
Title stata.com

bayesstats ppvalues — Bayesian predictive p-values and other predictive summaries

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

bayesstats ppvalues performs posterior predictive checking of the goodness of fit of a Bayesian
model. It computes posterior predictive p-values (PPPs) for functions of replicated outcomes produced
by bayespredict. PPPs measure the agreement between replicated and observed data. PPPs close
to 0 or 1 indicate lack of model fit. The command also reports other summary statistics related to
posterior predictive checking.

Quick start
Posterior predictive summaries of replicated outcomes

Bayesian predictions for all outcome variables after fitting a two-equation Bayesian model using
bayesmh

bayespredict {_ysim1} {_ysim2}, saving(prdata)

Posterior predictive summaries for the first replicated outcome
bayesstats ppvalues {_ysim} using prdata

Posterior predictive summaries for the simulated residuals of the first outcome
bayesstats ppvalues {_resid} using prdata

Posterior predictive summaries for both replicated outcomes
bayesstats ppvalues {_ysim1} {_ysim2} using prdata

Posterior predictive summaries for the first observation of the second replicated outcome squared
bayesstats ppvalues ({_ysim2[1]}^2) using prdata

Posterior predictive summaries for test statistics of replicated outcomes

Posterior predictive summaries for the maximum and minimum across observations of the second
replicated outcome

bayesstats ppvalues (y2max:@max({_ysim2})) (y2min:@min({_ysim2})) ///
using prdata

Posterior predictive summaries for the maximum and minimum across observations of the residuals
for the first outcome variable

bayesstats ppvalues (rmax:@max({_resid1})) (rmin:@min({_resid1})) ///
using prdata
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Menu
Statistics > Bayesian analysis > Posterior predictive p-values

Syntax

Posterior predictive summaries for replicated outcomes, residuals, and more

bayesstats ppvalues yspec
[

yspec . . .
]
using predfile

[
, options

]
Posterior predictive summaries for expressions of replicated outcomes, residuals, and more

bayesstats ppvalues (yexprspec)
[
(yexprspec) . . .

]
using predfile

[
, options

]
Posterior predictive summaries for Mata functions of replicated outcomes, residuals, and more

bayesstats ppvalues (funcspec)
[
(funcspec) . . .

]
using predfile

[
, options

]
Full syntax

bayesstats ppvalues predspec
[

predspec . . .
]
using predfile

[
, options

]
predfile is the name of the dataset created by bayespredict that contains prediction results.

yspec is {ysimspec | residspec | label}.
ysimspec is { ysim#} or { ysim#[numlist]}, where { ysim#} refers to all observations of the #th

replicated outcome and { ysim#[numlist]} refers to the selected observations, numlist, of the #th
replicated outcome. { ysim} is a synonym for { ysim1}.

residspec is { resid#} or { resid#[numlist]}, where { resid#} refers to all residuals of the
#th replicated outcome and { resid#[numlist]} refers to the selected residuals, numlist, of the
#th replicated outcome. { resid} is a synonym for { resid1}.

label is the name of the function simulated using bayespredict.

With large datasets, specifications { ysim#} and { resid#} may use a lot of time and memory and
should be avoided. See Generating and saving simulated outcomes in [BAYES] bayespredict.

yexprspec is
[

exprlabel:
]
yexpr, where exprlabel is a valid Stata name and yexpr is a scalar expression

that may contain individual observations of simulated outcomes, { ysim#[#]}; individual expected
outcome values, { mu#[#]}; individual simulated residuals, { resid#[#]}; and other scalar
predictions, {label}.

funcspec is
[

label:
]
@func(arg1

[
, arg2

]
), where label is a valid Stata name; func is an official or user-

defined Mata function that operates on column vectors and returns a real scalar; and arg1 and arg2
are one of { ysim

[
#
]
}, { resid

[
#
]
}, or { mu

[
#
]
}. arg2 is primarily for use with user-defined

Mata functions; see Defining test statistics using Mata functions in [BAYES] bayespredict.

predspec is one of yspec, (yexprspec), or (funcspec). See Different ways of specifying predictions
and their functions in [BAYES] Bayesian postestimation.
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options Description

∗chains( all | numlist) specify which chains to use for computation; default is chains( all)
∗sepchains compute results separately for each chain
nolegend suppress table legend

∗Options chains() and sepchains are relevant only when option nchains() is used with bayesmh.
collect is allowed; see [U] 11.1.10 Prefix commands.

Options

chains( all | numlist) specifies which chains from the MCMC sample to use for computation. The
default is chains( all) or to use all simulated chains. Using multiple chains, provided the chains
have converged, generally improves MCMC summary statistics. Option chains() is relevant only
when option nchains() is specified with bayesmh.

sepchains specifies that the results be computed separately for each chain. The default is to compute
results using all chains as determined by option chains(). Option sepchains is relevant only
when option nchains() is specified with bayesmh.

nolegend suppresses the display of the table legend, which identifies the rows of the table with the
expressions they represent.

Remarks and examples stata.com

Remarks are presented under the following headings:
Posterior predictive checks
PPPs
Nonlinear effect of labor and capital on companies’ output

Posterior predictive checks

Posterior predictive checks, or model checks, are graphical and quantitative methods for comparing
observed and replicated outcomes to assess goodness of fit of a Bayesian model. See Box (1980),
Zellner (1975), West (1986), Gelman, Meng, and Stern (1996), and Gelman and Rubin (1992) for
historical remarks and more in-depth discussions.

Replicated outcomes are outcome values that are simulated from the posterior predictive distribution
using the observed covariate data; see Overview of Bayesian predictions and Methods and formulas in
[BAYES] bayespredict. The distribution of replicated outcomes or its various summaries are compared
with those of the observed outcomes. If they are similar, the Bayesian model is considered to fit the
observed data well.

One of the graphical model checks uses quantile–quantile plots to compare observed and replicated
residuals. These plots reveal misspecifications of the error distribution of a model. Histograms are
commonly used to compare the distributions of the observed and replicated outcomes. More formally,
the so-called PPPs, which we describe in the next section, are used to quantify the discrepancy between
the summaries of the observed and replicated data.

https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
https://www.stata.com/manuals/bayesbayesmh.pdf#bayesbayesmh
http://stata.com
https://www.stata.com/manuals/bayesglossary.pdf#bayesGlossaryposterior_predictive_distribution
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesOverviewofBayesianpredictions
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulas
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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PPPs
The notion of a PPP was introduced by Rubin (1984) as a Bayesian version of the classical

p-value. The role of p-values in classical hypothesis testing is to quantify the discrepancy between
the observed sample and population quantities. Test statistics, which are scalar functions of a sample,
are commonly used as discrepancy measures. The p-value is defined as the probability to obtain a
value of the test statistic as or more extreme than its observed value if the null hypothesis is true.
This probability is computed with respect to the sampling distribution of the test statistic.

In a Bayesian setting, the discrepancy between the model and the observed data is measured by test
quantities, which are scalar functions of a sample and model parameters. A test statistic is a special
case of a test quantity that depends only on the sample. The distribution of a test quantity is defined
with respect to the posterior predictive distribution of the replicated data and posterior distribution of
model parameters. A PPP (or a Bayesian p-value or a Bayesian predictive p-value) is then defined as
the probability that a test quantity for the replicated data could be as or more extreme than for the
observed data. You can think of a PPP as a classical p-value averaged over the posterior distribution
(Meng 1994). For more information about PPPs, see Tsui and Weerahandi (1989), Gelman, Meng,
and Stern (1996), and Gelman et al. (2014), among others.

One of the advantages of PPPs over their classical counterparts is that they automatically handle
nuisance parameters by averaging over the posterior distribution of all model parameters. In contrast,
classical p-values are conditional on fixed model parameters, typically MLEs. Also, PPPs are not
defined conditional on the null hypothesis being true and can be viewed simply as probabilities of
model misfit. Values of PPPs close to zero or one indicate lack of fit. For a well-fitting model, the
PPP should, ideally, be close to 0.5, although values between 0.05 and 0.95 are often considered
acceptable in the literature (Gelman et al. 2014, 150; Congdon 2010, sec. 2.5.2).

One criticism of PPPs is that their distribution under the correct model specification is generally
not uniform (for example, Bayarri and Berger [2000] and Robins, van der Vaart, and Ventura [2000]).
The distribution tends to be more concentrated around 0.5 when the model is correct. Gelman (2013)
argues that this property may be desirable in some cases and discusses the cases when it is not
desirable. The author concludes that although it is difficult to provide general recommendations for
how best to interpret PPPs, he suggests that they are still useful in practice to discover systematic
discrepancies between the observed data and the fitted model.

When you check model fit, it is important to consider different test quantities that describe various
aspects of the distribution of the replicated data. Certain distinctive aspects of the assumed model
distribution such as symmetry and weight of the tails are commonly used as test quantities. For
example, for assumed normal errors, it is appropriate to test the skewness and kurtosis of replicated
residuals and compare them with the skewness and kurtosis of a normal distribution. When you use
test quantities, Gelman (2013) suggests to use “caution in interpreting diagnostics that strongly depend
on parameters or latent data”. In addition to test quantities, you can use PPPs to compare individual
observations, that is, compare the sample of replicated outcomes for a particular observation with the
corresponding observed outcome value.

Nonlinear effect of labor and capital on companies’ output

In this example, we show an application of PPPs to assess goodness of fit of a Bayesian model.
We adapt an example described in Koop (2003, sec. 5.9) about the effect of labor and capital on
companies’ production. The dataset, coutput.dta, includes data for 123 companies with variables
output, labor, and capital. The variables are scaled.
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. use https://www.stata-press.com/data/r18/coutput
(Company output data)

. describe

Contains data from https://www.stata-press.com/data/r18/coutput.dta
Observations: 123 Company output data

Variables: 3 22 Feb 2023 13:24
(_dta has notes)

Variable Storage Display Value
name type format label Variable label

output float %9.0g Output
labor float %9.0g Labor
capital float %9.0g Capital

Sorted by:

Koop (2003) proposes the following nonlinear model for describing companies’ output:

outputi = α+ (β1labor
λ
i + β2capital

λ
i )

1/λ + εi, εi ∼i.i.d. N(0, σ2)

A nonlinear model (λ > 1) is expected to provide a better fit for the data than the linear model
(λ = 1). We explore this by using posterior predictive checks.

Without concrete prior knowledge about the parameters α, β1, β2, and λ, we specify weakly
informative priors for them. We use the N(0, 100) prior for the coefficients, which is noninformative
because the variables are scaled to be in the (0, 2) range. We apply exponential prior, exp(1), for
λ because λ is a positive parameter with 1 being a highly probable value for it. Below is the full
model specification using bayesmh:

. bayesmh output =
> ({alpha}+({beta1}*labor^{lambda}+{beta2}*capital^{lambda})^(1/{lambda})),
> likelihood(normal({sig2}))
> prior({alpha beta1 beta2}, normal(0,100))
> prior({lambda}, exp(1)) prior({sig2}, igamma(0.1,0.1))
> init({alpha beta1 beta2 lambda} 1)
> saving(coutput_mcmc) mcmcsize(5000) rseed(16)
Burn-in ...
Simulation ...

Model summary

Likelihood:
output ~ normal(<expr1>,{sig2})

Priors:
{sig2} ~ igamma(0.1,0.1)

{alpha beta1 beta2} ~ normal(0,100)
{lambda} ~ exponential(1)

Expression:
expr1 : {alpha}+({beta1}*labor^{lambda}+{beta2}*capital^{lambda})^
> (1/{lambda})
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Bayesian normal regression MCMC iterations = 7,500
Random-walk Metropolis--Hastings sampling Burn-in = 2,500

MCMC sample size = 5,000
Number of obs = 123
Acceptance rate = .2176
Efficiency: min = .02226

avg = .03045
Log marginal-likelihood = 6.9478788 max = .03524

Equal-tailed
Mean Std. dev. MCSE Median [95% cred. interval]

alpha 1.028072 .0549225 .004364 1.028156 .9300813 1.137604
beta1 .6838483 .0990207 .007467 .6736414 .5037749 .8903975
beta2 .9578192 .140161 .013285 .9413369 .7197326 1.25467

lambda 1.270644 .2435384 .020624 1.255252 .8222015 1.78508
sig2 .0390367 .0052749 .000397 .038495 .0301147 .0503593

file coutput_mcmc.dta saved.

We generated an MCMC sample of size 5,000 with an average efficiency of about 3%. bayesmh
estimated the posterior mean of λ, 1.3, to be larger than 1, which implies that labor and capital do
have a nonlinear effect on companies’ output.

Model assumptions can be assessed through residual analysis. We follow Koop (2003) and use
PPPs to compare various aspects of the distribution of residuals simulated from the fitted model and
observed residuals. By construction, the distribution of the simulated residuals is N(0, σ2).

Example 1: PPPs for simple test statistics

One simple check is to compare the means and variances of the simulated residuals, rsim, with
those of the observed residuals, robs. Let

T1(y) = y =
1

n

n∑
i=1

yi and T2(y) =
1

n− 1

n∑
i=1

(yi − y)2

denote the mean and variance test statistics. We want to compare T1(rsim) with T1(robs) and T2(rsim)
with T2(robs).

We first use bayespredict to generate MCMC samples of means and variances of simulated and
observed residuals.

. bayespredict (mean:@mean({_resid})) (var:@variance({_resid})),
> saving(coutput_pred) rseed(16)

Computing predictions ...

file coutput_pred.dta saved.
file coutput_pred.ster saved.

We used built-in Mata functions mean() and variance() to compute the means and variances; the
Mata function specification is designated with @. We specified { resid} as the argument to these
functions to compute the means and variances of the simulated residuals. We labeled the resulting
means as mean and variances as var; we can use these labels later within bayesstats ppvalues
to refer to these prediction results. And we saved the simulated results in the prediction dataset,
coutput pred.dta. As we discussed in Prediction dataset of [BAYES] bayespredict, the generated
prediction dataset includes, among other variables, the mean variable containing 5,000 means of
simulated residuals,

{
T1(r

sim,1), T1(r
sim,2), . . . , T1(r

sim,5000)
}

, where rsim,t is the column vector

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictRemarksandexamplesPredictiondataset
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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containing 123 residuals simulated from the fitted model using the tth set of MCMC estimates of
model parameters. (We saved our MCMC estimates of model parameters in couput mcmc.dta with
bayesmh.) Additionally, bayespredict generated 5,000 means of the observed residuals,{
T1(r

obs,1), T1(r
obs,2), . . . , T1(r

obs,5000)
}

, and stored them in the obs mean variable in the
prediction dataset. Similarly, bayespredict generated variances of simulated and observed residuals
and saved them in variables var and obs var in the prediction dataset. See [BAYES] bayespredict
for details.

We can now access the simulated means and variances within bayesstats ppvalues. For example,
we specify {mean} to compute PPPs for the mean test statistic. We also specify the prediction dataset,
coutput pred.dta, containing the simulated means in the required using specification.

. bayesstats ppvalues {mean} using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

mean -.00007 .0177143 .0000147 .4978

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

T and T obs denote the test statistics computed using the replicated data and observed data, respectively.
In our example, T is T1(rsim) and T obs is T1(robs). The posterior mean estimate, Mean, of T1(rsim)
from the MCMC sample of means of simulated residuals is −0.00007. The posterior mean estimate,
E(T obs), of T1(robs) from the MCMC sample of means of observed residuals is 0.0000147. Both
are close to zero. The estimated PPP is about 0.5, which indicates a perfect agreement between the two
means. This p-value represents the proportion of times the mean of simulated residuals was greater
than or equal to the mean of the observed residuals in the MCMC sample.

The PPP can be also visualized using a histogram with the reference line at the observed mean,
which is essentially 0 in our example.

. bayesgraph histogram {mean} using coutput_pred, color(%50) xline(0)

0

5

10

15

20

25

-.1 -.05 0 .05

Histogram of mean

The PPP is the area of the histogram to the right of the observed value, which is about 50% in our
example.

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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As with the mean, we can compare the variances.

. bayesstats ppvalues {var} using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

var .038952 .0073444 .03694 .5762

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

Posterior mean estimates of the variances of the simulated and observed residuals are similar and are
close to the error variance {sig2} of 0.39, as estimated by bayesmh. The estimated PPP is 0.58 and
again indicates very good agreement between the variances.

It is not surprising that the means and variances of simulated and observed residuals are in such
good agreement. This tends to be true for many models in which the parameters directly model means
and variances. In example 3, we explore other discrepancy measures such as skewness and kurtosis.

Example 2: Specifying Mata functions directly with bayesstats ppvalues

In example 1, we computed the mean and variance test statistics with bayespredict. Such
specification is preferable with large datasets because it does not save a typically large sample of
replicated outcomes. With moderate-sized datasets, you may save the replicated outcomes first and
compute the functions within bayesstats ppvalues.

For example, here we simulate replicated outcomes using bayespredict. We replace the earlier
coutput pred.dta with new results.

. bayespredict {_ysim}, saving(coutput_pred, replace) rseed(16)

Computing predictions ...

file coutput_pred.dta saved.
file coutput_pred.ster saved.

In this case, the generated prediction dataset contains 5,000 MCMC replicates for each observation
of our outcome output. That is, the dataset has 123 variables and 5,000 observations (and other
auxiliary variables). We can now compute PPPs for any function of the replicated outcomes or their
residuals.

We use the same specification of Mata functions with bayesstats ppvalues as we did with
bayespredict in example 1.

. bayesstats ppvalues (mean:@mean({_resid})) (var:@variance({_resid}))
> using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

mean -.00007 .0177143 .0000147 .4978
var .038952 .0073444 .03694 .5762

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

We obtain identical results to example 1. Notice that we can combine various specifications in one
call to bayesstats ppvalues.
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bayesstats ppvalues used the replicated outcomes from coutput pred.dta to compute the
simulated residuals, which resulted in an intermediate sample of 5,000 MCMC residuals for each of the
123 observations. It then produced yet another intermediate sample of 5,000 means of the residuals
over 123 observations. Finally, it used the sample of 5,000 means to compute the posterior predictive
summaries as displayed in the output table. The command performed the same computations for the
variances, var.

Using bayespredict to save the entire sample of replicated outcomes, whenever feasible, is
convenient because you can explore various discrepancy measures without having to predefine them.
However, there are two other advantages of the earlier specification, in addition to speed and storage
efficiency. When you compute functions using bayespredict, you can specify expressions of these
functions with bayesstats ppvalues (or other Bayesian postestimation commands). Also, you can
compute your own functions within Stata programs and specify them with bayespredict, whereas the
use of Stata programs is not allowed within bayesstats ppvalues and other Bayesian postestimation
commands. But you can define your own Mata functions and use them with bayesstats ppvalues,
as we demonstrate in the next example.

Example 3: PPPs for user-defined test statistics

Continuing with example 2, we explore other discrepancy measures for the simulated and observed
residuals. Given that we expect our residuals to be normally distributed when the model fits the data,
we can explore their skewness and kurtosis.

Skewness and kurtosis are related to the third and fourth moments of a distribution. The skewness
statistic measures the symmetry of a distribution about its mean. The kurtosis statistic measures the
weight of the tails of a distribution. A normal distribution has skewness of 0 and kurtosis of 3.

There are no built-in Mata functions to compute these measures, so we need to define our own.

. mata:
mata (type end to exit)

: real scalar skew(real colvector vresid) {
> return (sqrt(length(vresid))*sum(vresid:^3)/(sum(vresid:^2)^1.5))
> }

: real scalar kurtosis(real colvector vresid) {
> return (length(vresid)*sum(vresid:^4)/(sum(vresid:^2)^2) - 3)
> }

: end

Mata function skew() computes sample skewness, and kurtosis() computes sample kurtosis, but it
subtracts 3 from the formula so that the kurtosis of a normally distributed sample is 0. Both functions
accept a column vector of residuals as an argument and calculate and return the overall test statistic
as a scalar.
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We can now use these two functions to compute PPPs for skewness and kurtosis of residuals.

. bayesstats ppvalues (sy:@skew({_resid})) (ky:@kurtosis({_resid}))
> using coutput_pred

Posterior predictive summary MCMC sample size = 5,000

T Mean Std. dev. E(T_obs) P(T>=T_obs)

sy .0014651 .3420932 .1763123 .3464
ky -.0368386 .423227 -.3171961 .7304

Note: P(T>=T_obs) close to 0 or 1 indicates lack of fit.

The posterior mean estimates for the skewness and kurtosis of the observed residuals are not as
close to zero as their counterparts simulated from the model. Nevertheless, according to the estimated
PPPs of 0.35 for skewness and of 0.73 for kurtosis, the observed discrepancies can be explained
by sampling variation. For instance, 35% of simulated skewnesses are greater than or equal to the
observed skewnesses.

A PPP close to 0 or 1 indicates model misfit. Although there are no definitive recommendations,
some literature suggests that PPPs less than 0.05 or larger than 0.95 be considered indicative of lack
of fit (Gelman et al. 2014). However, it is important to consider PPPs in the context of your research
question, such as whether the observed discrepancy is practically meaningful.

To visualize once again the PPP, we can plot the histogram of the simulated skewness with the
reference line at the expected observed value of 0.18.

. bayesgraph histogram (sy:@skew({_resid})) using coutput_pred, xline(0.18)
> color(%50)
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About 35% of the histogram area is on the right of the mean observed skewness of 0.18.

In conclusion, our residual analysis revealed good agreement between the simulated and observed
residuals with respect to several test statistics. Therefore, there do not appear to be any violations of
the normality assumption for the error terms in the model.
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We want to emphasize the importance of the choice of test statistics when assessing model fit.
You should avoid using sufficient statistics such as sample mean and variance, which are usually well
behaved because they are often directly modeled by parameters. Instead, you should focus on statistics
that measure more specific distribution properties such as quantiles, skewness, kurtosis, maximum
and minimum, and more.

Stored results
bayesstats ppvalues stores the following in r():

Scalars
r(mcmcsize) MCMC sample size used in the computation
r(nchains) number of chains used in the computation

Macros
r(names) names of model parameters and expressions
r(expr #) #th expression
r(exprnames) expression labels
r(chains) chains used in the computation, if chains() is specified

Matrices
r(summary) matrix with predictive statistics for parameters in r(names)
r(summary chain#) matrix summary for chain #, if sepchains is specified

Methods and formulas
See Methods and formulas of [BAYES] bayespredict for general definitions and for formulas related

to replicated outcomes, yrep.

Let Tq(y, θ) be a test quantity. The PPP, q(Tq), is defined as the probability that Tq(yrep, θ) is
greater than or equal to the observed T (yobs, θ) (Rubin 1984, Gelman et al. 2014). Specifically,

q(Tq) = Pr
{
Tq(y

rep, θ) ≥ Tq(yobs, θ)|yobs, Xobs)
}

=

∫ ∫
1Tq(yrep,θ)≥Tq(yobs,θ)p(y

rep, θ|yobs, Xobs)dyrepdθ

=

∫ ∫
1Tq(yrep,θ)≥Tq(yobs,θ)p(y

rep|θ, Xobs)p(θ|yobs, Xobs)dyrepdθ

and 1(A) is an indicator function of A being true.

In practice, the joint posterior distribution p(yrep, θ|yobs, Xobs) is not available. Instead, we have
a simulated sample

{
(yrep,1, θ1), (yrep,2, θ2), . . . , (yrep,T, θT )

}
, where T is the MCMC sample size.

Then q(Tq) is estimated as

q̂(Tq) =
1

T

T∑
t=1

1
Tq(yrep,t,θt)≥Tq(yobs,θt)

https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredictMethodsandformulas
https://www.stata.com/manuals/bayesbayespredict.pdf#bayesbayespredict
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bayesstats ppvalues reports q̂(Tq) in the output table and labels it P(T>=T obs). bayesstats
ppvalues also reports the average observed test quantity, E(T obs),

Ê
{
Tq(y

obs, θ)
}
=

1

T

T∑
t=1

Tq(y
obs, θt)

and the sample mean and standard deviation of the sample of replicated test quantities,{
Tq(y

rep,1, θ1), Tq(y
rep,2, θ2), . . . , Tq(y

rep,T, θT )
}

.

For a special case of test statistics, Tq(y, θ) = Ts(y), the above formulas simplify correspondingly.

� �
M. J. Bayarri (1956–2014) was born in Valencia, Spain. She received a bachelor’s, master’s, and
doctorate degree in mathematics, all from the University of Valencia. She began as an assistant
professor and then became a full professor at her alma mater.

Bayarri won a Fulbright fellowship to attend Carnegie Mellon University in 1984, which marked
the beginning of routine visits to the United States. She became a visiting professor at Purdue
University, an adjunct professor at Duke University, and leader of the research program at
the Statistical and Applied Mathematical Sciences Institute (SAMSI). She coauthored books
on Bayesian statistics and biostatistics, and coauthored numerous research articles, including
some award-winning papers. Her main areas of research included selection models, weighted
distributions, and Bayesian analysis of queuing systems.

Aside from her published contributions, she held multiple leadership roles. For example, Bayarri
served as President of the International Society for Bayesian Analysis (ISBA) and as the principal
investigator of Biostatnet, a network of biostatistical researchers. Her critical skills shined as
Coordinating Editor of the Journal of Statistical Planning and Inference and as an award-winning
food critic. In 1997, she was elected as a fellow of the American Statistical Association, and in
2008, she was elected as a fellow of the Institute of Mathematical Statistics.� �
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