>> Home >> Disciplines >> Political science

Political science

Quantitative political scientists rely on Stata because of its breadth, accuracy, and reproducibility. Whether you are researching decentralization and federalism, voting behavior, legislative redistricting, or internal conflict, Stata provides all the statistics, graphics, and data management tools needed to pursue a broad range of political science questions.




Features for political scientists

Panel data
Take full advantage of the extra information that panel data provide while simultaneously handling the peculiarities of panel data. Study the time-invariant features within each panel, the relationships across panels, and how outcomes of interest change over time. Fit linear models or nonlinear models for binary, count, ordinal, censored, or survival outcomes with fixed-effects, random-effects, or population-averaged estimators. Fit dynamic models or models with endogeneity. And much more.

Multilevel mixed-effects models
Whether the groupings in your data arise in a nested fashion (cities nested in states and states nested in regions) or in a nonnested fashion (regions crossed with occupations), you can fit a multilevel model to account for the lack of independence within these groups. Fit models for continuous, binary, count, ordinal, and survival outcomes. Estimate variances of random intercepts and random coefficients. Compute intraclass correlations. Predict random effects. Estimate relationships that are population averaged over the random effects. And much more.

Causal inference
Estimate experimental-style causal effects from observational data. With Stata's treatment-effect estimators, we can use a potential-outcomes (counterfactuals) framework to estimate, for instance, the effect of an advertising campaign on voting. Fit models for continuous, binary, count, fractional, and survival outcomes with binary or multivalued treatments using inverse-probability weighting (IPW), propensity-score matching, nearest-neighbor matching, regression adjustment, or doubly robust estimators. If the assignment to a treatment is not independent of the outcome, you can use an endogenous treatment-effects estimator. And much more.

Multiple imputation
Account for missing data in your sample using multiple imputation. Choose from univariate and multivariate methods to impute missing values in continuous, censored, truncated, binary, ordinal, categorical, and count variables. Then, in a single step, estimate parameters using the imputed datasets, and combine results. Fit a linear model, logit model, Poisson model, hierarchical model, survival model, or one of the many other supported models. Use the mi command, or let the Control Panel interface guide you through your entire MI analysis. And much more.

Structural equation modeling (SEM)
Estimate mediation effects, analyze the relationship between an unobserved latent concept such as conservatism and the observed variables that measure conservatism, model a system with many endogenous variables and correlated errors, or fit a model with complex relationships among both latent and observed variables. Fit models with continuous, binary, count, ordinal, fractional, and survival outcomes. Even fit multilevel models with groups of correlated observations such as children within the same schools. Evaluate model fit. Compute indirect and total effects. Fit models by drawing a path diagram or using the straightforward command syntax. And much more.

Time series
Handle the statistical challenges inherent to time-series data—autocorrelations, common factors, autoregressive conditional heteroskedasticity, unit roots, cointegration, and much more. Analyze univariate time series using ARIMA, ARFIMA, Markov-switching models, ARCH and GARCH models, and unobserved-components models. Analyze multivariate time series using VAR, structural VAR, VEC, multivariate GARCH, dynamic-factor models, and state-space models. Compute and graph impulse responses. Test for unit roots. And much more.

Linear, binary, and count regressions
Fit classical linear models of the relationship between a continuous outcome, such as wage, and the determinants of wage, such as education level, age, experience, and economic sector. If your response is binary (for example, employed or unemployed), ordinal (education level), count (number of children), or censored (ticket sales in an existing venue), don't worry. Stata has maximum likelihood estimators—probit, ordered probit, Poisson, tobit, and many others—that estimate the relationship between such outcomes and their determinants. A vast array of tools is available to analyze such models. Predict outcomes and their confidence intervals. Test equality of parameters or any linear or nonlinear combination of parameters. And much more.

Forecasting
Build multiequation models, and produce forecasts of levels, trends, rates, etc. Whether you have a small model with a few equations or a complete model of the economy with thousands of equations, Stata can help you build that model and produce forecasts. Your model can include both estimated relationships and known identities. You can easily create and compare forecasts under different scenarios, create static and dynamic forecasts, and even estimate stochastic confidence intervals. You can create your model by using an intuitive command syntax or by using the interactive forecasting control panel. And much more.

Marginal means, contrasts, and interactions
Marginal effects and marginal means let you analyze and visualize the relationships between your outcome variable and your covariates, even when that outcome is binary, count, ordinal, categorical, or censored (tobit). Estimate population-averaged marginal effects, or evaluate marginal effects at interesting or representative values of the covariates. Analyze the effect of interactions. You can even trace out the marginal effect over a range of interesting covariate values or covariate interactions. You can do all of this with marginal means, sometimes called potential-outcome means, too—even when your "mean" is a probability of a positive outcome or a count from a Poisson model. If you have panel data and random effects, these effects are automatically integrated out to provide marginal (that is, population-averaged) effects. And much more.

Bayesian analysis
Fit Bayesian regression models using a Metropolis–Hastings Markov chain Monte Carlo (MCMC) method. You can choose from a variety of supported models or even program your own. Extensive graphical tools are available to check convergence visually. Compute posterior mean estimates and credible intervals for model parameters and functions of model parameters. You can perform both interval- and model-based hypothesis testing. Compare models using Bayes factors. And much more.

Endogeneity and selection
When explanatory variables are related to omitted observable variables, or when they are related to unobservable variables, or when there is selection bias, then causal relationships are confounded and parameter estimates from standard estimators produce inconsistent estimates of the true relationships. Stata can fit consistent models when there is such endogeneity or selection—whether your outcome variable is continuous, binary, count, or ordinal and whether your data are cross-sectional or panel. And much more.

Survival analysis
Analyze duration outcomes—outcomes measuring the time to an event such as failure or death—using Stata's specialized tools for survival analysis. Account for the complications inherent in survival data, such as sometimes not observing the event (censoring), individuals entering the study at differing times (delayed entry), and individuals who are not continuously observed throughout the study (gaps). You can estimate and plot the probability of survival over time. Or model survival as a function of covariates using Cox, Weibull, lognormal, and other regression models. Predict hazard ratios, mean survival time, and survival probabilities. Do you have groups of individuals in your study? Adjust for within-group correlation with a random-effects or shared frailty model. And much more.

Thanks for the amazingly quick response! As always, you guys are the best of any of the companies I have to/get to deal with!

— Tom Durkin
Department of Political Science, University of South Carolina

Check out Stata's full list of features, or see what's new in Stata 14.

Why Stata?

Intuitive and easy to use.
Once you learn the syntax of one estimator, graphics command, and data management tool, you will effortlessly understand the rest.

Accuracy and reliability.
Stata is extensively and continually tested. Stata's tests produce approximately 4 million lines of output.

One package. No modules.
When you buy Stata, you obtain everything for your statistical, graphical, and data analysis needs. You do not need to buy separate modules or import your data to specialized software.

Write your own Stata programs.
You can easily write your own Stata programs and commands to share with others or to simplify your work using Stata's do-files, ado-files, and matrix-language program, Mata. Moreover, you can benefit from the thousands of Stata user-written programs.

Extensive documentation.
Stata offers 22 volumes with more than 12,000 pages of PDF documentation containing calculation formulas, detailed examples, references to the literature, and in-depth discussions. Stata's documentation is a great place to learn about Stata and the statistics, graphics, or data management tools you are using for your research.

Top-notch technical support.
Stata's technical support is known for their prompt, accurate, detailed, and clear responses. People answering your questions have master's and PhD degrees in relevant areas of research.

Learn more

We can show you how

Stata's YouTube has over 100 videos with a dedicated playlist of methodologies important to political scientists. And they are a convenient teaching aid in the classroom.


Visit our channel

NetCourses: Online training made simple

Learn how to perform rigorous panel-data analysis or univariate time series, all from the comfort of your home or office. NetCourses make it easy.

For Stata users, by Stata users

Stata Press offers books with clear, step-by-step examples that make teaching easier and that enable students to learn and political scientists to implement the latest best practices in analysis.


Alan C. Acock

A. Colin Cameron and Pravin K. Trivedi

Nicholas J. Cox

Nicholas J. Cox and H. Joseph Newton (editors)

Michael N. Mitchell

Sophia Rabe-Hesketh and Anders Skrondal

Stata

Shop

Support

Company


The Stata Blog: Not Elsewhere Classified Find us on Facebook Follow us on Twitter LinkedIn Google+ YouTube
© Copyright 1996–2016 StataCorp LP   •   Terms of use   •   Privacy   •   Contact us