatment weights are used

to weight the maximum likelihood estimator. A term in the likelihood function adjusts for right-

censored survival times.

3. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.
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WAC-IPWRA estimators use a four-step approach to estimating treatment effects:

1. Estimate the parameters of a treatment-assignment model and compute inverse-probability-of-

treatment weights.

2. Estimate the parameters of a time-to-censoring model and compute inverse-probability-of-

censoring weights.

3. Obtain the treatment-specific predicted mean outcomes for each subject by using the weighted

maximum likelihood estimators. Estimated inverse-probability-of-treatment weights and

inverse-probability-of-censoring weights are used to weight the maximum likelihood estimator.

The inverse-probability-of-censoring weights account for right-censored survival times.

4. Compute the means of the treatment-specific predicted mean outcomes. Contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.

TheWAC-IPWRA estimators require that the censoring time be random and that the time-to-censoring

model be well specified. The implementedWAC-IPWRA estimators also require that the time-to-censoring

process not vary by treatment level. The LAC-IPWRA estimators do not require these extra assumptions

because they use a likelihood term instead of weights to adjust for the data lost to censoring.

Here we note only a few entry points to the vast literature on estimators that combine IPW and RA

methods. Hirano, Imbens, and Ridder (2003), Imbens (2000, 2004), Imbens and Wooldridge (2009),

Rosenbaum and Rubin (1983), Robins and Rotnitzky (1995, 2006), Robins, Rotnitzky, and Zhao (1995),

Wooldridge (2002, 2007), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and

Vittinghoff et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to the

IPWRA estimators in particular.

Like streg and other survival-time commands, stteffects ipwra uses the outcome variable and

the failure indicator computed by, and optionally weights specified with, stset. stteffects ipwra is
not appropriate for data with time-varying covariates, also known as multiple-record survival-time data,

or for delayed-entry data.

Example 1: Estimating the ATE by LAC-IPWRA
Suppose we wish to study the effect of smoking on the time to a second heart attack among women

aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second

heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed. (When

fail is 1, atime records the time to the second heart attack; when fail is 0, atime records a censored
observation of the time to a second heart attack.) We previously stset these data; see A quick tour of

the estimators in [CAUSAL] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the time

of the first heart attack (age), and indices of the level of exercise (exercise), diet quality (diet), and
education (education) prior to the first heart attack.

We can use stteffects ipwra to estimate the ATE. We model the mean survival time using the

default Weibull model, controlling for age, exercise, diet, and education. We model treatment

assignment using the default logit model with covariates age, exercise, and education. We do not

specify a time-to-censoring model so that we obtain the LAC estimator.
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. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects ipwra (age exercise diet education) (smoke age exercise education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 7.439e-15
Iteration 1: EE criterion = 1.730e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.591874 .4837332 -3.29 0.001 -2.539973 -.643774

POmean
smoke

Nonsmoker 4.214263 .2598689 16.22 0.000 3.704929 4.723597

When every woman smoked in the population of women aged 45–55 years who have had a heart

attack, the average time to a second heart attack is estimated to be 1.59 years less than when no women

in the population of interest smoked. The estimated average time to a second heart attack when nowomen

in the population of interest smoked is 4.21 years.

The ratio of the ATE to the control-level potential-outcome mean (POM) measures the importance of

the effect. In this example, when all women smoked, the time to the second heart attack falls by an

estimated 38% relative to the case in which no women smoked. See example 3 in [CAUSAL] stteffects

ra for an example that uses nlcom to compute a point estimate and a confidence interval for this ratio.
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Example 2: Different outcome and treatment models
Instead of aWeibull model for the outcome model, we could have used an exponential, a gamma, or a

lognormal model. Instead of a logit model for the treatment assignment, we could have used a probit or

a heteroskedastic probit model. This example uses a gamma model for the outcome and a probit model

for the treatment assignment.

. stteffects ipwra (age exercise diet education, gamma)
> (smoke age exercise education, probit)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.644e-13
Iteration 1: EE criterion = 2.153e-23
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : gamma
Treatment model: probit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.387303 .4786032 -2.90 0.004 -2.325348 -.4492583

POmean
smoke

Nonsmoker 3.97986 .2258474 17.62 0.000 3.537207 4.422512

The estimatedATE of −1.39 and control-level POM of 3.98 are similar to the values of −1.59 and 4.21

that we obtained in example 1.
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Example 3: Estimating the ATE by WAC-IPWRA
Rather than using LAC, we may want to specify a time-to-censoring model. We now use stteffects

ipwra to estimate the ATE by WAC-IPWRA. We use the same specification of the outcome and treatment

models that we used in example 1. However, now we specify a time-to-censoring model, using the

default Weibull model with covariates age, exercise, diet, and education.

. stteffects ipwra (age exercise diet education) (smoke age exercise education)
> (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 3.673e-18
Iteration 1: EE criterion = 8.511e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.285057 .7318456 -3.12 0.002 -3.719448 -.8506656

POmean
smoke

Nonsmoker 4.385841 .6427521 6.82 0.000 3.12607 5.645612

The estimatedATE of −2.29 differs from theATE of −1.59 estimated by LAC-IPWRA, but the estimates

of the control-level POM are similar between the two models: 4.39 for the WAC compared with 4.21 for

the LAC.
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Example 4: Estimating the ATET by LAC-IPWRA
Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes

the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the added

benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and tradeoffs

under Remarks and examples in [CAUSAL] stteffects intro.

. stteffects ipwra (age exercise diet education)
> (smoke age exercise education), atet

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.815e-19
Iteration 1: EE criterion = 1.938e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : IPW regression adjustment
Outcome model : Weibull
Treatment model: logit
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.775107 .3437506 -5.16 0.000 -2.448846 -1.101368

POmean
smoke

Nonsmoker 4.062424 .2779877 14.61 0.000 3.517578 4.60727

When all women in the subpopulation smoked, the average time to a second heart attack is estimated

to be 1.78 years less than when no women in the subpopulation of interest smoked. If no women in the

subpopulation of interest smoked, the average time to a second heart attack is 4.06 years.
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Stored results
stteffects ipwra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) stteffects
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(tvar) name of treatment variable

e(subcmd) ipwra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(tmodel) treatment model: logit, probit, or hetprobit
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal (if specified)
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Regression-adjusted estimators
Weighted-adjusted-censoring assumptions
Weighted regression-adjusted estimators
Inverse-probability-weighted estimators

Uncensored data
Inverse-probability-weighted regression-adjustment estimators

Weighted-adjusted-censoring IPWRA
Likelihood-adjusted-censoring IPWRA

Functional-form details

Introduction
This section presents the methods and formulas used by the estimators implemented in stteffects

ra, stteffects wra, stteffects ipw, and stteffects ipwra. This section assumes that you are

familiar with the concepts and intuition from the estimators discussed in [CAUSAL] teffects intro ad-

vanced.

Each of the estimators implemented in stteffects has a multistep logic but is implemented as one

step by simultaneously solving the estimating equations that define each step. This one-step estimating-

equation approach provides consistent point estimates and a consistent variance–covariance of the esti-

mator (VCE); see Newey (1984), Wooldridge (2010), and Drukker (2014).

Survival-time treatment-effects estimators handle two types of missing data. First, only one of the

potential outcomes is observed, as is standard in causal inference. Second, the potential outcome for

the received treatment may be censored. The data missing because of censoring may be handled by an

outcome model, a censoring model, or both, just like the data missing due to observing only one potential

outcome.

Technical note
Delayed entry would be a third type of missing data. The left-truncation process caused by delayed en-

try would also need to be modeled to estimateATE parameters. The estimators implement in stteffects
do not allow for delayed entry because they do not have a method for modeling how the left-truncation

process selects the sample, conditional on the covariates.

All the implemented estimators are combinations of regression-adjustment (RA) and inverse-

probability-weighted (IPW) techniques. RA estimators use an outcome model to account for the missing

potential outcome and for censoring. IPW estimators use models for treatment assignment and censoring

to construct weights that account for the missing potential outcome and for censoring.

The remainder of this section provides technical details about how the estimators in stteffects
were implemented. We provide details only for the two-treatment-level case to simplify the formulas.

We provide outlines for how the extensions to the multiple-treatment-level case were implemented.
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Regression-adjusted estimators
We begin with the RA estimators implemented in stteffects ra. The RA estimators have the fol-

lowing logic:

RA1. For each treatment level 𝜏 ∈ {0, 1}, estimate by maximum likelihood (ML) the parameters β𝜏
of a parametric model for the survival-time outcome 𝑡 in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution
of 𝑡 conditional on covariates x and treatment level 𝜏. Denote the estimates β𝜏 by β̂ra,𝜏.

RA2. Use the estimated β̂
ra,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the mean

survival time, conditional on x and treatment level 𝜏, for each sample observation, denoted by

𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏). Conditional independence of the treatment and the survival-time potential

outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential survival-time out-

come corresponding to treatment level 𝜏. Under correct model specification, sample averages

of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏) consistently estimate the POM for treatment level 𝜏, denoted by POM𝜏.

RA3. A contrast of the estimated POMs estimates the ATE.

If estimating anATET, step RA2 is modified to use only the treated observations when estimating

the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step RA1 is

𝐿ra(𝑡𝑖, x𝑖, 𝜏 , β̂
ra,𝜏) = 𝜛𝑖(𝜏𝑖 == 𝜏) [(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ra,𝜏)}

+ 𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏)}]

(1)

where 𝜛𝑖 is the observation-level weight, 𝑐𝑖 is the 0/1 indicator for whether the survival-time ob-

servation on person 𝑖 was censored, and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏) is the density corresponding to distribution

𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ra,𝜏). The first term inside the curly braces in (1) accounts for the noncensored observations,

and the second term inside the curly braces accounts for the censored observations.
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The RA estimators for the POMs simultaneously solve estimating equations (2a) through (2d) for β̂
ra,0,

β̂
ra,1, P̂OMra,0, and P̂OMra,1.

1/𝑁
𝑁

∑
𝑖=1

sra(𝑡𝑖, x𝑖, 0, β̂
ra,0, 𝐹 ) = 0 (2a)

1/𝑁
𝑁

∑
𝑖=1

sra(𝑡𝑖, x𝑖, 1, β̂
ra,1, 𝐹 ) = 0 (2b)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) − P̂OMra,0} = 0 (2c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,1} = 0 (2d)

where

sra(𝑡𝑖, x𝑖, 0, β̂
ra,0, 𝐹 ) =

𝜕𝐿ra(𝑡𝑖,x𝑖,0,β̂
ra,0)

𝜕β̂
ra,0

is the vector of score equations from the ML estimator for

β̂
ra,0 based on survival-time model 𝐹,

sra(𝑡𝑖, x𝑖, 1, β̂
ra,1, 𝐹 ) =

𝜕𝐿ra(𝑡𝑖,x𝑖,1,β̂
ra,1)

𝜕β̂
ra,1

is the vector of score equations from the ML estimator for

β̂
ra,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) is the predicted mean survival time assuming treatment level 0 for observation

𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) is the predicted mean survival time assuming treatment level 1 for observation

𝑖 conditional on x𝑖.

The ATE is estimated by replacing (2d) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,0 − ÂTEra} = 0 (3)

and the ATET is estimated by replacing (2c) and (3) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ra,0) − P̂OMra,cot,0} = 0

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ra,1) − P̂OMra,cot,0 − ÂTETra} = 0

where𝑁1 = ∑𝑁
𝑖=1(𝑡𝑖 == 1) and P̂OMra,cot,0 is the estimated conditional-on-treatment POM for treatment

level 0.
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Asymptotic standard errors for estimating equation estimators, also known as exactly identified gen-

eralized method of moments estimators, are standard in the literature; see Newey (1984), Newey and

McFadden (1994), Tsiatis (2006), and Wooldridge (2010). These standard errors always have a robust

structure and have been generalized to cluster–robust standard errors (see Wooldridge [2010]).

The score equations and the functional form for the predicted mean survival time depend on the model

for survival-time outcome 𝐹. We provide these details below, under Functional-form details.

Weighted-adjusted-censoring assumptions
All estimators that permit you to model the time to censoring are subject to three assumptions:

1. The censoring time must be random.

2. The censoring time must be from a known distribution.

3. The distribution of the censoring time cannot vary by treatment level.

We call these three requirements theWAC assumptions. If theWAC assumptions are violated, you can

use either an RA estimator or the LAC version of the IPWRA estimator.

Technical note
We now describe how the observed survival-time outcome 𝑡 is generated from the random censoring

time 𝑡𝑐, the received treatment 𝜏, and the potential-outcome survival times 𝑡0 and 𝑡1 under the WAC

assumptions. First, each potential outcome is either censored or not censored.

̃𝑡0 = 𝑡𝑐(𝑡0 ≥ 𝑡𝑐) + 𝑡0{1 − (𝑡0 ≥ 𝑡𝑐)}
̃𝑡1 = 𝑡𝑐(𝑡1 ≥ 𝑡𝑐) + 𝑡1{1 − (𝑡1 ≥ 𝑡𝑐)}

Under theWAC assumptions, 𝑡𝑐 is a random variable from a known distribution, and 𝑡𝑐 does not vary by

treatment level.

Next, the received treatment 𝜏 ∈ {0, 1} determines which, possibly censored, potential outcome is

observed.

𝑡 = (1 − 𝜏) ̃𝑡0 + 𝜏 ̃𝑡1

The 0/1 indicator for whether the observed 𝑡 was censored, denoted by 𝑐, is given by

𝑐 = (1 − 𝜏)(𝑡0 ≥ 𝑡𝑐) + 𝜏(𝑡1 ≥ 𝑡𝑐)

Weighted regression-adjusted estimators
As is standard in the survival literature, the RA estimators account for censored survival times by

adding a term to the log-likelihood function for censored observations [see (1)]. In contrast, weighted

regression-adjustment (WRA) estimators use weights to account for censored observations and are subject

to the WAC assumptions.
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Wooldridge (2007) and Lin (2000) derived estimators for the regression parameters that maximize a

weighted objective function of the uncensored observations. Each observation-level weight is the inverse

of the probability of not being censored. Like the RA estimators, theWRA estimators use averages of the

predicted mean survival times to estimate treatment-effect parameters.

TheWRA estimators have the following logic.

WRA1. Estimate by ML the parameters 𝛄 of a parametric survival-time model for the time to censoring

𝑡𝑐, in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the distribution of 𝑡𝑐 conditional on covariates w. Note that the cen-

soring process does not vary by treatment level and that we only observe 𝑡𝑐 when the observed

potential outcome was censored. Denote the estimates of 𝛄 by 𝛄̂.
WRA2. For each treatment level 𝜏 ∈ {0, 1}, estimate by weighted maximum likelihood (WML) the

β𝜏 parameters of a parametric survival-time model, denoted by 𝐹(𝑡|x, 𝜏 ,β𝜏), where 𝑡 is the
survival-time outcome and x are the covariates. The weights are the inverse of the estimated

probabilities of not being censored, 1/{1−𝐹𝑐(𝑡𝑐|w, 𝛄̂)}, and only the uncensored observations
are used. Denote the estimates of β𝜏 by β̂wra,𝜏.

WRA3. Use the estimated β̂
wra,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the mean

survival time, conditional on x and treatment level 𝜏, for each sample observation, denoted by

𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
wra,𝜏). Conditional independence of the treatment and the survival-time potential

outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential survival-time out-

come corresponding to treatment level 𝜏. Under correct model specification, sample averages

of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
wra,𝜏) consistently estimate the POM for treatment level 𝜏, denoted by POM𝜏.

WRA4. A contrast of the estimated POMs estimates the ATE.

If estimating anATET, stepWRA3 is modified to use only the treated observations when estimat-

ing the POMs. A contrast of these POMs then estimates the ATET.

The contribution of the 𝑖th observation to the log likelihood that is maximized in stepWRA1 is

𝐿𝑐,wra(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}] (4)

where𝜛𝑖 is the observation-level weight, 𝑐𝑖 is the 0/1 indicator for whether the survival-time observation

on person 𝑖 was censored, 𝑡𝑖 is the observed failure time, and 𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂) is the density corresponding to
conditional time-to-censoring distribution 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂). When 𝑐𝑖 = 1, 𝑡𝑖 is the time to censoring. When

𝑐𝑖 = 0, the censoring time is not observed; we only know that it is greater than the observed 𝑡𝑖. The first

term accounts for the observations in which 𝑡𝑖 is observed to be the censoring time, and the second term

accounts for the observations in which the censoring time is greater than the observed 𝑡𝑖.

The contribution of the 𝑖th observation to the log likelihood that is maximized in stepWRA2 is

𝐿wra(𝑡𝑖, x𝑖, 𝜏 , β̂
wra,𝜏) = 𝜛𝑖(𝜏𝑖 == 𝜏) [ (1 − 𝑐𝑖)

{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}
] ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏)} (5)

where 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
wra,𝜏) is the density corresponding to distribution𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂

wra,𝜏). Equation (5) does
not contain a term that adjusts for censoring; see (1) for a comparison. Rather, it uses inverse-probability

weights to account for both the censored and the uncensored observations.
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TheWRA estimators for the POMs simultaneously solve estimating equations (6a) through (6e) for 𝛄̂,
β̂
wra,0, β̂wra,1, P̂OMwra,0, and P̂OMwra,1.

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (6a)

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) = 0 (6b)

1/𝑁
𝑁

∑
𝑖=1

swra(𝑡𝑖, x𝑖, 1, β̂
wra,1, 𝐹 ) = 0 (6c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) − P̂OMwra,0} = 0 (6d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,1} = 0 (6e)

where

swra(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,wra(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from theML estimator for 𝛄̂ based

on survival-time model 𝐹𝑐,

swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) =

𝜕𝐿(𝑡𝑖,x𝑖,0,β̂
wra,0)

𝜕β̂
wra,0

is the vector of score equations from the WML estimator

for β̂
wra,0 based on survival-time model 𝐹,

swra(𝑡𝑖, x𝑖, 1, β̂
wra,1, 𝐹 ) =

𝜕𝐿(𝑡𝑖,x𝑖,1,β̂
wra,1)

𝜕β̂
wra,1

is the vector of score equations from the WML estimator

for β̂
wra,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) is the predicted mean survival time assuming treatment level 0 for observation

𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) is the predicted mean survival time assuming treatment level 1 for observation

𝑖 conditional on x𝑖.

The observation-level scores swra(𝑡𝑖, x𝑖, 0, β̂
wra,0, 𝐹 ) and swra(𝑡𝑖, x𝑖, 1, β̂

wra,1, 𝐹 ) also depend on 𝑐𝑖, w𝑖,

𝛄̂, and 𝐹𝑐, but we ignored this dependence to simplify the notation.
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The ATE is estimated by replacing (6e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,0 − ÂTEwra} = 0 (7)

and the ATET is estimated by replacing (6e) and (7) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
wra,0) − P̂OMwra,cot,0} = 0

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖(𝜏𝑖 == 1) {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
wra,1) − P̂OMwra,cot,0 − ÂTETwra} = 0

where P̂OMwra,cot,0 is the estimated conditional-on-treatment POM.

Inverse-probability-weighted estimators
IPW estimators are weighted averages of the observed outcome. The weights correct for missing data

due to unobserved potential outcomes and censoring. Each weight is the inverse of the probability that a

given value is observed. Observed values that were not likely to be observed have higher weights.

When the outcome variable is never censored, the missing data are the unobserved potential outcome

and an observation’s weight is the inverse of a treatment probability. When the outcomemay be censored,

the censoring is an additional source of missing data. In this case, an observation’s weight is the inverse

of the joint probability that an observation is uncensored and has a particular treatment level.

To define this joint probability, the censoring time must be random. In practice, we make the WAC

assumptions.

As is standard in the survival-time literature, we assume that the censoring-time process is independent

of treatment assignment after conditioning on the covariates. This conditional independence assumption

implies that the probability that observation 𝑖 receives treatment level 1 and is not censored is the product
of the probability that 𝑖 gets treatment level 1 and the probability that 𝑖 is not censored at time 𝑡𝑖, which

we denote by

𝑝(z𝑖,α){1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄)}

where

𝑝(z𝑖,α) is the modeled probability that 𝑖 gets treatment level 1, conditional on covariates z𝑖 with

parameters α, and

𝐹𝑐(𝑡𝑖|w𝑖, 𝛄) is the survival-time model for the censoring time, conditional on covariates w𝑖 with

parameters 𝛄, and evaluated at time 𝑡𝑖.

Bai, Tsiatis, and O’Brien (2013) formally derive these weights to control jointly for the missing potential

outcome and censoring.

The IPW estimators have the following logic.

IPW1. Estimate byML the parameters 𝛄 of a parametric survival-time model for the time to censoring,

in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the distribution of censoring time, conditional on covariates w. Denote

the estimates of 𝛄 by 𝛄̂.
IPW2. Estimate by ML the parameters α of a parametric model for the probability of treatment model

𝑝(z𝑖,α). Denote the estimates of α by α̂.
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IPW3. Use the 𝛄̂ estimated in IPW1 and the α̂ estimated in IPW2 to construct inverse-probabilityweights

by (8a) for treatment level 1 and by (8b) for treatment level 0.

𝜔𝑖,1 = (𝜏𝑖 == 1)(𝑐𝑖 == 0)
[𝑝(z𝑖, α̂){1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(8a)

𝜔𝑖,0 = (𝜏𝑖 == 0)(𝑐𝑖 == 0)
[{1 − 𝑝(z𝑖, α̂)}{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(8b)

IPW4. Use the estimated weights to estimate each POM𝜏 by a weighted average of the uncensored

observations on the observed potential outcome.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPW1 is

𝐿𝑐,ipw(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

where the definitions and intuition are as described after (4).

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPW2 is

𝐿𝑝,ipw(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.

The IPW estimators for the POMs simultaneously solve estimating equations (9a) through (9d) for 𝛄̂,
α̂, P̂OMipw,0, and P̂OMipw,1.

1/𝑁
𝑁

∑
𝑖=1

sipw(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (9a)

1/𝑁
𝑁

∑
𝑖=1

sipw(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (9b)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖𝜔𝑖,0 (𝑡𝑖 − P̂OMipw,0) = 0 (9c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖𝜔𝑖,1 (𝑡𝑖 − P̂OMipw,1) = 0 (9d)

where

sipw(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipw(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from theML estimator for 𝛄̂ based

on survival-time model 𝐹𝑐, and

sipw(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipw(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂ based

on probability model 𝑝.
The literature on IPW estimators discusses using normalized versus unnormalized weights, with nor-

malized weights doing better in simulation studies; see Busso, DiNardo, and McCrary (2014) for ex-

ample. The way that weights enter moment equations (9c) and (9d) implies that they are normalized,

because the scale of the weights does not affect the estimates.
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The estimated ATE is computed as

P̂OMipw,1 − P̂OMipw,0 = ÂTEipw

The estimated ATET uses weights

𝜔𝑖,cot,1 = (𝜏𝑖 == 1)(𝑐𝑖 == 0)
[{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(10a)

for treatment level 1 and

𝜔𝑖,cot,0 = 𝑝(z𝑖, α̂)(𝜏𝑖 == 0)(𝑐𝑖 == 0)
[{1 − 𝑝(z𝑖, α̂)}{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

(10b)

for treatment level 0, and replaces (9c) and (9d) with

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖𝜔𝑖,cot,0 (𝑡𝑖 − P̂OMipw,cot,0) = 0 (11a)

1/𝑁1

𝑁
∑
𝑖=1

𝜛𝑖𝜔𝑖,cot,1 (𝑡𝑖 − P̂OMipw,cot,1) = 0 (11b)

and then computes

P̂OMipw,cot,1 − P̂OMipw,cot,0 = ÂTETipw

These IPW estimators can be viewed as weighted IPW estimators and are thus related to those in Hirano,

Imbens, and Ridder (2003).

Uncensored data

As mentioned, when the outcome variable is never censored, the missing data are the unobserved

potential outcome and an observation’s weight is the inverse of a treatment probability. In the never-

censored case, the IPW estimators are identical to those implemented in teffects ipw; see IPW estima-

tors under Methods and formulas in [CAUSAL] teffects aipw.

stteffects ipw computes the estimator for never-censored data when a censoring model is not

specified and there are no censored observations in the sample. In the never-censored case, the following

changes are made to the IPW estimator for the POMs and the ATE.

1. Step IPW1 is not performed.

2. The weights in (8a) and (8b) for the POMs and the ATE are replaced with (12a) for treatment

level 1 and (12b) for treatment level 0.

𝜔𝑖,1 = (𝜏𝑖 == 1)
𝑝(z𝑖, α̂)

(12a)

𝜔𝑖,0 = (𝜏𝑖 == 0)
{1 − 𝑝(z𝑖, α̂)}

(12b)

3. Only moment conditions (9b), (9c), and (9d) are used.
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The following changes also are made to the IPW estimator for the ATET.

1. Step IPW1 is not performed.

2. The weights in (10a) and (10b) are replaced with (13a) for treatment level 1 and (13b) for

treatment level 0.

𝜔𝑖,cot,1 = (𝜏𝑖 == 1) (13a)

𝜔𝑖,cot,0 = 𝑝(z𝑖, α̂)(𝜏𝑖 == 0)
{1 − 𝑝(z𝑖, α̂)}

(13b)

3. Only moment conditions (9b) (11a), and (11b) are used.

Inverse-probability-weighted regression-adjustment estimators
IPWRAestimators are averages of treatment-specific predicted conditional means that weremade using

missingness-adjusted regression parameters. These estimators areWooldridge’s IPWRA for survival-time

outcomes; see Wooldridge (2010, chap. 21) and Wooldridge (2007).

The censored observations can be handled either by weighting under the WAC assumptions to obtain

the WAC-IPWRA estimator or by adding a term to the log-likelihood function (which we call likelihood-

adjusted censoring) to obtain the LAC-IPWRA estimator. Correspondingly, there are two versions of for-

mulas for the IPWRA estimator.

1. When a censoringmodel is specified, stteffects ipwra uses the formulas for theWAC-IPWRA

estimator given in Weighted-adjusted-censoring IPWRA.

2. When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-

IPWRA given in Likelihood-adjusted-censoring IPWRA, below.

The WAC-IPWRA estimator requires that some observations be censored and that the WAC assump-

tions hold; see Weighted-adjusted-censoring assumptions, above. The LAC-IPWRA estimator handles the

case in which no observations are censored and requires the weaker independent censoring assumptions,

which allows for fixed censoring times.
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Weighted-adjusted-censoring IPWRA

When a censoring model is specified, stteffects ipwra uses the formulas for the WAC-IPWRA es-

timator to obtain the model-based weights that account for censoring. For notational conciseness and to

reinforce its dependence on random censoring, we denote the WAC-IPWRA estimator by IPWRAR in lists

and formulas. TheWAC-IPWRA estimators have the following logic.

IPWRAR1. Estimate byML the parameters𝛄 of a parametric survival-timemodel for the time to censoring,

in which 𝐹𝑐(𝑡𝑐|w, 𝛄) is the censoring-time distribution, conditional on covariates w. We

denote the estimates of 𝛄 by 𝛄̂.
IPWRAR2. Estimate byML the parametersα of a parametric model for the probability of treatment model

𝑝(z𝑖,α). We denote the estimates of α by α̂.

IPWRAR3. For each treatment level 𝜏 ∈ {0, 1}, estimate byWML the parametersβ𝜏 of a parametric model

for the survival-time outcome 𝑡, in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution of 𝑡 conditional on
covariates x and treatment level 𝜏. For the ATE, the weights are those in equations (8a) and

(8b). For theATET, the weights are those in equations (10a) and (10b). We denote the estimates

of β
ipwrar,𝜏 by β̂𝜏.

IPWRAR4. Use the estimated β̂
ipwrar,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the

mean survival time, conditional on x and treatment level 𝜏, for each sample observation, de-

noted by 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,𝜏). Conditional independence of the treatment and the survival-

time potential outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential

survival-time outcome corresponding to treatment level 𝜏. Under correct model specification,

sample averages of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,𝜏) consistently estimate the POM for treatment level 𝜏,

denoted by POM𝜏.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAR1 is

𝐿𝑐,ipwrar(𝑡𝑖,w𝑖, 𝛄̂) = 𝜛𝑖 [𝑐𝑖 ln{𝑓𝑐(𝑡𝑖|w𝑖, 𝛄̂)} + (1 − 𝑐𝑖) ln{1 − 𝐹𝑐(𝑡𝑖|w𝑖, 𝛄̂)}]

where the definitions and intuition are as described after (4).

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAR2 is

𝐿𝑝,ipwrar(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.

The weights and the parameters in step IPWRAR3 used to estimate the ATE differ from those used

to estimate the ATET. For the ATE, the contribution of the 𝑖th observation to the log likelihood that is

maximized in step IPWRAR3 is

𝐿ipwrar(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) = 𝜛𝑖𝜔𝑖,𝜏 ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,ate,𝜏)}

where 𝜔𝑖,1 is given in (8a), 𝜔𝑖,0 is given in (8b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) is the density corresponding

to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏). LikeWRA, only the uncensored observations are used because the

weights account for censoring.
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The IPWRAR estimators for the POMs simultaneously solve estimating equations (14a) through (14f)

for 𝛄̂, α̂, β̂
ipwrar,ate,0, β̂ipwrar,ate,0, P̂OMipwrar,0, and P̂OMipwrar,1.

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (14a)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (14b)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,ate,0, 𝐹 ) = 0 (14c)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,ate,1, 𝐹 ) = 0 (14d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,ate,0) − P̂OMipwrar,0} = 0 (14e)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) − P̂OMipwrar,1} = 0 (14f)

where

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipwrar(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from the ML estimator for 𝛄̂

based on survival-time model 𝐹𝑐,

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwrar(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,ate,0, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,0,β̂
ipwrar,ate,0)

𝜕β̂
ipwrar,ate,0

is the vector of score equations from the ML

estimator for β̂
ipwrar,ate,0 based on survival-time model 𝐹,

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,ate,1, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,1,β̂
ipwrar,ate,1)

𝜕β̂
ipwrar,ate,1

is the vector of score equations from the ML

estimator for β̂
ipwrar,ate,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,ate,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATE is estimated by replacing (14f) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,ate,1) − P̂OMipwrar,0 − ÂTEipwrar} = 0
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For the ATET, the contribution of the 𝑖th observation to the weighted log likelihood that is maximized in

step IPWRAR3 is

𝐿ipwrar(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏) = 𝜛𝑖𝜔𝑖,cot,𝜏(𝜏𝑖 == 𝜏) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,atet,𝜏)}

where 𝜔𝑖,cot,1 is given in (10a), 𝜔𝑖,cot,0 is given in (10b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏) is the density corre-

sponding to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏).

The WAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating

equations (15a) through (15f) for β̂
ipwrar,atet,0, β̂ipwrar,atet,0, 𝛄̂, α̂, P̂OMipwrar,cot,0, and P̂OMipwrar,cot,1.

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 0 (15a)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (15b)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,atet,0, 𝐹 ) = 0 (15c)

1/𝑁
𝑁

∑
𝑖=1

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,atet,1, 𝐹 ) = 0 (15d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,atet,0) − P̂OMipwrar,cot,0} = 0 (15e)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) − P̂OMipwrar,cot,1} = 0 (15f)

where

sipwrar(𝑡𝑖,w𝑖, 𝛄̂, 𝐹𝑐) = 𝜕𝐿𝑐,ipwrar(𝑡𝑖,w𝑖,𝛄̂)
𝜕𝛄̂ is the vector of score equations from the ML estimator for 𝛄̂

based on survival-time model 𝐹𝑐,

sipwrar(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwrar(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwrar(𝑡𝑖, x𝑖, 0, β̂
ipwrar,atet,0, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,0,β̂
ipwrar,atet,0)

𝜕β̂
ipwrar,atet,0

is the vector of score equations from the

WML estimator for β̂
ipwrar,atet,0 based on survival-time model 𝐹,

sipwrar(𝑡𝑖, x𝑖, 1, β̂
ipwrar,atet,1, 𝐹 ) =

𝜕𝐿ipwrar(𝑡𝑖,x𝑖,1,β̂
ipwrar,atet,1)

𝜕β̂
ipwrar,atet,1

is the vector of score equations from the

WML estimator for β̂
ipwrar,atet,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwrar,atet,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.
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The ATET is estimated by replacing (15f) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwrar,atet,1) − P̂OMipwrar,cot,0 − ÂTETipwrar} = 0

Likelihood-adjusted-censoring IPWRA

When a censoring model is not specified, stteffects ipwra uses the formulas for the LAC-IPWRA

estimator that add a term to the log-likelihood function. For notational conciseness and to reinforce its

use of an additional term in the log likelihood, we denote the LAC-IPWRA estimator by IPWRAL in lists

and formulas.

The methods and formulas for the LAC-IPWRA estimator differ in three ways from those for theWAC-

IPWRA estimator.

1. No censoring model is specified, so LAC-IPWRA does not perform a version of step IPWRAR1

and it does not use the moment equations (14a).

2. The weights only depend on the treatment level and treatment assignment probabilities, not on

the censoring.

3. TheWML estimator for β𝜏 includes a term for censored observations and censored observations

are used. Recall that for the WAC-IPWRA estimator, the weights used in the WML estimator for

β𝜏 account for the censoring, and the censored observations are not used in theWML estimator.

The LAC-IPWRA estimators have the following logic.

IPWRAL1. Estimate byML the parametersα of a parametric model for the probability of treatment model

𝑝(z𝑖,α).
IPWRAL2. For each treatment level 𝜏 ∈ {0, 1}, estimate byWML the parametersβ𝜏 of a parametric model

for the survival-time outcome 𝑡 in which 𝐹(𝑡|x, 𝜏 ,β𝜏) is the distribution of 𝑡 conditional on
covariates x and treatment level 𝜏. The weights depend only on the treatment level and the

treatment-assignment probabilities. For theATE, the weights are those in (12a) and (12b). For

theATET, the weights are those in (13a) and (13b). We denote the estimates of β𝜏 by β̂ipwral,𝜏.

IPWRAL3. Use the estimated β̂
ipwral,𝜏 and the functional form implied by 𝐹(𝑡|x, 𝜏 ,β𝜏) to estimate the

mean survival time, conditional on x and treatment level 𝜏, for each sample observation, de-

noted by 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,𝜏). Conditional independence of the treatment and the survival-

time potential outcomes ensures that 𝐸(𝑡|x, 𝜏 ,β𝜏) = 𝐸(𝑡𝜏|x,β𝜏), where 𝑡𝜏 is the potential

survival-time outcome corresponding to treatment level 𝜏. Under correct model specification,

sample averages of 𝐸(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,𝜏) consistently estimate the POM for treatment level 𝜏,

denoted by POM𝜏.

The contribution of the 𝑖th observation to the log likelihood that is maximized in step IPWRAL1 is

𝐿𝑝,ipwral(𝜏𝑖, z𝑖, α̂) = 𝜛𝑖 [(𝜏𝑖 == 1) ln{𝑝(z𝑖, α̂)} + {1 − (𝜏𝑖 == 1)} ln{1 − 𝑝(z𝑖, α̂)}]

where 𝑝(z𝑖, α̂) is the model for the probability that 𝑖 gets treatment level 1.
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The weights and the parameters in step IPWRAL2 used to estimate the ATE differ from those used

to estimate the ATET. For the ATE, the contribution of the 𝑖th observation to the log likelihood that is

maximized in step IPWRAL2 is

𝐿ipwral(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwral,ate,𝜏) = (𝜏𝑖 == 𝜏)𝜛𝑖𝜔𝑖,𝜏 {(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,ate,𝜏)}

𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,ate,𝜏)}}

where𝜔𝑖,1 is given in (12a), 𝜔𝑖,0 is given in (12b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,ate,𝜏) is the density corresponding

to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,ate,𝜏). Unlike theWRA estimator, the censored observations are used, and

there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the POMs simultaneously solve estimating equations (16a) through

(16e) for α̂, β̂
ipwral,ate,0, β̂ipwral,ate,0, P̂OMipwral,0, and P̂OMipwral,1.

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (16a)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,ate,0, 𝐹 ) = 0 (16b)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,ate,1, 𝐹 ) = 0 (16c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,ate,0) − P̂OMipwral,0} = 0 (16d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) − P̂OMipwral,1} = 0 (16e)

where

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwral(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,ate,0, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,0,β̂
ipwral,ate,0)

𝜕β̂
ipwral,ate,0

is the vector of score equations from theWML

estimator for β̂
ipwral,ate,0 based on survival-time model 𝐹,

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,ate,1, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,1,β̂
ipwral,ate,1)

𝜕β̂
ipwral,ate,1

is the vector of score equations from theWML

estimator for β̂
ipwral,ate,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,ate,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATE is estimated by replacing (16e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,ate,1) − P̂OMipwral,0 − ÂTEipwral} = 0
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For the ATET, the contribution of the 𝑖th observation to the WML function that is maximized in step

IPWRAL2 is

𝐿ipwral(𝑡𝑖, x𝑖, 𝜏 , β̂
ipwral,atet,𝜏) = (𝜏𝑖 == 𝜏)𝜛𝑖𝜔𝑖,cot,𝜏 {(1 − 𝑐𝑖) ln{𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂

ipwrar,atet,𝜏)}

𝑐𝑖 ln{1 − 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwrar,atet,𝜏)}}

where 𝜔𝑖,cot,1 is given in (13a), 𝜔𝑖,cot,0 is given in (13b), and 𝑓(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,atet,𝜏) is the density cor-

responding to distribution 𝐹(𝑡𝑖|x𝑖, 𝜏 , β̂
ipwral,atet,𝜏). Again unlike theWRA, the censored observations are

used, and there is a term in the likelihood function to account for censoring.

The LAC-IPWRA estimators for the conditional-on-treatment POMs simultaneously solve estimating

equations (17a) through (17e) for α̂, β̂
ipwral,atet,0, β̂ipwral,atet,0, P̂OMipwral,cot,0, and P̂OMipwral,cot,1.

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 0 (17a)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,atet,0, 𝐹 ) = 0 (17b)

1/𝑁
𝑁

∑
𝑖=1

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,atet,1, 𝐹 ) = 0 (17c)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,atet,0) − P̂OMipwral,cot,0} = 0 (17d)

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) − P̂OMipwral,cot,1} = 0 (17e)

where

sipwral(𝜏𝑖, z𝑖, α̂, 𝑝) = 𝜕𝐿𝑝,ipwral(𝜏𝑖,z𝑖,α̂)
𝜕α̂ is the vector of score equations from the ML estimator for α̂

based on probability model 𝑝,

sipwral(𝑡𝑖, x𝑖, 0, β̂
ipwral,atet,0, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,0,β̂
ipwral,atet,0)

𝜕β̂
ipwral,atet,0

is the vector of score equations from the

WML estimator for β̂
ipwral,atet,0 based on survival-time model 𝐹,

sipwral(𝑡𝑖, x𝑖, 1, β̂
ipwral,atet,1, 𝐹 ) =

𝜕𝐿ipwral(𝑡𝑖,x𝑖,1,β̂
ipwral,atet,1)

𝜕β̂
ipwral,atet,1

is the vector of score equations from the

WML estimator for β̂
ipwral,atet,1 based on survival-time model 𝐹,

𝐸(𝑡𝑖|x𝑖, 𝜏 = 0, β̂
ipwral,atet,0) is the predicted mean survival time assuming treatment level 0 for obser-

vation 𝑖 conditional on x𝑖, and

𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) is the predicted mean survival time assuming treatment level 1 for obser-

vation 𝑖 conditional on x𝑖.

The ATET is estimated by replacing (17e) with

1/𝑁
𝑁

∑
𝑖=1

𝜛𝑖 {𝐸(𝑡𝑖|x𝑖, 𝜏 = 1, β̂
ipwral,atet,1) − P̂OMipwral,cot,0 − ÂTETipwral} = 0
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Functional-form details
In this section, we specify the functional forms for the conditional distribution function used in the

survival-time outcome model 𝐹, the conditional distribution function used in the survival-time censoring

model 𝐹𝑐, and the conditional distribution used to model the treatment probabilities 𝑝.
You may choose among the same set of conditional distribution functions for either 𝐹 or 𝐹𝑐:

exponential, weibull, lnormal, or gamma.

Name Cumulative Density Mean

exponential 1 − exp(−𝜆𝑖𝑡𝑖) 𝜆𝑖exp(−𝜆𝑖𝑡𝑖) 1/𝜆𝑖
Weibull 1 − exp{−(𝜆𝑖𝑡𝑖)𝑠𝑖} 𝑠𝑖𝑡

𝑠𝑖−1
𝑖 𝜆𝑠𝑖

𝑖 exp{−(𝜆𝑖𝑡𝑖)𝑠𝑖} (1/𝜆𝑖)Γ{(𝑠𝑖 + 1)/𝑠𝑖}
log normal Φ{(ln(𝑡𝑖) − 𝜆𝑖)/𝑠𝑖} (1/(𝑠𝑖𝑡𝑖))𝜙{(ln(𝑡𝑖) − 𝜆𝑖)/𝑠𝑖} exp(𝜆𝑖 + 𝑠2

𝑖 /2)
gamma gammap{𝑠𝑖, (𝑠𝑖𝑡𝑖/𝜆𝑖)} (𝑠𝑠𝑖

𝑖 𝑡𝑠𝑖−1
𝑖 )/{𝜆𝑠𝑖

𝑖 Γ(𝑠𝑖)}exp(−𝑠𝑖𝑡𝑖/𝜆𝑖) 𝜆𝑖

where the following table specifies how 𝜆𝑖 and 𝑠𝑖 are parameterized in terms of the covariates x𝑖 and the

ancillary covariates x̃𝑖, respectively.

Name 𝜆𝑖 𝑠𝑖
exponential exp(−x𝑖β)
Weibull exp(−x𝑖β) exp(x̃𝑖β̃)
log normal x𝑖β exp(x̃𝑖β̃)
gamma exp(x𝑖β) exp(−2x̃𝑖β̃)

For the treatment-assignment models, the probit model uses the standard normal distribution, the

logit uses the standard logistic distribution, the hetprobit model uses

Φ{z1α1/ exp(z2α2)}

and the multinomial logit uses

𝑝(z, 𝑡) = exp(zα𝑡)/{1 +
𝑞

∑
𝑘=1

exp(zα𝑘)}

where the notation is defined below.

In the hetprobit model, z1 are the covariates specified in the treatment-assignment speci-

fication, z2 are the covariates specified in the hetprobit() option, and α1 and α2 are the

corresponding coefficients.

In the multinomial logit model, z are the covariates specified in the treatment-assignment spec-

ification and 𝛼𝑘 are the coefficients; see [R] mlogit for further details.
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Also see
[CAUSAL] stteffects postestimation — Postestimation tools for stteffects

[CAUSAL] stteffects intro — Introduction to treatment effects for observational survival-time data

[ST] streg — Parametric survival models

[ST] stset — Declare data to be survival-time data

[U] 20 Estimation and postestimation commands
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Postestimation commands
The following postestimation commands are of special interest after stteffects:

Command Description

teoverlap overlap plots

tebalance check balance of covariates

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict propensity scores, censored survival probability, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

389
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predict

Description for predict
predict creates a new variable containing predictions such as treatment effects, conditional means,

propensity scores, linear predictions, and log square roots of latent variances.

Menu for predict
Statistics > Postestimation

Syntaxes for predict
Syntaxes are presented under the following headings:

Syntax for predict after stteffects ipw
Syntax for predict after stteffects ipwra
Syntax for predict after stteffects ra
Syntax for predict after stteffects wra

Syntax for predict after stteffects ipw

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

ps propensity score; the default

censurv censored survival probability

xb linear prediction for propensity score

cxb linear prediction for censoring model

lnsigma log square root of latent variance (for treatment model hetprobit())
clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment level.

If you do not specify tlevel() and only specify one new variable, xb and lnsigma assume tlevel() specifies the first
noncontrol treatment level.

You specify one or 𝑡 new variables with ps, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with xb and lnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ipwra

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

ps propensity score

censurv censored survival probability

xb linear prediction for outcome model

cxb linear prediction for censoring model

psxb linear prediction for propensity score

lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

pslnsigma log square root of latent variance (for treatment model hetprobit())
for propensity score

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first non-
control treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and pslnsigma assume tlevel() specifies
the first treatment level.

You specify one or 𝑡 new variables with cmean, ps, xb, and lnshape, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with te, psxb, and pslnsigma.

You specify one new variable with censurv, cxb, and clnshape.
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Syntax for predict after stteffects ra

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

xb linear prediction for outcome model

lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel() specifies the
first treatment level.

You specify one or 𝑡 new variables with cmean, xb, and lnshape, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with te.

Syntax for predict after stteffects wra

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

censurv censored survival probability

xb linear prediction for outcome model

cxb linear prediction for censoring model

lnshape log of conditional latent shape (for outcome distribution Weibull,

log normal, or gamma) at treatment level

clnshape log of conditional latent shape (for censoring distribution Weibull,

log normal, or gamma)

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnshape assume tlevel() specifies the
first treatment level.

You specify one or 𝑡 new variables with cmean, xb, and lnshape, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with te.

You specify one new variable with censurv, cxb, and clnshape.
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Options for predict
Options are presented under the following headings:

Options for predict after stteffects ipw
Options for predict after stteffects ipwra
Options for predict after stteffects ra
Options for predict after stteffects wra

Options for predict after stteffects ipw

� � �
Main �

ps, the default, calculates the propensity score of each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise,

you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it cal-

culates the probability that an outcome is not censored.) This option is allowed only if a censoring

model is specified at estimation time. You need to specify only one new variable.

xb calculates the propensity score linear prediction at each noncontrol level of the treatment or the treat-

ment level specified in tlevel(). If you specify the tlevel() option, you need to specify only one
new variable; otherwise, you must specify a new variable for each treatment level (except the control

level).

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring

model is specified at estimation time. You need to specify only one new variable.

lnsigma calculates the log square root of the latent variance. This option is valid only when treatment

model hetprobit() is used. You need to specify only one new variable.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution. This

option is valid when censoring distribution Weibull, log normal, or gamma is used. You need to

specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean

and average treatment-effect equations. Equation-level scores are computed for the censoring and

propensity-score equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.

Options for predict after stteffects ipwra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify a new variable for each treatment level (except the control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify a new variable for each treatment level.
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ps calculates the propensity score of each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it cal-

culates the probability that an outcome is not censored.) This option is allowed only if a censoring

model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level speci-

fied in tlevel(). If you specify the tlevel() option, you need to specify only one new variable;

otherwise, you must specify a new variable for each treatment level.

cxb calculates the linear prediction of the censoring model. This option is allowed only if a censoring

model is specified at estimation time. You need to specify only one new variable.

psxb calculates the propensity score linear prediction at each noncontrol level of the treatment or the

treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify only
one new variable; otherwise, you must specify a new variable for each treatment level (except the

control level).

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the

treatment level specified in tlevel(). This option is valid when outcome distribution Weibull, log

normal, or gamma is used. If you specify the tlevel() option, you need to specify only one new

variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter for the censoring distribution.

This option is valid when censoring distribution Weibull, log normal, or gamma is used. You need to

specify only one new variable.

pslnsigma calculates the log square root of the latent variance for the propensity score. This option is

valid only when treatment model hetprobit() is used. You need to specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and

average treatment-effect equations. Equation-level scores are computed for the outcome, censoring,

and propensity-score equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.

Options for predict after stteffects ra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify a new variable for each treatment level (except the control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify a new variable for each treatment level.
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xb calculates the outcome model linear prediction at each treatment level or the treatment level speci-

fied in tlevel(). If you specify the tlevel() option, you need to specify only one new variable;

otherwise, you must specify a new variable for each treatment level.

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the

treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull,

log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and

average treatment-effect equations. Equation-level scores are computed for the outcome equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.

Options for predict after stteffects wra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify a new variable for each treatment level (except the control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify a new variable for each treatment level.

censurv calculates the survivor probability from the time-to-censoring model. (In other words, it cal-

culates the probability that an outcome is not censored.) This option is allowed only if a censoring

model is specified at estimation time. You need to specify only one new variable.

xb calculates the outcome model linear prediction at each treatment level or the treatment level speci-

fied in tlevel(). If you specify the tlevel() option, you need to specify only one new variable;

otherwise, you must specify a new variable for each treatment level.

lnshape calculates the log of the conditional latent shape parameter for each treatment level or the

treatment level specified in tlevel(). This option is valid when the outcome distribution Weibull,

log normal, or gamma is used. If you specify the tlevel() option, you need to specify only one new
variable; otherwise, you must specify a new variable for each treatment level.

clnshape calculates the log of the conditional latent shape parameter of the censoring distribution. This

option is valid when the censoring distribution Weibull, log normal, or gamma is used. You need to

specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and

average treatment-effect equations. Equation-level scores are computed for the outcome and censor-

ing equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.
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Remarks and examples
Checking model specification is the most frequent reason for postestimation computation after

stteffects. teoverlap provides a graphical method for checking the overlap assumption; see

[CAUSAL] teoverlap. Summarizing the estimated probabilities provides another check. Recall that the

reciprocals of these estimated probabilities are used as weights by some of the estimators. If the estimated

probabilities are too small, the weights get too large and the estimators become unstable.

We estimate the average treatment effect of smoking on the time to a second heart attack by inverse-

probability weighting; see example 1 of [CAUSAL] stteffects ipw for background.

. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects ipw (smoke age exercise education) (age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 2.042e-18
Iteration 1: EE criterion = 1.890e-30
Survival treatment-effects estimation Number of obs = 2,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.22226 .6307573 -3.52 0.000 -3.458522 -.9859983

POmean
smoke

Nonsmoker 4.235569 .5210937 8.13 0.000 3.214244 5.256894

Below, we compute the estimated probabilities of being a Nonsmoker and store them in ps0. Like-
wise, the estimated probabilities of being a Smoker are stored in ps1.

. predict ps0 ps1, ps

The overlap condition requires that each of these probabilities be sufficiently greater than 0 and

less than 1 for every individual; see Assumptions and tradeoffs under Remarks and examples in

[CAUSAL] stteffects intro.

In practice, we know that weighting estimators perform poorly when the weights become too large.

This approach requires that the probability of being a Nonsmoker not be too small among Nonsmokers
and that the probability of being a Smoker not be too small among Smokers. Below, we summarize these

probabilities.
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. summarize ps0 if fail==1 & smoke==0
Variable Obs Mean Std. dev. Min Max

ps0 716 .6712529 .138754 .3872543 .9840293
. summarize ps1 if fail==1 & smoke==1

Variable Obs Mean Std. dev. Min Max

ps1 492 .4101277 .1101277 .0850604 .6125538

The minimum probability of being a Nonsmoker among Nonsmokers is 0.39. The minimum proba-

bility of being a Smoker among Smokers is 0.09. Neither minimum seems too small.

Estimating survival-time treatment effects also uses weights to adjust for censored outcomes; see

[CAUSAL] stteffects intro. Thus we require that the probability of an uncensored failure also be suffi-

ciently greater than 0. Below, we compute the estimated probabilities of failure and summarize them

among those that fail.

. predict fprob2, censurv

. summarize fprob if fail==1
Variable Obs Mean Std. dev. Min Max

fprob2 1,208 .7246067 .2143543 .0364246 .9999086

The minimum probability of 0.04 does not appear too small.

Technical note
The previous discussion builds on the intuition that the weights used in a weighting estimator should

not be too large.

This technical note goes a little further by explicitly computing the weights and using them to replicate

the inverse-probability-weighted point estimate for the Nonsmoker potential-outcome mean.

We now compute the weights using the predicted probabilities computed in the examples above

and then use mean to compute the weighted average that estimates the potential-outcome mean for

Nonsmokers.

. generate double ipw0 = 1/(ps0*fprob)

. mean _t [pw=ipw0] if smoke==0 & fail==1
Mean estimation Number of obs = 716

Mean Std. err. [95% conf. interval]

_t 4.235569 .5820212 3.092894 5.378244

The weights account for data lost to the Smoker potential outcome or to censoring by increasing the

importance of observations that were observed to be Nonsmoker failure times even though they were not

likely to be observed.

The point estimate matches that reported by stteffects ipw; the standard errors differ because mean
takes the estimated weights as given. See Inverse-probability-weighted estimators under Methods and

formulas in [CAUSAL] stteffects ipwra.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
stteffects ra estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational survival-time data by re-

gression adjustment (RA). RA uses averages of treatment-specific predicted mean survival times to esti-

mate mean survival times for each potential outcome. Contrasts of these predicted mean survival times

estimate the treatment effects. stteffects ra offers several choices for the model used to predict mean

survival time. Binary and multivalued treatments are accommodated.

See [CAUSAL] stteffects intro for an overview of estimating treatment effects from observational

survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE from a Weibull model for time on x1 and x2 with binary treatment treat2
stteffects ra (x1 x2) (treat2)

Same as above, but estimate the ATET

stteffects ra (x1 x2) (treat2), atet

Same as above, but estimate the potential-outcome means

stteffects ra (x1 x2) (treat2), pomeans

ATE of treat2 using a gamma model for time
stteffects ra (x1 x2, gamma) (treat2)

ATE for each level of three-valued treatment treat3
stteffects ra (x1 x2) (treat3)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

stteffects ra (x1 x2) (treat3), control(”MyControl”)

Menu
Statistics > Causal inference/treatment effects > Survival outcomes > Regression adjustment

399
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Syntax
stteffects ra (omvarlist [ , omoptions ]) (tvar) [ if ] [ in ] [ , stat options ]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

omoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

iterinit(#) specify starting-value iterations; seldom used

Advanced

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics
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You must stset your data before using stteffects; see [ST] stset.
omvarlist and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in [ST] stset.

However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist [ , noconstant ]) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

noconstant; see [R] Estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects ra from showing the key st variables. This option is rarely used because

most people type stset, show or stset, noshow to permanently set whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.
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� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This

option is seldom used.

� � �
Advanced �

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with the statistic pomeans. control() and tlevel() may

not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [CAUSAL] stteffects intro.

RA estimators use contrasts of the averages of treatment-specific predicted mean outcomes to estimate

treatment effects. RA estimators use a two-step approach to estimating treatment effects:

1. For each treatment level, fit a model of the survival-time outcome on the same set of covariates.

2. Compute the averages of the predicted outcomes for each subject within each treatment level.

These averages estimate the potential-outcome means (POMs). Contrasts of these averages estimate the

ATEs. By restricting the computations of the averages to the subset of treated subjects, we obtain estimates

of the ATETs.

Herewe note only a few entry points to the vast literature on RAestimators. Imbens (2004), Imbens and

Wooldridge (2009), Cameron and Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff

et al. (2012, chap. 9) provide excellent general introductions to estimating ATEs and to RA estimators in

particular.

Like streg and other survival-time commands, stteffects ra uses the outcome variable and the

failure indicator computed by, and optionally weights specified with, stset. stteffects ra is not

appropriate for data with time-varying covariates, also known as multiple-record survival-time data, or

for delayed-entry data.
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Example 1: Estimating the ATE
Suppose we wish to study the effect of smoking on the time to a second heart attack among women

aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second

heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed. (When

fail is 1, atime records the time to the second heart attack; when fail is 0, atime records a censored
observation of the time to a second heart attack.) We previously stset these data; see A quick tour of

the estimators in [CAUSAL] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the time

of the first heart attack (age), and indices of the level of exercise (exercise), diet quality (diet), and
education (education) prior to the first heart attack.

We can use stteffects ra to estimate the ATE by RA. We model the mean survival time using the

defaultWeibull model, controlling for age, exercise, diet, and education, and we specify that smoke
is the treatment variable.

. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects ra (age exercise diet education) (smoke)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.302e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 .3331787 -5.87 0.000 -2.609676 -1.303639

POmean
smoke

Nonsmoker 4.243974 .2620538 16.20 0.000 3.730358 4.75759

When every woman smoked in the population of women aged 45–55 years who have had a heart

attack, the average time to a second heart attack is estimated to be 1.96 years less than when no women

in the population of interest smoked. The estimated average time to a second heart attack when nowomen

in the population of interest smoked is 4.24 years. In other words, if every woman in the population of

interest smoked, then the average time to a second heart attack would fall by an estimated 46% relative

to the case when no women smoked.
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Example 2: Changing the outcome model
Instead of a Weibull model for the outcome model, we could have used an exponential, a gamma, or

a lognormal model. By way of comparison, we use a gamma model and the same covariates to estimate

the ATE.

. stteffects ra (age exercise diet education, gamma) (smoke)
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 6.213e-25
Iteration 1: EE criterion = 2.152e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : gamma
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -1.801787 .2924388 -6.16 0.000 -2.374956 -1.228617

POmean
smoke

Nonsmoker 3.994327 .2258257 17.69 0.000 3.551717 4.436937

The estimated ATE of −1.80 and control-level POM of 3.99 are similar to those of −1.96 and 4.24

obtained from the Weibull model in example 1. The ratio of the estimated ATE to the control-level POM

indicates a 45% reduction instead of the 46% reduction obtained from the Weibull model.
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Example 3: Estimating the ratio of the ATE to the control-level POM
The ratio of theATE to the control-level POMmeasures the importance of the effect. In example 1, we

computed the point estimate of this ratio from the output, but we were left without a confidence interval.

In this example, we use nlcom to compute a point estimate and a confidence interval.

Below, we refit the model from example 1, specifying the coeflegend option to learn the parameter

names. We use the parameter names in nlcom to estimate the ratio of the ATE to the control-level POM.

. stteffects ra (age exercise diet education) (smoke), coeflegend
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.302e-25
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

_t Coefficient Legend

ATE
smoke

(Smoker
vs

Nonsmoker) -1.956657 _b[ATE:r1vs0.smoke]

POmean
smoke

Nonsmoker 4.243974 _b[POmean:0.smoke]

. nlcom _b[ATE:r1vs0.smoke] / _b[POmean:0.smoke]
_nl_1: _b[ATE:r1vs0.smoke] / _b[POmean:0.smoke]

_t Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 -.4610437 .0598709 -7.70 0.000 -.5783885 -.3436988

The output shows that when every woman smoked, the average time to a second heart attack falls by

an estimated 46% relative to the case when no women smoked, as we computed earlier. We also obtain

a 95% confidence interval of 34% to 58% for this estimate.
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Example 4: Estimating the ATET
Intuitively, the ATET measures the effect of the treatment on an at-risk subpopulation. Sometimes

the subpopulation that gets the treatment defines such an at-risk subpopulation. The ATET has the added

benefit that it can be estimated under weaker conditions than the ATE; see Assumptions and tradeoffs in

[CAUSAL] stteffects intro.

. stteffects ra (age exercise diet education) (smoke), atet
Failure _d: fail

Analysis time _t: atime
Iteration 0: EE criterion = 1.006e-14
Iteration 1: EE criterion = 2.985e-26
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
smoke

(Smoker
vs

Nonsmoker) -1.527476 .2489203 -6.14 0.000 -2.015351 -1.039602

POmean
smoke

Nonsmoker 3.436937 .2217808 15.50 0.000 3.002255 3.87162

When every woman in the subpopulation smoked, the average time to a second heart attack is esti-

mated to be 1.53 years less than when no women in the subpopulation smoked. The estimated average

time to a second heart attack when no women in the subpopulation smoked is 3.44 years.

Example 5: Fixed or random censoring time
The time to censoring in survival-time data can be random or deterministic, although it must be inde-

pendent of treatment assignment and the potential outcomes; see Kalbfleisch and Prentice (2002, chap. 3)

for the standard case and see The correct adjustment for censoring assumption under Assumptions and

tradeoffs in [CAUSAL] stteffects intro for the treatment-effects case.

The RA estimator and the likelihood-adjusted-censoring version of the inverse-probability-weighted

RA estimator can accommodate a fixed time to censoring; see The correct adjustment for censoring as-

sumption in [CAUSAL] stteffects intro. (The estimators that handle censoring by weighting cannot ac-

commodate a fixed time to censoring because the weights are not well defined with a fixed time to

censoring.)

We have fictional data on the time to rearrest among men aged 25–35 who were previously in prison

for a felony conviction (rtime). The time to censoring is fixed in these data because individuals were

followed for a maximum of five years.
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Some of the young men chose to enter a vocational training program before release from prison;

train is 1 for participants and 0 for nonparticipants. The dataset also contains fail (which is 1 if the

observed time is a failure time and 0 if it is time to censoring), age at the time of the first arrest (age), an
index of the parents’ socioeconomic level (parental), and the number of years behind in school at the

time of the first arrest (edeficit).

We estimate theATET because we wish to allow the gains from the training program to be related to an

unobservable characteristic that affects who self-selects into the program; see Average treatment effect

on the treated in [CAUSAL] stteffects intro.

We model the outcome as a function of age, parental, and edeficit.

. use https://www.stata-press.com/data/r19/recid2, clear
(Time to rearrest (fictional))
. stteffects ra (age parental edeficit) (train), atet

Failure _d: fail
Analysis time _t: rtime

Iteration 0: EE criterion = 1.875e-23
Iteration 1: EE criterion = 1.972e-31
Survival treatment-effects estimation Number of obs = 2,000
Estimator : regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: none

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATET
train

(Student
vs

Nonstudent) 2.440919 .4689057 5.21 0.000 1.52188 3.359957

POmean
train

Nonstudent 2.062029 .1231492 16.74 0.000 1.820661 2.303397

When everyone who selected the training got the training, the average time to rearrest is 2.44 years

later than the average rearrest time if none of those who selected the training got the training. The average

rearrest time if none of those who selected the training got the training is 2.06 years. In other words, the

average time to rearrest increases from about 2.06 years to about 4.50 years for the subpopulation of

young men who self-selected into the prerelease vocational training program.
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Stored results
stteffects ra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) stteffects
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(tvar) name of treatment variable

e(subcmd) ra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Themethods and formulas for the RAestimators implemented in stteffects ra are given inMethods

and formulas of [CAUSAL] stteffects ipwra.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
stteffects wra estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational survival-time data with ran-

dom time to censoring. Estimation is by weighted regression adjustment (WRA). WRA estimators use

inverse-probability-of-censoring adjusted regression coefficients to compute averages of treatment-level

predicted outcomes. Contrasts of these averages estimate the treatment effects. WRA uses estimated

weights from a time-to-censoring model to account for censored survival times instead of including a

term in the likelihood function. stteffects wra offers several choices for the functional forms of the

outcome model and the time-to-censoring model. Binary and multivalued treatments are accommodated.

See [CAUSAL] stteffects intro for an overview of estimating treatment effects from observational

survival-time data.

Quick start
Specify time as observed failure time and fail as failure indicator

stset time, failure(fail)

ATE from aWeibull model for time on x1 and x2 with binary treatment treat2 and a Weibull model on

x1 and x2 for censoring
stteffects wra (x1 x2) (treat2) (x1 x2)

Same as above, but estimate the ATET

stteffects wra (x1 x2) (treat2) (x1 x2), atet

ATE of treat2 using a gamma model for time and a gamma censoring model

stteffects wra (x1 x2, gamma) (treat2) (x1 x2, gamma)

ATE for each level of three-valued treatment treat3
stteffects wra (x1 x2) (treat3) (x1 x2)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

stteffects wra (x1 x2) (treat3) (x1 x2), control(”MyControl”)

Menu
Statistics > Causal inference/treatment effects > Survival outcomes > Weighted regression adjustment

410
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Syntax
stteffects wra (omvarlist [ , omoptions ]) (tvar) (cmvarlist [ , cmoptions ])

[ if ] [ in ] [ , stat options ]

omvarlist specifies the variables that predict the survival-time variable in the outcome model.

tvar must contain integer values representing the treatment levels.

cmvarlist specifies the variables that predict censoring in the censoring model.

omoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from outcome model

cmoptions Description

Model

weibull Weibull; the default

exponential exponential

gamma two-parameter gamma

lnormal lognormal

ancillary(avarlist [ , noconstant ]) specify variables used to model ancillary parameter

noconstant suppress constant from censoring model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap,
or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

noshow do not show st setting information

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

iterinit(#) specify starting-value iterations; seldom used

Advanced

pstolerance(#) set tolerance for the overlap assumption

osample(newvar) identify observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

You must stset your data before using stteffects; see [ST] stset.
omvarlist, cmvarlist, and avarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights may be specified using stset; see Weights under Remarks and examples in [ST] stset.

However, weights may not be specified if you are using the bootstrap prefix.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

ancillary(avarlist [ , noconstant ]) specifies the variables used to model the ancillary parameter.

By default, the ancillary parameter does not depend on covariates. Specifying ancillary(avarlist,
noconstant) causes the constant to be suppressed in the model for the ancillary parameter.

ancillary() may be specified for the model for survival-time outcome, for the model for the cen-

soring variable, or for both. If ancillary() is specified for both, the varlist used for each model

may be different.

noconstant; see [R] Estimation options.
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� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

noshow prevents stteffects wra from showing the key st variables. This option is rarely used because

most people type stset, show or stset, noshow to permanently set whether they want to see these

variables mentioned at the top of the output of every st command; see [ST] stset.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

iterinit(#) specifies the maximum number of iterations used to calculate the starting values. This

option is seldom used.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). stteffectswill exit with an error if an observation has an estimated propen-

sity score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with the statistic pomeans. control() and tlevel() may

not specify the same treatment level.
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tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with stteffects but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
If you are not familiar with the framework for treatment-effects estimation from observational

survival-time data, please see [CAUSAL] stteffects intro.

Weighted regression-adjustment (WRA) estimators use estimated weights to account for censoring

when estimating outcome-regression parameters. The estimated outcome-regression parameters are used

to compute averages of treatment-level predicted outcomes. Contrasts of these averages estimate the

treatment effects.

WRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of a time-to-censoring model and compute inverse-probability-

of-censoring weights.

2. Using the estimated inverse-probability-of-censoring weights, they use weighted maximum

likelihood estimators for the outcome for each treatment level and obtain the treatment-specific

predicted mean outcomes for each subject. The inverse-probability-of-censoring weights ac-

count for right-censored survival times.

3. They compute the means of the treatment-specific predicted mean outcomes. Contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.

WRA estimators differ from RA estimators in thatWRA estimators use weights to account for observa-

tions lost to censoring while RA estimators use an additional term in the likelihood function. Amodel for

the time to censoring is used to estimate the weights.

WRA estimators require more assumptions than RA estimators. Specifically, they require that the cen-

soring time be random and that the time-to-censoring model be well specified. The implemented WRA

estimators also require that the time-to-censoring process not vary by treatment level. The RA estimator

and the likelihood-adjusted-censoring version of the inverse-probability-weighted RA estimator do not

require these extra assumptions, because they use a likelihood term instead of weights to adjust for the

data lost to censoring; see [CAUSAL] stteffects ra and [CAUSAL] stteffects ipwra.

Here we note only a few entry points to the vast literature on weighted estimators. Imbens (2004),

Imbens and Wooldridge (2009), Robins and Rotnitzky (2006), Wooldridge (2002, 2007), Cameron and

Trivedi (2005, chap. 25), Wooldridge (2010, chap. 21), and Vittinghoff et al. (2012, chap. 9) provide

excellent general introductions to estimating ATEs and toWRA estimators in particular.

Like streg and other survival-time commands, stteffects wra uses the outcome variable and the

failure indicator computed by, and optionally weights specified with, stset. stteffects wra is not

appropriate for data with time-varying covariates, also known as multiple-record survival-time data, or

for delayed-entry data.
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Example 1: Estimating the ATE
Suppose we wish to study the effect of smoking on the time to a second heart attack among women

aged 45–55 years. In our fictional sheart dataset, atime is the observed time in years to a second

heart attack or censoring, and fail is the 0/1 indicator that a second heart attack was observed. (When

fail is 1, atime records the time to the second heart attack; when fail is 0, atime records a censored
observation of the time to a second heart attack.) We previously stset these data; see A quick tour of

the estimators in [CAUSAL] stteffects intro.

The treatment, smoking, is stored in the 0/1 indicator smoke. These data also contain age at the time

of the first heart attack (age), and indices of the level of exercise (exercise), diet quality (diet), and
education (education) prior to the first heart attack.

We can use stteffects wra to estimate the ATE by WRA. We model the mean survival time using

the default Weibull outcome model with age, exercise, diet, and education as covariates, and we

specify that smoke is the treatment variable. We also specify the defaultWeibull time-to-censoring model

and include age, square of age, exercise, and education.

. use https://www.stata-press.com/data/r19/sheart
(Time to second heart attack (fictional))
. stteffects wra (age exercise diet education)
> (smoke)
> (age c.age#c.age exercise diet education)

Failure _d: fail
Analysis time _t: atime

Iteration 0: EE criterion = 4.096e-18
Iteration 1: EE criterion = 1.279e-29
Survival treatment-effects estimation Number of obs = 2,000
Estimator : weighted regression adjustment
Outcome model : Weibull
Treatment model: none
Censoring model: Weibull

Robust
_t Coefficient std. err. z P>|z| [95% conf. interval]

ATE
smoke

(Smoker
vs

Nonsmoker) -2.374174 .6017498 -3.95 0.000 -3.553582 -1.194766

POmean
smoke

Nonsmoker 4.302131 .5528943 7.78 0.000 3.218478 5.385784

When every woman smoked in the population of women aged 45–55 years who have had a heart

attack, the average time to a second heart attack is estimated to be 2.37 years less than when no women

in the subpopulation of interest smoked. The estimated average time to a second heart attack when no

women in the subpopulation of interest smoked is 4.30 years.
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Stored results
stteffects wra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) stteffects
e(cmdline) command as typed

e(dead) d
e(depvar) t
e(tvar) name of treatment variable

e(subcmd) wra
e(omodel) outcome model: weibull, exponential, gamma, or lognormal
e(cmodel) censoring model: weibull, exponential, gamma, or lognormal
e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas for the WRA estimators implemented in stteffects wra are given in

Methods and formulas of [CAUSAL] stteffects ipwra.
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Description Syntax Remarks and examples Methods and formulas
References Also see

Description
The tebalance postestimation commands produce diagnostic statistics, test statistics, and diagnostic

plots to assess whether a teffects or an stteffects command balanced the covariates over treatment

levels.

Syntax
tebalance subcommand . . . [ , options ]

subcommand Description

summarize compare means and variances in raw and balanced data

overid overidentification test

density kernel density plots for raw and balanced data

box box plots for each treatment level for balanced data

Remarks and examples
This entry provides an overview of the commands in tebalance. We recommend that you

read this entry before proceeding to [CAUSAL] tebalance summarize, [CAUSAL] tebalance overid,

[CAUSAL] tebalance density, or [CAUSAL] tebalance box for command-specific syntax and details.

A covariate is said to be balanced when its distribution does not vary over treatment levels.

Covariates are balanced in experimental data because treatment assignment is independent of the

covariates because of the study design. In contrast, covariates must be balanced byweighting or matching

in observational data because treatment assignment is related to the covariates that also affect the outcome

of interest.

The estimators implemented in teffects and stteffects use a model or matching method to make

the outcome conditionally independent of the treatment by conditioning on covariates. If this model or

matching method is well specified, it should balance the covariates. Balance diagnostic techniques and

tests check the specification of the conditioning method used by a teffects or an stteffects estima-

tor; see [CAUSAL] teffects intro advanced for an introduction to teffects, and [CAUSAL] stteffects

intro for an introduction to stteffects.

tebalance implements four methods to check for balance after teffects and stteffects. Which

tebalance methods are available depends on the teffects estimation method, as summarized in the

table below.

418
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tebalance Works after teffects Works after
stteffects

method Description ipw aipw ipwra nnmatch psmatch ipw ipwra

summarize standardized differences and x x x x x x x
variance ratios

overid 𝜒2 test for balance x x x x x
density diagnostic kernel density x x x x x x x

plots
box diagnostic box plots x x

tebalance overid implements a formal test, while the other three methods are exploratory diag-

nostic techniques. There is no balance check after teffects ra, stteffects ra, or stteffects wra,
because they use neither a treatment model nor a matching method.

Austin (2009, 2011) and Guo and Fraser (2015, sec. 5.52) provide introductions to covariate balance.

Imai and Ratkovic (2014) derived a test for balance implemented in tebalance overid.

The remainder of this entry provides a quick introduction to using tebalance to check for balance

after teffects. See [CAUSAL] stteffects intro for examples after stteffects.

Example 1: Balance after estimators that use weighting
Inverse-probability-weighted (IPW) estimators use a model for the treatment to make the outcome

conditionally independent of the treatment. If this model is well specified, it will also balance the co-

variates.

Using an extract from Cattaneo (2010), we use teffects ipw to estimate the effect of a mother’s

smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for marital status

(mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s first

trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby)
Iteration 0: EE criterion = 1.873e-22
Iteration 1: EE criterion = 3.315e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -236.1038 23.86187 -9.89 0.000 -282.8722 -189.3354

POmean
mbsmoke

Nonsmoker 3402.552 9.539555 356.68 0.000 3383.855 3421.249
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Rubin (2008) recommends finding a model that balances the covariates before looking at results for

the estimated treatment effect. Thus we do not interpret the above results, and we note that we could pay

closer heed to Rubin’s recommendation by preceding the teffects command with quietly to suppress
the output.

Imai and Ratkovic (2014) derived a test for balance by viewing the restrictions imposed by balance as

overidentifying conditions. This test is implemented in tebalance overid, and we use it to test whether
the above treatment model balanced the covariates.

. tebalance overid
Iteration 0: Criterion = .02146858
Iteration 1: Criterion = .02159149 (backed up)
Iteration 2: Criterion = .02177783
Iteration 3: Criterion = .02260102
Iteration 4: Criterion = .02267955
Iteration 5: Criterion = .02292361
Iteration 6: Criterion = .0243172
Iteration 7: Criterion = .02457057
Iteration 8: Criterion = .02488578
Iteration 9: Criterion = .02529419
Iteration 10: Criterion = .02545882
Iteration 11: Criterion = .02550251
Iteration 12: Criterion = .02552869
Iteration 13: Criterion = .02554463
Iteration 14: Criterion = .02554512
Iteration 15: Criterion = .02554514
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(5) = 38.1464
Prob > chi2 = 0.0000

We reject the null hypothesis that the treatment model balanced the covariates.

Let’s use tebalance summarize to see where the problem lies. To get an idea of the extent to which

the covariates are unbalanced, we begin by summarizing the covariates by group in the raw data by

specifying the baseline option.

. tebalance summarize, baseline
Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,315.3
Control obs = 3,778 2,326.7

Means Variances
Control Treated Control Treated

mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429

prenatal1 .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

The output indicates that the covariates may not be balanced in the raw data. For example, the dis-

tribution of the mother’s age may differ over the treatment groups. We can investigate the differences

further with standardized differences and variance ratios. A perfectly balanced covariate has a standard-
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ized difference of zero and variance ratio of one. There are no standard errors on these statistics, so

inference is informal. Austin (2009) provides a recent introduction to these diagnostics, although they

have been used at least since Rosenbaum and Rubin (1985).

By omitting the baseline option, we obtain these diagnostic statistics for the raw data and the

weighted data.

. tebalance summarize
Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,315.3
Control obs = 3,778 2,326.7

Standardized differences Variance ratio
Raw Weighted Raw Weighted

mmarried -.5953009 -.0105562 1.335944 1.009079
mage -.300179 -.0672115 .8818025 .8536401

prenatal1 -.3242695 -.0156339 1.496155 1.023424
fbaby -.1663271 .0257705 .9430944 1.005698

Reviewing the output, we see that for mmarried, prenatal1, and fbaby, our model improved the

level of balance. The weighted standardized differences are all close to zero and the variance ratios are

all close to one. However, output indicates that mage may not be balanced by our model. The weighted

standardized difference is close to zero, but the weighted variance ratio still appears to be considerably

less than one.

Now, let’s use tebalance density to look at how the densities of mage for treated and control groups
differ.

. tebalance density mage
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The plots also indicate a lack of balance in mage between the treatment groups.
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To try to achieve better balance, we specify a richer model with interactions between mage and the

other covariates and look at the resulting standardized differences.

. quietly teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby
> c.mage#(c.mage i.mmarried prenatal1))
. tebalance summarize
Covariate balance summary

Raw Weighted

Number of obs = 4,642 4,642.0
Treated obs = 864 2,329.1
Control obs = 3,778 2,312.9

Standardized differences Variance ratio
Raw Weighted Raw Weighted

mmarried -.5953009 .0053497 1.335944 .9953184
mage -.300179 .0410889 .8818025 1.076571

prenatal1 -.3242695 .0009807 1.496155 .9985165
fbaby -.1663271 -.0130638 .9430944 .9965406

mage#
mage -.3028275 .0477465 .8274389 1.109134

mmarried#
mage

Married -.6329701 .0197209 1.157026 1.034108

prenatal1#
mage
Yes -.4053969 .0182109 1.226363 1.032561
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The standardized difference and variance ratio results for mage look closer to the expected values of zero
and one, so we proceed to the formal test.

. tebalance overid
Iteration 0: Criterion = .0602349
Iteration 1: Criterion = .06172749 (backed up)
Iteration 2: Criterion = .06428188 (backed up)
Iteration 3: Criterion = .06489132 (backed up)
Iteration 4: Criterion = .06527353 (backed up)
Iteration 5: Criterion = .0664376
Iteration 6: Criterion = .07184528
Iteration 7: Criterion = .0762921
Iteration 8: Criterion = .0767141
Iteration 9: Criterion = .07679677
Iteration 10: Criterion = .07699122
Iteration 11: Criterion = .0776527
Iteration 12: Criterion = .07771774
Iteration 13: Criterion = .07772609
Iteration 14: Criterion = .07773294
Iteration 15: Criterion = .077752
Iteration 16: Criterion = .07775324
Iteration 17: Criterion = .07775325
Iteration 18: Criterion = .07775325
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(8) = 11.8612
Prob > chi2 = 0.1575

We do not reject the null hypothesis that the specified treatment model balances the covariates.

Example 2: Balance after estimators that use matching
Instead of weighting, we might want to use a matching estimator. We can select teffects nnmatch

or teffects psmatch for balance and estimation; in this example, we use teffects nnmatch.

. teffects nnmatch (bweight mmarried mage prenatal1 fbaby)
> (mbsmoke), bias(mage) ematch(mmarried prenatal1 fbaby)
Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -240.4589 28.43008 -8.46 0.000 -296.1808 -184.7369
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Again we ignore the estimated effect and first check for balance. We begin by reviewing whether the

summary statistics indicate good balance.

. tebalance summarize
(refitting the model using the generate() option)
Covariate balance summary

Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Standardized differences Variance ratio
Raw Matched Raw Matched

mmarried -.5953009 -2.42e-16 1.335944 1
mage -.300179 -.0040826 .8818025 .9815517

prenatal1 -.3242695 -2.78e-16 1.496155 1
fbaby -.1663271 2.24e-16 .9430944 1

We do not have standard errors on these statistics, so we cannot make any formal conclusions, but the

summary statistics appear to indicate much better balance than the IPW results. tebalance summarize
has to refit the model to recover the matched sample because the generate() option was not specified on
the teffects nnmatch command. The reestimation does not affect the results, although the computation

takes longer; see example 3 for details.

Because it is a matching estimator, and not an IPW estimator, we cannot use tebalance overid after
teffects nnmatch. The matching estimators, however, provide diagnostic box plots using tebalance
box that are not available after the IPW estimators.

. tebalance box mage
(refitting the model using the generate() option)
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The box plots of the matched data also indicate covariate balance.
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Let’s look at the kernel density plots using the matched data.

. tebalance density mage
(refitting the model using the generate() option)
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The plots using the matched data appear to be balanced.

Technical note
teffects implements matching estimators, IPW estimators, regression-adjustment (RA) estimators,

and estimators that combine IPW and RA. Matching estimators define a matched sample, and IPW esti-

mators define a weighted sample, each of which can be used to compute covariate balance statistics. RA

estimators do not define an adjusted sample that can be used to compute covariate balance statistics, and

tebalance does not work after teffects ra. Only the IPW component of the estimators that combine

RA and IPW defines a weighted sample that can be used to compute balance statistics. So, tebalance
produces the same results after teffects aipw or teffects ipwra as it does after teffects ipw.

Example 3: Faster results after a matching estimator
The tebalance commands run in example 2 executedmore slowly than necessary. tebalance issued

the note

refitting the model using the generate() option

after the commands

. tebalance summarize

. tebalance box mage

and

. tebalance density mage

After teffects nnmatch or teffects psmatch, tebalance computes the balance statistics on the

matched sample defined by the matching estimator. teffects nnmatch and teffects psmatch leave
behind only variables that identify the matched sample when the generate() option is specified. Unless
the generate() option is specified with teffects nnmatch or teffects psmatch, each tebalance
command must rerun the estimation command to recover the matched sample.
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Typing

. teffects nnmatch (bweight mmarried mage fbaby prenatal1)
> (mbsmoke), bias(mage) ematch(mmarried fbaby prenatal1)
> generate(matchv)

would generate variables that identify the matched sample that the tebalance commands could use. See

Remarks and examples in [CAUSAL] tebalance box, [CAUSAL] tebalance density, and [CAUSAL] tebal-

ance summarize for examples using the option generate() on teffects psmatch to speed up the

postestimation computations.

Methods and formulas
Methods and formulas are presented under the following headings:

Introduction
Matched samples
IPW samples
Testing the propensity-score model specification

Introduction
For covariate 𝑧, we observe values {𝑧1, 𝑧2, . . . , 𝑧𝑁}. Define a treatment indicator variable for 𝐽

treatment levels as 𝑡𝑖 ∈ {1, 2, . . . , 𝐽}, for 𝑖 = 1, . . . , 𝑁, and frequency weights as {𝑤1, 𝑤2, . . . , 𝑤𝑁}.
The sample mean and variance of 𝑧 for level 𝑡 are

̂𝜇𝑧(𝑡) =

𝑁
∑
𝑖

𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑧𝑖

𝑁𝑡
and

𝜎̂2
𝑧(𝑡) =

𝑁
∑
𝑖

𝐼(𝑡𝑖 = 𝑡)𝑤𝑖 {𝑧𝑖 − ̂𝜇𝑧(𝑡)}2

𝑁𝑡 − 1

where 𝑁𝑡 = ∑𝑁
𝑖 𝑤𝑖𝐼(𝑡𝑖 = 𝑡), and

𝐼(𝑡𝑖 = 𝑡) = {1 if 𝑡𝑖 = 𝑡
0 otherwise

As shown in Austin (2011), the standardized differences for covariate 𝑧 between level 𝑡 and the control
𝑡0 are computed as

𝛿𝑧(𝑡) = ̂𝜇𝑧(𝑡) − ̂𝜇𝑧(𝑡0)

√𝜎̂2
𝑧(𝑡)+𝜎̂2

𝑧(𝑡0)
2

(1)

The variance ratio is 𝜌𝑧(𝑡) = {𝜎̂2
𝑧 (𝑡)}/{𝜎̂2

𝑧 (𝑡0)}.
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Matched samples
We now turn our attention to the matched samples for the potential-outcome mean (POM), average

treatment effect (ATE), and average treatment effect on the treated (ATET) estimators. We estimate the

covariate for the counter-factual treatment by taking the mean of the matched observations

̇𝑧𝑖 =
∑𝑗∈Ω(𝑖) 𝑤𝑗𝑧𝑗

∑𝑗∈Ω(𝑖) 𝑤𝑗

where Ω(𝑖) = (𝑘1, 𝑘2, . . . , 𝑘𝑚𝑗
) is the set of observation indices that are matched to observation 𝑖 of the

opposite treatment condition. The observed covariate andmatched covariate pairs, (𝑧𝑖, ̇𝑧𝑖), 𝑖 = 1, . . . , 𝑁,

are used in the box plot (see [G-2] graph box) and the kernel density plot (see [R] kdensity). The ATET

sample is limited to those observations from the conditional treatment, ̃𝑡, and their matched covariate

means.

In Methods and formulas of [CAUSAL] teffects nnmatch, we define 𝐾𝑚(𝑖) as the number of times

observation 𝑖 is used in amatchwith observation 𝑗 of the opposite treatment condition, 𝑖 ∈ Ω(𝑗), weighted
by the total number of matches for observation 𝑗. Specifically,

𝐾𝑚(𝑖) =
𝑁

∑
𝑗=1

𝐼 {𝑖 ∈ Ω (𝑗)}
𝑤𝑗

∑ 𝑤𝑘
𝑘∈Ω(𝑗)

These weights are used in the estimation of the mean and variance for the matched dataset. For the POM

and ATE models, the estimated mean and variance are computed as

̂𝜇 ̇𝑧(𝑡) =
∑𝑁

𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑧𝑖 {1 + 𝐾𝑚(𝑖)}
𝑀𝑡

and

𝜎̂2
̇𝑧(𝑡) =

∑𝑁
𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖{1 + 𝐾𝑚(𝑖)}{𝑧𝑖 − ̂𝜇 ̇𝑧(𝑡)}2

𝑀𝑡 − 1

where 𝑀𝑡 = ∑𝑁
𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖{1 + 𝐾𝑚(𝑖)}.

The standardized differences between the control level and all other levels for the matched covariate

distribution are computed as in (1), but ̂𝜇 ̇𝑧(𝑡) is substituted for ̂𝜇𝑧(𝑡) and 𝜎̂2
̇𝑧(𝑡) for 𝜎̂2

𝑧(𝑡).
For the ATET model, there is no matched sample for the treatment levels other than the conditional

treatment ̃𝑡. The covariate mean and variance for the conditional treatment are the same as that of the

raw data, 𝜇𝑧( ̃𝑡 ) and 𝜎𝑧( ̃𝑡 ). However, the covariate mean and variance for the sample matched to the

conditional treatment, 𝑡 ≠ ̃𝑡, are computed as

̃𝜇 ̇𝑧(𝑡) =
∑𝑁

𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑧𝑖𝐾𝑚(𝑖)
𝑀𝑡

and

𝜎̃2
̇𝑧(𝑡) =

∑𝑁
𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝐾𝑚(𝑖) {𝑧𝑖 − ̃𝜇 ̇𝑧(𝑡)}2

𝑀𝑡 − 1

where 𝑀𝑡 = ∑𝑁
𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝐾𝑚(𝑖).
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IPW samples
Computation of the inverse-probability weights is discussed in Methods and formulas of

[CAUSAL] teffects aipw and in Methods and formulas of [CAUSAL] stteffects ipwra. For the POM

and ATE estimators, we defined the normalized IPW weights as 𝑑𝑖(𝑡) = 𝑁𝑡𝑑𝑖(𝑡)/ ∑𝑁
𝑖 𝑑𝑖(𝑡), where

𝑑𝑖(𝑡) = 𝐼(𝑡𝑖 = 𝑡)/𝑝(z𝑖, 𝑡, 𝛄̂) for treatment level 𝑡 and individual 𝑖.

For the ATET estimator, we use the normalized weights 𝑓𝑖 = 𝑁𝑓𝑖/ ∑𝑁
𝑖 𝑓𝑖, where 𝑓𝑖 =

𝑝(z𝑖, ̃𝑡, 𝛄̂)/𝑝(z𝑖, 𝑡𝑖, 𝛄̂) are the treatment-adjusted inverse-probability weights, and ̃𝑡 is the conditional

treatment.

We will simplify notation by defining a single weight

𝑤𝑖(𝑡) = {𝑑𝑖(𝑡) if model is ATE or POM

𝑓𝑖(𝑡) if model is ATET

The covariate mean and variance for treatment level 𝑡 are

̃𝜇 ̇𝑧(𝑡) =
∑𝑁

𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑤𝑖𝑥𝑖

𝑀𝑡
and

𝜎̃2
̇𝑧(𝑡) = 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑤𝑖 {𝑧𝑖 − ̃𝜇 ̇𝑧(𝑡)}2

𝑀𝑡 − 1

where 𝑀𝑡 = ∑𝑁
𝑖 𝐼(𝑡𝑖 = 𝑡)𝑤𝑖𝑤𝑖.

The kernel density is computed by kdensity for each covariate conditioned on each treatment level

using the raw covariate with iweights equal to 𝑤𝑖𝑤𝑖.

Testing the propensity-score model specification
We estimate the probability of treatment conditioned on a set of covariates with a propensity-score

model. Imai and Ratkovic (2014) derive a test for whether the estimated propensity score balances the

covariates. The score equations for parameters of the propensity-score model define an exactly identified

generalized method of moments (GMM) estimator. Imai and Ratkovic (2014) use the conditions imposed

by mean balance as overidentifying conditions. A standard GMM test for the validity of the overidentify-

ing conditions is then a test for covariate balance. See [R] gmm for a discussion of this overidentifying

test, which is known as Hansen’s 𝐽 test in the econometrics literature.

Here are the details about the score equations and the overidentifying balance conditions. Recall from

Methods and formulas of [CAUSAL] teffects aipw and Methods and formulas of [CAUSAL] stteffects

ipwra, we have the first-order condition of the treatment model

1
𝑁

𝑁
∑
𝑖=1

stm,𝑖(z𝑖, 𝛄̂) = 0

For a two-level treatment-effects model with conditional treatment ̃𝑡 and control 𝑡0, the score is

stm,𝑖(z𝑖, 𝛄) =
𝐼 (𝑡𝑖 = ̃𝑡 )
𝑝(z𝑖, ̃𝑡, 𝛄)

𝜕𝑝(z𝑖, 𝑡, 𝛄)
𝜕𝛄′ − { 𝐼(𝑡𝑖 = 𝑡0)

1 − 𝑝 (z𝑖, ̃𝑡, 𝛄)
}

𝜕𝑝 (z𝑖, ̃𝑡, 𝛄)
𝜕𝛄′ ∣

𝛄=𝛄̂



tebalance — Check balance after teffects or stteffects estimation 429

The score reduces to

stm,𝑖 (z𝑖, 𝛄̂) = [
𝐼 (𝑡𝑖 = ̃𝑡 ) − 𝑝 (z𝑖, ̃𝑡, 𝛄)

𝑝 (z𝑖, ̃𝑡, 𝛄) {1 − 𝑝 (z𝑖, ̃𝑡, 𝛄)}
]

𝜕𝑝 (z𝑖, ̃𝑡, 𝛄)
𝜕𝛄′ ∣

𝛄=𝛄̂

The corresponding covariate balancing moment conditions are

wtm,𝑖(z𝑖, 𝛄) = [
𝐼 (𝑡𝑖 = ̃𝑡 ) − 𝑝 (z𝑖, ̃𝑡, 𝛄)

𝑝 (z𝑖, ̃𝑡, 𝛄) {1 − 𝑝 (z𝑖, ̃𝑡, 𝛄)}
] z𝑖

for the POM andATEmodels. For theATETmodel with conditional treatment ̃𝑡, we multiply by 𝑝(z𝑖, ̃𝑡, 𝛄)
and scale by 𝑁/𝑁 ̃𝑡 :

wtm,𝑖(z𝑖, 𝛄) = 𝑁
𝑁 ̃𝑡

{
𝐼 (𝑡𝑖 = ̃𝑡) − 𝑝 (z𝑖, ̃𝑡, 𝛄)

1 − 𝑝(z𝑖, ̃𝑡, 𝛄)
} z𝑖

We stack the moment conditions

gtm(Z, 𝛄) = 1
𝑁

𝑁
∑
𝑖=1

{ stm,𝑖(z𝑖, 𝛄)
wtm,𝑖(z𝑖, 𝛄)}

= 1
𝑁

𝑁
∑
𝑖=1

gtm,𝑖(z𝑖, 𝛄)

The overidentified GMM estimator is then

𝛄̃ = argmin𝛄 𝑁 gtm(Z, 𝛄)′ Wtm(Z, 𝛄)−1 gtm(Z, 𝛄) (2)

where

Wtm(Z, 𝛄) = 1
𝑁

𝑁
∑
𝑖=1

𝐸𝑇 {gtm,𝑖(z, 𝛄) gtm,𝑖(z, 𝛄)′}

and the expectation is taken with respect to treatment distribution. The weight matrix Wtm(Z, 𝛄) is

computed explicitly (Imai and Ratkovic 2014), and (2), written as a maximization problem, is solved

using ml.

Finally, Hansen’s 𝐽 statistic is evaluated at its minimum,

𝐽 = 𝑁gtm(Z, 𝛄̃)′ Wtm(Z, 𝛄̃)−1 gtm(Z, 𝛄̃)

and is asymptotically distributed 𝜒2 with degrees of freedom 𝑑,

𝑑 = rank {Wtm (Z, 𝛄̃)} − rank[ 1
𝑁

𝑁
∑
𝑖=1

𝐸𝑇 {stm,𝑖(z𝑖, 𝛄̃) stm,𝑖 (z𝑖, 𝛄̃)′}]
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tebalance box — Covariate balance box

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description
tebalance box produces box plots that are used to check for balance in matched samples after

teffects nnmatch and teffects psmatch.

Quick start
Box plot of the propensity score from the last teffects psmatch command

tebalance box

Box plot of values of x1 in the treatment and control groups from raw data and the matched sample from

the last teffects nnmatch or teffects psmatch command

tebalance box x1

Menu
Statistics > Causal inference/treatment effects > Balance > Graphs

431
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Syntax
Box plots for the propensity score

tebalance box [ , options ]

Box plots for a covariate

tebalance box varname [ , options ]

options Description

Main

boxlook options graph box options controlling how the box looks

legending options graph box options controlling how the variables are labeled

axis options graph box options controlling how numerical 𝑦 axis is labeled

title and other options graph box options controlling titles, added text, aspect ratio, etc.
by options suboptions inside by() controlling plots by raw and matched samples

Options

� � �
Main �

boxlook options are any of the options documented in boxlook options in [G-2] graph box.

legending options are any of the options documented in legending options in [G-2] graph box.

axis options are any of the options documented in axis options in [G-2] graph box.

title and other options are any of the options, except by(), documented in title and other options in

[G-2] graph box. tebalance box uses by() to differentiate between raw and matched samples, and

some twoway options will be repeated for by graph and might be better specified as byopts().

by options are any of the byopts documented in [G-3] by option. byopts() generally affects the entire
graph, and some by options may be better specified as twoway options; see [G-3] twoway options.

Remarks and examples
When the distribution of a covariate does not vary over the treatment levels, the covariate is said to

be balanced. tebalance box produces box plots of a covariate over treatment levels for the raw data

and for the matched sample produced by teffects. If the matched-sample box plots are the same over

the treatment levels, the covariate is balanced in the matched sample.

After teffects nnmatch and teffects psmatch,

. tebalance box varname [ , options ]

produces box plots to check whether varname is balanced.
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After teffects psmatch,

. tebalance box [ , options ]

produces box plots to check whether the propensity score estimated by teffects is balanced.

We recommend that you read [CAUSAL] tebalance before proceeding; it provides an introduction to

covariate balance and an overview of the implemented methods.

Example 1: Checking covariate balance after psmatch
Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate the

effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling
for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit

in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794

We specified the option generate(matchv) to speed up the postestimation command that produces

density plots, as discussed in example 3 under Remarks and examples of [CAUSAL] tebalance. We do

not interpret the estimated effect produced by this preliminary model but rather check the specification.

Now we look at the box plots.
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. tebalance box mage
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The box plots for the matched sample are very similar. The medians, the 25th percentiles, and the

75th percentiles appear to be the same, although there may be some differences in the tails, the upper

adjacent values, the lower adjacent values, and the outliers. Matching on the estimated propensity score

appears to have balanced mage, except for the tails.

To get an idea of whether teffects psmatch balanced all the covariates, we look at the box plots

for the estimated propensity score.

. tebalance box

.1

.2

.3

.4

.5

Raw Matched

Nonsmoker
Smoker

P
ro

pe
ns

ity
 s

co
re

 

Balance plot

The box plots indicate that teffects psmatch balanced the estimated propensity scores.

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154. https://doi.org/10.1016/j.jeconom.2009.09.023.

https://doi.org/10.1016/j.jeconom.2009.09.023
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Also see
[CAUSAL] tebalance — Check balance after teffects or stteffects estimation

[CAUSAL] teffects nnmatch — Nearest-neighbor matching

[CAUSAL] teffects psmatch — Propensity-score matching

[CAUSAL] teoverlap — Overlap plots
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Reference
Also see

Description
tebalance density produces kernel density plots that are used to check for covariate balance after

estimation by a teffects inverse-probability-weighted estimator, a teffects matching estimator, or

an stteffects inverse-probability-weighted estimator.

Quick start
Kernel density plot of the propensity score after teffects psmatch

tebalance density

Kernel density plot of x1 after a teffects command or an stteffects command

tebalance density x1

Same as above, but rescale the kernel bandwidth by a factor of 2

tebalance density x1, bwidth(*2)

Menu
Statistics > Causal inference/treatment effects > Balance > Graphs
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Syntax
Density plots for the propensity score

tebalance density [ , options ]

Density plots for a covariate

tebalance density varname [ , options ]

options Description

Main

kernel(kernel) specify the kernel function; default is kernel(epanechnikov)
bwidth(*#) rescale default bandwidth

line#opts(line options) twoway line options for density line number #

twoway options any options other than by() documented in [G-3] twoway options

byopts(byopts) how subgraphs are combined, labeled, etc.

collect is allowed; see [U] 11.1.10 Prefix commands.

kernel Description

triangle triangle kernel function; the default

epanechnikov Epanechnikov kernel function

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

Options

� � �
Main �

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimates. The

default kernel is the kernel(epanechnikov).

bwidth(*#) specifies the factor by which the default bandwidths are to be rescaled. A bandwidth is the

half-width of the kernel, the width of the density window around each point. Each kernel density plot

has its own bandwidth, and by default, each kernel density plot uses its own optimal bandwidth; see

[R] kdensity. bwidth() rescales each plot’s optimal bandwidth by the specified amount.

line#opts(line options) specifies the line pattern, width, color, and overall style of density line number

#. The line numbers are in the same order as the treatment levels specified in e(tlevels).

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option). tebalance density uses by() to differentiate between raw and weighted

or matched samples, and some twoway options will be repeated for by graph and might be better

specified as byopts().
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byopts(by option) is as documented in [G-3] by option. byopts() affects how the subgraphs are

combined, labeled, etc. byopts() generally affects the entire graph, and some by option may be

better specified as twoway options; see [G-3] twoway options.

Remarks and examples
When the distribution of a covariate does not vary over the treatment levels, the covariate is said to be

balanced. tebalance density produces kernel density plots of a covariate over treatment levels for the

raw data and the weighted or matched sample produced by teffects or stteffects. If the weighted-
sample or matched-sample kernel density plots of the covariate are the same over the treatment levels,

the covariate is balanced in the weighted or matched sample.

After telasso and all teffects and stteffects commands except teffects ra, stteffects
ra, and stteffects wra,

. tebalance density varname [ , options ]

produces kernel density plots to check whether varname is balanced.

After teffects psmatch,

. tebalance density [ , options ]

produces kernel density plots to check whether the propensity score estimated by teffects psmatch
is balanced. Our discussion of the use of tebalance density and interpretation of its results for a

covariate below also apply to a propensity score.

We recommend that you read [CAUSAL] tebalance before proceeding; it provides an introduction to

covariate balance and an overview of the implemented methods. See [CAUSAL] stteffects intro for a

discussion of survival-time features.

Example 1: Checking covariate balance after psmatch
Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate the

effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling
for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit

in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794
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We specified the option generate(matchv) to speed up the postestimation command that produces

density plots, as discussed in example 3 under Remarks and examples in [CAUSAL] tebalance entry. We

do not interpret the estimated effect produced by this preliminarymodel but rather check the specification.

We begin by looking at the default density plots.

. tebalance density mage
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The density plots for the matched sample are nearly indistinguishable, implying that matching on the

estimated propensity score balanced the covariates. The density plots are too jagged for presentation, so

we oversmooth them by scaling up the bandwidth used for each plot.

. tebalance density mage, bwidth(*1.5)
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Option bwidth() rescales the default optimal bandwidths by the specified scale factor. Each of the four

density plots has its own sample size and optimal bandwidth. Rescaling each of the four bandwidths by

1.5 produces smoother plots.
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Stored results
After teffects or stteffects fits a binary treatment, tebalance density stores the following in

r():

Scalars

r(bwc adj) bandwidth for control in weighted or matched-adjusted sample

r(Nc adj) observations on control in weighted or matched-adjusted sample

r(bwt adj) bandwidth for treated in weighted or matched-adjusted sample

r(Nt adj) observations on treated in weighted or matched-adjusted sample

r(bwc raw) bandwidth for control in raw sample

r(Nc raw) observations on control in raw sample

r(bwt raw) bandwidth for treated in raw sample

r(Nt raw) observations on treated in raw sample

Macros

r(kernel) name of kernel

After teffects or stteffects fits a multivalued treatment, tebalance density stores the follow-
ing in r():

Scalars

r(bw# adj) bandwidth for treatment level # in weighted or matched-adjusted sample

r(N# adj) observations on treatment level # in weighted or matched-adjusted sample

r(bw# raw) bandwidth for treatment level # in raw sample

r(N# raw) observations on treatment level # in raw sample

Macros

r(kernel) name of kernel

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154. https://doi.org/10.1016/j.jeconom.2009.09.023.

Also see
[CAUSAL] stteffects intro — Introduction to treatment effects for observational survival-time data

[CAUSAL] tebalance — Check balance after teffects or stteffects estimation

[CAUSAL] teffects aipw —Augmented inverse-probability weighting

[CAUSAL] teffects ipw — Inverse-probability weighting

[CAUSAL] teffects ipwra — Inverse-probability-weighted regression adjustment

[CAUSAL] teffects nnmatch — Nearest-neighbor matching

[CAUSAL] teffects psmatch — Propensity-score matching

[CAUSAL] teoverlap — Overlap plots

https://doi.org/10.1016/j.jeconom.2009.09.023
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
tebalance overid performs a test for covariate balance after estimation by a teffects inverse-

probability-weighted (IPW) estimator or an stteffects IPW estimator.

Quick start
Test for covariate balance after a teffects or an stteffects IPW estimator

tebalance overid

Same as above, but test for balance only in base covariates and exclude interaction terms

tebalance overid, bconly

Menu
Statistics > Causal inference/treatment effects > Balance > Overidentification test
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Syntax
tebalance overid [ , bconly nolog iterate(#) ]

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

bconly specifies that only the base covariates be included in the test for balance. By default, the powers
and interactions specified by factor-variable notation in the teffects or stteffectsmodel are also

included in the test for balance.

nolog suppresses the display of the optimization search log.

iterate(#) sets the maximum number of iterations to # in the generalizedmethod of moments estimator

used to compute the test statistic.

Remarks and examples
When the distribution of a covariate is the same for all treatment levels, the covariate is said to be

balanced. tebalance overid performs a test to see whether the covariates are balanced after teffects
or stteffects. tebalance overid can be executed after teffects ipw, teffects aipw, teffects
ipwra, stteffects ipw, or stteffects ipwra, which use the inverse-probability weights predicted

by a treatment model to account for how treatment assignment depends on observed covariates. If the

treatment model is well specified, IPW functions of the covariates from the model are balanced.

We recommend that you read [CAUSAL] tebalance before proceeding; it provides an introduction

to covariate balance and an overview of the implemented methods. See [CAUSAL] stteffects intro for

survival-time discussion and examples.

Example 1: Base covariates and interactions
This example illustrates the interpretation of the bconly option, which excludes powers and interac-

tions when factor variables are included in the propensity-score model.

We frequently use factor variables to include powers of, and interactions between, base covariates

in our specification of the propensity-score model. In example 1 under Remarks and examples in

[CAUSAL] tebalance, we rejected the null hypothesis of balance in a model using only base covariates

but not in the richer model that included power and interaction terms. By default, tebalance overid
tests whether the model balances the base covariates and the power-and-interaction covariates. When

option bconly is specified, tebalance overid tests whether the model balances the base covariates

only.

Using an extract from the data used by Cattaneo (2010), we use teffects ipw to estimate the effect

of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling for

marital status (mmarried), themother’s age (mage), whether themother had a prenatal doctor’s visit in the

baby’s first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby). In addition
to the base covariates, we include the square of mage, an interaction between mage and mmarried, and
an interaction between mage and prenatal1 in the model for the propensity score.
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. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby
> c.mage#(c.mage i.mmarried prenatal1)), aequations
Iteration 0: EE criterion = 9.365e-20
Iteration 1: EE criterion = 2.612e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -239.6875 26.43427 -9.07 0.000 -291.4977 -187.8773

POmean
mbsmoke

Nonsmoker 3403.638 9.56792 355.73 0.000 3384.885 3422.39

TME1
mmarried .8522468 .462536 1.84 0.065 -.0543072 1.758801

mage .1742823 .0651039 2.68 0.007 .0466811 .3018836
prenatal1 .4018114 .4341762 0.93 0.355 -.4491584 1.252781

fbaby -.4824413 .0868982 -5.55 0.000 -.6527587 -.3121239

c.mage#
c.mage -.002515 .0012585 -2.00 0.046 -.0049817 -.0000483

mmarried#
c.mage

Married -.0787984 .0175508 -4.49 0.000 -.1131973 -.0443996

prenatal1#
c.mage
Yes -.0286228 .0176391 -1.62 0.105 -.0631948 .0059492

_cons -2.928851 .8409119 -3.48 0.000 -4.577008 -1.280694

We specified option aequations to see the parameter estimates for the coefficients in the

propensity-score model. There are eight coefficients, five on the base covariates (mmarried, mage,
fbaby, prenatal1, and cons) and three on the power-and-interaction covariates (c.mage#c.mage,
c.mage#1.mmarried, and c.mage#1.prenatal1). Below we test whether the model balances all eight

covariates.
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. tebalance overid
Iteration 0: Criterion = .0602349
Iteration 1: Criterion = .06172749 (backed up)
Iteration 2: Criterion = .06428188 (backed up)
Iteration 3: Criterion = .06489132 (backed up)
Iteration 4: Criterion = .06527353 (backed up)
Iteration 5: Criterion = .0664376
Iteration 6: Criterion = .07184528
Iteration 7: Criterion = .0762921
Iteration 8: Criterion = .0767141
Iteration 9: Criterion = .07679677
Iteration 10: Criterion = .07699122
Iteration 11: Criterion = .0776527
Iteration 12: Criterion = .07771774
Iteration 13: Criterion = .07772609
Iteration 14: Criterion = .07773294
Iteration 15: Criterion = .077752
Iteration 16: Criterion = .07775324
Iteration 17: Criterion = .07775325
Iteration 18: Criterion = .07775325
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(8) = 11.8612
Prob > chi2 = 0.1575

We cannot reject the null hypothesis that the IPW model balanced all eight covariates.

Belowwe specify option bconly to test whether the IPWmodel balanced the five base covariates only.

. tebalance overid, bconly
Iteration 0: Criterion = .1079977
Iteration 1: Criterion = .10800825 (backed up)
Iteration 2: Criterion = .10844177 (backed up)
Iteration 3: Criterion = .10851215 (backed up)
Iteration 4: Criterion = .10860849 (backed up)
Iteration 5: Criterion = .10907447
Iteration 6: Criterion = .110098
Iteration 7: Criterion = .11163978
Iteration 8: Criterion = .11260697
Iteration 9: Criterion = .11286395
Iteration 10: Criterion = .11331486
Iteration 11: Criterion = .11333976
Iteration 12: Criterion = .11335604
Iteration 13: Criterion = .11335696
Iteration 14: Criterion = .11335696
Overidentification test for covariate balance
H0: Covariates are balanced

chi2(5) = 7.82169
Prob > chi2 = 0.1663

We cannot reject the null hypothesis that the IPW model balanced the five base covariates.

Each test has a justification.
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In a model-based approach, the Imai and Ratkovic (2014) test checks whether the propensity score is

correctly specified. We include all eight covariates because they must all be balanced, if the propensity-

score model is correctly specified.

A conditional-independence approach can be used to justify only including the base covariates in the

test. In this approach, the propensity-score model need only balance the base covariates. Powers and

interactions of the base covariates are included to get a propensity-score model that balances the base

covariates, but balance of these higher-order terms is more than what needs to be checked.

In large samples, both tests should have nominal coverage under the null hypothesis that the

propensity-score model is correctly specified. Under the alternative that the propensity-score model

is misspecified, including all the covariates should yield a test with higher power.

The test that includes all the covariates is the default.

Stored results
tebalance overid stores the following in r():

Scalars

r(p) 𝑝-value
r(df) overidentifying constraints, test degrees of freedom

r(chi2) 𝜒2 statistic

References
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154. https://doi.org/10.1016/j.jeconom.2009.09.023.

Imai, K., and M. Ratkovic. 2014. Covariate balancing propensity score. Journal of the Royal Statistical Society, B ser., 76:

243–263. https://doi.org/10.1111/rssb.12027.

Also see
[CAUSAL] stteffects intro — Introduction to treatment effects for observational survival-time data

[CAUSAL] tebalance — Check balance after teffects or stteffects estimation

[CAUSAL] teffects aipw —Augmented inverse-probability weighting

[CAUSAL] teffects ipw — Inverse-probability weighting

[CAUSAL] teffects ipwra — Inverse-probability-weighted regression adjustment

[CAUSAL] teoverlap — Overlap plots

https://doi.org/10.1016/j.jeconom.2009.09.023
https://doi.org/10.1111/rssb.12027


tebalance summarize — Covariate-balance summary statistics

Description Quick start Menu Syntax
Option Remarks and examples Stored results Reference
Also see

Description
tebalance summarize reports diagnostic statistics that are used to check for covariate balance

over treatment groups after estimation by a teffects inverse-probability-weighted (IPW) estimator, a

teffects matching estimator, or an stteffects IPW estimator.

Quick start
Raw and weighted standardized differences and variance ratios of all covariates from the most recently

estimated teffects model or stteffects model

tebalance summarize

Same as above, but report statistics only for covariates x1 and x2
tebalance summarize x1 x2

Baseline means and variances for treated and control groups

tebalance summarize, baseline

Menu
Statistics > Causal inference/treatment effects > Balance > Summaries
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Syntax
tebalance summarize [ varlist ] [ , baseline ]

varlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Option

� � �
Main �

baseline specifies that tebalance summarize report means and variances by treatment level.

Remarks and examples
When the distribution of a covariate is the same for all treatment levels, the covariate is said to

be balanced. tebalance summarize reports diagnostic statistics to check for covariate balance after

teffects or stteffects. tebalance summarize can be executed after all teffects estimators with

the exception of teffects ra and executed after stteffects ipw and stteffects ipwra.

We recommend that you read [CAUSAL] tebalance before proceeding; it provides an introduction

to covariate balance and an overview of the implemented methods. See [CAUSAL] stteffects intro for

survival-time discussion and examples.

Example 1: Checking covariate balance after psmatch
Using an extract from the data used by Cattaneo (2010), we use teffects psmatch to estimate the

effect of a mother’s smoking behavior (mbsmoke) on the birthweight of her child (bweight), controlling
for marital status (mmarried), the mother’s age (mage), whether the mother had a prenatal doctor’s visit

in the baby’s first trimester (prenatal1), and whether this baby is the mother’s first child (fbaby).

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby),
> generate(matchv)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -235.1714 27.74409 -8.48 0.000 -289.5488 -180.794
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We specified the option generate(matchv) to speed up the postestimation commands that compute

balance statistics, as discussed in example 3 under Remarks and examples in [CAUSAL] tebalance. We do

not interpret the estimated effect produced by this preliminary model but rather check the specification.

We begin by looking at the standardized differences and variance ratios for the raw data and the

matched sample.

. tebalance summarize
Covariate balance summary

Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Standardized differences Variance ratio
Raw Matched Raw Matched

mmarried -.5953009 .0014107 1.335944 .9987659
mage -.300179 -.0120277 .8818025 .9952916

prenatal1 -.3242695 .0333609 1.496155 .9491524
fbaby -.1663271 -.0117326 .9430944 .9969095

The matched sample results indicate that matching on the estimated propensity score balanced the co-

variates. The standardized differences are all close to zero, and the variance ratios are all close to one.

This inference is informal because we do not have standard errors for these statistics.

We may also wish to see the baseline summary statistics.

. tebalance summarize, baseline
Covariate balance summary

Raw Matched

Number of obs = 4,642 9,284
Treated obs = 864 4,642
Control obs = 3,778 4,642

Means Variances
Control Treated Control Treated

mmarried .7514558 .4733796 .1868194 .2495802
mage 26.81048 25.16667 31.87141 28.10429

prenatal1 .8268925 .6898148 .1431792 .2142183
fbaby .4531498 .3715278 .2478707 .2337654

While we rely on the standardized differences for conclusions about balance in the unmatched sample

from this output, the baseline means and variances give us some idea of the scale of the differences.
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Example 2: Multivalued treatments
In the multivalued-treatment case, tebalance summarize produces output grouped by treatment

level. In the Cattaneo (2010) extract, the variable msmoke is an ordered categorical variable specifying

the number of cigarettes smoked. We begin by tabulating msmoke.

. tabulate msmoke
Cigarettes

smoked
during

pregnancy Freq. Percent Cum.

0 daily 3,778 81.39 81.39
1--5 daily 200 4.31 85.70

6--10 daily 337 7.26 92.96
11+ daily 327 7.04 100.00

Total 4,642 100.00

All the treatment groups have significantly smaller numbers of observations than the control group of

not smoking. Still, each group has at least 200 observations. We continue by quietly fitting a candidate

IPW model and reporting the baseline summaries.

. quietly teffects ipw (bweight) (msmoke mmarried mage prenatal1 fbaby)

. tebalance summarize, baseline
Covariate balance summary

Observations
Treatment Raw Weighted

0 daily = 3,778 1,164.8
1--5 daily = 200 1,164.4
6--10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0

Means Variances
Control Treated Control Treated

1--5 daily
mmarried .7514558 .455 .1868194 .2492211

mage 26.81048 24.64 31.87141 31.44764
prenatal1 .8268925 .695 .1431792 .2130402

fbaby .4531498 .48 .2478707 .2508543

6--10 daily
mmarried .7514558 .4480712 .1868194 .2480394

mage 26.81048 25.06231 31.87141 27.07051
prenatal1 .8268925 .6795252 .1431792 .2184188

fbaby .4531498 .3827893 .2478707 .2369648

11+ daily
mmarried .7514558 .5107034 .1868194 .250652

mage 26.81048 25.59633 31.87141 26.93471
prenatal1 .8268925 .6972477 .1431792 .2117409

fbaby .4531498 .293578 .2478707 .2080261

The results for the control level of 0 daily are repeated for the treatment group. These results give a

sense of the scale of imbalance in the raw data. Now we compute the balance statistics.
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. tebalance summarize
Covariate balance summary

Observations
Treatment Raw Weighted

0 daily = 3,778 1,164.8
1--5 daily = 200 1,164.4
6--10 daily = 337 1,157.9
11+ daily = 327 1,154.9
Total = 4,642 4,642.0

Standardized differences Variance ratio
Raw Weighted Raw Weighted

1--5 daily
mmarried -.634909 -.0016208 1.334021 1.001406

mage -.3857482 -.0219656 .9867038 .9905584
prenatal1 -.312519 -.0012611 1.487927 1.001898

fbaby .053769 .0422102 1.012037 1.008631

6--10 daily
mmarried -.6506304 -.0108454 1.327696 1.009331

mage -.3220222 -.0836571 .8493666 .7984901
prenatal1 -.3465797 -.0100232 1.525493 1.015051

fbaby -.1429048 .0268118 .9560018 1.005899

11+ daily
mmarried -.5147672 -.0212969 1.34168 1.018136

mage -.2239116 -.0636951 .8451058 .8468934
prenatal1 -.3077549 -.0380744 1.478852 1.056645

fbaby -.3342243 .0155427 .8392526 1.003598

These results indicate that the IPW estimator probably did not fully balance the covariates (the variance

ratios for mage at the daily levels of 6–10 cigarettes and 11-plus cigarettes are not close to 1). At this

point, we would use a richer model and see whether it balanced the covariates.

Note that we cannot use tebalance overid, because it has not been implemented for multivalued

treatments.

Stored results
tebalance summarize stores the following in r():

Matrices

r(size) number of observations in the raw and matched or weighted samples

r(table) table of covariate statistics

Reference
Cattaneo, M. D. 2010. Efficient semiparametric estimation of multi-valued treatment effects under ignorability. Journal

of Econometrics 155: 138–154. https://doi.org/10.1016/j.jeconom.2009.09.023.

https://doi.org/10.1016/j.jeconom.2009.09.023
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Also see
[CAUSAL] stteffects intro — Introduction to treatment effects for observational survival-time data

[CAUSAL] stteffects ipw — Survival-time inverse-probability weighting

[CAUSAL] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

[CAUSAL] tebalance — Check balance after teffects or stteffects estimation

[CAUSAL] teffects aipw —Augmented inverse-probability weighting

[CAUSAL] teffects ipw — Inverse-probability weighting

[CAUSAL] teffects ipwra — Inverse-probability-weighted regression adjustment

[CAUSAL] teffects nnmatch — Nearest-neighbor matching

[CAUSAL] teffects psmatch — Propensity-score matching

[CAUSAL] teoverlap — Overlap plots



teffects — Treatment-effects estimation for observational data

Description
teffects estimates potential-outcome means (POMs), average treatment effects (ATEs), and aver-

age treatment effects on the treated (ATETs) using observational data. Regression-adjustment, inverse-

probability-weighting, and matching estimators are provided, as are doubly robust methods that combine

regression adjustment and inverse-probability weighting.

The outcomes can be continuous, binary, count, fractional, or nonnegative. The treatment model can

be binary, or it can be multinomial, allowing for multivalued treatments.

For a brief description and example of each estimator, see Remarks and examples in [CAUSAL] teffects

intro.

Syntax
teffects subcommand . . . [ , options ]

subcommand Description

aipw augmented inverse-probability weighting

ipw inverse-probability weighting

ipwra inverse-probability-weighted regression adjustment

nnmatch nearest-neighbor matching

psmatch propensity-score matching

ra regression adjustment

Also see
[CAUSAL] teffects intro — Introduction to treatment effects for observational data

[CAUSAL] teffects intro advanced —Advanced introduction to treatment effects for observational data

[CAUSAL] teffects multivalued — Multivalued treatment effects
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Description Remarks and examples References Also see

Description
This entry provides a nontechnical introduction to treatment-effects estimators and the teffects

command in Stata. Advanced users may want to instead read [CAUSAL] teffects intro advanced or skip

to the individual commands’ entries.

The teffects command estimates average treatment effects (ATEs), average treatment effects among

treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights

(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment (IP-

WRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score or

nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary

or multivalued.

Remarks and examples
This entry presents a nontechnical overview of treatment-effects estimators for those who are new to

the subject of treatment-effects estimation or are at least new to Stata’s facilities for estimating treatment

effects. More advanced users may want to instead read [CAUSAL] teffects intro advanced or skip to the

individual commands’ entries.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
Estimating treatment effects

Regression adjustment
Inverse-probability weighting
Doubly robust combinations of RA and IPW
Matching

Caveats and assumptions
A quick tour of the estimators

RA
IPW
IPWRA
AIPW
Nearest-neighbor matching
Propensity-score matching

Video examples
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Introduction
Suppose we have observed a sample of subjects, some of whom received a treatment and the rest of

whom did not. As the name suggests, in most applications, the “subjects” are indeed people. A “treat-

ment” could indeed be a medical treatment such as a new drug regimen or surgical procedure. In social

science applications, a treatment could be participation in a job-training program or inclusion in a class-

room or school in which a new pedagogical method is being used. However, not all applications use

individuals as the subjects. For example, a policy analyst might be interested in examining the impact

of an experimental program in which a national agency held a lottery to award only some local govern-

ments the resources needed to implement the program. Here the subjects are the local governments, and

treatment refers to whether a local government received the resources needed to implement the program.

We would like to know if a treatment has an effect on an outcome 𝑌. The outcome could be the

cholesterol level of a patient taking either an existing statin or a new experimental drug, or the outcome

could be the wage offered to a person who either did or did not participate in a job-training program. In

an ideal world, we would observe 𝑌 when a subject is treated (which we denote as 𝑌1), and we would

observe 𝑌 when the same subject is not treated (which we denote as 𝑌0). We would be careful to make

both observations under identical conditions so that the only difference is the presence or absence of the

treatment. We could then average the difference between 𝑌1 and 𝑌0 across all the subjects in our dataset

to obtain a measure of the average impact of the treatment.

Unfortunately, this ideal experiment is almost never available in observational data because it is not

possible to observe a specific subject having received the treatment and having not received the treatment.

When the outcome is the birthweight of a specific baby and the treatment is the mother smoking while

pregnant, it is impossible to observe the baby’s birthweight under both treatments of the mother smoking

and the mother not smoking.

A classic solution to this problem is to randomize the treatment. High costs or ethical issues rule

out this solution in many observational datasets. For example, we could not ask a random selection of

pregnant women to smoke.

The defining characteristic of observational data is that treatment status is not randomized. Moreover,

that implies that the outcome and treatment are not necessarily independent. The goal of the estimators

implemented by teffects is to utilize covariates to make treatment and outcome independent once we

condition on those covariates.

The treatment-effect estimators implemented by teffects allow us to estimate the efficacy of treat-

ments using observational data. The rest of this entry discusses these treatment-effect estimators at an

introductory level. For a more technical introduction, see [CAUSAL] teffects intro advanced.

Defining treatment effects
We introduce treatment effects more formally by using the potential-outcomes framework, which is

also known as the counterfactual framework. What is a potential outcome? Consider a subject that did

not receive treatment so that we observe 𝑌0. What would 𝑌1 be for that same subject if it were exposed

to treatment? We call 𝑌1 the potential outcome or counterfactual for that subject. For a subject that did

receive treatment, we observe 𝑌1, so 𝑌0 would be the counterfactual outcome for that subject. We can

view this as a missing-data problem, and treatment-effect methods can account for that problem.

Treatment-effect estimators allow us to estimate three parameters. The potential-outcome means

(POMs) are the means of 𝑌1 and 𝑌0 in the population. The average treatment effect (ATE) is the mean of

the difference (𝑌1 − 𝑌0). Finally, the average treatment effect on the treated (ATET) is the mean of the

difference (𝑌1 − 𝑌0) among the subjects that actually receive the treatment.
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To develop our intuition, suppose we have observed a sample of patients, some of whom received a

medication to reduce their blood pressure. Figure 1 plots each of our patient’s systolic blood pressures

as a function of weight. We use the color red to indicate patients who did not receive the drug and blue

to indicate patients who did receive the drug.
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Effect of drug on blood pressure

Figure 1.

A remarkable feature of our data is that the average blood pressure of patients not taking the drug is

160, and the average blood pressure of patients taking the drug is also 160. Can we therefore conclude

that taking the drug has no impact on blood pressure? The answer is no.

Because this is observational data, we could not randomly assign who would receive the drug and

who would not. As a result, treatment status could be related to covariates that also affect blood pressure.

Heavier patients were more likely to be prescribed the medication, and blood pressure is correlated with

weight. The difference in sample means does not estimate the true average treatment effect, because

blood pressure depends on weight and weight is correlated with the treatment.

Suppose that we did in fact observe both potential outcomes for all patients. In figure 2, we continue to

use solid dots for our observed data points, and we introduce hollow dots to represent the counterfactual

outcomes. That is, the red hollow dots represent the blood pressures we would measure if only our treated

patients had not taken the drug, and the blue hollow dots represent the blood pressures we would measure

if only our untreated patients had taken the drug. The red and blue dashed lines represent the untreated

and treated POMs, respectively. That is, the red line represents the mean of all the red dots, and the blue

line represents the mean of all the blue dots.
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Figure 2.

If we did have the data represented by the hollow dots, then we could say that the average treatment

effect is the difference between the mean of all the red dots and the mean of all the blue dots. In this ideal

scenario, there are no missing data on the other potential outcome, and we have all the data we need to

use the difference in means to estimate the ATE.

Looking at figure 2, we can see why a difference in means using only the solid dots does not estimate

theATE. Using only the solid red dots underestimates the average blood pressure for untreated individuals,

and using only the solid blue dots overestimates the average blood pressure for treated individuals.

Estimating an ATE is essentially a missing-data problem. When covariates that affect the potential

outcomes are related to treatment, we cannot use a difference in sample means, because the missing data

are informative.

The treatment-effect estimators implemented in teffects allow for covariates like weight to be re-

lated to the potential outcomes and the treatment. Essentially, the estimators implemented by teffects
utilize covariates to fill in the hollow circles or otherwise account for how the missing data depend on

covariates that affect the potential outcomes.

Estimating treatment effects
We cannot estimate theATE by simply taking the difference between the sample means for the treated

and untreated subjects, because there are covariates that are related to the potential outcomes and the

treatment. The estimators implemented by teffects require us to specify enough of these covariates so
that after we condition on these covariates, any remaining influences on the treatment are not related to

the potential outcomes. teffects implements several different estimators to accomplish this, including

regression adjustment (RA), inverse-probability weighting (IPW), “doubly robust” methods that combine

elements of RA and IPW, and matching methods. Here we introduce the methods by using intuition and

simple examples.

See [CAUSAL] teffects intro advanced for a more technical introduction, and see the individual com-

mands’ entries for estimator-specific details.
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Regression adjustment

The RA method extends the idea of using sample means to estimate treatment effects by using a re-

gression model to predict potential outcomes adjusted for covariates. In the examples here, we use linear

regression, but the teffects ra command provides you with the flexibility to use logistic, probit, and

heteroskedastic probit regression models for binary outcomes as well as Poisson regression for nonneg-

ative outcomes; see [CAUSAL] teffects ra for more information.

bweightex.dta is a hypothetical dataset based on Cattaneo (2010) that we have created to illustrate
treatment-effects estimators using graphs. The subjects in this dataset are women who were pregnant,

some of whom smoked during the pregnancy. The outcome variable is the birthweight of the baby, and

we want to know whether smoking during pregnancy affects the birthweight. The dataset also contains

other demographic variables that we will use later.

Figure 3 illustrates the relationship between birthweight and smoking status as a function of the

mother’s age:
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Figure 3.

We see that smokers tend to be older than nonsmokers and that birthweight depends on smoking.

Therefore, the difference between the sample means of birthweights of babies born to smokers and non-

smokers will not estimate the true average treatment effect.

We also still have the same problem as in the previous section: we do not observe the counterfac-

tual birthweights of babies. Suppose, however, that we did. In figure 4, we use solid points to represent

observed birthweights and the colors red to represent nonsmokers and blue to represent smokers. The hol-

low points represent the counterfactual birthweights. The hollow blue points represent the birthweights

of babies that we would observe if only our young nonsmoking mothers had instead smoked during their

pregnancies. Similarly, the hollow red points represent the birthweights of babies that we would observe

if only our older smoking mothers had instead not smoked during their pregnancies.
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Figure 4 suggests a way to estimate the potential outcomes for each mother:
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Figure 4.

We could fit a linear regression of birthweight on mother’s age by using the observed birthweights for

nonsmokers, and we could do likewise for smokers. The following graph includes these two regression

lines:
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Figure 5.

Figure 5 illustrates the principle behind the RAmethod. We use the red regression line to predict each

baby’s birthweight assuming the mother did not smoke, and we use the blue regression line to predict

each baby’s birthweight assuming the mother did smoke. The treatment effect of smoking for a mother

of a particular age is the vertical difference between the red and blue regression lines.

The three parameters we mentioned in the introduction are now easy to estimate. For each mother,

we obtain two values, say, bw0 and bw1, representing our predictions of her baby’s birthweight assuming

the mother did not or did smoke, respectively. The means of these variables represent the untreated and

treated POMs. The ATE is the sample mean of the difference (bw1 − bw0), and the ATET is the sample

mean of that difference computed using only the mothers who in fact did smoke during pregnancy.
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Adding the circles highlights the fact that the average age is higher for smokers than for nonsmokers.

Even though the blue and red lines have different slopes, if the average age was the same for smokers

and nonsmokers, a difference in the sample means of birthweights could still estimate the true ATE.

Figure 5 lets us address onemore issue. Users who are versed in regression analysis may be inclined to

estimate the effect of smoking using a regression model for birthweight as a function of smoking and the

mother’s age. We clearly see in figure 5 that regression lines for smokers and nonsmokers have different

slopes—the effect of age on birthweight is not the same for smokers and nonsmokers. In regression

analysis, we would therefore include an interaction term between smoking and age. The RAmethod fits

separate regression lines for smokers and nonsmokers, which also handles these differential effects of

age on smoking.

Inverse-probability weighting

As we remarked in our discussion of the RA method, we cannot simply use the sample mean birth-

weights of babies born to smokers and nonsmokers to estimate the effect of smoking. If we did that, we

would conflate the negative effect of smoking with the positive effect of age and the positive relationship

between age and smoking. IPW is a treatment-effects estimator that uses weighted means rather than

simple unweighted means to disentangle the effects of treatment and other confounders like age.

The concept underlying IPW can be gleaned from figure 2, where, as you will recall, the hollow points

represent counterfactual outcomes. As we demonstrated in Defining treatment effects, we could estimate

the average treatment effect if we knew the means of all the nonsmoking outcomes and the means of all

the smoking outcomes. In the context of figure 4, we need the mean of all the red points, both solid and

hollow, and the mean of all the blue.

If we could observe all of these points, then theATEwould be the difference between those two means.

However, the outcomes illustrated by the hollow circles are unobserved. IPW estimators view the hollow

circles as missing data and use weights to correct the estimates of the treated and untreated sample means

for the missing data. If we calculate the mean nonsmoking birthweight using just the solid red points,

that mean is biased downward because we are ignoring the hollow red points, which correspond to higher

birthweights.

In IPW, we apply more weight to the solid red points corresponding to older mothers and less weight

to those corresponding to younger mothers. Using this weighting scheme will pull up the estimated mean

birthweight of babies born to nonsmokingmothers to estimate the truemean of all nonsmoking outcomes.

The method for obtaining the mean smoking birthweight is virtually the same: we need to apply more

weight to the younger smoking mothers than to the older smoking mothers to better approximate the true

mean of all smoking outcomes.

Where do these weights for the weightedmeans come from? As the name implies, IPW uses the inverse

(reciprocal) of the probability of being in the observed treatment group. These probabilities are obtained

by modeling the observed treatment as a function of subject characteristics that determine treatment

group. In our exposition of the RAmethod, we focused solely on the mother’s age and smoking status as

determinants of each baby’s birthweight. To make the results comparable, we will use the same model

in this example.



teffects intro — Introduction to treatment effects for observational data 460

We first fit a logistic model of the mother’s smoking status, mbsmoke, as a function of the mother’s

age (mage):

. use https://www.stata-press.com/data/r19/bweightex
(Hypothetical birthweight data)
. logistic mbsmoke mage
Logistic regression Number of obs = 60

LR chi2(1) = 30.45
Prob > chi2 = 0.0000

Log likelihood = -26.362201 Pseudo R2 = 0.3661

mbsmoke Odds ratio Std. err. z P>|z| [95% conf. interval]

mage 1.631606 .21316 3.75 0.000 1.263022 2.107754
_cons 7.76e-06 .0000243 -3.76 0.000 1.69e-08 .0035718

Note: _cons estimates baseline odds.

Next, we compute the inverse-probability weights, which we will store in a variable called ps. In the
IPWmethod, for subjects who did receive treatment, the weight is equal to the reciprocal of the predicted

probability of treatment. For subjects who did not receive treatment, the weight is equal to the reciprocal

of the predicted probability of not receiving treatment; the probability of not receiving treatment is just

one minus the probability of receiving treatment:

. predict ps
(option pr assumed; Pr(mbsmoke))
. replace ps = 1/ps if mbsmoke==1
(30 real changes made)
. replace ps = 1/(1-ps) if mbsmoke==0
(30 real changes made)
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Figure 6.

Figure 6 replicates figure 3 with one twist. Rather than making all the points the same size, we have

made the size of the points proportional to the IPW variable ps. Notice that the largest blue points cor-
respond to the youngest smoking mothers in our sample, so they will receive the most weight when we

compute the weighted mean birthweight of babies born to smoking mothers, just as we explained we

wanted to do. Similarly, the red points corresponding to older nonsmoking mothers are larger, represent-

ing larger weights.
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There is a caveat to the IPW estimator. When we fit our logistic or probit model to obtain the predicted

probabilities, it is possible that some of the predictions will be close to zero. Because the IPW is the

reciprocal of that probability, the weight becomes arbitrarily large as the probability goes to zero. In

those cases, the IPW can become unstable. We can improve the estimated IPW by developing a more

accurate treatment model. For example, in our dataset, we have other variables such as marital status

and the education level of the baby’s father that may also help predict whether the mother smoked during

pregnancy. We excluded these variables for simplicity, but in a real analysis, we would want to use all

relevant data.

This phenomenon of unstable IPWs is related to the concept of overlap, which means that every subject

must have a strictly positive probability of obtaining treatment. We remarked that in our sample, we had

few young mothers who smoked. As should be clear from figure 6, the overlap assumption is likely to

be violated—young mothers do not appear to have a positive probability of being smokers. We would

want to check this assumption before proceeding with an IPW analysis. See [CAUSAL] teoverlap and

[CAUSAL] teffects intro advanced for more information about overlap.

Another limitation of the IPW estimator is that we are using weighted means to estimate the POMs and

ATE. Thus, unlike the RA estimator, we cannot obtain subject-level predictions of the treatment effects or

potential outcomes, because we do not have the two regression lines that we can use to predict outcomes

for each subject.

Doubly robust combinations of RA and IPW

You may have noticed a clear distinction between the RA and IPW estimators. In the case of RA, we

built linear regression models to predict the outcomes (birthweights) of each subject but said nothing

about how treatment (smoking) arises. In the case of IPW, we built a logistic regression model to predict

treatment status but did not build a formal model of the outcome. Doubly robust estimators combine the

outcome modeling strategy of RA and the treatment modeling strategy of IPW. These estimators have a

remarkable property: although they require us to build two models, we only need to specify one of the

two models correctly. If we misspecify the treatment model but correctly specify the outcome model,

we still obtain correct estimates of the treatment effect. If we correctly specify the treatment model but

misspecify the outcome model, we again will obtain correct estimates of the treatment effect.

Stata’s teffects command implements two doubly robust estimators, the augmented inverse-

probability-weighted (AIPW) estimator and the inverse-probability-weighted regression-adjustment (IP-

WRA) estimator. These estimators combine elements of RA and IPW to be more robust to misspecification.

TheAIPW estimator is an IPW estimator that includes an augmentation term that corrects the estimator

when the treatment model is misspecified. When the treatment model is correctly specified, the augmen-

tation term vanishes as the sample size becomes large. Like the IPW, the AIPW does not perform well

when the predicted treatment probabilities are too close to zero or one.

The IPWRA estimator is an RA estimator that uses estimated inverse-probability weights to correct

the estimator when the regression function is misspecified. When the regression function is correctly

specified, the weights do not affect the consistency of the estimator.
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Matching

Matching estimators are based on the idea of comparing the outcomes of subjects that are as similar as

possible with the sole exception of their treatment status. In our birthweight and smoking example, we

could select a mother who smokes and select a mother of the same age who does not smoke and compare

the birthweights of their infants. The data of each mother serve as the potential outcome for the other

mother.

For a single covariate such as age, identifying a pair of comparable mothers is not difficult. If we have

a second covariate that is categorical, such as race, we might still be able to identify pairs of mothers

who are the same age and of the same race assuming our dataset is large enough. However, once we

consider covariates that are measured on continuous scales or allow for more than a few discrete ones,

then finding identical matches is a challenge. The solution is to use what is called a similarity measure,

which is a statistic that measures how “close” two observations are. teffects offers twomethods to find

comparable observations based on similarity measures: nearest-neighbor matching and propensity-score

matching.

Nearest-neighbor matching (NNM) is accomplished by calculating the “distance” between pairs of ob-

servations with regard to a set of covariates and then “matching” each subject to comparable observations

that are closest to it. For example, suppose we have a variable that records each subject’s annual income

to the penny. Say one subject who received treatment had an income of $69,234.21. The likelihood that

our dataset has an untreated subject who also earned $69,234.21 is nil. However, we can determine the

difference between each untreated subject’s income and our treated subject’s income, then match our

treated subject with the untreated subjects whose income differences are smallest. Measuring the dis-

tance between subjects when we have multiple covariates is no challenge. By default, teffects uses

what is known as the Mahalanobis distance, which is really nothing more than the Pythagorean theorem

adapted to handle the fact that covariates may be correlated and measured on different scales.

NNM does not use a formal model for either the outcome or the treatment status, but this flexibility

comes at a price. When matching on more than one continuous covariate, the NNM estimator must be

augmented with a bias-correction term. teffects nnmatch uses a linear function of the covariates

specified in the biasadj() option to remove the large-sample bias.

Propensity-score matching (PSM) is an alternative to NNM. PSM matches on the estimated predicted

probabilities of treatment, known as the propensity scores. PSM does not require bias correction, because

it uses a model for the treatment. If the treatment model is reasonably well specified, PSM will perform

at least as well as NNM; see [CAUSAL] teffects intro advanced.

Caveats and assumptions
To use the estimators implemented in teffects, we must make several assumptions about the pro-

cess that generated our data. Different estimators and statistics may require slightly more or slightly less

restrictive assumptions and may exhibit varying degrees of robustness to departures from these assump-

tions, but in general, all the estimators require some form of the following three assumptions.

The independent and identically distributed (i.i.d.) sampling assumption ensures that the outcome

and treatment status of each individual are unrelated to the outcome and treatment status of all the other

individuals in the population. Correlated data arising from hierarchical or longitudinal study designs do

not meet this assumption.
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The conditional-independence (CI) assumption means once we control for all observable variables,

the potential outcomes are independent of treatment assignment. The easiest way to understand the CI

assumption is to understand when it is violated. In our birthweight example, suppose mothers who did

not smoke were more health conscious and consumed better prenatal diets than those who did smoke.

Unless we explicitly controlled for health awareness or diet, our model would violate the CI assumption:

the mother’s decision to smoke or not smoke would not be independent of the baby’s birthweight. If we

did not control for health awareness, we would overstate the negative impact of smoking on birthweight.

Babies born to mothers who smoke weigh less than babies born to nonsmoking mothers not just because

of the effects of cigarettes but also because of poorer prenatal diets.

In a study examining the effect of a job-training program, the CI assumption requires that there not be

any unobserved factors such as ambition or work ethic that influence both whether a person enrolls in

the program and the wage received upon completion. To use the methods implemented by the teffects
estimators, we must have variables in our dataset that allow us to control for those types of factors.

We mentioned the third assumption, overlap, in our discussions of IPW. More formally, the overlap

assumption states that each individual have a positive probability of receiving treatment. In our birth-

weight example, we noted that there were no observations on young smokers and older nonsmokers.

Perhaps we just have an unlucky sample, but to accurately assess the impact of treatment using these

methods, we must have overlap to accurately estimate the counterfactual birthweights. In the context of

matching estimators, overlap essentially means that we can actually match treated subjects with similar

nontreated subjects.

A quick tour of the estimators
The teffects command implements six estimators of treatment effects. We introduce each one by

showing the basic syntax one would use to apply them to our birthweight example. See each command’s

entry for more information.

RA

teffects ra implements the RA estimator. We estimate the effect of a mother’s smoking behav-

ior (mbsmoke) on the birthweight of her child (bweight), controlling for marital status (mmarried),
the mother’s age (mage), whether the mother had a prenatal doctor’s visit in the baby’s first trimester

(prenatal1), and whether this baby is the mother’s first child (fbaby). We use linear regression (the

default) to model bweight:
. use https://www.stata-press.com/data/r19/cattaneo2
. teffects ra (bweight mmarried mage prenatal1 fbaby) (mbsmoke)

IPW

teffects ipw implements the IPW estimator. Here we estimate the effect of smoking by using a

probit model to predict the mother’s smoking behavior as a function of marital status, the mother’s age,

and indicators for first-trimester doctor’s visits and firstborn status:

. teffects ipw (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)
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IPWRA

teffects ipwra implements the IPWRA estimator. We model the outcome, birthweight, as a linear

function of marital status, the mother’s age, and indicators for first-trimester doctor’s visits and firstborn

status. We use a logistic model (the default) to predict the mother’s smoking behavior, using the same

covariates as explanatory variables:

. teffects ipwra (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

AIPW

teffects aipw implements theAIPW estimator. Here we use the same outcome- and treatment-model

specifications as we did with the IPWRA estimator:

. teffects aipw (bweight mmarried mage prenatal1 fbaby) ///
(mbsmoke mmarried mage prenatal1 fbaby)

Nearest-neighbor matching

teffects nnmatch implements the NNM estimator. In this example, we match treated and untreated

subjects based on marital status, the mother’s age, the father’s age, and indicators for first-trimester doc-

tor’s visits and firstborn status. We use the Mahalanobis distance based on the mother’s and father’s

ages to find matches. We use exact matching on the other three variables to enforce the requirement that

treated subjects are matched with untreated subjects who have the same marital status and indicators for

first-trimester doctor’s visits and firstborn statuses. Because we are matching on two continuous covari-

ates, we request that teffects nnmatch include a bias-correction term based on those two covariates:

. teffects nnmatch (bweight mage fage) (mbsmoke), ///
ematch(prenatal1 mmarried fbaby) biasadj(mage fage)

Propensity-score matching

teffects psmatch implements the PSM estimator. Here wemodel the propensity score using a probit

model, incorporating marital status, the mother’s age, and indicators for first-trimester doctor’s visits and

firstborn status as covariates:

. teffects psmatch (bweight) (mbsmoke mmarried mage prenatal1 fbaby, probit)

Video examples
Introduction to treatment effects in Stata, part 1

Introduction to treatment effects in Stata, part 2

https://www.youtube.com/watch?v=p578jxAPJT4&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
https://www.youtube.com/watch?v=v4l3F3BrtlQ
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Description
This entry provides a technical overview of treatment-effects estimators and their implementation in

Stata. Those who are new to treatment-effects estimation may want to instead see [CAUSAL] teffects

intro.

The teffects command estimates average treatment effects (ATEs), average treatment effects among

treated subjects (ATETs), and potential-outcome means (POMs) using observational data.

Treatment effects can be estimated using regression adjustment (RA), inverse-probability weights

(IPW), and “doubly robust” methods, including inverse-probability-weighted regression adjustment (IP-

WRA) and augmented inverse-probability weights (AIPW), and via matching on the propensity score or

nearest neighbors.

The outcome can be continuous, binary, count, fractional, or nonnegative. Treatments can be binary

or multivalued.

Remarks and examples
This entry presents a technical overview of treatment-effects estimators and their implementation

in Stata. Users who are new to treatment-effects estimators for observational data should instead read

[CAUSAL] teffects intro.

Remarks are presented under the following headings:

Introduction
Defining treatment effects
The potential-outcome model
Assumptions needed for estimation

The CI assumption
The overlap assumption
The i.i.d. assumption

Comparing the ATE and ATET
Overview of treatment-effect estimators
RA estimators
IPW estimators
AIPW estimators
IPWRA estimators
Nearest-neighbor matching estimators
Propensity-score matching estimators
Choosing among estimators
Model choice

Introduction
The teffects commands estimate treatment effects from observed data. A treatment effect is the

change in an outcome caused by a subject, often an individual, getting one treatment instead of another.

We cannot estimate individual-level treatment effects, because we only observe each individual getting

one or another treatment.

466
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Potential-outcome models provide a solution to this missing-data problem and allow us to estimate

the distribution of individual-level treatment effects. A potential-outcome model specifies the potential

outcomes that each individual would obtain under each treatment level, the treatment assignment process,

and the dependence of the potential outcomes on the treatment assignment process.

When the potential outcomes do not depend on the treatment levels, after conditioning on covariates,

regression estimators, inverse-probability-weighted estimators, and matching estimators are commonly

used.

What we call the potential-outcome model is also known as the Rubin causal model and the coun-

terfactual model. See Rubin (1974); Holland (1986); Robins (1986); Heckman (1997); Heckman and

Navarro-Lozano (2004); Imbens (2004); Cameron and Trivedi (2005, chap. 2.7); Imbens andWooldridge

(2009); and Wooldridge (2010, chap. 21) for more detailed discussions.

Cameron and Trivedi (2022) provide an introduction to treatment-effects estimation and to commands

within Stata. For a discussion related to health econometrics, see Deb, Norton, and Manning (2017).

Defining treatment effects
Three parameters are often used to measure treatment effects: the average treatment effect (ATE), the

average treatment effect on the treated (ATET), and the potential-outcome means (POMs). In this section,

we define each of these terms and introduce the notation and parameters used in the rest of our discussion.

In the binary-treatment case, the two potential outcomes for each individual are 𝑦0𝑖 and 𝑦1𝑖; 𝑦0𝑖 is

the outcome that would be obtained if 𝑖 does not get the treatment, and 𝑦1𝑖 is the outcome that would be

obtained if 𝑖 gets the treatment. 𝑦0𝑖 and 𝑦1𝑖 are realizations of the random variables 𝑦0 and 𝑦1. Throughout

this entry, 𝑖 subscripts denote realizations of the corresponding unsubscripted random variables. We

do not discuss multivalued treatments here, because doing so only increases the number of parameters

and notation required and detracts from the essential points; see [CAUSAL] teffects multivalued for

information about multivalued treatments.

The parameters of interest summarize the distribution of the unobservable individual-level treatment

effect 𝑦1 −𝑦0. In defining the parameters, 𝑡 denotes a random treatment, 𝑡𝑖 denotes the treatment received

by individual 𝑖, 𝑡 = 1 is the treatment level, and 𝑡 = 0 is the control level. Given this notation, we can

now define our parameters of interest.

ATE The ATE is the average effect of the treatment in the population:

ATE = 𝐸(𝑦1 − 𝑦0)

POM The POM for treatment level 𝑡 is the average potential outcome for that treatment level:

POM𝑡 = 𝐸(𝑦𝑡)

ATET The ATET is the average treatment effect among those that receive the treatment:

ATET = 𝐸(𝑦1 − 𝑦0|𝑡 = 1)

For an illustration of these concepts, see Defining treatment effects in [CAUSAL] teffects intro.
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The potential-outcome model
Next we specify a potential-outcome model that serves as a touchstone for the rest of our discussion.

The model described here generates data in which 𝑦𝑖 is the observed outcome variable, 𝑡𝑖 is the treatment

variable, x𝑖 is a vector of covariates that affect the outcome, and w𝑖 is a vector of covariates that affect

the treatment assignment. x𝑖 and w𝑖 may have elements in common.

This potential-outcome model specifies that the observed outcome variable 𝑦 is 𝑦0 when 𝑡 = 0 and

that 𝑦 is 𝑦1 when 𝑡 = 1. Algebraically, we say that

𝑦 = (1 − 𝑡)𝑦0 + 𝑡𝑦1

The functional forms for 𝑦0 and 𝑦1 are

𝑦0 = x′β0 + 𝜖0 (1)

𝑦1 = x′β1 + 𝜖1 (2)

where β0 and β1 are coefficients to be estimated, and 𝜖0 and 𝜖1 are error terms that are not related to x or

w. This potential-outcome model separates each potential outcome into a predictable component, xβ𝑡,

and an unobservable error term, 𝜖𝑡.

The treatment assignment process is

𝑡 = {1 if w′𝛄 + 𝜂 > 0
0 otherwise

(3)

where𝛄 is a coefficient vector, and 𝜂 is an unobservable error term that is not related to either x orw. The

treatment assignment process is also separated into a predictable component, w′𝛄, and an unobservable
error term, 𝜂.

We emphasize six points about this model:

1. The observed data from this model contain 𝑦𝑖, 𝑡𝑖, w𝑖, and x𝑖. The data do not reveal both 𝑦0𝑖
and 𝑦1𝑖 for any given 𝑖.

2. The model for 𝑡 determines how the data on 𝑦0 and 𝑦1 are missing.

3. The model separates the potential outcomes and treatment assignment into observable and un-

observable components.

4. Whether 𝜂 is independent of the vector (𝜖0, 𝜖1) is essential in specifying the set of available

estimators.

5. The coefficient vectors β0, β1, and 𝛄 are auxiliary parameters. We use estimates of these

coefficient vectors to estimate the ATE, the POMs, and the ATET.

6. For notational simplicity, we represented 𝑦0 and 𝑦1 as linear functions. In practice, we can use

other functional forms.

In specifying this potential-outcomemodel, we explicitly showed the functional forms for the potential

outcomes and the treatment assignment process. To ease subsequent discussions, we refer to the set

of functional forms for the potential outcomes as the “outcome model”, and we refer to the treatment

assignment process as the “treatment model”.
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Assumptions needed for estimation
As with any type of estimator, we must make some assumptions to use treatment-effects estimators.

The particular assumptions we need for each estimator implemented by teffects and for each effect

parameter vary, but some version of each of the following is required.

CI The conditional-independence CI assumption restricts the dependence between the treatment

model and the potential outcomes.

Overlap The overlap assumption ensures that each individual could receive any treatment level.

i.i.d. The independent and identically distributed (i.i.d.) sampling assumption ensures that the poten-

tial outcomes and the treatment status of each individual are unrelated to the potential outcomes

and treatment statuses of all other individuals in the population.

We now discuss each assumption in detail.

The CI assumption

After conditioning on covariates, when no unobservable variable affects both treatment assignment

and the potential outcomes, the potential outcomes are conditionally independent of the treatment. In

epidemiological jargon, there are no unmeasured confounders. In econometric jargon, we have selection

on observables. If we observe enough covariates, the potential outcomes may indeed be conditionally

independent of the treatment.

Intuitively, the CI assumption says that only the covariates x affect both the treatment and the potential

outcomes. Any other factors that affect the treatment must be independent of the potential outcomes, and

any other factors that affect the potential outcomes must be independent of the treatment. Formally, the

CI assumption states that, conditional on covariates x, the treatment 𝑡 is independent of the vector of

potential outcomes (𝑦0, 𝑦1)′.

The CI assumption allows us to estimate the effects by regression-adjustment (RA) methods, inverse-

probability-weighting (IPW) methods, methods that combine RA and IPW concepts, and matching meth-

ods. The data only reveal information about 𝐸(𝑦0|x,w, 𝑡 = 0) and 𝐸(𝑦1|x,w, 𝑡 = 1), but we are

interested in an average of 𝐸(𝑦0|x,w) and 𝐸(𝑦1|x,w), where x represents the outcome covariates and w

the treatment-assignment covariates. The CI assumption allows us to estimate𝐸(𝑦0|x,w) and𝐸(𝑦1|x,w)
directly from the observations for which 𝐸(𝑦0|x,w, 𝑡 = 0) and 𝐸(𝑦1|x,w, 𝑡 = 1), respectively.

For our potential-outcome model presented in (1) through (3), the CI assumption can be viewed as a

set of restrictions on the covariance matrix of the error terms. Suppose that the vector of unobservables

(𝜖0, 𝜖1, 𝜂) is normally distributed

⎛⎜
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⎞⎟
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⎫}
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(4)

where 𝜎0 is the standard deviation of 𝜖0, 𝜌01 is the correlation between 𝜖0 and 𝜖1, 𝜎1 is the standard

deviation of 𝜖1, 𝜌𝜂0 is the correlation between 𝜂 and 𝜖0, and 𝜌𝜂1 is the correlation between 𝜂 and 𝜖1. As

is standard in the normally distributed latent-variable specification of a binary-dependent variable, we

normalize the variance of 𝜂 to 1.
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CI specifies that 𝜌𝜂0 = 𝜌𝜂1 = 0 so that we can write (4) as

⎛⎜
⎝

𝜖0
𝜖1
𝜂

⎞⎟
⎠

∼ 𝑁
⎧{
⎨{⎩

⎛⎜
⎝

0
0
0
⎞⎟
⎠

, ⎛⎜
⎝

𝜎2
0 𝜌01𝜎0𝜎1 0

𝜌01𝜎0𝜎1 𝜎2
1 0

0 0 1
⎞⎟
⎠

⎫}
⎬}⎭

Writing the covariance matrix this way makes clear what we mean by conditional independence: unob-

served shocks that affect whether a subject is treated do not have any effect on the potential outcomes,

and unobserved shocks that affect a potential outcome do not affect treatment.

teffects implements estimators that require the CI assumption. See [CAUSAL] etregress and

[CAUSAL] etpoisson for commands that handle two cases in which the CI assumption is replaced by

precise specifications of the joint dependence among the unobservables. Brown and Mergoupis (2011)

discuss the itreatreg command that extends [CAUSAL] etregress.

The CI assumption is also known as unconfoundedness and selection-on-observables in the literature.

See Rosenbaum and Rubin (1983); Heckman (1997); Heckman and Navarro-Lozano (2004); Cameron

and Trivedi (2005, sec. 25.2.1); Tsiatis (2006, sec. 13.3); Angrist and Pischke (2009, chap. 3); Imbens

and Wooldridge (2009); and Wooldridge (2010, sec. 21.3). Some discussions with Stata commands can

be found in Becker and Caliendo (2007), Nichols (2007), and Daniel, De Stavola, and Cousens (2011).

Technical note
In fact, full CI is stronger than what we need to estimate the ATE, the ATET, or the POMs. For the

estimators implemented in teffects, we only need a conditional mean independence (CMI) assumption.

Intuitively, the CMI assumption says that after accounting for the covariates x𝑖, the treatment does not

affect the conditional mean of each potential outcome. Formally, the CMI requires that 𝐸(𝑦0|x, 𝑡) =
𝐸(𝑦0|x) and that 𝐸(𝑦1|x, 𝑡) = 𝐸(𝑦1|x). The CMI assumption allows the conditional variance to depend

on the treatment, while the CI assumption does not.

The CI assumption implies the CMI assumption, but not vice versa.

SeeWooldridge (2010, sec. 21.2 and 21.3) for an excellent introduction to this topic, and see Cattaneo,

Drukker, and Holland (2013) for some discussion of the multiple treatment case.

The overlap assumption

The overlap assumption requires that each individual have a positive probability of receiving each

treatment level. Formally, the overlap assumption requires that for each possible x in the population and

each treatment level ̃𝑡, 0 < Pr(𝑡 = ̃𝑡|x) < 1. Rosenbaum and Rubin (1983) call the combination of the CI

and overlap assumptions strong ignorability; see also Abadie and Imbens (2006, 237–238) and Imbens

and Wooldridge (2009).
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The i.i.d. assumption

The third of the three assumptions listed above is the i.i.d. assumption; it is the standard assumption

of having an i.i.d. sample from the population. In potential-outcome models, i.i.d. sampling implies that

the potential outcomes and treatment status of each individual are unrelated to the potential outcomes

and treatment statuses of all the other individuals in the population. I.i.d. sampling rules out interactions

among the individuals. For instance, models of vaccinations in epidemiology and general equilibrium

effects in economics violate the independence assumption. This third assumption is a part of what is

known as the stable unit treatment value assumption (SUTVA); see Wooldridge (2010, 905) and Imbens

and Wooldridge (2009).

Comparing the ATE and ATET
When comparing the ATE and the ATET, two points should be mentioned.

First, the assumptions required to estimate the ATET are less restrictive than the assumptions required

to estimate the ATE. Estimating the ATET requires a weaker form of the CI assumption and a weaker

version of the overlap assumption.

To estimate theATE under CI, we require that the unobservables in the treatmentmodel be conditionally

independent of the unobservables in both potential outcomes. In contrast, we can estimate theATET under

CI when the unobservables in the treatment model are conditionally independent of just the control-level

potential outcome; see Wooldridge (2010, 906–912).

Although the ATE version of overlap requires that all covariate patterns have a positive probability

of being allocated to each treatment state, we can estimate the ATET when only the covariate patterns

for which someone is treated have a positive probability of being allocated to each treatment state. This

weaker overlap assumption can be important in some studies. For example, Heckman (1997) discusses

how theATETmakes sense in job-training programs for whichmany types of individuals have zero chance

of signing up. See also Wooldridge (2010, 911–913).

Second, theATET reduces to theATE when the mean of the covariates among the treated is the same as

the mean of the covariates in the population and when the average contribution from the unobservables

for the participants is zero.

Overview of treatment-effect estimators
We can classify the estimators implemented by teffects into five categories: 1) estimators based on

a model for the outcome variable; 2) estimators based on a model for treatment assignment; 3) estimators

based on models for both the outcome variable and the treatment assignment; 4) estimators that match

on covariates; and 5) estimators that match on predicted probabilities of treatment. Within each category

of estimator, there is a variety of choices about the functional forms for the models.

Because there are several categories of estimators, the user must decide whether to model the out-

comes, the probability of treatment, or both. Under correct model specification, using an outcome model

and a model for the probability of treatment will produce more efficient estimates. Surprisingly, some of

the estimators that use both models only require that one of the two be correctly specified to consistently

estimate the effects of interest, a property known as the double-robust property.
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With the exception of using a matching estimator with a single continuous covariate, some choice of

functional forms is required. There are two aspects one must consider when choosing the functional form

for the outcome or treatment assignment. First, one must select the functional form for the conditional

mean or conditional probability; depending on the variable being modeled, a linear, a binary choice, or

an exponential model may be appropriate. Second, one must determine the appropriate polynomials of

the covariates to include in the model. teffects offers a wide variety of options to specify different

functional form choices for the conditional mean and conditional probability models. The factor-variable

notation in Stata allows us to easily specify the desired polynomial in the covariates.

We now provide some intuition behind each type of estimator.

RA estimators
RA estimators use means of predicted outcomes for each treatment level to estimate each POM. ATEs

and ATETs are differences in estimated POMs.

The CI assumption implies that we can estimate 𝐸(𝑦0|x) and 𝐸(𝑦1|x) directly from the observations

for which 𝑡 = 0 and 𝑡 = 1, respectively. Regression adjustment fits separate regressions for each

treatment level and uses averages of the predicted outcomes over all the data to estimate the POMs. The

estimatedATEs are differences in the estimated POMs. The estimatedATETs are averages of the predicted

outcomes over the treated observations.

RA is a venerable estimator. See Lane and Nelder (1982); Cameron and Trivedi (2005, chap. 25);

Wooldridge (2010, chap. 21); and Vittinghoff et al. (2012, chap. 9). The usefulness of RA has been

periodically questioned in the literature because it relies on specifying functional forms for the conditional

means and because it requires having sufficient observations of each covariate pattern in each treatment

level; see Rubin (1973) for an early salvo. Our experience is that RA is an exceptionally useful base-

case estimator. We describe its relative advantages and disadvantages in the course of covering other

estimators.

IPW estimators
IPW estimators use weighted averages of the observed outcome variable to estimate means of the po-

tential outcomes. The weights account for the missing data inherent in the potential-outcome framework.

Each weight is the inverse of the estimated probability that an individual receives a treatment level. Out-

comes of individuals who receive a likely treatment get a weight close to one. Outcomes of individuals

who receive an unlikely treatment get a weight larger than one, potentially much larger.

IPW estimators model the probability of treatment without any assumptions about the functional form

for the outcome model. In contrast, RA estimators model the outcome without any assumptions about the

functional form for the probability of treatment model.

IPW estimators become extremely unstable as the overlap assumption gets close to being violated.

When the overlap assumption is nearly violated, some of the inverse-probability weights become very

large, IPW estimators produce erratic estimates, and the large-sample distribution provides a poor ap-

proximation to the finite-sample distribution of IPW estimators. This instability occurs even though the

functional form for the treatment model is correctly specified.
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In contrast, when the overlap assumption is nearly violated, there are very few observations in a

treatment level for some covariate patterns, so RA estimators use the model to predict in regions in which

there are very little data. If the model is well specified and there are “enough” observations, an RA

estimator will not become unstable as quickly as an IPW estimator, and the large-sample distribution of

the RA estimator still provides a good approximation to the finite-sample distribution. However, in real

situations in which “all models are approximate”, relying on a correctly specified outcome model with

little data is extremely risky.

IPW estimators are a general approach tomissing-data problems that obey some CI assumptions. While

IPW is an old idea in statistics that dates back to Horvitz and Thompson (1952), biostatisticians and

econometricians have been actively working on extending it to handle modern problems and estimation

methods. See Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1994, 1995); and Wooldridge

(2002, 2007). IPW has been used extensively in the modern treatment-effect estimation literature. See

Imbens (2000); Hirano, Imbens, and Ridder (2003); Tan (2010); Wooldridge (2010, chap. 19); van der

Laan and Robins (2003); and Tsiatis (2006, chap. 6).

To see the intuition behind IPW, consider a study with observed outcome variable 𝑦, treatment variable

𝑡 ∈ {0, 1}, and potential outcomes 𝑦0 and 𝑦1. As part of this process, we need to estimate the POM for

treatment 𝑡 = 1, 𝐸(𝑦1). Using the observed data, 𝑦𝑖𝑡𝑖 is 𝑦1𝑖 when 𝑡 = 1, but 𝑦1𝑖 is unobserved when

𝑡 = 0. An IPW estimator for 𝐸(𝑦1) is 1/𝑁 ∑𝑁
𝑖=1 𝑦𝑖𝑡𝑖/𝑝(x𝑖), where 𝑝(x𝑖) is the probability that 𝑡𝑖 = 1

and is a function of the covariates x𝑖. If 𝑦1𝑖 were always observed, the weights would all equal 1. This

IPW estimator places a larger weight on those observations for which 𝑦1𝑖 is observed even though its

observation was not likely.

AIPW estimators
Instead of modeling either the outcome, like RA, or the treatment probability, like IPW, augmented

inverse-probability-weighted (AIPW) estimators model both the outcome and the treatment probability.

A surprising fact is that only one of the two models must be correctly specified to consistently estimate

the treatment effects, a property of theAIPW estimators known as being “doubly robust”. Given that two

models instead of one are used, it is less surprising that the AIPW estimators can be more efficient than

either the RA or the IPW estimators, though deriving this result is rather technical and relies on the theory

of semiparametric estimators.

Intuitively, theAIPW estimator is an IPW that includes an augmentation term that corrects the estimator

when the treatment model is misspecified. When the treatment is correctly specified, the augmentation

term vanishes as the sample size becomes large. Like the IPW, the AIPW does not perform well when the

predicted treatment probabilities are too close to zero or one.

AIPW estimators emerge naturally from a technique of producing more efficient estimators from esti-

mators that have a few main parameters of interest and some auxiliary, or nuisance, parameters used in

estimating the few main parameters. This method constructs efficient estimating equations for the main

parameters that are orthogonal to the auxiliary parameters. The estimators produced by this method are

known as efficient-influence function (EIF) estimators.

To gain some intuition, consider finding an EIF estimator from an IPW estimator for two POMs. Note

that we only care about the two POM parameters and not about the many auxiliary parameters used to

estimate the treatment probabilities. EIF estimators project the equations that yield the POM parameters

onto the equations that yield the auxiliary treatment-model parameters and then use the residuals from

this projection to estimate the POM parameters.
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We refer to these estimators as “AIPW estimators” instead of “EIF estimators” because the former is

commonly used in the biostatistical literature for some of the binary-treatment estimators and because the

term “augmented inverse-probability-weighted” tells more about how these estimators relate to the other

implemented estimators; see Tsiatis (2006) and Tan (2010). The estimators implemented in teffects
aipw with the wnls option are based on those of Rubin and van der Laan (2008), which did well in

simulations reported by Tan (2010), and denoted as ̃𝛼𝑅𝑉( ̂𝜋) in Tan (2010, 663).
When either the outcome model or the treatment model is well specified, the AIPW estimators imple-

mented in teffects aipw are more robust than either the RA or the IPW estimators because the AIPW

estimators are doubly robust but the RA and IPW estimators are not. When both the outcome and the

treatment model are misspecified, which estimator is more robust is a matter of debate in the literature;

see Kang and Schafer (2007) and Robins et al. (2007) for some debate, and see Tan (2010) for a more

recent discussion.

To the best of our knowledge, there is no general solution to the question of which estimator performs

best when both the outcome and the treatment models are misspecified. We suspect that the answer

depends on the true models, the implemented specifications, and the polynomials in the covariates used.

To help users through this process, the estimators implemented in teffects offer many functional forms

to approximate either the outcome process or the treatment process. In addition, Stata’s factor-variable

notation makes it easy to include polynomials in the covariates. Both of these approximation methods

rely on having enough data. teffects also makes it easy to compare the results produced by different

estimators.

The literature on these methods is vast and growing. For double-robust results and explanations, see

Robins and Rotnitzky (1995); Robins, Rotnitzky, and Zhao (1995); van der Laan and Robins (2003,

chap. 6); Bang and Robins (2005); Tsiatis (2006, chap. 13); Wooldridge (2007; 2010, sec. 21.3.4); and

Tan (2010).

IPWRA estimators
Like AIPW estimators, inverse-probability-weighted regression-adjustment (IPWRA) estimators com-

bine models for the outcome and treatment status; also likeAIPW estimators, IPWRA estimators are doubly

robust. IPWRA estimators emerge naturally from a robust approach to missing-data methods. IPWRA esti-

mators use the inverse of the estimated treatment-probability weights to estimate missing-data-corrected

regression coefficients that are subsequently used to compute the POMs.

As far as we know, there is no literature that compares the relative efficiency of AIPW estimators,

which emerge from a general approach to creating efficient estimators, and the IPWRA estimators, which

emerge from a robust-correction approach to missing-data analysis.

The IPWRA estimators are also know as “Wooldridge’s double-robust” estimators because they were

derived in Wooldridge (2007) and discussed at length in Wooldridge (2010, section 21.3.4).

Nearest-neighbor matching estimators
Matching estimators use an average of the outcomes of the nearest individuals to impute the miss-

ing potential outcome for each sampled individual. The difference between the observed outcome and

the imputed potential outcome is an estimate of the individual-level treatment effect. These estimated

individual-level treatment effects are averaged to estimate the ATE or the ATET.
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teffects nnmatch determines the “nearest” by using a weighted function of the covariates for each

observation. This type of matching is known as nearest-neighbor matching (NNM). teffects psmatch
determines the “nearest” by using the estimated treatment probabilities, which are known as the propen-

sity scores. This second type of matching is known as propensity-score matching (PSM).

NNM is nonparametric in that no explicit functional form for either the outcomemodel or the treatment

model is specified. This flexibility comes at a price; the estimator needs more data to get to the true

value than an estimator that imposes a functional form. More formally, the NNM estimator converges

to the true value at a rate slower than the parametric rate, which is the square root of the sample size,

when matching on more than one continuous covariate. teffects nnmatch uses bias correction to fix

this problem. PSM provides an alternative to bias correction because it matches on a single continuous

covariate, the estimated treatment probabilities.

Abadie and Imbens (2006, 2011) derived the rate of convergence of the NNM estimator and the bias-

corrected NNM estimator and the large-sample distributions of the NNM and the bias-corrected NNM es-

timators. These articles provided the formal results that built on methods suggested in Rubin (1973,

1977).

teffects nnmatch is based on the results in Abadie and Imbens (2006, 2011) and a previous imple-

mentation in Abadie et al. (2004).

Propensity-score matching estimators
Instead of performing bias correction to handle the case of more than one continuous covariate, a com-

mon solution is to combine all the covariate information into estimated treatment probabilities, known

as propensity scores, and use this single continuous covariate as the matching variable.

The term “propensity score” is widely used, but we continue to refer to it as the “treatment probability”

to be consistent with the other estimators. We call the estimator that matches on the estimated treatment

probabilities the “propensity-score matching (PSM) estimator” because the latter term is ubiquitous.

In effect, the PSM estimator parameterizes the bias-correction term in the treatment probability model.

One advantage of matching on the estimated treatment probabilities over the bias-correction method

is that one can explore the fit of different treatment probability models using standard methods before

performing the nonparametric matching. For example, one can select the treatment model by minimizing

an information criterion under i.i.d. sampling. We know of no counterpart for selecting the proper order

of the bias-correction term for the NNM estimator.

Matching on estimated treatment probability models has been very popular since Rosenbaum and

Rubin (1983) showed that if adjusting for covariates x𝑖 is sufficient to estimate the effects, then one can

use the probability of treatment to perform the adjustment. Abadie and Imbens (2012) derived a method

to estimate the standard errors of the estimator that matches on estimated treatment probabilities, and

this method is implemented in teffects psmatch.

Choosing among estimators
There is no definitive way to select one of the estimators implemented in teffects over the others.

We offer three observations about the tradeoffs among the estimators.

First, if the outcome model is correctly specified, the RA estimator will break down more slowly than

the IPW, AIPW, IPWRA, or PSM estimators as the overlap assumption begins to fail. This result depends

critically on the ability of the RA estimator to predict into regions in which there are little data.
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Second, if the overlap assumption holds, theAIPW and IPWRA estimators have the double-robust prop-

erty for some functional form combinations. The double-robust property says that if either the outcome

model or the treatment model is correctly specified, we can consistently estimate the effects. The prop-

erties of double-robust estimators when both models are misspecified are not known, although there

is some discussion in the literature about the properties of the AIPW estimators; see Kang and Schafer

(2007), Robins et al. (2007), and Tan (2010).

Third, all the estimators require the same assumptions, so if each is correctly specified, they should

all produce similar results. Of course, just because they produce similar results does not mean that they

are correctly specified; it is possible that they are just behaving similarly in response to some underlying

problem.

Model choice
teffects offers a broad selection of functional form combinations so that you can choose a combi-

nation that fits your data. Picking a functional form that respects the values of the observed outcomes is

usually best. Select linear for continuous outcomes over the real line; logit, probit, or hetprobit
for binary outcomes; and poisson for counts or nonnegative outcomes.

For binary treatments, you can select among logit, probit, or hetprobitmodels. For multivalued

treatments, only the multinomial logit is available to model the treatment probabilities.

Selecting a functional form of a given set of covariates is a famously difficult problem in statistics.

In the treatment-effects context, Cattaneo, Drukker, and Holland (2013) found that model selection by

minimizing an information criterion worked well. Cattaneo, Drukker, and Holland (2013) discuss a

method and a community-contributed command to facilitate the process.
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teffects aipw — Augmented inverse-probability weighting

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
teffects aipw estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational data by augmented inverse-

probability weighting (AIPW). AIPW estimators combine aspects of regression-adjustment and inverse-

probability-weighted methods. AIPW estimators have the double-robust property. teffects aipw ac-

cepts a continuous, binary, count, fractional, or nonnegative outcome and allows a multivalued treatment.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of binary treatment treat2 byAIPW using a linear model for outcome y1 on x1 and x2 and a logistic

model for treat2 on x1 and w
teffects aipw (y1 x1 x2) (treat2 x1 w)

Same as above, but use a fractional logistic model for fractional outcome y2
teffects aipw (y2 x1 x2, flogit) (treat2 x1 w)

Same as above, but use a heteroskedastic probit model for binary outcome y3 and a probit model for

treat2
teffects aipw (y3 x1 x2, hetprobit(x1 x2)) (treat2 x1 w, probit)

ATE for each level of three-valued treatment treat3 on y1
teffects aipw (y1 x1 x2) (treat3 x1 w)

Same as above, and specify that treat3 = 3 is the control level

teffects aipw (y1 x1 x2) (treat3 x1 w), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3

teffects aipw (y1 x1 x2) (treat3 x1 w), control(MyControl)

ATET of binary treatment treat2 byAIPW using a linear model for outcome y1 on x1 and x2 and a probit
model for treat2 on x1 and w

teffects aipw (y1 x1 x2) (treat2 x1 w, probit), atet

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Augmented inverse-probability weight-
ing

Statistics > Causal inference/treatment effects > Binary outcomes > Augmented inverse-probability weighting

Statistics > Causal inference/treatment effects > Count outcomes > Augmented inverse-probability weighting

480
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Statistics > Causal inference/treatment effects > Fractional outcomes > Augmented inverse-probability weighting

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Augmented inverse-probability weight-
ing

Syntax
teffects aipw (ovar omvarlist [ , omodel noconstant ])

(tvar tmvarlist [ , tmodel noconstant ]) [ if ] [ in ] [weight ]
[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the covariates in the treatment-assignment model.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

flogit fractional logistic outcome model

fprobit fractional probit outcome model

fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

Model

nls estimate conditional means by nonlinear least squares

wnls estimate conditional means by weighted nonlinear least squares

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

nls specifies that the parameters of the outcome model be estimated by nonlinear least squares instead

of the default maximum likelihood.

wnls specifies that the parameters of the outcomemodel be estimated byweighted nonlinear least squares

instead of the default maximum likelihood. The weights make the estimator of the effect parameters

more robust to a misspecified outcome model.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). teffectswill exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may be specified only with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with teffects aipw but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example
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Overview
AIPW estimators use inverse-probability weights to correct for the missing-data problem arising from

the fact that each subject is observed in only one of the potential outcomes; these estimators use an

augmentation term to correct the estimator in case the treatment model is misspecified. If the treatment

model is correctly specified, the augmentation term goes to zero in large samples.

AIPW estimators compute averages of the augmented inverse-probability-weighted outcomes for each

treatment level. Contrasts of these averages provide estimates of the treatment effects.

AIPW estimators use a model to predict treatment status, and they use another model to predict out-

comes. Because of the double-robust property, only one of these two models must be correctly specified

for the AIPW estimator to be consistent.

AIPW estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment-assignment model and compute inverse-

probability weights.

2. They estimate separate regression models of the outcome for each treatment level and obtain

the treatment-specific predicted outcomes for each subject.

3. They compute the weighted means of the treatment-specific predicted outcomes, where the

weights include the inverse-probability weights computed in step 1. The contrasts of these

weighted averages provide the estimates of the treatment effects.

These steps produce consistent estimates of the effect parameters because treatment assignment is

assumed to be independent of the potential outcomes after conditioning on the covariates. The over-

lap assumption ensures that predicted inverse-probability weights do not get too large. The standard

errors reported by teffects aipw correct for the three-step process. See [CAUSAL] teffects intro or

[CAUSAL] teffects intro advanced for more information about this estimator.

We will illustrate the use of teffects aipw by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
and whether this baby was the mother’s first birth (fbaby).
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Example 1: Estimating the ATE
We begin by using teffects aipw to estimate the average treatment effect of mbsmoke on bweight.

We use a probit model to predict treatment status as a function of mmarried, mage, and fbaby; to maxi-

mize the predictive power of this model, we use factor-variable notation to incorporate quadratic effects

of the mother’s age, the only continuous covariate in our model. We use linear regression to model

birthweight, using prenatal1, mmarried, mage, and fbaby as explanatory variables. We type

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 1.936e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.9892 26.21056 -8.81 0.000 -282.361 -179.6174

POmean
mbsmoke

Nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109

The average birthweight if all mothers were to smoke would be 231 grams less than the average of

3,403 grams that would occur if none of the mothers had smoked.

By default, teffects aipw reports the ATE and the POM for the base (untreated) subjects. The

pomeans option allows us to view the treated subjects’ POM as well; the aequations option displays the
regression model coefficients used to predict the POMs as well as the coefficients from the model used to

predict treatment.
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Example 2: Displaying the POMs and equations
Here we use the pomeans and aequations options to obtain estimates of both POMs and view all the

fitted equations underlying our estimates:

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), pomeans aequations
Iteration 0: EE criterion = 4.629e-21
Iteration 1: EE criterion = 6.876e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
mbsmoke

Nonsmoker 3403.355 9.568472 355.68 0.000 3384.601 3422.109
Smoker 3172.366 24.42456 129.88 0.000 3124.495 3220.237

OME0
prenatal1 64.40859 27.52699 2.34 0.019 10.45669 118.3605
mmarried 160.9513 26.6162 6.05 0.000 108.7845 213.1181

mage 2.546828 2.084324 1.22 0.222 -1.538373 6.632028
fbaby -71.3286 19.64701 -3.63 0.000 -109.836 -32.82117
_cons 3202.746 54.01082 59.30 0.000 3096.886 3308.605

OME1
prenatal1 25.11133 40.37541 0.62 0.534 -54.02302 104.2457
mmarried 133.6617 40.86443 3.27 0.001 53.5689 213.7545

mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804
fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
_cons 3227.169 104.4059 30.91 0.000 3022.537 3431.801

TME1
mmarried -.6484821 .0554173 -11.70 0.000 -.757098 -.5398663

mage .1744327 .0363718 4.80 0.000 .1031452 .2457202

c.mage#
c.mage -.0032559 .0006678 -4.88 0.000 -.0045647 -.0019471

fbaby -.2175962 .0495604 -4.39 0.000 -.3147328 -.1204595
medu -.0863631 .0100148 -8.62 0.000 -.1059917 -.0667345
_cons -1.558255 .4639691 -3.36 0.001 -2.467618 -.6488926

The coefficient table indicates that the treated POM is 3,172 grams, 231 grams less than the untreated

POM. The sections of the table labeled OME0 and OME1 represent the linear regression coefficients for the
untreated and treated potential-outcome equations, respectively. The coefficients of the TME1 equation

are used in the probit model to predict treatment status.

As is well known, the standard probit model assumes that the error terms in the latent-utility frame-

work are homoskedastic; the model is not robust to departures from this assumption. An alternative is to

use the heteroskedastic probit model, which explicitly models the error variance as a function of a set of

variables.
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Example 3: Heteroskedastic probit treatment model
Here we refit our model as in the previous examples, but we instead use heteroskedastic probit to

model the treatment variable. We posit that the heteroskedasticity is a function of the mother’s age. We

type

. teffects aipw (bweight prenatal1 mmarried fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, hetprobit(c.mage)), aequations
Iteration 0: EE criterion = 1.746e-19
Iteration 1: EE criterion = 4.222e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: heteroskedastic probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.2699 27.35327 -8.42 0.000 -283.8814 -176.6585

POmean
mbsmoke

Nonsmoker 3403.657 9.540713 356.75 0.000 3384.957 3422.356

OME0
prenatal1 69.5048 27.04642 2.57 0.010 16.49479 122.5148
mmarried 173.74 24.63865 7.05 0.000 125.4491 222.0308

fbaby -79.19473 18.62584 -4.25 0.000 -115.7007 -42.68875
_cons 3260.768 28.29282 115.25 0.000 3205.315 3316.221

OME1
prenatal1 12.86437 39.83916 0.32 0.747 -65.21894 90.94768
mmarried 113.3491 39.47422 2.87 0.004 35.9811 190.7172

fbaby 64.22326 38.42042 1.67 0.095 -11.07939 139.5259
_cons 3051.268 37.30413 81.79 0.000 2978.153 3124.383

TME1
mmarried -.3551755 .1044199 -3.40 0.001 -.5598347 -.1505162

mage .0831898 .0349088 2.38 0.017 .0147699 .1516097

c.mage#
c.mage -.0013458 .0006659 -2.02 0.043 -.002651 -.0000406

fbaby -.1170697 .044998 -2.60 0.009 -.2052643 -.0288752
medu -.0435057 .0147852 -2.94 0.003 -.0724842 -.0145272
_cons -.8757021 .347814 -2.52 0.012 -1.557405 -.1939993

TME1_lnsigma
mage -.0236336 .0107134 -2.21 0.027 -.0446315 -.0026357

The equation labeled TME1 lnsigma represents the heteroskedasticity function used to model the

logarithm of the variance. Looking at theATE and POM estimates as well as their standard errors, we can

see that they are almost identical to the previous results. Thus, allowing for heteroskedasticity did not

change any of our previous conclusions.
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Rather than using maximum likelihood to fit the outcome model, you can instruct teffects aipw
to use a weighted nonlinear least-squares (WNLS) estimator instead. The WNLS estimator may be more

robust to outcome model misspecification.

Example 4: Using the WNLS estimator
Here we useWNLS to fit our outcome model:

. teffects aipw (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), wnls
Iteration 0: EE criterion = 2.788e-20
Iteration 1: EE criterion = 9.910e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by WNLS
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -227.1956 27.34794 -8.31 0.000 -280.7966 -173.5946

POmean
mbsmoke

Nonsmoker 3403.251 9.596622 354.63 0.000 3384.442 3422.06

TheATE of −227 is slightly greater than theATE of −231 estimated in example 1. The estimated POMs

are nearly indistinguishable.
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Example 5: Estimating ATET
So far, we have discussed estimates of ATE. Here we wish to estimate the ATET. We do so simply by

specifying option atet:

. teffects aipw (bweight fbaby mage mmarried prenatal1)
> (mbsmoke fbaby foreign medu mmarried, probit), atet
Iteration 0: EE criterion = 2.079e-19
Iteration 1: EE criterion = 2.149e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke
(Smoker

vs
Nonsmoker) -228.0266 23.18451 -9.84 0.000 -273.4674 -182.5858

POmean
mbsmoke

Nonsmoker 3365.686 13.4482 250.27 0.000 3339.328 3392.044

The estimated POM is 3,366, which tells us that, if all smoking mothers in the population instead chose

not to smoke, the average birthweight of their babies would be 3,366 grams. The observed birthweight

among this group of mothers, however, is lower on average by 228 grams, which we learn from the

estimated ATET of −228.
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Example 6: Estimating ATET with multivalued treatment
We can also estimate ATETs with multivalued treatments. Here we use the variable msmoke as our

treatment variable, which has four levels representing one control group and three treatment groups:

. teffects aipw (bweight fbaby mage mmarried prenatal1)
> (msmoke fbaby foreign medu mmarried), atet
Iteration 0: EE criterion = 7.107e-13
Iteration 1: EE criterion = 3.101e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : augmented IPW
Outcome model : linear by ML
Treatment model: (multinomial) logit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
msmoke

(1--5 daily
vs

0 daily) -156.7646 36.7927 -4.26 0.000 -228.8769 -84.65219
(6--10 daily

vs
0 daily) -209.2045 35.01555 -5.97 0.000 -277.8337 -140.5753

(11+ daily
vs

0 daily) -220.3197 33.84588 -6.51 0.000 -286.6564 -153.983

POmean
msmoke

0 daily 3351.16 14.88082 225.20 0.000 3321.994 3380.325

When estimatingATETwith multivalued treatments, we need to specify not only the group to be taken

as the control group but also the group to be taken as the treated. By default, teffects uses the first

level of the treatment variable as the control group (here msmoke = 0) and the second level as the group

of treated (msmoke = 1). To change this, we could specify the control() and tlevel() options, but

here we leave it at the default.

The POM shown at the bottom of the output is an estimate of 𝐸{𝑌𝑖(0)|𝑡 = 1}. It tells us that, among

the population of light-smoking mothers (smoking 1–5 cigarettes per day), the birthweight of their babies

would be 3,351 grams on average if none of them chose to smoke. This average birthweight is higher

by 157 grams compared with the observed birthweight among women of this group, as indicated by the

first ATET in the output table, which is an estimate of 𝐸{𝑌𝑖(1) − 𝑌𝑖(0)|𝑡 = 1}. The second ATET in the

output is an estimate of 𝐸{𝑌𝑖(2) − 𝑌𝑖(0)|𝑡 = 1}. That is, among the group of light-smoking mothers, if

they were to smoke more (that is, 6–10 cigarettes per day), the difference in average birthweight would

now grow to 209 grams. Likewise, the thirdATET in the output (an estimate of 𝐸{𝑌𝑖(3) − 𝑌𝑖(0)|𝑡 = 1})
tells us that, if light-smoking mothers were to smoke even more, the average birthweight of their babies

would be 220 grams lower than the average birthweight in the counterfactual case where none of these

mothers smoked.

Video example
Treatment effects: Augmented inverse-probability weighting

https://www.youtube.com/watch?v=HqShQ1RcP5s&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
teffects aipw stores the following in e():
Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) aipw
e(tmodel) logit, probit, or hetprobit
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(cme) ml, nls, or wnls
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here provide the technical details underlying the estimators

implemented in teffects ra, teffects ipw, teffects aipw, and teffects ipwra. See Methods

and formulas of [CAUSAL] teffects nnmatch for the methods and formulas used by teffects nnmatch
and teffects psmatch.
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Methods and formulas are presented under the following headings:

Parameters and notation
Overview of EE estimators
VCE for EE estimators
TM and OM estimating functions

TM estimating functions
logit and probit
hetprobit
mlogit

OM estimating functions
OM QML

linear
logit, flogit, probit, and fprobit
hetprobit and fhetprobit
poisson

OMWNL
linear
logit, flogit, probit, and fprobit
hetprobit and fhetprobit
poisson

Effect estimating functions
RA estimators

RA for POM
RA for ATE
RA for ATET

IPW estimators
IPW for POM
IPW for ATE
IPW for ATET

AIPW estimators
AIPW for POM
AIPW for ATE
AIPW for ATET

IPWRA estimators

Parameters and notation
We begin by reviewing the effect parameters estimated by teffects and some essential notation.

The potential outcome that an individual would obtain if given treatment level 𝑡 ∈ {0, 1, . . . , 𝑞} is 𝑦𝑡.

Each 𝑦𝑡 is a random variable, the realizations of which are 𝑦𝑡𝑖. Throughout this document, 𝑖 subscripts
denote realizations of the corresponding, unsubscripted random variables.

The three parameters of interest are

1. the potential-outcome mean (POM) 𝛼𝑡 = 𝐸(𝑦𝑡);
2. the average treatment effect (ATE) 𝜏𝑡 = 𝐸(𝑦𝑡 − 𝑦0); and
3. the average treatment effect on the treated (ATET) 𝛿𝑡 = 𝐸(𝑦𝑡 − 𝑦0|𝑡 = ̃𝑡).

The no-treatment level is 0.

The estimators implemented in teffects use three assumptions to justify the equations used for

estimation and inference about the effect parameters of interest:

1. Conditional mean independence (CMI) allows us to estimate potential-outcome means from the

observed outcomes in the sample.

2. Overlap ensures that we have data on each type of individual in each treatment level.
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3. Independent observations ensure that the outcome and treatment for one individual has no effect

on the outcome or treatment for any other individual.

teffects ra implements some regression-adjustment (RA) estimators; teffects ipw implements

some inverse-probability-weighted (IPW) estimators; teffects ipwra implements some inverse-

probability-weighted regression-adjustment (IPWRA) estimators; and teffects aipw implements some

augmented inverse-probability-weighted (AIPW) estimators. All are implemented as estimating-equation

(EE) estimators. The estimators are consistent and asymptotically normally distributed under the CMI,

overlap, and independence assumptions.

Overview of EE estimators
EE estimators compute estimates by solving sample estimating equations. The sample estimating

equations are the sample equivalents of population expectation equations.

Each EE estimator specifies a set of estimating equations for the effect parameters of interest and a set

of estimating equations for the auxiliary parameters in the outcome model (OM) or the treatment model

(TM). The next few sections provide tremendous detail about the estimating equations that define the RA,

IPW, AIPW, and IPWRA estimators.

Ignoring the details for a moment, EE estimators solve systems of equations to compute estimates. A

standard robust estimator is consistent for the variance of the estimator (VCE). All the details involve the

equations specified by choices of estimator and functional forms for the OM or TM.

When used, the OM is a model for the conditional mean of the outcome variable. We let 𝜇(x, 𝑡,β𝑡)
denote a conditional-mean model for the outcome 𝑦 conditional on covariates x and treatment level 𝑡.
Mathematically, 𝐸(𝑦|x, 𝑡) = 𝜇(x, 𝑡,β𝑡), where β𝑡 are the parameters of the conditional-mean model

given treatment level 𝑡. The table below provides details about the available functional forms.

Outcome model Functional form for 𝜇(x, 𝑡,β𝑡)
linear xβ𝑡

logit, flogit exp(xβ𝑡)/{1 + exp(xβ𝑡)}
probit, fprobit Φ(xβ𝑡)

poisson exp(xβ𝑡)
hetprobit, fhetprobit Φ{ẋβ̇𝑡/ exp(ẍβ̈𝑡)}

In the cases of hetprobit and fhetprobit, we use ẋ and ̇β𝑡 to denote the variables and parameters

in the index function, and we use ẍ and ̈β𝑡 to denote the variables and parameters in the variance equation.

We define x′ = (ẋ′, ẍ′) and β′
𝑡 = (β̇′

𝑡, β̈
′
𝑡).

We write the vector of parameters for the outcome model over all treatment levels as β′ =
(β′

0,β1, . . . ,β′
𝑞).

Next we provide details about the estimating equations implied by each functional form choice.
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When used, the TM is a model for the conditional probability of treatment. We let 𝑝(z, 𝑡, 𝛄) denote
the conditional probability model for the probability that a person receives treatment 𝑡, conditional on
covariates z. The table below provides details about the functional form options allowed in the case of a

binary treatment.

Treatment model Functional form for 𝑝(z, 𝑡, 𝛄)
logit exp(z𝛄)/{1 + exp(z𝛄)}
probit Φ(z𝛄)

hetprobit Φ{ ̇z𝛄̇/ exp( ̈z𝛄̈)}

In the case of hetprobit, we use ̇z and 𝛄̇ to denote the variables and parameters in the index function,

and we use ̈z and 𝛄̈ to represent the variables and parameters in the variance equation. We define z′ =
( ̇z′, ̈z′), and 𝛄′ = (𝛄̇′, 𝛄̈′).

In the multivalued-treatment case, 𝑝(z, 𝑡, 𝛄) is specified as a multinomial logit with 𝑝(z, 𝑡, 𝛄) =
exp(z𝛄𝑡)/{1 + ∑𝑞

𝑘=1 exp(z𝛄𝑘)} and 𝛄′ = (𝛄′
1, 𝛄′

2, . . . , 𝛄′
𝑞). (We present formulas for the case with

treatment level 0 as the base with 𝛄′
0 = 0′; see [R] mlogit for background.) In teffects, the logit

option in the treatment-model specification means binary logit for the binary-treatment case and multino-

mial logit for themultivalued-treatment case: this simplifies the use of the command andmakes statistical

sense.

Below we provide details about the estimating equations implied by each functional form

choice. The effect parameters of interest are

1. the POMs denoted by α′ = (𝛼0, 𝛼1, . . . , 𝛼𝑞);
2. the ATEs denoted by τ′ = (𝜏1, 𝜏2, . . . , 𝜏𝑞); and

3. the ATETs denoted by δ′ = (𝛿1, 𝛿2, . . . , 𝛿𝑞).
We denote the effect parameters by 𝜗 and all the parameters in any particular case by θ. More for-

mally, θ is the concatenation of the effect parameters, the OM parameters, and the TM parameters;

θ′ = (𝜗′,β′, 𝛄′), where 𝜗 is α, τ, or δ, and β or 𝛄 may not be present, depending on the case at

hand.

In the subsections below, we discuss estimators for the elements in θ in detail and note how these

elements change over the cases defined by effect parameters and estimators. The parameter vector θ
denotes all the parameters, no matter which particular case is under consideration.

The EE estimators described in this section are defined by a set of equations,

𝐸{s(x, z,θ)} = 0

where s(x, z,θ) is a vector of estimating functions. Note the notation: estimating equations equate the

expected value of a vector of estimating functions to zero.

Because each of the estimating functions has mean zero, we can construct estimators that find the

estimates θ̂ by solving a system of equations,

1/𝑁
𝑁

∑
𝑖
s𝑖(x𝑖, z𝑖, θ̂) = 0

where s𝑖(x𝑖, z𝑖, θ̂) are the sample realizations of the estimating functions. In other words, the parameter

estimates set the average of the realizations of each estimating function to zero. Almost all the details

below involve specifying the sample realizations s𝑖(x𝑖, z𝑖, θ̂).
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Estimators that set the expected value of estimating functions to zero are known as estimating-

equations (EE) estimators, M estimators, or Z estimators in the statistics literature and as generalized

method of moments (GMM) estimators in the econometrics literature. See van der Vaart (1998, 41), Ste-

fanski and Boos (2002), and Tsiatis (2006, sec. 3.2) for statistics; and see Wooldridge (2010, chap. 14),

Cameron and Trivedi (2005, chap. 6), and Newey and McFadden (1994) for econometrics.

We refer to them as EE estimators because this name is closest to being independent of any discipline.

The estimators are implemented using gmm because they are exactly identified generalized method of

moments (GMM) estimators. When weights are specified by the user, they are applied to the estimating

equations just as gmm applies user-specified weights.

Each estimator has a set of estimating equations for the effect parameters and either an OM or a TM,

or both. The OM parameters or the TM parameters are auxiliary parameters used to estimate the effect

parameters of interest.

Each set of parameters has its own set of sample estimating equations:

1/𝑁 ∑𝑖 s𝑒,𝑖(x𝑖, z𝑖, θ̂) = 0 are the sample estimating equations for the effect parameters. These

equations determine the effect parameter estimates ̂𝜗 as functions of the data and the other

estimated parameters.

1/𝑁 ∑𝑖 som,𝑖(x𝑖, 𝑤𝑖, β̂) = 0 are the sample estimating equations for OM parameters that use

the weights 𝑤𝑖, which are functions of the TM parameters.

1/𝑁 ∑𝑖 stm,𝑖(z𝑖, 𝛄̂) = 0 are the sample estimating equations for TM parameters.

The whole set of sample estimating functions is s𝑖(x𝑖, z𝑖, θ̂) with

s𝑖(x𝑖, z𝑖, θ̂)′ = (s𝑒,𝑖(x𝑖, z𝑖, θ̂)′, som,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂)′, stm,𝑖(z𝑖, 𝛄̂)′)

although not all the estimators have each of three components.

VCE for EE estimators
TheHuber/White/robust sandwich estimator is consistent for the variance–covariance of the estimator

(VCE). See van der Vaart (1998, 41), Stefanski and Boos (2002), and Tsiatis (2006, sec. 3.2) for statistics;

and see Wooldridge (2010, chap. 14), Cameron and Trivedi (2005, chap. 6), and Newey and McFadden

(1994) for econometrics.

The formula is

V̂ = (1/𝑁)G S G ′

where

G = {(1/𝑁) ∑
𝑖

𝜕𝑠𝑖(x𝑖, z𝑖, θ̂)
𝜕θ̂

}
−1

and

S = (1/𝑁) ∑
𝑖

𝑠𝑖(x𝑖, z𝑖, θ̂)𝑠𝑖(x𝑖, z𝑖, θ̂)′

The matrix G is not symmetric because our EE estimators come from stacking moment conditions

instead of optimizing a single objective function. The implication is that the robust formula should

always be used because, even under correct specification, the nonsymmetric G and the symmetric S

converge to different matrices.
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TM and OM estimating functions

Although the sample estimating functions for the effect parameters, the s𝑒,𝑖(x𝑖, z𝑖, θ̂), are estimator

specific, the sample estimating functions for the TM parameters, the stm,𝑖(z𝑖, 𝛄̂), and the sample estimat-

ing functions for the OM parameters, the som,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂)′, are used in multiple estimators. We provide

details about the TM and the OM sample estimating functions here.

TM estimating functions

The sample estimating functions used to estimate the parameters of the TM 𝑝(z, 𝑡, 𝛄) are the sample

score equations from the quasimaximum likelihood (QML) estimator.

In the binary-treatment case, 𝑝(z, 𝑡, 𝛄) may be logit, probit, or heteroskedastic probit. In the

multivalued-treatment case, 𝑝(z, 𝑡, 𝛄) is a multinomial logit. We now give formulas for the stm,𝑖(z𝑖, 𝛄̂)
for each case.

logit and probit

In the logit and probit cases,

stm,𝑖(z𝑖, 𝛄̂) = [
𝑔(z𝑖𝛄̂

′) {𝑡𝑖 − 𝐺(z𝑖𝛄̂
′)}

𝐺(z𝑖𝛄̂
′) {1 − 𝐺(z𝑖𝛄̂

′)}
] z𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit, 𝐺(𝑧) is the normal cumulative

distribution function for the probit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding density function.

hetprobit

In the hetprobit case, there are two sets of sample score equations, stm,1,𝑖(z𝑖, 𝛄̂) and stm,2,𝑖(z𝑖, 𝛄̂):

stm,1,𝑖(z𝑖, 𝛄̂) = ( 𝜙 {𝑞 (z𝑖, 𝛄̂)} [𝑡𝑖 − Φ {𝑞 (z𝑖, 𝛄̂)}]
Φ {𝑞 (z𝑖, 𝛄̂)} [1 − Φ {𝑞 (z𝑖, 𝛄̂)}] exp( ̈z𝑖̂̈𝛄

′
)
) ̇z′

𝑖

and

stm,2,𝑖(z𝑖, 𝛄̂) = ( 𝜙 {𝑞 (z𝑖, 𝛄̂)} ̇z𝑖̂̇𝛄
′
[Φ {𝑞 (z𝑖, 𝛄̂)} − 𝑡𝑖]

Φ {𝑞 (z𝑖, 𝛄̂)} [1 − Φ {𝑞 (z𝑖, 𝛄̂)}] exp( ̈z𝑖̂̈𝛄
′
)
) ̈z′

𝑖

where 𝜙(⋅) is the standard normal density function, and 𝑞 (z𝑖, 𝛄̂) = ( ̇z𝑖̂̇𝛄
′
/ exp( ̈z𝑖̂̈𝛄

′
)).

mlogit

In the mlogit case, 𝑝(z, 𝑡, 𝛄) = exp(z𝛄𝑡)/ {1 + ∑𝑞
𝑘=1 exp(z𝛄𝑘)}. We present formulas for the

case with treatment level 0 as the base with 𝛄′
0 = 0′; see [R] mlogit for background.

There are 𝑞 vectors of sample estimating functions for the mlogit case, stm,𝑘,𝑖(z𝑖, 𝛄̂) for each 𝑘 ∈
{1, . . . , 𝑞}, 1 for each vector 𝛄̂𝑘, 𝑘 ∈ {1, . . . , 𝑞}. These sample estimating functions are

stm,𝑘,𝑖(z𝑖, 𝛄̂) = {{1 − 𝑝(z𝑖, 𝑘, 𝛄̂)}z′
𝑖 𝑡𝑖 = 𝑘

−𝑝(z𝑖, 𝑘, 𝛄̂)z′
𝑖 otherwise
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OM estimating functions

The parameters of the OM 𝜇(x, 𝑡,β𝑡) are estimated either by weighted QML or by weighted nonlinear

least squares. The estimating functions used to estimate the parameters of the OM are either the score

equations from the weighted QML estimator or the moment conditions for the weighted nonlinear least-

squares estimator.

The estimating functions for the OM parameters in 𝜇(x, 𝑡,β𝑡) vary over the models for the conditional

mean because 𝜇(x, 𝑡,β𝑡) may be linear, logit, probit, heteroskedastic probit, or poisson.

Let 𝑁𝑡 be the number of observations in treatment level 𝑡, and let 𝑡𝑖(𝑡) = 1 if 𝑡𝑖 = 𝑡, with 𝑡𝑖(𝑡) = 0

if 𝑡𝑖 ≠ 𝑡.
There are two sets of sample estimating functions for the OM parameters with weights 𝑤𝑖(𝑡):

1. sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} are the sample estimating functions for the weighted QML estimator.

2. snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} are the sample estimating functions for the weighted nonlinear least-squares

estimator.

OM QML

Here are the formulas for the sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} for each functional form choice.

linear

In the linear case,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)(𝑦𝑖 − x𝑖β̂
′
𝑡)x

′
𝑖

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎡
⎢
⎣

𝑔(x𝑖β̂
′
𝑡) {𝑦𝑖 − 𝐺(x𝑖β̂

′
𝑡)}

𝐺(x𝑖β̂
′
𝑡) {1 − 𝐺(x𝑖β̂

′
𝑡)}

⎤
⎥
⎦
x𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit and flogit, 𝐺(𝑧) is the normal cu-

mulative distribution function for the probit and fprobit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding
density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,

sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} and sml,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}:

sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)} [𝑦𝑖 − Φ {𝑞 (x𝑖, β̂𝑡)}]

Φ {𝑞 (x𝑖, β̂𝑡)} [1 − Φ {𝑞 (x𝑖, β̂𝑡)}] exp(ẍ𝑖
̂̈β

′

𝑡)

⎞⎟⎟
⎠
ẋ′

𝑖

and

sml,om,2,𝑖(x𝑖, 𝑤𝑖(𝑡), β̂𝑡) = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)} ẋ𝑖
̂̇β

′

𝑡 [Φ {𝑞 (x𝑖, β̂𝑡)} − 𝑦𝑖]

Φ {𝑞 (x𝑖, β̂𝑡)} [1 − Φ {𝑞 (x𝑖, β̂𝑡)}] exp( ̈x𝑖
̂̈β

′

𝑡)

⎞⎟⎟
⎠
ẍ′

𝑖
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where 𝜙(⋅) is the standard normal density function, sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′ =

[sml,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′, sml,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}

′], and 𝑞 (x𝑖, β̂𝑡) = (ẋ𝑖
̂̇β

′

𝑡/ exp(ẍ𝑖
̂̈β

′

𝑡)).

poisson

In the poisson case,

sml,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡){𝑦𝑖 − exp(x𝑖β̂
′
𝑡)}x

′
𝑖

OM WNL

Here are the formulas for the snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡)} for each functional form choice.

linear

In the linear case,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)(𝑦𝑖 − x𝑖β̂
′
𝑡)x

′
𝑖

logit, flogit, probit, and fprobit

In the logit, flogit, probit, and fprobit cases,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡) [𝑔(x𝑖β̂
′
𝑡) {𝑦𝑖 − 𝐺(x𝑖β̂

′
𝑡)}] x𝑖

where 𝐺(𝑧) is the logistic cumulative distribution function for the logit and flogit, 𝐺(𝑧) is the normal cu-

mulative distribution function for the probit and fprobit, and 𝑔(⋅) = {𝜕𝐺(𝑧)}/(𝜕𝑧) is the corresponding
density function.

hetprobit and fhetprobit

In the hetprobit and fhetprobit cases, there are two sets of sample score equations,

snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} and snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}:

snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)}

exp(ẍ𝑖
̂̈β

′

𝑡)
[𝑦𝑖 − Φ {𝑞 (x𝑖, β̂𝑡)}]⎞⎟

⎠
ẋ′

𝑖

and

snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡)
⎛⎜
⎝

𝜙 {𝑞 (x𝑖, β̂𝑡)}

exp(ẍ𝑖
̂̈β

′

𝑡)
ẋ𝑖

̂̇β
′

𝑡 [Φ {𝑞 (x𝑖, β̂𝑡)} − 𝑦𝑖]
⎞⎟
⎠
ẍ′

𝑖

where 𝜙(⋅) is the standard normal density function, snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′ =

[snls,om,1,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}
′, snls,om,2,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡}

′], and 𝑞 (x𝑖, β̂𝑡) = (ẋ𝑖
̂̇β

′

𝑡/ exp(ẍ𝑖
̂̈β

′

𝑡)).
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poisson

In the poisson case,

snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂𝑡} = 𝑤𝑖(𝑡)𝑡𝑖(𝑡){𝑦𝑖 − exp(x𝑖β̂
′
𝑡)} exp(x𝑖β̂

′
𝑡)x

′
𝑖

Effect estimating functions
We now describe the sample estimating functions for the effect parameters, which vary over estimator

and effect parameter.

RA estimators

RA estimators estimate the effect parameters using means of the observation-level predictions of the

conditional means of the outcomes. There is no model for the conditional probability of treatment.

The RA estimators use unweighted QML estimators to estimate the parameters of the conditional mean

model. In other words, the RA estimators use the sample estimating functions sml,om,𝑖(x𝑖, 1, β̂), given
above.

For the RA estimators, the vector of sample estimating functions is the concatenation of the sample

estimating functions for the effect parameters with the sample estimating functions for theOM parameters.

Algebraically,

sra,𝑖(x𝑖, θ̂)′ = sra,𝑒,𝑖(x𝑖, θ̂, β̂)′, sml,om,𝑖(x𝑖, 1, β̂)′

The estimating functions sra,𝑒,𝑖(x𝑖, θ̂, β̂)′ vary over the effect parameter.

RA for POM

The RA estimators for the POM parameters estimate θ′ = (α′,β′) using two types of estimating

equations: 1) those for the POM parameters α, and 2) those for the conditional-mean model parameters

β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions for the β̂𝑡 are given in OM estimating functions above.

The elements of sra,𝑒,𝑖(x𝑖, α̂, β̂) for the POM parameters α are given by

𝜇(x𝑖, 𝑡, β̂𝑡) − ̂𝛼𝑡 (RAPOM)

RA for ATE

The RA estimators for the ATE parameters estimate θ′ = (τ′,β′) using two types of estimating equa-

tions: 1) those for the ATE parameters τ, and 2) those for the OM parameters β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions that determine the β̂𝑡 are given in OM estimating functions with

𝑤𝑖(𝑡) = 1.

The elements of sra,𝑒,𝑖(x𝑖, ̂τ, β̂) for the ATE parameters τ are given by

𝜇(x𝑖, 𝑡, β̂𝑡) − 𝜇(x𝑖, 0, β̂𝑡) − ̂𝜏𝑡 (RAATE)
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RA for ATET

The RA estimators for the ATET parameters estimate θ′ = (δ′,β′) using two types of estimating

equations: 1) those for the ATET parameters δ, and 2) those for the OM parameters β𝑡 in 𝜇(x, 𝑡,β𝑡).

The sample estimating functions that determine the β̂𝑡 are given in OM estimating functions above

with 𝑤𝑖(𝑡) = 1.

The elements of sra,𝑒,𝑖(x𝑖, ̂δ, β̂) for the ATET parameters δ are given by

𝑁𝑡𝑖( ̃𝑡)/𝑁 ̃𝑡 {𝜇(x𝑖, 𝑡, β̂𝑡) − 𝜇(x𝑖, 0, β̂𝑡) − ̂𝛿𝑡} (RAATET)

IPW estimators

IPW estimators estimate the effect parameters using means of the observed outcomes weighted by the

inverse probability of treatment. There is no outcome model. The IPW estimators use QML estimators to

estimate the parameters of the conditional probability model.

The vector of estimating functions is the concatenation of the estimating functions for the effect pa-

rameters with the estimating functions for the conditional-probability parameters. The sample estimating

functions used by the IPW estimators are

sipw,𝑖(x𝑖, θ̂)′ = sipw,𝑒,𝑖(x𝑖, θ̂, 𝛄̂)′, stm,𝑖(z𝑖, 1, 𝛄̂)′

The estimating functions sipw,𝑒,𝑖(z𝑖, θ̂, 𝛄̂)′ vary over the effect parameter.

All the IPW estimators use normalized inverse-probability weights. These weights are not related to

the weights 𝑤𝑖(𝑡) that were used in the OM equations. The functional form for the normalized inverse-

probability weights varies over the effect parameters POM, ATE, and ATET.

The POM and ATE estimators use normalized inverse-probability weights. The unnormalized weights

for individual 𝑖 and treatment level 𝑡 are 𝑑𝑖(𝑡) = 𝑡𝑖(𝑡)/𝑝(z𝑖, 𝑡, 𝛄̂), and the normalized weights are 𝑑𝑖(𝑡) =
𝑁𝑡𝑑𝑖(𝑡)/ ∑𝑁

𝑖 𝑑𝑖(𝑡).
The ATET estimator uses normalized treatment-adjusted inverse-probability weights. The treatment-

adjusted inverse-probability weights adjust the inverse-probability weights for the probability of getting

the conditional treatment ̃𝑡. The unnormalized weights are 𝑓𝑖 = 𝑝(z𝑖, ̃𝑡, 𝛄̂)/𝑝(z𝑖, 𝑡𝑖, 𝛄̂), and the normal-

ized weights are 𝑓𝑖 = 𝑁𝑓𝑖/ ∑𝑁
𝑖 𝑓𝑖.

The IPW effect estimators are weighted cell averages. The sample estimating functions used in POM

estimators are the sample estimating functions fromweightedOLS regression on treatment-cell indicators.

The POM estimators use a full set of 𝑞 + 1 of treatment indicator variables a𝑖. (The 𝑖th observation on

the 𝑘th variable in a𝑖 is 1 if 𝑖 received treatment 𝑘 − 1 and 0 otherwise, for 𝑘 ∈ {1, 2, . . . , 𝑞 + 1}.)
The sample estimating functions used in the ATE and the ATET estimators are the sample estimating

functions from weighted OLS regression on treatment-cell indicators, excluding the indicator for the con-

trol level and including a constant term. The variables ã𝑖 used in the ATE and ATET sample estimating

functions include 𝑞 of treatment indicator variables and a variable that is always 1. (The first 𝑞 variables
in ã𝑖 are treatment indicators: the 𝑖th observation on the 𝑘th variable in ã𝑖 is 1 if 𝑖 received treatment 𝑘
and 0 otherwise, for 𝑘 ∈ {1, 2, . . . , 𝑞}. The (𝑞 + 1)th variable is always 1.) This definition of ã𝑖 sets the

last treatment level to be the control; renaming the treatments handles the more general case allowed for

by teffects.



teffects aipw — Augmented inverse-probability weighting 501

Having defined a𝑖 and ã𝑖, we can give the sample estimating functions that the IPW estimators use for

the effects parameters.

IPW for POM

We begin with the IPW estimators for the potential-outcome means. In this case, θ′ = (α′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for α̂ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, α̂, 𝛄̂)′ = 𝑑𝑖(𝑡)(𝑦𝑖 − a𝑖α̂)a′
𝑖 (IPWPOM)

IPW for ATE

The full parameter vector for the IPW estimators for the ATE is θ′ = (τ′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for ̂τ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, ̂τ, 𝛄̂)′ = 𝑑𝑖(𝑡)(𝑦𝑖 − ã𝑖 ̂τ)ã′
𝑖 (IPWATE)

IPW for ATET

The full parameter vector for the IPW estimators for the ATET is θ′ = (δ′, 𝛄′).
The sample estimating functions for the 𝛄̂ are given in TM estimating functions above.

The sample estimating functions for ̂δ are given by

sipw,𝑒,𝑖,𝑡(z𝑖, ̂δ, 𝛄̂)′ = 𝑓𝑖(𝑡)(𝑦𝑖 − ã𝑖
̂δ)ã′

𝑖 (IPWATET)

AIPW estimators

This section documents the sample estimating functions used by the augmented inverse-probability-

weighted (AIPW) estimators implemented in teffects. These AIPW estimators are efficient-influence-

function estimators as discussed in [CAUSAL] teffects intro and [CAUSAL] teffects intro advanced. The

teffects implementation was primarily inspired by Cattaneo, Drukker, and Holland (2013), which

was based on Cattaneo (2010). Tan (2010) was influential by identifying the implemented weighted

nonlinear least-squares estimator as having relatively good properties when both the conditional mean

function and the conditional probability function are misspecified. TheATET implementation follows the

moment functions outlined in Farrell (2015).

The AIPW estimating functions for the treatment parameters include terms from a conditional proba-

bility model and from a conditional mean model for the outcome.

The sample-estimation-equations vector has three parts for the AIPW estimators:

saipw,𝑖(x𝑖, z𝑖, θ̂)′ = [saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂)′, saipw,tm,𝑖(z𝑖, 𝛄̂)′, saipw,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂}′]

The sample estimating functions for the parameters of the TM are the stm,𝑖(z𝑖, 𝛄̂) given in TM esti-

mating functions above.
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teffects aipw implements three AIPW estimators: the standard AIPW estimator, the NLS AIPW esti-

mator, and theWNLS AIPW estimator.

The three AIPW estimators differ in how they estimate the parameters of the OM.

By default, teffects aipw uses the standardAIPW estimator that estimates the parameters of the OM

by the unweighted ML estimator, whose sample estimating functions, sml,om,𝑖(x𝑖, 1, β̂), are given in OM
estimating functions above.

When the nls option is specified, teffects aipw uses the NLS AIPW estimator that estimates

the parameters of the OM by the unweighted NLS estimator, whose sample estimating functions,

snls,om,𝑖(x𝑖, 1, β̂), are given in OM estimating functions above.

When the wnls option is specified, teffects aipw uses theWNLS AIPW estimator that estimates the

parameters of the OM by theWNLS estimator, whose sample estimating functions, snls,om,𝑖{x𝑖, 𝑤𝑖(𝑡), β̂},
are given in OM estimating functions above. The weights for person 𝑖 in treatment level 𝑡 are

𝑤𝑖(𝑡) = 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

{ 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} (WNLSW)

Now we discuss the sample estimating functions for the effect parameters, the s𝑒,𝑖(x𝑖, z𝑖, θ̂).

AIPW for POM

We begin with the AIPW estimators for the potential-outcome means. In this case, θ′ = (α′, 𝛄′,β′),
and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are given by

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝛼𝑡

AIPW for ATE

The AIPW estimators for the ATE estimate θ′ = (τ′, 𝛄′,β′), and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are
given by

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝜏0 if 𝑡 = 0

𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

𝑦𝑖 − 𝜇(x𝑖, β̂𝑡) { 𝑡𝑖(𝑡)
𝑝(z𝑖, 𝑡, 𝛄̂)

− 1} − 𝜏𝑡 − 𝜏0 if 𝑡 > 0

AIPW for ATET

TheAIPW estimators for theATET estimate θ′ = (δ′, 𝛄′,β′) and the elements of saipw,𝑒,𝑖(x𝑖, z𝑖, θ̂) are
given by

𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝜇(x𝑖, β̂𝑡) + 𝑡𝑖(𝑡)
𝑝 ̃𝑡

𝑝(z𝑖, ̃𝑡, 𝛄̂){𝑦𝑖 − 𝜇(x𝑖, β̂𝑡)}
𝑝(z𝑖, 𝑡, 𝛄̂)

− 𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝛿0 if 𝑡 = 0

𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

𝜇(x𝑖, β̂𝑡) + 𝑡𝑖(𝑡)
𝑝 ̃𝑡

𝑝(z𝑖, ̃𝑡, 𝛄̂){𝑦𝑖 − 𝜇(x𝑖, β̂𝑡)}
𝑝(z𝑖, 𝑡, 𝛄̂)

− 𝑡𝑖( ̃𝑡)
𝑝 ̃𝑡

(𝛿𝑡 − 𝛿0) if 𝑡 > 0

where ̃𝑡 is the conditional treatment, 𝑁 ̃𝑡 is the number of treated observations, and 𝑝 ̃𝑡 = 𝑁 ̃𝑡/𝑁.
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IPWRA estimators

The IPWRA estimators combine inverse-probability weighting (IPW) with regression-adjustment (RA)

methods. The sample estimating functions for IPWRA include sample estimating functions from both RA

and IPW. The vector of sample estimating functions is

sipwra,𝑖(x𝑖, θ̂)′ = sra,𝑒,𝑖(x𝑖, ̂𝜗, β̂)′, sml,om,𝑖{x𝑖, 𝑤𝑖(𝑗), β̂}′, stm,𝑖(z𝑖, 𝛄̂)′

where θ̂
′

= ( ̂𝜗′, β̂
′
, 𝛄̂′), ̂𝜗 = α̂ for POM, ̂𝜗 = ̂τ𝑡 for ATE, and ̂𝜗 = ̂δ𝑡 for ATET. The sample esti-

mating functions, sra,𝑒,𝑖(x𝑖, ̂𝜗, β̂), for POM, ATE, and ATET are given in equations (RAPOM), (RAATE),

and (RAATET). For the OM sample estimating functions, sml,om,𝑖(⋅), we replace the RA unity weights,

𝑤𝑖(𝑡) = 1, with 𝑑𝑖(𝑗) for POM or ATE and 𝑓𝑖 for ATET, the normalized inverse-probability weights de-

scribed in IPW estimators above. The specific form of the OM sample estimating functions are given

in OM estimating functions above. The TM sample estimating functions are given in TM estimating

functions above.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
teffects ipw estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data by inverse-probability weight-

ing (IPW). IPW estimators use estimated probability weights to correct for missing data on the potential

outcomes. teffects ipw accepts a continuous, binary, count, fractional, or nonnegative outcome and

allows a multivalued treatment.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of binary treat2 on y by IPW using a logistic model of treat2 on x and w

teffects ipw (y) (treat2 x w)

Same as above, but estimate ATET

teffects ipw (y) (treat2 x w), atet

Same as above, but estimate potential-outcome means

teffects ipw (y) (treat2 x w), pomeans

ATE of treat2 on y using heteroskedastic probit for treat2 as a function of x and w
teffects ipw (y) (treat2 x w, hetprobit(x w))

ATE for treatment levels 2 and 3 of three-valued treatment treat3
teffects ipw (y) (treat3 x w)

Same as above, and specify that treat3 = 3 is the control level

teffects ipw (y) (treat3 x w), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3

teffects ipw (y) (treat3 x w), control(MyControl)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Inverse-probability weighting (IPW)

Statistics > Causal inference/treatment effects > Binary outcomes > Inverse-probability weighting (IPW)

Statistics > Causal inference/treatment effects > Count outcomes > Inverse-probability weighting (IPW)

Statistics > Causal inference/treatment effects > Fractional outcomes > Inverse-probability weighting (IPW)

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Inverse-probability weighting (IPW)

504
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Syntax
teffects ipw (ovar) (tvar tmvarlist [ , tmodel noconstant ]) [ if ] [ in ] [weight ]

[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

For multivalued treatments, only logit is available and multinomial logit is used.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics
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tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). teffectswill exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.
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control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans. control() and tlevel() may not

specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with teffects ipw but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
IPW estimators use estimated probability weights to correct for the missing-data problem arising from

the fact that each subject is observed in only one of the potential outcomes. IPW estimators use a two-step

approach to estimating treatment effects:

1. They estimate the parameters of the treatment model and compute the estimated inverse-

probability weights.

2. They use the estimated inverse-probability weights to compute weighted averages of the out-

comes for each treatment level. The contrasts of these weighted averages provide the estimates

of the ATEs. Using this weighting scheme corrects for the missing potential outcomes.

These steps produce consistent estimates of the effect parameters because the treatment is assumed to

be independent of the potential outcomes after conditioning on the covariates. The overlap assumption

ensures that predicted inverse-probability weights do not get too large. In fact, teffects ipw uses an

estimation technique that implements both steps at once so that we do not need to correct the standard

errors in the second step to reflect the uncertainty associated with the predicted treatment probabilities.

We will illustrate the use of teffects ipw by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
and whether this baby was the mother’s first birth (fbaby).
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Example 1: Estimating the ATE
We begin by using teffects ipw to estimate the average treatment effect of smoking on birthweight.

We will use a probit model to predict treatment status, using prenatal1, mmarried, mage, the square
of mage, and fbaby as explanatory variables:

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.622e-21
Iteration 1: EE criterion = 8.795e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

Nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222

The average birthweight if all mothers were to smoke would be 231 grams less than the average of

3,403 grams that would occur if none of the mothers had smoked.

Sometimes, we are mainly concerned about those subjects that did in fact receive treatment, and we

want to know how much the outcome changes as a result of treatment for that subpopulation. The ATET

provides us with the answer. Moreover, the ATET can be estimated using weaker assumptions than are

required to estimate the ATE; see [CAUSAL] teffects intro advanced.
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Example 2: Estimating the ATET
. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit),
> atet
Iteration 0: EE criterion = 4.633e-21
Iteration 1: EE criterion = 7.494e-27
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke
(Smoker

vs
Nonsmoker) -225.1773 23.66458 -9.52 0.000 -271.559 -178.7955

POmean
mbsmoke

Nonsmoker 3362.837 14.20149 236.79 0.000 3335.003 3390.671

The average birthweight is 225 grams less when all the mothers who smoke do so than the average of

3,363 grams that would have occurred if none of these mothers had smoked.

We often express statistics as percentages to alleviate scaling issues and aid interpretation. In the

present context, we may wish to express an ATE as a percentage of the untreated POM to gain a more

intuitive measure of the effect of treatment.
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Example 3: Reporting the ATE as a percentage
Here we use the same model as in example 1, but we report the ATE as a percentage of the mean

birthweight that would occur if no mothers smoke. First, we use teffects ipw to fit the model. We use

the coeflegend option so that teffects ipw reports the names of the parameters. Then we use nlcom
to obtain the statistic we want along with its delta-method-based standard error. We type

. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit),
> coeflegend
Iteration 0: EE criterion = 4.622e-21
Iteration 1: EE criterion = 8.795e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

bweight Coefficient Legend

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.6886 _b[ATE:r1vs0.mbsmoke]

POmean
mbsmoke

Nonsmoker 3403.463 _b[POmean:0.mbsmoke]

. nlcom _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]
_nl_1: _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

bweight Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 -.0677806 .0075169 -9.02 0.000 -.0825133 -.0530478

The average birthweight falls by an estimated 6.8% when every mother smokes relative to the case when

no mothers smoke. We also obtain a 95% confidence interval of a 5.3% to 8.3% reduction.

Video example
Treatment effects: Inverse-probability weighting

https://www.youtube.com/watch?v=fmnkEmlJPOU&feature=c4-overview&list=UUVk4G4nEtBS4tLOyHqustDA
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Stored results
teffects ipw stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) ipw
e(tmodel) logit, probit, or hetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
teffects ipw implements a smooth treatment-effects estimator. All smooth treatment-effects esti-

mators are documented in Methods and formulas of [CAUSAL] teffects aipw.
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Description
teffects ipwra estimates the average treatment effect (ATE), the average treatment effect on the

treated (ATET), and the potential-outcome means (POMs) from observational data by inverse-probability-

weighted regression adjustment (IPWRA). IPWRA estimators use weighted regression coefficients to com-

pute averages of treatment-level predicted outcomes, where the weights are the estimated inverse prob-

abilities of treatment. The contrasts of these averages estimate the treatment effects. IPWRA estimators

have the double-robust property. teffects ipwra accepts a continuous, binary, count, fractional, or

nonnegative outcome and allows a multivalued treatment.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of binary treatment treat2 estimated by IPWRA using a linear model for outcome y1 on x1 and x2

and a logistic model for treat2 on x1 and w
teffects ipwra (y1 x1 x2) (treat2 x1 w)

Same as above, but estimate the ATET

teffects ipwra (y1 x1 x2) (treat2 x1 w), atet

Probit model for binary outcome y3
teffects ipwra (y3 x1 x2, probit) (treat2 x1 w)

Same as above, but use a heteroskedastic probit model for y3 and a probit model for treat2
teffects ipwra (y3 x1 x2, hetprobit(x1 x2)) (treat2 x1 w, probit)

Same as above, but use a fractional heteroskedastic probit model for y4 and a probit model for treat2
teffects ipwra (y4 x1 x2, fhetprobit(x1 x2)) (treat2 x1 w, probit)

ATE for each level of a three-valued treatment treat3
teffects ipwra (y1 x1 x2) (treat3 x1 w)

Same as above, and specify that treat3 = 3 is the control level using the value label “MyControl” for 3

teffects ipwra (y1 x1 x2) (treat3 x1 w), control(MyControl)

513
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Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Regression adjustment with IPW

Statistics > Causal inference/treatment effects > Binary outcomes > Regression adjustment with IPW

Statistics > Causal inference/treatment effects > Count outcomes > Regression adjustment with IPW

Statistics > Causal inference/treatment effects > Fractional outcomes > Regression adjustment with IPW

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Regression adjustment with IPW

Syntax
teffects ipwra (ovar omvarlist [ , omodel noconstant ])

(tvar tmvarlist [ , tmodel noconstant ]) [ if ] [ in ] [weight ]
[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the covariates in the treatment-assignment model.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

flogit fractional logistic outcome model

fprobit fractional probit outcome model

fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

For multivalued treatments, only logit is available and multinomial logit is used.
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stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). teffectswill exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans. control() and tlevel() may not

specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with teffects ipwra but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
IPWRA estimators use probability weights to obtain outcome-regression parameters that account for

the missing-data problem arising from the fact that each subject is observed in only one of the potential

outcomes. The adjusted outcome-regression parameters are used to compute averages of treatment-level

predicted outcomes. The contrasts of these averages provide estimates of the treatment effects.

IPWRA estimators use a model to predict treatment status, and they use another model to predict out-

comes. Because IPWRA estimators have the double-robust property, only one of the two models must be

correctly specified for the IPWRA estimator to be consistent.

IPWRA estimators use a three-step approach to estimating treatment effects:

1. They estimate the parameters of the treatment model and compute inverse-probability weights.

2. Using the estimated inverse-probability weights, they fit weighted regression models of the

outcome for each treatment level and obtain the treatment-specific predicted outcomes for each

subject.

3. They compute the means of the treatment-specific predicted outcomes. The contrasts of these

averages provide the estimates of theATEs. By restricting the computations of the means to the

subset of treated subjects, we can obtain the ATETs.

These steps produce consistent estimates of the effect parameters because the treatment is assumed to

be independent of the potential outcomes after conditioning on the covariates. The overlap assumption

ensures that predicted inverse-probability weights do not get too large. The standard errors reported by

teffects ipwra correct for the three-step process. See [CAUSAL] teffects intro or [CAUSAL] teffects

intro advanced for more information about this estimator.

We will illustrate the use of teffects ipwra by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
and whether this baby was the mother’s first birth (fbaby).
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Example 1: Estimating the ATE
We begin by using teffects ipwra to estimate the average treatment effect of smoking on birth-

weight. We will use a probit model to predict treatment status as a function of mmarried, mage, and
fbaby; to maximize the predictive power of this model, we use factor-variable notation to incorporate

quadratic effects of the mother’s age, the only continuous covariate in our model. We will use linear

regression (the default) to model birthweight, using prenatal1, mmarried, mage, and fbaby as ex-

planatory variables. We type

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipwra (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 9.261e-21
Iteration 1: EE criterion = 8.863e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -229.9671 26.62668 -8.64 0.000 -282.1544 -177.7798

POmean
mbsmoke

Nonsmoker 3403.336 9.57126 355.58 0.000 3384.576 3422.095

The average birthweight if all mothers were to smoke would be 230 grams less than the average of

3,403 grams that would occur if none of the mothers had smoked.

By default, teffects ipwra displays theATE and untreated POM.We can specify the pomeans option
to display both the treated and untreated POMs, and we can use the aequations option to display the

regression model coefficients used to predict the POMs as well as the coefficients from the model used to

predict treatment.
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Example 2: Displaying the POMs and equations
. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipwra (bweight prenatal1 mmarried mage fbaby)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, probit), pomeans aequations
Iteration 0: EE criterion = 9.261e-21
Iteration 1: EE criterion = 8.428e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
mbsmoke

Nonsmoker 3403.336 9.57126 355.58 0.000 3384.576 3422.095
Smoker 3173.369 24.86997 127.60 0.000 3124.624 3222.113

OME0
prenatal1 67.98549 28.78428 2.36 0.018 11.56933 124.4017
mmarried 155.5893 26.46903 5.88 0.000 103.711 207.4677

mage 2.893051 2.134788 1.36 0.175 -1.291056 7.077158
fbaby -71.9215 20.39317 -3.53 0.000 -111.8914 -31.95162
_cons 3194.808 55.04911 58.04 0.000 3086.913 3302.702

OME1
prenatal1 34.76923 43.18534 0.81 0.421 -49.87248 119.4109
mmarried 124.0941 40.29775 3.08 0.002 45.11193 203.0762

mage -5.068833 5.954425 -0.85 0.395 -16.73929 6.601626
fbaby 39.89692 56.82072 0.70 0.483 -71.46966 151.2635
_cons 3175.551 153.8312 20.64 0.000 2874.047 3477.054

TME1
mmarried -.6484821 .0554173 -11.70 0.000 -.757098 -.5398663

mage .1744327 .0363718 4.80 0.000 .1031452 .2457202

c.mage#
c.mage -.0032559 .0006678 -4.88 0.000 -.0045647 -.0019471

fbaby -.2175962 .0495604 -4.39 0.000 -.3147328 -.1204595
medu -.0863631 .0100148 -8.62 0.000 -.1059917 -.0667345
_cons -1.558255 .4639691 -3.36 0.001 -2.467618 -.6488926

As is well known, the standard probit model assumes that the error terms in the latent-utility frame-

work are homoskedastic; the model is not robust to departures from this assumption. An alternative is to

use the heteroskedastic probit model, which explicitly models the error variance as a function of a set of

variables.

Example 3: Heteroskedastic probit treatment model
Here we use the variables as before, but we use a heteroskedastic probit model to predict treatment

status, modeling the heteroskedasticity as a quadratic function of the mother’s age:
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. teffects ipwra (bweight prenatal1 mmarried fbaby c.mage)
> (mbsmoke mmarried c.mage##c.mage fbaby medu, hetprobit(c.mage##c.mage)),
> aequations
Iteration 0: EE criterion = 1.776e-08
Iteration 1: EE criterion = 6.205e-12
Treatment-effects estimation Number of obs = 4,642
Estimator : IPW regression adjustment
Outcome model : linear
Treatment model: heteroskedastic probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -229.6322 26.33452 -8.72 0.000 -281.2469 -178.0175

POmean
mbsmoke

Nonsmoker 3403.74 9.545798 356.57 0.000 3385.03 3422.449

OME0
prenatal1 64.95127 28.6216 2.27 0.023 8.853969 121.0486
mmarried 154.2297 26.45867 5.83 0.000 102.3717 206.0878

fbaby -71.61131 20.33774 -3.52 0.000 -111.4725 -31.75006
mage 3.010148 2.133812 1.41 0.158 -1.172047 7.192343
_cons 3195.355 55.05451 58.04 0.000 3087.45 3303.26

OME1
prenatal1 38.55272 43.57024 0.88 0.376 -46.84337 123.9488
mmarried 126.3377 40.73979 3.10 0.002 46.48922 206.1863

fbaby 45.43542 56.44831 0.80 0.421 -65.20122 156.0721
mage -6.06991 5.952512 -1.02 0.308 -17.73662 5.596799
_cons 3195.795 152.3979 20.97 0.000 2897.101 3494.49

TME1
mmarried -.0295529 .0238889 -1.24 0.216 -.0763742 .0172684

mage .0157896 .010546 1.50 0.134 -.0048803 .0364594

c.mage#
c.mage -.0002837 .00019 -1.49 0.135 -.0006562 .0000887

fbaby -.0093308 .0079984 -1.17 0.243 -.0250074 .0063458
medu -.0036774 .0030309 -1.21 0.225 -.0096178 .0022631
_cons -.182223 .1180298 -1.54 0.123 -.4135572 .0491112

TME1_lnsigma
mage -.2211477 .0631342 -3.50 0.000 -.3448885 -.0974069

c.mage#
c.mage .0037613 .0012435 3.02 0.002 .0013241 .0061984

The estimated ATE and base-level POM are essentially the same as those produced by the model that

used a homoskedastic probit.
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Video example
Treatment effects: Inverse-probability-weighted regression adjustment

Stored results
teffects ipwra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) ipwra
e(tmodel) logit, probit, or hetprobit
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

https://www.youtube.com/watch?v=dmZCSbpL-W4
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Methods and formulas
teffects ipwra implements a smooth treatment-effects estimator. All smooth treatment-effects es-

timators are documented in Methods and formulas of [CAUSAL] teffects aipw.
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Description Remarks and examples References Also see

Description
This entry discusses the use of teffects when the treatment is multivalued. This entry presumes

you are already familiar with the potential-outcome framework and the use of the teffects commands

with binary treatments. See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more

information.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Parameters and notation
Illustrating multivalued treatments
Examples

Introduction
When the treatment is binary, each subject could either receive the treatment or not receive the treat-

ment. In contrast, multivalued treatments refer to cases in which each subject could receive one of several

different treatments or else not receive treatment at all. For example, in testing the efficacy of a drug, a

patient could receive a 10 milligram (mg) dose, a 20 mg dose, a 30 mg dose, or no dose at all. We first

want to be able to compare a patient receiving the 10 mg dose with a patient receiving no dose, a patient

receiving the 20 mg dose with a patient receiving no dose, and a patient receiving the 30 mg dose with

a patient receiving no dose. Once we can make those comparisons, we can then, for example, compare

the efficacy of a 30 mg dose with that of a 20 mg dose or a 10 mg dose.

To highlight an example in economics, we consider an unemployed person who could participate in

a comprehensive skills training program, attend a one-day workshop that helps job seekers write their

resumés, or choose not to participate in either. We want to know how effective each of those programs

is relative to not participating; once we know that, we can then compare the effectiveness of the compre-

hensive program with that of the one-day program.

Multivalued treatments increase the number of parameters that must be estimated and complicate

the notation. Fortunately, however, using the teffects commands is not much more difficult with

multivalued treatments than with binary treatments.

You can use teffects ra, teffects ipw, teffects ipwra, and teffects aipw to estimate mul-

tivalued treatment effects. However, the theory developed in Abadie and Imbens (2006, 2012) has not

been extended to handle multivalued treatments, so you cannot use teffects nnmatch or teffects
psmatch in these cases.

Cattaneo (2010), Imbens (2000), and Wooldridge (2010, sec. 21.6.3) discuss aspects of treatment-

effect estimation with multivalued treatments.

523
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Parameters and notation
We denote the potential outcome that subject 𝑖 would obtain if given treatment-level 𝑡 as 𝑦𝑡𝑖, where

𝑦𝑡𝑖 is the realization of the random variable 𝑦𝑡. Throughout this entry, 𝑖 subscripts denote realizations
of the corresponding unsubscripted random variables. We again let 𝑦0 denote the potential outcome of a

subject who did not receive any treatment. To handle the case of multivalued treatments, we extend the

definition of the unobservable, individual-level treatment effects to be 𝑦𝑡 − 𝑦0 for 𝑡 ∈ {1, . . . , 𝑞}.

As in the binary-valued case, we again focus on three parameters of interest: the average treatment

effect (ATE), the potential-outcome mean (POM), and the average treatment effect on the treated (ATET).

ATE The ATE is the average effect of giving each individual treatment 𝑡 instead of treatment 0:

ATE𝑡 = 𝐸(𝑦𝑡 − 𝑦0)

POM The POM for each treatment level is an average of each potential outcome:

POM𝑡 = 𝐸(𝑦𝑡)

ATET The ATET is the average effect among those subjects that receive treatment level ̆𝑡 of giving
each subject treatment ̃𝑡 instead of treatment 0:

ATET ̃𝑡, ̆𝑡 = 𝐸 {(𝑦 ̃𝑡 − 𝑦0)|𝑡 = ̆𝑡}

The extra notation required to define theATET in this case indicates the difficulties surrounding

this parameter.

Defining the ATET in the multivalued treatment case requires three different treatment levels:
̃𝑡 defines the treatment level of the treated potential outcome; 0 is the treatment level of the

control potential outcome; and 𝑡 = ̆𝑡 restricts the expectation to include only those individuals
who actually receive treatment level ̆𝑡.

Illustrating multivalued treatments
To illustrate the concept of a potential outcome and the parameters we would like to estimate, we

consider the following table:

𝑦 𝑡 𝑦0 𝑦1 𝑦2

−0.50 0 −0.50 1.06 1.93

2.42 1 2.13 2.42 2.43

3.15 2 1.26 2.57 3.15

−0.39 0 −0.39 −0.18 0.52

2.22 2 −0.24 −0.01 2.22

We observe the outcome 𝑦 as well as the treatment indicator 𝑡. There are three levels of treatment: 0,

1, or 2. Ideally, we would observe 𝑦0, 𝑦1, and 𝑦2, but in fact all we have is 𝑦. In the first row, the subject
received treatment level 0, so 𝑦 = 𝑦0 for that subject. In the last row, the subject received treatment 2,

so 𝑦 = 𝑦2. We reiterate that we do not actually observe 𝑦0, 𝑦1, or 𝑦2.
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If we did have data on 𝑦0, 𝑦1, and 𝑦2, then we could define subject-level treatment variables 𝑡𝑒1 =
𝑦1 − 𝑦0 and 𝑡𝑒2 = 𝑦2 − 𝑦0. Here we would be following the convention of taking treatment level 0 to

be the control level. The following table adds these two variables:

𝑦 𝑡 𝑦0 𝑦1 𝑦2 𝑡𝑒1 𝑡𝑒2

−0.50 0 −0.50 1.06 1.93 1.56 2.43

2.42 1 2.13 2.42 2.43 0.29 0.30

3.15 2 1.26 2.57 3.15 1.31 1.89

−0.39 0 −0.39 −0.18 0.52 0.21 0.91

2.22 2 −0.24 −0.01 2.22 0.23 2.46

Once we have 𝑡𝑒1 and 𝑡𝑒2, obtaining the ATEs is straightforward. The ATE of going from treatment

0 to treatment 1 is simply the mean of the five entries in the column labeled 𝑡𝑒1, which here works out

to 0.72. Going from treatment level 0 to treatment level 1 causes the outcome to increase an average of

0.72. Similarly, theATE of going from treatment 0 to treatment 2 is the mean of the entries in the column

labeled 𝑡𝑒2, which is 1.60. Exposing all subjects to treatment level 2 would cause the outcome to rise by

an average of 1.60 relative to the outcome obtained by exposing them to treatment level 0.

TheATET is the average difference in the potential outcomes among those that get a particular treatment

level. To compute this, we must specify two treatment levels: the actual treatment level the subjects we

are interested in received as well as the treatment level we want to compare them with. For example,

suppose we are interested in the ATET of going from treatment 0 to treatment 1 for those who received

treatment 0. This ATET is the average of 𝑡𝑒1 for those subjects for which 𝑡 = 0. Here that ATET is just

(1.56+ 0.21)/2 ≈ 0.89. If we exposed the subjects who received treatment 0 to treatment 1 instead, the

outcome would increase an average of 0.89.

The ATET of going from treatment 0 to treatment 2 for those subjects who received treatment 2 is the

mean of 𝑡𝑒2 for those subjects for which 𝑡 = 2, which is (1.89+ 2.46)/2 ≈ 2.18. Receiving treatment 2

increased the outcome of those who received treatment 2 by an average of 2.18 relative to receiving the

control.

Examples
In the remainder of this entry, we provide several examples demonstrating how to estimatemultivalued

treatments using teffects.

Example 1: Potential outcomes with four treatment levels
bdsianesi5.dta contains an extract of data from Blundell, Dearden, and Sianesi (2005). In this

dataset on individuals in the United Kingdom, wages records hourly wages in pounds; ed records the

highest educational degree obtained; paed records the highest educational level obtained by each in-

dividual’s father; math7 records a score obtained on a standardized math test when the individual was

seven; read7 records a score obtained on a standardized reading test when the individual was seven; and
london and eastern are indicators for whether an individual lives in the expensive area of London or

the east. We want to know how the level of education obtained affects a person’s wage.

We begin by using mean to report the estimated means of wages over the four education levels. The

value labels on mean are coded as none for no degree, O for an O-level degree, A for an A-level degree,

or H for a higher-education degree.
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. use https://www.stata-press.com/data/r19/bdsianesi5
(Excerpt from Blundell, Dearden, & Sianesi (2005) JRSSA 168: 473)
. mean wage, over(ed)
Mean estimation Number of obs = 1,693

Mean Std. err. [95% conf. interval]

c.wage@ed
none 6.057816 .154332 5.755114 6.360518

O 7.501648 .1807359 7.147158 7.856137
A 8.220637 .1540359 7.918516 8.522758
H 10.87703 .2257888 10.43417 11.31988

The output reveals that the estimated mean wage increases as the education level goes from no degree

to an O-level degree, to an A-level degree, and to a higher-education degree, as we would expect. Once

we control for other characteristics of each individual, do we still observe a positive effect of education

on wage?

We use teffects ra (see [CAUSAL] teffects ra) to estimate theATEs of the different education levels

by regression adjustment (RA), controlling for each person’s location, math score, and father’s education

level:

. teffects ra (wage london eastern paed math7, poisson) (ed)
Iteration 0: EE criterion = 1.865e-18
Iteration 1: EE criterion = 4.077e-30
Treatment-effects estimation Number of obs = 1,693
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATE
ed

(O vs none) 1.181543 .3520371 3.36 0.001 .4915626 1.871523
(A vs none) 1.743079 .3282152 5.31 0.000 1.099789 2.386369
(H vs none) 3.972829 .3840024 10.35 0.000 3.220199 4.72546

POmean
ed

none 6.525873 .2931933 22.26 0.000 5.951224 7.100521

Because wages are necessarily positive, we used the poisson option inside the outcome-model specifi-

cation. The estimated POM of the control level of no degree is 6.53 pounds per hour. The estimated ATE

of going from no degree to an O-level degree is 1.18 pounds per hour; the estimated ATE of going from

no degree to an A-level degree is 1.74 pounds per hour; and the estimated ATE of going from no degree

to a higher-education degree is 3.97 pounds per hour. All of these effects are highly significant.
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For comparison purposes, we also use teffects aipw (see [CAUSAL] teffects aipw). We use the

same outcome model as before. We use a multinomial logit model to predict education level, using math

and reading scores and both the father’s and the mother’s educational attainment levels as predictors:

. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed)
Iteration 0: EE criterion = 1.877e-18
Iteration 1: EE criterion = 1.029e-30
Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATE
ed

(O vs none) 1.748197 .3911167 4.47 0.000 .9816221 2.514771
(A vs none) 2.363228 .3741584 6.32 0.000 1.629891 3.096565
(H vs none) 4.359777 .4133059 10.55 0.000 3.549712 5.169842

POmean
ed

none 5.946184 .3391531 17.53 0.000 5.281456 6.610912

The results indicate slightly higher treatment effects relative to those indicated by teffects ra. That is
largely because the AIPW estimator predicts a lower no-higher-education POM than the RA estimator.

Example 2: Expressing ATEs as percentages
As in the binary-treatment case, expressing the ATEs as percentages of the POM for the control

level often aids interpretation. Here we first use the replay facility of teffects aipw along with the

coeflegend option to see how the parameters are named.

. teffects, coeflegend
Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

wage Coefficient Legend

ATE
ed

(O vs none) 1.748197 _b[ATE:r1vs0.ed]
(A vs none) 2.363228 _b[ATE:r2vs0.ed]
(H vs none) 4.359777 _b[ATE:r3vs0.ed]

POmean
ed

none 5.946184 _b[POmean:0.ed]
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Now that we know the names, we can use nlcom to obtain the ATEs relative to the base-level POM:

. nlcom (_b[ATE:r1vs0.ed] / _b[POmean:0.ed])
> (_b[ATE:r2vs0.ed] / _b[POmean:0.ed])
> (_b[ATE:r3vs0.ed] / _b[POmean:0.ed])

_nl_1: _b[ATE:r1vs0.ed] / _b[POmean:0.ed]
_nl_2: _b[ATE:r2vs0.ed] / _b[POmean:0.ed]
_nl_3: _b[ATE:r3vs0.ed] / _b[POmean:0.ed]

wage Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .2940031 .0808156 3.64 0.000 .1356075 .4523988
_nl_2 .3974361 .0840545 4.73 0.000 .2326923 .5621799
_nl_3 .7332059 .1068848 6.86 0.000 .5237156 .9426962

Wages are 29% higher when everyone receives an O-level degree than if no one receives a degree. Wages

are 40% higher when everyone receives an A-level degree than if no one receives a degree. Wages are

73% higher when everyone receives an H-level degree than if no one receives a degree.

Although impressive, these changes are not presented in the way that is most commonly discussed.

(There is a large amount of literature on the treatment effect of getting a higher-education degree.) In

particular, we might rather want to know the percentage changes in wages relative to a person with an

A-level degree. Next we estimate the ATEs treating an A-level degree as the control level; to do that, we

use the control() option. We also specify coeflegend again because we are more interested in how

the parameters are named rather than in their standard errors at this point:

. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), control(A) coeflegend
Iteration 0: EE criterion = 1.870e-18
Iteration 1: EE criterion = 1.960e-30
Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

wage Coefficient Legend

ATE
ed

(none vs A) -2.363228 _b[ATE:r0vs2.ed]
(O vs A) -.6150312 _b[ATE:r1vs2.ed]
(H vs A) 1.996549 _b[ATE:r3vs2.ed]

POmean
ed
A 8.309412 _b[POmean:2.ed]
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Now we use nlcom to obtain the ATE of obtaining a higher-education degree as a percentage of the

expected A-level wage:

. nlcom _b[ATE:r3vs2.ed] / _b[POmean:2.ed], noheader

wage Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .2402756 .0355404 6.76 0.000 .1706177 .3099335

The average wage increases by 24%when everyone receives an H-level degree relative to when everyone

receives an A-level degree.

Example 3: Obtaining ATETs
In the previous example, we showed that on average, a higher-education degree increases a person’s

wage by 24% relative to someone with only an A-level degree. Sometimes, though, we would rather

know how much the higher-education degree increases wages among the people who actually have a

higher-education degree. To answer that question, we want to examine the ATET rather than the ATE.

Here we use the IPWRA estimator to obtain our answer. We specify the control(A) option so that

an A-level education is treated as the basis for comparisons. We specify the atet option to obtain ATETs

rather thanATEs, and we specify the tlevel(H) option to indicate that we want theATETs to be calculated
for the subset of people who actually receive higher-education degrees.

. teffects ipwra (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), atet control(A) tlevel(H)
Iteration 0: EE criterion = 2.731e-18
Iteration 1: EE criterion = 6.253e-31
Treatment-effects estimation Number of obs = 1,693
Estimator : IPW regression adjustment
Outcome model : Poisson
Treatment model: (multinomial) logit

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

ATET
ed

(none vs A) -2.87423 .361093 -7.96 0.000 -3.58196 -2.166501
(O vs A) -.8246604 .3609131 -2.28 0.022 -1.532037 -.1172837
(H vs A) 1.866757 .3277701 5.70 0.000 1.224339 2.509174

POmean
ed
A 9.010271 .2503971 35.98 0.000 8.519501 9.50104

The point estimates are similar to theATEs we obtained above, suggesting that the means of the covariates

among those with a higher-education degree are similar to the means for the entire population.
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In output not shown to save space, we replayed the previous results with the coeflegend option to

determine how the parameters are named. Armed with that information, we call nlcom:

. nlcom _b[ATET:r3vs2.ed] / _b[POmean:2.ed], noheader

wage Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 .207181 .0407528 5.08 0.000 .127307 .287055

Our estimate of the percentage increase is now noticeably smaller once we restrict ourselves to only those

people who actually received a higher-education degree. However, because of the width of the confi-

dence intervals, there is no evidence to suggest that the difference between the estimates is statistically

significant.

Example 4: ATEs comparing adjacent treatments
In the first example, we obtained the threeATEs, and they were all expressed relative to the base level

of no degree. Now we show how we can express the gains to an O-level degree relative to no degree,

the gains to an A-level degree relative to an O-level degree, and the gains to a higher-education degree

relative to an A-level degree.

First, we use an AIPW estimator to obtain all the POMs for our example dataset:

. teffects aipw (wage london eastern paed math7, poisson)
> (ed math7 read7 maed paed), pom
Iteration 0: EE criterion = 1.877e-18
Iteration 1: EE criterion = 1.542e-30
Treatment-effects estimation Number of obs = 1,693
Estimator : augmented IPW
Outcome model : Poisson by ML
Treatment model: (multinomial) logit

Robust
wage Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
ed

none 5.946184 .3391531 17.53 0.000 5.281456 6.610912
O 7.694381 .1915192 40.18 0.000 7.31901 8.069752
A 8.309412 .1563348 53.15 0.000 8.003001 8.615823
H 10.30596 .2285837 45.09 0.000 9.857945 10.75398
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ATEs are contrasts of POMs, and here we show how to use contrast to obtain the estimated ATEs:

. contrast r.ed, nowald
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

POmeans
ed

(O vs none) 1.748197 .3911167 .9816221 2.514771
(A vs none) 2.363228 .3741584 1.629891 3.096565
(H vs none) 4.359777 .4133059 3.549712 5.169842

These estimated ATEs match those we obtained in example 2.

Now that we know how to use contrast to obtain theATEs based on the POMs, we can take advantage
of contrast’s ability to obtain “reverse adjacent” contrasts, which compare each level with the previous

level. We use the ar. operator with contrast to accomplish this:

. contrast ar.ed, nowald
warning: cannot perform check for estimable functions.
Contrasts of marginal linear predictions
Margins: asbalanced

Contrast Std. err. [95% conf. interval]

POmeans
ed

(O vs none) 1.748197 .3911167 .9816221 2.514771
(A vs O) .6150312 .2432806 .13821 1.091852
(H vs A) 1.996549 .2730712 1.461339 2.531759

TheseATEs are for incremental increases. In contrast, theATEs considered above had a common base.

Technical note
The multivalued treatmentAIPW estimators implemented in teffects aipw are EIF estimators based

on the results of Cattaneo (2010). The results in Cattaneo (2010) are for semiparametric estimators, and

we implement parametric versions. Of more practical importance, Cattaneo (2010) contains results for

quantile treatment effects that are not implemented in teffects but implemented in the community-

contributed poparms command discussed in Cattaneo, Drukker, and Holland (2013). See Emsley et al.

(2008) for another implementation of the AIPW estimator, and see Frölich and Melly (2010) for other

commands that estimate quantile treatment effects.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
teffects nnmatch estimates the average treatment effect (ATE) and average treatment effect on the

treated (ATET) from observational data by nearest-neighbor matching (NNM). NNM estimators impute the

missing potential outcome for each subject by using an average of the outcomes of similar subjects that

receive the other treatment level. Similarity between subjects is based on a weighted function of the

covariates for each observation. The treatment effect is computed by taking the average of the difference

between the observed and imputed potential outcomes for each subject. teffects nnmatch accepts a

continuous, binary, count, fractional, or nonnegative outcome.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of treat on y estimated by NNM on x1 and indicators for levels of categorical variable a

teffects nnmatch (y x1 i.a) (treat)

Same as above, but estimate the ATET

teffects nnmatch (y x1 i.a) (treat), atet

Add continuous covariate x2 and perform bias correction

teffects nnmatch (y x1 x2 i.a) (treat), biasadj(x1 x2)

Same as above, and match exactly on values of a
teffects nnmatch (y x1 x2 i.a) (treat), biasadj(x1 x2) ematch(i.a)

With robust standard errors

teffects nnmatch (y x1 x2 i.a) (treat), vce(robust)

With four matches per observation

teffects nnmatch (y x1 x2 i.a) (treat), nneighbor(4)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Nearest-neighbor matching

Statistics > Causal inference/treatment effects > Binary outcomes > Nearest-neighbor matching

Statistics > Causal inference/treatment effects > Count outcomes > Nearest-neighbor matching

Statistics > Causal inference/treatment effects > Fractional outcomes > Nearest-neighbor matching

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Nearest-neighbor matching

533
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Syntax
teffects nnmatch (ovar mvarlist) (tvar) [ if ] [ in ] [weight ]

[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

mvarlist specifies the matching variables.

tvarmust contain integer values representing the treatment levels. Only two treatment levels are allowed.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

options Description

Model

nneighbor(#) specify number of matches per observation; default is nneighbor(1)
biasadj(varlist) correct for large-sample bias using specified variables

ematch(varlist) match exactly on specified variables

SE/Robust

vce(vcetype) vcetype may be

vce(robust [ , nn(#) ]); use robust Abadie–Imbens standard

errors with # matches

vce(iid); use independently and identically distributed Abadie–Imbens
standard errors

Reporting

level(#) set confidence level; default is level(95)
dmvariables display names of matching variables

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Advanced

caliper(#) specify the maximum distance for which two observations are
potential neighbors

dtolerance(#) set maximum distance between individuals considered equal

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

generate(stub) generate variables containing the observation numbers of the nearest neighbors

metric(metric) select distance metric for covariates

coeflegend display legend instead of statistics
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metric Description

mahalanobis inverse sample covariate covariance; the default

ivariance inverse diagonal sample covariate covariance

euclidean identity

matrix matname user-supplied scaling matrix

mvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

nneighbor(#) specifies the number of matches per observation. The default is nneighbor(1). Each
observation is matched with at least the specified number of observations from the other treatment

level. nneighbor() must specify an integer greater than or equal to 1 but no larger than the number

of observations in the smallest treatment group.

biasadj(varlist) specifies that a linear function of the specified covariates be used to correct for a

large-sample bias that exists when matching on more than one continuous covariate. By default, no

correction is performed.

Abadie and Imbens (2006, 2011) show that nearest-neighbor matching estimators are not consistent

when matching on two or more continuous covariates and propose a bias-corrected estimator that

is consistent. The correction term uses a linear function of variables specified in biasadj(); see
example 3.

ematch(varlist) specifies that the variables in varlist match exactly. All variables in varlist must be

numeric and may be specified as factors. teffects nnmatch exits with an error if any observations
do not have the requested exact match.

� � �
Stat �

stat is one of two statistics: ate or atet. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the standard errors that are reported. By default, teffects nnmatch uses robust
standard errors estimated using two matches.

vce(robust [ , nn(#) ]) specifies that robust standard errors be reported and that the requested num-

ber of matches be used optionally.

vce(iid) specifies that standard errors for independently and identically distributed data be reported.
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The standard derivative-based standard-error estimators cannot be used by teffects nnmatch, be-
cause these matching estimators are not differentiable. The implemented methods were derived by

Abadie and Imbens (2006, 2011, 2012); see Methods and formulas.

As discussed in Abadie and Imbens (2008), bootstrap estimators do not provide reliable standard

errors for the estimator implemented by teffects nnmatch.

� � �
Reporting �

level(#); see [R] Estimation options.

dmvariables specifies that the matching variables be displayed.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Advanced �

caliper(#) specifies the maximum distance at which two observations are a potential match. By de-

fault, all observations are potential matches regardless of how dissimilar they are.

The distance is based on mvarlist. If an observation does not have at least nneighbor(#) matches,

teffects nnmatch exits with an error message. Use option osample(newvar) to identify all obser-
vations that are deficient in matches.

dtolerance(#) specifies the tolerance used to determine exact matches. The default value is

dtolerance(sqrt(c(epsdouble))).

Integer-valued variables are usually used for exact matching. The dtolerance() option is useful

when continuous variables are used for exact matching.

osample(newvar) specifies that indicator variable newvar be created to identify observations that vi-

olate the overlap assumption. This variable will identify all observations that do not have at least

nneighbor(#)matches in the opposite treatment group within caliper(#) (for metric() distance
matching) or dtolerance(#) (for ematch(varlist) exact matches).

The vce(robust, nn(#)) option also requires at least #matches in the same treatment group within

the distance specified by caliper(#) or within the exact matches specified by dtolerance(#).

The average treatment effect on the treated, option atet, using vce(iid) requires only

nneighbor(#) control group matches for the treated group.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() and tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

generate(stub) specifies that the observation numbers of the nearest neighbors be stored in the new

variables stub1, stub2, . . . . This option is required if you wish to perform postestimation based on the

matching results. The number of variables generated may be more than nneighbor(#) because of

tied distances. These variables may not already exist.
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metric(metric) specifies the distance matrix used as the weight matrix in a quadratic form that trans-

forms the multiple distances into a single distance measure; see Nearest-neighbor matching estimator

in Methods and formulas for details.

The following option is available with teffects nnmatch but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
The NNM method of treatment-effect estimation imputes the missing potential outcome for each in-

dividual by using an average of the outcomes of similar subjects that receive the other treatment level.

Similarity between subjects is based on a weighted function of the covariates for each observation. The

average treatment effect (ATE) is computed by taking the average of the difference between the observed

and potential outcomes for each subject.

teffects nnmatch determines the “nearest” by using a weighted function of the covariates for each

observation. By default, the Mahalanobis distance is used, in which the weights are based on the inverse

of the covariates’ variance–covariance matrix. teffects nnmatch also allows you to request exact

matching for categorical covariates. For example, you may want to force all matches to be of the same

gender or race.

NNM is nonparametric in that no explicit functional form for either the outcomemodel or the treatment

model is specified. This flexibility comes at a price; the estimator needs more data to get to the true

value than an estimator that imposes a functional form. More formally, the NNM estimator converges

to the true value at a rate slower than the parametric rate, which is the square root of the sample size,

when matching on more than one continuous covariate. teffects nnmatch uses bias correction to fix

this problem. teffects psmatch implements an alternative to bias correction; the method matches

on a single continuous covariate, the estimated treatment probabilities. See [CAUSAL] teffects intro or

[CAUSAL] teffects intro advanced for more information about this estimator.

We will illustrate the use of teffects nnmatch by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
whether this baby was the mother’s first birth (fbaby), and the father’s age (fage).
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Example 1: Estimating the ATE
We begin by using teffects nnmatch to estimate the average treatment effect of mbsmoke on

bweight. Subjects are matched using theMahalanobis distance defined by covariates mage, prenatal1,
mmarried, and fbaby.

. use https://www.stata-press.com/data/r19/cattaneo3
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects nnmatch (bweight mage prenatal1 mmarried fbaby) (mbsmoke)
Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -240.3306 28.43006 -8.45 0.000 -296.0525 -184.6087

The average birthweight if all mothers were to smoke would be 240 grams less than the average that

would occur if none of the mothers had smoked.

When the list of variables you are matching on includes indicator and categorical variables, you may

want to restrict matches to only those subjects who are in the same category. The ematch() option of

teffects nnmatch allows you to specify such variables that must match exactly.

Example 2: Exact matching
Here we use the ematch() option to require exact matches on the binary variables prenatal1,

mmarried, and fbaby. We also use Euclidean distance, rather than the default Mahalanobis distance, to

match on the continuous variable mage.

. teffects nnmatch (bweight mage) (mbsmoke),
> ematch(prenatal1 mmarried fbaby) metric(euclidean)
Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Euclidean max = 139

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -240.3306 28.43006 -8.45 0.000 -296.0525 -184.6087

Abadie and Imbens (2006, 2011) have shown that nearest-neighbor matching estimators are not con-

sistent whenmatching on two or more continuous covariates. Abias-corrected estimator that uses a linear

function of variables can be specified with biasadj().
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Example 3: Bias adjustment
Here we match on two continuous variables, mage and fage, and we use the bias-adjusted estimator:

. teffects nnmatch (bweight mage fage) (mbsmoke),
> ematch(prenatal1 mmarried fbaby) biasadj(mage fage)
Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 1
Distance metric: Mahalanobis max = 25

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -223.8389 26.19973 -8.54 0.000 -275.1894 -172.4883

These results are similar to those reported in example 1.

Example 4: NNM can reduce to RA
NNM reduces to RAwhenmatching exactly and all the covariates are discrete. We begin our illustration

of this point by estimating the ATE by NNM using exact matching on mmarried and the mother’s age-

categories magecat.

. teffects nnmatch (bweight) (mbsmoke), ematch(i.mmarried i.magecat)
Treatment-effects estimation Number of obs = 4,642
Estimator : nearest-neighbor matching Matches: requested = 1
Outcome model : matching min = 11
Distance metric: Mahalanobis max = 1310

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -241.5264 24.39661 -9.90 0.000 -289.3429 -193.71
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The RA estimator that includes the interactions among the discrete covariates produces the same point

estimate.

. teffects ra (bweight i.mmarried##i.magecat) (mbsmoke)
Iteration 0: EE criterion = 1.523e-23
Iteration 1: EE criterion = 7.899e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(smoker

vs
nonsmoker) -241.5264 24.26233 -9.95 0.000 -289.0797 -193.9732

POmean
mbsmoke

nonsmoker 3403.651 9.492683 358.56 0.000 3385.046 3422.256

The two estimates of the ATE are the same. The standard errors differ in finite samples because the

RA and NNM estimators use different robust estimators of the variance of the estimator.

With exact matching on discrete covariates, the NNM estimator reduces to an average of differences

in cell means. With fully interacted discrete covariates, the RA estimator reduces to the same average of

difference in cell means.

Video example
Treatment effects in Stata: Nearest-neighbor matching

Stored results
teffects nnmatch stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(k nneighbor) requested number of matches

e(k nnmin) minimum number of matches

e(k nnmax) maximum number of matches

e(k robust) matches for robust VCE

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(emvarlist) exact match variables

https://www.youtube.com/watch?v=mEqwQ0FI2Vg
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e(bavarlist) variables used in bias adjustment

e(mvarlist) matching variables

e(subcmd) nnmatch
e(metric) mahalanobis, ivariance, euclidean, or matrix matname

e(stat) statistic estimated, ate or atet
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas presented here provide the technical details underlying the estimators im-

plemented in teffects nnmatch and teffects psmatch. See Methods and formulas of [CAUSAL] tef-

fects aipw for the methods and formulas used by teffects aipw, teffects ipw, teffects ipwra,
and teffects ra.

Methods and formulas are presented under the following headings:

Nearest-neighbor matching estimator
Bias-corrected matching estimator

Propensity-score matching estimator
PSM, ATE, and ATET variance adjustment
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Nearest-neighbor matching estimator
teffects nnmatch implements the nearest-neighbor matching (NNM) estimator for the average treat-

ment effect (ATE) and the average treatment effect on the treated (ATET). This estimator was derived by

Abadie and Imbens (2006, 2011) and was previously implemented in Stata as discussed in Abadie et al.

(2004).

teffects psmatch implements nearest-neighbor matching on an estimated propensity score. A

propensity score is a conditional probability of treatment. The standard errors implemented in teffects
psmatch were derived by Abadie and Imbens (2012).

teffects nnmatch and teffects psmatch permit two treatment levels: the treatment group with

𝑡 = 1 and a control group with 𝑡 = 0.

Matching estimators are based on the potential-outcome model, in which each individual has a well-

defined outcome for each treatment level; see [CAUSAL] teffects intro. In the binary-treatment potential-

outcome model, 𝑦1 is the potential outcome obtained by an individual if given treatment-level 1 and 𝑦0
is the potential outcome obtained by each individual 𝑖 if given treatment-level 0. The problem posed by

the potential-outcome model is that only 𝑦1𝑖 or 𝑦0𝑖 is observed, never both. 𝑦0𝑖 and 𝑦1𝑖 are realizations

of the random variables 𝑦0 and 𝑦1. Throughout this document, 𝑖 subscripts denote realizations of the
corresponding, unsubscripted random variables.

Formally, the ATE is

𝜏1 = 𝐸(𝑦1 − 𝑦0)

and the ATET is

𝛿1 = 𝐸(𝑦1 − 𝑦0|𝑡 = 1)

These expressions imply that wemust have some solution to the missing-data problem that arises because

we only observe either 𝑦1𝑖 or 𝑦0𝑖, not both.

For each individual, NNM uses an average of the individuals that are most similar, but get the other

treatment level, to predict the unobserved potential outcome. NNM uses the covariates {𝑥1, 𝑥2, . . . , 𝑥𝑝}
to find the most similar individuals that get the other treatment level.

More formally, consider the vector of covariates x𝑖 = {𝑥𝑖,1, 𝑥𝑖,2, . . . , 𝑥𝑖,𝑝} and frequency weight 𝑤𝑖
for observation 𝑖. The distance between x𝑖 and x𝑗 is parameterized by the vector norm

‖x𝑖 − x𝑗‖𝑆 = {(x𝑖 − x𝑗)′S−1(x𝑖 − x𝑗)}1/2

where S is a given symmetric, positive-definite matrix.

Using this distance definition, we find that the set of nearest-neighbor indices for observation 𝑖 is

Ωx
𝑚(𝑖) = {𝑗1, 𝑗2, . . . , 𝑗𝑚𝑖

| 𝑡𝑗𝑘
= 1 − 𝑡𝑖, ‖x𝑖 − x𝑗𝑘

‖𝑆 < ‖x𝑖 − x𝑙‖𝑆, 𝑡𝑙 = 1 − 𝑡𝑖, 𝑙 ≠ 𝑗𝑘}

Here 𝑚𝑖 is the smallest number such that the number of elements in each set, 𝑚𝑖 = |Ωx
𝑚(𝑖)| =

∑𝑗∈Ωx
𝑚(𝑖) 𝑤𝑗, is at least𝑚, the desired number ofmatches. You set the size of𝑚 using the nneighbor(#)

option. The number of matches for the 𝑖th observation may not equal 𝑚 because of ties or if there are

not enough observations with a distance from observation 𝑖 within the caliper limit, 𝑐, ‖x𝑖 − x𝑗‖𝑆 ≤ 𝑐.
You may set the caliper limit by using the caliper(#) option. For ease of notation, we will use the

abbreviation Ω(𝑖) = Ωx
𝑚(𝑖).
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With the metric(string) option, you have three choices for the scaling matrix S: Mahalanobis, in-

verse variance, or Euclidean.

S =

⎧
{{{{
⎨
{{{{
⎩

(X − x′1𝑛)′W(X − x′1𝑛)
∑𝑛

𝑖 𝑤𝑖 − 1 if metric = mahalanobis

diag{(X − x′1𝑛)′W(X − x′1𝑛)
∑𝑛

𝑖 𝑤𝑖 − 1 } if metric = ivariance

I𝑝 if metric = euclidean

where 1𝑛 is an 𝑛 × 1 vector of ones, I𝑝 is the identity matrix of order 𝑝, x = (∑𝑛
𝑖 𝑤𝑖x𝑖)/(∑𝑛

𝑖 𝑤𝑖), and
W is an 𝑛 × 𝑛 diagonal matrix containing frequency weights.

The NNMmethod predicting the potential outcome for the 𝑖th observation as a function of the observed
𝑦𝑖 is

̂𝑦𝑡𝑖 =

⎧
{{{
⎨
{{{
⎩

𝑦𝑖 if 𝑡𝑖 = 𝑡

∑ 𝑤𝑗𝑦𝑗
𝑗∈Ω(𝑖)

∑ 𝑤𝑗
𝑗∈Ω(𝑖)

otherwise

for 𝑡 ∈ {0, 1}.

We are now set to provide formulas for estimates ̂𝜏1, the ATE, and
̂𝛿1, the ATET,

̂𝜏1 =
∑𝑛

𝑖=1 𝑤𝑖( ̂𝑦1𝑖 − ̂𝑦0𝑖)
∑𝑛

𝑖=1 𝑤𝑖
=

∑𝑛
𝑖=1 𝑤𝑖(2𝑡𝑖 − 1){1 + 𝐾𝑚(𝑖)}𝑦𝑖

∑𝑛
𝑖=1 𝑤𝑖

̂𝛿1 =
∑𝑛

𝑖=1 𝑡𝑖𝑤𝑖( ̂𝑦1𝑖 − ̂𝑦0𝑖)
∑𝑛

𝑖=1 𝑡𝑖𝑤𝑖
=

∑𝑛
𝑖=1{𝑡𝑖 − (1 − 𝑡𝑖)𝐾𝑚(𝑖)}𝑦𝑖

∑𝑛
𝑖=1 𝑡𝑖𝑤𝑖

where

𝐾𝑚(𝑖) =
𝑛

∑
𝑗=1

𝐼{𝑖 ∈ Ω(𝑗)}
𝑤𝑗

∑ 𝑤𝑘
𝑘∈Ω(𝑗)
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The estimated variance of ̂𝜏1 and ̂𝛿1 are computed as

𝜎̂2
𝜏 =

∑
𝑛

𝑖=1
𝑤𝑖 [( ̂𝑦1𝑖 − ̂𝑦0𝑖 − ̂𝜏1)2 + ̂𝜉2

𝑖 {𝐾2
𝑚(𝑖) + 2𝐾𝑚(𝑖) − 𝐾′

𝑚(𝑖)}]

(∑𝑛
𝑖=1 𝑤𝑖)

2

𝜎̂2
𝛿 =

∑
𝑛

𝑖=1
𝑡𝑖𝑤𝑖 [( ̂𝑦1𝑖 − ̂𝑦0𝑖 − ̂𝛿1)2 + ̂𝜉2

𝑖 {𝐾2
𝑚(𝑖) − 𝐾′

𝑚(𝑖)}]

(∑𝑛
𝑖=1 𝑡𝑖𝑤𝑖)

2

where

𝐾′
𝑚(𝑖) =

𝑛
∑
𝑗=1

𝐼{𝑖 ∈ Ω(𝑗)}
𝑤𝑗

( ∑ 𝑤𝑘
𝑘∈Ω(𝑗)

)
2

and 𝜉2
𝑖 = var(𝑦𝑡𝑖|x𝑖) is the conditional outcome variance. If we can assume that 𝜉2

𝑖 does not vary with

the covariates or treatment (homoskedastic), then we can compute an ATE estimate of 𝜉2
𝜏 as

̂𝜉2
𝜏 = 1

2 ∑𝑛
𝑖 𝑤𝑖

𝑛
∑
𝑖=1

𝑤𝑖
⎡
⎢⎢
⎣

∑ 𝑤𝑗{𝑦𝑖−𝑦𝑗(1−𝑡𝑖)− ̂𝜏1}2

𝑗∈Ω(𝑖)

∑ 𝑤𝑗
𝑗∈Ω(𝑖)

⎤
⎥⎥
⎦

and an ATET estimate of 𝜉2
𝛿 as

̂𝜉2
𝛿 = 1

2 ∑𝑛
𝑖 𝑡𝑖𝑤𝑖

𝑛
∑
𝑖=1

𝑡𝑖𝑤𝑖
⎡
⎢⎢
⎣

∑ 𝑡𝑗𝑤𝑗{𝑦𝑖−𝑦𝑗(1−𝑡𝑖)− ̂𝛿1}2

𝑗∈Ω(𝑖)

∑ 𝑡𝑗𝑤𝑗
𝑗∈Ω(𝑖)

⎤
⎥⎥
⎦

If the conditional outcome variance is dependent on the covariates or treatment, we require an estimate

for 𝜉2
𝑖 at each observation. In this case, we require a second matching procedure, where we match on

observations within the same treatment group.

Define the within-treatment matching set

Ψx
ℎ(𝑖) = {𝑗1, 𝑗2, . . . , 𝑗ℎ𝑖

| 𝑡𝑗𝑘
= 𝑡𝑖, ‖x𝑖 − x𝑗𝑘

‖𝑆 < ‖x𝑖 − x𝑙‖𝑆, 𝑡𝑙 = 𝑡𝑖, 𝑙 ≠ 𝑗𝑘}

where ℎ is the desired set size. As before, the number of elements in each set, ℎ𝑖 = |Ψx
ℎ(𝑖)|, may vary

depending on ties and the value of the caliper. You set ℎ using the vce(robust, nn(#)) option. As

before, we will use the abbreviation Ψ(𝑖) = Ψx
ℎ(𝑖) where convenient.

We estimate 𝜉2
𝑖 by

̂𝜉2
𝑡𝑖

(x𝑖) =
∑ 𝑤𝑗(𝑦𝑗−𝑦Ψ𝑖)2

𝑗∈Ψ(𝑖)

∑ 𝑤𝑗 − 1
𝑗∈Ψ(𝑖)

where 𝑦Ψ𝑖 =
∑ 𝑤𝑗𝑦𝑗

𝑗∈Ψ(𝑖)

∑ 𝑤𝑗 − 1
𝑗∈Ψ(𝑖)
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Bias-corrected matching estimator

When matching on more than one continuous covariate, the matching estimator described above is

biased, even in infinitely large samples; in other words, it is not
√

𝑛-consistent; see Abadie and Imbens

(2006, 2011). Following Abadie and Imbens (2011) and Abadie et al. (2004), teffects nnmatchmakes

an adjustment based on the regression functions 𝜇𝑡(x̃𝑖) = 𝐸(𝑦𝑡 | x̃ = x̃𝑖), for 𝑡 = 0, 1 and the set of

covariates x̃𝑖 = ( ̃𝑥𝑖,1, . . . , ̃𝑥𝑖,𝑞). The bias-correction covariates may be the same as the NNM covariates

x𝑖. We denote the least-squares estimates as ̂𝜇𝑡(x̃𝑖) = ̂𝜈𝑡 + β̂
′
𝑡x̃𝑖, where we regress {𝑦𝑖 | 𝑡𝑖 = 𝑡} onto

{x̃𝑖 | 𝑡𝑖 = 𝑡} with weights 𝑤𝑖𝐾𝑚(𝑖), for 𝑡 = 0, 1.
Given the estimated regression functions, the bias-corrected predictions for the potential outcomes

are computed as

̂𝑦𝑡𝑖 =

⎧
{{{
⎨
{{{
⎩

𝑦𝑖 if 𝑡𝑖 = 𝑡

∑ 𝑤𝑗{𝑦𝑗 + ̂𝜇𝑡( ̃x𝑖) − ̂𝜇𝑡(x̃𝑗)}
𝑗∈Ωx

𝑚(𝑖)

∑ 𝑤𝑗
𝑗∈Ωx

𝑚(𝑖)

otherwise

The biasadj(varlist) option specifies the bias-adjustment covariates x̃𝑖.

Propensity-score matching estimator
The propensity-score matching (PSM) estimator uses a treatment model (TM), 𝑝(z𝑖, 𝑡, 𝛄), to model the

conditional probability that observation 𝑖 receives treatment 𝑡 given covariates z𝑖. The literature calls

𝑝(z𝑖, 𝑡, 𝛄) a propensity score, and PSM matches on the estimated propensity scores.

When matching on the estimated propensity score, the set of nearest-neighbor indices for observa-

tion 𝑖, 𝑖 = 1, . . . , 𝑛, is

Ωp
𝑚(𝑖) = {𝑗1, 𝑗2, . . . , 𝑗𝑚𝑖

| 𝑡𝑗𝑘
= 1 − 𝑡𝑖, | ̂𝑝𝑖(𝑡) − ̂𝑝𝑗𝑘

(𝑡)| < | ̂𝑝𝑖(𝑡) − ̂𝑝𝑙(𝑡)|, 𝑡𝑙 = 1 − 𝑡𝑖, 𝑙 ≠ 𝑗𝑘}

where ̂𝑝𝑖(𝑡) = 𝑝(z𝑖, 𝑡, 𝛄̂). As was the case with the NNM estimator, 𝑚𝑖 is the smallest number such that

the number of elements in each set, 𝑚𝑖 = |Ωp
𝑚(𝑖)| = ∑𝑗∈Ωp

𝑚(𝑖) 𝑤𝑗, is at least 𝑚, the desired number of

matches, set by the nneighbor(#) option.

We define the within-treatment matching set analogously,

Ψp

ℎ(𝑖) = {𝑗1, 𝑗2, . . . , 𝑗ℎ𝑖
| 𝑡𝑗𝑘

= 𝑡𝑖, | ̂𝑝𝑖(𝑡) − ̂𝑝𝑗𝑘
(𝑡)| < | ̂𝑝𝑖(𝑡) − ̂𝑝𝑙(𝑡)|, 𝑡𝑙 = 𝑡𝑖, 𝑙 ≠ 𝑗𝑘}

where ℎ is the desired number of within-treatment matches, and ℎ𝑖 = |Ψp

ℎ(𝑖)|, for 𝑖 = 1, . . . , 𝑛, may

vary depending on ties and the value of the caliper. The sets Ψp

ℎ(𝑖) are required to compute standard

errors for ̂𝜏1 and ̂𝛿1.

Once a matching set is computed for each observation, the potential-outcome mean, ATE, and ATET

computations are identical to those of NNM. TheATE andATET standard errors, however, must be adjusted

because the TM parameters were estimated; see Abadie and Imbens (2012).
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PSM, ATE, and ATET variance adjustment

The variances for ̂𝜏1 and ̂𝛿1 must be adjusted because we use 𝛄̂ instead of 𝛄. The adjusted variances
for ̂𝜏1 and ̂𝛿1 have the following forms, respectively:

𝜎̂2
𝜏,adj = 𝜎̂2

𝜏 + ̂c′
𝜏V̂𝛾 ̂c𝜏

𝜎̂2
𝛿,adj = 𝜎̂2

𝛿 − ̂c′
𝛿V̂𝛾 ̂c𝛿 + 𝜕𝛿1

𝜕𝛄′ V̂𝛾
𝜕𝛿1
𝜕𝛄

In both equations, the matrix V̂𝛾 is the TM coefficient variance–covariance matrix.

The adjustment term for ATE can be expressed as

̂c𝜏 = 1
∑𝑛

𝑖=1 𝑤𝑖

𝑛
∑
𝑖=1

𝑤𝑖𝑓(z′
𝑖𝛄̂) ( ĉov (z𝑖, ̂𝑦𝑖1)

̂𝑝𝑖(1)
+ ĉov (z𝑖, ̂𝑦𝑖0)

̂𝑝𝑖(0)
)

where

𝑓(z′
𝑖𝛄̂) = 𝑑 𝑝(z𝑖, 1, 𝛄̂)

𝑑(z′
𝑖𝛄̂)

is the derivative of 𝑝(z𝑖, 1, 𝛄̂) with respect to z′
𝑖𝛄̂, and

ĉov (z𝑖, ̂𝑦𝑡𝑖) =

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

∑ 𝑤𝑗(z𝑗 − zΨ𝑖)(𝑦𝑗 − 𝑦Ψ𝑖)
𝑗∈Ψℎ(𝑖)

∑ 𝑤𝑗 − 1
𝑗∈Ψℎ(𝑖)

if 𝑡𝑖 = 𝑡

∑ 𝑤𝑗(z𝑗 − zΩ𝑖)(𝑦𝑗 − 𝑦Ω𝑖)
𝑗∈Ωℎ(𝑖)

∑ 𝑤𝑗 − 1
𝑗∈Ωℎ(𝑖)

otherwise

is a 𝑝 × 1 vector with

zΨ𝑖 =
∑ 𝑤𝑗z𝑗

𝑗∈Ψℎ(𝑖)

∑ 𝑤𝑗
𝑗∈Ψℎ(𝑖)

zΩ𝑖 =
∑ 𝑤𝑗z𝑗

𝑗∈Ωℎ(𝑖)

∑ 𝑤𝑗
𝑗∈Ωℎ(𝑖)

and 𝑦Ω𝑖 =
∑ 𝑤𝑗𝑦𝑗

𝑗∈Ωℎ(𝑖)

∑ 𝑤𝑗
𝑗∈Ωℎ(𝑖)

Here we have used the notation Ψℎ(𝑖) = Ψp

ℎ(𝑖) and Ωℎ(𝑖) = Ωp

ℎ(𝑖) to stress that the within-treatment

and opposite-treatment clusters used in computing 𝜎̂2
𝜏,adj and

̂𝛿2
𝜏,adj are based on ℎ instead of the cluster

Ωp
𝑚(𝑖) based on 𝑚 used to compute ̂𝜏1 and ̂𝛿1, although you may desire to have ℎ = 𝑚.
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The adjustment term c𝛿 for the ATET estimate has two components, c𝛿 = c𝛿,1 + c𝛿,2, defined as

c𝛿,1 = 1
∑𝑛

𝑖=1 𝑡𝑖𝑤𝑖

𝑛
∑
𝑖=1

𝑤𝑖z𝑖𝑓(z′
𝑖𝛄̂) ( ̃𝑦1𝑖 − ̃𝑦0𝑖 − ̂𝛿1)

c𝛿,2 = 1
∑𝑛

𝑖=1 𝑡𝑖𝑤𝑖

𝑛
∑
𝑖=1

𝑤𝑖𝑓(z′
𝑖𝛄̂) {ĉov (z𝑖, ̂𝑦1𝑖) + ̂𝑝𝑖(1)

̂𝑝𝑖(0)
ĉov (z𝑖, ̂𝑦0𝑖)}

where

̃𝑦𝑡𝑖 =

⎧
{
{
{
{
{
{
⎨
{
{
{
{
{
{
⎩

∑ 𝑤𝑗𝑦𝑗
𝑗∈Ψℎ(−𝑖)

∑ 𝑤𝑗
𝑗∈Ψℎ(−𝑖)

if 𝑡 = 𝑡𝑖

∑ 𝑤𝑗𝑦𝑗
𝑗∈Ωℎ

∑ 𝑤𝑗
𝑗∈Ωℎ

otherwise

and thewithin-treatmentmatching setsΨℎ(−𝑖) = Ψp

ℎ(−𝑖) are similar toΨp

ℎ(𝑖) but exclude observation 𝑖:

Ψp

ℎ(−𝑖) = {𝑗1, 𝑗2, . . . , 𝑗ℎ𝑖
| 𝑗𝑘 ≠ 𝑖, 𝑡𝑗𝑘

= 𝑡𝑖, | ̂𝑝𝑖 − ̂𝑝𝑗𝑘
| < | ̂𝑝𝑖 − ̂𝑝𝑙|, 𝑡𝑙 = 𝑡𝑖, 𝑙 ∉ {𝑖, 𝑗𝑘}}

Finally, we cover the computation of
𝜕𝛿1
𝜕𝛄′ in the third term on the right-hand side of 𝜎̂2

𝛿,adj. Here

we require yet another clustering, but we match on the opposite treatment by using the covariates z𝑖 =
(𝑧𝑖,1, . . . , 𝑧𝑖,𝑝)′. We will denote these cluster sets as Ωz

𝑚(𝑖), for 𝑖 = 1, . . . , 𝑛.
The estimator of the 𝑝 × 1 vector (𝜕𝛿1)/(𝜕𝛄′) is computed as

𝜕𝛿1
𝜕𝛄′ = 1

∑𝑛
𝑖 𝑡𝑖𝑤𝑖

𝑛
∑
𝑖=1

z𝑖𝑓(z′𝛄̂) {(2𝑡𝑖 − 1)(𝑦𝑖 − 𝑦Ωz
𝑚𝑖) − ̂𝛿1}

where

𝑦Ωz
𝑚𝑖 =

∑ 𝑤𝑗𝑦𝑗
𝑗∈Ωz

𝑚(𝑖)

∑ 𝑤𝑗
𝑗∈Ωz

𝑚(𝑖)
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Postestimation commands predict Remarks and examples Also see

Postestimation commands
The following postestimation command is of special interest after teffects:

Command Description

teoverlap overlap plots

tebalance check balance of covariates

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict treatment effects, conditional means at treatment, propensity scores, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict
predict creates a new variable containing predictions such as treatment effects, potential outcomes,

conditional means, propensity scores, linear predictions, nearest-neighbor distances, and log square root

of latent variances.

Menu for predict
Statistics > Postestimation

Syntaxes for predict
Syntaxes are presented under the following headings:

Syntax for predict after aipw and ipwra
Syntax for predict after ipw
Syntax for predict after nnmatch and psmatch
Syntax for predict after ra

Syntax for predict after aipw and ipwra

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

ps propensity score

xb linear prediction

psxb linear prediction for propensity score

lnsigma log square root of conditional latent variance (for outcome model
hetprobit()) at treatment level

pslnsigma log square root of latent variance (for treatment model hetprobit())

If you do not specify tlevel() and only specify one new variable, te and psxb assume tlevel() specifies the first non-
control treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, ps, xb, and lnsigma assume tlevel() specifies
the first treatment level.

You specify one or 𝑡 new variables with cmean, ps, xb, and lnsigma, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with te, psxb, and pslnsigma.
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Syntax for predict after ipw

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

ps propensity score; the default

xb linear prediction for the propensity score

lnsigma log square root of latent variance (for treatment model hetprobit())

If you do not specify tlevel() and only specify one new variable, ps assumes tlevel() specifies the first treatment level.

If you do not specify tlevel() and only specify one new variable, xb assumes tlevel() specifies the first noncontrol
treatment level.

You specify one or 𝑡 new variables with ps, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with xb and lnsigma.

Syntax for predict after nnmatch and psmatch

predict [ type ] { stub* | newvarlist } [ , statistic tlevel(treat level) ]

statistic Description

Main

te treatment effect; the default

po potential outcome

distance nearest-neighbor distance

ps propensity score (psmatch only)
lnsigma log square root of latent variance (for treatment model hetprobit())

These statistics are available for the estimation sample only and require the estimation option generate(stub). This is
because of the nonparametric nature of the matching estimator.

If you do not specify tlevel() and only specify one new variable, po and ps assume tlevel() specifies the first treatment
level.

You specify one new variable with te and lnsigma.

You specify one or two new variables with po and ps.
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Syntax for predict after ra

predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]
[ , statistic tlevel(treat level) ]

predict [ type ] stub* [ if ] [ in ], scores

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

xb linear prediction

lnsigma log square root of conditional latent variance (for outcome model
hetprobit()) at treatment level

If you do not specify tlevel() and only specify one new variable, te assumes tlevel() specifies the first noncontrol
treatment level.

If you do not specify tlevel() and only specify one new variable, cmean, xb, and lnsigma assume tlevel() specifies the
first treatment level.

You specify one or 𝑡 new variables with cmean, xb, and lnsigma, where 𝑡 is the number of treatment levels.

You specify one or 𝑡 − 1 new variables with te.

Options for predict
Options are presented under the following headings:

Options for predict after aipw and ipwra
Options for predict after ipw
Options for predict after nnmatch and psmatch
Options for predict after ra

Options for predict after aipw and ipwra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify a new variable for each treatment level (except the control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify a new variable for each treatment level.

ps calculates the propensity score of each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify a new variable for each treatment level.

xb calculates the linear prediction at each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify a new variable for each treatment level.
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psxb calculates the linear prediction for the propensity score at each noncontrol level of the treatment or

the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify

only one new variable; otherwise, you must specify a new variable for each treatment level (except

the control level).

lnsigma calculates the log square root of the conditional latent variance for each treatment level or the

treatment level specified in tlevel(). This option is valid when outcome model hetprobit() was
used. If you specify the tlevel() option, you need to specify only one new variable; otherwise, you

must specify a new variable for each treatment level.

pslnsigma calculates the log square root of the latent variance for the propensity score. This option is

only valid when treatment model hetprobit() was used. Specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean

and average treatment-effect equations. Equation-level scores are computed for the propensity-score

equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.

Options for predict after ipw

� � �
Main �

ps, the default, calculates the propensity score of each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; otherwise,

you must specify a new variable for each treatment level.

xb calculates the linear prediction for the propensity score at each noncontrol level of the treatment or

the treatment level specified in tlevel(). If you specify the tlevel() option, you need to specify

only one new variable; otherwise, you must specify a new variable for each treatment level (except

the control level).

lnsigma calculates the log square root of the latent variance. This option is only valid when treatment

model hetprobit() was used. Specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean

and average treatment-effect equations. Equation-level scores are computed for the propensity-score

equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.
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Options for predict after nnmatch and psmatch

� � �
Main �

te, the default, calculates the treatment effect.

po calculates the predicted potential outcomes for each observation and treatment level or the treatment

level specified in tlevel(). If you specify the tlevel() option, you need to specify only one new

variable; otherwise, you must specify new variables for the control and treated groups.

distance calculates the distances of the nearest neighbors for each observation. The number of variables

generated is equal to the maximum number of nearest-neighbor matches. This is equal to the number

of index variables generated by the estimation option generate(stub). You may use the stub* syntax
to set the distance variable prefix: stub1, stub2, . . . .

ps calculates the propensity score of each treatment level or the propensity score of the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify new variables for the control and treated groups.

lnsigma calculates the log square root of the latent variance. This option is only valid when treatment

model hetprobit() was used. Specify only one new variable.

tlevel(treat level) restricts potential-outcome estimation to either the treated group or the control

group. This option may only be specified with options po and ps.

Options for predict after ra

� � �
Main �

te, the default, calculates the treatment effect for each noncontrol treatment level or the treatment level

specified in tlevel(). If you specify the tlevel() option, you need to specify only one new vari-

able; otherwise, you must specify a new variable for each treatment level (except the control level).

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify a new variable for each treatment level.

xb calculates the linear prediction at each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify a new variable for each treatment level.

lnsigma calculates the log square root of the conditional latent variance for each treatment level or the

treatment level specified in tlevel(). This option is valid when outcome model hetprobit() was
used. If you specify the tlevel() option, you need to specify only one new variable; otherwise, you

must specify a new variable for each treatment level.

tlevel(treat level) specifies the treatment level for prediction.

scores calculates the score variables. Parameter-level scores are computed for the treatment mean and

average treatment-effect equations. Equation-level scores are computed for the regression equations.

The 𝑗th new variable will contain the scores for the 𝑗th parameter in the coefficient table if 𝑗 ≤ 𝑡,
where 𝑡 is the number of treatment levels. Otherwise, it will contain the scores for fitted equation 𝑗−𝑡
following the first 𝑡 parameters in the coefficient table.
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Remarks and examples
Checking model specification is the most frequent reason for postestimation computation af-

ter teffects. teoverlap provides a graphical method for checking the overlap assumption; see

[CAUSAL] teoverlap. Summarizing the estimated probabilities provides another check. Recall that the

reciprocals of these estimated probabilities are used as weights by some of the estimators. If the estimated

probabilities are too small, the weights blow up.

We estimate theATE of maternal smoking on infant birthweight by inverse-probability weighting; see

example 1 of [CAUSAL] teffects ipw for background.

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.622e-21
Iteration 1: EE criterion = 8.795e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

Nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222

Below we compute and summarize the estimated treatment probabilities.

. predict pr1
(option ps assumed; propensity score)
. summarize pr1 if mbsmoke==1, detail

propensity score, mbsmoke=Nonsmoker

Percentiles Smallest
1% .2991634 .2196947
5% .544155 .2258079
10% .5973879 .2258079 Obs 864
25% .63777 .2409025 Sum of wgt. 864
50% .7601717 Mean .7456264

Largest Std. dev. .1276102
75% .8453946 .9533503
90% .8943686 .9596144 Variance .0162844
95% .9096801 .961022 Skewness -.7701643
99% .9367017 .9665684 Kurtosis 3.858214

The smallest values do not imply very large weights.
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Below we compute and summarize the estimated probabilities of not getting the treatment.

. generate pr0 = 1 -pr1

. summarize pr0 if mbsmoke==0, detail
pr0

Percentiles Smallest
1% .0351884 .0074551
5% .0578012 .0079309
10% .0674359 .0106305 Obs 3,778
25% .0950869 .0106305 Sum of wgt. 3,778
50% .1372589 Mean .1698913

Largest Std. dev. .1059434
75% .2211142 .7547572
90% .3242757 .774192 Variance .011224
95% .3883457 .7803053 Skewness 1.514456
99% .501537 .7816764 Kurtosis 6.151114

Although there are two small probabilities, overall the small values do not imply large weights.

Also see
[CAUSAL] teoverlap — Overlap plots

[CAUSAL] teffects aipw —Augmented inverse-probability weighting

[CAUSAL] teffects ipw — Inverse-probability weighting

[CAUSAL] teffects ipwra — Inverse-probability-weighted regression adjustment

[CAUSAL] teffects nnmatch — Nearest-neighbor matching

[CAUSAL] teffects psmatch — Propensity-score matching

[CAUSAL] teffects ra — Regression adjustment

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
teffects psmatch estimates the average treatment effect (ATE) and average treatment effect on the

treated (ATET) from observational data by propensity-score matching (PSM). PSM estimators impute the

missing potential outcome for each subject by using an average of the outcomes of similar subjects that

receive the other treatment level. Similarity between subjects is based on estimated treatment probabili-

ties, known as propensity scores. The treatment effect is computed by taking the average of the difference

between the observed and potential outcomes for each subject. teffects psmatch accepts a continuous,
binary, count, fractional, or nonnegative outcome.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE of treat on y estimated by PSM using a logistic model for treat on x and indicators for levels of

categorical variable a
teffects psmatch (y) (treat x i.a)

Same as above, but estimate the ATET

teffects psmatch (y) (treat x i.a), atet

ATE of treat using a heteroskedastic probit model for treatment

teffects psmatch (y) (treat x i.a, hetprobit(x i.a))

With 4 matches per observation

teffects psmatch (y) (treat x i.a), nneighbor(4)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Propensity-score matching

Statistics > Causal inference/treatment effects > Binary outcomes > Propensity-score matching

Statistics > Causal inference/treatment effects > Count outcomes > Propensity-score matching

Statistics > Causal inference/treatment effects > Fractional outcomes > Propensity-score matching

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Propensity-score matching
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Syntax
teffects psmatch (ovar) (tvar tmvarlist [ , tmodel ]) [ if ] [ in ] [weight ]

[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

tvar must contain integer values representing the treatment levels.

tmvarlist specifies the variables that predict treatment assignment in the treatment model. Only two

treatment levels are allowed.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model

hetprobit(varlist) heteroskedastic probit treatment model

tmodel specifies the model for the treatment variable.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

options Description

Model

nneighbor(#) specify number of matches per observation; default is nneighbor(1)

SE/Robust

vce(vcetype) vcetype may be

vce(robust [ , nn(#) ]); use robust Abadie–Imbens standard
errors with # matches

vce(iid); use independent and identically distributed Abadie–Imbens
standard errors

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Advanced

caliper(#) specify the maximum distance for which two observations are
potential neighbors

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap assumption

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

generate(stub) generate variables containing the observation numbers of the nearest neighbors

coeflegend display legend instead of statistics
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tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

nneighbor(#) specifies the number of matches per observation. The default is nneighbor(1). Each
individual is matched with at least the specified number of individuals from the other treatment level.

nneighbor() must specify an integer greater than or equal to 1 but no larger than the number of

observations in the smallest group.

� � �
Stat �

stat is one of two statistics: ate or atet. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the standard errors that are reported. By default, teffects psmatch uses two

matches in estimating the robust standard errors.

vce(robust [ , nn(#) ]) specifies that robust standard errors be reported and that the requested num-

ber of matches be used optionally.

vce(iid) specifies that standard errors for independent and identically distributed data be reported.

The standard derivative-based standard-error estimators cannot be used by teffects psmatch, be-
cause these matching estimators are not differentiable. The implemented methods were derived by

Abadie and Imbens (2006, 2011, 2012); see Methods and formulas.

As discussed in Abadie and Imbens (2008), bootstrap estimators do not provide reliable standard

errors for the estimator implemented by teffects psmatch.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Advanced �

caliper(#) specifies the maximum distance at which two observations are a potential match. By de-

fault, all observations are potential matches regardless of how dissimilar they are.

In teffects psmatch, the distance is measured by the estimated propensity score. If an observation

has no matches, teffects psmatch exits with an error.

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). teffectswill exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().
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osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption. Two checks are made to verify the assumption. The first ensures that the

propensity scores are greater than pstolerance(#) and less than 1−pstolerance(#). The second
ensures that each observation has at least nneighbor(#) matches in the opposite treatment group

within the distance specified by caliper(#).

The vce(robust, nn(#)) option also requires at least #matches in the same treatment group within

the distance specified by caliper(#).

The average treatment effect on the treated, option atet, using vce(iid) requires only

nneighbor(#) control group matches for the treated group.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() and tlevel() may not specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

generate(stub) specifies that the observation numbers of the nearest neighbors be stored in the new

variables stub1, stub2, . . . . This option is required if you wish to perform postestimation based on the

matching results. The number of variables generated may be more than nneighbor(#) because of

tied distances. These variables may not already exist.

The following option is available with teffects psmatch but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Propensity-score matching uses an average of the outcomes of similar subjects who get the other

treatment level to impute the missing potential outcome for each subject. TheATE is computed by taking

the average of the difference between the observed and potential outcomes for each subject. teffects
psmatch determines how near subjects are to each other by using estimated treatment probabilities,

known as propensity scores. This type of matching is known as propensity-score matching (PSM).

PSM does not need bias correction, because PSMmatches on a single continuous covariate. In contrast,

the nearest-neighbor matching estimator implemented in teffects nnmatch uses a bias-correction term
when matching on more than one continuous covariate. In effect, the PSM estimator parameterizes the

bias-correction term in the treatment probability model. See [CAUSAL] teffects intro or [CAUSAL] tef-

fects intro advanced for more information about this estimator.

We will illustrate the use of teffects psmatch by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
whether this baby was the mother’s first birth (fbaby), and the father’s age (fage).
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Example 1: Estimating the ATE
We begin by using teffects psmatch to estimate theATE of mbsmoke on bweight. We use a logistic

model (the default) to predict each subject’s propensity score, using covariates mage, medu, mmarried,
and fbaby. Because the performance of PSM hinges upon how well we can predict the propensity scores,

we will use factor-variable notation to include both linear and quadratic terms for mage, the only contin-
uous variable in our model:

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -210.9683 32.021 -6.59 0.000 -273.7284 -148.2083

The average birthweight if all mothers were to smoke would be 211 grams less than the average that

would occur if none of the mothers had smoked.

By default, teffects psmatch estimates the ATE by matching each subject to a single subject with

the opposite treatment whose propensity score is closest. Sometimes, however, we may want to ensure

that matching occurs only when the propensity scores of a subject and a match differ by less than a

specified amount. To do that, we use the caliper() option. If a match within the distance specified in

the caliper() option cannot be found, teffects psmatch exits.

Example 2: Specifying the caliper
Here we reconsider the previous example, first specifying that we only want to consider a pair of

observations a match if the absolute difference in the propensity scores is less than 0.03:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> caliper(0.03)
no propensity-score matches for observation 4504 within caliper 0.03; use option
osample() to identify all observations with deficient matches
r(459);
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The error arose because there is not a smoking mother whose propensity score is within 0.03 of the

propensity score of the nonsmoking mother in observation 4504. If we instead raise the caliper to 0.10,

we have matches for all subjects and therefore obtain the same results as in example 1:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> caliper(0.1)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -210.9683 32.021 -6.59 0.000 -273.7284 -148.2083

Technical note
Example 2 highlights that estimating theATE requires finding matches for both the treated and control

subjects. In contrast, estimating theATET only requires finding matches for the treated subjects. Because

subject 4504 is a control subject, we can estimate theATET using caliper(0.03). We must also specify

vce(iid) because the default robust standard errors for the estimated ATET require viable matches for

both treated subjects and control subjects. (This requirement comes from the nonparametric method

derived by Abadie and Imbens [2012].)

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> atet vce(iid) caliper(0.03)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 1
Outcome model : matching min = 1
Treatment model: logit max = 74

bweight Coefficient Std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke
(Smoker

vs
Nonsmoker) -236.7848 26.11698 -9.07 0.000 -287.9731 -185.5964

In the previous examples, each subject was matched to at least one other subject, which is the default

behavior for teffects psmatch. However, we can request that teffects psmatchmatch each subject

to multiple subjects with the opposite treatment level by specifying the nneighbor() option. Matching

on more distant neighbors can reduce the variance of the estimator at a cost of an increase in bias.
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Example 3
Now we request that teffects psmatch match a mother to four mothers in the opposite treatment

group:

. teffects psmatch (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu),
> nneighbor(4)
Treatment-effects estimation Number of obs = 4,642
Estimator : propensity-score matching Matches: requested = 4
Outcome model : matching min = 4
Treatment model: logit max = 74

AI robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -224.006 29.88627 -7.50 0.000 -282.582 -165.43

These results are similar to those reported in example 1.

Video example
Treatment effects in Stata: Propensity-score matching

Stored results
teffects psmatch stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(k levels) number of levels in treatment variable

e(caliper) maximum distance between matches

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(k nneighbor) requested number of matches

e(k nnmin) minimum number of matches

e(k nnmax) maximum number of matches

e(k robust) matches for robust VCE

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) psmatch
e(tmodel) logit, probit, or hetprobit
e(stat) statistic estimated, ate or atet
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(tlevels) levels of treatment variable

e(psvarlist) variables in propensity-score model

https://www.youtube.com/watch?v=hnyh1cUFiOE
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e(hvarlist) variables for variance, only if hetprobit
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(datasignature) the checksum

e(datasignaturevars) variables used in calculation of checksum

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(bps) coefficient vector from propensity-score model

e(Vps) variance–covariance matrix of the estimators from propensity-score model

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
The methods and formulas used by teffects psmatch are documented in the Methods and formulas

of [CAUSAL] teffects nnmatch.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
teffects ra estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data by regression adjustment (RA).

RA estimators use contrasts of averages of treatment-specific predicted outcomes to estimate treatment

effects. teffects ra accepts a continuous, binary, count, fractional, or nonnegative outcome and allows

a multivalued treatment.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data.

Quick start
ATE from a linear model of y1 on x1 and x2 with binary treatment treat2

teffects ra (y1 x1 x2) (treat2)

Same as above, but estimate the ATET

teffects ra (y1 x1 x2) (treat2), atet

Same as above, but estimate the potential-outcome means

teffects ra (y1 x1 x2) (treat2), pomeans

ATE of treat2 using a heteroskedastic probit model for binary outcome y2
teffects ra (y2 x1 x2, hetprobit(x1 x2)) (treat2)

ATE of treat2 using a Poisson model for count outcome y3
teffects ra (y3 x1 x2, poisson) (treat2)

ATE for each level of three-valued treatment treat3
teffects ra (y1 x1 x2) (treat3)

Same as above, and specify that treat3 = 3 is the control level

teffects ra (y1 x1 x2) (treat3), control(3)

Same as above, specified using the label “MyControl” corresponding to treat3 = 3

teffects ra (y1 x1 x2) (treat3), control(”MyControl”)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Regression adjustment

Statistics > Causal inference/treatment effects > Binary outcomes > Regression adjustment

Statistics > Causal inference/treatment effects > Count outcomes > Regression adjustment

Statistics > Causal inference/treatment effects > Fractional outcomes > Regression adjustment

Statistics > Causal inference/treatment effects > Nonnegative outcomes > Regression adjustment

566
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Syntax
teffects ra (ovar omvarlist [ , omodel noconstant ]) (tvar) [ if ] [ in ] [weight ]

[ , stat options ]

ovar is a binary, count, continuous, fractional, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain integer values representing the treatment levels.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

hetprobit(varlist) heteroskedastic probit outcome model

poisson exponential outcome model

flogit fractional logistic outcome model

fprobit fractional probit outcome model

fhetprobit(varlist) fractional heteroskedastic probit outcome model

omodel specifies the model for the outcome variable.

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means
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options Description

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
aequations display auxiliary-equation results

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization

maximize options control the maximization process; seldom used

Advanced

control(# | label) specify the level of tvar that is the control

tlevel(# | label) specify the level of tvar that is the treatment

coeflegend display legend instead of statistics

omvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

bayesboot, bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

Weights are not allowed with the bootstrap prefix; see [R] bootstrap.
fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant; see [R] Estimation options.

� � �
Stat �

stat is one of three statistics: ate, atet, or pomeans. ate is the default.

ate specifies that the average treatment effect be estimated.

atet specifies that the average treatment effect on the treated be estimated.

pomeans specifies that the potential-outcome means for each treatment level be estimated.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust), that allow for intragroup correlation (cluster clustvar), and that

use bootstrap or jackknife methods (bootstrap, jackknife); see [R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

aequations specifies that the results for the outcome-model or the treatment-model parameters be dis-

played. By default, the results for these auxiliary parameters are not displayed.
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display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Maximization �

maximize options: iterate(#), [no]log, and from(init specs); see [R]Maximize. These options are

seldom used.

init specs is one of

matname [ , skip copy ]
# [ , # . . . ], copy

� � �
Advanced �

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans. control() and tlevel() may not

specify the same treatment level.

tlevel(# | label) specifies the level of tvar that is the treatment for the statistic atet. The default is
the second treatment level. You may specify the numeric level # (a nonnegative integer) or the label

associated with the numeric level. tlevel() may only be specified with statistic atet. tlevel()
and control() may not specify the same treatment level.

The following option is available with teffects ra but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
Remarks are presented under the following headings:

Overview
Video example

Overview
Regression adjustment (RA) estimators use the contrasts of the averages of treatment-specific pre-

dicted outcomes to estimate treatment effects. RA estimators use a two-step approach to estimating treat-

ment effects:

1. They fit separate regression models of the outcome on a set of covariates for each treatment

level.

2. They compute the averages of the predicted outcomes for each subject and treatment level.

These averages reflect the POMs. The contrasts of these averages provide estimates of theATEs.

By restricting the computations of the means to the subset of treated subjects, we obtain the

ATETs.

RA estimators are consistent as long as the treatment is independent of the potential outcomes af-

ter conditioning on the covariates. In fact, teffects ra uses an estimation technique that implements

both steps at once so that we do not need to correct the standard errors in the second step to reflect the

uncertainty surrounding the predicted outcomes.
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We will illustrate the use of teffects ra by using data from a study of the effect of a mother’s

smoking status during pregnancy (mbsmoke) on infant birthweight (bweight) as reported by Cattaneo

(2010). This dataset also contains information about each mother’s age (mage), education level (medu),
marital status (mmarried), whether the first prenatal exam occurred in the first trimester (prenatal1),
and whether this baby was the mother’s first birth (fbaby).

Example 1: Estimating the ATE
We begin by using teffects ra to estimate the average treatment effect of smoking, controlling for

first-trimester exam status, marital status, mother’s age, and first-birth status. In Stata, we type

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke)
Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 1.196e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -239.6392 23.82402 -10.06 0.000 -286.3334 -192.945

POmean
mbsmoke

Nonsmoker 3403.242 9.525207 357.29 0.000 3384.573 3421.911

The average birthweight if all mothers were to smoke would be 240 grams less than the average of

3,403 grams that would occur if none of the mothers had smoked.

The previous results showed us the average amount by which infants’ weights are affected by their

mothers’ decision to smoke. We may instead be interested in knowing the average amount by which the

weight of babies born to smoking mothers was decreased as a result of smoking. The ATET provides us

with the answer.



teffects ra — Regression adjustment 571

Example 2: Estimating the ATET
To obtain the ATET rather than the ATE, we use the atet option:

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), atet
Iteration 0: EE criterion = 7.629e-24
Iteration 1: EE criterion = 2.697e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATET
mbsmoke
(Smoker

vs
Nonsmoker) -223.3017 22.7422 -9.82 0.000 -267.8755 -178.7278

POmean
mbsmoke

Nonsmoker 3360.961 12.75749 263.45 0.000 3335.957 3385.966

The average birthweight is 223 grams less when all the mothers who smoke do so than the average of

3,361 grams that would have occurred if none of these mothers had smoked.

The ATET differs from the ATE because the distribution of the covariates among mothers who smoke

differs from the distribution for nonsmoking mothers. For example, in [CAUSAL] teffects intro, we

remarked that in our sample, mothers who smoked tended to be older than those who did not. The

differing distributions of covariates also affect the estimated POMs.

By default, teffects ra reports the ATE, which is the difference between the two POMs in the case

of a binary treatment variable. Sometimes, we want to know the estimated POMs themselves. We might

also want to see the actual regression equations used to estimate the POMs. Obtaining this information is

easy, as the next example illustrates.
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Example 3: Estimating the POMs
Here we use the pomeans option to display the POMs and the aequations option to display the

estimated regression coefficients for the treated and untreated subjects.

. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke),
> pomeans aequations
Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 2.850e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

POmeans
mbsmoke

Nonsmoker 3403.242 9.525207 357.29 0.000 3384.573 3421.911
Smoker 3163.603 21.86351 144.70 0.000 3120.751 3206.455

OME0
prenatal1 64.40859 27.52699 2.34 0.019 10.45669 118.3605
mmarried 160.9513 26.6162 6.05 0.000 108.7845 213.1181

mage 2.546828 2.084324 1.22 0.222 -1.538373 6.632028
fbaby -71.3286 19.64701 -3.63 0.000 -109.836 -32.82117
_cons 3202.746 54.01082 59.30 0.000 3096.886 3308.605

OME1
prenatal1 25.11133 40.37541 0.62 0.534 -54.02302 104.2457
mmarried 133.6617 40.86443 3.27 0.001 53.5689 213.7545

mage -7.370881 4.21817 -1.75 0.081 -15.63834 .8965804
fbaby 41.43991 39.70712 1.04 0.297 -36.38461 119.2644
_cons 3227.169 104.4059 30.91 0.000 3022.537 3431.801

The nonsmoker POM for infant birthweight is 3,403 grams; that means that if none of the women in

our sample smoked during pregnancy, the expected average birthweight would be 3,403 grams. The POM

if all mothers did smoke during pregnancy is 3,164 grams, a difference of 240 grams, as we established in

example 1. The coefficients for the equation labeled OME0 represent the linear equation used to estimate

the nontreated POM, and the coefficients for the equation labeled OME1 represent the linear equation used
to estimate the treated POM. The coefficients are identical to those we would obtain using regress, but
the standard errors differ slightly because teffects ra does not make the small-sample adjustment that

regress does.

We often express statistics as percentages to alleviate scaling issues and aid interpretation. In the

present context, we may wish to express an ATE as a percentage of the untreated POM to gain a more

intuitive measure of efficacy.



teffects ra — Regression adjustment 573

Example 4: Reporting the ATE as a percentage
Sometimes, we are interested in reporting the estimated treatment effect as a percentage of the un-

treated POM. We continue to use the same model as in the previous examples, but we specify the

coeflegend option so that teffects ra reports the names of the parameters. Knowing the correct

names to use, we can then use nlcom to obtain the percentage change along with its delta-method-based

standard error. We type

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ra (bweight prenatal1 mmarried mage fbaby) (mbsmoke), coeflegend
Iteration 0: EE criterion = 7.734e-24
Iteration 1: EE criterion = 1.196e-25
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : linear
Treatment model: none

bweight Coefficient Legend

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -239.6392 _b[ATE:r1vs0.mbsmoke]

POmean
mbsmoke

Nonsmoker 3403.242 _b[POmean:0.mbsmoke]

. nlcom _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]
_nl_1: _b[ATE:r1vs0.mbsmoke] / _b[POmean:0.mbsmoke]

bweight Coefficient Std. err. z P>|z| [95% conf. interval]

_nl_1 -.070415 .0069245 -10.17 0.000 -.0839867 -.0568433

The average birthweight falls by an estimated 7.0% when every mother smokes relative to the case

when no mothers smoke. We also obtain a 95% confidence interval of a 5.7% to 8.4% reduction.

Birthweights cannot be negative, though it is possible for a linear regression model to make negative

predictions. Acommonway to enforce nonnegative predictions is to use an exponential conditional-mean

model, which is commonly fitted using the Poisson quasimaximum likelihood estimator, as discussed in

Cameron and Trivedi (2005, sec. 5.7), Wooldridge (2010, sec. 18.2), and Pawitan (2001, chap. 14).

teffects ra provides an option to use this model rather than linear regression for the outcomes.
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Example 5: Modeling nonnegative outcomes
Now we refit our model of smoking behavior on birthweight, but we specify the poisson option in

the outcome-model equation so that teffects ra uses the Poisson exponential model rather than linear

regression:

. teffects ra (bweight prenatal1 mmarried mage fbaby, poisson) (mbsmoke)
Iteration 0: EE criterion = 3.950e-17
Iteration 1: EE criterion = 1.244e-23
Treatment-effects estimation Number of obs = 4,642
Estimator : regression adjustment
Outcome model : Poisson
Treatment model: none

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -239.6669 23.83757 -10.05 0.000 -286.3877 -192.9462

POmean
mbsmoke

Nonsmoker 3403.178 9.526006 357.25 0.000 3384.508 3421.849

In this case, using a model that forces outcomes to be nonnegative did not make any substantive differ-

ence. In this dataset, nearly 90% of babies weigh at least 2,700 grams, and even the smallest baby weighs

340 grams. When the dependent variable is so large, the predictions from Poisson and linear regression

models are remarkably similar.

We now consider models for fractional outcomes. Fractional responses concern outcomes between

0 and 1. These responses may be averaged 0/1 outcomes such as participation rates, or they may be

variables that are naturally on a 0 to 1 scale such as pollution levels, patient oxygen saturation, and Gini

coefficients (income inequality measures).
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Example 6: Modeling fractional outcomes
We will illustrate the use of teffects ra with the outcome-model option fprobit by using simu-

lated data. The observations are 543 cities at least 200 miles apart. The data contain information about

each city’s level of industrialization (industrial), average annual rainfall in millimeters (rainfall),
whether or not the city has a metro or train (train), and traffic congestion measured by an index

(traffic).

Our outcome is the level of pollution (pollution) measured on a 0 to 1 scale. Values of pollution
between 0 and 0.3 have no public health implications, but values greater than 0.7 imply that people with

breathing or health problems should remain indoors. We study the effect of a tax on gas-guzzler cars

(guzzler) on air pollution. A tax that is effective in reducing pollution improves public health.

We estimate the ATE of a gas-guzzler tax on pollution, controlling for average yearly rainfall, traffic

congestion, the level of industrialization, and whether the city has a train or a metro by using a fractional

probit model.

. use https://www.stata-press.com/data/r19/pollution
(Simulated Urban Pollution Data)
. teffects ra (pollution rainfall i.traffic industrial i.train, fprobit) (guzzler)
Iteration 0: EE criterion = 3.023e-16
Iteration 1: EE criterion = 9.917e-32
Treatment-effects estimation Number of obs = 534
Estimator : regression adjustment
Outcome model : fractional probit
Treatment model: none

Robust
pollution Coefficient std. err. z P>|z| [95% conf. interval]

ATE
guzzler
(tax

vs
no tax) -.0960214 .0113896 -8.43 0.000 -.1183447 -.0736981

POmean
guzzler
no tax .3879346 .0101733 38.13 0.000 .3679952 .407874

The POM if no city were to implement a gas-guzzler tax is an air pollution index of 0.39. If all cities

implement a gas-guzzler tax, the air pollution index would decrease by 0.096 relative to a scenario where

no city implements the tax.

Video example
Treatment effects: Regression adjustment

https://www.youtube.com/watch?v=TYFbOjWZ7lE
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Stored results
teffects ra stores the following in e():

Scalars

e(N) number of observations

e(nj) number of observations for treatment level j

e(N clust) number of clusters

e(k eq) number of equations in e(b)
e(k levels) number of levels in treatment variable

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise

Macros

e(cmd) teffects
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(subcmd) ra
e(omodel) linear, logit, probit, hetprobit, poisson, flogit, fprobit, or

fhetprobit
e(stat) statistic estimated, ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(properties) b V
e(estat cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
teffects ra implements a smooth treatment-effects estimator. All smooth treatment-effects estima-

tors are documented in [CAUSAL] teffects aipw.
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Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description
telasso estimates the average treatment effect (ATE), the average treatment effect on the treated

(ATET), and the potential-outcome means (POMs) from observational data by augmented inverse-

probability weighting (AIPW) while using lasso methods to select from potential control variables to

be included in the model.

AIPW estimators combine aspects of regression-adjustment and inverse-probability-weighted meth-

ods. AIPW estimators have the double-robust property.

telasso accepts a continuous, binary, count, or nonnegative outcome.

See [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced for more information about esti-

mating treatment effects from observational data. See [LASSO] Lasso inference intro for more informa-

tion on estimating coefficients and standard errors for a subset of variables while using lasso methods to

select from a set of control variables.

Quick start
ATE of binary treatment treat using a linear model for outcome y1 on x1–x100 and a logistic model

for treat on w1–w100; use lassos to select variables from x1–x100 for the outcome model and from

w1–w100 for the treatment model

telasso (y1 x1-x100) (treat w1-w100)

Same as above, but estimate the ATET

telasso (y1 x1-x100) (treat w1-w100), atet

Use a Poisson model for count outcome y2
telasso (y2 x1-x100, poisson) (treat w1-w100)

Same as above, but use a probit model for treat
telasso (y2 x1-x100, poisson) (treat w1-w100, probit)

Use BIC instead of a plugin iterative formula to select the optimal 𝜆∗ in each lasso

telasso (y1 x1-x100) (treat w1-w100), selection(bic)

Perform cross-fitting with five folds

telasso (y1 x1-x100) (treat w1-w100), xfolds(5)

Same as above, but repeat the cross-fitting procedure 15 times and average the results

telasso (y1 x1-x100) (treat w1-w100), xfolds(5) resample(15)

Use BIC to select covariates in the lasso for y1 for treatment level 1 only

telasso (y1 x1-x100, lasso(1, selection(bic)) (treat w1-w100)

Use cross-validation (CV) for the lasso for treat only
telasso (y1 x1-x100) (treat w1-w100, lasso(selection(cv)))

578
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Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Binary outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Count outcomes > AIPW with lasso covariate selection

Statistics > Causal inference/treatment effects > Nonnegative outcomes > AIPW with lasso covariate selection

Syntax
telasso (ovar omvarlist [ , omodel om options ])

(tvar tmvarlist [ , tmodel tm options ]) [ if ] [ in ] [weight ] [ , stat options ]

ovar is a binary, count, continuous, or nonnegative outcome of interest.

omvarlist specifies the covariates in the outcome model.

tvar must contain a binary value representing the treatment levels.

tmvarlist specifies the covariates in the treatment model.

omodel Description

Model

linear linear outcome model; the default

logit logistic outcome model

probit probit outcome model

poisson exponential-mean outcome model

om options Description

Model

lasso([ #, ] lasso options) specify options for the lassos for ovar at treatment
level #; may be repeated

∗ sqrtlasso use square-root lassos instead of lassos for ovar
∗ sqrtlasso([ #, ] lasso options) specify options for the square-root lassos for ovar

at treatment level #; may be repeated

noconstant suppress constant term

ainclude(varlist) specify variables that should always be included in the
outcome model

noselection suppress model selection for the outcome model
∗ exposure(varname𝑒) include ln(varname𝑒) in model with coefficient constrained to 1

∗sqrtlasso() may be specified only when omodel is linear.
exposure() may be specified only when omodel is poisson.

tmodel Description

Model

logit logistic treatment model; the default

probit probit treatment model
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tm options Description

Model

lasso(lasso options) specify options for the lasso for tvar

noconstant suppress constant term

ainclude(varlist) specify variables that should always be included in the
treatment model

noselection suppress model selection for the treatment model

stat Description

Stat

ate estimate average treatment effect in population; the default

atet estimate average treatment effect on the treated

pomeans estimate potential-outcome means

options Description

Selection

selection(plugin) use a plugin iterative formula to select an optimal value of
the lasso penalty parameter 𝜆∗ for each lasso; the default

selection(cv) use CV to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(adaptive) use adaptive lasso to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

selection(bic) use BIC to select an optimal value of the lasso
penalty parameter 𝜆∗ for each lasso

xfolds[(#)] use # folds for cross-fitting

resample[(#)] repeat sample splitting # times and average results

SE/Robust

vce(vcetype) vcetype may be robust or cluster clustvar

Reporting

level(#) set confidence level; default is level(95)
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization

rseed(#) set random-number seed

verbose display a verbose iteration log

[ no ]log display or suppress an iteration log
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Advanced

pstolerance(#) set tolerance for overlap assumption

osample(newvar) newvar identifies observations that violate the overlap
assumption

control(# | label) specify the level of tvar that is the control

reestimate refit the model after using lassoselect to select
a different 𝜆∗

noheader do not display the header on the coefficient table

coeflegend display legend instead of statistics

omvarlist and tmvarlist may contain factor variables; see [U] 11.4.3 Factor variables.

collect is allowed; see [U] 11.1.10 Prefix commands.

Default weights are not allowed. iweights are allowed when selection(plugin), selection(adaptive),
selection(cv), or selection(bic) is specified. fweights are allowed when selection(plugin) or
selection(bic) is specified. See [U] 11.1.6 weight.

reestimate, noheader, and coeflegend do not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

Options specific to the outcome model (om options) are the following:

lasso([ #, ] lasso options) lets you set different options for different lassos or set advanced options for
all lassos for the outcome model. Specify a # followed by the options to apply settings to the lasso

of ovar at treatment level # only. This option is repeatable as long as a different treatment level is

given in each specification. If # is not specified, the lasso options apply to lassos of ovar at all treat-

ment levels. lasso options are selection(), grid(), stop(), cvtolerance(), bictolerance(),
tolerance(), and dtolerance(); see [LASSO] lasso options. When lasso([ #, ] selection())
is specified, it overrides any global selection() option for the outcome variable at the specified

treatment level.

sqrtlasso specifies that square-root lassos rather than lassos should be used in selecting variables in

models for the outcome at both treatment levels. This option is not allowed if omodel is logit,
probit, or poisson.

sqrtlasso([ #, ] lasso options) works like the option lasso(), except square-root lassos for the

outcome variable are done rather than regular lassos. This option is not allowed if omodel

is logit, probit, or poisson. Specify a # followed by the options to apply settings to

the lasso of ovar at treatment level # only. This option is repeatable as long as a differ-

ent treatment level is given in each specification. If # is not specified, the lasso options ap-

ply to lassos of ovar at all treatment levels. lasso options are selection(), grid(), stop(),
cvtolerance(), bictolerance(), tolerance(), and dtolerance(); see [LASSO] lasso options.
When sqrtlasso([ #, ] selection()) is specified, it overrides any global selection() option for
the outcome variable at the specified treatment level.

noconstant suppresses the constant term in the outcome model.

ainclude(varlist) specifies variables that are always included in the outcomemodel. Lassoswill choose

to include or exclude other variables in omvarlist.
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noselection specifies not to perform model selection in the outcome model.

exposure(varname𝑒) specifies a variable that reflects the amount of exposure over which the dependent

variable events were observed for each observation; ln(varname𝑒) with coefficient constrained to be

1 is entered into the log-link function. This option may be specified only when omodel is poisson.

Options specific to the treatment model (tm options) are the following:

lasso(lasso options) lets you set advanced options for the lasso for the treatment model. lasso options

are selection(), grid(), stop(), cvtolerance(), bictolerance(), tolerance(), and

dtolerance(); see [LASSO] lasso options. When lasso(selection()) is specified, it overrides

any global selection() option for the treatment variable.

noconstant suppresses the constant term in the treatment model.

ainclude(varlist) specifies variables that are always included in the treatment model. Lassos will

choose to include or exclude other variables in tmvarlist.

noselection specifies not to perform model selection in the treatment model.

� � �
Selection �

selection(plugin | cv | adaptive | bic) specifies the selection method for choosing an optimal value

of the lasso penalty parameter 𝜆∗ for each lasso or square-root lasso estimation. Separate lassos are

estimated for the outcome variable at each treatment level and for the treatment variable. Specifying

selection() changes the selection method for all these lassos. You can specify different selection

methods for different lassos by using lasso() or sqrtlasso() in the outcome model specification

or the option lasso() in the treatment model specification. When lasso() or sqrtlasso() is used
to specify a different selection method for the lassos of outcome or treatment variables, they override

the global setting made using selection() for the specified model.

selection(plugin) is the default. It selects 𝜆∗ based on a “plugin” iterative formula dependent on

the data. See [LASSO] lasso options.

selection(cv) selects the 𝜆∗ that gives the minimum of the CV function. See [LASSO] lasso options.

selection(adaptive) selects 𝜆∗ using the adaptive lasso selection method. It cannot be specified

when sqrtlasso() is specified for the outcome model. See [LASSO] lasso options.

selection(bic) selects the 𝜆∗ that gives the minimum of the BIC function. See [LASSO] lasso

options.

xfolds[(#)] specifies the number of folds for cross-fitting. Not specifying xfolds or xfolds(#) is

equivalent to specifying xfolds(1). In other words, by default no cross-fitting is done. Specifying
xfolds alone is equivalent to specifying xfolds(10); that is, cross-fitting is done by randomly

dividing the original data into 10 folds.

resample[(#)] specifies that sample splitting be repeated and results averaged. This reduces the effects

of the randomness of sample splitting on the estimated coefficients. Not specifying resample or

resample(#) is equivalent to specifying resample(1). In other words, by default no resampling is

done. Specifying resample alone is equivalent to specifying resample(10); that is, sample splitting

is repeated 10 times. For each sample split, lassos are computed. So when this option is not speci-

fied, lassos are repeated xfolds(#) times. But when resample(#) is specified, lassos are repeated
xfolds(#) × resample(#) times. Thus, while we recommend using resample to get final results,
note that it can be an extremely time-consuming procedure.
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� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust to some

kinds of misspecification (robust) and that allow for intragroup correlation (cluster clustvar); see

[R] vce option.

� � �
Reporting �

level(#); see [R] Estimation options.

display options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat(% fmt), pformat(% fmt),
sformat(% fmt), and nolstretch; see [R] Estimation options.

� � �
Optimization �

rseed(#) sets the random-number seed. This option can be used to reproduce results. rseed(#) is

equivalent to typing set seed # prior to running telasso. Random numbers are used to produce

split samples for cross-fitting. So for all selection() options, if you want to reproduce your results,
you must either use this option or use set seed. See [R] set seed.

verbose displays a verbose log showing the iterations of each lasso estimation. This option is useful

when doing selection(cv) or selection(adaptive). It allows monitoring the progress of the

lasso estimations for these selection methods, which can be time consuming when there are many

variables specified in omvarlist or tmvarlist.

[ no ]log displays or suppresses a log showing the progress of the estimation. By default, one-line mes-

sages indicatingwhen each lasso estimation begins are shown. Specify verbose to see amore detailed

log.

� � �
Advanced �

pstolerance(#) specifies the tolerance used to check the overlap assumption. The default value is

pstolerance(1e-5). telasso will exit with an error if an observation has an estimated propensity

score smaller than that specified by pstolerance().

osample(newvar) specifies that indicator variable newvar be created to identify observations that violate
the overlap assumption.

control(# | label) specifies the level of tvar that is the control. The default is the first treatment level.

You may specify the numeric level # (a nonnegative integer) or the label associated with the numeric

level. control() may not be specified with statistic pomeans.

The following options are available with telasso but are not shown in the dialog box:

reestimate is an advanced option that refits the telassomodel based on changes made to the underly-

ing lassos using lassoselect. After running telasso, you can select a different 𝜆∗ for one or more

of the lassos estimated by telasso. After selecting 𝜆∗, you type telasso, reestimate to refit the
telasso model based on the newly selected 𝜆’s.
reestimate may be combined only with reporting options.

noheader prevents the coefficient table header from being displayed.

coeflegend; see [R] Estimation options.
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Remarks and examples
Remarks are presented under the following headings:

Overview
Estimating the ATE with lassos for covariate selection
Choosing the tuning parameter
Estimating the ATET
High-dimensional semiparametric models

Overview
telasso estimates treatment effects while using lasso techniques to select the variables in the model.

Like the lasso for inference commands, inferences drawn about the ATEs, ATETs, and POMs reported by

telasso are robust to model selection mistakes made by lasso. In addition, like the teffects aipw
command, the estimated effects are consistent if the functional form of only one of the outcome or treat-

ment model is correctly specified. Thus, telasso is a version of the AIPW estimator that also allows for

covariate selection via lasso and is robust to functional formmisspecification in one of the models as well

as errors in selection of covariates by lasso. It is, however, required that the true covariates are a sub-

set of the specified list of potential covariates. See [CAUSAL] teffects intro or [CAUSAL] teffects intro

advanced for an introduction of treatment effects estimation. See [CAUSAL] teffects aipw for more infor-

mation on theAIPW estimator. See [LASSO] Lasso intro for an introduction to lasso. See [LASSO] Lasso

inference intro for an introduction to making inference after using lasso for model selection.

Researchers who have datasets with many variables, sometimes more than observations, face difficult

decisions. They cannot use all the variables in their dataset as covariates in a model, and therefore, they

may want to use a model selection method such as lasso to select covariates. In addition, rather than

simply allowing covariates to enter a model linearly, researchers may want to fit a more flexible and

realistic model to their data by including higher-order terms, interactions, spline basis functions, and the

like, but this can also produce more terms than can be included in a model and require a method such as

lasso for selection. The lasso methods used in telasso allow for making valid inference after selecting

from among the potential covariates.

In the context of treatment-effect estimation, why do we need model selection? It is because of

the intrinsic conflicts between two crucial assumptions used to identify treatment effects: conditional

independence (CI) and overlap assumptions. CI means that, dependent on a set of control variables, the

potential outcome is independent of the treatment assignment. The more variables there are in the model,

the more plausible it is that the CI assumption is satisfied. On the other hand, the overlap assumption

implies that there is always a positive probability that any given unit is treated or untreated. The fewer

variables there are in the model, the more comfortable we can be that the overlap assumption is satisfied.

To summarize, the conflict is that the CI assumption expects many variables in the model, but the overlap

assumption expects few variables. By including many potential variables in the model and allowing lasso

to select from among them, we can reconcile this conflict. For a more detailed discussion, see Farrell

(2015) and Chernozhukov et al. (2018).

Model selection, however, does not come for free. If researchers use model selection but conduct

inference ignoring the fact that they did model selection, the inference results are possibly wrong. This

is because model selection techniques make mistakes. Making inferences without considering the vari-

ability in model selection is a dangerous practice (see Leeb and Pötscher [2005] and Leeb and Pötscher

[2006]). Instead, the inference should be robust to model selection mistakes.
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Recently, Farrell (2015) and Chernozhukov et al. (2018) proposed that modern model selection tech-

niques, such as lasso methods for inference, be combined with the doubly robust AIPW estimator in

Rosenbaum and Rubin (1983) to estimate the ATEs. The intuition behind this method is twofold. On

one hand, lasso techniques resolve the conflicts between the CI and overlap assumptions. Although CI

assumption expects many variables, we only need the covariates that matter for the outcome. If lasso

selects a sparse model, the overlap assumption is more plausible to be satisfied. On the other hand, the

proposed estimator should guard against model selection mistakes. The doubly robust AIPW estimator

happens to satisfy this property. Double robustness also means that the estimates of treatment effects are

consistent if either the outcome model or the treatment model is correctly specified.

telasso implements estimators in Chernozhukov et al. (2018) for the ATEs, ATETs, and POMs from

observational data.

The telasso estimator uses a five-step approach to estimating ATE:

1. It uses lasso techniques to select variables in the outcome model for each treatment level.

2. Based on the selected variables in step 1, it fits separate regression models of the outcome for

each treatment level and obtains the treatment-specific predicted outcomes for each subject.

3. It uses lasso techniques to select variables in the treatment model.

4. Based on the selected variables in step 3, it estimates the parameters of the treatment model and

computes inverse-probability weights.

5. It computes the weighted means of the treatment-specific predicted outcomes, where the

weights are the inverse-probability weights computed in step 4. The contrasts of these weighted

averages provide the estimates of the ATE.

Steps 1 and 3 perform the model selection for the outcome and treatment models, respectively. Using

the selected variables, steps 2, 4, and 5 construct moment conditions to estimating ATEs. The resulting

estimator is consistent under CI, overlap, and independent and identically distributed assumptions. The

inference is robust to the mild model selection mistakes that could happen in steps 1 and 3. This estimator

is also robust to model misspecification in either the outcome or the treatment model because of the

double robust moment condition used in step 5.

telasso also implements the double machine learning estimator in Chernozhukov et al. (2018) for

ATEs,ATETs, and POMs. Double machine learning relaxes the sparsity assumption needed for lasso meth-

ods. The sparsity assumption implies that lasso can only have good properties if it selects a few variables

from a potentially large number of candidates. Double machine learning allows telasso to select more

variables in the models and still be valid.

telasso allows the outcome variable to be modeled using a linear, logistic, probit, or Poisson model.

For a linear outcome model, square-root lasso can be used instead of lasso in step 1.

Estimating the ATE with lassos for covariate selection
In some cases, we want to estimate a treatment effect when we have several variables in our dataset

that, when interacted, create a large set of candidate covariates in our model.

Example 1: ATE of bilateral lung transplant
We first illustrate telasso with an example that compares two types of lung transplants. Bilateral

lung transplant (BLT) is usually associated with a higher death rate in the short term after the operation but

with a more significant improvement in the quality of life compared with the single lung transplant (SLT).
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As a result, for patients who need to decide between these two treatment options, knowing the effect of

BLT (versus SLT) on quality of life is essential. We can measure quality of life based on an individual’s

forced expiratory volume in one second (FEV1).

We have a fictional dataset (lung.dta) inspired by Koch, Vock, and Wolfson (2018). The outcome

(fev1p) is FEV1% measured one year after the operation. FEV1% is the percentage of FEV1 that the

patient has relative to a healthy person with similar characteristics. The treatment variable (transtype)
indicates whether the treatment is BLT or SLT. To open the dataset and describe it, we type

. use https://www.stata-press.com/data/r19/lung
(Fictional data on lung transplant)
. describe *, short
Variable Storage Display Value

name type format label Variable label

agep byte %10.0g Patient age (years)
bmip double %10.0g Patient body mass index
diabetesp byte %12.0g lbdiab Patient diabetes status
heightp double %10.0g Patient height (cm)
o2amt double %10.0g Oxygen delivered
karn byte %8.0g lbyes Karnofsky score > 60
lungals double %10.0g Lung allocation score
racep byte %8.0g lbrace Patient race
sexp byte %8.0g lbsex Patient gender
lifesvent byte %8.0g lbyes Life support ventilator needed
assisvent byte %8.0g lbyes Assisted ventilation needed
centervol double %10.0g Center volume
walkdist double %10.0g Walking distance in 6 minutes
o2rest byte %8.0g lbyes Oxygen needed at rest
aged byte %10.0g Donor age (years)
raced byte %8.0g lbrace Donor race
bmid double %10.0g Donor body mass index
smoked byte %8.0g lbyes Donor if has history of smoking
cmv byte %8.0g lbyes Positive cytomegalovirus test
deathcause byte %8.0g lbyes Cause of death - traumatic brain

injury
diabetesd byte %12.0g lbdiab Donor diabetes status
expandd byte %8.0g lbyes Expanded donor needed
heightd double %10.0g Donor height (cm)
sexd byte %8.0g lbsex Donor gender
distd int %10.0g Donor to treatment center

distance
lungpo2 double %10.0g Lung PO2
lungalloc byte %8.0g lballo Lung allocation status
hratio double %10.0g Height ratio
ischemict double %10.0g Ischemic time
genderm byte %19.0g lbgm Matching gender status
racem byte %17.0g lbrm Matching race status
transtype byte %8.0g lbtau Lung transplant type
fev1p double %10.0g Percentage of predicted value of

FEV1

Thirty-one variables measure some characteristics of the patients and donors. To construct control

variables, we want to use these variables and the interactions among them. It would be tedious to type

these variable names one by one to distinguish between continuous and categorical variables. vl is a

suite of commands that simplifies this process.
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First, we use vl set to automatically partition the variables into continuous and categorical variables.

The global macro $vlcategorical contains all the categorical variable names, and $vlcontinuous
contains all the continuous variable names.

. vl set

Macro’s contents

Macro # Vars Description

System
$vlcategorical 18 categorical variables
$vlcontinuous 13 continuous variables
$vluncertain 2 perhaps continuous, perhaps categorical variables
$vlother 0 all missing or constant variables

Notes
1. Review contents of vlcategorical and vlcontinuous to ensure they are

correct. Type vl list vlcategorical and type vl list vlcontinuous.
2. If there are any variables in vluncertain, you can reallocate them

to vlcategorical, vlcontinuous, or vlother. Type
vl list vluncertain.

3. Use vl move to move variables among classifications. For example,
type vl move (x50 x80) vlcontinuous to move variables x50 and x80 to
the continuous classification.

4. vlnames are global macros. Type the vlname without the leading
dollar sign ($) when using vl commands. Example: vlcategorical not
$vlcategorical. Type the dollar sign with other Stata commands to
get a varlist.

. display ”$vlcontinuous”
bmip heightp o2amt lungals centervol walkdist bmid heightd distd lungpo2
> hratio ischemict fev1p
. display ”$vlcategorical”
diabetesp karn racep sexp lifesvent assisvent o2rest raced smoked cmv
> deathcause diabetesd expandd sexd lungalloc genderm racem transtype

Second, we use vl create to create customized variable lists. Specifically, $cvars contains all the

continuous variables except the outcome (fev1p), and $fvars consists of all the categorical variables

except the treatment (transtype). Finally, vl sub substitutes the global macro $allvars with the

full second-order interaction between the continuous variables in $cvars and categorical variables in

$fvars. We will use $allvars as the control variables for both outcome model and treatment model.

. vl create cvars = vlcontinuous - (fev1p)
note: $cvars initialized with 12 variables.
. vl create fvars = vlcategorical - (transtype)
note: $fvars initialized with 17 variables.
. vl sub allvars = c.cvars i.fvars c.cvars#i.fvars
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Now we are ready to use telasso to estimate the ATEs. We assume a linear outcome model and a

logit treatment model, the defaults for telasso. We type

. telasso (fev1p $allvars) (transtype $allvars)
Estimating lasso for outcome fev1p if transtype = 0 using plugin method ...
Estimating lasso for outcome fev1p if transtype = 1 using plugin method ...
Estimating lasso for treatment transtype using plugin method ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 8

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.51841 .1606703 233.51 0.000 37.20351 37.83332

POmean
transtype

SLT 46.4938 .2021582 229.99 0.000 46.09757 46.89002

The FEV1% if all the patients were to choose BLT is expected to be 38 percentage points higher than

the 46% average expected if all patients were to choose a SLT.Among the 454 control variables, telasso
selects only 8 of them. To summarize the model selection for both the outcome and the treatment models,

we can use lassoinfo.

. lassoinfo
Estimate: active
Command: telasso

No. of
Selection selected

Variable Model method lambda variables

fev1p
transt~e ~0 linear plugin .2239121 5
transt~e ~1 linear plugin .1986153 6
transtype logit plugin .0748279 3
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If we want to see which variables are selected by each lasso, we can use lassocoef. Notice that there
are two lassos associated with the outcome of fev1p. One is for outcome fev1p when the treatment

transtype is 0, and the other is for fev1p when transtype is 1. So, in lassocoef, we need to use

the options tlevel() and for() to refer to the lasso for the outcome variable at a specified treatment

level. In contrast, for the treatment of transtype, there is only one lasso; therefore, we only need to use
option for() to specify the lasso for the treatment variable.

. lassocoef (., for(fev1p) tlevel(0)) (., for(fev1p) tlevel(1))
> (., for(transtype))

fev1p(0) fev1p(1) transtype

heightp x x
centervol x x
walkdist x x x
lungpo2 x x x

diabetesd#c.lungpo2
0 x

diabetesp#c.walkdist
0 x

assisvent#c.walkdist
0 x

ischemict x
_cons x x x

Legend:
b - base level
e - empty cell
o - omitted
x - estimated

The lassos selected walkdist and lungpo2 in all three models, while heightp, centervol,
0.diabetesd#c.lungpo2, 0.diabetesp#c.walkdist, 0.assisvent#c.walkdist, and ischemict
were each selected as covariates in one or two models.
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Choosing the tuning parameter
By default, telasso uses a plugin method to choose the tuning parameter 𝜆 in the lasso steps. We

can also use BIC, cross-validation, or adaptive lasso to select the optimal 𝜆.

Example 2: Choosing 𝜆 via BIC
Here we use the selection(bic) option to select 𝜆 by minimizing BIC.

. telasso (fev1p $allvars) (transtype $allvars), selection(bic)
Estimating lasso for outcome fev1p if transtype = 0 using BIC ...
Estimating lasso for outcome fev1p if transtype = 1 using BIC ...
Estimating lasso for treatment transtype using BIC ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 18

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATE
transtype

(BLT
vs

SLT) 37.54872 .2222001 168.99 0.000 37.11322 37.98423

POmean
transtype

SLT 46.44739 .2282797 203.47 0.000 45.99997 46.89481

We can interpret the estimation results in a similar way as in example 1. The FEV1% if all the patients

were to choose BLT is expected to be 38 percentage points higher than the average of 46% that would

be expected if all patients were to choose a SLT. This result is similar to example 1, where we used the

default plugin method to select the tuning parameter. However, among 454 controls, telasso with BIC

selects 18 of them, which is more than the plugin method selected.
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We can use bicplot for a global view about how the BIC function changes as the 𝜆’s change. Here we
show the BIC plot for the outcome fev1p when treatment transtype is 1. In bicplot, we use options
for() and tlevel() to refer to the lasso for the outcome variable at a specified treatment level.

. bicplot, for(fev1p) tlevel(1)
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Cross-fitting fold: 1, Resample: 1

BIC plot for fev1p

From this plot, we can see that the optimal 𝜆 = 0.11 is chosen by the minimum BIC. If we want to

investigate this further, we can use lassoknots to see which variables are selected or dropped for each
𝜆.

. lassoknots, for(fev1p) tlevel(1) display(nonzero var bic)

No. of
nonzero Variables (A)dded, (R)emoved,

ID lambda coef. BIC or left (U)nchanged

2 4.823808 1 3510.118 A walkdist
5 3.649034 2 3335.87 A lungpo2
28 .4294227 3 1863.595 A heightp
29 .391274 4 1838.266 A centervol
35 .2239014 6 1682.065 A 0.diabetesp#c.walkdist

0.assisvent#c.walkdist
40 .1406166 7 1623.74 A heightd

* 43 .1063713 7 1599.977 U
44 .0969216 9 1606.419 A 0.karn#c.walkdist

0.raced#c.lungpo2
45 .0883113 12 1619.473 A 0.sexd#c.centervol

1.racep#c.centervol
0.deathcause#c.centervol

46 .080466 13 1620.666 A 1.lungalloc#c.lungpo2

* lambda selected by Bayesian information criterion.

We see that the 43rd 𝜆, with value 0.1064, minimizes the BIC function, and there are seven selected

variables at this 𝜆.
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Estimating the ATET
Sometimes, we want to estimate the ATETs to determine the effect on those who actually received the

treatment.

Example 3: ATET for BLT
We use the atet option to estimate the ATETs. We type

. telasso (fev1p $allvars) (transtype $allvars), atet
Estimating lasso for outcome fev1p if transtype = 0 using plugin method ...
Estimating lasso for outcome fev1p if transtype = 1 using plugin method ...
Estimating lasso for treatment transtype using plugin method ...
Estimating ATET ...
Treatment-effects lasso estimation Number of observations = 937
Outcome model: linear Number of controls = 454
Treatment model: logit Number of selected controls = 8

Robust
fev1p Coefficient std. err. z P>|z| [95% conf. interval]

ATET
transtype

(BLT
vs

SLT) 35.78157 .1831478 195.37 0.000 35.42261 36.14053

POmean
transtype

SLT 43.35214 .2190783 197.88 0.000 42.92275 43.78153

For the patients who have a BLT, we expect the average FEV1% to be 36 percentage points higher than

if all of them choose an SLT.

High-dimensional semiparametric models
Sometimes, the theory suggests that some variables are essential to control the confounders, but it is

silent on the functional form of the model. In the next example, we will illustrate how to use telasso
to estimate the ATE in a high-dimensional semiparametric model.

Example 4: ATE of 401(k) eligibility
We want to estimate the effect of 401(k) eligibility (e401) on net financial assets (asset) using data

reported by Chernozhukov and Hansen (2004). These data are from a sample of households in the 1990

Survey of Income and Program Participation (SIPP). The data contain information on the head of the

household: income (income), age (age), years of education (educ), whether to receive pension benefit
(pension), marital status (married), and whether to participate in the IRA (ira).

One concern when determining the effect of 401(k) eligibility on financial assets is that choosing to

work for a company that offers a 401(k) plan is not randomly assigned. To overcome this issue, Poterba,

Venti, and Wise (1994, 1995) propose that after conditioning on income, we can take working for a

company that offers a 401(k) as exogenous.
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We want to include income and age as covariates in the model, but we do not want to assume that

they enter the model linearly. Because we want a more flexible model, we use makespline to create B-
splines of order 3 with 3 knots at percentiles of variables income and age. The generated variables will
be used to form a semiparametric model. These variables have the common stub bs for easy reference
later.

. use https://www.stata-press.com/data/r19/assets, clear
(Excerpt from Chernozhukov and Hansen (2004))
. makespline bspline income age, basis(_bs) knots(3)

We describe the generated B-spline variables. Seven terms are generated for each of the original

variables.

. describe _bs*
Variable Storage Display Value

name type format label Variable label

_bs_1_1 double %10.0g B-spline basis term 1 for income
_bs_1_2 double %10.0g B-spline basis term 2 for income
_bs_1_3 double %10.0g B-spline basis term 3 for income
_bs_1_4 double %10.0g B-spline basis term 4 for income
_bs_1_5 double %10.0g B-spline basis term 5 for income
_bs_1_6 double %10.0g B-spline basis term 6 for income
_bs_1_7 double %10.0g B-spline basis term 7 for income
_bs_2_1 double %10.0g B-spline basis term 1 for age
_bs_2_2 double %10.0g B-spline basis term 2 for age
_bs_2_3 double %10.0g B-spline basis term 3 for age
_bs_2_4 double %10.0g B-spline basis term 4 for age
_bs_2_5 double %10.0g B-spline basis term 5 for age
_bs_2_6 double %10.0g B-spline basis term 6 for age
_bs_2_7 double %10.0g B-spline basis term 7 for age

Next, we define the control variables as the categorical variables (pension, married, and ira),
the generated spline variables ( bs*), and all interactions among these variables. The global macro

$controls contains the defined control variables, and we will use it in both the outcome and the treat-

ment model.

. global vars c.(_bs*) i.(pension married ira)

. global controls $vars ($vars)#($vars)

Now, we are ready to use telasso to estimate the ATEs of 401(k) eligibility on net financial assets.

We use a linear nonparametric series to approximate the outcome model. Moreover, we use a logit

nonparametric series to approximate the treatment model. The global macro $controls defines terms

in the nonparametric series.
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. telasso (assets $controls) (e401 $controls), rseed(111)
Estimating lasso for outcome assets if e401k = 0 using plugin method ...
Estimating lasso for outcome assets if e401k = 1 using plugin method ...
Estimating lasso for treatment e401k using plugin method ...
Estimating ATE ...
Treatment-effects lasso estimation Number of observations = 9,913
Outcome model: linear Number of controls = 221
Treatment model: logit Number of selected controls = 47

Robust
assets Coefficient std. err. z P>|z| [95% conf. interval]

ATE
e401k

(Eligible
vs

Not elig..) 8395.301 1159.093 7.24 0.000 6123.521 10667.08

POmean
e401k

Not eligi.. 13849.61 813.9608 17.02 0.000 12254.28 15444.94

The net financial assets if all the workers work for the companies with a 401(k) plan is expected to

be $8,395 more than the average of $13,850 that is expected if all the workers work for the companies

without a 401(k) plan.

Stored results
telasso stores the following in e():
Scalars

e(N) number of observations

e(N0) number of observations for treatment level 0

e(N1) number of observations for treatment level 1

e(N clust) number of clusters

e(k omvars) number of potential control variables in the outcome model

e(k omvars sel) number of selected control variables in the outcome model

e(k tmvars) number of potential control variables in the treatment model

e(k tmvars sel) number of selected control variables in the treatment model

e(k controls) number of potential control variables in the outcome and treatment models

e(k controls sel) number of selected control variables in the outcome and treatment models

e(k levels) number of levels in treatment variable

e(n xfolds) number of folds for cross-fitting

e(n resample) number of resamples

e(treated) level of treatment variable defined as treated

e(control) level of treatment variable defined as control

e(converged) 1 if converged, 0 otherwise
Macros

e(cmd) telasso
e(cmdline) command as typed

e(depvar) name of outcome variable

e(tvar) name of treatment variable

e(tmodel) logit or probit
e(omodel) linear, logit, probit, or poisson
e(omvars) potential control variables in the outcome model

e(omvars sel) selected control variables in the outcome model
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e(tmvars) potential control variables in the treatment model

e(tmvars sel) selected control variables in the treatment model

e(stat) statistic estimated: ate, atet, or pomeans
e(wtype) weight type

e(wexp) weight expression

e(title) title in estimation output

e(clustvar) name of cluster variable

e(tlevels) levels of treatment variable

e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(rngstate) random-number state used

e(properties) b V
e(predict) program used to implement predict
e(select cmd) program used to implement lassoselect
e(marginsnotok) predictions disallowed by margins
e(asbalanced) factor variables fvset as asbalanced
e(asobserved) factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The model
Neyman orthogonal moments
Double machine learning

Resampling the partitions

The model
We consider estimating the ATEs, ATETs, and POMs when the treatment effects are heterogeneous and

the treatment is binary. For notational simplicity, we drop the subscript 𝑖 indicating the 𝑖th observation.
The outcome model is

𝑦 = 𝑔0(𝜏, x) + 𝑢 𝐸(𝑢|𝜏, x) = 0

where 𝑦 is the outcome variable, 𝜏 is the binary treatment variable, x are potentially high-dimensional

control variables in the outcome model, and 𝑔0(𝜏, x) is the expected potential outcome given a level of

treatment and covariates x. Because each unit can only be treated or not treated, the observed outcome

𝑦 can only be one of 𝑔0(1, x) + 𝑢 or 𝑔0(0, x) + 𝑢.
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The treatment model is

𝜏 = 𝑚0(z) + 𝑣 𝐸(𝑣|z) = 0

where z are potentially high-dimensional covariates in the treatment model. 𝑚0(z) is the expected value
of 𝜏 given z. In other words, 𝑚0(z) is the probability of a unit getting treated given z.

The parameter of interest 𝜃0 is ATE, ATET, or POMs.

ATE is

𝜃0 = 𝐸 {𝑔0(1, x) − 𝑔0(0, x)}

ATET is

𝜃0 = 𝐸 {𝑔0(1, x) − 𝑔0(0, x)|𝜏 = 1}

POMs when 𝜏 = 1 is

𝜃0 = 𝐸 {𝑔0(1, x)}

POMs when 𝜏 = 0 is

𝜃0 = 𝐸 {𝑔0(0, x)}

We have several remarks about the above model.

1. The outcomemodel can be one of linear, logit, probit, or poisson. Letβ𝑡 be the outcome

model parameters when treatment 𝜏 = 𝑡. The table below provides details about the available

functional form of 𝑔0(𝜏, x).

Outcome model Functional form for 𝑔0(𝜏 = 𝑡, x)
linear x′β𝑡
logit exp(x′β𝑡)/{1 + exp(x′β𝑡)}
probit Φ(x′β𝑡)
poisson exp(x′β𝑡)

2. The treatment model can be either logit or probit. Let 𝛾 be the parameters in the treatment

model. The table below provides details about the available functional form of 𝑚0(z).

Treatment model Functional form for 𝑚0(z)
logit exp(z′𝛄)/{1 + exp(z′𝛄)}
probit Φ(z′𝛄)

3. Both x and z can be high dimensional, and there may be more variables than the number of

observations. However, the outcome model parameter β𝑡 and the treatment model parameter

𝛄 are assumed to be sparse. This means that there are only a few nonzero elements in both β𝑡
and 𝛄.

4. Although we assume that the functional forms of 𝑔0(⋅) and 𝑚0(⋅) are known, we do not know
which variables should enter the model. We use lasso techniques to select variables from the

potential high-dimensional controls x and z. The resulting estimators should guard against

possible model selection errors made by lassos.

Next we discuss the methods that telasso uses to estimate ATEs, ATETs, and POMs.
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Neyman orthogonal moments
Denote 𝜃0 as the parameter of interest, which can be ATE, ATET, or POM. Following Chernozhukov

et al. (2018), we use the following moment conditions to estimate 𝜃0.

The moment condition for estimating ATE is

𝜓(w; 𝜃,η) = {𝑔(1, x) − 𝑔(0, x)} + 𝜏 {𝑦 − 𝑔(1, x)}
𝑚(z)

− (1 − 𝜏) {𝑦 − 𝑔(0, x)}
1 − 𝑚(z)

− 𝜃 (1)

where w = (𝑦, x′, z′, 𝜏)′ and η is the nuisance parameter consisting of 𝑔(𝜏, x) and 𝑚(z). Using the

variables selected by lassos, 𝑔(1, x), 𝑔(0, x), and 𝑚(z) are approximations to the true functions 𝑔0(1, x),
𝑔0(0, x), and 𝑚0(z), respectively.

The moment condition for estimating ATET is

𝜓(w; 𝜃;η) = 𝜏{𝑦 − 𝑔(0, x)}
𝑝

− 𝑚(z)(1 − 𝜏){𝑦 − 𝑔(0, x)}
𝑝{1 − 𝑚(z)}

− 𝜏𝜃
𝑝

(2)

where 𝑝 = 𝐸(𝜏).
The moment condition for estimating POM for 𝜏 = 1 is

𝜓(w; 𝜃,η) = 𝑔(1, x) + 𝜏 {𝑦 − 𝑔(1, x)}
𝑚(z)

− 𝜃 (3)

The moment condition for estimating POM for 𝜏 = 0 is

𝜓(w; 𝜃,η) = 𝑔(0, x) + (1 − 𝜏) {𝑦 − 𝑔(0, x)}
1 − 𝑚(z)

− 𝜃 (4)

To estimate 𝜃0, we first use lasso techniques to select variables in the outcome and treatment models.

Based on the selected variables, we can estimate the post-lasso predictions for 𝑔(𝜏, x) and 𝑚(z). Denote
η̃ as the estimates for 𝑔(𝜏, x) and 𝑚(z).

The estimator ̂𝜃 for 𝜃0 is the solution to

1
𝑛

𝑛
∑
𝑖=1

[𝜓𝑖(w; 𝜃, η̃)] = 0 (5)

The variance estimator for ̂𝜃 is

1
𝑛2

𝑛
∑
𝑖=1

[𝜓𝑖(w; ̂𝜃, η̃)2] = 0

To identify 𝜃0, we need to assume the conditional mean independence, overlap, and independent

treatment assignment. For a detailed discussion of these assumptions, see [CAUSAL] teffects intro or

[CAUSAL] teffects intro advanced.

The moment conditions defined in (1) to (4) are Neyman orthogonal. Intuitively, Neyman orthogo-

nal moments mean that the estimator or parameter of interest is still consistent even if model selection

makes some mild mistakes. For a formal introduction on Neyman orthogonality, see section 2.1 in Cher-

nozhukov et al. (2018).
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The moment conditions in (1) to (4) also imply the AIPW estimator for treatment effects. The AIPW

estimator is doubly robust in the sense that only one of the outcome model or the treatment model is

required to be correctly specified.

Double machine learning
telasso also implements the double machine learning estimator in Chernozhukov et al. (2018) for

ATEs, ATETs, and POMs. One advantage of double machine learning is that it allows telasso to se-

lect more variables in the models. The sparsity assumption is crucial for the validity of the estimators

implemented in telasso. In other words, the sparsity assumption allows only a few variables to be

selected. Double machine learning techniques relax this sparsity requirement to some extent such that

more variables can be selected and the estimation results are still valid.

telassowith the xfold() option implements cross-fit estimation forATEs,ATETs, and POMs. Cross-

fit estimation fits the nuisance parameters and parameter of interest in different samples. It has the

following structure.

Let 𝐾 be the specified number of cross-fitting folds.

1. Randomly partition the sample into 𝐾 subsamples called folds.

2. Define 𝐼𝑘 to be the observations in fold 𝑘, and define 𝐼𝐶𝑘 to be the sample observations not

in fold 𝑘.
3. For each 𝑘 = 1, . . . , 𝐾, fill in the observations of 𝑖 ∈ 𝐼𝑘 for the moment condition 𝜓(⋅) in

(1), (2), (3), or (4) depending on the specified statistic.

a. Using observations 𝑖 ∈ 𝐼𝐶𝑘, perform model selection, and estimate the parameters in

the outcome and treatment models.

b. Based on the estimates in step 3a, predict the nuisance parameter η̃𝑘 for observations

𝑖 ∈ 𝐼𝑘.

c. Based on η̃𝑘, fill in the moment conditions 𝜓(⋅) for observations 𝑖 ∈ 𝐼𝑘.

4. The estimator ̂𝜃 is the solution in (5).

Resampling the partitions

The 𝐾 folds are chosen once by default. Specify the resample(#) option to have the 𝐾 folds ran-

domly selected # times. This resampling removes the dependence of the estimator on any specifically

selected folds, at the cost of more computer time.

Let 𝑆 be the specified number of resamples.

1. For each random partition 𝑠 = 1, . . . , 𝑆, use a cross-fit estimator to obtain point estimate ̂𝜃𝑠
and the estimated VCE V̂ar(𝜃𝑠).

2. The mean resampling-corrected point estimates are

̃𝜃 = 1
𝑆

𝑆
∑
𝑠=1

̂𝜃𝑠

3. The mean resampling-corrected estimate of the VCE is

Ṽar( ̃𝜃) = 1
𝑆

𝑆
∑
𝑠=1

{ V̂ar(𝜃𝑠) + ( ̂𝜃𝑠 − ̃𝜃)( ̂𝜃𝑠 − ̃𝜃)′}
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Postestimation commands predict Remarks and examples Also see

Postestimation commands
The following postestimation commands are of special interest after telasso:

Command Description

teoverlap overlap plots

tebalance check balance of covariates

bicplot plot Bayesian information criterion function
∗ coefpath plot path of coefficients
∗ cvplot plot cross-validation function

lassocoef display selected coefficients

lassoinfo information about lasso estimation results

lassoknots knot table of coefficient selection and measures of fit
∗ lassoselect select alternative 𝜆∗

∗coefpath, cvplot, and lassoselect require the selection method of the lasso to be selection(cv),
selection(adaptive), or selection(bic). See [LASSO] lasso options.

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance–covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

lincom point estimates, standard errors, testing, and inference for linear combinations of
parameters

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of parameters

predict treatment effects, conditional means at treatment, propensity scores, etc.

predictnl point estimates for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

600
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predict

Description for predict
predict creates a new variable containing predictions such as treatment effects, potential outcomes,

conditional means, propensity scores, and linear predictions.

Menu for predict
Statistics > Postestimation

Syntax for predict
predict [ type ] { stub* | newvar | newvarlist } [ if ] [ in ]

[ , statistic tlevel(treat level) ]

statistic Description

Main

te treatment effect; the default

cmean conditional mean at treatment level

ps propensity score

xb linear prediction

psxb linear prediction for propensity score

Option tlevel() may not be combined with te or psxb.

If you do not specify tlevel() and only specify one new variable, then cmean, ps, and xb assume tlevel() specifies the
control.

You specify one or two new variables with cmean, ps, and xb.

You specify one new variable with te and psxb.

Options for predict

� � �
Main �

te, the default, calculates the treatment effect for the noncontrol treatment level. You need to specify

only one new variable.

cmean calculates the conditional mean for each treatment level or the treatment level specified in

tlevel(). If you specify the tlevel() option, you need to specify only one new variable; oth-

erwise, you must specify two new variables corresponding to the control and noncontrol treatment

levels.

ps calculates the propensity score of each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify two new variables corresponding to the control and noncontrol treatment levels.

xb calculates the linear prediction at each treatment level or the treatment level specified in tlevel().
If you specify the tlevel() option, you need to specify only one new variable; otherwise, you must

specify two new variables corresponding to the control and noncontrol treatment levels.
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psxb calculates the linear prediction for the propensity score at the noncontrol level of the treatment.

You need to specify only one new variable.

tlevel(treat level) specifies the treatment level for prediction.

Remarks and examples
Some of the telasso postestimation commands explore the lasso results computed within telasso.

Here is a list of such commands: coefpath, cvplot, bicplot, lassoknots, lassoselect, and
lassocoef.

When referring to a lasso result computed by telasso, there is a distinction between the outcome

model and the treatment model. To refer to the lasso result for the treatment model, we need to specify

the treatment variable with the for(tvar) option. In contrast, to refer to the lasso result for the outcome

model, we need to specify the outcome variable at a specific treatment level with the for(ovar) and

tlevel(#) options. In summary, for the treatment model, the for(tvar) option is required; for the

outcome model, both the for(ovar) and the tlevel(#) options are required.

Examples that demonstrate how to use the telasso command and explore the lasso results using the

postestimation tools can be found in Remarks and examples in [CAUSAL] telasso.

Also see
[CAUSAL] telasso — Treatment-effects estimation using lasso

[U] 20 Estimation and postestimation commands
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Description Quick start Menu Syntax
Options Remarks and examples Stored results References
Also see

Description
One of the assumptions required to use the teffects and stteffects estimators is the overlap

assumption, which states that each individual has a positive probability of receiving each treatment level.

teoverlap, a postestimation command, plots the estimated densities of the probability of getting each

treatment level. These plots can be used to check whether the overlap assumption is violated.

Quick start
Visually check whether the overlap assumption is violated

teoverlap

Same as above, but use the Epanechnikov kernel function

teoverlap, kernel(epanechnikov)

Plot probability of getting treatment 3 for subjects receiving treatments 2 or 3 of a multivalued treatment

teoverlap, ptlevel(3) tlevels(2 3)

Same as above, and change legend labels to “Treated 2” and “Treated 3”

teoverlap, ptlevel(3) tlevels(2 3) ///
legend(label(1 ”Treated 2”) label(2 ”Treated 3”))

Menu
Statistics > Causal inference/treatment effects > Overlap plots

603



teoverlap — Overlap plots 604

Syntax
teoverlap [ , treat options kden options ]

treat options Description

Main

ptlevel(treat level) calculate predicted probabilities for treatment level treat level; by
default, ptlevel() corresponds to the first treatment level

tlevels(treatments) specify conditioning treatment levels; default is all treatment levels

nolabel use treatment level values and not value labels in legend and axis
titles

kden options Description

Main

kernel(kernel) specify kernel function; default is kernel(triangle)
n(#) estimate densities using # points; default is e(N), the number of

observations in the estimation sample

bwidth(#) half-width of kernel

at(var x) estimate densities using the values specified by var x

Kernel plots

line#opts(cline options) affect rendition of density for conditioning treatment #

Add plots

addplot(plot) add other plots to the generated graph

Y axis, X axis, Titles, Legend, Overall

twoway options any options other than by() documented in [G-3] twoway options

kernel Description

triangle triangle kernel function; the default

epanechnikov Epanechnikov kernel function

epan2 alternative Epanechnikov kernel function

biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

collect is allowed; see [U] 11.1.10 Prefix commands.

Options

� � �
Main �

ptlevel(treat level) specifies that predicted probabilities be calculated for treatment level treat level.

The default is ptlevel(first), where first is the first treatment level.
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tlevels(treatments) specifies the observations for which to obtain predicted probabilities. By default,
all treatment levels are used. Specify treatments as a space-delimited list.

For instance,

. teoverlap, ptlevel(1) tlevels(1 2)

says to predict the probability of getting treatment level 1 for those subjects who actually obtained

treatment levels 1 or 2.

nolabel specifies that treatment level values and not value labels be used in legend and axis titles.

kernel(kernel) specifies the kernel function for use in calculating the kernel density estimates. The

default kernel is the triangle kernel (triangle).

n(#) specifies the number of points at which the density estimate is to be evaluated. The default is e(N),
the estimation sample size.

bwidth(#) specifies the half-width of the kernel, the width of the density window around each point. If

bwidth() is not specified, the “optimal” width is calculated and used; see [R] kdensity. The optimal

width is the width that would minimize the mean integrated squared error if the data were Gaussian

and a Gaussian kernel were used, so it is not optimal in any global sense. In fact, for multimodal

and highly skewed densities, this width is usually too wide and oversmooths the density (Silverman

1986).

at(var x) specifies a variable that contains the values at which the density should be estimated. This op-

tion allows you to more easily obtain density estimates for different variables or different subsamples

of a variable and then overlay the estimated densities for comparison.

� � �
Kernel plots �

line#opts(cline options) affect the rendition of the plotted kernel density estimates. See

[G-3] cline options.

� � �
Add plots �

addplot(plot) provides a way to add other plots to the generated graph. See [G-3] addplot option.

� � �
Y axis, X axis, Titles, Legend, Overall �

twoway options are any of the options documented in [G-3] twoway options, excluding by(). These
include options for titling the graph (see [G-3] title options) and for saving the graph to disk (see

[G-3] saving option).

Remarks and examples
teoverlap plots the estimated densities of the probability of getting each treatment level after

teffects.

These plots can be used to check whether the overlap assumption is violated. The overlap assumption

is satisfied when there is a chance of seeing observations in both the control and the treatment groups at

each combination of covariate values; see [CAUSAL] teffects intro or [CAUSAL] teffects intro advanced.

The overlap assumption is required by the estimators implemented in teffects. Intuitively, when
the overlap assumption is violated, we cannot predict, or otherwise account for, the unobserved outcomes

for some individuals.
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There is evidence that the overlap assumption is violated when an estimated density has too much

mass around 0 or 1; see Busso, DiNardo, and McCrary (2014). An implication of this point is that when

the overlap assumption is violated, the estimated densities will have relatively little mass in the regions

in which they overlap.

Example 1: Assumption not violated
Continuing with example 1 of [CAUSAL] teffects ipw, we estimate the average treatment effect of

smoking on birthweight and then draw the overlap plot:

. use https://www.stata-press.com/data/r19/cattaneo2
(Excerpt from Cattaneo (2010) Journal of Econometrics 155: 138-154)
. teffects ipw (bweight) (mbsmoke mmarried c.mage##c.mage fbaby medu, probit)
Iteration 0: EE criterion = 4.622e-21
Iteration 1: EE criterion = 8.795e-26
Treatment-effects estimation Number of obs = 4,642
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: probit

Robust
bweight Coefficient std. err. z P>|z| [95% conf. interval]

ATE
mbsmoke
(Smoker

vs
Nonsmoker) -230.6886 25.81524 -8.94 0.000 -281.2856 -180.0917

POmean
mbsmoke

Nonsmoker 3403.463 9.571369 355.59 0.000 3384.703 3422.222

. teoverlap
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The graph displays the estimated density of the predicted probabilities that a nonsmoking mother is a

nonsmoker and the estimated density of the predicted probabilities that a smoking mother is a nonsmoker.
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Neither plot indicates too much probability mass near 0 or 1, and the two estimated densities have

most of their respective masses in regions in which they overlap each other. Thus there is no evidence

that the overlap assumption is violated.

Example 2: Assumption violated
This example produces an overlap plot that indicates a failure of the overlap assumption. We will use

simulated data, so we know that the assumption is not true.

In our simulated dataset, some of the 1,000 adult males were given drug XY1 for high blood pressure

and others were not. A scatterplot of systolic blood pressure (systolic) and weight (weight) reveals
that heavier men were given the treatment. (The scatterplots corresponding to the treatment group are

colored red, while the scatterplots corresponding to the control group are colored blue.)

. use https://www.stata-press.com/data/r19/systolic2
(Systolic blood pressure)
. twoway (scatter systolic weight if xy1==1, mcolor(stred))
> (scatter systolic weight if xy1==0, mcolor(stblue)),
> legend(label(1 ”Treated”) label(2 ”Untreated”))
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There are no observations in the treated group for small weights, and there are no observations in the

control group for large weights. There is clear evidence that the overlap assumption is violated.

Drawing an overlaid scatterplot is a straightforward way to check the overlap assumption in this

example because there is only one covariate. This method is not available when there is more than one

covariate. The predicted probability is a one-dimensional measure that captures the relevant multivariate

information.
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Below we estimate the parameters needed to calculate the predicted probabilities. The

pstolerance(1e-8) option is specified to ensure that estimation is performed as long as the predicted

probabilities are at least as large as 1e–8.

. teffects ipw (systolic) (xy1 weight), pstolerance(1e-8)
Iteration 0: EE criterion = 9.523e-18
Iteration 1: EE criterion = 3.489e-28
Treatment-effects estimation Number of obs = 1,000
Estimator : inverse-probability weights
Outcome model : weighted mean
Treatment model: logit

Robust
systolic Coefficient std. err. z P>|z| [95% conf. interval]

ATE
xy1

(Treated
vs

Untreated) -16.23679 2.191703 -7.41 0.000 -20.53245 -11.94114

POmean
xy1

Untreated 127.9094 .7004533 182.61 0.000 126.5365 129.2822

Now we can obtain the overlap plot.

. teoverlap
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The estimated density of the predicted probabilities that a treated individual is not assigned to XY1

treatment has most of its mass near 0. The estimated density of the predicted probabilities that an un-

treated individual is not assigned to XY1 treatment has most of its mass near 1. Note that the two have

very little mass in the region in which they overlap. There is clear evidence that the overlap assumption

is violated.
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Stored results
teoverlap stores the following in r():

Scalars

r(bwidth j) kernel bandwidth for treatment level j

r(n j) number of points at which the estimate was evaluated for treatment level j

r(scale j) density bin width for treatment level j

Macros

r(kernel) name of kernel

References
Busso, M., J. DiNardo, and J. McCrary. 2014. New evidence on the finite sample properties of propensity score reweight-

ing and matching estimators. Review of Economics and Statistics 96: 885–897. https://doi.org/10.1162/REST_a_

00431.

Silverman, B. W. 1986. Density Estimation for Statistics and Data Analysis. London: Chapman and Hall.

Also see
[CAUSAL] stteffects — Treatment-effects estimation for observational survival-time data

[CAUSAL] stteffects ipw — Survival-time inverse-probability weighting

[CAUSAL] stteffects ipwra — Survival-time inverse-probability-weighted regression adjustment

[CAUSAL] teffects — Treatment-effects estimation for observational data

[CAUSAL] teffects aipw —Augmented inverse-probability weighting

[CAUSAL] teffects ipw — Inverse-probability weighting

[CAUSAL] teffects ipwra — Inverse-probability-weighted regression adjustment

[CAUSAL] teffects nnmatch — Nearest-neighbor matching

[CAUSAL] teffects psmatch — Propensity-score matching

[CAUSAL] teffects ra — Regression adjustment

[CAUSAL] telasso — Treatment-effects estimation using lasso

https://doi.org/10.1162/REST_a_00431
https://doi.org/10.1162/REST_a_00431


xthdidregress — Heterogeneous difference in differences for panel data

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgments References Also see

Description
xthdidregress estimates average treatment effects on the treated (ATETs) that may vary over time

and over treatment cohorts. Treatment cohorts are groups subject to treatment at different points in time.

xthdidregress provides four estimators: extended two-way fixed effects (TWFE), regression adjust-

ment (RA), inverse-probability weighting (IPW), and augmented inverse-probability weighting (AIPW).

See [CAUSAL] teffects intro for a discussion of RA, IPW, and AIPW estimators.

xthdidregress is for panel data. For repeated cross-sectional data, see [CAUSAL] hdidregress.

Quick start
EstimateATETs of treatment treat on outcome y with group grpvar; use the RA estimator and model y

with covariate x on xtset data
xthdidregress ra (y x) (treat), group(grpvar)

Same as above, but use the TWFE estimator

xthdidregress twfe (y x) (treat), group(grpvar)

Use the IPW estimator and model treat using covariate z
xthdidregress ipw (y) (treat z), group(grpvar)

Use the AIPW estimator, model y using covariate x, and model treat using covariate z
xthdidregress aipw (y x) (treat z), group(grpvar)

Same as above, but use the not-yet-treated group as the control group

xthdidregress aipw (y x) (treat z), group(grpvar) ///
controlgroup(notyet)

Same as above, but cluster at the county level
xthdidregress aipw (y x) (treat z), group(grpvar) ///

controlgroup(notyet) vce(cluster county)

Menu
Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Panel-data het-
erogeneous DID (TWFE)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Panel-data het-
erogeneous DID (RA)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Panel-data het-
erogeneous DID (IPW)

Statistics > Causal inference/treatment effects > Continuous outcomes > Heterogeneous DID > Panel-data het-
erogeneous DID (AIPW)

610
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Syntax

Two-way fixed effects

xthdidregress twfe (ovar [ omvarlist ]) (tvar) [ if ] [ in ] [weight ],
group(groupvar) [ options ]

Regression adjustment

xthdidregress ra (ovar [ omvarlist ]) (tvar) [ if ] [ in ] [weight ],
group(groupvar) [ options ]

Inverse-probability weighting

xthdidregress ipw (ovar) (tvar [ tmvarlist ]) [ if ] [ in ] [weight ],
group(groupvar) [ options ]

Augmented inverse-probability weighting

xthdidregress aipw (ovar [ omvarlist ]) (tvar [ tmvarlist ]) [ if ] [ in ] [weight ],
group(groupvar) [ options ]

ovar is a continuous outcome of interest.

omvarlist specifies the covariates in the outcome model and may contain factor variables; see

[U] 11.4.3 Factor variables.

tvar must be a binary variable indicating observations subject to treatment.

tmvarlist specifies the covariates in the treatment model and may contain factor variables; see

[U] 11.4.3 Factor variables.

groupvar is a categorical variable that indicates the group level at which the treatment occurs.
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options Description

Model
∗ group(groupvar) specify group variable

controlgroup(cgtype) specify the type of control group; default is
controlgroup(never)

cohortvar(cvar [ , replace ]) specify the variable name for the generated cohort

usercohort(varname) specify name of cohort variable to be used for estimation
† basetime(btspec) specify the type of base time for pretreatment periods; default

is basetime(adaptive)
‡ hettype(hetspec) specify the type of heterogeneity; default is

hettype(timecohort)

SE/Robust

vce(vcetype) vcetype may be cluster clustvar, robust,
bootstrap, or jackknife

Reporting

level(#) set confidence level; default is level(95)
[ no ]log suppress iteration log

nodots suppress replication dots

display options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

cgtype Description

never use the never-treated group as the control group; the default

notyet use the not-yet-treated group as the control group

btspec Description

adaptive specify the adaptive base time for pretreatment ATETs;
the default

common specify a common base time for all pretreatment ATETs

hetspec Description

timecohort heterogeneous treatment effects over time and cohort; the default

time heterogeneous treatment effects over time

cohort heterogeneous treatment effects over cohort
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∗group() is required.
†basetime() may be specified only when ra, ipw, or aipw is specified.
‡hettype() may be specified only when twfe is specified.
A panel variable and a time variable must be specified using xtset; see [XT] xtset.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights, aweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

group(groupvar) specifies a group variable that indicates the group level at which the treatment occurs.

groupvar may be, for example, states, counties, or hospitals. group() also defines the clusters for

the default cluster–robust standard errors. group() is required. You may specify only one group

variable.

controlgroup(cgtype) specifies the type of control group. Acontrol group can be either a never-treated

group or a not-yet-treated group. A never-treated group refers to the units that are untreated from the

first to the last period. A not-yet-treated group refers to the units that are untreated up to a specific

period. cgtype can be one of never, referring to the never-treated group, or notyet, referring to the
not-yet-treated group. By default, cgtype is never.

cohortvar(cvar [ , replace ]) specifies the variable name cvar for the generated cohort variable. The

cohort variable is a categorical variable indicating the period when the unit is first treated. By default,

did cohort is used as the name of the cohort variable. If did cohort already exists in the dataset,
it is replaced if option cohortvar() is not specified.

If suboption replace is specified, cvar is replaced.

usercohort(varname) specifies a variable to be used as a cohort indicator during estimation. By de-

fault, a cohort variable is generated using the information in the estimation sample to indicate the

period when a unit is first treated. usercohort() overrides this default and allows you to provide a
cohort indicator. This is useful, for instance, when there are gaps in the estimation sample, but you

know a group was treated at the time when the gap is present in the data.

basetime(btspec) specifies how the base time is chosen when computing the pretreatment ATETs with

the ra, ipw, or aipw estimator. btspec is one of adaptive (the default) or common.

adaptive specifies that the base time for pretreatmentATETs be chosen adaptively. The base time for

each pretreatment period 𝑡 for cohort 𝑔 is the previous period, 𝑡 − 1.

common specifies that a common base time of 𝑔 − 1 be used for all pretreatmentATETs for cohort 𝑔. A
long-run violation of the parallel trends assumption is easier to identify when using this common

base time.

The base time for posttreatment periods is 𝑔 −1, regardless of whether the adaptive or common base
time is used for pretreatment periods.

hettype(hetspec) specifies time or cohort heterogeneity for the twfe estimator. By default, treatment

is interacted with time and cohort. You may choose to keep one of time or cohort interactions using

hetspec.
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hetspec may be one of timecohort for heterogeneous treatment effects over both time and cohort,

time for heterogeneous treatment effects over time only, or cohort for heterogeneous treatment

effects over cohort only. By default, hetspec is timecohort.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that allow for intra-

group correlation (cluster clustvar), that are robust to intragroup correlation among group vari-

able (robust), and that use bootstrap or jackknife sampling done at the panel level (bootstrap,
jackknife); see [R] vce option.

vce(cluster clustvar), the default, uses the variable specified in group(groupvar).

Specifying vce(robust) is equivalent to specifying vce(cluster clustvar), where clustvar is the

variable specified in the group(groupvar) option.

� � �
Reporting �

level(#); see [R] Estimation options.

log and nolog specify whether to display the iteration log. The iteration log is displayed by default

unless you used set iterlog off to suppress it; see set iterlog in [R] set iter.

nodots suppresses display of the replication dots.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), sformat(% fmt), and

nolstretch; see [R] Estimation options.

The following option is available with xthdidregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples
It is common to study the effects of a treatment, for example, a policy or intervention, on a group.

xthdidregress is for data where the treated groups are subject to the treatment at different points in

time and they remain exposed to the treatment. For example, a health policy such as an increase in the

age to purchase cigarettes is implemented in a given region, and over time, other regions decide to imitate

the initiative. Another example is change in work policies across industries. Perhaps airlines implement

a minimum number of hours between shifts for safety reasons. The policy is subsequently adopted by

other similar industries. Some similar industries may never adopt the policy, remaining untreated, or it

might be that all similar industries eventually adopt the policy.

xthdidregress estimates ATET parameters that change over time and treatment cohorts (groups

treated at different points in time). Each one of these ATETs has the same interpretation that the pa-

rameters of a two-time two-group difference-in-differences (DID) parameter would have. Because there

are multipleDID parameters, we refer to them as heterogeneous treatment effects or as heterogeneousDID.

This is in contrast to estimating only oneATET, which assumes there is no variation across time or cohort.

If you assume no variation across time or cohort, youmay use xtdidregress; see [CAUSAL] didregress.

xthdidregress provides four estimators: TWFE, outlined in Wooldridge (2021); RA, IPW, andAIPW,

outlined in Callaway and Sant’Anna (2021). Each one of these estimators fits a model for the outcome of

interest, a model for the treatment, or a model for both. For example, RA and TWFE model the outcome;

IPW models the treatment; and AIPW models both. If the model for the outcome is correctly specified,

RA and TWFE are best, with TWFE being more efficient. If the treatment model is correctly specified,
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IPW should be best. AIPW models both treatment and outcome. If at least one of the models is correctly

specified, it provides consistent estimates. Thus, it allows us to misspecify one of the models and still get

consistent estimates, a property called double robustness. See [CAUSAL] teffects intro for a discussion

of RA, IPW, and AIPW estimators.

xthdidregress is for panel data. For repeated cross-sectional data, see [CAUSAL] hdidregress.

Below, we illustrate how to use xthdidregress. For more information about the methods used below,

see [CAUSAL] DID intro. For general discussions about the methods, see Roth et al. (2022) and de

Chaisemartin and D’Haultfœuille (2023) and the references therein.

Example 1: Fitting a heterogeneous DID model
We are interested in how the number of registrations of a dog breed with the American Kennel Club

(AKC), registered, is affected by dogs being the protagonists in a movie, movie. We conjecture that

the number of registrations increases if the dog breed appears as the protagonist in a movie. We also

conjecture that registrations increase if the dog has won the Best in Show award from the Westminster

Kennel Club, best, in the 10 years before 2034. We use simulated data, but there is some evidence of

the effect of movies on dog breed registrations. See, for example, Ghirlanda, Acerbi, and Herzog (2014).

There are 141 dog breeds in our sample, which extends between the years 2031 and 2040. At the

beginning of the sample, none of the breeds are featured in a movie. This changes in 2034, when four

breeds are featured in movies. The next year in which we see an increase of breeds featured in movies

is 2036, when 7 more breeds are featured. In 2037, there is a substantial increase, with 22 more breeds

featured. There is no increase in breeds in movies thereafter. The table below illustrates this.

. use https://www.stata-press.com/data/r19/akc
(Fictional dog breed and AKC registration data)
. tabulate year movie

Was a movie
protagonist

Year 0 1 Total

2031 141 0 141
2032 141 0 141
2033 141 0 141
2034 137 4 141
2035 137 4 141
2036 134 7 141
2037 119 22 141
2038 119 22 141
2039 119 22 141
2040 119 22 141

Total 1,307 103 1,410

We have a panel dataset. To obtain the effect of movie on registered controlling for best, we first
xtset our data:

. xtset breed year
Panel variable: breed (strongly balanced)
Time variable: year, 2031 to 2040

Delta: 1 unit

We chose regression adjustment, ra, to fit our model (see [CAUSAL] teffects ra for details on this

model). In the first set of parentheses, we define the outcome, registered, and any covariates that

affect the outcome directly. In the second set of parentheses, we define the observation-level treatment
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variable, movie. Other models allow us to define covariates that affect the treatment, but this is not

the case of the ra model. After the comma, we need to define the group variable in group(); this is a
required option. The group variable defines at which level the treatment occurs and also identifies the

clustering variable, which in this case is breed.

. xthdidregress ra (registered best) (movie), group(breed)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable movie and group variable breed, was added to the dataset using
the estimation sample.

Computing ATET for each cohort and time:
Cohort 2034 (9): ......... done
Cohort 2036 (9): ......... done
Cohort 2037 (9): ......... done
Treatment and time information
Time variable: year
Time interval: 2031 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 1190

2034 40
2036 30
2037 150

Heterogeneous-treatment-effects regression Number of obs = 1,410
Number of panels = 141

Estimator: Regression adjustment
Panel variable: breed
Treatment level: breed
Control group: Never treated

(Std. err. adjusted for 141 clusters in breed)

Robust
Cohort ATET std. err. z P>|z| [95% conf. interval]

2034
year
2032 -254.8927 266.1024 -0.96 0.338 -776.4439 266.6584
2033 -257.5329 217.9389 -1.18 0.237 -684.6852 169.6194
2034 701.1318 127.0935 5.52 0.000 452.0331 950.2304
2035 1099.044 282.0704 3.90 0.000 546.196 1651.892
2036 1367.632 225.8702 6.05 0.000 924.9343 1810.329
2037 2008.294 237.2396 8.47 0.000 1543.313 2473.275
2038 2472.624 278.2949 8.88 0.000 1927.176 3018.072
2039 2689.615 504.3324 5.33 0.000 1701.142 3678.088
2040 3110.97 568.916 5.47 0.000 1995.915 4226.025
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2036
year
2032 216.0259 122.9107 1.76 0.079 -24.87472 456.9265
2033 -172.5154 372.0776 -0.46 0.643 -901.7741 556.7433
2034 -218.0495 504.5267 -0.43 0.666 -1206.904 770.8045
2035 621.033 156.1306 3.98 0.000 315.0227 927.0434
2036 999.0781 180.1055 5.55 0.000 646.0779 1352.078
2037 1003.333 250.5916 4.00 0.000 512.1829 1494.484
2038 1556.669 451.6914 3.45 0.001 671.3697 2441.967
2039 2590.674 662.6979 3.91 0.000 1291.81 3889.538
2040 2225.712 486.9917 4.57 0.000 1271.225 3180.198

2037
year
2032 -114.582 160.0972 -0.72 0.474 -428.3668 199.2028
2033 -127.9856 183.3941 -0.70 0.485 -487.4315 231.4603
2034 33.40901 168.0312 0.20 0.842 -295.9262 362.7442
2035 130.3495 166.2261 0.78 0.433 -195.4477 456.1468
2036 -10.48288 167.5059 -0.06 0.950 -338.7884 317.8226
2037 1717.016 268.5592 6.39 0.000 1190.65 2243.383
2038 2086.798 278.0215 7.51 0.000 1541.886 2631.71
2039 2473.611 268.186 9.22 0.000 1947.976 2999.246
2040 2835.117 378.6699 7.49 0.000 2092.938 3577.296

Note: ATET computed using covariates.
Note: Base time for pretreatment ATETs is the previous period.

Notice the note below the command. A variable with the name did cohort has been generated.

Using the group variable and the observation-level treatment, xthdidregress generated treatment-time

cohorts. The new variable creates treatment groups based on the time when a group was first treated.

For instance, if a Boxer and a Rottweiler are featured in movies in 2034, they are grouped in the 2034

cohort. The variable also contains a category for a control group. In this case, the control group is

formed by the breeds that are not featured in a movie. Cohorts are an important input for estimation and

for postestimation commands. You do not need to adhere to the default name, did cohort, and may

provide your own name using the cohortvar() option.

Next appears a table that gives you a sense of the treatment groups and time. You see the time variable,

year, and its range, 2031 to 2040. Then we see what defines a treated or a control group. The table

after provides group-level information about the cohort-time groups. The first row tells you the number

of cohorts. Following the number of cohorts is a tabulation showing how many observations are in each

cohort. For instance, 1,190 observations are never treated in our data. The table gives you a sense of the

amount of information available in each cohort and might hint at the variability of cohort-level estimates.

The next table presents the ATET estimates. The first panel shows the ATETs for the 2034 cohort. We

first have the 2032 ATET of −255, with a confidence interval that includes 0. This is as expected; before

treatment, the effect should be 0. We should interpret the ATET to mean that among the breeds about

which a movie was made in 2034, the expectedAKC registrations in 2032 are 255 lower than if the breed

had never been in a movie. At treatment onset, in 2034, we observe a treatment effect for the number

of registrations of 701, and on the last year of our data, for the 2034 cohort, we see a treatment effect of

3,111 registrations. We interpret the results for the remaining cohorts similarly.
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Example 2: Visualizing estimation results
In the example above, in the output table, we had three cohorts and nine time periods. There is a lot

of information to process, and it can get even more daunting if we had more cohorts and time periods.

To better visualize the results, we can use estat atetplot:

. estat atetplot
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Figure 1. ATETs by cohort over time

The graph shows the pretreatment and the posttreatment ATETs for each cohort and their pointwise

confidence intervals. ATETs increase over time after treatment and are flat before treatment.
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Example 3: Less heterogeneity; aggregating and summarizing treatment effects
So far, we have allowed treatment effects to change over cohort and over time. But we might want

to obtain only one treatment effect for each cohort, abstracting away from time variation within cohorts.

You would get this using the postestimation command estat aggregation.

. estat aggregation, cohort
ATET over cohort Number of obs = 1,410

(Std. err. adjusted for 141 clusters in breed)

Robust
Cohort ATET std. err. z P>|z| [95% conf. interval]

2034 1921.33 187.2787 10.26 0.000 1554.271 2288.389
2036 1675.093 130.4929 12.84 0.000 1419.332 1930.855
2037 2278.136 166.5283 13.68 0.000 1951.746 2604.525

We now have 3 treatment effects to analyze instead of 27. For the 2034 cohort, we have a treatment

effect of 1,921 registrations for the periods after treatment. For the 2036 cohort, the effect is 1,675

registrations, and for the 2037 cohort, it is 2,278. We cannot see how the treatment evolves over time for

each cohort, but we have a sense of the average effect over time for each of them.

We could instead want to see the treatment effect at each point in time, abstracting from cohort-level

variation.

. estat aggregation, time
ATET over time Number of obs = 1,410

(Std. err. adjusted for 141 clusters in breed)

Robust
Time ATET std. err. z P>|z| [95% conf. interval]

2034 701.1318 127.0935 5.52 0.000 452.0331 950.2304
2035 1099.044 282.0704 3.90 0.000 546.196 1651.892
2036 1209.68 170.2043 7.11 0.000 876.0858 1543.275
2037 1672.655 202.1854 8.27 0.000 1276.379 2068.932
2038 2084.658 214.5072 9.72 0.000 1664.232 2505.084
2039 2528.847 225.8763 11.20 0.000 2086.138 2971.557
2040 2802.171 291.8412 9.60 0.000 2230.173 3374.17
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We see the treatment effects for each one of the posttreatment periods. As before, we have the option

to look at the effects graphically. We just need to use the graph option.

. estat aggregation, time graph
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Figure 2. ATETs over time

Example 4: Dynamic treatment effects
We could also ask what the evolution of the treatment effect is after treatment. For instance, we might

want to know what happens one period after the onset of treatment, two periods after treatment, and so

forth. It might be the case that treatment effects vanish over time or even change patterns. We might also

want to see whether, before treatment, we observe a treatment effect or a pattern that might suggest that

there is anticipation of treatment. estat aggregation allows us to answer these questions by using the
dynamic option.

. estat aggregation, dynamic graph
Duration of exposure ATET Number of obs = 1,410

(Std. err. adjusted for 141 clusters in breed)

Robust
Exposure ATET std. err. z P>|z| [95% conf. interval]

-5 -114.582 160.0972 -0.72 0.474 -428.3668 199.2028
-4 -70.65034 156.3185 -0.45 0.651 -377.029 235.7283
-3 -.9117242 153.0999 -0.01 0.995 -300.982 299.1585
-2 12.79653 144.8216 0.09 0.930 -271.0486 296.6417
-1 30.71473 132.8508 0.23 0.817 -229.668 291.0975
0 1434.409 206.3277 6.95 0.000 1030.014 1838.804
1 1759.461 224.0229 7.85 0.000 1320.385 2198.538
2 2147.486 221.903 9.68 0.000 1712.564 2582.408
3 2651.452 284.8928 9.31 0.000 2093.073 3209.832
4 2366.805 267.4253 8.85 0.000 1842.661 2890.949
5 2689.615 504.3324 5.33 0.000 1701.142 3678.088
6 3110.97 568.916 5.47 0.000 1995.915 4226.025

Note: Base time for pretreatment ATETs is the previous period.
Note: Exposure is the number of periods since the first treatment time.
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Figure 3. ATET dynamics

From the output table, we see that 5 periods before treatment onset, there is no significant treatment

effect or, for that matter, no significant effect at any time of exposure before treatment. This suggests

there is no anticipation of treatment. At treatment onset, 0, there is a positive effect, which seems to

increase as exposure time to treatment augments.

Example 5: TWFE estimation
The literature on heterogeneous DID started by pointing out the problems that arise when one assumes

erroneously that the treatment effects are homogeneous. It suggested that TWFE estimation was inade-

quate. Wooldridge (2021) suggests that fixed-effects estimation can be used if we extend it to include

interactions between treatment-time cohorts and time.

Another important insight of Wooldridge (2021) is that you can use pooled ordinary least squares

and add panel-level averages of covariates and obtain the same point estimates as one would get with

fixed-effects estimation in the context of DID estimation. This is an extension of the intuition byMundlak

(1978). xthdidregress and hdidregress fit pooled ordinary least-squares models using these ideas.

Below, we present the results we obtain using the twfe estimator.
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. xthdidregress twfe (registered best) (movie), group(breed)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable movie and group variable breed, was added to the dataset using
the estimation sample.

Treatment and time information
Time variable: year
Time interval: 2031 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 1190

2034 40
2036 30
2037 150

Heterogeneous-treatment-effects regression Number of obs = 1,410
Number of panels = 141

Estimator: Two-way fixed effects
Panel variable: breed
Treatment level: breed
Control group: Never treated
Heterogeneity: Cohort and time

(Std. err. adjusted for 141 clusters in breed)

Robust
Cohort ATET std. err. t P>|t| [95% conf. interval]

2034
year
2034 469.2023 148.8998 3.15 0.002 174.8195 763.5852
2035 823.8532 211.7491 3.89 0.000 405.2138 1242.493
2036 1108.669 179.8404 6.16 0.000 753.1144 1464.223
2037 1752.287 283.487 6.18 0.000 1191.818 2312.756
2038 2216.617 173.4446 12.78 0.000 1873.708 2559.526
2039 2433.608 521.4074 4.67 0.000 1402.757 3464.458
2040 2854.963 494.1892 5.78 0.000 1877.924 3832.001

2036
year
2036 1336.121 96.75296 13.81 0.000 1144.835 1527.406
2037 1343.004 297.7487 4.51 0.000 754.3383 1931.669
2038 1896.339 399.2574 4.75 0.000 1106.985 2685.692
2039 2930.344 591.0712 4.96 0.000 1761.765 4098.924
2040 2565.382 578.9303 4.43 0.000 1420.806 3709.958

2037
year
2037 1750.126 216.4288 8.09 0.000 1322.234 2178.017
2038 2119.908 217.1685 9.76 0.000 1690.554 2549.262
2039 2506.72 303.9392 8.25 0.000 1905.816 3107.624
2040 2868.227 313.1679 9.16 0.000 2249.077 3487.377

Note: ATET computed using covariates.
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The output is almost the same as the one for the ra estimator in example 1. There are a couple of

noteworthy differences. First, the estimator fits an extended TWFE regression. Second, the ATET param-

eters are shown for each cohort only at the time of treatment exposure and for the periods thereafter but

not for the pretreatment periods. As discussed in Wooldridge (2021), these are the parameters identified

using the parallel-trends assumption he derives.

As we did before, we could use estat aggregation to explore different ways of looking at our

treatment effects and estat atetplot to visualize the estimated ATETs.

Example 6: Reducing model complexity
When we fit the ra model, we had to estimate ATET parameters for each cohort over time. The com-

plexity of the model grows with the number of cohorts and the number of time periods. As is described

in Methods and formulas, the ra estimator uses a different subset of the data to obtain each parameter.

To get a reliable estimator of each parameter, you need sufficient data for each subsample. Sometimes,

there are few observations for a given cohort in a given set of time periods.

We can ameliorate this problem by reducing the amount of heterogeneity we assume. For the twfe
estimator, the complexity of the model comes from the interactions between the observation-level treat-

ment with cohort and time and the interactions between the observation-level treatment, cohort, time, and

covariates. This allows us to decide which interactions to include in our model. We could, for instance,

allow for heterogeneity at the cohort level instead of at the cohort and time level. We use the hettype()
option with the argument cohort to do this:

. xthdidregress twfe (registered best) (movie), group(breed) hettype(cohort)
note: variable _did_cohort, containing cohort indicators formed by treatment

variable movie and group variable breed, was added to the dataset using
the estimation sample.

Treatment and time information
Time variable: year
Time interval: 2031 to 2040
Control: _did_cohort = 0
Treatment: _did_cohort > 0

_did_cohort

Number of cohorts 4

Number of obs
Never treated 1190

2034 40
2036 30
2037 150
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Heterogeneous-treatment-effects regression Number of obs = 1,410
Number of panels = 141

Estimator: Two-way fixed effects
Panel variable: breed
Treatment level: breed
Control group: Never treated
Heterogeneity: Cohort

(Std. err. adjusted for 141 clusters in breed)

Robust
Cohort ATET std. err. t P>|t| [95% conf. interval]

2034 1662.492 108.002 15.39 0.000 1448.966 1876.017
2036 1978.645 54.21043 36.50 0.000 1871.468 2085.822
2037 2276.223 70.63244 32.23 0.000 2136.579 2415.867

Note: ATET computed using covariates.

You fit a regression model with fewer terms and obtain treatment effects only at the cohort level. You

could also have the treatment effect change over time but not over cohort by typing hettype(time).

For the estimators proposed by Callaway and Sant’Anna (2021), heterogeneity is built in, so we need

to estimate all the ATET parameters.

Example 7: Defining your own cohort
By default, xthdidregress creates a cohort variable based on the estimation sample. Yet this might

be inadequate if a researcher has more information than is provided in the dataset. Suppose that our dog

breed dataset looked something like this for the Boxer breed:

. list year breed movie if breed==29, noobs sepby(breed)

year breed movie

2031 Boxer 0
2032 Boxer 0
2033 Boxer 0
2035 Boxer 1
2036 Boxer 1
2037 Boxer 1
2038 Boxer 1
2039 Boxer 1
2040 Boxer 1

There is no information for the year 2034. If a Boxer appeared in a movie in 2034, the Boxer

breed should belong to the 2034 cohort. However, xthdidregress has no information about the

year 2034 in the estimation sample and will classify the Boxer breed as belonging to the 2035 cohort.

xthdidregress’s inability to determine the proper cohort is not exclusive to situations with gaps in

your panel data. In fact, Stata excludes observations in your sample if any of the variables used during

estimation are missing. If all observations for the time period in which a group is first treated are omitted

because of missing values, xthdidregress cannot assign the group to the appropriate cohort.
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If you have information about the cohort values, instead of letting the command create a cohort vari-

able, you can provide the cohort variable with the usercohort() option. Suppose you had a cohort

variable, mycohort; then you would type

. xthdidregress twfe (registered best) (movie), group(breed) usercohort(mycohort)

Another possibility is to generate the cohort variable mycohort yourself using the gencohort com-

mand; this is helpful when you have missing information on covariates or the outcome but have enough

information about the treatment. Suppose you had missing information about the control variable best
but had full information about the treatment variable. Below, we drop information about the 2034 cohort

to illustrate the point.

. replace best = . if year==2034 & breed==29|breed==55
(11 real changes made, 11 to missing)

These observations for year 2034 would not be used during estimation, but we have enough informa-

tion in them to create our own cohort variable.

. gencohort mycohort, treat(movie) time(year) group(breed)

. list year breed movie best mycohort if breed==29, noobs sepby(breed)

year breed movie best mycohort

2031 Boxer 0 0 2034
2032 Boxer 0 0 2034
2033 Boxer 0 0 2034
2034 Boxer 1 . 2034
2035 Boxer 1 0 2034
2036 Boxer 1 0 2034
2037 Boxer 1 0 2034
2038 Boxer 1 0 2034
2039 Boxer 1 0 2034
2040 Boxer 1 0 2034

The mycohort variable can now be specified in the usercohort() option of xthdidregress to

properly treat the Boxer breed as belonging to cohort 2034.

Stored results
xthdidregress stores the following in e():
Scalars

e(N) number of observations

e(N clust) number of clusters

e(N panels) number of panels

e(tmin) first time period

e(tmax) last time period

e(rank) rank of e(V)
Macros

e(cmd) xthdidregress
e(cmdline) command as typed

e(clustvar) name of cluster variable

e(control group) control group

e(het type) heterogeneity type for twfe estimator

e(cohortvar) name of cohort variable

e(usercohort) name of user-specified cohort variable
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e(ovar) name of outcome variable

e(wtype) weight type

e(wexp) weight expression

e(marginsnotok) predictions disallowed by margins
e(ivar) panel identifier variable

e(timevar) time variable

e(treatname) name of treatment variable

e(basetime) type of pretreatment base time

e(estat cmd) program used to implement estat
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.

e(method) estimator method

e(properties) b V
Matrices

e(b) coefficient vector

e(V) variance–covariance matrix of the estimators

e(cohort count) matrix with cohort count information

Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, 𝑝-values, and
confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when any

r-class command is run after the estimation command.

Methods and formulas
Methods and formulas are presented under the following headings:

The model
The RA, IPW, and AIPW estimators

Panel data
The TWFE estimator

The model
xthdidregress estimates the treatment-effects parameters using the DID approach 1) with multiple

periods, 2) with different timing when a unit is first treated, and 3) when the treatment effects can be

heterogeneous across time and cohort. In particular, xthdidregress provides the RA, IPW, and AIPW

estimators, outlined in Callaway and Sant’Anna (2021), and the TWFE estimator, outlined in Wooldridge

(2021).

We observe data {𝑦𝑖𝑡, x𝑖𝑡, 𝑑𝑖𝑡, z𝑖𝑡} for unit 𝑖 at time 𝑡 with unit 𝑖, 𝑖 = 1, . . . , 𝑁, and time 𝑡, with
𝑡 = 1, . . . , 𝑇, where

1. 𝑦𝑖𝑡 is the observed outcome;

2. x𝑖𝑡 are covariates for the outcome model;

3. 𝑑𝑖𝑡 is an indicator that equals one if an observation is treated or zero otherwise; and

4. z𝑖𝑡 are the covariates for the treatment-assignment model.
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Denote 𝑦𝑖𝑡(𝑔) as the potential outcome for unit 𝑖 at time 𝑡 if it was first treated at time 𝑔. Denote

𝑦𝑖𝑡(0) as the potential outcome for unit 𝑖 and 𝑡 if it is never treated. All the units can be grouped into

cohorts, and each cohort starts the treatment simultaneously. For example, cohort 𝑔 means all the units

start treatment at time 𝑔. Let 𝐺𝑖𝑔 be an indicator that equals one if unit 𝑖 is first treated at time 𝑔. Then
the units in cohort 𝑔 can be denoted by 𝐺𝑖𝑔 = 1. When a unit 𝑖 is never treated, we denote 𝐺𝑖0 = 1.

Thus, cohort 0 indicates all the units that are never treated. We assume that once a unit is treated, it will

remain treated.

To reveal how the heterogeneous treatment effects evolve across cohorts and time, we are interested

in estimating the ATET for each combination of cohort and time. Let 𝜃(𝑔, 𝑡) be the ATET for cohort 𝑔 at

time 𝑡, which is defined as
𝜃(𝑔, 𝑡) = E{𝑦𝑡(𝑔) − 𝑦𝑡(0)|𝐺𝑔 = 1} (ATET)

where 𝐺𝑔 equals 1 if a unit belongs to cohort 𝑔. All the four estimators provided in xthdidregress
and hdidregress estimate 𝜃(𝑔, 𝑡) in equation (ATET). We cannot directly estimate 𝜃(𝑔, 𝑡) using equa-

tion (ATET) because the potential outcomes 𝑦𝑡(𝑔) and 𝑦𝑡(0) are not observable.
Next, we will describe the RA, IPW, and AIPW estimators.

The RA, IPW, and AIPW estimators
To estimate theATET for cohort 𝑔 at time 𝑡, the RA, IPW, andAIPW estimators transform the estimation

into a classical two groups and two periods difference-in-differences setup. Thus, we need to restrict

the data to an estimation sample with only two groups and only two periods based on the values of 𝑔
and 𝑡. For the two groups, one group comprises all observations in cohort 𝑔; the other group comprises

untreated observations not in cohort 𝑔, also known as a control group. For the two periods, one period is
the data in time 𝑡; the other period is a period when cohort 𝑔 is not treated, also known as base time.

There are two ways to define the control group. One way is to use the units that are never treated as

the control group. Let 𝐶NEV be an indicator that equals one if a unit belongs to the never-treated group.

In particular, 𝐶NEV = 𝐺0. Another way is to use the units not in cohort 𝑔 and not yet treated at time 𝑡 as
the control group. Let 𝐶NY

𝑔,𝑡 be an indicator that equals one if a unit belongs to the not-yet-treated group

by time 𝑡. In particular, 𝐶NY
𝑔,𝑡 = (1 − 𝐺𝑔)(1 − 𝑑𝑡). To simplify, we indicate control, in both cases, as

𝐶∗
𝑔,𝑡.

The definitions of the RA, IPW, andAIPW estimators depend on the definition of 𝐶∗
𝑔,𝑡, which can either

be 𝐶NEV or 𝐶NY
𝑔,𝑡 . However, regardless of the control group’s choice, the estimators’ definitions can

always be written using the general notation 𝐶∗
𝑔,𝑡.

There are also two ways to define the base time. One way is to adaptively choose the base time for

the pretreatment periods. When the adaptive method is used to compute the ATET for cohort 𝑔 at time 𝑡,
for the pretreatment periods, the base time is 𝑡 − 1; for the posttreatment periods, the base time is 𝑔 − 1.

Another way is to use a common base time 𝑔 − 1 for both pretreatment and posttreatment periods. The

common base time is useful for identifying a violation of the parallel trends assumption in event studies

as discussed in Roth (2024). To simplify the notation, we indicate the base time in both cases as 𝑡0.
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Panel data

The estimands for RA, IPW, and AIPW are defined as follows.

The RA estimand is

𝜃RA(𝑔, 𝑡) = E [
𝐺𝑔

E(𝐺𝑔)
{𝑦𝑡 − 𝑦𝑔−1 − 𝑚𝑔,𝑡(x)}] (RA)

where 𝑚𝑔,𝑡(x) = E(𝑦𝑡 − 𝑦𝑔−1|x, 𝐶∗
𝑔,𝑡 = 1).

The IPW estimand is

𝜃IPW(𝑔, 𝑡) = E
⎛⎜⎜
⎝

⎡
⎢
⎣

𝐺𝑔

E(𝐺𝑔)
−

𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z)

E{ 𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z) }
⎤
⎥
⎦

(𝑦𝑡 − 𝑦𝑔−1)⎞⎟⎟
⎠

(IPW)

where

𝑝𝑔,𝑡(z) = 𝑃𝑟(𝐺𝑔 = 1|z, 𝐺𝑔 + 𝐶∗
𝑔,𝑡 = 1) (Pz)

The AIPW estimand is

𝜃AIPW(𝑔, 𝑡) = E
⎛⎜⎜
⎝

⎡
⎢
⎣

𝐺𝑔

E(𝐺𝑔)
−

𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z)

E{ 𝑝𝑔,𝑡(z)𝐶∗
𝑔,𝑡

1−𝑝𝑔,𝑡(z) }
⎤
⎥
⎦

{𝑦𝑡 − 𝑦𝑔−1 − 𝑚𝑔,𝑡(x)}⎞⎟⎟
⎠

(AIPW)

Callaway and Sant’Anna (2021) show that the estimand for RA, IPW, and AIPW is the same as 𝜃(𝑔, 𝑡)
in equation (ATET). In other words,

𝜃(𝑔, 𝑡) = 𝜃RA(𝑔, 𝑡) = 𝜃IPW(𝑔, 𝑡) = 𝜃AIPW(𝑔, 𝑡)

However, unlike the nonestimable 𝜃(𝑔, 𝑡) in equation (ATET), the estimands in equation (RA), (IPW), and

(AIPW) are estimable because only the observed random variables such as x, 𝑦, z, 𝐺𝑔, and 𝐶∗
𝑔,𝑡 are used.

The identification of the estimators sheds light on how to estimate 𝜃(𝑔, 𝑡). The estimator can be

generally divided into three steps:

1. Restrict the sample to time 𝑡 and 𝑡0, and keep only the units in cohort 𝑔 or in control group 𝐶∗
𝑔,𝑡.

When option basetime(adaptive) is specified, 𝑡0 = 𝑔 −1 if 𝑡 ≥ 𝑔 or 𝑡0 = 𝑡−1 if 𝑡 < 𝑔. When

option basetime(common) is specified, 𝑡0 = 𝑔 − 1. Only the paired observations are used. In

other words, unit 𝑖 will be used if it is observed at both times 𝑡 and 𝑡0.

2. Use a parametric model to estimate the nuisance function for 𝑝𝑔,𝑡(z) and 𝑚𝑔,𝑡(x). In practice, we
use a linear regression model to fit𝑚𝑔,𝑡(x) and a logit regression model to fit 𝑝𝑔,𝑡(z). In particular,
do the following:

a. Run a linear regression of 𝑦𝑡 − 𝑦𝑡0
on x when 𝐶∗

𝑔,𝑡 = 1.

b. Denote the linear predictor as 𝑚̂𝑔,𝑡(x).

c. Run a logit regression of 𝐺𝑔 on z.

d. Denote the prediction of the probability of a positive outcome as ̂𝑝𝑔,𝑡(z).
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3. Plug in the nuisance function estimates 𝑚̂𝑔,𝑡(x), ̂𝑝𝑔,𝑡(z), or both into the estimating equation in

equation (RA), (IPW), or (AIPW). Notice that the expectation operatorE(⋅) is replaced by the sample

average.

The variance–covariance matrix for ̂𝜃(𝑔, 𝑡) for each cohort 𝑔 and time 𝑡 is computed using the in-

fluence function approach proposed in theorem 2 in Callaway and Sant’Anna (2021). The influence

function approach is numerically equivalent to the generalized method-of-moments approach. However,

it is much faster because it avoids computing the covariance matrix for the parameters in the nuisance

functions 𝑚𝑔,𝑡(x) and 𝑝𝑔,𝑡(z). For more discussions on influence functions, see Hampel et al. (1986),

Newey and McFadden (1994), and Jann (2020).

The TWFE estimator
A TWFE estimator fits

𝑦𝑖𝑡 = 𝛼𝑖 + 𝛾𝑡 + x𝑖𝑡β + 𝑑𝑖𝑡𝜏 + 𝜖𝑖𝑡

Wooldridge (2021) extends this model to incorporate interactions between the treatment, 𝑑𝑖𝑡, cohort, 𝐺𝑖𝑔,

posttreatment periods, and covariates. We define indicators for posttreatment period as 𝑓𝑠 with 𝑠 going

from 𝑞 to 𝑇, where 𝑞 is the first time period we observe treatment. For instance, 𝑓𝑞 equals 1 if we are

in time period 𝑞 and 0 otherwise. To simplify this notation, we show the model without covariates. The

extended fixed-effects model is given by

𝑦𝑖𝑡 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝛼𝑔 +
𝑇

∑
𝑠=𝑞

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑔=𝑞

𝑇
∑
𝑠=𝑔

𝑑𝑖𝑡𝐺𝑖𝑔𝑓𝑠𝜏𝑔𝑠 + 𝜖𝑖𝑡 (TWFE)

We can fit equation (TWFE) using pooled ordinary least squares or a within estimator. We are going to

use the estimator proposed by Mundlak (1978). This gives the same point estimates as using the within

estimator of xtreg . . ., fe for the parameters in equation (TWFE) but has different degrees of freedom

because of the additional terms added by the Mundlak approach. Unlike within estimation, the Mundlak

approach works for both repeated cross-sectional data and panel data. Also, it has good properties to

obtain partial effect under various data-generating processes, as pointed out in Wooldridge (2019).

Above, the 𝜏𝑔𝑠 are the cohort-time treatment effects. When we have covariates, we interact them with

all the relevant variables in the model. To get the treatment effects in this case, we need to control for

the variation in the covariates. We can obtain both effects using margins by typing
. margins, dydx(d) at(year=q ... year=T) over(cohort) vce(unconditional)

where d is the treatment indicator, year indicates treatment times at which treatment will be evaluated

using at(), and cohort is the treatment-time cohorts. We use vce(unconditional) to account for the
variation in the covariates.

In practice, xthdidregress computes the treatment effects analytically rather than by use of

margins. Specifically, a modified Mundlak regression model is fit. The modified regression inter-

acts treatment indicators with covariates demeaned by cohort-specific means instead of the covariates

themselves. Treatment-effect parameters can be estimated as coefficients of this regression rather than

as linear combinations of regression coefficients, even when covariates are present.

The modified Mundlak regression is treated as being fit following a set of first-stage regres-

sions of each covariate on cohort indicators. GMM-style standard errors account for variation in

these first-stage regressions and are equivalent to the standard errors produced by margins with the

vce(unconditional) option.
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With the hettype() option, we reduce the complexity of (TWFE). In particular, if we ask for

hettype(time), we have

𝑦𝑖𝑡 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝛼𝑔 +
𝑇

∑
𝑠=𝑞

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑠=𝑞

𝑑𝑖𝑡𝑓𝑠𝜏𝑠 + 𝜖𝑖𝑡

Now treatment varies over time but not over cohort, that is, 𝜏𝑠. If we use the hettype(cohort) option,
we have

𝑦𝑖𝑡 = 𝜂 +
𝑇

∑
𝑔=𝑞

𝐺𝑖𝑔𝛼𝑔 +
𝑇

∑
𝑠=𝑞

𝑓𝑠𝛾𝑠 +
𝑇

∑
𝑔=𝑞

𝑑𝑖𝑡𝐺𝑖𝑔𝜏𝑔 + 𝜖𝑖𝑡

Now treatment varies over cohort but not over time, that is, 𝜏𝑔.

When the controlgroup(notyet) option is specified, the 𝐺𝑖𝑔 indicator excludes the last treated

cohort. As discussed in Wooldridge (2021), when every group is eventually treated, we cannot identify

the treatment effect for this cohort. It is therefore sensible to use the last treated cohort as a control group.

When some of the units in our sample are never treated, we can always identify all cohorts, and the twfe
estimator will always revert to using controlgroup(never).

Acknowledgments
We thank Fernando Rios-Avila of the Levy Economics Institute of Bard College for helpful conver-

sations and advice and for his contributions in developing heterogeneous treatment-effects software and

accompanying material. His community-contributed commands csdid and drdid implement some of

the methods in this entry and a few others we have yet to include.

We thank Pedro H. C. Sant’Anna of Emory University for helpful conversations and advice and for

his continuing contributions to the heterogeneous treatment-effects literature.

We thank Jeff Wooldridge of Michigan State University for helpful conversations about extended

two-way fixed-effects estimation.

We also thankAustin Nichols ofAmazon for his advice, for his insights, and for organizing theWHYDC

causal inference conference.

References
Callaway, B., and P. H. C. Sant’Anna. 2021. Difference-in-differences with multiple time periods. Journal of Econometrics

225: 200–230. https://doi.org/10.1016/j.jeconom.2020.12.001.

de Chaisemartin, C., and X. D’Haultfœuille. 2023. Two-way fixed effects and differences-in-differences with heteroge-

neous treatment effects: A survey. Econometrics Journal 26: C1–C30. https://doi.org/10.1093/ectj/utac017.

Ghirlanda, S.,A.Acerbi, and H. Herzog. 2014. Dogmovie stars and dog breed popularity: Acase study in media influence

on choice. PLOS ONE 9: e106565. https://doi.org/10.1371/journal.pone.0106565.

Hampel, F. R., E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel. 1986. Robust Statistics: The Approach Based on

Influence Functions. New York: Wiley. https://doi.org/10.1002/9781118186435.

Jann, B. 2020. Influence functions continued. A framework for estimating standard errors in reweighting, matching, and

regression adjustment. Working Papers 35, University of Bern Social Sciences. https://ideas.repec.org/p/bss/wpaper/

35.html.

Mundlak, Y. 1978. On the pooling of time series and cross section data. Econometrica 46: 69–85. https://doi.org/10.2307/

1913646.

Newey, W. K., and D. L. McFadden. 1994. “Large sample estimation and hypothesis testing”. In Handbook of Econo-

metrics, edited by R. F. Engle and D. L. McFadden, vol. 4: 2111–2245. Amsterdam: Elsevier. https://doi.org/10.1016/

S1573-4412(05)80005-4.

http://pped.org/why/
https://doi.org/10.1016/j.jeconom.2020.12.001
https://doi.org/10.1093/ectj/utac017
https://doi.org/10.1371/journal.pone.0106565
https://doi.org/10.1002/9781118186435
https://ideas.repec.org/p/bss/wpaper/35.html
https://ideas.repec.org/p/bss/wpaper/35.html
https://doi.org/10.2307/1913646
https://doi.org/10.2307/1913646
https://doi.org/10.1016/S1573-4412(05)80005-4
https://doi.org/10.1016/S1573-4412(05)80005-4


xthdidregress — Heterogeneous difference in differences for panel data 631

Roth, J. 2024. Interpreting event-studies from recent difference-in-differences methods. ArXiv Working Paper

No. arXiv:2401.12309, https://doi.org/10.48550/arXiv.2401.12309.

Roth, J., P. H. C. Sant’Anna, A. Bilinski, and J. Poe. 2022. What’s trending in difference-in-differences? A synthesis of

the recent econometrics literature. arXiv:2201.01194 [econ.EM], https://doi.org/10.48550/arXiv.2201.01194.

Wooldridge, J. M. 2019. Correlated random effects models with unbalanced panels. Journal of Econometrics 211:

137–150. https://doi.org/10.1016/j.jeconom.2018.12.010.

———. 2021. Two-way fixed effects, the two-way Mundlak regression, and difference-in-differences estimators. Work-

ing paper, Department of Economics, Michigan State University, East Lansing, MI. https://doi.org/10.2139/ssrn.

3906345.

Also see
[CAUSAL] hdidregress postestimation — Postestimation tools for hdidregress and xthdidregress

[CAUSAL] hdidregress — Heterogeneous difference in differences

[CAUSAL] DID intro — Introduction to difference-in-differences estimation

[CAUSAL] didregress — Difference-in-differences estimation

[CAUSAL] gencohort — Create a cohort variable

[CAUSAL] teffects intro — Introduction to treatment effects for observational data

[CAUSAL] teffects intro advanced —Advanced introduction to treatment effects for observational data

[U] 20 Estimation and postestimation commands

https://doi.org/10.48550/arXiv.2401.12309
https://doi.org/10.48550/arXiv.2201.01194
https://doi.org/10.1016/j.jeconom.2018.12.010
https://doi.org/10.2139/ssrn.3906345
https://doi.org/10.2139/ssrn.3906345


xthdidregress postestimation — Postestimation tools for xthdidregress

Description
hdidregress and xthdidregress allow the same postestimation commands; see

[CAUSAL] hdidregress postestimation.

632



Glossary

ADTE. See average direct treatment effect.

ADTET. See average direct treatment effect with respect to the treated.

AIPW estimator. See augmented inverse-probability-weighted estimator.

AITE. See average indirect treatment effect.

AITEC. See average indirect treatment effect with respect to controls.

analysis time. Analysis time is like time, except that 0 has a special meaning: 𝑡 = 0 is the time of onset

of risk, the time when failure first became possible.

Analysis time is usually not what is recorded in a dataset. A dataset of patients might record calendar

time. Calendar time must then be mapped to analysis time.

The letter 𝑡 is reserved for time in analysis-time units. The term time is used for time measured in

other units.

The origin is the time corresponding to 𝑡 = 0, which can vary subject to subject. Thus 𝑡 = time −
origin.

ATE. See average treatment effect.

ATET. See average treatment effect on the treated.

augmented inverse-probability-weighted estimator. An augmented inverse-probability-weighted

(AIPW) estimator is an inverse-probability-weighted estimator that includes an augmentation term

that corrects the estimator when the treatment model is misspecified. When the treatment is correctly

specified, the augmentation term vanishes as the sample size becomes large. An AIPW estimator uses

both an outcome model and a treatment model and is a doubly robust estimator.

average direct treatment effect. The average direct treatment effect (ADTE) is the average direct effect

of the treatment on the outcome when the mediator is held at its value associated with being untreated.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via

the production of endorphins. The average direct treatment effect measures the average difference in

potential outcomes for well-being when everyone in the population exercised but with endorphins set

to levels that would be observed if no one exercised compared with when no one in the population

exercised.

average direct treatment effect with respect to the treated. The average direct treatment effect with

respect to the treated (ADTET) is the average direct treatment effect when the mediator is held at its

value associated with being treated.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via the

production of endorphins. The average direct treatment effect with respect to the treated measures the

average difference in the potential outcomes for well-being when everyone in the population exercised

compared with when no one exercised but with endorphins set to levels that would be observed if

everyone exercised.
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average indirect treatment effect. The average indirect treatment effect (AITE) is the average indirect

effect through a mediator.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via

the production of endorphins. The average indirect treatment effect measures the average difference

in the potential outcomes for well-being when everyone in the population exercised compared with

when everyone exercised but with endorphins set to levels that would be observed if no one exercised.

average indirect treatment effect with respect to controls. The average indirect treatment effect with

respect to controls (AITEC) is the average indirect effect of a mediator under the control condition.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via the

production of endorphins. The average indirect treatment effect with respect to controls measures the

average difference in the potential outcomes for well-being when no one in the population exercised

but with endorphins set to levels that would be observed if everyone exercised compared with the

case where no one in the population exercised.

average treatment effect. The average treatment effect is the average effect of the treatment among all

individuals in a population.

average treatment effect on the treated. The average treatment effect on the treated is the average

effect of the treatment among those individuals who actually get the treatment.

CATE. See conditional average treatment effect.

causal mediation analysis. Causal mediation analysis is a method that disentangles the causal mech-

anisms that operate between a cause and an effect by decomposing causal effects of a treatment, or

exposure, on an outcome variable into direct and indirect effects. The indirect effects are due to the

treatment affecting the outcome via intermediary variables, also known as mediators. Direct effects

are causal effects that are due to mechanisms other than those captured by the mediators.

censored, left-censored, and right-censored. An observation is left-censored when the exact time of

failure is not known; it is merely known that the failure occurred before 𝑡𝑙. Suppose that the event of

interest is becoming employed. If a subject is already employed when first interviewed, his outcome

is left-censored.

An observation is right-censored when the time of failure is not known; it is merely known that the

failure occurred after 𝑡𝑟. If a patient survives until the end of a study, the patient’s time of death is

right-censored.

In common usage, censored without a modifier means right-censored.

Also see truncation, left-truncation, and right-truncation.

CI assumption. See conditional-independence assumption.

conditional average treatment effect. The conditional average treatment effect (CATE) is the average

of the treatment effects conditional on a set of variables.

conditional mean. The conditional mean expresses the average of one variable as a function of some

other variables. More formally, the mean of 𝑦 conditional on x is the mean of 𝑦 for given values of x;

in other words, it is 𝐸(𝑦|x).
A conditional mean is also known as a regression or as a conditional expectation.
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conditional-independence assumption. The conditional-independence assumption requires that the

common variables that affect treatment assignment and treatment-specific outcomes be observable.

The dependence between treatment assignment and treatment-specific outcomes can be removed by

conditioning on these observable variables.

This assumption is also known as a selection-on-observables assumption because its central tenet is

the observability of the common variables that generate the dependence.

counterfactual. A counterfactual is an outcome a subject would have obtained had that subject received

a different level of treatment. In the binary-treatment case, the counterfactual outcome for a person

who received treatment is the outcome that person would have obtained had the person instead not

received treatment; similarly, the counterfactual outcome for a person who did not receive treatment

is the outcome that person would have obtained had the person received treatment.

Also see potential outcome.

doubly robust estimator. A doubly robust estimator only needs one of two auxiliary models to be

correctly specified to estimate a parameter of interest.

Doubly robust estimators for treatment effects are consistent when either the outcome model or the

treatment model is correctly specified.

EE estimator. See estimating-equation estimator.

estimating-equation estimator. An estimating-equation (EE) estimator calculates parameters estimates

by solving a system of equations. Each equation in this system is the sample average of a function

that has mean zero.

These estimators are also known as 𝑀 estimators or 𝑍 estimators in the statistics literature and as

generalized method of moments (GMM) estimators in the econometrics literature.

failure event. Survival analysis is really time-to-failure analysis, and the failure event is the event un-

der analysis. The failure event can be death, heart attack, myopia, or finding employment. Many

authors—including Stata—write as if the failure event can occur only once per subject, but when we

do, we are being sloppy. Survival analysis encompasses repeated failures, and all of Stata’s survival

analysis features can be used with repeated-failure data.

GATE. See group average treatment effect.

GATES. See sorted group average treatment effect.

group average treatment effect. The group average treatment effect (GATE) is the average of the treat-

ment effects conditional on being in one of the prespecified groups. There is a GATE for each group.

hazard, cumulative hazard, and hazard ratio. The hazard or hazard rate at time 𝑡, ℎ(𝑡), is the instan-
taneous rate of failure at time 𝑡 conditional on survival until time 𝑡. Hazard rates can exceed 1. Say
that the hazard rate were 3. If an individual faced a constant hazard of 3 over a unit interval and if the

failure event could be repeated, the individual would be expected to experience three failures during

the time span.

The cumulative hazard, 𝐻(𝑡), is the integral of the hazard function ℎ(𝑡), from 0 (the onset of risk) to

𝑡. It is the total number of failures that would be expected to occur up until time 𝑡, if the failure event
could be repeated. The relationship between the cumulative hazard function, 𝐻(𝑡), and the survivor
function, 𝑆(𝑡), is

𝑆(𝑡) = exp{−𝐻(𝑡)}

𝐻(𝑡) = −ln{𝑆(𝑡)}
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The hazard ratio is the ratio of the hazard function evaluated at two different values of the covariates:

ℎ(𝑡 | x)/ℎ(𝑡 | x0). The hazard ratio is often called the relative hazard, especially when ℎ(𝑡 | x0) is the
baseline hazard function.

IATE. See individualized average treatment effect.

i.i.d. sampling assumption. See independent and identically distributed sampling assumption.

independent and identically distributed sampling assumption. The independent and identically dis-

tributed (i.i.d.) sampling assumption specifies that each observation is unrelated to (independent of)

all the other observations and that each observation is a draw from the same (identical) distribution.

individualized average treatment effect. The individualized average treatment effect (IATE) is the av-

erage of the treatment effects conditional on observation-level characteristics. There is one IATE for

each observation in the data.

individual-level treatment effect. An individual-level treatment effect is the difference in an individ-

ual’s outcome that would occur because this individual is given one treatment instead of another. In

other words, an individual-level treatment effect is the difference between two potential outcomes for

an individual.

For example, the blood pressure an individual would obtain after taking a pill minus the blood pressure

an individual would obtain had that person not taken the pill is the individual-level treatment effect

of the pill on blood pressure.

inverse-probability-weighted estimators. Inverse-probability-weighted (IPW) estimators use weighted

averages of the observed outcome variable to estimate the potential-outcome means. The weights are

the reciprocals of the treatment probabilities estimated by a treatment model.

inverse-probability-weighted regression-adjustment estimators.

Inverse-probability-weighted regression-adjustment (IPWRA) estimators use the reciprocals of the es-

timated treatment probability as weights to estimate missing-data-corrected regression coefficients

that are subsequently used to compute the potential-outcome means.

IPW estimators. See inverse-probability-weighted estimators.

IPWRA estimators. See inverse-probability-weighted regression-adjustment estimators.

left-censored. See censored, left-censored, and right-censored.

left-truncation. See truncation, left-truncation, and right-truncation.

matching estimator. An estimator that compares differences between the outcomes of similar—that is,

matched—individuals. Each individual that receives a treatment is matched to a similar individual

that does not get the treatment, and the difference in their outcomes is used to estimate the individual-

level treatment effect. Likewise, each individual that does not receive a treatment is matched to a

similar individual that does get the treatment, and the difference in their outcomes is used to estimate

the individual-level treatment effect.

mediator. A mediator is an intermediary variable on the causal pathway between a treatment, or expo-

sure, and an outcome variable. For example, endorphin production may be a mediator in the rela-

tionship between exercise (the treatment) and well-being (the outcome). In this case, exercise affects

endorphin production, which, in turn, affects well-being.

multiple-record st data. See st data.
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multivalued treatment effect. A multivalued treatment refers to a treatment that has more than two

values. For example, a person could have taken a 20 mg dose of a drug, a 40 mg dose of the drug, or

not taken the drug at all.

natural direct effect. The natural direct effect (NDE) is the average direct effect of the treatment on the

outcome when the mediator is held at its value associated with being untreated.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via the

production of endorphins. The natural direct effect measures the average difference in the potential

outcomes for well-being when everyone in the population exercised but with endorphins set to levels

that would be observed if no one exercised compared with when no one in the population exercised.

In the causal mediation literature, the natural direct effect is also referred to as the pure natural direct

effect; it is synonymous with the average direct treatment effect.

natural indirect effect. The natural indirect effect (NIE) is the average indirect effect through a mediator.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via the

production of endorphins. The natural indirect effect measures the average difference in the potential

outcomes for well-being when everyone in the population exercised compared with when everyone

exercised but with endorphins set to levels that would be observed if no one exercised. In the causal

mediation literature, the natural indirect effect is also referred to as the total natural indirect effect; it

is synonymous with the average indirect treatment effect.

NDE. See natural direct effect.

nearest-neighbor matching. Nearest-neighbor matching uses the distance between observed variables

to find similar individuals.

NIE. See natural indirect effect.

observational data. In observational data, treatment assignment is not controlled by those who collected

the data; thus some common variables affect treatment assignment and treatment-specific outcomes.

outcome model. An outcome model is a model used to predict the outcome as a function of covariates

and parameters.

overlap assumption. The overlap assumption requires that each individual have a positive probability

of each possible treatment level.

PNIE. See pure natural indirect effect.

POMs. See potential-outcome means.

potential outcome. The potential outcome is the outcome an individual would obtain if given a specific

treatment.

For example, an individual has one potential blood pressure after taking a pill and another potential

blood pressure had that person not taken the pill.

potential-outcome means. The potential-outcome means refers to the means of the potential outcomes

for a specific treatment level.

The mean blood pressure if everyone takes a pill and the mean blood pressure if no one takes a pill

are two examples.

The average treatment effect is the difference between potential-outcome mean for the treated and the

potential-outcome mean for the not treated.

propensity score. The propensity score is the probability that an individual receives a treatment.
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propensity-score matching. Propensity-score matching uses the distance between estimated propensity

scores to find similar individuals.

pure natural indirect effect. The pure natural indirect effect (PNIE) is the average indirect effect of a

mediator under the control condition.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via

the production of endorphins. The pure natural indirect effect measures the average difference in

the potential outcomes for well-being when no one in the population exercised but with endorphins

set to levels that would be observed if everyone exercised compared with the case when no one in

the population exercised. The pure natural indirect effect is synonymous with the average indirect

treatment effect with respect to controls.

regression-adjustment estimators. Regression-adjustment estimators use means of predicted outcomes

for each treatment level to estimate each potential-outcome mean.

right-censored. See censored, left-censored, and right-censored.

right-truncation. See truncation, left-truncation, and right-truncation.

selection-on-observables. See conditional-independence assumption.

shape parameter. A shape parameter governs the shape of a probability distribution. One example is

the parameter 𝑝 of the Weibull model.

single-record st data. See st data.

smooth treatment-effects estimator. A smooth treatment-effects estimator is a smooth function of the

data so that standard methods approximate the distribution of the estimator. The RA, IPW, AIPW, and

IPWRA estimators are all smooth treatment-effects estimators while the nearest-neighbor matching

estimator and the propensity-score matching estimator are not.

sorted group average treatment effect. The sorted group average treatment effect (GATES) computes the

average treatment effect conditional on being in one of the groups when using a prespecified number

of groups. The groups are determined by quantiles of individual-level treatment-effects values.

st data. st stands for survival time. In survival-time data, each observation represents a span of survival,

recorded in variables 𝑡0 and 𝑡. For instance, if in an observation 𝑡0 were 3 and 𝑡 were 5, the span
would be (𝑡0, 𝑡 ], meaning from just after 𝑡0 up to and including 𝑡.
Sometimes variable 𝑡0 is not recorded; 𝑡0 is then assumed to be 0. In such a dataset, an observation

that had 𝑡 = 5 would record the span (0, 5 ].
Each observation also includes a variable 𝑑, called the failure variable, which contains 0 or nonzero
(typically, 1). The failure variable records what happened at the end of the span: 0, the subject was

still alive (had not yet failed) or 1, the subject died (failed).

Sometimes variable 𝑑 is not recorded; 𝑑 is then assumed to be 1. In such a dataset, all time-span

observations would be assumed to end in failure.

Finally, each observation in an st dataset can record the entire history of a subject or each can record

a part of the history. In the latter case, groups of observations record the full history. One observation

might record the period (0, 5 ] and the next, (5, 8 ]. In such cases, there is a variable ID that records the

subject for which the observation records a time span. Such data are called multiple-record st data.

When each observation records the entire history of a subject, the data are called single-record st data.

In the single-record case, the ID variable is optional.

See [ST] stset.
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survival-time data. See st data.

survivor function. Also known as the survivorship function and the survival function, the survivor

function, 𝑆(𝑡), is 1) the probability of surviving beyond time 𝑡, or equivalently, 2) the probability
that there is no failure event prior to 𝑡, 3) the proportion of the population surviving to time 𝑡, or
equivalently, 4) the reverse cumulative distribution function of 𝑇, the time to the failure event: 𝑆(𝑡) =
Pr(𝑇 > 𝑡). Also see hazard, cumulative hazard, and hazard ratio.

TE. See total effect.

TNDE. See total natural direct effect.

total effect. The total effect (TE) is the average difference in outcomes that we expect when everyone

receives the treatment versus when no one receives the treatment. In the causal mediation litera-

ture, the TE is also referred to as the total average treatment effect and the marginal total effect; it is

synonymous with the average treatment effect.

total natural direct effect. The total natural direct effect (TNDE) is the average direct treatment effect

when the mediator is held at its value associated with being treated.

For example, suppose that exercise has a direct effect on well-being as well as an indirect effect via

the production of endorphins. The total natural direct effect measures the average difference in the

potential outcomes for well-being when everyone in the population exercised compared with when

no one exercised but with endorphins set to levels that would be observed if everyone exercised. The

total natural direct effect is synonymous with the average direct treatment effect with respect to the

treated.

treatment model. A treatment model is a model used to predict treatment-assignment probabilities as a

function of covariates and parameters.

truncation, left-truncation, and right-truncation. In survival analysis, truncation occurs when subjects

are observed only if their failure times fall within a certain observational period of a study. Censoring,

on the other hand, occurs when subjects are observed for the whole duration of a study, but the exact

times of their failures are not known; it is known only that their failures occurred within a certain time

span.

Left-truncation occurs when subjects come under observation only if their failure times exceed some

time 𝑡𝑙. It is only because they did not fail before 𝑡𝑙 that we even knew about their existence. Left-

truncation differs from left-censoring in that, in the censored case, we know that the subject failed

before time 𝑡𝑙, but we just do not know exactly when.

Imagine a study of patient survival after surgery, where patients cannot enter the sample until they

have had a post-surgical test. The patients’ survival times will be left-truncated. This is a “delayed

entry” problem, one common type of left-truncation.

Right-truncation occurs when subjects come under observation only if their failure times do not ex-

ceed some time 𝑡𝑟. Right-truncated data typically occur in registries. For example, a cancer registry

includes only subjects who developed a cancer by a certain time, and thus survival data from this

registry will be right-truncated.

unconfoundedness. See conditional-independence assumption.

weighted-regression-adjustment estimator. Weighted-regression-adjustment estimators use means of

predicted outcomes for each treatment level to estimate each potential-outcome mean. The weights

are used to estimate censoring-adjusted regression coefficients.



Subject and author index

See the combined subject index and the combined author index in the Stata Index.
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