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Description
gsdesign computes stopping boundaries and sample sizes for interim analyses of clinical trials using

group sequential designs (GSDs). Stopping can be for efficacy, futility, or both. gsdesign can be used

with sample-size calculations from a variety of [PSS-2] powermethods, including user-defined methods.

For stopping boundary calculations without sample sizes, see [ADAPT] gsbounds. For a software-free

introduction to GSDs, see [ADAPT] GSD intro; for an introduction to Stata’s gs suite of commands, see

[ADAPT] gs.

Quick start
Sample sizes and stopping boundaries for a two-sided test of two sample means, with 𝐻0 ∶ 𝜇1 = 𝜇2

versus 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2 and a shared standard deviation of 9, with default power of 0.8 to detect the

difference between control-group mean 𝑚1 = 8 and experimental-group mean 𝑚2 = 12 at default

overall significance level𝛼 = 0.05, using default group sequential specifications of O’Brien–Fleming

efficacy boundaries with two analyses (one interim, one final)

gsdesign twomeans 8 12, sd(9)

Same as above, but with an overall significance level of 0.01 and using an O’Brien–Fleming design with

three looks to calculate both efficacy and nonbinding futility boundaries

gsdesign twomeans 8 12, sd(9) alpha(0.01) efficacy(obfleming) ///
futility(obfleming) nlooks(3)

Same as above, but use Kim–DeMets boundaries with parameters 𝜌𝑒 = 4 and 𝜌𝑓 = 2.5, and assign twice

as many participants to the experimental arm as to the control arm

gsdesign twomeans 8 12, sd(9) nratio(2) alpha(0.01) ///
efficacy(kdemets(4)) futility(kdemets(2.5)) nlooks(3)

Sample size and stopping boundaries for one-sample proportion test of 𝐻0 ∶ 𝜋 = 0.2 versus 𝐻𝑎 ∶ 𝜋 ≠ 0.2

with power of 0.9 to detect the difference between null proportion 𝑝0 = 0.2 and alternative proportion

𝑝𝑎 = 0.3 at overall significance level 𝛼 = 0.1, using Wang–Tsiatis efficacy boundaries with eight

analyses and efficacy parameter Δ𝑒 = 0.25

gsdesign oneproportion 0.2 0.3, alpha(0.1) power(0.9) ///
efficacy(wtsiatis(0.25)) nlooks(8)

Same as above, but report fractional sample sizes and graph the boundaries without shading

gsdesign oneproportion 0.2 0.3, alpha(0.1) nfractional power(0.9) ///
efficacy(wtsiatis(0.25)) nlooks(8) graphbounds(noshade)

Sample size and number of events for the log-rank test of 𝐻0 ∶ 𝐻𝑅 = 1 versus 𝐻𝑎 ∶ 𝐻𝑅 < 1 with

default significance level 𝛼 = 0.05 and power of 0.8 to detect the difference between a control-group

survival probability of 0.3 and an experimental-group survival probability of 0.5, using error-spending

O’Brien–Fleming-style efficacy boundaries with five analyses

gsdesign logrank 0.3 0.5, onesided efficacy(errobfleming) nlooks(5)
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Same as above, but time the looks to occur with 40%, 60%, 80%, 90%, and 100% of the data, adjust the

sample size for 5% withdrawal, and graph the boundaries

gsdesign logrank 0.3 0.5, wdprob(0.05) onesided ///
efficacy(errobfleming) information(0.4 0.6 0.8 0.9 1) ///
graphbounds

Menu
Statistics > Power, precision, and sample size

Syntax
gsdesign method ...[ , designopts boundopts ]

wheremethod . . . refers to a power method that is used for sample-size calculation, designopts are options

controlling the sample-size calculation, and boundopts are options controlling the calculation of the

stopping boundaries.

method Description

onemean GSD for one-sample mean test

twomeans GSD for two-sample means test

oneproportion GSD for one-sample proportion test

twoproportions GSD for two-sample proportions test

logrank GSD for a log-rank test

usermethod user-defined sample-size calculation

gsdesign supports the above methods when they are used to calculate sample size with simple random sampling. To use an
unsupported method, specify option methodok; see designopts table below.

designopts Description

Main

methodopts method-specific options

alpha(#) overall significance level for all tests; default is alpha(0.05)
power(#) overall power for all tests; default is power(0.8)
beta(#) overall probability of type II error for all tests;

default is beta(0.2)
onesided request a one-sided test; default is two-sided

nfractional report fractional sample size

force allow calculation with unsupported methodopts

methodok allow calculation with unsupported method

poweriteration(powiteropts) iteration options for the calculation of fixed-study sample size;
not available with method logrank; seldom used

collect is allowed; see [U] 11.1.10 Prefix commands.

force, methodok, and poweriteration() do not appear in the dialog box.

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_method
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_method
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_boundopts
https://www.stata.com/manuals/adaptgsdesignonemean.pdf#adaptgsdesignonemean
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptgsdesignoneproportion.pdf#adaptgsdesignoneproportion
https://www.stata.com/manuals/adaptgsdesigntwoproportions.pdf#adaptgsdesigntwoproportions
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrank
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethod
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_methodopts
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_method
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_powiteropts
https://www.stata.com/manuals/u11.pdf#u11.1.10Prefixcommands
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methodopts [ADAPT] entry

onemeanopts [ADAPT] gsdesign onemean

twomeansopts [ADAPT] gsdesign twomeans

onepropopts [ADAPT] gsdesign oneproportion

twopropopts [ADAPT] gsdesign twoproportions

logrankopts [ADAPT] gsdesign logrank

usermethodopts [ADAPT] gsdesign usermethod

powiteropts Description

init(#) initial value for fixed-study sample size

iterate(#) maximum number of iterations; default is iterate(500)
tolerance(#) parameter tolerance; default is tolerance(1e-12)
ftolerance(#) function tolerance; default is ftolerance(1e-12)

boundopts Description

Bounds

efficacy(boundary) boundary for efficacy stopping; if neither efficacy()
nor futility() is specified, the default is
efficacy(obfleming)

futility(boundary[ , binding ]) boundary for futility stopping; use binding to request
binding futility bounds (default is nonbinding)

nlooks(#[ , equal ]) total number of analyses (nlooks() − 1 interim analyses
and one final analysis); use equal to enforce equal
information increments; if neither nlooks() nor
information() is specified, the default is nlooks(2)

information(numlist) sequence of information levels for analyses;
default is evenly spaced

nopvalues suppress 𝑝-values

Graph

graphbounds[ (graphopts) ] graph boundaries

matlistopts(general options) control the display of boundaries and sample size;
seldom used

optimopts optimization options for boundary calculations; seldom used

matlistopts() and optimopts do not appear in the dialog box.

boundary Description

obfleming classical O’Brien–Fleming bound

pocock classical Pocock bound

wtsiatis(#) classical Wang–Tsiatis bound with specified parameter value

errpocock error-spending Pocock-style bound

errobfleming error-spending O’Brien–Fleming-style bound

kdemets(#) error-spending Kim–DeMets bound with specified parameter value

hsdecani(#) error-spending Hwang–Shih–de Cani bound with specified parameter value

https://www.stata.com/manuals/adaptgsdesignonemean.pdf#adaptgsdesignonemeanSyntaxsntx_onemeanopts
https://www.stata.com/manuals/adaptgsdesignonemean.pdf#adaptgsdesignonemean
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeansSyntaxsntx_twomeansopts
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptgsdesignoneproportion.pdf#adaptgsdesignoneproportionSyntaxsntx_onepropopts
https://www.stata.com/manuals/adaptgsdesignoneproportion.pdf#adaptgsdesignoneproportion
https://www.stata.com/manuals/adaptgsdesigntwoproportions.pdf#adaptgsdesigntwoproportionsSyntaxsntx_twopropopts
https://www.stata.com/manuals/adaptgsdesigntwoproportions.pdf#adaptgsdesigntwoproportions
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrankSyntaxsntx_logrankopts
https://www.stata.com/manuals/adaptgsdesignlogrank.pdf#adaptgsdesignlogrank
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethodSyntaxsntx_designopts
https://www.stata.com/manuals/adaptgsdesignusermethod.pdf#adaptgsdesignusermethod
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignSyntaxsntx_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignSyntaxsntx_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignSyntaxsntx_graphopts
https://www.stata.com/manuals/pmatlist.pdf#pmatlistSyntaxgeneral_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignSyntaxsntx_optimopts


gsdesign — Study design for group sequential trials 4

graphopts Description

xdimsampsize label the 𝑥 axis with the sample size collected (default)

xdiminformation label the 𝑥 axis with the information fraction;
use information levels if information() specified

xdimlooks label the 𝑥 axis with the number of each look

noshade do not shade the rejection, acceptance, and continuation
regions

rejectopts(area options) change the appearance of the rejection region

acceptopts(area options) change the appearance of the acceptance region

continueopts(area options) change the appearance of the continuation region

efficacyopts(connected options) change the appearance of the efficacy bound

futilityopts(connected options) change the appearance of the futility bound

nolooklines do not draw vertical reference lines at each look

looklinesopts(added line suboptions) change the appearance of the reference lines
marking each look

nofixed do not label critical values from a fixed study design

fixedopts(marker options) change the appearance of the fixed-study critical values

twoway options any options other than by() documented in
[G-3] twoway options

optimopts Description

intpointsscale(#) scaling factor for number of quadrature points;
default is intpointsscale(20)

initinfo(initinfo spec) initial value(s) for maximum information

initscale(#) initial value for scaling factor 𝐶 of classical bounds

infotolerance(#) tolerance for bisection search for maximum information of error-
spending bounds with futility stopping; default is infotol(1e-6)

marquardt use the Marquardt stepping algorithm in nonconcave regions;
default is to use a mixture of steepest descent and Newton

technique(algorithm spec) maximization technique

iterate(#) perform maximum of # iterations; default is iterate(300)
[ no ]log display an iteration log; default is nolog
trace display current parameter vector in iteration log

gradient display current gradient vector in iteration log

showstep report steps within an iteration in iteration log

hessian display current negative Hessian matrix in iteration log

showtolerance report the calculated result that is compared with the effective
convergence criterion

tolerance(#) tolerance for the parameter being optimized;
default is tolerance(1e-12)

ftolerance(#) tolerance for the objective function;
default is ftolerance(1e-10)

nrtolerance(#) tolerance for the scaled gradient;
default is nrtolerance(1e-16)

nonrtolerance ignore the nrtolerance() option

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_graphopts
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_graphopts
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_optim_initinfo
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_optim_tech
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Options

� � �
Main �

alpha(#) sets the overall significance level, which is the familywise type I error rate for all analyses

(interim and final). alpha() must be in (0, 0.5). The default is alpha(0.05).

power(#) sets the overall power for all analyses. power() must be in (0.5, 1). The default is

power(0.8). If beta() is specified, power() is set to be 1 − beta(). Only one of power() or

beta() may be specified.

beta(#) sets the overall probability of a type II error. beta() must be in (0, 0.5). The default is

beta(0.2). If power() is specified, beta() is set to be 1 − power(). Only one of beta() or

power() may be specified.

onesided requests a study design for a one-sided test. The direction of the test is inferred from the effect

size.

nfractional specifies that fractional sample sizes be reported.

� � �
Bounds �

efficacy(boundary) specifies the boundary for efficacy stopping. If neither efficacy() nor

futility() is specified, the default is efficacy(obfleming).

futility(boundary[ , binding ]) specifies the boundary for futility stopping.

binding specifies binding futility bounds. With binding futility bounds, if the result of an interim

analysis crosses the futility boundary and lies in the acceptance region, the trial must end or risk

overrunning the specified type I error. With nonbinding futility bounds, the trial does not need to

stop if the result of an interim analysis crosses the futility boundary; the familywise type I error

rate is controlled even if the trial continues. By default, futility bounds are nonbinding.

nlooks(# [ , equal ]) specifies the total number of analyses to be performed (nlooks() − 1 interim

analyses and one final analysis). If neither nlooks() nor information() is specified, the default is

nlooks(2).

equal indicates that equal information increments be enforced, which is to say that the same number

of new observations will be collected at each look. The default behavior is to start by dividing

information evenly among looks, then proceed by rounding up to a whole number of observations

at each look. This can cause slight differences in the information collected at each look.

information(numlist) specifies a sequence of information levels for interim and final analyses. This

must be a sequence of increasing positive numbers, but the scale is unimportant because the infor-

mation sequence will be automatically rescaled to ensure the maximum information is reached at the

final look. By default, analyses are evenly spaced.

nopvalues suppresses the 𝑝-values from being reported in the table of boundaries for each look.

https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_boundproc
https://www.stata.com/manuals/adapt.pdf#adaptgsdesignOptionsopt_boundproc
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
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� � �
Graph �

graphbounds and graphbounds(graphopts) produce graphical output showing the stopping bound-

aries.

graphopts are the following:

xdimsampsize labels the 𝑥 axis with the sample size collected (the default).

xdiminformation labels the 𝑥 axis with the information fraction unless information() is spec-
ified, in which case information levels will be used.

xdimlooks labels the 𝑥 axis with the number of each look.

noshade suppresses shading of the rejection, acceptance, and continuation regions of the graph.

rejectopts(area options) affects the rendition of the rejection region. See

[G-3] area options.

acceptopts(area options) affects the rendition of the acceptance region. See

[G-3] area options.

continueopts(area options) affects the rendition of the continuation region. See

[G-3] area options.

efficacyopts(connected options) affects the rendition of the efficacy bound. See

[G-3] cline options and [G-3] marker options.

futilityopts(connected options) affects the rendition of the futility bound. See

[G-3] cline options and [G-3] marker options.

nolooklines suppresses the vertical reference lines drawn at each look.

looklinesopts(added line suboptions) affects the rendition of reference lines marking each

look. See suboptions in [G-3] added line options.

nofixed suppresses the fixed-study critical values in the plot.

fixedopts(marker options) affects the rendition of the fixed-study critical values. See

[G-3] marker options.

twoway options are any of the options documented in [G-3] twoway options, excluding by().
These include options for titling the graph (see [G-3] title options) and for saving the graph to

disk (see [G-3] saving option).

The following options are available with gsdesign but are not shown in the dialog box:

force indicates that gsdesign should allow unsupported method options, such as options specifying

a finite population correction or a cluster randomized design. Even with option force, the method
options specified must be compatible with sample-size determination, not effect size or power cal-

culation. In addition, numlists are not supported in method options or in arguments as they are with

power, even when force is specified.

methodok indicates that gsdesign should allow unsupported methods. Option methodok is not required
to run gsdesign with user-defined methods, but it is required to use power methods other than those

described in method. Option methodok implies option force.

https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3area_options.pdf#g-3area_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3cline_options.pdf#g-3cline_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_optionsOptionsSuboptions
https://www.stata.com/manuals/g-3added_line_options.pdf#g-3added_line_options
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_optionsSyntax
https://www.stata.com/manuals/g-3marker_options.pdf#g-3marker_options
https://www.stata.com/manuals/g-3twoway_options.pdf#g-3twoway_options
https://www.stata.com/manuals/g-3title_options.pdf#g-3title_options
https://www.stata.com/manuals/g-3saving_option.pdf#g-3saving_option
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_method
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poweriteration(powiteropts) controls the iterative algorithm used to calculate the fixed-study sample

size. This is seldom used.

powiteropts are the following:

init(#) specifies an initial value for the sample size when iteration is used to compute the fixed-

study sample size. The default is to use a closed-form normal approximation to compute an

initial sample size.

iterate(#) specifies the maximum number of iterations for the Newton method during calcula-

tion of the fixed-study sample size. The default is iterate(500).

tolerance(#) specifies the tolerance used to determine whether successive parameter es-

timates have converged when calculating the fixed-study sample size. The default is

tolerance(1e-12). See Convergence criteria in [M-5] solvenl( ) for details.

ftolerance(#) specifies the tolerance used when calculating the fixed-study sample size to de-

termine whether the proposed solution of a nonlinear equation is sufficiently close to 0 based on

the squared Euclidean distance. The default is ftolerance(1e-12). See Convergence criteria
in [M-5] solvenl( ) for details.

matlistopts(general options) affects the display of the matrix of boundaries and sample sizes. gen-

eral options are title(), tindent(), rowtitle(), showcoleq(), coleqonly, colorcoleq(),
aligncolnames(), and linesize(); see general options in [P]matlist. This option is seldom used.

optimopts control the iterative algorithm used to calculate stopping boundaries:

intpointsscale(#) specifies the scaling factor for the number of quadrature points used during the

numerical evaluation of stopping probabilities at each look. The default is intpointsscale(20).
See Methods and formulas in [ADAPT] gsbounds.

initinfo(initinfo spec) specifies either one or two initial values to be used in the iterative calcula-

tion of the maximum information.

The syntax initinfo(#) is applicable when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds), as well as with efficacy-only

stopping when using error-spending boundaries (error-spending Pocock-style efficacy bounds,

error-spending O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and

Hwang–Shih–de Cani efficacy bounds). The default is to use the information from a fixed study

design; see Methods and formulas in [ADAPT] gsbounds.

The syntax initinfo(# #) is applicable when using error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). With this syntax, the

first and second numbers specify the lower and upper starting values, respectively, for the bisec-

tion algorithm estimating the maximum information. The default is to use the information from a

fixed study design for the lower initial value and the information corresponding to a Bonferroni

correction for the upper initial value; see Methods and formulas in [ADAPT] gsbounds. To specify

just the lower starting value, use initinfo(# .), and to specify just the upper starting value, use
initinfo(. #).

https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()RemarksandexamplesConvergencecriteria
https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()
https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()RemarksandexamplesConvergencecriteria
https://www.stata.com/manuals/m-5solvenl.pdf#m-5solvenl()
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlistGeneraloptions
https://www.stata.com/manuals/pmatlist.pdf#pmatlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_numint
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
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initscale(#) specifies the initial value to be used during the iterative calculation of scaling fac-

tor 𝐶 for classical group sequential boundaries (Pocock bounds, O’Brien–Fleming bounds, and

Wang–Tsiatis bounds). The default is to use the 𝑧-value corresponding to the specified value of

alpha(). See Methods and formulas in [ADAPT] gsbounds.

infotolerance(#) specifies the tolerance for the bisection algorithm used in the itera-

tive calculation of the maximum information of error-spending group sequential boundaries

with futility stopping (error-spending Pocock-style bounds, error-spending O’Brien–Fleming-

style bounds, Kim–DeMets bounds, and Hwang–Shih–de Cani bounds). The default is

infotolerance(1e-6). See Methods and formulas in [ADAPT] gsbounds.

marquardt specifies that the optimizer should use the modified Marquardt algorithm when, at an

iteration step, it finds that 𝐻 is singular. The default is to use a mixture of steepest descent and

Newton, which is equivalent to the difficult option in [R] ml.

technique(algorithm spec) specifies how the objective function is to be maximized. The following

algorithms are allowed. For details, see Pitblado, Poi, and Gould (2024).

technique(bfgs) specifies the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

technique(nr) specifies Stata’s modified Newton–Raphson (NR) algorithm.

technique(dfp) specifies the Davidon–Fletcher–Powell (DFP) algorithm.

The default is technique(bfgs) when using classical group sequential boundaries (Pocock

bounds, O’Brien–Fleming bounds, and Wang–Tsiatis bounds) and also for the second opti-

mization step used to estimate the maximum information with efficacy-only stopping when

using error-spending boundaries (error-spending Pocock-style efficacy bounds, error-spending

O’Brien–Fleming-style efficacy bounds, Kim–DeMets efficacy bounds, and Hwang–Shih–de

Cani efficacy bounds). The default is technique(nr) for the sequential optimization steps used

to estimate critical values for error-spending boundaries. You can also switch between two al-

gorithms by specifying the technique name followed by the number of iterations. For example,

specifying technique(nr 10 bfgs 20) requests 10 iterations with the NR algorithm followed by

20 iterations with the BFGS algorithm, and then back to NR for 10 iterations, and so on. The process

continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. If convergence is not declared by the

time the number of iterations equals iterate(), an error message is issued. The default value of
iterate(#) is the number set using set maxiter, which is 300 by default.

[ no ]log requests an iteration log showing the progress of the optimization. The default is nolog.

trace adds to the iteration log a display of the current parameter vector.

gradient adds to the iteration log a display of the current gradient vector.

showstep adds to the iteration log a report on the steps within an iteration. This option was added so

that developers at StataCorp could view the stepping when they were improving the ml optimizer

code. At this point, it mainly provides entertainment.

hessian adds to the iteration log a display of the current negative Hessian matrix.

showtolerance adds to the iteration log the calculated value that is compared with the effective

convergence criterion at the end of each iteration. Until convergence is achieved, the smallest

calculated value is reported. shownrtolerance is a synonym of showtolerance.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_scaleC
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasmf_startinfo
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/rml.pdf#rml
https://www.stata.com/manuals/rsetiter.pdf#rsetiter
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Below, we describe the three convergence tolerances. Convergence is declared when the

nrtolerance() criterion is met and either the tolerance() or the ftolerance() criterion is also

met.

tolerance(#) specifies the tolerance for the parameter vector. When the relative change in

the parameter vector from one iteration to the next is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. The default is tolerance(1e-12).

ftolerance(#) specifies the tolerance for the objective function. When the relative change in

the objective function from one iteration to the next is less than or equal to ftolerance(), the
ftolerance() convergence is satisfied. The default is ftolerance(1e-10).

nrtolerance(#) specifies the tolerance for the scaled gradient. Convergence is declared when

gH−1g′ < nrtolerance(). The default is nrtolerance(1e-16).

nonrtolerance specifies that the default nrtolerance() criterion be turned off.

boundary
obfleming specifies a classical O’Brien–Fleming design for efficacy or futility bounds (O’Brien and

Fleming 1979). O’Brien–Fleming efficacy bounds are characterized by being extremely conservative

at early looks. The O’Brien–Fleming design is a member of theWang–Tsiatis family and is equivalent

to specifying a boundary of wtsiatis(0).

pocock specifies a classical Pocock design for efficacy or futility bounds (Pocock 1977). Pocock efficacy
bounds are characterized by using the same critical value at all looks. The Pocock design is a member

of the Wang–Tsiatis family and is equivalent to specifying a boundary of wtsiatis(0.5).

wtsiatis(#) specifies a classical Wang–Tsiatis design for efficacy or futility bounds (Wang and Tsiatis

1987). The shape ofWang–Tsiatis bounds is determined by parameter Δ ∈ [−10, 0.7], where smaller
values of Δ yield bounds that are more conservative at early looks.

errpocock specifies an error-spending Pocock-style design for efficacy or futility bounds (Lan and

DeMets 1983). The critical values from error-spending Pocock-style bounds are very similar to those

of classic Pocock bounds, but they are obtained using an error-spending function.

errobfleming specifies an error-spending O’Brien–Fleming-style design for efficacy or futility bounds
(Lan and DeMets 1983). The critical values from error-spending O’Brien–Fleming-style bounds

are very similar to those of classic O’Brien–Fleming bounds, but they are obtained using an error-

spending function.

kdemets(#) specifies an error-spending Kim–DeMets design for efficacy or futility bounds (Kim and

DeMets 1987). The shape of Kim–DeMets bounds is determined by power parameter 𝜌 ∈ (0, 10],
where larger values of 𝜌 yield bounds that are more conservative at early looks.

hsdecani(#) specifies an error-spending Hwang–Shih–de Cani design for efficacy or futility bounds

(Hwang, Shih, and de Cani 1990). The shape of Hwang–Shih–de Cani bounds is determined by

parameter 𝛾 ∈ [−30, 3], where smaller values of 𝛾 yield bounds that are more conservative at early

looks.

For a design with both efficacy and futility stopping boundaries, if you specify a classical boundary

(that is, in theWang–Tsiatis family) for one, then you must specify a classical boundary for the other. So,

you could not specify a boundary in the Wang–Tsiatis family for one boundary and an error-spending

boundary for the other. When specifying efficacy and futility boundaries from the same family, the

efficacy parameter does not need to be the same as the futility parameter.
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Boundaries that are conservative at early looks, such as the O’Brien–Fleming bound, offer little

chance of early stopping unless the true effect size is quite large (in the case of efficacy bounds) or quite

small (in the case of futility bounds). A trial employing a conservative bound is more likely to continue

to the final look, yielding an expected sample size that is not dramatically smaller than the sample size

required by an equivalent fixed-sample trial. However, the maximum sample size (that is, the sample

size at the final look) of a trial with a conservative bound is generally not much greater than the sample

size required by an equivalent fixed trial. Another direct result of specifying conservative bounds is that

the critical value at the final look tends to be close to the critical value employed by an equivalent fixed

design. In contrast, anticonservative boundaries such as the Pocock bound offer a much better shot at

early stopping (often yielding a small expected sample size) at the cost of a larger maximum sample size

and final critical values that are considerably larger than the critical value of an equivalent fixed design.

Remarks and examples
Remarks are presented under the following headings:

Introduction
Examples

Design for GSD with tests of two means
Background on the BHAT study
Design for GSD with survival analysis

This entry describes the gsdesign command and the methodology for calculating stopping bound-

aries and sample sizes for group sequential designs, or GSDs. For a software-free introduction to GSDs,

see [ADAPT] GSD intro; for an introduction to Stata’s gs suite of commands, see [ADAPT] gs; to calcu-

late stopping boundaries without sample sizes, see [ADAPT] gsbounds; and to calculate sample sizes for

fixed study designs, see [PSS-2] power.

Introduction
Clinical trials are studies investigating the effects of a treatment on human participants, and sponsors

of clinical trials have both ethical and economic motivations for making trials as efficient as possible.

One way of accomplishing this is to analyze trial data while the study is still underway. A positive result

at an interim analysis can lead to early termination of the study due to treatment efficacy, sparing future

participants from being assigned to the control group and receiving an inferior treatment. If the interim

analysis demonstrates that the new treatment is ineffective, the trial can stop early and resources can be

allocated to testing more promising treatments.

When done naïvely, conducting multiple analyses at a nominal significance level will inflate type I

error. Group sequential experimental designs provide a protocol for the interim analysis of clinical trial

data and a framework in which the trial can be stopped early for efficacy or futility while maintaining

control of familywise type I and type II errors.

AGSD lays out a sequence of looks, or analyses of the clinical trial data. Interim analyses, which take

place before the trial is scheduled to end, provide the ability to terminate the trial early if the result at

the interim look is sufficiently unambiguous. Efficacy stopping occurs when the null hypothesis, 𝐻0,

is rejected at an interim look and the clinical trial is terminated early due to treatment efficacy. The

complement to efficacy stopping is futility stopping, in which the trial is terminated because 𝐻0 has

been accepted during an interim look. The concept of accepting the null hypothesis runs counter to the

prevailing modern interpretation of null hypothesis significance testing, but accepting 𝐻0 has a long

history in the context of sequential trials and is commonly performed in the literature about sequential

clinical trials. See Origins of GSD in [ADAPT] GSD intro for a history of GSDs.

https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
https://www.stata.com/manuals/adaptgs.pdf#adaptgs
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_interimanalysis
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintroRemarksandexamplesOriginsofGSD
https://www.stata.com/manuals/adaptgsdintro.pdf#adaptGSDintro
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The decision to terminate a clinical trial is frequently made by an independent monitoring group, often

called a Data Monitoring Committee. The committee may decide to terminate the trial early because of

demonstrated treatment efficacy or futility at an interim analysis. The Data Monitoring Committee can

also stop a clinical trial for reasons such as safety and the prevalence of adverse events, which are harmful

side effects of the treatment and negative medical outcomes not associated with an underlying disease.

When determining whether to terminate a trial because of efficacy or futility, the committee can compare

the test statistic from the interim analysis against the critical values of the efficacy or futility bounds. Test

statistics with asymptotically standard normal distributions under 𝐻0 can be compared directly with the

boundary critical values, and statistics that follow other distributions under 𝐻0 may be evaluated using

the significance level approach.

The critical values of the group sequential efficacy and futility bounds depend on several factors: the

overall power (1− 𝛽) and significance level (𝛼) of the design, the type of boundary (gsdesign supports

seven types of boundaries), whether the test has a one- or two-sided alternative hypothesis, and the

information fraction at which the analyses occur. Technically, the information fraction is the proportion

of the maximum possible Fisher information that has been collected about the parameter being estimated

as part of the test, but this definition is too abstract to be useful. In most cases, the information fraction

is the proportion of the maximum sample size that has been collected. For survival data, the information

fraction is the proportion of the total number of events (failures) that have been observed, not the total

number of participants. To calculate the maximum sample size of a GSD, gsdesign scales up the sample

size of an equivalently powered fixed-sample design by a factor known as the information ratio.

Examples

Design for GSD with tests of two means

Example 1: Pocock efficacy bounds for a test of two sample means
Jennison and Turnbull (2000, 27) demonstrate the use of Pocock efficacy bounds by considering a test

of two means: 𝜇1 and 𝜇2. The null hypothesis is 𝐻0 ∶ 𝜇1 = 𝜇2, and the two-sided alternative hypothesis

is 𝐻𝑎 ∶ 𝜇1 ≠ 𝜇2. They assume a known standard deviation of 2 for both groups and desire a test with

90% power to detect a difference in means of one unit, while maintaining an overall significance level

of 𝛼 = 0.05 over five evenly spaced looks.

Given these specifications, we use gsdesign twomeans with a control group mean, 𝑚1, of 0 and a

difference in means of 1, specified with the diff(1) option. The efficacy(pocock) and nlooks(5)
options request the efficacy boundaries and sample size for a Pocock design with five evenly spaced

looks. alpha() is omitted because it is left at its default value of 0.05, and beta() is omitted because

power(), defined as (1 − 𝛽), is specified instead. The graphbounds option instructs Stata to draw a

graph of the boundaries and sample size at each look. The sd() option specifies the shared standard

deviation of both groups, and the knownsd option indicates that the population standard deviation is

known for both control and treatment groups.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_dmc
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_siglevapproach
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignSyntaxsntx_boundproc
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_maxss
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_pocock
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. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> nlooks(5) graphbounds
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 199.00
Ha = 115.43

Info. ratio = 1.2066
N fixed = 170

N max = 204
N1 max = 102
N2 max = 102

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 21 21 42
2 0.40 -2.4132 2.4132 0.0158 41 41 82
3 0.60 -2.4132 2.4132 0.0158 61 61 122
4 0.80 -2.4132 2.4132 0.0158 82 82 164
5 1.00 -2.4132 2.4132 0.0158 102 102 204

Notes: Critical values are for z statistics; otherwise, use p-value
boundaries.
Requested information fraction not attained.
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Parameters: α = .05 (two-sided), 1-β = .9, δ = 1, µ1 = 0, µ2-µ1 = 1, σ = 2

Pocock efficacy

Group sequential design for a two-sample means test

Figure 1. Pocock efficacy bounds for a test of the equality of two means

According to this design, the first lookwill occurwhen results have been collected from 21 participants

in the control group and 21 participants in the experimental group. A 𝑧 test of the two means will be

conducted, and if the 𝑧 statistic from that test, 𝑧1, lies in the rejection region (𝑧1 ≥ 2.413 or 𝑧1 ≤
−2.413), then 𝐻0 will be rejected and the trial will end due to treatment efficacy. The efficacy boundary

separates the rejection region from the continuation region; if |𝑧1| < 2.413, the test statistic lies within

the continuation region and the trial will continue to the second look.

At each successive look, the same procedure is repeated. A defining characteristic of Pocock efficacy

bounds is that the same critical value is used at all looks, so at each look the test statistic is compared

with ±2.413. At the fifth and final look, there is no continuation region: if |𝑧5| ≥ 2.413, then the null

hypothesis is rejected, and if |𝑧5| < 2.413, then the null hypothesis is accepted.

The graph displays the bounds visually, dividing the range of possible 𝑧-values into continuation,

rejection, and acceptance regions. The vertical axis is the value of the 𝑧 statistic, and the horizontal axis
is the sample size. We progress from left to right in the graph as samples are collected during the course

of the trial. The efficacy bounds, which separate the continuation and rejection regions, are drawn in

blue and marked with a dot at each look. Before the first look (that is, when fewer than 42 samples have

been collected), it is impossible to reject 𝐻0 because the data have not yet been analyzed, so all 𝑧-values
fall within the continuation region. Beginning with the first look, the range of 𝑧-values is divided into

continuation and rejection regions. Because we are conducting a two-sided test, the rejection region is

made up of two areas: 𝑧-values≥ 2.413 and 𝑧-values≤ −2.413. At the final look, there is no continuation

region; it has been replaced by the acceptance region because the trial cannot be continued beyond the

fifth look.

To facilitate comparison with a fixed-sample study design, gsdesign displays the estimated sample

size and critical values for a fixed study along with the information ratio, the ratio of the maximum

sample size from a GSD to the sample size of a fixed design. The Pocock design allows the trial to end

after collecting data from as few as 42 participants, but if the trial continues to completion, it will require

20% more participants to attain the same power and significance level as a fixed-sample trial.
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When comparing the efficiency of a GSD versus a fixed-sample design, it is useful to examine the

expected sample size of the GSD. The expected sample size, which is calculated relative to a given effect

size, is the average sample size that a group sequential trial would need if the experiment were to be

repeated many times. In the output above, we see that the expected sample size under 𝐻0 is 199. This

means that if the true difference between group means is 0 and the trial is repeated many times, the

average sample size will be 199. The expected sample size under 𝐻𝑎 of 115.43 means that if the true

difference between group means is 1, the average sample size over repeated experiments will be 115.43,

a substantial savings over the 170 subjects required by the fixed-sample design.

When designing this study, Jennison and Turnbull (2000) reported the maximum sample size as 210

participants, slightly more than the 204 calculated by gsdesign. The difference is due to the fact that

Jennison and Turnbull forced the spacing of the looks to be exactly equal by requiring each arm of

the study to collect data from 21 new participants between each look. By default, gsdesign begins

by dividing information evenly among looks, and then gsdesign rounds the sample sizes up to whole

numbers (which can cause slight differences in the spacing between looks). To match the calculation of

Jennison and Turnbull (2000), we add the equal suboption in the nlooks() option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> nlooks(5, equal)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 204.80
Ha = 116.94

Info. ratio = 1.2066
N fixed = 170

N max = 210
N1 max = 105
N2 max = 105

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 21 21 42
2 0.40 -2.4132 2.4132 0.0158 42 42 84
3 0.60 -2.4132 2.4132 0.0158 63 63 126
4 0.80 -2.4132 2.4132 0.0158 84 84 168
5 1.00 -2.4132 2.4132 0.0158 105 105 210

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

If we enforce equal information increments, we arrive at a maximum sample size of 210. The in-

creased sample size causes a slight increase in attained power, stored as r(power a).
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. display ”Power attained at final analysis: ” r(power_a) * 100
Power attained at final analysis: 91.020745

We see that the additional observations yield an attained power of 91%. To understand why the infor-

mation increments were not exactly equal in the original design, it is informative to view the fractional

sample-size calculations by specifying the nfractional option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds nfractional power(0.9)
> efficacy(pocock) nlooks(5)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 197.83
Ha = 115.15

Info. ratio = 1.2066
N fixed = 168.12

N max = 202.85
N1 max = 101.43
N2 max = 101.43

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Sample size
Look frac. Lower Upper p-value N1 N2 N

1 0.20 -2.4132 2.4132 0.0158 20.285 20.285 40.571
2 0.40 -2.4132 2.4132 0.0158 40.571 40.571 81.141
3 0.60 -2.4132 2.4132 0.0158 60.856 60.856 121.71
4 0.80 -2.4132 2.4132 0.0158 81.141 81.141 162.28
5 1.00 -2.4132 2.4132 0.0158 101.43 101.43 202.85

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

. display ”Power attained at final analysis: ” r(power_a) * 100
Power attained at final analysis: 90.003222

Option nfractional instructs gsdesign not to round sample sizes up to the nearest whole number.

We can see that the first look occurs with 20.285 observations per arm, and the second occurs with 40.571

observations per arm. Rounding up to whole numbers of participants, this gives us 21 observations per

arm for the first look, and an additional 20 observations (for a total of 41) at the second look. If this trial

were to continue to the fifth look, it would require 202.85 participants to attain 90% power to detect a

difference in means of one unit. As the sample size increases, the relative impact of rounding up to a

whole number of observations diminishes.

https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_nfraction
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_nfraction
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Example 2: Pocock bounds with efficacy and futility stopping
In example 1, we saw that the GSD resulted in a substantially smaller expected sample size than an

equivalent fixed study design if the alternative hypothesis was true but not if the null hypothesis was true.

To increase the potential to stop the trial early if the treatment is ineffective, we now add futility bounds

to the experimental design. Futility bounds separate the continuation region from the acceptance region

and allow early acceptance of 𝐻0 when there is evidence that the treatment is not meaningfully different

from the control.

We use the same design as in example 1, this time adding the futility(pocock) option to add

nonbinding Pocock futility bounds.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> futility(pocock) nlooks(5) graphbounds
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Futility: Pocock, nonbinding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 124.55
Ha = 132.66

Info. ratio = 1.5966
N fixed = 170

N max = 270
N1 max = 135
N2 max = 135

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -2.4132 2.4132 0.0158 -0.1490 0.1490 0.8815
2 0.40 -2.4132 2.4132 0.0158 -0.9078 0.9078 0.3640
3 0.60 -2.4132 2.4132 0.0158 -1.4900 1.4900 0.1362
4 0.80 -2.4132 2.4132 0.0158 -1.9808 1.9808 0.0476
5 1.00 -2.4132 2.4132 0.0158 -2.4132 2.4132 0.0158

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignRemarksandexamplesex1
https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignRemarksandexamplesex1
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Sample size
Look N1 N2 N

1 27 27 54
2 54 54 108
3 81 81 162
4 108 108 216
5 135 135 270
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Parameters: α = .05 (two-sided), 1-β = .9, δ = 1, µ1 = 0, µ2-µ1 = 1, σ = 2

Pocock efficacy & nonbinding futility

Group sequential design for a two-sample means test

Figure 2. Pocock efficacy and futility bounds for a test of the equality of two means

The maximum sample size required by this design is even larger than that of the efficacy-only design,

but the ability to end the trial early for futility can result in a considerably smaller sample size if 𝐻0 is

true. The efficacy bounds for this design are the same as they were in example 1; this is because adding

nonbinding futility bounds to a group sequential trial does not affect the calculation of efficacy bound

critical values.

As before, if |𝑧1| ≥ 2.413, we reject 𝐻0 and end the trial early for efficacy. With the addition of

the futility bounds, we have the option of ending the trial early for futility if |𝑧1| < 0.149. If |𝑧1| ∈
[0.149, 2.413), the trial must continue. While the Pocock efficacy bounds use the same critical values

for all looks, the futility bounds do not; they grow from ±0.149 at the first look to ±1.981 by the fourth

look, coinciding with the efficacy bounds at the fifth look.

As we move from left to right on the graph by collecting additional samples, we see the futility region

grow and the continuation region shrink. The narrowing continuation region means that the trial is in-

creasingly likely to stop due to futility or efficacy as more samples are collected. But if the test statistics

do not cross the boundaries and the trial continues to the fifth look, the group sequential trial will require

about 60% more participants than an equivalently powered fixed study.

One way to reduce the maximum sample size would be to use a boundary that is more conservative

at early looks, such as an O’Brien–Fleming boundary. Another option is to use binding futility bounds

instead of nonbinding bounds. While nonbinding futility bounds offer the option to stop the trial for

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignRemarksandexamplesex1
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efficacy if they are crossed, binding futility bounds require the termination of the trial if they are crossed.

Continuing a trial that has crossed a binding futility bound can inflate the type I error, and any conclusions

reached by the trial will be viewed with suspicion.

We rerun the previous example with futility() suboption binding to specify binding futility

bounds, omitting the graphbounds option.

. gsdesign twomeans 0, diff(1) sd(2) knownsds power(0.9) efficacy(pocock)
> futility(pocock, binding) nlooks(5)
Group sequential design for a two-sample means test
z test assuming sd1 = sd2 = sd
H0: m2 = m1 versus Ha: m2 != m1
Efficacy: Pocock
Futility: Pocock, binding
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 1.0000

m1 = 0.0000
m2 = 1.0000

diff = 1.0000
sd = 2.0000

Expected sample size:
H0 = 120.18
Ha = 113.00

Info. ratio = 1.5453
N fixed = 170

N max = 260
N1 max = 130
N2 max = 130

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Futility
Look frac. Lower Upper p-value Lower Upper p-value

1 0.20 -2.3564 2.3564 0.0185 -0.1290 0.1290 0.8974
2 0.40 -2.3564 2.3564 0.0185 -0.8754 0.8754 0.3813
3 0.60 -2.3564 2.3564 0.0185 -1.4482 1.4482 0.1476
4 0.80 -2.3564 2.3564 0.0185 -1.9310 1.9310 0.0535
5 1.00 -2.3564 2.3564 0.0185 -2.3564 2.3564 0.0185

Note: Critical values are for z statistics; otherwise, use p-value
boundaries.

Sample size
Look N1 N2 N

1 26 26 52
2 52 52 104
3 78 78 156
4 104 104 208
5 130 130 260
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The binding futility bounds give a modest reduction in maximum sample size, down from 270 to 260.

Compared with the nonbinding design, the binding design uses slightly smaller futility critical values.

Also, while the efficacy-only design and the design with nonbinding futility bounds used efficacy critical

values of ±2.413, here the efficacy critical values have shrunk to ±2.356.

To understand why, consider what happens when the null hypothesis is true. In this case, the correct

action is to accept 𝐻0, and it is a type I error to reject 𝐻0. In the efficacy-only design of example 1, each

interim look presents the opportunity to continue the trial or to commit a type I error andmistakenly reject

𝐻0; only at the final look do we have the option to correctly accept 𝐻0. With binding futility bounds,

every look offers the possibility of crossing the futility boundary and correctly accepting 𝐻0, making it

less likely that the trial will continue to later looks. If we were to use the same efficacy critical values as

in the efficacy-only design, the actual probability of committing a type I error would be lower than the

specified significance level, and the test would be conservative. By relaxing the efficacy critical values,

the desired significance level is achieved. We do not relax the efficacy critical values when nonbinding

futility boundaries are used because there is no guarantee that the trial will be stopped after crossing a

futility boundary.

See [ADAPT] gsdesign twomeans for more examples of GSDs for tests of two sample means.

Background on the BHAT study

The Beta-Blocker Heart Attack Trial (BHAT) was one of the first large-scale clinical trials to adopt

a group sequential monitoring plan (Cook and DeMets 2008). This was a double-blind study in which

participants who had experienced a heart attack were randomized to one of two groups: the control group

(which received a placebo) and the intervention group (which received the beta blocker propranolol).

The endpoint, or outcome of interest, was total mortality, and survival analysis was conducted using a

log-rank test with a two-sided alternative hypothesis.

Recruitment ran from June 1978 to October 1980, with follow-up scheduled to continue until June

1982. Oversight was provided by an independent Policy and Data Monitoring Board (PDMB), which

contained physicians, biostatisticians, and an ethicist. While the BHAT’s study protocol did not set strict

rules for early termination, the PDMB adopted the then-recently publishedO’Brien–Flemingmethod early

on (DeMets et al. 1984).

Based on a combination of factors, including a log-rank test statistic that crossed the O’Brien–Fleming

boundary at the sixth of seven looks, the PDMB stopped the BHAT for treatment efficacy in October of

1981, eight months before follow-up was scheduled to end in June 1982. Lan and DeMets (1989) report

the values of the log-rank test statistic at each of the interim looks:

May October March October April October

1979 1979 1980 1980 1981 1981

test statistic 1.68 2.24 2.37 2.30 2.34 2.82

DeMets, Furberg, and Friedman (2006, Case 2) report that the BHAT was designed with a two-tailed

alpha level of 0.05 and 90% power to detect the difference between nonadherence-adjusted three-year

survival probabilities of 82.54% for the control group and 86.25% for the intervention group. A total of

seven biannual analyses were planned, and O’Brien–Fleming efficacy bounds were calculated assuming

seven evenly spaced looks.

https://www.stata.com/manuals/adaptgsdesign.pdf#adaptgsdesignRemarksandexamplesex1
https://www.stata.com/manuals/adaptgsdesigntwomeans.pdf#adaptgsdesigntwomeans
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf
https://www.stata.com/manuals/adaptglossary.pdf#adaptGlossarydef_obf
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Design for GSD with survival analysis

Example 3: BHAT study
To re-create the design of the BHAT, we run gsdesign logrank with survival probabilities 0.8254

and 0.8625 for the control and intervention arms, respectively. We specify a power of 90% and

O’Brien–Fleming efficacy bounds with seven evenly spaced looks.

. gsdesign logrank 0.8254 0.8625, power(0.9) efficacy(obfleming) nlooks(7)
> graphbounds
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: O’Brien--Fleming
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
Censoring:

s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 642.71
Ha = 459.40

Info. ratio = 1.0323
E fixed = 628
N fixed = 4,024

N max = 4,152
N1 max = 2,076
N2 max = 2,076

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.14 -5.4590 5.4590 0.0000 93
2 0.29 -3.8601 3.8601 0.0001 186
3 0.43 -3.1518 3.1518 0.0016 278
4 0.57 -2.7295 2.7295 0.0063 371
5 0.71 -2.4413 2.4413 0.0146 463
6 0.86 -2.2286 2.2286 0.0258 556
7 1.00 -2.0633 2.0633 0.0391 648

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Figure 3. BHAT trial with O’Brien–Fleming efficacy bounds

At the top of the output, gsdesign displays a description of the trial with null and alternative hypothe-
ses as well as study parameters. We see that the survival probabilities 0.8254 and 0.8625 correspond to a

hazard ratio of 0.7709, which is the effect size used when calculating the number of events necessary to

achieve 90% power. A fixed study would require 628 events (deaths) to detect a hazard ratio of 0.7709

with 90% power, and with the specified survival probabilities, this corresponds to a sample size of 4,024.

The GSD requires a maximum of 648 events (corresponding to a sample of size 4,152) if it continues

to the final look. If the null hypothesis is correct (the hazard ratio is 1) and the BHATwere to be repeated

many times using this design, we would expect to observe an average of 642.71 events per trial. This

is near the maximum because if the null hypothesis is true, in most replications the trial will continue

to the final look; only rarely will the trial be stopped early for efficacy (which would be a type I error).

If the hazard ratio is truly 0.7709 (the value under the alternative hypothesis) and the trial were to be

repeated many times, we would expect an average of 459.4 events per trial. The substantial sample-size

savings (try saying that five times fast) is due to the fact that many replications of the trial will correctly

be stopped early for efficacy.

The log-rank statistic is asymptotically normally distributedwith independent information increments,

and can be compared directly against group sequential critical values (Tsiatis 1982). The critical values

we calculate match those used by the PDMB Cook and DeMets (2008, 306).

At the first look, the test statistic 𝑧1 = 1.68 < 5.459, so the trial continued. The test statistics at

the following four looks are also in the continuation region (𝑧2 = 2.24 < 3.86, 𝑧3 = 2.37 < 3.152,

𝑧4 = 2.30 < 2.73, and 𝑧5 = 2.34 < 2.441), bringing the trial to the sixth of seven planned looks. At the

sixth look, the test statistic crosses the efficacy bound, 𝑧6 = 2.82 > 2.229, which supports the PDMB’s

decision to stop the trial for treatment efficacy.



gsdesign — Study design for group sequential trials 22

Two aspects of the O’Brien–Fleming bound that the PDMB found appealing were the conservative

critical values early in the trial and the final critical value that is only marginally larger than the fixed-

study critical value (DeMets et al. 1984). An additional advantage is that even if the trial were to continue

to the final look, the O’Brien–Fleming design requires only 3% more information (deaths, in this case)

than a fixed study.

While the BHAT was a success story for the use of group sequential clinical trials, it was not without

its challenges (DeMets, Furberg, and Friedman 2006). The number of participants recruited was nearly

equal to the desired sample size, so the power would have been almost 90% to detect the difference

between the anticipated survival probabilities of 82.54% and 86.25%, but survival was higher than an-

ticipated for both the control and intervention groups. At the sixth look, only 318 of the anticipated 556

events had been observed, and a smaller-than-anticipated number of events can reduce the power of the

test. Fortunately, adherence was also better than anticipated, and the effect size was larger than antici-

pated. The reduced number of events observed impacted the power of the test but did not influence the

probability of committing a type I error.

A potentially more vexing issue is that the efficacy critical values were calculated under the assump-

tion of equal information increments, but the interim analyses were scheduled based on calendar time,

making it impossible to enforce an evenly spaced information sequence. Severe violations of this as-

sumption can cause excessive type I error, but the number of deaths between looks was approximately

equal, and type I error control is robust to minor violations of this assumption (DeMets et al. 1984).

Example 4: Error-spending bounds
One of themembers of the PDMB from the BHAT, David DeMets, was inspired by the experience to find

a more flexible method of calculating group sequential boundaries. Lan and DeMets (1983) developed

error-spending methods, which depend on the total information to be collected and the interim analyses

already conducted but not on the critical values of future looks. This flexibility allows error-spending

bounds to adjust to scenarios such as the BHAT, where the precise information fraction at each look is

not known a priori. This framework was further extended by Lan and DeMets (1989), who introduced

methods for calculating stopping boundaries based on calendar time.

Here we reimagine the BHAT trial using an error-spending approximation to the classical

O’Brien–Fleming boundary (Lan and DeMets 1983). Instead of specifying evenly spaced looks, we

use Method 2 from Lan and DeMets (1989, 1195) to specify the timing of interim looks based on cal-

endar time. To do this, we use the information() option instead of the nlooks() option, and we

specify the timing of each look as the number of months since June 1979, when the study began accruing

participants. We graph the bounds and label the 𝑥 axis with the number of months since June 1979.

. gsdesign logrank 0.8254 0.8625, power(0.9) efficacy(errobfleming)
> information(11 16 21 28 34 40 48)
> graphbounds(xdiminformation xtitle(”Months”))
Group sequential design for two-sample comparison of survivor functions
Log-rank test, Freedman method
H0: HR = 1 versus Ha: HR != 1
Efficacy: Error-spending O’Brien--Fleming style
Study parameters:

alpha = 0.0500 (two-sided)
power = 0.9000
delta = 0.7709 (hazard ratio)

hratio = 0.7709
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Censoring:
s1 = 0.8254
s2 = 0.8625

Pr_E = 0.1560
Expected number of events:

H0 = 641.04
Ha = 461.13

Info. ratio = 1.0280
E fixed = 628
N fixed = 4,024

N max = 4,136
N1 max = 2,068
N2 max = 2,068

Fixed-study crit. values = ±1.9600
Critical values, p-values, and sample sizes for a group sequential design

Info. Efficacy Events
Look frac. Lower Upper p-value E

1 0.23 -4.5380 4.5380 0.0000 148
2 0.33 -3.7128 3.7128 0.0002 216
3 0.44 -3.2081 3.2081 0.0013 283
4 0.58 -2.7361 2.7361 0.0062 377
5 0.71 -2.4739 2.4739 0.0134 458
6 0.83 -2.2717 2.2717 0.0231 538
7 1.00 -2.0473 2.0473 0.0406 646

Note: Critical values are for z statistics; otherwise, use
p-value boundaries.
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Figure 4. BHAT trial with error-spending bounds
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The new designmaintains the same familywise significance level, power, and effect size as the original

BHAT design, so the fixed-study equivalent of the new design requires the same 628 events as the fixed

equivalent of the original BHAT. Comparing the stopping boundaries of the new error-spending design

against those of the original design, we see that the new critical values are quite close to those calculated

using classical O’Brien–Fleming bounds with evenly spaced looks. The maximum number of events

remains nearly the same, with the new design calling for 646 events at the final analysis versus 648 for

the classical O’Brien–Fleming design.

More importantly, when the new error-spending boundaries are used to determine stopping for the

BHAT trial, they support the same conclusion as the classical O’Brien–Fleming boundaries: to terminate

the trial for efficacy at the sixth look. The first five tests statistics lie in the continuation region of the

new design, but at the sixth look, 𝑧6 = 2.82 > 2.272.

Stored results
To calculate the fixed-study sample size, gsdesign method runs power method and returns all the

method-specific stored results as well as the following common results in r():

Scalars

r(alpha) overall significance level (familywise type I error)

r(beta) overall probability of a type II error

r(binding) 1 for binding futility bounds, 0 for nonbinding

r(E fixed) total number of events (failures) in a fixed study design (survival analysis only)

r(E max) maximum observed events if the study continues to completion (survival analysis only)

r(effparam) efficacy parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(Efrac fixed) fractional total number of events (failures) in a fixed study design (survival analysis only)

r(ESS0) expected sample size under null hypothesis

r(ESS1) expected sample size under alternative hypothesis

r(futparam) futility parameter (if wtsiatis(), kdemets(), or hsdecani() specified)

r(info ratio) ratio of maximum information required to that of a fixed study design

r(N fixed) sample size of a fixed study design

r(N fixedfrac) fractional sample size of a fixed study design

r(N max) maximum sample size if the study continues to completion

r(N1 fixed) sample size of the control group in a fixed study design (multiarm trials only)

r(N1 fixedfrac) fractional sample size of the control group in a fixed study design (multiarm trials only)

r(N1 max) maximum sample size of the control group if the study continues to completion (multiarm

trials only)
r(N2 fixed) sample size of the experimental group in a fixed study design (multiarm trials only)

r(N2 fixedfrac) fractional sample size of the experimental group in a fixed study design (multiarm trials

only)
r(N2 max) maximum sample size of the experimental group if the study continues to completion (mul-

tiarm trials only)
r(nfractional) 1 if nfractional is specified, 0 otherwise

r(nlooks) number of analyses

r(onesided) 1 for a one-sided test, 0 otherwise

r(power) specified overall power

r(power a) attained overall power

r(stop) 0 for futility bounds, 1 for efficacy bounds, 2 for both

r(z fixed) critical value for an equivalent fixed study design

Macros

r(cmd) gsdesign
r(cmdline) command as typed

r(direction) upper, lower, or two-sided
r(effbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(futbnd) pocock, obfleming, wtsiatis, errpocock, errobfleming, kdemets, or hsdecani
r(method) method name
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Matrices

r(aspent) cumulative alpha spent per look (stored with efficacy-only stopping or when futility bounds

are binding)
r(aspent fstop) cumulative alpha spent per look if futility stopping does occur (stored when futility bounds

are nonbinding)
r(aspent nofstop) cumulative alpha spent per look if futility stopping does not occur (stored when futility

bounds are nonbinding)
r(bounds) stopping boundaries

r(bspent) cumulative beta spent per look (when futility bounds are specified)

r(bspent a) attained cumulative beta spent per look (when futility bounds are specified)

r(design) sample size and stopping boundaries at interim looks

r(info frac) specified information fraction

r(info frac a) fraction of attained information

r(info level) specified information level

r(p crit) 𝑝-values corresponding to boundary critical values
r(sampsize) sample size at interim looks

Methods and formulas
See Methods and formulas in [ADAPT] gsbounds for the formulas used to calculate the stopping

boundaries, information fraction, and information ratio. See Methods and formulas in [PSS-2] power for

the formulas used to calculate sample size of a fixed study design.

Methods and formulas are presented under the following headings:

Sample sizes at interim analyses
Expected sample size

Sample sizes at interim analyses
When planning a study using a GSD with 𝐾 looks, we must specify the information fraction at each

look, denoted as (ℐ1, . . . , ℐ𝐾). For any 𝑘 in (1, . . . , 𝐾), let ℐ𝑘 represent the proportion of trial data that

has been collected by look 𝑘. In most cases, the information fraction is the proportion of the maximum
sample size that has been collected, but for time-to-event data, the information fraction is the proportion

of the total number of failure events that have been observed, not the total number of participants.

With gsdesign, the information(numlist) option can be used to specify the information fraction as
a strictly increasing sequence, which is then scaled so that ℐ𝐾 = 1. Alternatively, the nlooks() option

can be used to specify the number of evenly spaced looks, and the information fraction is calculated

automatically.

To determine the sample size required at each look of a GSD, we begin by calculating 𝑛fix, the sample

size of a fixed study design with equivalent type I and type II error. Next we calculate the information

ratio, 𝑅, which is the ratio of the maximum sample size of the GSD to 𝑛fix. Regardless of the properties

of the study, 𝑅 is always greater than 1 (see Methods and formulas in [ADAPT] gsbounds for more

information).

Let (𝑛1, . . . , 𝑛𝐾) be the cumulative sample sizes at looks 1 through 𝐾, with the maximum sample

size of 𝑛𝐾 attained at the final look. For any look 𝑘 in (1, . . . , 𝐾), the sample size 𝑛𝑘 = ℐ𝑘 × 𝑛fix × 𝑅.

In practice, sample sizes must be rounded up to whole numbers of participants, so gsdesign rounds up

sample sizes unless the nfractional option is specified.

https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulas
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
https://www.stata.com/manuals/pss-2power.pdf#pss-2powerMethodsandformulas
https://www.stata.com/manuals/pss-2power.pdf#pss-2power
https://www.stata.com/manuals/u11.pdf#u11.1.8numlist
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsboundsMethodsandformulasError-spendingbounds
https://www.stata.com/manuals/adaptgsbounds.pdf#adaptgsbounds
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Expected sample size
After each group of observations is collected, an analysis is performed and the test statistic 𝑍 is

calculated. In the description that follows, we assume that𝑍 follows a standard normal distribution under

𝐻0. For test statistics that follow other distributions, the normal model is used to calculate boundary

critical values, and then 𝑝-values for the test statistics are compared with 𝑝-values corresponding to the
boundary critical values. The 𝑝-value comparison is known as the significance level approach and is

described in [ADAPT] gsbounds.

Without loss of generality, consider a GSD for an upper one-sided test with both efficacy and binding

futility bounds. Denote critical values for efficacy stopping as (𝑒1, . . . , 𝑒𝐾) and critical values for futility
stopping as (𝑓1, . . . , 𝑓𝐾). At interim look 𝑘 < 𝐾, if test statistic𝑍𝑘 ≥ 𝑒𝑘, the trial is stopped for efficacy;

if 𝑍𝑘 < 𝑓𝑘, the trial is stopped for futility; and if 𝑓𝑘 ≤ 𝑍𝑘 < 𝑒𝑘, the trial continues. At the final look,

there is no continuation region because 𝑓𝐾 = 𝑒𝐾.

The probability of stopping the trial at look 𝑘 is a function of the effect size 𝛿 and is denoted as 𝜔𝑘(𝛿),
where 𝜔1(𝛿) = Pr𝛿(𝑍1 < 𝑓1) + Pr𝛿(𝑍1 ≥ 𝑒1) and

𝜔𝑘(𝛿) = Pr𝛿 {(𝑍𝑘 < 𝑓𝑘 ∪ 𝑍𝑘 ≥ 𝑒𝑘) ∩
𝑘−1
⋂
𝑗=1

𝑓𝑗 ≤ 𝑍𝑗 < 𝑒𝑗} for 𝑘 ∈ (2, . . . , 𝐾)

For trials with efficacy stopping only, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ and let 𝑓𝐾 = 𝑒𝐾. For trials

with nonbinding futility bounds, replace (𝑓1, . . . , 𝑓𝐾−1) with −∞ when 𝛿 = 0 but not when 𝛿 ≠ 0. For

trials with futility stopping only, replace (𝑒1, . . . , 𝑒𝐾−1) with ∞ and let 𝑒𝐾 = 𝑓𝐾. For two-sided trials,

replace 𝑍𝑘 with |𝑍𝑘|.
The expected sample size is a function of effect size 𝛿 and is calculated as

ESS(𝛿) =
𝐾

∑
𝑘=1

𝑛𝑘 ∗ 𝜔𝑘(𝛿)
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