Stata: Data Analysis and Statistical Software
   >> Home >> Products >> Capabilities >> Time series
order stataorder stata

Time series

ARIMA

  • ARMA
  • ARMAX
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints
  • Multiplicative seasonal ARIMA
  • Spectral densities

ARCH/GARCH

  • GARCH
  • APARCH
  • EGARCH
  • NARCH
  • AARCH
  • GJR and more
  • ARCH in mean
  • Standard and robust variance estimates
  • Normal, Student's t, or generalized error distribution
  • Multiplicative deterministic heteroskedasticity
  • Static and dynamic forecasts
  • Linear constraints

Multivariate GARCH New

  • Diagonal VECH models
  • Conditional correlation models
    • Constant conditional correlation
    • Dynamic conditional correlation
    • Varying conditional correlation
  • Multivariate normal or multivariate Student's t errors
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints

ARFIMA New

  • Long-memory processes
  • Fractional integration
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints
  • Spectral densities

Unobserved components model (UCM) New

  • Trend-cycle decomposition
  • Stochastic cycles
  • Estimation by state-space methods
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints
  • Spectral densities

Time-series functions

  • String conversion to date: daily, weekly, monthly, quarterly, half-yearly, yearly
  • Dates and times from numeric arguments
  • Date and time literal support
  • Periodicity conversion, e.g., daily date to quarterly
  • Date and time ranges

Time-series operators

  • L, lag
  • F, leads
  • D, differences
  • S#, seasonal lag

Time-series time and date formats

  • Default formats for clock-time daily, weekly, monthly, quarterly, half-yearly, yearly
  • High-frequency data with millisecond resolution
  • User-specified formats

Business calendars New

  • Define your own calendars
  • Format variables using business calendar format
  • Convert between business dates and regular dates
  • Lags and leads calculated according to calendar

Rolling and recursive estimation

Regression diagnostics

  • LM test for ARCH effects
  • Breusch–Godfrey LM test for serial correlation
  • Durbin alternative test for serial correlation
  • Durbin–Watson statistic

Regression with AR(1) disturbances

  • White’s method for heteroskedasticity-robust variances
  • Two-step or iterated methods
  • Cochrane–Orcutt, Prais–Winsten, and ARMA/ARIMA estimators

Tests for unit roots

  • Dickey–Fuller
    • Modified Dickey–Fuller t test proposed by Elliott, Rothenberg, and Stock
    • Augmented Dickey–Fuller test
  • Phillips–Perron

Graphs and tables

  • Autocorrelations and partial correlations
  • Cross-correlations
  • Cumulative sample spectral density
  • Periodograms
  • Line plots
  • Range plot with lines

Tests for white noise

  • Portmanteau’s test
  • Bartlett’s periodogram test

Support for Haver Analytics database

VAR/SVAR/VECM

  • Vector autoregression (VAR)
  • Structural vector autoregression (SVAR)
  • Vector error-correction models (VECM)
  • Impulse–response functions (IRFs)
    • Simple IRFs
    • Orthogonalized IRFs
    • Structural IRFs
    • Cumulative IRFs
  • Dynamic multipliers
  • Forecast-error variance decompositions (FEVD)
  • Static and dynamic forecasts
  • Diagnostics and tests
    • Cointegration tests
    • Granger causality tests
    • LM tests for residual autocorrelation
    • Tests for normality of residuals
    • Lag-order selection statistics
    • Stability analysis using eigenvalues
    • Wald lag exclusion statistics
  • Graphical and tabular presentations and comparisons of IRFs and FEVDs
  • IRF management tools

State-space models

  • VARMA models
  • Structural time-series models
  • Stochastic general-equilibrium models
  • Stationary and nonstationary models
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints

Dynamic-factor models

  • Unobserved factors with vector autoregressive structure
  • Exogenous covariates
  • Autocorrelated disturbances in dependent variables’ equations
  • Standard and robust variance estimates
  • Static and dynamic forecasts
  • Linear constraints

Time-series filters New

  • Baxter–King band-pass filter
  • Butterworth high-pass filter
  • Christiano–Fitzgerald band-pass filter
  • Hodrick–Prescott high-pass filter

Time-series smoothers

  • Moving average (MA)
  • Single exponential
  • Double exponential
  • Holt–Winters nonseasonal exponential
  • Holt–Winters seasonal exponential
  • Nonlinear
  • Forecasting and smoothing

Factor variables

  • Automatically create indicators based on categorical variables
  • Form interactions among discrete and continuous variables
  • Include polynomial terms
  • Perform contrasts of categories/levels

Marginal analysis

  • Estimated marginal means
  • Marginal and partial effects
  • Average marginal and partial effects
  • Least-squares means
  • Predictive margins
  • Adjusted predictions, means, and effects
  • Contrasts of margins New
  • Pairwise comparisons of margins New
  • Profile plots New
  • Graphs of margins and marginal effects New

Contrasts New

  • Analysis of main effects, simple effects, interaction effects, partial
  • interaction effects, and nested effects
  • Comparisons against reference groups, of adjacent levels, or against
  • the grand mean
  • Orthogonal polynomials
  • Helmert contrasts
  • Custom contrasts
  • ANOVA-style tests
  • Contrasts of nonlinear responses
  • Multiple-comparison adjustments
  • Balanced and unbalanced data
  • Contrasts in odds-ratio metric
  • Contrasts of means, intercepts, and slopes
  • Graphs of contrasts
  • Interaction plots

Pairwise comparisons New

  • Compare estimated means, intercepts, and slopes
  • Compare marginal means, intercepts, and slopes
  • Balanced and unbalanced data
  • Nonlinear responses
  • Multiple-comparison adjustments: Bonferroni, Šidák, Scheffé, Tukey HSD, Duncan, and Student-Newman-Keuls adjustments
  • Group comparisons that are significant
  • Graphs of pairwise comparisons
Explore more about time series in Stata.

Note: Factor variables, contrasts, and pairwise comparisons are not available for ARCH, ARIMA, VAR, SVAR, or VEC.

See tests, predictions, and effects.

See New in Stata 12 for more about what was added in Stata Release 12.

Bookmark and Share 
Stata 12
Overview: Why use Stata?
Stata/MP
Capabilities
Overview
Sample session
User-written commands
New in Stata 12
Supported platforms
Which Stata?
Technical support
User comments
Like us on Facebook Follow us on Twitter Follow us on LinkedIn Google+ Watch us on YouTube
Follow us
© Copyright 1996–2013 StataCorp LP   |   Terms of use   |   Privacy   |   Contact us   |   Site index   |   View mobile site