
1 The problem of survival analysis

Survival analysis concerns analyzing the time to the occurrence of an event. For instance,
we have a dataset in which the times are 1, 5, 9, 20, and 22. Perhaps those measurements
are made in seconds, perhaps in days, but that does not matter. Perhaps the event is
the time until a generator’s bearings seize, the time until a cancer patient dies, or the
time until a person finds employment, but that does not matter either.

For now, we will just abstract the underlying data-generating process and say that
we have some times—1, 5, 9, 20, and 22—until an event occurs. We might also have
some covariates (additional variables) that we wish to use to “explain” these times. So,
pretend that we have the following (completely made up) dataset:

time x
1 3
5 2
9 4

20 9
22 -4

Now what is to keep us from simply analyzing these data using ordinary least-squares
(OLS) linear regression? Why not simply fit the model

timej = β0 + β1xj + εj , εj ∼ N(0, σ2)

for j = 1, . . . , 5, or, alternatively,

ln(timej) = β0 + β1xj + εj , εj ∼ N(0, σ2)

That is easy enough to do in Stata by typing

. regress time x

or

. generate lntime = ln(time)

. regress lntime x

These days, researchers would seldom analyze survival times in this manner, but why
not? Before you answer too dismissively, we warn you that we can think of instances
for which this would be a perfectly reasonable model to use.
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1.1 Parametric modeling

The problem with using OLS to analyze survival data lies with the assumed distribution
of the residuals, εj . In linear regression, the residuals are assumed to be distributed
normally; i.e., time conditional on xj is assumed to follow a normal distribution:

timej ∼ N(β0 + β1xj , σ
2), j = 1, . . . , 5

The assumed normality of time to an event is unreasonable for many events. It is
unreasonable, for instance, if we are thinking about an event with an instantaneous
risk of occurring that is constant over time. Then the distribution of time would follow
an exponential distribution. It is also unreasonable if we are analyzing survival times
following a particularly serious surgical procedure. Then the distribution might have
two modes: many patients die shortly after the surgery, but if they survive, the disease
might be expected to return. One other problem is that a time to failure is always
positive, while theoretically, the normal distribution is supported on the entire real line.
Realistically, however, this fact alone is not enough to render the normal distribution
useless in this context, because σ2 may be chosen (or estimated) to make the probability
of a negative failure time virtually zero.

At its core, survival analysis concerns nothing more than making a substitution for
the normality assumption characterized by OLS with something more appropriate for
the problem at hand.

Perhaps, if you were already familiar with survival analysis, when we asked, “why
not linear regression?” you offered the excuse of right censoring—that in real data we
often do not observe subjects long enough for all of them to fail. In our data there was
no censoring, but in reality, censoring is just a nuisance. We can fix linear regression
easily enough to deal with right censoring. It goes under the name censored-normal
regression, and Stata’s cnreg command can fit such models; see [R] cnreg. The real
problem with linear regression in survival applications is with the assumed normality.

Being unfamiliar with survival analysis, you might be tempted to use linear regres-
sion in the face of nonnormality. Linear regression is known, after all, to be remarkably
robust to deviations from normality, so why not just use it anyway? The problem is
that the distributions for time to an event might be dissimilar from the normal—they
are almost certainly nonsymmetric, they might be bimodal, and linear regression is not
robust to these violations.

Substituting a more reasonable distributional assumption for εj leads to parametric
survival analysis.



1.2 Semiparametric modeling 3

1.2 Semiparametric modeling

That results of analyses are being determined by the assumptions and not the data is
always a source of concern, and this leads to a search for methods that do not require
assumptions about the distribution of failure times. That, at first blush, seems hopeless.
With survival data, the key insight into removing the distributional assumption is that,
because events occur at given times, these events may be ordered and the analysis may
be performed exclusively using the ordering of the survival times. Consider our dataset:

time x
1 3
5 2
9 4

20 9
22 -4

Examine the failure that occurred at time 1. Let’s ask the following what is the
probability of failure after exposure to the risk of failure for 1 unit of time? At this
point, observation 1 had failed and the others had not. This reduces the problem to a
problem of binary-outcome analysis,

time x outcome
1 3 1
5 2 0
9 4 0

20 9 0
22 -4 0

and it would be perfectly reasonable for us to analyze failure at time = 1 using, say,
logistic regression

= Pr(failure after exposure for 1 unit of time)
= Pr(outcomej = 1)

=
1

1 + exp(−β0 − xjβx)

for j = 1, . . . , 5. This is easy enough to do:

. logistic outcome x

Do not make too much of our choice of logistic regression—choose the analysis
method you like. Use probit. Make a table. Whatever technique you choose, you could
do all your survival analysis using this analyze-the-first-failure method. To do so would
be inefficient but would have the advantage that you would be making no assumptions
about the distribution of failure times. Of course, you would have to give up on being
able to make predictions conditional on x, but perhaps being able to predict whether
failure occurs at time = 1 would be sufficient.

There is nothing magical about the first death time; we could instead choose to
analyze the second death time, which here is time = 5. We could ask about the
probability of failure, given exposure of 5 units of time, in which case we would exclude
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the first observation (which failed too early) and fit our logistic regression model using
the second and subsequent observations:

. drop outcome

. generate outcome = cond(time==5,1,0) if time>=5

. logistic outcome x if time>=5

In fact, we could use this same procedure on each of the death times, separately.

Which analysis should we use? Well, the second analysis has slightly less information
than the first (because we have one less observation), and the third has less than the
first two (for the same reason), and so on. So we should choose the first analysis. It is,
however, unfortunate that we have to choose at all. Could we somehow combine all these
analyses and constrain the appropriate regression coefficients (say, the coefficient on x)
to be the same? Yes, we could, and after some math, that leads to semiparametric
survival analysis and, in particular, to Cox (1972) regression if a conditional logistic
model is fit for each analysis. Conditional logistic models differ from ordinary logistic
models for this example in that for the former we condition on the fact that we know
that outcome==1 for one and only one observation within each separate analysis.

However, for now we do not want to get lost in all the mathematical detail. We
could have done each of the analyses using whatever binary analysis method seemed
appropriate. By doing so, we could combine them all if we are sufficiently clever in
doing the math, and because each of the separate analyses made no assumption about
the distribution of failure times, the combined analysis also makes no such assumption.

That last statement is rather slippery, so it does not hurt to verify its truth. We
have been considering the data

time x
1 3
5 2
9 4

20 9
22 -4

but now consider two variations on the data:

time x
1.1 3
1.2 2
1.3 4

50.0 9
50.1 -4

and

time x
1 3

500 2
1000 4
10000 9

100000 -4
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These two alternatives have dramatically different distributions for time, yet they have
the same temporal ordering and the same values of x. Think about performing the
individual analyses on each of these datasets, and you will realize that the results you
get will be the same. Time plays no role other than ordering the observations.

The methods described above go under the name semiparametric analysis; as far as
time is concerned, they are nonparametric, but because we are still parameterizing the
effect of x, there exists a parametric component to the analysis.

1.3 Nonparametric analysis

Semiparametric models are parametric in the sense that the effect of the covariates is
still assumed to take a certain form. Earlier, by performing a separate analysis at each
failure time and concerning ourselves only with the order in which the failures occurred,
we made no assumption about the distribution of time to failure. We did, however, make
an assumption about how each subject’s observed x value determined the probability
that subject would fail, for example, a probability determined by the logistic function.

An entirely nonparametric approach would be to go away with this assumption also
and follow the philosophy of “letting the dataset speak for itself”. There exists a vast
literature on performing nonparametric regression using methods such as lowess or local
polynomial regression; however, such methods do not adequately deal with censoring
and other issues unique to survival data.

When no covariates exist, or when the covariates are qualitative in nature (gender, for
instance), we can use nonparametric methods such as Kaplan and Meier (1958) or the
method of Nelson (1972) and Aalen (1978) to estimate the probability of survival past
a certain time or to compare the survival experiences for each gender. These methods
account for censoring and other characteristics of survival data. There also exist meth-
ods such as the two-sample log-rank test, which can compare the survival experience
across gender by using only the temporal ordering of the failure times. Nonparametric
methods make assumptions about neither the distribution of the failure times nor how
covariates serve to shift or otherwise change the survival experience.

1.4 Linking the three approaches

Going back to our original data, consider the individual analyses we performed to obtain
the semiparametric (combined) results. The individual analyses were

Pr(failure after exposure for exactly 1 unit of time)
Pr(failure after exposure for exactly 5 units of time)
Pr(failure after exposure for exactly 9 units of time)
Pr(failure after exposure for exactly 20 units of time)
Pr(failure after exposure for exactly 22 units of time)
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We could omit any of the individual analyses above, and doing so would affect only the
efficiency of our estimators. It is better, though, to include them all, so why not add
the following to this list:

Pr(failure after exposure for exactly 1.1 units of time)
Pr(failure after exposure for exactly 1.2 units of time)
. . .

That is, why not add individual analyses for all other times between the observed failure
times? That would be a good idea because the more analyses we can combine, the
more efficient our final results will be: the standard errors of our estimated regression
parameters will be smaller. We do not do this only because we do not know how to
say anything about these intervening times—how to perform these analyses—unless we
make an assumption about the distribution of failure time. If we made that assumption,
we could perform the intervening analyses (the infinite number of them), and then we
could combine them all to get superefficient estimates. We could perform the individual
analyses themselves a little differently, too, by taking into account the distributional
assumptions, but that would only make our final analysis even more efficient.

That is the link between semiparametric and parametric analysis. Semiparametric
analysis is simply a combination of separate binary-outcome analyses, one per failure
time, while parametric analysis is a combination of several analyses at all possible
failure times. In parametric analysis, if no failures occur over a particular interval,
that is informative. In semiparametric analysis, such periods are not informative. On
the one hand, semiparametric analysis is advantageous in that it does not concern
itself with the intervening analyses, yet parametric analysis will be more efficient if the
proper distributional assumptions are made concerning those times when no failures are
observed.

When no covariates are present, we hope that semiparametric methods such as
Cox regression will produce estimates of relevant quantities (such as the probability
of survival past a certain time) that are identical to the nonparametric estimates, and
in fact, they do. When the covariates are qualitative, parametric and semiparametric
methods should yield more efficient tests and comparisons of the groups determined
by the covariates than nonparametric methods, and these tests should agree. Test
disagreement would indicate that some of the assumptions made by the parametric or
semiparametric models are incorrect.




