
Title stata.com

Intro — Introduction to Bayesian model averaging

Description Remarks and examples References Also see

Description
This entry provides a software-free introduction to Bayesian model averaging (BMA). See

[BMA] BMA commands for a suite of commands to perform BMA. Also see [BAYES] Intro for
an introduction to Bayesian analysis.

Remarks and examples stata.com

Remarks are presented under the following headings:

Brief motivation
What is model averaging and why do we need it?
Bayesian model averaging (BMA)
Concepts of BMA
Usage of BMA
BMA versus frequentist model averaging
Computational methods for BMA
Motivating examples
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Brief background and literature review

Brief motivation

Model averaging is a statistical approach that accounts for model uncertainty in your analysis.
Instead of relying on just one model, model averaging averages results over multiple plausible models
based on the observed data. In Bayesian model averaging (BMA), the “plausibility” of the model is
described by the posterior model probability, which is determined using the fundamental Bayesian
principles—the Bayes theorem—and applied universally to all data analyses.

Model averaging can be used to account for model uncertainty when estimating model parameters
and predicting new observations to avoid overly optimistic conclusions. It is particularly useful in
applications with several plausible models, where there is no one definitive reason to choose a particular
model over the others. But even if choosing a single model is the end goal, model averaging can be
beneficial. For instance, BMA provides a principled way to identify important models and predictors
within the considered classes of models. Its framework allows you to learn about interrelations
between different predictors in terms of their tendency to appear in a model together, separately, or
independently. It can be used to evaluate the sensitivity of the final results to various assumptions
about the importance of different models and predictors. And it provides optimal predictions in the
log-score sense.
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2 Intro — Introduction to Bayesian model averaging

What is model averaging and why do we need it?

The concept of a model is central in statistics. Classical statistical inference is based on the
assumption that there is an underlying data-generating model (DGM), and we can infer its characteristics
from the observed data. Selecting an appropriate model for the problem at hand is the first and crucial
step in performing statistical analyses. In some applications, we may have a strong theoretical or
empirical evidence about the DGM. In other applications, usually of complex and unstable nature,
such as those in economics, psychology, and epidemiology, choosing a single reliable model can be
difficult. In such cases, it is important to have a principled way to account for the uncertainty in the
model-selection process. In practice, we are often interested in a particular property or quantity of the
DGM. The classical inferential approach involves choosing a model and estimating this quantity from
the observed data conditional on the chosen model. One drawback of working with a single model is
that we may assign more precision to our estimates than is supported by the data (Chatfield 1995 and
Draper 1995). In predictive inference, single-model approaches do not utilize all available information
and may be unstable; see, for example, Piironen and Vehtari (2017).

The model averaging approach is conceptually different. Instead of choosing one model, we
consider a list of candidate models. The quantity of interest is then estimated by an average across
individual model estimates. Averaging is weighed by how likely each model is. In this way, model
averaging accounts for the model-selection uncertainty.

The true DGM may or may not be in our list of candidate models. If it is, classical model-
selection approaches may work well. Otherwise, the larger the candidate model space is, the greater
the possibility of model selection to choose an incorrect model and make wrong conclusions. And
the selected model may change every time the new data become available. In model selection, it
may not be clear what constitutes a good candidate, given that the true model is unknown. Popular
information-based criteria such as the Bayesian information criterion measure how well a model fits
the data and include an additional penalty for its complexity. But a model often needs to be evaluated
based on its predictive performance. Improving predictive performance motivated a variety of methods
known as ensemble methods such as stacking (Wolpert 1992) and bagging (Breiman 1996). Model
averaging can be viewed as an ensemble method that improves predictive performance using optimal
combinations in the space of considered candidate models (Raftery and Zheng 2003).

Bayesian model averaging (BMA)

BMA (Leamer 1978) casts model averaging into a Bayesian framework. It provides a principled
way to define model weights as posterior model probabilities, which is universal to all data-generating
processes. BMA formulation emerges naturally as an application of a standard Bayesian predictive
approach to model averaging.

In BMA, model M is a random variable with prior P (M) distributed over some model space.
Given the observed data D, the likelihood of M is the probability of D with respect to M , P (D|M).
The posterior of M is then given by the Bayes theorem

P (M |D) =
P (D|M)P (M)∑

M∗ P (D|M∗)P (M∗)

where we assume that the model space is discrete and take the sum over it in the denominator.
Continuous model spaces are also possible but will not be considered here. The quantity P (D|M)
is known as the marginal likelihood of model M . And P (M |D) is known as the posterior model
probability and is a key quantity in BMA inference and prediction. Also see Concepts of BMA.

https://www.stata.com/manuals/bma.pdf#bmaIntroRemarksandexamplesConceptsofBMA
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Let Q be any quantity of interest that is not model specific; that is, it should have the same
interpretation across all models in the model space. Let QM be its estimator with respect to model
M . The BMA estimator of Q can be written as

QBMA =
∑
M

P (M |D)QM

The above formula follows from the fundamental BMA formula for the posterior distribution of Q
over the model space,

g(Q|D) =
∑
M

P (M |D)g(Q|D,M)

where g(Q|D,M) is the posterior distribution of Q for model M . Then, QBMA = E(Q|D) is the
posterior mean of Q, and QM = E(Q|D,M) is the posterior mean of Q for model M .

The variability of Q is described by the posterior variance of Q with respect to g(Q|D),

Var(Q|D) =
∑
M

P (M |D)Var(Q|D,M) +
∑
M

P (M |D) {E(Q|D,M)− E(Q|D)}2

where the second term estimates the additional uncertainty about the estimated Q across models.

In a regression context, the notion of model averaging has a more specific formulation—model
uncertainty arises mainly from the uncertainty of which predictors should be included in the model.

Let Y be an outcome variable with p potential predictors (regressors or covariates) x =
(X1, X2, . . . , Xp). Let D = {yi, x1i, x2i, . . . , xpi}ni=1 be a sample of observations on Y and
x. We are not sure which predictors describe Y best and consider any subset of x as a potential
candidate set. We can enumerate all subsets and denote the jth subset by xj . Then Mj , defined as
the model corresponding to xj , is an element of the discrete model space {Mj}2

p

j=1. Two typical
applications of BMA in this context are estimating regression coefficients and predicting Y from a
new observation x∗; also see Usage of BMA for other applications.

Let β̂Mj
be an estimate of a p× 1 regression coefficient vector β with respect to model Mj , in

which the coefficients for predictors not in the model are set to zero. Then, the BMA estimate of β is

β̂BMA =

2p∑
j=1

P (Mj |D)β̂Mj

Given a new observation x∗, a new outcome value y∗ can be obtained from the BMA predictive
distribution, which is as a mixture of the model-specific predictive distributions,

pBMA(y
∗|x∗, D) =

2p∑
j=1

P (Mj |D)pj(y
∗|x∗, D,Mj)

where pj(y
∗|x∗, D,Mj) is the posterior predictive density of Y for model Mj . The above is a

special case of the standard definition of the Bayesian posterior predictive distribution.

https://www.stata.com/manuals/bma.pdf#bmaIntroRemarksandexamplesUsageofBMA
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4 Intro — Introduction to Bayesian model averaging

BMA has many appealing statistical properties, as detailed in Steel (2020). For instance, Raftery
and Zheng (2003) show that BMA point estimators and predictors minimize the mean squared error
weighted by the prior. Madigan and York (1995) verify that BMA estimators maximize predictive
ability, and Min and Zellner (1993) find that BMA performs better than any other model-choice
approach with respect to the log predictive-score.

BMA is built on Bayesian principles. Thus, it faces the same challenges as standard Bayesian
analyses with respect to the specification of priors and the intensity of the computations. We discuss
some of these challenges in more detail in the next section.

Concepts of BMA

Here we briefly describe some of the concepts essential to BMA. For details in the context of linear
regression, see Remarks and examples and Methods and formulas of [BMA] bmaregress. Also see
Hoeting et al. (1999), Fernández, Ley, and Steel (2001a), Moral-Benito (2015), Fragoso, Bertoli, and
Louzada (2018), and Steel (2020).

BMA applies standard Bayesian principles to model averaging. Thus, all concepts of Bayesian
analysis apply to BMA as well; see [BAYES] Intro. Compared with standard Bayesian analyses, which
condition on a model, BMA views a model as random and assumes a prior distribution for it.

Model space. The extent to which BMA can properly account for model uncertainty relies on the
construction of the model space. BMA results are conditional on the considered model space. If the
model space does not include important candidate models, BMA will not be able to consider them and
incorporate them in the results. The model space should incorporate any aspects of model uncertainty
that needs to be accounted for. For instance, if one is uncertain about various functional forms of
predictors, these functional forms (and possibly more) should be included in the model space. Ideally,
the model space should contain the DGM, but BMA was found to provide good results even when
it does not, as long as the model space is sufficiently large. In that case, BMA approximates the
true DGM by a combination of models within the considered class. See Steel (2020) for a detailed
discussion of the construction of the BMA model space.

Parameters of interest. When the goal of analysis is an estimation of a parameter of interest,
it is important that the parameter has the same interpretation across all models. For instance, see
Interpretation of BMA regression coefficients in Remarks and examples of [BMA] bmaregress.

Priors for models and model parameters. Specifying a prior distribution for a model parameter
is an integral part of a Bayesian model specification. BMA additionally specifies a prior distribution
for a model, typically, over a discrete model space. A variety of model priors and priors for model
parameters are suggested in the literature, both informative and noninformative, data agnostic and
data driven (Steel 2020).

In the regression context, commonly used priors, such as a Zellner’s prior with a fixed g parameter
for regression coefficients (Fernández, Ley, and Steel 2001a), provide exact computation of marginal
likelihoods. Although computationally convenient, these priors may not always provide the best
predictive performance. The application of g-priors with random g parameters (Ley and Steel 2012)
allows for more flexible BMA analysis but complicates the model specification and simulation. See
Introduction to BMA for linear regression in Remarks and examples of [BMA] bmaregress for the
discussion of various priors in the context of BMA linear regression.

As with any Bayesian analysis, in the absence of strong information in the data about the DGM
and model parameters, BMA results can be sensitive to the choice of priors. Sensitivity analysis is
recommended to investigate the impact of priors on the results.

https://www.stata.com/manuals/bmaglossary.pdf#bmaGlossaryLPS
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressMethodsandformulas
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bayesintro.pdf#bayesIntro
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesIntroductiontoBMAforlinearregression
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesbmaregpriors
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Estimation: Model enumeration and Markov chain Monte Carlo (MCMC) sampling. Depend-
ing on the model complexity, it may be feasible to enumerate and consider all the models in the
defined space. In this case, the model space is fully explored. This is rarely feasible in practice.
More commonly, MCMC sampling is used to explore the model space more efficiently by considering
only more likely models given the observed data, for example, the MCMC model composition (MC3)
sampling proposed by Madigan and York (1995). In addition to sampling of the model space, we may
also need to use MCMC sampling for model parameters when analytical expressions for their posterior
distributions are not available, which is common in practice. When MCMC sampling is used, it is
important to verify the convergence of MCMC; see Convergence of BMA in Remarks and examples
of [BMA] bmaregress in the context of linear regression.

Posterior model probability (PMP). The PMP is central to all BMA analyses. It represents the
probability of a model given the observed data and model’s prior. It is used as a weight in BMA
estimates of parameters of interest and predictions. It is used to identify influential models. And
it is used to compute the posterior inclusion probability (PIP), which is used to identify important
predictors. In special cases, the PMP can be estimated exactly or analytically, in which case we refer
to it as the analytical PMP. More commonly, however, it is estimated based on the MCMC sample of
models, in which case we refer to it as the frequency PMP. Models with high PMPs are of interest in
BMA analysis.

Posterior inclusion probability (PIP). The PIP is the probability that a predictor is included in
a model computed over the model space given the observed data and the prior model probability.
It measures the importance of a predictor. Because the computation of the PIP is based on the PMP,
we also distinguish between the analytical PIP and frequency PIP. Predictors with high PIP values,
commonly above 0.5, are considered important predictors.

Jointness. Jointness is a concept particular to BMA. Because BMA considers multiple models, it can
estimate the tendency of predictors to be included jointly or exclusively across the models. Jointness
means that predictors tend to be included together in many models. Such predictors are then viewed
as complements, in the sense that their joint inclusion provides additional information in explaining
the outcome. Disjointness means that whenever one predictor is included in a model, the other tends
to be excluded. Such predictors are viewed as substitutes, meaning that only one of them is needed
to explain the outcome.

Inference. In the context of BMA, the inference focuses on exploring influential models, models
with high PMPs, and important predictors, predictors with high PIPs. The jointness or disjointness
of predictors is often also of interest. When averaging across the model space is applicable for a
parameter of interest, the parameter estimation is performed with respect to the posterior distribution
over the model space. Although the inference accounts for model uncertainty, it is important to
remember that it is still conditional on the explored model space.

Prediction. BMA is commonly used for prediction because of its theoretical properties and empirical
performance. When the model space contains the DGM, the BMA predictive mean minimizes the expected
squared error loss (Min and Zellner 1993). Madigan and Raftery (1994) compare the BMA predictive
performance with that of a single model using the log predictive-score (LPS) and conclude that BMA
performs at least as well. See Steel (2020) for more information.

Log predictive-score (LPS). LPS is the negative of the logarithm of the predictive density evaluated
at an observation (Good 1952). It is used to assess predictive performance of a model in the context
of BMA (for example, Madigan, Gavrin, and Raftery [1995] and Fernández, Ley, and Steel [2001a]).
It can also be used to compare model fit.

Diagnostics. Model diagnostics are just as important for BMA as they are for a single-model analysis.
Any model checks that are commonly done with one model should be performed during BMA analysis
as well. Because of the many models, the application of such checks is not as straightforward. The

https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesConvergenceofBMA
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
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6 Intro — Introduction to Bayesian model averaging

literature recommends that the checks be performed for the model with all predictors before the
estimation and for all high-PMP models after the estimation. For BMA, additional diagnostics include
checking MCMC convergence and performing a sensitivity analysis to the prior choices.

Sensitivity analysis. As with any Bayesian analysis, prior sensitivity analysis is important for
BMA. In the BMA context, the sensitivity analysis should be performed for both model priors and
model parameter priors.

Usage of BMA

Fragoso, Bertoli, and Louzada (2018) identified several main applications of BMA across various
disciplines such as “model choice”, “combination of multiple models for prediction”, and “combined
estimation”. We will refer to these simply as model choice, parameter estimation, and prediction.

BMA was motivated in the context of prediction to improve out-of-sample predictive performance of
a model (for example, Hoeting et al. [1999]). BMA can be shown to produce optimal predictions with
respect to the LPS (Min and Zellner 1993) by averaging predictions from multiple models and weighing
them by the model’s importance. The model’s importance is estimated in a principled Bayesian way
as a PMP and applied universally to all data-generating processes. A few applications of BMA for
prediction can be found in Madigan and Raftery (1994), Raftery, Madigan, and Volinsky (1995),
Volinsky et al. (1997), Hoeting et al. (1999), Tobias and Li (2004), Kaplan and Lee (2018), and
Darwen (2019).

The use of BMA for model choice amounts to identifying important models and predictors. The
importance of a model is based on the estimated PMP. And the importance of a predictor is based
on the estimated PIP, the probability that this predictor is included in a model estimated over the
considered model space. Some of the applications of model choice include Raftery, Madigan, and
Hoeting (1997), Hoeting et al. (1999), Fernández, Ley, and Steel (2001b), Eicher, Papageorgiou, and
Raftery (2011), Moral-Benito (2015), Arin and Braunfels (2018), and Peisker (2023).

BMA is also used to estimate a parameter common to all models. As with prediction, the BMA
estimate is a weighted average of the model-specific estimates with weights defined by PMPs. For
instance, see Hoeting et al. (1999), Koop (2003), Yin and Yuan (2009), Montgomery and Nyhan (2010),
and Moral-Benito (2015). But be mindful when using BMA to estimate partial regression coefficients
in a linear regression (Draper 1999; Banner and Higgs 2017); see Interpretation of BMA regression
coefficients in Remarks and examples of [BMA] bmaregress.

Wasserman (2000) also shows how to use BMA to perform Bayesian variable selection.

See Fragoso, Bertoli, and Louzada (2018) for more references and discussion of the BMA usage
in different research areas.

BMA versus frequentist model averaging

Frequentist model averaging (FMA) is an inferential procedure based on the so-called FMA estimator,

β̂FMA =

2p∑
j=1

ωjβ̂j

where 0 ≤ ωj ≤ 1,
∑2p

j=1 ωj = 1, and β̂j is an estimator, usually ordinary least squares, of

regression parameters for model Mj . The weights ωj’s are chosen such that β̂FMA has certain
asymptotic properties.

https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
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In contrast to BMA, where model estimators are weighted by PMPs, in FMA the weights are computed
for each model independently and then normalized. The most common choice is ωj ∝ exp(−0.5Ij)
(Buckland, Burnham, and Augustin 1997), where Ij is an information criterion of the form

Ij = −2 log(L̂j) + ψj

This approach includes popular choices such as the Akaike information criterion, ψj = 2pj , and
Bayesian information criterion, ψj = pj log(n), where pj is the number of predictors in the jth model.
Other approaches include weights based on Mallow’s criterion (Hansen 2007) and cross-validation
(Hansen and Racine 2012). A more in-depth exploration of the FMA, as applied in economics in
particular, can be found in Moral-Benito (2015).

Compared with FMA, BMA provides a unified and intuitive way to interpret the model’s and
predictor’s importance by using the respective PMPs and PIPs. In fact, the PMPs, which are derived
from fundamental Bayesian principles, are used as weights in all BMA computations. BMA can also
handle larger model spaces more easily by using efficient MCMC sampling algorithms. Additionally,
BMA benefits from several appealing statistical properties such as calibration of credible intervals and
optimal prediction in the log-score sense. See Steel (2020) for details.

See De Luca and Magnus (2011) for the implementation of the weighted-average least-squares
estimator in Stata.

Computational methods for BMA

For a long time, the use of BMA in practice has been hindered by the lack of computationally
feasible estimation methods. Since then, a variety of specialized MCMC methods have been developed
to facilitate Bayesian inference. A unique challenge of BMA is the complex nature of the posterior
domain—a discrete mixture of models with continuous domains of varying dimensions.

One of the first general sampling methods for BMA was the MC3 (Madigan and York 1995), which
is a stochastic method that moves through the model space by changing one predictor, or a group of
predictors, at a time.

The availability of the analytical form for the marginal likelihood in linear models leads to fast
and efficient MC3 sampling methods. However, analytical marginals are not available for generalized
linear models and for most linear BMA models that include hyperparameters such as g-priors. Ley and
Steel (2012) proposed an adaptive MC3 method applicable to the latter case. Other adaptive MCMC
methods are also available (Atchadé and Rosenthal 2005).

Motivating examples

Consider the following simulated dataset. There are n = 200 observations and p = 10 predictors.
Each predictor x1 through x10 is generated independently from a standard normal distribution. The
outcome y is generated according to the following regression model, which we refer to as our DGM,

y = 0.5 + 1.2× x2 + 5× x10+ ε

where ε ∼ N(0, 1) is a standard normal error term.



8 Intro — Introduction to Bayesian model averaging

. use https://www.stata-press.com/data/r18/bmaintro
(Simulated data for BMA example)

. summarize

Variable Obs Mean Std. dev. Min Max

y 200 .9944997 4.925052 -13.332 13.06587
x1 200 -.0187403 .9908957 -3.217909 2.606215
x2 200 -.0159491 1.098724 -2.999594 2.566395
x3 200 .080607 1.007036 -3.016552 3.020441
x4 200 .0324701 1.004683 -2.410378 2.391406

x5 200 -.0821737 .9866885 -2.543018 2.133524
x6 200 .0232265 1.006167 -2.567606 3.840835
x7 200 -.1121034 .9450883 -3.213471 1.885638
x8 200 -.0668903 .9713769 -2.871328 2.808912
x9 200 -.1629013 .9550258 -2.647837 2.472586

x10 200 .083902 .8905923 -2.660675 2.275681

We consider three toy examples. The first example briefly introduces BMA for linear regression
and compares it with standard linear regression. The second example compares the use of regression,
stepwise selection, lasso, and BMA for prediction. The third example revisits these tools in a more
challenging setting of n = p.

Examples are presented under the following headings:

Example 1: BMA linear regression
Example 2: BMA for prediction compared with other approaches
Example 3: BMA with small sample size and many predictors, n≤p

Example 1: BMA linear regression

We first use regress to fit a standard linear regression of y on x1 through x10. We specify the
predictors by using the shortcut varlist notation x1-x10:

. regress y x1-x10

Source SS df MS Number of obs = 200
F(10, 189) = 396.30

Model 4607.24837 10 460.724837 Prob > F = 0.0000
Residual 219.723235 189 1.1625568 R-squared = 0.9545

Adj R-squared = 0.9521
Total 4826.9716 199 24.2561387 Root MSE = 1.0782

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .0753537 .0781737 0.96 0.336 -.0788513 .2295587
x2 1.18854 .0716658 16.58 0.000 1.047172 1.329907
x3 -.1871012 .0789484 -2.37 0.019 -.3428344 -.0313679
x4 -.0459335 .0785503 -0.58 0.559 -.2008813 .1090144
x5 .0343498 .0793095 0.43 0.665 -.1220956 .1907953
x6 -.0149194 .0767357 -0.19 0.846 -.1662879 .136449
x7 .007174 .0831239 0.09 0.931 -.1567958 .1711437
x8 -.0384917 .0810626 -0.47 0.635 -.1983953 .1214119
x9 .0968948 .0817218 1.19 0.237 -.0643093 .2580989

x10 5.13251 .0877447 58.49 0.000 4.959426 5.305595
_cons .617996 .0791152 7.81 0.000 .4619337 .7740582

regress identifies the two true predictors x2 and x10 as “statistically significant” (with p-values less
than 0.000). The estimate of the coefficient for x2 is 1.19 with a standard error of 0.072, and the

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/u11.pdf#u11.4varnameandvarlists
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95% confidence interval (CI) is [1.05, 1.33], which agrees with the true value of 1.2. The estimated
coefficient for x10 is 5.13 with a standard error of 0.088, and the 95% CI is [4.96, 5.31], which agrees
with the true value of 5. These findings are consistent with our true DGM. regress also reports a
p-value of 0.019 for x3, which is not in the DGM, with an estimated coefficient of −0.19 and a 95%
CI of [−0.34,−0.03]. It might be tempting to use the reported p-values to infer the importance of
the predictors, but p-values do not have such interpretation.

Let’s now use bmaregress to perform BMA for a linear regression:

. bmaregress y x1-x10

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 9
Cons.: Noninformative Mean model size = 2.479
Coef.: Zellner’s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.272

y Mean Std. dev. Group PIP

x2 1.198105 .0733478 2 1
x10 5.08343 .0900953 10 1
x3 -.0352493 .0773309 3 .21123
x9 .004321 .0265725 9 .051516
x1 .0033937 .0232163 1 .046909
x4 -.0020407 .0188504 4 .039267
x5 .0005972 .0152443 5 .033015
x8 -.0005639 .0153214 8 .032742
x7 -8.23e-06 .015497 7 .032386
x6 -.0003648 .0143983 6 .032361

Always
_cons .5907923 .0804774 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.

We will describe only some of the more relevant information here, but see example 1 of
[BMA] bmaregress for details about the output of bmaregress.

bmaregress, with the default settings, considered all 210 = 1,024 possible models based on
10 predictors. Like regress, bmaregress identified the two true predictors, x2 and x10, with the
estimated PIPs of 1, labeled as PIP in the table. All other predictors have much lower PIP values, and
all but the PIP for x3 are below 10%. Unlike regress, we can use the PIP reported by bmaregress
to describe and compare the importance of predictors. PIP genuinely represents the probability of
a predictor being included in a model across the considered space of 1,024 possible models. For
instance, the PIP of 0.2 for x3 is much lower than that for x2 and x10, so we can conclude that this
predictor is not as important. Also, its BMA coefficient (posterior mean) of −0.035 is much closer to
0 than that from regress.

The BMA estimates of 1.2 (rounded) and 5.1 of the coefficients for x2 and x10, respectively,
are close to the true values of 1.2 and 5. The respective estimated posterior standard deviations,
0.073 and 0.090, are slightly larger than those from regress. This is expected because the BMA
estimates account for the uncertainty about which predictors should be included in the regression

https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesbmaregexatfirst
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
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model. bmaregress does not report credible intervals by default for computational reasons, but you
can obtain them as described in example 5 of [BMA] bmaregress. Also, with real-world observational
data, we should be mindful when interpreting BMA regression coefficients; see Interpretation of BMA
regression coefficients in Remarks and examples of [BMA] bmaregress.

Although BMA does not “select” a model, it does identify some of the influential models that
contribute more to the averaged results. In this example, we can already guess which model BMA
identified as the top model based on the reported PIP values by bmaregress, but let’s use bmastats
models to confirm:

. bmastats models

Computing model probabilities ...

Model summary Number of models:
Visited = 1,024

Reported = 5

Analytical PMP Model size

Rank
1 .6292 2
2 .1444 3
3 .0258 3
4 .0246 3
5 .01996 3

Variable-inclusion summary

Rank Rank Rank Rank Rank
1 2 3 4 5

x2 x x x x x
x10 x x x x x
x3 x
x9 x
x1 x
x4 x

Legend:
x - estimated

As anticipated, the top model with a PMP, Analytical PMP, of 0.63 is the model that contains x2
and x10. The next plausible model based on our sample is the one that also includes x3, but its PMP
of 0.14 is much lower.

In the above, bmaregress used the default priors. These priors are offered for convenience and
should be carefully evaluated in each application. Also, sensitivity analysis should be performed to
evaluate the impact of different priors on the results; see, for example, example 11 of [BMA] bmaregress.

In BMA, the variance of the prior for the regression coefficients is proportional to the so-called g
parameter. By default, g has a fixed value of max(n, p2), which in our example is g = n = 200. We
can relax this by specifying a higher value for g, say, 1,000. This will reduce the shrinkage effect on
the coefficients and generally produce estimates that are closer to the ordinary least-squares estimates.

Another important benefit of BMA is its ability to control model uncertainty through the model
prior. If, for example, we had a prior knowledge that predictors x1 and x3 through x9 are unlikely to
be related to y, we could incorporate this knowledge in our BMA model. In the following specification,
we use the mprior() option to specify the binomial model prior with the inclusion probability of
0.1 for x1 and x3 through x9 and the inclusion probability of 0.5 for x2 and x10.

https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesbmaregexatcri
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesInterpretationofBMAregressioncoefficients
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamples
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
https://www.stata.com/manuals/bmabmastatsmodels.pdf#bmabmastatsmodels
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregressRemarksandexamplesbmaregexatmprior
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
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. bmaregress y x1-x10, mprior(binomial x2 x10 0.5 x1 x3-x9 0.1)

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 200
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Binomial, IP varies For CPMP >= .9 = 2
Cons.: Noninformative Mean model size = 2.129
Coef.: Zellner’s g

g: Benchmark, g = 200 Shrinkage, g/(1+g) = 0.9950
sigma2: Noninformative Mean sigma2 = 1.276

y Mean Std. dev. Group PIP

x2 1.200944 .0730381 2 1
x10 5.080663 .0899736 10 1
x3 -.0106068 .0452704 3 .064039
x9 .0009677 .0126993 9 .012195
x1 .0008208 .0115323 1 .01149

Always
_cons .5884159 .0803504 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default prior is used for parameter g.
Note: 5 predictors with PIP less than .01 not shown.

The effect of this model prior is that the posterior inclusion probability of predictors x1 and x3
through x9 is now less than 8%. There is also a slight improvement in the estimates of the intercept
and the coefficient for x2.

The inclusion of prior assumptions supported by science and empirical work in a model is part
of standard Bayesian analysis. With such priors, the BMA framework has the potential to provide a
more reliable inference than the classical regression approach in the situations where the data have
limited information about the model and its parameters.

Example 2: BMA for prediction compared with other approaches

In this example, we compute and compare predictions for the bmaintro dataset by using the
following methods: linear regression, regress (see [R] regress); stepwise selection with linear
regression, the stepwise prefix (see [R] stepwise); linear lasso variable selection, lasso linear
(see [LASSO] lasso); and BMA linear regression, bmaregress (see [BMA] bmaregress).

To compare predictive performance of the models, we split our dataset into two equal samples: one
for “training” the model (used for fitting) and the other for “testing” the model (used for prediction).
We store the resulting sample identifier in the sample variable. And we specify a random-number
seed for reproducibility.

. splitsample, generate(sample) nsplit(2) rseed(50)

Next, we fit each of the four commands using the training data, if sample == 1, and compute
predictions using the test data, if sample == 2.

We start with regress to fit a linear regression and predict to obtain the linear predictor for y,
which we store in the yreg variable.

https://www.stata.com/manuals/rregress.pdf#rregress
https://www.stata.com/manuals/rstepwise.pdf#rstepwise
https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/rregress.pdf#rregress
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. regress y x1-x10 if sample == 1

Source SS df MS Number of obs = 100
F(10, 89) = 199.77

Model 2353.4317 10 235.34317 Prob > F = 0.0000
Residual 104.84695 89 1.17805562 R-squared = 0.9573

Adj R-squared = 0.9526
Total 2458.27865 99 24.8310975 Root MSE = 1.0854

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .2278093 .1115858 2.04 0.044 .0060906 .449528
x2 1.040423 .1084559 9.59 0.000 .824924 1.255923
x3 -.2557993 .1140321 -2.24 0.027 -.4823787 -.0292199
x4 -.0182061 .1175268 -0.15 0.877 -.2517293 .2153171
x5 .0389276 .1187846 0.33 0.744 -.1970948 .27495
x6 .0120724 .1107333 0.11 0.913 -.2079523 .2320971
x7 .0792028 .1378848 0.57 0.567 -.1947713 .3531768
x8 -.0841665 .1259057 -0.67 0.506 -.3343384 .1660054
x9 .0039031 .1181302 0.03 0.974 -.2308191 .2386254

x10 5.281029 .1298317 40.68 0.000 5.023056 5.539002
_cons .5726978 .1175907 4.87 0.000 .3390475 .8063481

. predict yreg if sample == 2
(option xb assumed; fitted values)
(100 missing values generated)

Next, we use stepwise to perform stepwise backward selection with the significance level of 0.05
for the removal of a predictor from the model. And we use predict to obtain the linear predictor
from the selected model and store it in the ysw variable.

. stepwise, pr(.05): regress y x1-x10 if sample == 1

Wald test, begin with full model:
p = 0.9737 >= 0.0500, removing x9
p = 0.9134 >= 0.0500, removing x6
p = 0.8862 >= 0.0500, removing x4
p = 0.7456 >= 0.0500, removing x5
p = 0.5099 >= 0.0500, removing x8
p = 0.5102 >= 0.0500, removing x7

Source SS df MS Number of obs = 100
F(4, 95) = 527.09

Model 2352.28746 4 588.071866 Prob > F = 0.0000
Residual 105.991183 95 1.11569666 R-squared = 0.9569

Adj R-squared = 0.9551
Total 2458.27865 99 24.8310975 Root MSE = 1.0563

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 .2143505 .1062623 2.02 0.046 .0033932 .4253078
x2 1.038816 .1028192 10.10 0.000 .8346945 1.242938
x3 -.2465552 .1087814 -2.27 0.026 -.4625137 -.0305968

x10 5.285204 .1231611 42.91 0.000 5.040698 5.52971
_cons .5527609 .1064491 5.19 0.000 .3414327 .7640891

. predict ysw if sample == 2
(option xb assumed; fitted values)
(100 missing values generated)

https://www.stata.com/manuals/rstepwise.pdf#rstepwise
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We then use lasso for the linear model followed by lassocoef to see the coefficient estimates
from the selected model and by predict to compute and store the penalized linear predictor in the
ylasso variable.

. lasso linear y x1-x10 if sample == 1, rseed(18) nolog

Lasso linear model No. of obs = 100
No. of covariates = 10

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 4.697569 0 -0.0072 24.75885
43 lambda before .0943851 4 0.9506 1.213251

* 44 selected lambda .0860002 4 0.9507 1.211054
45 lambda after .0783602 4 0.9507 1.211522
48 last lambda .0592766 5 0.9503 1.220737

* lambda selected by cross-validation.

. lassocoef, display(coef) nolegend

active

x1 .1167579
x2 1.051272
x3 -.1659852

x10 4.53756
_cons 0

. predict ylasso if sample == 2
(options xb penalized assumed; linear prediction with penalized coefficients)

Finally, we use bmaregress to fit a BMA linear regression followed by bmapredict to compute
the posterior predictive mean and store it in the ybma variable.

https://www.stata.com/manuals/lassolasso.pdf#lassolasso
https://www.stata.com/manuals/bmabmaregress.pdf#bmabmaregress
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
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. bmaregress y x1-x10 if sample == 1

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 100
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 17
Cons.: Noninformative Mean model size = 2.804
Coef.: Zellner’s g

g: Benchmark, g = 100 Shrinkage, g/(1+g) = 0.9901
sigma2: Noninformative Mean sigma2 = 1.412

y Mean Std. dev. Group PIP

x10 5.18159 .1381456 10 1
x2 1.068169 .115504 2 1
x3 -.0676021 .1264303 3 .27554
x1 .0439351 .1014456 1 .20554
x8 -.0043739 .0369172 8 .05923
x9 -.0020804 .0305354 9 .054026
x7 .0022291 .0354666 7 .053837
x5 .0017863 .0301671 5 .053101
x6 .0004583 .0266441 6 .051342
x4 -.0000354 .0281472 4 .051285

Always
_cons .5575281 .1202808 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.

. bmapredict ybma if sample == 2, mean
note: computing analytical posterior predictive means.

We now compute the mean squared error for each of the four predictions:

. generate mse_y = (y-yreg)^2
(100 missing values generated)

. generate mse_sw = (y-ysw)^2
(100 missing values generated)

. generate mse_lasso = (y-ylasso)^2
(100 missing values generated)

. generate mse_bma = (y-ybma)^2
(100 missing values generated)

. summarize mse*

Variable Obs Mean Std. dev. Min Max

mse_y 100 1.315471 1.544705 .0006445 8.494073
mse_sw 100 1.295875 1.57022 .0000219 8.754056

mse_lasso 100 1.246921 1.507352 .0003377 7.452369
mse_bma 100 1.174436 1.375909 .0002316 5.69697

The BMA prediction has the lowest mean squared error. Of course, a proper comparison of the
techniques requires a carefully designed simulation study.
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Example 3: BMA with small sample size and many predictors, n ≤ p

Let’s now consider a case when the number of observations is too small relative to the number of
predictors.

. use https://www.stata-press.com/data/r18/bmaintrosmall, clear
(Simulated data for BMA example, small sample)

. notes list y

y:
1. y = .5 + 1.2*x2 + 5*x10 + rnormal()

. summarize

Variable Obs Mean Std. dev. Min Max

y 10 .0976614 4.145433 -5.263075 6.823442
x1 10 -.2640087 1.147843 -2.680089 1.069156
x2 10 -.5486203 1.202882 -2.306713 1.269136
x3 10 .4727975 1.193019 -.9573489 3.020441
x4 10 -.0216079 .8695972 -1.82316 1.216567

x5 10 .2634739 .9095448 -1.28917 1.439632
x6 10 .091497 1.36508 -2.567606 1.809207
x7 10 .3522653 1.033754 -1.115946 1.885638
x8 10 -.1419826 .4697729 -.8331077 .6677282
x9 10 -.0343085 1.213427 -2.035336 1.647427

x10 10 -.0635723 .7551339 -1.023638 1.19934

In our toy example, we have only 10 observations, which is too small to make any reliable inferential
conclusions. But we use it here for demonstration purposes to avoid dealing with too many variables.
In practice, one can imagine datasets with, say, 100 observations and more than 100 potential predictors
of which only a few are important in explaining the outcome, and we would like to investigate which
ones. The analysis below can be easily adapted to datasets with more observations and variables.

Considering that the number of predictors in our dataset equals the sample size, we expect the
traditional linear regression analysis and stepwise selection to fail. And they do.

. regress y x1-x10
note: x10 omitted because of collinearity.

Source SS df MS Number of obs = 10
F(9, 0) = .

Model 154.661546 9 17.1846162 Prob > F = .
Residual 0 0 . R-squared = 1.0000

Adj R-squared = .
Total 154.661546 9 17.1846162 Root MSE = 0

y Coefficient Std. err. t P>|t| [95% conf. interval]

x1 -4.475056 . . . . .
x2 2.618239 . . . . .
x3 -3.52965 . . . . .
x4 -3.814989 . . . . .
x5 -.1365321 . . . . .
x6 1.262926 . . . . .
x7 1.092976 . . . . .
x8 -2.792013 . . . . .
x9 -.7586842 . . . . .

x10 0 (omitted)
_cons 1.051957 . . . . .
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Because of insufficient sample size, regress arbitrarily omits one of the highest collinear predictors
from the model because of collinearity. This happens to be one of the important predictors, x10.
Also, as expected, regress fails to produce standard errors and p-values for the coefficients.

stepwise is not designed for n ≤ p and errors out.

We run lasso linear and compute predictions as before in example 2, except we use the
same sample for fitting and prediction. Because of the small sample size, checking the out-of-
sample (predictive) performance of the models is not feasible. Instead, we compare their in-sample
performance, also known as model fit.

. lasso linear y x1-x10, rseed(18) nolog

Lasso linear model No. of obs = 10
No. of covariates = 10

Selection: Cross-validation No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda 3.539901 0 -0.2057 18.64734
55 lambda before .2871323 3 0.8906 1.692064

* 56 selected lambda .2740817 3 0.8907 1.690632
57 lambda after .2616242 3 0.8907 1.691032
60 last lambda .2275474 3 0.8897 1.70528

* lambda selected by cross-validation.

. lassocoef, display(coef) nolegend

active

x2 1.257819
x3 -.124988

x10 3.152851
_cons 0

. predict ylasso
(options xb penalized assumed; linear prediction with penalized coefficients)

The penalized coefficient of 3.15 for x10 is not as close to the true value of 5. However, when the
goal of the analysis is the optimal prediction, the actual coefficient estimates are of limited interest.
And, in the context of lasso, it would not be appropriate to use these penalized coefficient estimates
for inference anyway; see, for instance, [LASSO] dsregress instead.

We now fit BMA linear regression and compute predictions by using bmaregress and bmapredict,
respectively.

. bmaregress y x1-x10

Enumerating models ...
Computing model probabilities ...

Bayesian model averaging No. of obs = 10
Linear regression No. of predictors = 10
Model enumeration Groups = 10

Always = 0
Priors: No. of models = 1,024

Models: Beta-binomial(1, 1) For CPMP >= .9 = 47
Cons.: Noninformative Mean model size = 2.967
Coef.: Zellner’s g

g: Benchmark, g = 100 Shrinkage, g/(1+g) = 0.9901
sigma2: Noninformative Mean sigma2 = 0.916

https://www.stata.com/manuals/bma.pdf#bmaIntroRemarksandexamplesbmaintrosecond
https://www.stata.com/manuals/lassodsregress.pdf#lassodsregress
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y Mean Std. dev. Group PIP

x10 4.785368 .7709731 10 .99683
x2 1.353152 .5137089 2 .94675
x3 -.1178808 .4227608 3 .18263
x1 .0877212 .5042626 1 .17811
x6 .0642453 .2037918 6 .15993
x8 -.1180912 .7904259 8 .12465
x9 .0469446 .2233004 9 .11361
x7 -.0404475 .2257238 7 .10327
x4 -.0364019 .4581988 4 .099553
x5 -.0046 .0954065 5 .062103

Always
_cons 1.216777 .399357 0 1

Note: Coefficient posterior means and std. dev. estimated from 1,024 models.
Note: Default priors are used for models and parameter g.

. bmapredict ybma, mean
note: computing analytical posterior predictive means.

bmaregress still identifies the two important predictors, but the PIP estimates are now smaller—0.997
and 0.947 for x10 and x2, respectively—compared with the values of 1 from example 2. This is
expected given such a small sample size. In fact, a PIP as low as 0.5 would still qualify the predictor
as important. The posterior mean estimates of the coefficients, 4.79 and 1.35, are reasonably close to
their true values, 5 and 1.2, especially considering the small sample.

. generate mse_lasso = (y-ylasso)^2

. generate mse_bma = (y-ybma)^2

. summarize mse*

Variable Obs Mean Std. dev. Min Max

mse_lasso 10 .5736865 .7505244 .007729 2.541895
mse_bma 10 .3219035 .3677712 .0037272 1.186045

According to the smaller mean squared error, BMA produces predictions that are closer to the observed
values than lasso in this example. And, unlike lasso, BMA can produce credible intervals for the
predictions; see [BMA] bmapredict.

It is difficult to generalize the conclusions based on these simple examples to other more complex
situations, because we only looked at one dataset and one realization of the DGM. A proper simulation
study is needed to make more general conclusions. But our limited findings appear to agree with
some of the results reported in the literature.

Brief background and literature review

The initial development of the concept of model averaging was driven by the application problems,
which have not been considered by mainstream statisticians. Barnard (1963) was one of the first to use
a combination of models. His research was in quality-control methods with application to airline data.
An early work by Bates and Granger (1969) introduced the idea of model combinations to problems
of forecasting and influenced a string of follow-up articles, such as Newbold and Granger (1974) and
Winkler and Makridakis (1983). During the 1970s, the development of model averaging took place
mostly in economics research.

https://www.stata.com/manuals/bma.pdf#bmaIntroRemarksandexamplesbmaintrosecond
https://www.stata.com/manuals/bmabmapredict.pdf#bmabmapredict
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In statistical research, model averaging was also motivated by problems of prediction. Roberts (1965)
viewed marginal distributions, either prior or posterior, as predictive distributions suitable to answer
questions about model selection, interpretation, and validation. He suggested combining two models
based on two different elicited priors. His idea was generalized by Leamer (1978), who was particularly
interested in the uncertainty involved in model selection. Despite this early work, it took another two
decades of the theoretical work for BMA to become a principled statistical method (Draper 1995; Kass
and Wasserman 1995; and George 2014). Meanwhile, the developments in Bayesian computation,
such as MCMC sampling methods, allowed researchers to effectively apply BMA in practice (Madigan
and York 1995; Raftery 1996; Raftery, Madigan, and Volinsky 1995; and Hoeting et al. 1999).
Madigan and Raftery (1994) showed the optimal predictive performance of BMA for high-dimensional
contingency tables in comparison with model-selection methods. Clyde (1999) investigated prior
specification and model search strategies in BMA.

The popularity of BMA in various scientific disciplines grew substantially. Fragoso, Bertoli, and
Louzada (2018) provide a systematic review of published articles from 1996 to 2014. An in-depth
survey of model-averaging application to problems of ecology is presented in Dormann et al. (2018).
For application of BMA in political science, see Adams, Bishin, and Dow (2004) and Montgomery
and Nyhan (2010).

The use of model-averaging methods in economic research remains strong. The application of
BMA to problems of empirical microeconomics, with emphasis on big-data problems, is discussed in
Koop (2017). A general overview of the use of model averaging in economics is given by Steel (2020).
Among the questions in economic research, BMA has been traditionally applied to determining the
growth factors driving economic processes (Brock and Durlauf 2001; Fernández, Ley, and Steel 2001b;
Lenkoski, Eicher, and Raftery 2014; and Eicher and Newiak 2013). BMA is also a popular approach
in policy and decision-making evaluation (Brock, Durlauf, and West 2003). The benefit of BMA as a
tool for dealing with uncertainty in economic research is well documented in Marinacci (2015).

A survey of statistical methods accounting for model uncertainty demonstrates the advantage of
BMA over other popular model-selection methodologies (Porwal and Raftery 2022). For comparison
of BMA with other predictive methodologies, see Yao et al. (2018) and Piironen and Vehtari (2017).
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