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Cross-referencing the documentation

When reading this manual, you will find references to other Stata manuals, for example,
[U] 27 Overview of Stata estimation commands; [R] regress; and [D] reshape. The first ex-
ample is a reference to chapter 27, Overview of Stata estimation commands, in the User’s Guide;
the second is a reference to the regress entry in the Base Reference Manual; and the third is a
reference to the reshape entry in the Data Management Reference Manual.

All the manuals in the Stata Documentation have a shorthand notation:

[GSM] Getting Started with Stata for Mac
[GSU] Getting Started with Stata for Unix
[GSW] Getting Started with Stata for Windows
[U] Stata User’s Guide

[R] Stata Base Reference Manual

[ADAPT]  Stata Adaptive Designs: Group Sequential Trials Reference Manual
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[SEM] Stata Structural Equation Modeling Reference Manual
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[TABLES] Stata Customizable Tables and Collected Results Reference Manual
[TS] Stata Time-Series Reference Manual

[1] Stata Index
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Title

Intro — Introduction to longitudinal-data/panel-data manual

Description

This manual documents the xt commands and is referred to as [XT] in cross-references.

Following this entry, [XT] xt provides an overview of the xt commands. The other parts of this
manual are arranged alphabetically. If you are new to Stata’s xt commands, we recommend that you
read the following sections first:

[XT] xt Introduction to xt commands
[XT] xtset Declare a dataset to be panel data
[XT] xtreg Fixed-, between-, and random-effects, and population-averaged linear models

Stata is continually being updated, and Stata users are always writing new commands. To find
out about the latest cross-sectional time-series features, type search panel data after installing the
latest official updates; see [R] update.

Also see
[U] 1.3 What’s new

[R] Intro — Introduction to base reference manual



Title

xt — Introduction to xt commands

Description Remarks and examples References Also see

Description

The xt series of commands provides tools for analyzing panel data (also known as longitudinal
data or, in some disciplines, as cross-sectional time series when there is an explicit time component).
Panel datasets have the form x;;, where x;; is a vector of observations for unit ¢ and time t. The
particular commands (such as xtdescribe, xtsum, and xtreg) are documented in alphabetical order
in the entries that follow this entry. If you do not know the name of the command you need, try
browsing the second part of this description section, which organizes the xt commands by topic. The
next section, Remarks and examples, describes concepts that are common across commands.

The xtset command sets the panel variable and the time variable; see [XT] xtset. Most xt
commands require that the panel variable be specified, and some require that the time variable also
be specified. Once you xtset your data, you need not do it again. The xtset information is stored
with your data.

If you have previously tsset your data by using both a panel and a time variable, these settings
will be recognized by xtset, and you need not xtset your data.

If your interest is in general time-series analysis, see [U] 27.14 Time-series models and the Time-
Series Reference Manual. If your interest is in multilevel mixed-effects models, see [U] 27.16 Multilevel
mixed-effects models and the Multilevel Mixed-Effects Reference Manual. If you are interested in SAR
(spatial autoregressive or simultaneously autoregressive) models for panel data, see [SP] spxtregress.
If you are interested in extended panel-data regression models that address endogenous covariates,
nonrandom treatment assignment, and endogenous sample selection, see the Extended Regression
Models Reference Manual. If you are interested in the mixed logit choice model for panel data, see
[cM] emxtmixlogit.

Setup
xtset Declare data to be panel data

Data management and exploration tools
xtdescribe Describe pattern of xt data

xtsum Summarize xt data

xttab Tabulate xt data

xtdata Faster specification searches with xt data
xtline Panel-data line plots
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xtreg
xtregar
xtgls

xtpcse
xthtaylor
xtfrontier
xtrc

xtivreg
xtheckman
xtdidregress
xthdidregress
xteregress

Unit-root tests

xtunitroot

Cointegration tests

xtcointtest

xtabond
xtdpd
xtdpdsys

xttobit
xtintreg
xteintreg

xtlogit
xtprobit
xtcloglog
xteprobit

xtologit
xtoprobit
xteoprobit

xtmlogit
cmxtmixlogit

Linear regression estimators

Fixed-, between-, and random-effects, and population-averaged linear models
Fixed- and random-effects linear models with an AR(1) disturbance

GLS linear model with heteroskedastic and correlated errors

Linear regression with panel-corrected standard errors

Hausman—Taylor estimator for error-components models

Stochastic frontier models for panel data

Random-coefficients model

Instrumental variables and two-stage least squares for panel-data models
Random-effects regression with sample selection

Fixed-effects difference in differences

Heterogeneous difference in differences for panel data

Random-effects models with endogenous covariates, treatment, and sample
selection

Panel-data unit-root tests

Panel-data cointegration tests

Dynamic panel-data estimators

Arellano—Bond linear dynamic panel-data estimation
Linear dynamic panel-data estimation
Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation

Censored-outcome estimators

Random-effects tobit models
Random-effects interval-data regression models

Random-effects interval-data regression models with endogenous covariates,
treatment, and sample selection

Binary-outcome estimators

Fixed-effects, random-effects, and population-averaged logit models
Random-effects and population-averaged probit models
Random-effects and population-averaged cloglog models

Random-effects probit models with endogenous covariates, treatment, and
sample selection

Ordinal-outcome estimators

Random-effects ordered logistic models
Random-effects ordered probit models

Random-effects ordered probit models with endogenous covariates, treatment,
and sample selection

Categorical-outcome estimators

Fixed-effects and random-effects multinomial logit models
Panel-data mixed logit choice model
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Count-data estimators

xtpoisson Fixed-effects, random-effects, and population-averaged Poisson models
xtnbreg Fixed-effects, random-effects, & population-averaged negative binomial models

Survival-time estimators
xtstreg Random-effects parametric survival models

Generalized estimating equations estimator
xtgee GEE population-averaged panel-data models

Spatial autoregressive or simultaneously autoregressive estimator
spxtregress Spatial autoregressive models for panel data

Utility

quadchk Check sensitivity of quadrature approximation

Remarks and examples

Consider having data on n units—individuals, firms, countries, or whatever—over T periods. The
data might be income and other characteristics of n persons surveyed each of T" years, the output and
costs of n firms collected over 7' months, or the health and behavioral characteristics of n patients
collected over T years. In panel datasets, we write x;; for the value of x for unit ¢ at time ¢. The xt
commands assume that such datasets are stored as a sequence of observations on (4, ¢, ).

For a discussion of panel-data models, see Baltagi (2013), Greene (2018, chap. 11), Hsiao (2014),
and Wooldridge (2010). Cameron and Trivedi (2022) illustrate many of Stata’s panel-data estimators.

For an introduction to linear, nonlinear, and dynamic panel-data analysis in Stata, we offer
NetCourse 471, Introduction to Panel Data Using Stata; see https://www.stata.com/netcourse/panel-
data-intro-nc471/.

> Example 1

If we had data on pulmonary function (measured by forced expiratory volume, or FEV) along with
smoking behavior, age, sex, and height, a piece of the data might be

. list in 1/6, separator(0) divider

pid | yr_visit fev | age | sex | height | smokes
1. 1071 1991 | 1.21 25 1 69 0
2. 1071 1992 | 1.52 26 1 69 0
3. 1071 1993 | 1.32 28 1 68 0
4. 1072 1991 | 1.33 18 1 71 1
5. 1072 1992 | 1.18 20 1 71 1
6. 1072 1993 | 1.19 21 1 71 0
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The xt commands need to know the identity of the variable identifying patient, and some of the xt
commands also need to know the identity of the variable identifying time. With these data, we would

type

. xtset pid yr_visit

If we resaved the data, we need not respecify xtset.

Q Technical note

Panel data stored as shown above are said to be in the long form. Perhaps the data are in the wide
form with 1 observation per unit and multiple variables for the value in each year. For instance, a
piece of the pulmonary function data might be

pid sex fev9l fev92 fev93 age9l aged2 age9d3

1071 1 1.21 1.52 1.32 25 26 28
1072 1 1.33 1.18 1.19 18 20 21
Data in this form can be converted to the long form by using reshape; see [D] reshape. a
> Example 2
Data for some of the periods might be missing. That is, we have panel data on 2 = 1,...,n
and t = 1,...,T, but only T; of those observations are defined. With such missing periods—called
unbalanced data—a piece of our pulmonary function data might be
. list in 1/6, separator(0) divider
pid | yr_visit fev | age sex | height smokes
1. 1071 1991 1.21 25 1 69 0
2. 1071 1992 1.52 26 1 69 0
3. 1071 1993 1.32 28 1 68 0
4. 1072 1991 1.33 18 1 71 1
5. | 1072 1993 | 1.19 | 21 1 71 0
6. 1073 1991 1.47 24 0 64 0
Patient ID 1072 is not observed in 1992. The xt commands are robust to this problem.
d

Q Technical note

In many of the entries in [XT], we will use data from a subsample of the NLSY data (Center for
Human Resource Research 1989) on young women aged 14—24 years in 1968. Women were surveyed
in each of the 21 years 1968—1988, except for the six years 1974, 1976, 1979, 1981, 1984, and 1986.
We use two different subsets: nlswork.dta and union.dta.

For nlswork.dta, our subsample is of 4,711 women in years when employed, not enrolled in
school and evidently having completed their education, and with wages in excess of $1/hour but less
than $700/hour.
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. use https://www.stata-press.com/data/r18/nlswork, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. describe

Contains data from https://www.stata-press.com/data/r18/nlswork.dta

Observations: 28,534 National Longitudinal Survey of
Young Women, 14-24 years old in
1968
Variables: 21 27 Nov 2022 08:14

(_dta has notes)

Variable Storage Display Value

name type format label Variable label
idcode int %8.0g NLS ID
year byte %8.0g Interview year
birth_yr byte %8.0g Birth year
age byte %8.0g Age in current year
race byte %8.0g racelbl Race
msp byte %8.0g 1 if married, spouse present
nev_mar byte %8.0g 1 if never married
grade byte %8.0g Current grade completed
collgrad byte %8.0g 1 if college graduate
not_smsa byte %8.0g 1 if not SMSA
c_city byte %8.0g 1 if central city
south byte %8.0g 1 if south
ind_code byte %8.0g Industry of employment
occ_code byte %8.0g Occupation
union byte %8.0g 1 if union
wks_ue byte %8.0g Weeks unemployed last year
ttl_exp float  %9.0g Total work experience
tenure float  %9.0g Job tenure, in years
hours int %8.0g Usual hours worked
wks_work int %8.0g Weeks worked last year
1n_wage float  %9.0g 1n(wage/GNP deflator)

Sorted by: idcode year
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. summarize
Variable Obs Mean Std. dev. Min Max
idcode 28,534 2601.284 1487.359 1 5159
year 28,534 77.95865 6.383879 68 88
birth_yr 28,534 48.08509 3.012837 41 54
age 28,510 29.04511 6.700584 14 46
race 28,534 1.303392 .4822773 1 3
msp 28,518 .6029175 .4893019 0 1
nev_mar 28,518 .2296795 .4206341 0 1
grade 28,532 12.53259 2.323905 0 18
collgrad 28,534 .1680451 .3739129 0 1
not_smsa 28,526 .2824441 .4501961 0 1
c_city 28,526 .357218 .4791882 0 1
south 28,526 .4095562 .4917605 0 1
ind_code 28,193 7.692973 2.994025 1 12
occ_code 28,413 4.777672 3.065435 1 13
union 19,238 .2344319 .4236542 0 1
wks_ue 22,830 2.548095 7.294463 0 76
ttl_exp 28,534 6.215316 4.652117 0 28.88461
tenure 28,101 3.123836 3.751409 0 25.91667
hours 28,467 36.55956 9.869623 1 168
wks_work 27,831 53.98933 29.03232 0 104
1n_wage 28,534 1.674907 .4780935 0 5.263916

Many of the variables in the nlswork dataset are indicator variables, so we have used factor
variables (see [U] 11.4.3 Factor variables) in many of the examples in this manual. You will see
terms like c.age#c.age or 2.race in estimation commands. c.age#c.age is just age interacted
with age, or age-squared, and 2.race is just an indicator variable for black (race = 2).

Instead of using factor variables, you could type

. generate age2 = age*age
. generate black = (race==2)

and substitute age2 and black in your estimation command for c.age#c.age and 2.race, respec-
tively.

There are advantages, however, to using factor variables. First, you do not actually have to create
new variables, so the number of variables in your dataset is less.

Second, by using factor variables, we are able to take better advantage of postestimation commands.
For example, if we specify the simple model

. xtreg ln_wage age age2, fe

then age and age2 are completely separate variables. Stata has no idea that they are related—that
one is the square of the other. Consequently, if we compute the average marginal effect of age on
the log of wages,

. margins, dydx(age)

then the reported marginal effect is with respect to the age variable alone and not with respect to the
true effect of age, which involves the coefficients on both age and age2.
If instead we fit our model using an interaction of age with itself for the square of age,

. xtreg ln_wage age c.age#c.age, fe
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then Stata has a deep understanding that the coefficients age and c.age#c.age are related. After
fitting this model, the marginal effect reported by margins includes the full effect of age on the log
of income, including the contribution of both coefficients.

. margins, dydx(age)

There are other reasons for preferring factor variables; see [R] margins for examples.

For union.dta, our subset was sampled only from those with union membership information from
1970 to 1988. Our subsample is of 4,434 women. The important variables are age (16—46), grade
(years of schooling completed, ranging from 0 to 18), not_smsa (28% of the person-time was spent
living outside a standard metropolitan statistical area (SMSA), and south (41% of the person-time
was in the South). The dataset also has variable union. Overall, 22% of the person-time is marked
as time under union membership, and 44% of these women have belonged to a union.

. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)

. describe

Contains data from https://www.stata-press.com/data/r18/union.dta
Observations: 26,200 NLS Women 14-24 in 1968
Variables: 8 4 May 2022 13:54
(_dta has notes)

Variable Storage Display Value
name type format label Variable label
idcode int %8.0g NLS ID
year byte %8.0g Interview year
age byte %8.0g Age in current year
grade byte %8.0g Current grade completed
not_smsa byte %8.0g 1 if not SMSA
south byte %8.0g 1 if south
union byte %8.0g 1 if union
black byte %8.0g Race black

Sorted by: idcode year

. summarize

Variable Obs Mean Std. dev. Min Max
idcode 26,200 2611.582 1484.994 1 5159

year 26,200 79.47137 5.965499 70 88

age 26,200 30.43221 6.489056 16 46

grade 26,200 12.76145 2.411715 0 18
not_smsa 26,200 .2837023 .4508027 0 1
south 26,200 .4130153 .4923849 0 1

union 26,200 .2217939 .4154611 0 1

black 26,200 .274542 .4462917 0 1

In many of the examples where the union dataset is used, we also include an interaction between
the year variable and the south variable—south#c.year. This interaction is created using factor-
variables notation; see [U] 11.4.3 Factor variables.

With both datasets, we have typed

. xtset idcode year
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Q Technical note

The xtset command sets the ¢ and 7 index for xt data by declaring them as characteristics of
the data; see [P] char. The panel variable is stored in _dta[iis] and the time variable is stored in
_dta[tis].

a

Q Technical note

Throughout the entries in [XT], when random-effects models are fit, a likelihood-ratio test that the
variance of the random effects is zero is included. These tests occur on the boundary of the parameter
space, invalidating the usual theory associated with such tests. However, these likelihood-ratio tests
have been modified to be valid on the boundary. In particular, the null distribution of the likelihood-
ratio test statistic is not the usual X% but is rather a 50:50 mixture of a X% (point mass at zero) and
a X%» denoted as ygl. See Gutierrez, Carter, and Drukker (2001) for a full discussion.

a
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Title

quadchk — Check sensitivity of quadrature approximation

Description Quick start Menu Syntax
Options Remarks and examples

Description

quadchk checks the quadrature approximation used in the random-effects estimators of the following
commands:

xtcloglog

xtintreg

xtlogit

xtmlogit

xtologit

xtoprobit

xtpoisson, re with the normal option
xtprobit

xtstreg

xttobit

quadchk refits the model for different numbers of quadrature points and then compares the different
solutions. quadchk respects all options supplied to the original model except or, vce(), and the
maximize_options.

Quick start

Check quadrature approximation using the default range of quadrature points
quadchk

Same as above, but use 8 and 16 quadrature points
quadchk 8 16

Same as above, but suppress the iteration log and output of the refitted models
quadchk 8 16, nooutput

Refit the model instead of using original estimates
quadchk 8 16, nooutput nofrom

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Check sensitivity of quadrature approximation

10



quadchk — Check sensitivity of quadrature approximation 11

Syntax

quadchk [#1 #2} [, nooutput nofrom]

#1 and #o specify the number of quadrature points to use in the comparison runs of the previous
model. The default is to use approximately 2n4/3 and 4n,/3 points, where n, is the number of
quadrature points used in the original estimation.

Options
nooutput suppresses the iteration log and output of the refitted models.

nofrom forces the refitted models to start from scratch rather than starting from the previous estimation
results. Specifying the nofrom option can level the playing field in testing estimation results.

Remarks and examples

Remarks are presented under the following headings:

What makes a good random-effects model fit?
How do I know whether I have a good quadrature approximation?
What can I do to improve my results?

What makes a good random-effects model fit?

Some random-effects estimators in Stata use adaptive or nonadaptive Gauss—Hermite quadrature
to compute the log likelihood and its derivatives. As a rule, adaptive quadrature, which is the default
integration method, is much more accurate. The quadchk command provides a means to look at the
numerical accuracy of either quadrature approximation. A good random-effects model fit depends on
both the goodness of the quadrature approximation and the goodness of the data.

The accuracy of the quadrature approximation depends on three factors. The first and second
are how many quadrature points are used and where the quadrature points fall. These two factors
directly influence the accuracy of the quadrature approximation. The number of quadrature points may
be specified with the intpoints() option. However, once the number of points is specified, their
abscissas (locations) and corresponding weights are completely determined. Increasing the number of
points expands the range of the abscissas and, to a lesser extent, increases the density of the abscissas.
For this reason, a function that undulates between the abscissas can be difficult to approximate.

Third, the smoothness of the function being approximated influences the accuracy of the quadrature
approximation. Gauss—Hermite quadrature estimates integrals of the type

/OO e_‘”Qf(:lc)dx

— 00

and the approximation is exact if f(z) is a polynomial of degree less than the number of integration
points. Therefore, f(x) that are well approximated by polynomials of a given degree have integrals
that are well approximated by Gauss—Hermite quadrature with that given number of integration points.
Both large panel sizes and high p can reduce the accuracy of the quadrature approximation.

A final factor affects the goodness of the random-effects model: the data themselves. For high
p, for example, there is high intrapanel correlation, and panels look like observations. The model
becomes unidentified. Here, even with exact quadrature, fitting the model would be difficult.
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How do | know whether | have a good quadrature approximation?

quadchk is intended as a tool to help you know whether you have a good quadrature approximation.
As a rule of thumb, if the coefficients do not change by more than a relative difference of 10~
(0.01%), the choice of quadrature points does not significantly affect the outcome, and the results
may be confidently interpreted. However, if the results do change appreciably—greater than a relative
difference of 1072 (1%)—then quadrature is not reliably approximating the likelihood.

What can | do to improve my results?

If the quadchk command indicates that the estimation results are sensitive to the number of
quadrature points, there are several things you can do. First, if you are not using adaptive quadrature,
switch to adaptive quadrature.

Adaptive quadrature can improve the approximation by transforming the integrand so that the
abscissas and weights sample the function on a more suitable range. Details of this transformation
are in Methods and formulas for the given commands; for example, see [XT] xtprobit.

If the model still shows sensitivity to the number of quadrature points, increase the number of
quadrature points with the intpoints() option. This option will increase the range and density of
the sampling used for the quadrature approximation.

If neither of these works, you may then want to consider an alternative model, such as a fixed-
effects, pooled, or population-averaged model. Alternatively, a different random-effects model whose
likelihood is not approximated via quadrature (for example, xtpoisson, re) may be a better choice.

> Example 1

Here we synthesize data according to the model

E(y) =0.05z1 + 0.08 x5 +0.08z3 + 0.1 24 + 0.1 25 + 0.1 26 + 0.1¢

(1 ify>0
“TN0 ify<o

where the intrapanel correlation is 0.5 and the x1 variable is constant within panels. We first fit a
random-effects probit model, and then we check the stability of the quadrature calculation:
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. use https://www.stata-press.com/data/r18/quadl

. Xtset id

Panel variable:

id (balanced)
. Xtprobit z x1-x6

(output omitted )

Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300

Random effects u_i ~ Gaussian Obs per group:
min = 20
avg = 20.0
max = 20
Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 29.24
Log likelihood = -3347.1097 Prob > chi2 = 0.0001
z | Coefficient Std. err. z P>|z| [95% conf. intervall
x1 .0043068 .0607058 0.07 0.943 -.1146743 .1232879
x2 .1000742 .066331 1.51  0.131 -.0299323 .2300806
x3 .1503539 .0662503 2.27 0.023 .0205057 .2802021
x4 .123015 .0377089 3.26 0.001 .0491069 .196923
x5 .1342988 .0657222 2.04 0.041 .0054856 .263112
x6 .0879933 .0455753 1.93 0.054 -.0013325 .1773192
_cons .0757067 .060359 1.256  0.210 -.0425948 .1940083
/1nsig2u -.0329916 .1026847 -.23425 .1682667
sigma_u .9836395 .0505024 .889474 1.087774
rho .4917528 .0256642 .4417038 .5419677
LR test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000
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. quadchk
Refitting model intpoints() = 8
(output omitted )
Refitting model intpoints() = 16
(output omitted )
Quadrature check
Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points
Log -3347.1097 -3347.1153 -3347.1099
likelihood -.00561484 -.00014288 Difference
1.678e-06 4.269e-08 Relative difference
z: .0043068 .0043068 .00430541
x1 8.983e-15 -1.388e-06 Difference
2.086e-12 -.00032222 Relative difference
z: .10007418 .10007418 .10007431
x2 2.540e-15 1.362e-07 Difference
2.538e-14 1.361e-06 Relative difference
z: .15035391 .15035391 .15035406
x3 6.356e-15 1.520e-07 Difference
4.227e-14 1.011e-06 Relative difference
z: .12301495 .12301495 .12301506
x4 4.149e-15 1.099e-07 Difference
3.373e-14 8.931e-07 Relative difference
z: .13429881 .13429881 .13429896
x5 4.913e-15 1.471e-07 Difference
3.658e-14 1.096e-06 Relative difference
z: .08799332 .08799332 .08799346
x6 3.345e-15 1.363e-07 Difference
3.801e-14 1.549e-06 Relative difference
z: .07570675 .07570675 .07570423
_cons 1.964e-14 -2.516e-06 Difference
2.594e-13 -.00003323 Relative difference
/: -.03299164 -.03299164 -.03298184
Insig2u 7.268e-14 9.798e-06 Difference
-2.203e-12 -.00029699 Relative difference

We see that the largest difference is in the x1 variable with a relative difference of 0.03% between
the model with 12 integration points and 16. This example is somewhat rare in that the differences
between eight quadrature points and 12 are smaller than those between 12 and 16. Usually the opposite
occurs: the model results converge as you add quadrature points. Here we have an indication that
perhaps some minor feature of the model was missed with eight points and 12 but seen with 16.
Because all differences are very small, we could accept this model as is. We would like to have a
largest relative difference of about 0.01%, and this is close. The differences and relative differences
are small, indicating that refitting the random-effects probit model with a few more integration points
will yield a satisfactory result. Indeed, refitting the model with the intpoints(20) option yields
completely satisfactory results when checked with quadchk.

Nonadaptive Gauss—Hermite quadrature does not yield such robust results.
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. xXtprobit z x1-x6, intmethod(ghermite) nolog

Random-effects probit regression Number of obs = 6,000

Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20

avg = 20.0

max = 20

Integration method: ghermite Integration pts. = 12

Wald chi2(6) 36.15

Log likelihood = -3349.6926 Prob > chi2 = 0.0000

z | Coefficient Std. err. z P>|z| [95% conf. intervall

x1 .1156763 .0554925 2.08 0.037 .0069131 .2244396

x2 .1005555 .066227 1.52  0.129 -.0292469 .230358

x3 .1542187 .0660852 2.33 0.020 .0246941 .2837433

x4 .1257616 .0375776 3.35 0.001 .0521108 .1994123

x5 .1366003 .0654696 2.09 0.037 .0082823 .2649182

x6 .0870325 .0453489 1.92 0.055 -.0018497 .1759147

_cons .1098393 .0500514 2.19 0.028 .0117404 .2079382

/1lnsig2u -.0791821 .0971063 -.2695071 .1111428

sigma_u .9611824 .0466685 .8739313 1.057145

rho .4802148 .0242386 .4330281 .5277571

LR test of rho=0:

chibar2(01) = 1577.50

Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points
Log -3349.6926 -3354.6372 -3348.3881
likelihood -4.9446636 1.3045063 Difference
.00147615 -.00038944 Relative difference
z: .11567633 .16153998 .07007833
x1 .04586365 -.045598 Difference
.39648262 -.39418608 Relative difference
z: .10055552 .10317831 .09937417
x2 .00262279 -.00118135 Difference
.02608297 -.01174825 Relative difference
z: .1542187 .15465369 .15150516
x3 .00043499 -.00271354 Difference
.00282062 -.0175954 Relative difference
z: .12576159 .12880254 .1243974
x4 .00304096 -.00136418 Difference

.02418032 -.01084739 Relative difference
z: .13660028 .13475211 .13707075
x5 -.00184817 .00047047 Difference
-.01352978 .00344411 Relative difference
z: .08703252 .08568342 .08738135
x6 -.0013491 .00034883 Difference
-.0155011 .00400809 Relative difference
z: .10983928 .11031299 .09654975
_cons .00047371 -.01328953 Difference
.00431274 -.12099067 Relative difference
/: -.07918212 -.18133821 -.05815644
Insig2u -.10215609 .02102568 Difference
1.2901408 -.26553572 Relative difference

Here we see that the x1 variable (the one that was constant within panel) changed with a relative
difference of nearly 40%! This example clearly demonstrates the benefit of adaptive quadrature
methods.

4
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> Example 2

Here we rerun the previous nonadaptive quadrature model, but using the intpoints(120) option
to increase the number of integration points to 120. We get results close to those from adaptive
quadrature and an acceptable quadchk. This example demonstrates the efficacy of increasing the
number of integration points to improve the quadrature approximation.

. xtprobit z x1-x6, intmethod(ghermite) intpoints(120) nolog

Random-effects probit regression Number of obs = 6,000

Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:

min = 20

avg = 20.0

max = 20

Integration method: ghermite Integration pts. = 120

Wald chi2(6) = 29.24

Log likelihood = -3347.1099 Prob > chi2 = 0.0001

z | Coefficient Std. err. z P>|z| [95% conf. intervall

x1 .0043059 .0607087 0.07 0.943 -.114681 .1232929

x2 .1000743 .0663311 1.51  0.131 -.0299322 .2300808

x3 .1503541 .0662503 2.27 0.023 .0205058 .2802023

x4 .1230151 .0377089 3.26 0.001 .049107 .1969232

x5 .134299 .0657223 2.04 0.041 .0054856 .2631123

x6 .0879935 .0455753 1.93 0.054 -.0013325 .1773194

_cons .0757054  .0603621 1.25  0.210 -.0426021 .1940128

/1nsig2u -.0329832 .1026863 -.2342446 .1682783

sigma_u .9836437 .0505034 .8894764 1.08778

rho .491755 .0256646 .4417052 .5419706

LR test of rho=0: chibar2(01) = 1582.67 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 80
Refitting model intpoints() = 160

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
120 points 80 points 160 points
Log -3347.1099 -3347.1099 -3347.1099
likelihood -.00007138 2.440e-07 Difference
2.133e-08 -7.289e-11 Relative difference
z: .00430592 .00431318 .00430553
x1 7.259e-06 -3.871e-07 Difference
.00168592 -.00008991 Relative difference
z: .10007431 .10007415 .10007431
x2 -1.519e-07 5.585e-09 Difference
-1.517e-06 5.580e-08 Relative difference
z: .15035406 .15035407 .15035406
x3 1.699e-08 7.636e-09 Difference
1.130e-07 5.078e-08 Relative difference
z: .12301506 .12301512 .12301506
x4 6.036e-08 5.353e-09 Difference
4.907e-07 4.352e-08 Relative difference
z: .13429895 .13429962 .13429896
x5 6.646e-07 4.785e-09 Difference
4.949e-06 3.563e-08 Relative difference
z: .08799345 .08799334 .08799346
x6 -1.123e-07 3.049e-09 Difference
-1.276e-06 3.465e-08 Relative difference
z: .07570536 .07570205 .07570442
_cons -3.305e-06 -9.405e-07 Difference
-.00004365 -.00001242 Relative difference
/: -.03298317 -.03298909 -.03298186
Insig2u -5.919e-06 1.304e-06 Difference
.00017945 -.00003952 Relative difference
d
> Example 3

Here we synthesize data the same way as in the previous example, but we make the intrapanel
correlation equal to 0.1 instead of 0.5. We again fit a random-effects probit model and check the
quadrature:
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. use https://www.stata-press.com/data/r18/quad2

. Xts

Panel variable:

et id

. Xtprobit z x1-x6

Fitting comparison model:

id (balanced)

Iteration 0: Log likelihood = -4142.2915
Iteration 1: Log likelihood = -4120.4109
Iteration 2: Log likelihood = -4120.4099
Iteration 3: Log likelihood = -4120.4099
Fitting full model:
rho = 0.0 Log likelihood = -4120.4099
rho = 0.1 Log likelihood = -4065.7986
rho = 0.2 Log likelihood = -4087.7703
Iteration 0: Log likelihood = -4065.7986
Iteration 1: Log likelihood = -4065.3157
Iteration 2: Log likelihood = -4065.3144
Iteration 3: Log likelihood = -4065.3144
Random-effects probit regression Number of obs = 6,000
Group variable: id Number of groups = 300
Random effects u_i ~ Gaussian Obs per group:
min = 20
avg = 20.0
max = 20
Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 39.43
Log likelihood = -4065.3144 Prob > chi2 = 0.0000
z | Coefficient Std. err. z P>|z| [95% conf. intervall
x1 .0246943 .025112 0.98 0.325 -.0245243 .0739129
x2 .1300123 .0587906 2.21  0.027 .0147847 .2452398
x3 .1190409 .0579539 2.05 0.040 .0054533 .2326284
x4 .139197 .0331817 4.19 0.000 .0741621 .2042319
x5 .077364 .0578454 1.34 0.181 -.036011 .1907389
x6 .0862028 .0401185 2.15 0.032 .007572 .1648336
_cons .0922653 .0244392 3.78 0.000 .0443653 .1401652
/1lnsig2u -2.343939 .1575275 -2.652687 -2.035191
sigma_u .3097563 .0243976 .2654461 .3614631
rho .0875487 .01256839 .0658236 .1156574
LR test of rho=0: chibar2(01) = 110.19 Prob >= chibar2 = 0.000
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. quadchk, nooutput

Refitting model intpoints() = 8
Refitting model intpoints() = 16

Quadrature check

Fitted Comparison Comparison
quadrature quadrature quadrature
12 points 8 points 16 points
Log -4065.3144 -4065.3144 -4065.3144
likelihood -2.268e-08 6.366e-12 Difference
5.578e-12 -1.566e-15 Relative difference
z: .02469427 .02469427 .02469427
x1 -7.290e-12 -8.007e-12 Difference
-2.952e-10 -3.242e-10 Relative difference
z: .13001229 .13001229 .13001229
x2 -3.131e-11 -6.880e-13 Difference
-2.408e-10 -5.292e-12 Relative difference
z: .11904089 .11904089 .11904089
x3 -1.291e-11 -3.030e-13 Difference
-1.085e-10 -2.546e-12 Relative difference
z: .13919697 .13919697 .13919697
x4 2.885e-12 1.693e-13 Difference
2.072e-11 1.216e-12 Relative difference
z: .07736398 .07736398 .07736398
x5 -1.160e-11 -4.557e-13 Difference
-1.500e-10 -5.890e-12 Relative difference
z: .08620282 .08620282 .08620282
x6 1.181e-11 3.191e-13 Difference
1.370e-10 3.702e-12 Relative difference
z: .09226527 .09226527 .09226527
_cons -5.700e-12 -1.837e-11 Difference
-6.177e-11 -1.991e-10 Relative difference
/: -2.3439389 -2.3439389 -2.3439389
Insig2u -5.892e-09 -2.172e-10 Difference
2.514e-09 9.267e-11 Relative difference

Here we see that the quadrature approximation is stable. With this result, we can confidently interpret
the results. Satisfactory results are also obtained in this case with nonadaptive quadrature.

4
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vce_options — Variance estimators

Description Syntax Options Remarks and examples
Methods and formulas Reference Also see
Description

This entry describes the vce_options, which are common to most xt estimation commands. Not
all the options documented below work with all xt estimation commands; see the documentation for
the particular estimation command. If an option is listed there, it is applicable.

The vce () option specifies how to estimate the variance—covariance matrix (VCE) corresponding
to the parameter estimates. The standard errors reported in the table of parameter estimates are the
square root of the variances (diagonal elements) of the VCE.

Syntax
estimation—cmd . . . [ , vce_options .. ]
vee_options Description
vce(oim) observed information matrix (OIM)
vce (opg) outer product of the gradient (OPG) vectors
vce(robust) Huber/White/sandwich estimator
vce(cluster clustvar) clustered sandwich estimator

vce (bootstrap [ , bootstmp_options}) bootstrap estimation
vce(jackknife [ , jackknife_oplions]) jackknife estimation

nmp use divisor N — P instead of the default NV

scale(x2|dev |phi |#) override the default scale parameter;
available only with population-averaged models

Options

SE/Robust

vce (oim) is usually the default for models fit using maximum likelihood. vce (oim) uses the observed
information matrix (OIM); see [R] ml.

vce(opg) uses the sum of the outer product of the gradient (OPG) vectors; see [R] ml. This is the
default VCE when the technique (bhhh) option is specified; see [R] Maximize.

vce(robust) uses the robust or sandwich estimator of variance. This estimator is robust to some
types of misspecification so long as the observations are independent; see [U] 20.22 Obtaining
robust variance estimates.

If the command allows pweights and you specify them, vce(robust) is implied; see
[U] 20.24.3 Sampling weights.

21
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vce(cluster clustvar) specifies that the standard errors allow for intragroup correlation, relaxing
the usual requirement that the observations be independent. That is to say, the observations are
independent across groups (clusters) but not necessarily within groups. clustvar specifies to which
group each observation belongs, for example, vce(cluster personid) in data with repeated
observations on individuals. vce(cluster clustvar) affects the standard errors and variance—
covariance matrix of the estimators but not the estimated coefficients; see [U] 20.22 Obtaining
robust variance estimates.

vce(bootstrap [, bootstrap_options]) uses a nonparametric bootstrap; see [R] bootstrap. After
estimation with vce (bootstrap), see [R] bootstrap postestimation to obtain percentile-based or
bias-corrected confidence intervals.

vce(jackknife [, jackknife_options]) uses the delete-one jackknife; see [R] jackknife.

nmp specifies that the divisor N — P be used instead of the default N, where IV is the total number
of observations and P is the number of coefficients estimated.

scale(x2|dev|phi | #) overrides the default scale parameter. By default, scale (1) is assumed for
the discrete distributions (binomial, negative binomial, and Poisson), and scale(x2) is assumed
for the continuous distributions (gamma, Gaussian, and inverse Gaussian).

scale(x2) specifies that the scale parameter be set to the Pearson x? (or generalized x?2) statistic
divided by the residual degrees of freedom, which is recommended by McCullagh and Nelder (1989)
as a good general choice for continuous distributions.

scale(dev) sets the scale parameter to the deviance divided by the residual degrees of freedom.
This option provides an alternative to scale(x2) for continuous distributions and for over- or
underdispersed discrete distributions.

scale(phi) specifies that the scale parameter be estimated from the data. xtgee’s default
scaling makes results agree with other estimators and has been recommended by McCullagh and
Nelder (1989) in the context of GLM. When comparing results with calculations made by other
software, you may find that the other packages do not offer this feature. In such cases, specifying
scale(phi) should match their results.

scale (#) sets the scale parameter to #. For example, using scale(1) in family(gamma) models
results in exponential-errors regression (if you assume independent correlation structure).

Remarks and examples

When you are working with panel-data models, we strongly encourage you to use the
vce(bootstrap) or vce(jackknife) option instead of the corresponding prefix command. For
example, to obtain jackknife standard errors with xtlogit, type
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. use https://www.stata-press.com/data/r18/clogitid

. xtlogit y x1 x2, fe vce(jackknife)
(running xtlogit on estimation sample)

Jackknife replications (66): ......... 10,00 20, ... 30 ...t 40.......
> .60 ... 60...... done
Conditional fixed-effects logistic regression Number of obs = 369
Replications = 66
Group variable: id Number of groups = 66
Obs per group:
min = 2
avg = 5.6
max = 10
F(2, 65) = 4.58
Log likelihood = -123.41386 Prob > F = 0.0137
(Replications based on 66 clusters in id)
Jackknife
y | Coefficient std. err. t P>t [95% conf. intervall
x1 .653363 .3010608 2.17 0.034 .052103 1.254623
X2 .0659169 .0487858 1.35 0.181 -.0315151 .1633489

If you wish to specify more options to the bootstrap or jackknife estimation, you can include them
within the vce () option. Below we refit our model requesting bootstrap standard errors based on 300
replications, we set the random-number seed so that our results can be reproduced, and we suppress
the display of the replication dots.

. xtlogit y x1 x2, fe vce(bootstrap, reps(300) seed(123) nodots)

Conditional fixed-effects logistic regression Number of obs = 369

Replications = 300

Group variable: id Number of groups = 66
Obs per group:

min = 2

avg = 5.6

max = 10

Wald chi2(2) = 9.26

Log likelihood = -123.41386 Prob > chi2 = 0.0097

(Replications based on 66 clusters in id)

Observed Bootstrap Normal-based

y | coefficient std. err. z P>|z| [95% conf. intervall

x1 .653363 .307093 2.13 0.033 .0514717 1.255254

x2 .0659169 .0477384 1.38 0.167 -.0276486 .1594824

Q Technical note

To perform jackknife estimation on panel data, you must omit entire panels rather than individual
observations. To replicate the output above using the jackknife prefix command, you would have
to type

. jackknife, cluster(id): xtlogit y x1 x2, fe
(output omitted )
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Similarly, bootstrap estimation on panel data requires you to resample entire panels rather than
individual observations. The vce(bootstrap) and vce(jackknife) options handle this for you

automatically.
a

Methods and formulas

By default, Stata’s maximum likelihood estimators display standard errors based on variance
estimates given by the inverse of the negative Hessian (second derivative) matrix. If vce(robust),
vce(cluster clustvar), or pweights are specified, standard errors are based on the robust variance
estimator (see [U] 20.22 Obtaining robust variance estimates); likelihood-ratio tests are not appropriate
here (see [SVY] Survey), and the model x? is from a Wald test. If vce (opg) is specified, the standard
errors are based on the outer product of the gradients; this option has no effect on likelihood-ratio
tests, though it does affect Wald tests.

If vce(bootstrap) or vce(jackknife) is specified, the standard errors are based on the chosen
replication method; here the model x? or F statistic is from a Wald test using the respective replication-
based covariance matrix. The ¢ distribution is used in the coefficient table when the vce (jackknife)
option is specified. vce (bootstrap) and vce(jackknife) are also available with some commands
that are not maximum likelihood estimators.

Reference
McCullagh, P., and J. A. Nelder. 1989. Generalized Linear Models. 2nd ed. London: Chapman and Hall/CRC.

Also see
[R] bootstrap — Bootstrap sampling and estimation
[R] jackknife — Jackknife estimation
[R] ml — Maximum likelihood estimation

[U] 20 Estimation and postestimation commands
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Title

xtabond — Arellano—Bond linear dynamic panel-data estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtabond fits a linear dynamic panel-data model where the unobserved panel-level effects are
correlated with the lags of the dependent variable, known as the Arellano—Bond estimator. This
estimator is designed for datasets with many panels and few periods, and it requires that there be no
autocorrelation in the idiosyncratic errors.

Quick start

Arellano—Bond estimation of y on x1 and x2 using xtset data
xtabond y x1 x2

One-step estimator with robust standard errors
xtabond y x1 x2, vce(robust)

Two-step estimator with bias-corrected robust standard errors
xtabond y x1 x2, vce(robust) twostep

Arellano—Bond estimation also including 2 lagged values of y
xtabond y x1 x2, lags(2)

Menu

Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano—Bond estimation

25
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Predetermined
pre(varlist[. .. ])

Endogenous
endogenous (varlist[. .. ] )

SE/Robust
vce (veetype)

Reporting
level (#)
artests (#)
display_options

coeflegend

Syntax
xtabond depvar [indepvars] [zf} [zn] [ , options]
options Description
Model
noconstant suppress constant term
diffvars (varlist) already-differenced exogenous variables
inst (varlist) additional instrument variables
lags(#) use # lags of dependent variable as covariates; default is lags (1)
maxldep (#) maximum lags of dependent variable for use as instruments
maxlags (#) maximum lags of predetermined and endogenous variables for use
as instruments
twostep compute the two-step estimator instead of the one-step estimator

predetermined variables; can be specified more than once

endogenous variables; can be specified more than once

vecetype may be gmm or robust

set confidence level; default is 1level (95)
use # as maximum order for AR tests; default is artests(2)
control spacing and line width

display legend instead of statistics

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.

indepvars and all varlists, except pre (varlist[ . ]) and endogenous (varlist[ . ]), may contain time-series operators;
see [U] 11.4.4 Time-series varlists. The specification of depvar may not contain time-series operators.

by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

noconstant; see [R] Estimation options.

diffvars(varlist) specifies a set of variables that already have been differenced to be included as
strictly exogenous covariates. diffvars() may not be used for models with a constant or models
for which level-equation instruments are specified.

inst (varlist) specifies a set of variables to be used as additional instruments. These instruments are
not differenced by xtabond before including them in the instrument matrix.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.
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maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all T; — p — 2 lags.

maxlags (#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all T; — p — 1 lags.
For endogenous variables, the default is to use all 7; — p — 2 lags.

twostep specifies that the two-step estimator be calculated.

Predetermined

pre(varlist[ , lagstruct(prelags, premaxlags) ]) specifies that a set of predetermined variables
be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include T; — p — 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

Endogenous

endogenous (varlisz[ , lagstruct(endlags, endmaxlags)]) specifies that a set of endogenous
variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include T; — p — 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Remarks and
examples below.

vce(gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce (robust) uses the robust estimator. After one-step estimation, this is the Arellano—Bond robust
VCE estimator. After two-step estimation, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] Estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT]| xtabond postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] Estimation options.

The following option is available with xtabond but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

Linear dynamic panel-data models include p lags of the dependent variable as covariates and
contain unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level
effects are correlated with the lagged dependent variables, making standard estimators inconsistent.
Arellano and Bond (1991) derived a consistent generalized method of moments (GMM) estimator for
the parameters of this model; xtabond implements this estimator.

Anderson and Hsiao (1981, 1982) propose using further lags of the level or the difference of
the dependent variable to instrument the lagged dependent variables that are included in a dynamic
panel-data model after the panel-level effects have been removed by first-differencing. A version of
this estimator can be obtained from xtivreg (see [XT] xtivreg). Arellano and Bond (1991) build upon
this idea by noting that, in general, there are many more instruments available. Building on Holtz-
Eakin, Newey, and Rosen (1988) and using the GMM framework developed by Hansen (1982), they
identify how many lags of the dependent variable, the predetermined variables, and the endogenous
variables are valid instruments and how to combine these lagged levels with first differences of the
strictly exogenous variables into a potentially large instrument matrix. Using this instrument matrix,
Arellano and Bond (1991) derive the corresponding one-step and two-step GMM estimators, as well
as the robust VCE estimator for the one-step model. They also found that the robust two-step VCE
was seriously biased. Windmeijer (2005) worked out a bias-corrected (WC) robust estimator for VCEs
of two-step GMM estimators, which is implemented in xtabond. The test of autocorrelation of order
m and the Sargan test of overidentifying restrictions derived by Arellano and Bond (1991) can be
obtained with estat abond and estat sargan, respectively; see [XT] xtabond postestimation.

The Arellano—Bond estimator is designed for datasets with many panels and few periods, and it
requires that there be no autocorrelation in the idiosyncratic errors. For a related estimator that uses
additional moment conditions, but still requires no autocorrelation in the idiosyncratic errors, see
[XT] xtdpdsys. For estimators that allow for some autocorrelation in the idiosyncratic errors, at the
cost of a more complicated syntax, see [XT] xtdpd.

> Example 1: One-step estimator

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986) using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm ¢ and
time t. In this dataset, n;; is the log of employment in firm ¢ at time ¢, w;; is the natural log of
the real product wage, k;; is the natural log of the gross capital stock, and ys,, is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yr1984. In table 4 of Arellano and Bond (1991), the authors present the results they obtained from
several specifications.

In column al of table 4, Arellano and Bond report the coefficients and their standard errors from
the robust one-step estimators of a dynamic model of labor demand in which n;; is the dependent
variable and its first two lags are included as regressors. To clarify some important issues, we will
begin with the homoskedastic one-step version of this model and then consider the robust case. Here
is the command using xtabond and the subsequent output for the homoskedastic case:
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. use https://www.stata-press.com/data/r18/abdata
. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yri1984 year, lags(2) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4
avg =  4.364286
max = 6
Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000
One-step results

n | Coefficient Std. err. z P>zl [95% conf. intervall]

n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358

W
-—. -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251

k
- .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .0662747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408

ys
- .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912
yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yri1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yri1982 -.0652767 . 048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .0538664
yri1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061
year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are identical to those reported in column al of table 4, as they should be. Of
course, the standard errors are different because we are considering the homoskedastic case. Although
the moment conditions use first-differenced errors, xtabond estimates the coefficients of the level
model and reports them accordingly.

The footer in the output reports the instruments used. The first line indicates that xtabond used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991) and
Holtz-Eakin, Newey, and Rosen (1988); also see Methods and formulas in [XT] xtdpd. The second
and third lines indicate that the first difference of all the exogenous variables were used as standard
instruments. GMM-type instruments use the lags of a variable to contribute multiple columns to the
instrument matrix, whereas each standard instrument contributes one column to the instrument matrix.
The notation L(2/.) .n indicates that GMM-type instruments were created using lag 2 of n from on
back. (L(2/4) .n would indicate that GMM-type instruments were created using only lags 2, 3, and
4 of n.)
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After xtabond, estat sargan reports the Sargan test of overidentifying restrictions.

. estat sargan
Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid

chi2(25) = 65.81806
Prob > chi2 = 0.0000

Only for a homoskedastic error term does the Sargan test have an asymptotic x?2 distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce (robust) model, xtabond does not compute it when vce (robust) is specified. The Sargan test,
reported by Arellano and Bond (1991, table 4, column al), comes from the one-step homoskedastic
estimator and is the same as the one reported here. The output above presents strong evidence against
the null hypothesis that the overidentifying restrictions are valid. Rejecting this null hypothesis
implies that we need to reconsider our model or our instruments, unless we attribute the rejection
to heteroskedasticity in the data-generating process. Although performing the Sargan test after the
two-step estimator is an alternative, Arellano and Bond (1991) found a tendency for this test to
underreject in the presence of heteroskedasticity. (See [XT] xtdpd for an example indicating that this
rejection may be due to misspecification.)

By default, xtabond calculates the Arellano—Bond test for first- and second-order autocorrelation
in the first-differenced errors. (Use artests () to compute tests for higher orders.) There are versions
of this test for both the homoskedastic and the robust cases, although their values are different. Use
estat abond to report the test results.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors
HO: No autocorrelation

Order z Prob > z
1 -3.9394 0.0001
2 -.54239 0.5876

When the idiosyncratic errors are independent and identically distributed (i.i.d.), the first-differenced
errors are first-order serially correlated. So, as expected, the output above presents strong evidence
against the null hypothesis of zero autocorrelation in the first-differenced errors at order 1. Serial
correlation in the first-differenced errors at an order higher than 1 implies that the moment conditions
used by xtabond are not valid; see [XT] xtdpd for an example of an alternative estimation method.
The output above presents no significant evidence of serial correlation in the first-differenced errors
at order 2.

N
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> Example 2: A one-step estimator with robust VCE

Consider the output from the one-step robust estimator of the same model:

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) vce(robust)
> noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg =  4.364286

max = 6

Number of instruments = 41 Wald chi2(16) = 1727 .45
Prob > chi2 = 0.0000

One-step results
(Std. err. adjusted for clustering on id)

Robust

n | Coefficient std. err. z P>zl [95% conf. intervall]

n
L1. .6862261 .1445943 4.75 0.000 .4028266 .9696257
L2. -.0853582 .0560155 -1.52 0.128 -.1951467 .0244302

W
- -.6078208 .1782055 -3.41 0.001 -.9570972 -.2585445
L1. .3926237 .1679931 2.34 0.019 .0633632 .7218842

k
—-—. .3568456 .0590203 6.05 0.000 .241168 .4725233
L1. -.0580012 .0731797 -0.79 0.428 -.2014308 .0854284
L2. -.0199475 .0327126 -0.61 0.542 -.0840631 .0441681

ys
- .6085073 .1725313 3.53 0.000 .2703522 .9466624
L1. -.7111651 .2317163 -3.07 0.002 -1.165321 -.2570095
L2. .1057969 .1412021 0.75 0.454 -.1709542 .382548
yri1980 .0029062 .0158028 0.18 0.854 -.0280667 .0338791
yri1981 -.0404378 .0280582 -1.44 0.150 -.0954307 .0145552
yr1982 -.0652767 .0365451 -1.79 0.074 -.1369038 .0063503
yr1983 -.0690928 .047413 -1.46 0.145 -.1620205 .0238348
yri1984 -.0650302 .0576305 -1.13 0.259 -.1779839 .0479235
year .0095545 .0102896 0.93 0.353 -.0106127 .0297217

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

The coefficients are the same, but now the standard errors match that reported in Arellano and
Bond (1991, table 4, column al). Most of the robust standard errors are higher than those that assume
a homoskedastic error term.
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The Sargan statistic cannot be calculated after requesting a robust VCE, but robust tests for serial
correlation are available.
. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors
HO: No autocorrelation

Order z Prob > z
1 -3.5996 0.0003
2 -.51603 0.6058

The value of the test for second-order autocorrelation matches those reported in Arellano and
Bond (1991, table 4, column al) and presents no evidence of model misspecification.

d

> Example 3: The Wald model test

xtabond reports the Wald statistic of the null hypothesis that all the coefficients except the constant
are zero. Here the null hypothesis is that all the coefficients are zero, because there is no constant in
the model. In our previous example, the null hypothesis is soundly rejected. In column al of table 4,
Arellano and Bond report a x2 test of the null hypothesis that all the coefficients are zero, except the
time trend and the time dummies. Here is this test in Stata:

. test 1.n 12.nw l.w k 1.k 12.k ys 1.ys 12.ys

(1) L.n=0

(2 L2.n=0

(3 w=0

(4) Lw=0

(5 k=0

(6) Lk=0

(7) L2.k =0

(8 ys=0

(9 L.ys=0

(10) L2.ys =0

chi2( 10) = 408.29
Prob > chi2 = 0.0000

> Example 4: A two-step estimator with Windmeijer bias-corrected robust VCE

The two-step estimator with the Windmeijer bias-corrected robust VCE of the same model produces
the following output:
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. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep
> vce(robust) noconstant

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg = 4.364286

max = 6

Number of instruments = 41 Wald chi2(16) = 1104.72
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust

n | Coefficient std. err. z P>zl [95% conf. intervall]

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 —-.1534847 .0231084

W
- -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
- .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
- .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908
yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yri1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yri1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896
year .0112155 .0116783 0.96 0.337 -.0116735 .0341045

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year

Arellano and Bond recommend against using the two-step nonrobust results for inference on the
coefficients because the standard errors tend to be biased downward (see Arellano and Bond 1991
for details). The output above uses the Windmeijer bias-corrected (WC) robust VCE, which Windmei-
jer (2005) showed to work well. The magnitudes of several of the coefficient estimates have changed,
and one even switched its sign.
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The test for autocorrelation presents no evidence of model misspecification:

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors
HO: No autocorrelation

Order -4 Prob > z
1 -2.1255 0.0335
2 -.35166 0.7251

Manuel Arellano (1957- ) was born in Elda in Alicante, Spain. He earned degrees in economics
from the University of Barcelona and the London School of Economics. After various posts in
Oxford and London, he returned to Spain as professor of econometrics at Madrid in 1991. He
is a leading expert on panel-data econometrics.

Stephen Roy Bond (1963—) earned degrees in economics from Cambridge and Oxford. Following
various posts at Oxford, he now works mainly at the Institute for Fiscal Studies in London. His
research interests include company taxation, dividends, and the links between financial markets,
corporate control, and investment.

> Example 5: Including an estimator for the constant

Thus far we have been specifying the noconstant option to keep to the standard Arellano—Bond
estimator, which uses instruments only for the difference equation. The constant estimated by xtabond
is a constant in the level equation, and it is estimated from the level errors. The output below illustrates
that including a constant in the model does not affect the other parameter estimates.
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. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) twostep vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg =  4.364286

max = 6

Number of instruments = 42 Wald chi2(16) = 1104.72
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust

n | Coefficient std. err. z P>|z| [95% conf. intervall

n
L1. .6287089 .1934138 3.25 0.001 .2496248 1.007793
L2. -.0651882 .0450501 -1.45 0.148 —-.1534847 .0231084

W
- -.5257597 .1546107 -3.40 0.001 -.828791 -.2227284
L1. .3112899 .2030006 1.53 0.125 -.086584 .7091638

k
- .2783619 .0728019 3.82 0.000 .1356728 .4210511
L1. .0140994 .0924575 0.15 0.879 -.167114 .1953129
L2. -.0402484 .0432745 -0.93 0.352 -.1250649 .0445681

ys
-—. .5919243 .1730916 3.42 0.001 .252671 .9311776
L1. -.5659863 .2611008 -2.17 0.030 -1.077734 -.0542381
L2. .1005433 .1610987 0.62 0.533 -.2152043 .4162908
yr1980 .0006378 .0168042 0.04 0.970 -.0322978 .0335734
yr1981 -.0550044 .0313389 -1.76 0.079 -.1164275 .0064187
yr1982 -.075978 .0419276 -1.81 0.070 -.1581545 .0061986
yr1983 -.0740708 .0528381 -1.40 0.161 -.1776315 .02949
yr1984 -.0906606 .0642615 -1.41 0.158 -.2166108 .0352896
year .0112155 .0116783 0.96 0.337 -.0116735 .0341045
_cons -21.53725 23.23138 -0.93 0.354 -67.06992 23.99542

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
Instruments for level equation
Standard: _cons

Including the constant does not affect the other parameter estimates because it is identified only by
the level errors; see [XT] xtdpd for details. q
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> Example 6: Including predetermined covariates

Sometimes we cannot assume strict exogeneity. Recall that a variable, x;;, is said to be strictly
exogenous if E[z;i€;5] = 0 for all ¢ and s. If E[x;1€;5] # 0 for s < ¢ but E[z;€;5] = 0 forall s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of ¢, x;; is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous. Here we treat w and k as predetermined and use lagged levels as instruments.

. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep pre(w, lag(1,.))
> pre(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year

Obs per group:

min = 4

avg =  4.364286

max = 6

Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust

n | Coefficient std. err. z P>|z| [95% conf. intervall

n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881

W
—-—. -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441

k
- .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477

ys
- .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491
yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 -.0609608 .030207 -2.02 0.044 -.1201655 -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812 -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yr1984 -.1623177 .0725434 -2.24 0.025 -.3045001 -.0201352
year .0264501 .0119329 2.22 0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984
D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back. 4
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Q Technical note

The above example illustrates that xtabond understands pre(w, lag(1l, .)) to mean that L.w
is a predetermined variable and pre(k, lag(2, .)) to mean that L2.k is a predetermined variable.
This is a stricter definition than the alternative that pre(w, lag(l, .)) means only that w is
predetermined but includes a lag of w in the model and that pre(k, lag(2, .)) means only that
k is predetermined but includes first and second lags of k in the model. If you prefer the weaker
definition, xtabond still gives you consistent estimates, but it is not using all possible instruments;
see [XT] xtdpd for an example of how to include all possible instruments. 0

> Example 7: Including endogenous covariates

We might instead suspect that w and k are endogenous in that E[z;i€;5] # 0 for s < t but
Elz;e;s] = 0 for all s > t. By this definition, endogenous variables differ from predetermined
variables only in that the former allow for correlation between the x;; and the €;; at time ¢, whereas
the latter do not. Endogenous variables are treated similarly to the lagged dependent variable. Levels
of the endogenous variables lagged two or more periods can serve as instruments. In this example,
we treat w and k as endogenous variables.



38 xtabond — Arellano—Bond linear dynamic panel-data estimation

. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep

> endogenous(w, lag(l,.)) endogenous(k, lag(2,.)) noconstant vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group:
min = 4
avg = 4.364286
max = 6
Number of instruments = 71 Wald chi2(15) = 967.61
Prob > chi2 = 0.0000
Two-step results
(Std. err. adjusted for clustering on id)
WC-robust
n | Coefficient std. err. z P>|z| [95% conf. intervall
n
L1. .6640937 .1278908 5.19  0.000 .4134323 .914755
L2. -.041283 .081801 -0.50 0.614 -.2016101 .1190441
w
-- -.7143942 .13083 -5.46  0.000 -.9708162  -.4579721
L1. .3644198 .184758 1.97 0.049 .0023008 .7265388
k
-- .5028874 .1205419 4.17 0.000 .2666296 .7391452
L1. -.2160842 .0972855 -2.22  0.026 -.4067603 -.025408
L2. -.0549654 .0793673 -0.69 0.489 -.2105225 .1005917
ys
--. .5989356 .1779731 3.37 0.001 .2501148 .9477564
L1. -.6770367 .1961166 -3.45 0.001 -1.061418 -.2926553
yr1980 -.0061122 .0155287 -0.39 0.694 -.0365478 .0243235
yr1981 -.04715 .0298348 -1.58 0.114 -.1056252 .0113251
yr1982 -.0817646 .0486049 -1.68 0.093 -.1770285 .0134993
yr1983 -.0939251 .0675804 -1.39 0.165 -.2263802 .0385299
yr1984 -.117228 .0804716 -1.46 0.145 -.2749493 .0404934
year .0208857 .0103485 2.02 0.044 .0006031 .0411684

Instruments for differenced equation
GMM-type: L(2/.).n L(2/.).L.w L(2/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

Although some estimated coefficients changed in magnitude, none changed in sign, and these

D.year

results are similar to those obtained by treating w and k as predetermined.

The Arellano—Bond estimator is for datasets with many panels and few periods. (Technically, the
large-sample properties are derived with the number of panels going to infinity and the number of
periods held fixed.) The number of instruments increases quadratically in the number of periods. If
your dataset is better described by a framework in which both the number of panels and the number
of periods is large, then you should consider other estimators such as those in [XT] xtivreg or xtreg,

fe in [XT] xtreg; see Alvarez and Arellano (2003) for a discussion of this case.
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> Example 8: Restricting the number of instruments

Treating variables as predetermined or endogenous quickly increases the size of the instrument
matrix. (See Methods and formulas in [XT] xtdpd for a discussion of how this matrix is created and
what determines its size.) GMM estimators with too many overidentifying restrictions may perform
poorly in small samples. (See Kiviet 1995 for a discussion of the dynamic panel-data case.)

To handle these problems, you can set a maximum number of lagged levels to be included as
instruments for lagged-dependent or the predetermined variables. Here is an example in which a
maximum of three lagged levels of the predetermined variables are included as instruments:

. xtabond n 1(0/1).ys yr1980-yr1984 year, lags(2) twostep
> pre(w, lag(1,3)) pre(k, lag(2,3)) noconstant vce(robust)
Arellano-Bond dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg = 4.364286

max = 6

Number of instruments = 67 Wald chi2(15) = 1116.89
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust

n | Coefficient std. err. z P>|z| [95% conf. intervall]

n
L1. .931121 .1456964 6.39 0.000 .6455612 1.216681
L2. -.0759918 .0854356 -0.89 0.374 —.2434425 .0914589

W
- -.6475372 .1687931 -3.84 0.000 -.9783656 -.3167089
L1. .6906238 .1789698 3.86 0.000 .3398493 1.041398

k
- .3788106 .1848137 2.05 0.040 .0165824 .7410389
L1. -.2158533 .1446198 -1.49 0.136 -.4993028 .0675962
L2. -.0914584 .0852267 -1.07 0.283 -.2584997 .0755829

ys
-—. . 7324964 .176748 4.14 0.000 .3860766 1.078916
L1. -.9428141 .2735472 -3.45 0.001 -1.478957 -.4066715
yr1980 -.0102389 .0172473 -0.59 0.553 -.0440431 .0235652
yri1981 -.0763495 .0296992 -2.57 0.010 -.1345589 -.0181402
yr1982 -.1373829 .0441833 -3.11 0.002 -.2239806 -.0507853
yr1983 -.1825149 .0613674 -2.97 0.003 -.3027928 -.0622369
yri1984 -.2314023 .0753669 -3.07 0.002 -.3791186 -.083686
year .0310012 .0119167 2.60 0.009 .0076448 .0543576

Instruments for differenced equation
GMM-type: L(2/.).n L(1/3).L.w L(1/3).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984
D.year
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> Example 9: Missing observations in the middle of panels

xtabond handles data in which there are missing observations in the middle of the panels. In this
example, we deliberately set the dependent variable to missing in the year 1980:
. replace n=. if year==1980
(140 real changes made, 140 to missing)

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year, lags(2) noconstant
> vce(robust)

note: yr1980 omitted from div() because of collinearity.
note: yri981 omitted from div() because of collinearity.
note: yr1982 omitted from div() because of collinearity.
note: yri980 omitted because of collinearity.
note: yri981 omitted because of collinearity.
note: yri1982 omitted because of collinearity.
Arellano-Bond dynamic panel-data estimation Number of obs = 115
Group variable: id Number of groups = 101
Time variable: year
Obs per group:
min = 1
avg = 1.138614
max = 2
Number of instruments = 18 Wald chi2(12) = 44.48
Prob > chi2 = 0.0000

One-step results

(Std. err. adjusted for clustering on id)
Robust

n | Coefficient std. err. z P>zl [95% conf. intervall]

n
L1. .1790577 .2204682 0.81 0.417 -.2530562 .6111674
L2. .0214253 .0488476 0.44 0.661 -.0743143 .1171649

W
- -.2513405 .1402114 -1.79 0.073 -.5261498 .0234689
L1. .1983952 .1445875 1.37 0.170 -.0849912 .4817815

k
- .3983149 .0883352 4.51 0.000 .2251811 .5714488
L1. -.025125 .0909236 -0.28 0.782 -.203332 .1530821
L2. -.0359338 .0623382 -0.58 0.564 -.1581144 .0862468

ys
- .3663201 .3824893 0.96 0.338 -.3833451 1.115985
L1. -.6319976 .4823958 -1.31 0.190 -1.577476 .3134807
L2. .5318404 .4105269 1.30 0.195 -.2727775 1.336458
yr1983 -.0047543 .024855 -0.19 0.848 -.0534692 .0439606

yr1984 0 (omitted)

year .0014465 .010355 0.14 0.889 -.0188489 .0217419

Instruments for differenced equation

GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1983
D.yr1984 D.year

There are two important aspects to this example. First, xtabond reports that variables have been
omitted from the model and from the div () instrument list. For xtabond, the div () instrument list
is the list of instruments created from the strictly exogenous variables; see [XT] xtdpd for more about
the div() instrument list. Second, because xtabond uses time-series operators in its computations,
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if statements and missing values are not equivalent. An if statement causes the false observations to
be excluded from the sample, but it computes the time-series operators wherever possible. In contrast,
missing data prevent evaluation of the time-series operators that involve missing observations. Thus
the example above is not equivalent to the following one:

. use https://www.stata-press.com/data/r18/abdata, clear

. xtabond n 1(0/1).w 1(0/2).(k ys) yr1980-yr1984 year if year!=1980,
> lags(2) noconstant vce(robust)

note: yr1980 omitted from div() because of collinearity.

note: yri980 omitted because of collinearity.

Arellano-Bond dynamic panel-data estimation Number of obs = 473
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 3

avg = 3.378571

max = 5

Number of instruments = 37 Wald chi2(15) = 1041.61
Prob > chi2 = 0.0000

One-step results
(Std. err. adjusted for clustering on id)

Robust

n | Coefficient std. err. z P>|z| [95% conf. intervall]

n
L1. .7210062 .1321214 5.46 0.000 .4620531 .9799593
L2. -.0960646 .0570547 -1.68 0.092 -.2078898 .0157606

W
- -.6684175 .1739484 -3.84 0.000 -1.00935 -.3274849
L1. .482322 .1647185 2.93 0.003 .16594797 .8051642

k
- .3802777 .0728546 5.22 0.000 .2374853 .5230701
L1. -.104598 .088597 -1.18 0.238 -.278245 .069049
L2. -.0272055 .0379994 -0.72 0.474 -.101683 .0472721

ys
- .4655989 .1864368 2.50 0.013 .1001895 .8310082
L1. -.8562492 .2187886 -3.91 0.000 -1.285067 -.4274315
L2. .0896556 .1440035 0.62 0.534 -.192586 .3718972
yri1981 -.0711626 .0205299 -3.47 0.001 -.1114005 -.0309247
yr1982 -.1212749 .0334659 -3.62 0.000 -.1868669 -.0556829
yr1983 -.1470248 .0461714 -3.18 0.001 -.2375191 -.0565305
yr1984 -.1519021 .0543904 -2.79 0.005 —-.2585054 -.0452988
year .0203277 .0108732 1.87 0.062 -.0009833 .0416387

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1981
D.yr1982 D.yr1983 D.yr1984 D.year

The year 1980 is omitted from the sample, but when the value of a variable from 1980 is required
because a lag or difference is required, the 1980 value is used.

4
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Stored results

xtabond stores the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(g_min) smallest group size
e(g-avg) average group size
e(g_max) largest group size
e(t_min) minimum time in sample
e(t_max) maximum time in sample
e(chi2) x2
e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of o2
e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix
Macros
e(cmd) xtabond
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(system) system, if system estimator
e(transform) specified transform
e(diffvars) already-differenced exogenous variables
e(datasignature) checksum from datasignature
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
Matrices
e(b) coefficient vector
e (V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when

any r-class command is run after the estimation command.
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Methods and formulas

A dynamic panel-data model has the form

P

Vit = Y 0Yiej + X+ Wby +viten i=1,...,N t=1,..T, (1)
=1

where

the «; are p parameters to be estimated,

X;¢+ is a 1 X kp vector of strictly exogenous covariates,

By is a k1 x 1 vector of parameters to be estimated,

Wi is a 1 X ko vector of predetermined and endogenous covariates,

B, is a ko x 1 vector of parameters to be estimated,

v; are the panel-level effects (which may be correlated with the covariates), and
€;¢ are i.i.d. over the whole sample with variance 062.

The v; and the ¢;; are assumed to be independent for each ¢ over all £.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. With many panels and few periods, estimators are
constructed by first-differencing to remove the panel-level effects and using instruments to form
moment conditions.

xtabond uses a GMM estimator to estimate oy, ..., ap, 31, and [B2. The moment conditions are
formed from the first-differenced errors from (1) and instruments. Lagged levels of the dependent
variable, the predetermined variables, and the endogenous variables are used to form GMM-type
instruments. See Arellano and Bond (1991) and Holtz-Eakin, Newey, and Rosen (1988) for discussions
of GMM-type instruments. First differences of the strictly exogenous variables are used as standard
instruments.

xtabond uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Postestimation commands predict margins estat
Remarks and examples Methods and formulas Reference Also see

Postestimation commands

The following postestimation commands are of special interest after xtabond:

Command Description
estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions and their SEs, residual errors

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

45
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, xb e stdp foerence]

Options for predict
Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.
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margins

Description for margins

margins estimates margins of responses for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()m']

margins [marginlist} , predict (statistic ...) [opzions]
statistic Description
xb linear prediction; the default
e not allowed with margins
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

estat

Description for estat

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Menu for estat
Statistics > Postestimation
Syntax for estat

Test for autocorrelation

estat abond [, gtests(#)}

Sargan test of overidentifying restrictions

estat sargan
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Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can only be refit if the data have
not changed.

Remarks and examples

Remarks are presented under the following headings:

estat abond
estat sargan

estat abond

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced errors at
order m. Rejecting the null hypothesis of no serial correlation in the first-differenced errors at order
zero does not imply model misspecification because the first-differenced errors are serially correlated
if the idiosyncratic errors are independent and identically distributed. Rejecting the null hypothesis
of no serial correlation in the first-differenced errors at an order greater than one implies model
misspecification; see example 5 in [XT] xtdpd for an alternative estimator that allows for idiosyncratic
errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified. (The system estimator is used to estimate the constant in xtabond.)

See Remarks and examples in [XT] xtabond for more remarks about estat abond that are made
in the context of the examples analyzed therein.

estat sargan

The distribution of the Sargan test is known only when the errors are independent and identically
distributed. For this reason, estat sargan does not produce a test statistic when vce (robust) was
specified in the call to xtabond.

See Remarks and examples in [XT] xtabond for more remarks about estat sargan that are made
in the context of the examples analyzed therein.

Methods and formulas

See [XT] xtdpd postestimation for the formulas.
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Pinzon, E. 2015. xtabond cheat sheet. The Stata Blog: Not Elsewhere Classified.
http://blog.stata.com/2015/11/12/xtabond-cheat-sheet/.
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Also see
[XT] xtabond — Arellano—Bond linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands



Title

xtcloglog — Random-effects and population-averaged cloglog models

Description Quick start Menu Syntax
Options for RE model Options for PA model Remarks and examples Stored results
Methods and formulas References Also see

Description

xtcloglog fits population-averaged and random-effects complementary log—log (cloglog) models
for a binary dependent variable. Complementary log—log models are typically used when one of the
outcomes is rare relative to the other.

Quick start

Random-effects complementary log—log regression of y on x1 and x2 using xtset data
xtcloglog y x1 x2

Add indicators for levels of categorical variable a and interact x1 with x2
xtcloglog y x1 x2 c.xl#c.x2 i.a

Same as above, but suppress iteration log
xtcloglog y x1 x2 c.xl#c.x2 i.a, nolog

Population-averaged model with an exchangeable correlation structure
xtcloglog y x1 x2 c.xl#c.x2 i.a, pa

Random-effects model with bootstrap standard errors
xtcloglog y x1 x2 c.xl#c.x2 i.a, vce(bootstrap)

Population-averaged model with an autoregressive correlation structure of order 1
xtcloglog y x1 x2 c.xl#c.x2 i.a, pa corr(ar 1)

Menu

Statistics > Longitudinal/panel data > Binary outcomes > Complementary log—log regression (RE, PA)

50
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Syntax
Random-effects (RE) model

xtcloglog depvar [indepvars] [zf] [m} [weight] [, re RE_()ptions]

Population-averaged (PA) model

xtcloglog depvar [indepvars] [l_'f] [m} [weight], pa [PA_oplions]

RE_options Description
Model
noconstant suppress constant term
re use random-effects estimator; the default
offset (varname) include varname in model with coefficient constrained to 1
constraints (constraints) apply specified linear constraints
asis retain perfect predictor variables
SE/Robust
vce (veetype) vcetype may be oim, robust, cluster clustvar, bootstrap, or
jackknife
Reporting
level (#) set confidence level; default is 1level (95)
lrmodel perform the likelihood-ratio model test instead of the default Wald test
eform report exponentiated coefficients
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Integration
intmethod (intmethod) integration method; intmethod may be mvaghermite (the default) or
Qermite
intpoints (#) use # quadrature points; default is intpoints(12)
Maximization
maximize_options control the maximization process; seldom used
collinear keep collinear variables

coeflegend display legend instead of statistics
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PA_options Description
Model
noconstant suppress constant term
pa use population-averaged estimator
offset (varname) include varname in model with coefficient constrained to 1
asis retain perfect predictor variables
Correlation
corr (correlation) within-panel correlation structure
force estimate even if observations unequally spaced in time
SE/Robust
vce (veetype) vcetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor N — P instead of the default V

scale(parm)

Reporting
level (#)
eform
display_options

Optimization
optimize _options

overrides the default scale parameter;
parm may be x2, dev, phi, or #

set confidence level; default is level(95)
report exponentiated coefficients

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

control the optimization process; seldom used

coeflegend display legend instead of statistics
correlation Description

exchangeable exchangeable; the default
independent independent

unstructured unstructured

fixed matname
ar #

stationary #
nonstationary #

user-specified
autoregressive of order #
stationary of order #
nonstationary of order #

A panel variable must be specified. For xtcloglog, pa, correlation structures other than exchangeable and
independent require that a time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

by, collect, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands. fp is allowed for the

random-effects model.

vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.

iweights, fweights, and pweights are allowed for the population-averaged model, and iweights are allowed for
the random-effects model; see [U] 11.1.6 weight. Weights must be constant within panel.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options for RE model
Model

noconstant; see [R] Estimation options.
re requests the random-effects estimator, which is the default.
offset (varname), constraints (constraints); see [R] Estimation options.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory (oim), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

Specifying vce (robust) is equivalent to specifying vce(cluster panelvar); see xtcloglog, re
and the robust VCE estimator in Methods and formulas.

Reporting

level (#), lrmodel; see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fimt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod), intpoints (#); see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

The following options are available with xtcloglog but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for PA model
 [Model ]

noconstant; see [R] Estimation options.

pa requests the population-averaged estimator.

offset (varname); see [R] Estimation options
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asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit.

. [Correlation |

corr (correlation) specifies the within-panel correlation structure; the default corresponds to the
equal-correlation model, corr (exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s
name with or without a blank; for example, corr(ar 1) or corr(ari).

If you specify the fixed correlation structure, you specify the name of the matrix containing the
assumed correlations following the word fixed, for example, corr(fixed myr).

force specifies that estimation be forced even though the time variable is not equally spaced.
This is relevant only for correlation structures that require knowledge of the time variable. These
correlation structures require that observations be equally spaced so that calculations based on lags
correspond to a constant time change. If you specify a time variable indicating that observations
are not equally spaced, the (time dependent) model will not be fit. If you also specify force,
the model will be fit, and it will be assumed that the lags based on the data ordered by the time
variable are appropriate.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

nmp, scale(x2|dev |phi |#); see [XT| vce_options.

Reporting

level (#); see [R] Estimation options.

eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(le-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] sef ifer.

trace specifies that the current estimates be printed at each iteration.
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The following option is available with xtcloglog but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

xtcloglog may be used to fit a population-averaged model or a random-effects complementary
log-log (cloglog) model. There is no command for a conditional fixed-effects model, as there does
not exist a sufficient statistic allowing the fixed effects to be conditioned out of the likelihood.
Unconditional fixed-effects cloglog models may be fit with cloglog with indicator variables for the
panels. However, unconditional fixed-effects estimates are biased. We do not discuss fixed-effects
further in this entry.

By default, the population-averaged model is an equal-correlation model; that is, xtcloglog,
pa assumes corr (exchangeable). Thus, xtcloglog, pa is a shortcut command for fitting the
population-averaged model using xtgee; see [XT] xtgee. Typing

. xtcloglog ..., pa ...
is equivalent to typing

. xtgee ..., ... family(binomial) link(cloglog) corr(exchangeable)
Also see [XT] xtgee for information about xtcloglog.

By default or when re is specified, xtcloglog fits, via maximum likelihood, the random-effects
model

Pr(y; # 0[xit) = P(xitB + 1)
fori =1,...,n panels, where t = 1,...,n;, v; are i.i.d., N(0,02), and P(z) = 1— exp{—exp(2)}.

Underlying this model is the variance-components model
Yie 70 <= xpfB+v;+ ez >0

where €;; are i.i.d. extreme-value (Gumbel) distributed with the mean equal to Euler’s constant and
variance 02 = 72 /6, independently of v;. The nonsymmetric error distribution is an alternative to

logit and probit analysis and is typically used when the positive (or negative) outcome is rare.
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> Example 1
Suppose that we are studying unionization of women in the United States and are using the union
dataset; see [XT] xt. We wish to fit a random-effects model of union membership:

. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year

(output omitted )

Random-effects complementary log-log model Number of obs = 26,200
Group variable: idcode Number of groups = 4,434

Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 5.9
max = 12
Integration method: mvaghermite Integration pts. = 12
Wald chi2(6) = 248.58
Log likelihood = -10535.928 Prob > chi2 = 0.0000
union | Coefficient Std. err. z P>|z| [95% conf. intervall
age .0128659 .0119004 1.08 0.280 -.0104586 .0361903
grade .06985 .0138135 5.06 0.000 .042776 .096924
not_smsa -.198416 .0647943 -3.06 0.002 -.3254104 -.0714215
1.south -2.047645 .488965 -4.19 0.000 -3.005999 -1.089291
year -.0006432 .0123569 -0.05 0.958 -.0248623 .0235759

south#c.year

1 .0164259 .006065 2.71  0.007 .0045387 .0283132
_cons -3.269158 .659029 -4.96  0.000 -4.560831  -1.977485
/1nsig2u 1.24128 .0461705 1.150787 1.331772
sigma_u 1.860118 .0429413 1.77783 1.946214
rho .67T778 .0100834 .6577057 .6972152
LR test of rho=0: chibar2(01) = 6009.36 Prob >= chibar2 = 0.000

The output includes the additional panel-level variance component, which is parameterized as the log
of the standard deviation, Ino, (labeled 1nsig2u in the output). The standard deviation o, is also
included in the output, labeled sigma_u, together with p (labeled rho),

2
v

2 2
o, +0;

g
p:

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is not important, and the panel estimator
is no different from the pooled estimator (cloglog). A likelihood-ratio test of this is included at the
bottom of the output, which formally compares the pooled estimator with the panel estimator.
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As an alternative to the random-effects specification, you might want to fit an equal-correlation
population-averaged cloglog model by typing

. xtcloglog union age grade not_smsa south##c.year, pa

Iteration 1: Tolerance = .11878399
Iteration 2: Tolerance .01424628
Iteration 3: Tolerance = .00075278
Iteration 4: Tolerance = .00003195
Iteration 5: Tolerance = 1.661e-06
Iteration 6: Tolerance = 8.308e-08

GEE population-averaged model Number of obs = 26,200

Group variable: idcode Number of groups = 4,434
Family: Binomial Obs per group:

Link: Complementary log-log min = 1

Correlation: exchangeable avg = 5.9

max = 12

Wald chi2(6) = 234.66

Scale parameter = 1 Prob > chi2 = 0.0000

union | Coefficient Std. err. z P>|z| [95% conf. intervall

age .0153737 .0081156 1.89 0.058 -.0005326 .03128

grade .0549518 .0095093 5.78 0.000 .0363139 .0735897

not_smsa -.1045232 .0431082 -2.42 0.015 -.1890138 -.0200326

1.south -1.714868 .3384558 -5.07 0.000 -2.378229 -1.051507

year -.0115881 .0084125 -1.38 0.168 -.0280763 .0049001

south#c.year
1 .0149796 .0041687 3.59 0.000 .0068091 .0231501
_cons -1.488278 .4468005 -3.33 0.001 -2.363991 -.6125652

> Example 2

In [R] cloglog, we showed these results and compared them with cloglog, vce(cluster id).
xtcloglog with the pa option allows a vce (robust) option so we can obtain the population-averaged
cloglog estimator with the robust variance calculation by typing
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. xtcloglog union age grade not_smsa south##c.year, pa vce(robust)

(output omitted )

GEE population-averaged model Number of obs = 26,200
Group variable: idcode Number of groups = 4,434

Family: Binomial Obs per group:
Link: Complementary log-log min = 1
Correlation: exchangeable avg = 5.9
max = 12
Wald chi2(6) = 157.24
Scale parameter = 1 Prob > chi2 = 0.0000
(Std. err. adjusted for clustering on idcode)

Semirobust
union | Coefficient std. err. z P>|z| [95% conf. intervall
age .0153737 .0079446 1.94 0.053 -.0001974 .0309448
grade .0549518 .0117258 4.69 0.000 .0319697 .077934
not_smsa -.1045232 .0548598 -1.91 0.057 -.2120465 .0030001
1.south -1.714868 .4864999 -3.52  0.000 -2.66839 -.7613455
year -.0115881 .0085742 -1.35 0.177 -.0283932 .005217
south#c.year

1 .0149796 .0060548 2.47 0.013 .0031124 .0268468
_cons -1.488278 .4924738 -3.02 0.003 -2.453509  -.5230472

These standard errors are similar to those shown for cloglog, vce(cluster id) in [R] cloglog.

4

Q Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy
depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtcloglog likelihood function is calculated by Gauss—Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of
points used for the quadrature.

a
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Stored results

xtcloglog, re stores the following in e():

e(marginsdefault)
e (asbalanced)
e(asobserved)

Scalars
e(N) number of observations
e(N_g) number of groups
e(k) number of parameters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e(b)
e(k_eq-model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11_0) log likelihood, constant-only model
e(1l_c) log likelihood, comparison model
e(chi2) x>
e(chi2_c) x? for comparison test
e(N_clust) number of clusters
e(rho)
e(sigma_u) panel-level standard deviation
e(n_quad) number of quadrature points
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(p) p-value for model test
e(rank) rank of e(V)
e (rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise

Macros
e(cmd) xtcloglog
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e (model) re
e(wtype) weight type
e(wexp) weight expression
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset) linear offset variable
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

default predict() specification for margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log

e(gradient)

gradient vector
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e(V)

e(V_modelbased)

Functions
e(sample)

Matrices
r(table)

variance—covariance matrix of the estimators

model-based variance

marks estimation sample

In addition to the above, the following is stored in r():

matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

xtcloglog, pa stores the following in e():

Scalars
e()
e(N_g)
e(df_m)
e(chi2)
e(p)
e(df_pear)
e(chi2_dev)
e(chi2_dis)
e(deviance)
e(dispers)
e(phi)
e(g_min)
e(g-avg)
e(g_max)
e(rank)
e(tol)
e(dif)
e(rc)

Macros
e(cmd)
e(cmd2)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e(model)
e(family)
e(link)
e(corr)
e(scale)
e (wtype)
e (wexp)
e(offset)
e(chi2type)
e(vce)
e(vcetype)
e (nmp)

e(properties)
e(predict)
e(marginsnotok)
e(asbalanced)
e(asobserved)

number of observations
number of groups

model degrees of freedom

X2

p-value for model test
degrees of freedom for Pearson x?
x?2 test of deviance

x? test of deviance dispersion
deviance

deviance dispersion

scale parameter

smallest group size

average group size

largest group size

rank of e(V)

target tolerance

achieved tolerance

return code

xtgee

xtcloglog

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
pa

binomial

cloglog; link function

correlation structure

x2, dev, phi, or #; scale parameter
weight type

weight expression

linear offset variable

Wald; type of model x? test

veetype specified in vce ()

title used to label Std. err.

nmp, if specified

bV

program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved
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Matrices
e(b) coefficient vector
e(R) estimated working correlation matrix
e (V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

xtcloglog, pa reports the population-averaged results obtained using xtgee, fam-
ily(binomial) link(cloglog) to obtain estimates.

For the random-effects model, assume a normal distribution, [N (O, 03), for the random effects v;,

oo 671/1-2/2012, T
Pr(Yits - - Yin, |Xils - -+ Xin;) = - F(yir, xieB+v;) ¢ dv;
(yzl yzn,| il zn,) . \/%0',/ L (yzt i3 z) i

t=

where .
Fly, ) = { 1— exp{ — exp(z)} ify#0

exp{ — exp(2)} otherwise
The panel-level likelihood I; is given by

oo —v2/202 g
e i v
li = e F ity Xi + v dl/i
o /gmu {tl_l1 (y ty Xit 3 )}

oo
= / 9(yit, it vi)dv;
— 00
This integral can be approximated with M -point Gauss—Hermite quadrature
o0 5 M
/eﬂWW”Z%ﬂm

— 00

This is equivalent to
00 M
| e Y w007} f(a))
-0 m=1

where the w},, denote the quadrature weights and the a), denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods [;.
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The default approximation of the log likelihood is by adaptive Gauss—Hermite quadrature, which
approximates the panel-level likelihood with

M
l; ~ /26, Z wi,exp {(a5,)?} 9(yie, vir, V25,0, + fiz)
m=1

where 0; and [i; are the adaptive parameters for panel i. Therefore, with the definition of g(y:t, Tit, v;),
the total log likelihood is approximated by

n M ~  x ~\2 2

. - (V26;a%, + 1ii)?/202}

L~ i 1 20; ; )2 exp{ (\f — £
;le og l:\[o' mg:l w, exp{(am) } 5o

[ F it 28 + V2Gias, + fii)
=1

where w; is the user-specified weight for panel 7; if no weights are specified, w; = 1.

The default method of adaptive Gauss—Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for fi; and 7; by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with ;0 = 1 and fi; 0 = 0, and
the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for [;, we use

M
lig = Z V25, 1w}, exp{a},)*}g(yit, i, V26 p_1ak, + flik—1)
m=1

Letting
Timmbk—1 = V20 p_105, + Hik—1
M .
. V26 kwi, exp{(ak)? }9(Yits Tits Tiom o—1)
ik =Y (Timi-1) .
me1 i,k
and
~ k—1wy, expi (an,)? } 9 (Wits Tits Tim k—1) ~
Gik = Z(Ti,m,k71)2 - m e ?k} R — (fiip)?
m=1 b

and this is repeated until fi; 5, and 7; ;, have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e—6; after this, the quadrature parameters are fixed.

The log likelihood can also be calculated by nonadaptive Gauss—Hermite quadrature, the int-
method (ghermite) option, where p = 02 /(02 + 1):

n
L= Zwi log{ Pr(yit, ...y Yin, [Xi1, - - ,Xim)}

i=1

n 1 M n; 2p 1/2
~ ) w;log|— W, | | FQ Yies XitB + ag, ()
3o |2 3w 1] =
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Both quadrature formulas require that the integrated function be well approximated by a polynomial
of degree equal to the number of quadrature points. The number of periods (panel size) can affect

whether
ng

H F(yit, xitB + 1)

t=1

is well approximated by a polynomial. As panel size and p increase, the quadrature approximation can
become less accurate. For large p, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.

xtcloglog, re and the robust VCE estimator

Specifying vce (robust) or vce(cluster clustvar) causes the Huber/White/sandwich VCE esti-
mator to be calculated for the coefficients estimated in this regression. See [P] _robust, particularly
Introduction and Methods and formulas. Wooldridge (2020) and Arellano (2003) discuss this application
of the Huber/White/sandwich VCE estimator. As discussed by Wooldridge (2020), Stock and Wat-
son (2008), and Arellano (2003), specifying vce (robust) is equivalent to specifying vce (cluster
panelvar), where panelvar is the variable that identifies the panels.

Clustering on the panel variable produces a consistent VCE estimator when the disturbances are
not identically distributed over the panels or there is serial correlation in €;;.

The cluster—robust VCE estimator requires that there are many clusters and the disturbances are
uncorrelated across the clusters. The panel variable must be nested within the cluster variable because
of the within-panel correlation that is generally induced by the random-effects transform when there
is heteroskedasticity or within-panel serial correlation in the idiosyncratic errors.
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Also see
[XT] xtcloglog postestimation — Postestimation tools for xtcloglog
[XT] quadchk — Check sensitivity of quadrature approximation
[XT] xtgee — GEE population-averaged panel-data models
[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models
[XT] xtprobit — Random-effects and population-averaged probit models
[XT] xtset — Declare data to be panel data
[ME] mecloglog — Multilevel mixed-effects complementary log—log regression
[MI] Estimation — Estimation commands for use with mi estimate
[R] cloglog — Complementary log—log regression

[U] 20 Estimation and postestimation commands



Title

xtcloglog postestimation — Postestimation tools for xtcloglog

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands

The following postestimation commands are available after xtcloglog:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
*estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

T forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions and their SEs, probabilities

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

*estat ic is not appropriate after xtcloglog, pa.

Jrforecast is not appropriate with mi estimation results.
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predict

Description for predict

predict creates a new variable containing predictions such as probabilities, linear predictions,
standard errors, and the equation-level score.

Menu for predict

Statistics > Postestimation

Syntax for predict
Random-effects (RE) model

predict [type] newvar [zf] [in] [, RE_statistic nooffset]

Population-averaged (PA) model

predict [type] newvar [lf] [in] [, PA _statistic nooffset]

RE _statistic Description
Main
xb linear prediction; the default
pr marginal probability of a positive outcome
pu0 probability of a positive outcome
stdp standard error of the linear prediction
PA _statistic Description
Main
mu predicted probability of depvar; considers the offset (); the default
rate predicted probability of depvar
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;:3
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.
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Options for predict
Main

r

xb calculates the linear prediction, which is x;;3 if offset() was not specified when the model
was fit and x;;3 + offset;; if offset () was specified. This is the default for the random-effects
model.

pr calculates the probability of a positive outcome that is marginal with respect to the random effect,
which means that the probability is calculated by integrating the prediction function with respect
to the random effect over its entire support.

puO calculates the probability of a positive outcome, assuming that the random effect for that
observation’s panel is zero (v; = 0). This may not be similar to the proportion of observed
outcomes in the group.

stdp calculates the standard error of the linear prediction.

mu and rate both calculate the predicted probability of depvar. mu takes into account the offset ().
rate ignores those adjustments. mu and rate are equivalent if you did not specify offset (). mu
is the default for the population-averaged model.

score calculates the equation-level score, u;; = Oln L(x;t3)/0(x;+3).

nooffset is relevant only if you specified offset (varname) for xtcloglog. It modifies the
calculations made by predict so that they ignore the offset variable; the linear prediction is
treated as x;¢(3 rather than x;;3 + offset;;.
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margins

Description for margins

margins estimates margins of responses for probabilities and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins
margins [marginlisz} [, options]

margins [marginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [options]

Random-effects (RE) model

statistic Description

pr marginal probability of a positive outcome; the default
puo probability of a positive outcome

xb linear prediction

stdp not allowed with margins

Population-averaged (PA) model

statistic Description

mu predicted probability of depvar; considers the offset(); the default
rate predicted probability of depvar

xb linear prediction

stdp not allowed with margins

score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

> Example 1: Average marginal effects

In example 1 of [XT] xtcloglog, we fit the model

. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)

. xtcloglog union age grade not_smsa south##c.year, pa
(output omitted )

Here we use margins to determine the average effect each regressor has on the probability of a
positive response in the sample.
. margins, dydx(*)

Average marginal effects Number of obs = 26,200
Model VCE: Conventional

Expression: Pr(union != 0), predict()
dy/dx wrt: age grade not_smsa 1.south year

Delta-method
dy/dx  std. err. z P>|z| [95% conf. intervall
age .0028297 .0014952 1.89 0.058 -.000101 .0057603
grade .0101144 .0017498 5.78 0.000 .0066848 .013544
not_smsa -.0192384 .0079304 -2.43 0.015 -.0347818 -.0036951
1.south -.0913197 .0073101 -12.49 0.000 -.1056473 -.0769921
year -.0012694 .001534 -0.83 0.408 -.004276 .0017371

Note: dy/dx for factor levels is the discrete change from the base level.

We see that an additional year of schooling (covariate grade) increases the probability that a woman
belongs to a union by an average of about one percentage point.

4

Also see
[XT] xtcloglog — Random-effects and population-averaged cloglog models

[U] 20 Estimation and postestimation commands



Title

xtcointtest — Panel-data cointegration tests

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtcointtest performs the Kao (1999), Pedroni (1999, 2004), and Westerlund (2005) tests of
cointegration on a panel dataset. Panel-specific means (fixed effects) and panel-specific time trends
may be included in the cointegrating regression model.

All tests have a common null hypothesis of no cointegration. The alternative hypothesis of the
Kao tests and the Pedroni tests is that the variables are cointegrated in all panels. In one version of
the Westerlund test, the alternative hypothesis is that the variables are cointegrated in some of the
panels. In another version of the Westerlund test, the alternative hypothesis is that the variables are
cointegrated in all the panels.

Quick start

Kao test of no cointegration between y and x with the alternative hypothesis that they are cointegrated
in all panels using xtset data

xtcointtest kao y x

Pedroni test of no cointegration using a panel-specific autoregressive (AR) term and panel-specific
time trends with the alternative hypothesis of cointegration in all panels

xtcointtest pedroni y x, trend

Same as above, but use the same AR term in all panels
xtcointtest pedroni y x, trend ar(same)

Westerlund test of no cointegration with the alternative hypothesis that the variables are cointegrated
in some of the panels

xtcointtest westerlund y x

Westerlund test of no cointegration with the alternative hypothesis of cointegration in all panels
xtcointtest westerlund y x, allpanels

Menu

Statistics > Longitudinal/panel data > Cointegrated data > Tests for cointegration
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Syntax

Kao test

xtcointtest kao depvar varlist [zf] [in] [, ka()_options]

Pedroni test

xtcointtest pedroni depvar varlist [l_'f] [in} [, pedmni_oplions]

Westerlund test

xtcointtest westerlund depvar varlist [zf} [in] [, weSZerlund_options}

kao_options

Description

Main
lags (Ispec)
kernel (kspec)
demean

specify lag structure for augmented Dickey—Fuller regressions
specify method to estimate long-run variance
subtract cross-sectional means

pedroni_options

Description

Main
ar (panelspecific|same)

trend
noconstant
lags (Ispec)
kernel (kspec)
demean

specify autoregressive parameter as panel specific or as the same
for all panels; ar (panelspecific) is the default

include panel-specific time trends

suppress panel-specific means

specify lag structure for augmented Dickey—Fuller regressions

specify method to estimate long-run variance

subtract cross-sectional means

westerlund_options

Description

Main
somepanels

allpanels
trend
demean

use alternative hypothesis of cointegration in some panels;
the default

use alternative hypothesis of cointegration in all panels

include panel-specific time trends

subtract cross-sectional means

collect is allowed with all xtcointtest tests; see [U] 11.1.10 Prefix commands.
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Ispec is
# number of lags of series; 1 is the default
aic # Akaike information criterion (AIC) with up to # lags
bic # Bayesian information criterion (BIC) with up to # lags
hqic # Hannan—Quinn information criterion (HQIC) with up to # lags
kspec is
bartlett nwest Bartlett kernel with Newey—West lags; the default
bartlett # Bartlett kernel with up to # lags
parzen nwest Parzen kernel with Newey—West lags
parzen # Parzen kernel with up to # lags
;adraticspectral nwest quadratic spectral kernel with Newey—West lags
;adraticspectral # quadratic spectral kernel with up to # lags
Options

Options are presented under the following headings:

Options for xtcointtest kao
Options for xtcointtest pedroni
Options for xtcointtest westerlund

Options for xtcointtest kao

Main

lags(Ispec) specifies the lag structure to use for the augmented Dickey—Fuller (ADF) regressions
performed in computing the test statistic.

lags (#) specifies that # lags of the series be used in the ADF regressions. # must be a nonnegative
integer. The default is lags(1).

lags(aic|bic|hgic #) specifies that xtcointtest fit ADF regressions with 1 to # lags and
choose the number of lags for which the AIC, BIC, or HQIC is minimized.

kernel (kspec) specifies the method used to estimate the long-run variance of each panel’s series.
You may specify the kernel type and either #, the maximum number of lags as a positive integer,
or nwest, the maximum number of lags selected by the bandwidth-selection algorithm given in
Newey and West (1994). The kernel type may be bartlett, parzen, or quadraticspectral.
The default is kernel (bartlett nwest).

demean specifies that xtcointtest first subtract the cross-sectional averages from the series. When
specified, for each time period xtcointtest computes the mean of the series across panels and
subtracts this mean from the series. Levin, Lin, and Chu (2002) suggest this procedure to mitigate
the impact of cross-sectional dependence.
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Options for xtcointtest pedroni

Main

r

ar (panelspecific|same) specifies whether the AR parameter for ADF or Phillips—Perron (PP)
regressions is panel specific or the same across panels.

ar (panelspecific) specifies that the AR parameter be panel specific in the ADF or PP regressions.
The test statistics obtained from using this option are also known as group-mean statistics or
between-dimension statistics. This is the default.

ar (same) specifies that the AR parameter be the same for all panels in the ADF or PP regressions.
The test statistics obtained from using this option are also known as panel cointegration statistics
or within-dimension statistics.

trend includes panel-specific linear time trends in the model for the dependent variable on the
covariates.

noconstant suppresses the panel-specific means in the model for the dependent variable on the
covariates. Specifying noconstant imposes the assumption that the series has a mean of zero for
all panels. This option may not be specified with trend.

lags (Ispec) specifies the lag structure to use for the ADF regressions performed in computing the test
statistic. See the description of lags () under Options for xtcointtest kao for additional details.

kernel (kspec) specifies the method used to estimate the long-run variance of each panel’s series.
See the description of kernel () under Options for xtcointtest kao for additional details.

demean specifies that xtcointtest first subtract the cross-sectional averages from the series. See
the description of demean under Options for xtcointtest kao for additional details.

Options for xtcointtest westerlund

Main

somepanels specifies that the test statistic for panel cointegration be computed using the alternative
hypothesis that some of the panels are cointegrated. This statistic is also known as the group-
mean variance-ratio (VR) statistic. This option uses a regression in which the AR parameter for
Dickey—Fuller (DF) regressions is panel specific. This is the default.

allpanels specifies that the test statistic for panel cointegration be computed using the alternative
hypothesis that all the panels are cointegrated, also known as the panel VR statistic. This option
also implies that the AR parameter for DF regressions is the same for all panels.

trend includes panel-specific linear time trends in the model for dependent variable on the covariates.

demean specifies that xtcointtest first subtract the cross-sectional averages from the series. See
the description of demean under Options for xtcointtest kao for additional details.

Remarks and examples

Remarks are presented under the following headings:

Overview

Test details
Kao tests
Pedroni tests
Westerlund tests
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Overview

A stationary process has a time-invariant mean and a time-invariant variance. By contrast, a
nonstationary process has a time-varying mean, a time-varying variance, or both. A nonstationary
process may wander arbitrarily over time because its first two moments vary over time.

When the first difference of a nonstationary process is stationary, the process is said to be integrated
of order one, denoted 7(1). When a linear combination of several I(1) series is stationary, the series
are said to be cointegrated (Engle and Granger 1987). We test for cointegration because cointegration
implies that the (1) series are in a long-run equilibrium; they move together, although the group of
them can wander arbitrarily.

For example, income and consumption are I(1) series that wander over time. According to
economic theory, income determines consumption in the long run. In practice, time-series data on
income and consumption typically have periods where the series seem to wander in isolation, which
is contrary to the theory. However, when we look at the overall trend, the two series are close to one
another, implying a long-run relation. A test of cointegration provides evidence that indeed there is
(or is not) a long-run relation between these series even if they tend to deviate temporarily.

xtcointtest implements tests of cointegration in panel data, which have many observations
on each of many individual units. This type of sample is known as large-N-large-T-panel data.
The popular Engle—Granger residual-based test for cointegration has low power when applied to a
single time series but has good power when statistics from many individual panels are combined.
The Kao tests, the Pedroni tests, and the Westerlund tests implemented in xtcointtest combine
statistics computed for each individual in the panel, thereby producing a test with higher power.
Furthermore, the limiting distribution of the combined test converges to a standard normal distribution
after appropriate standardization, whereas tests for cointegration based on a single time series have
nonstandard distributions.

All the tests in xtcointtest are based on the following panel-data model for the (1) dependent
variable y;;, where ¢ = 1,..., N denotes the panel (individual) and ¢ = 1,...,T; denotes time:

Yir = thﬂi + Z;t’Yi + €t (1)

For each panel 7, each of the covariates in x;; is an I(1) series. All the tests require that the covariates
are not cointegrated among themselves. The Pedroni and Westerlund tests allow a maximum of seven
covariates in x;;. 3; denotes the cointegrating vector, which may vary across panels. =, is a vector
of coefficients on z;;, the deterministic terms that control for panel-specific effects and linear time
trends. e;; is the error term.

Depending on the options specified with xtcointtest, the vector z;; allows for panel-specific
means, panel-specific means and panel-specific time trends, or nothing. By default, z;; = 1, so the
term z},; represents panel-specific means (fixed effects). If trend is specified, zi, = (1, t) so.zgﬂi
represents panel-specific means and panel-specific linear time trends. For tests that allow it, specifying
noconstant omits the z},~, term.

The tests share a common null hypothesis that y;; and x;; are not cointegrated. xtcointtest
tests for no cointegration by testing that e; is nonstationary. Rejection of the null hypothesis implies
that e;; is stationary and that the series ¥;; and X;; are cointegrated. The alternative hypothesis of the
Kao tests, the Pedroni tests, and the allpanels version of the Westerlund test is that the variables are
cointegrated in all panels. The alternative hypothesis of the somepanels version of the Westerlund
test is that the variables are cointegrated in some of the panels.

All tests allow unbalanced panels and require that N is large enough that the distribution of a
sample average of panel-level statistics converges to its population distribution. They also require that
each T} is large enough to run time-series regressions using observations only from that panel. These
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tests have nominal coverage only when both T" and N are large. The smallest combinations of 7" and
N for which the tests have close to nominal coverage and decent power differs by test and varies
with the degree of serial correlation in the residuals. See Test details for more information. All the
tests require that there be no gaps in any panel’s series.

Test details

The Kao, Pedroni, and Westerlund tests implement different types of tests for whether e;;
is nonstationary. The DF ¢ tests, ADF ¢ tests, PP ¢ tests, and their variants that are reported by
xtcointtest kao and xtcointtest pedroni use different regression frameworks to handle serial
correlation in e;;. The VR tests that are reported by xtcointtest westerlund and xtcointtest
pedroni do not require modeling or accommodating for serial correlation; see Westerlund (2005).

All variants of the DF ¢ test statistics are constructed by fitting the model in (1) using ordinary
least squares, obtaining the predicted residuals (€;;), and then fitting the DF regression model

€it = Peit—1+ Vit (2)

where p is the AR parameter and v;; is a stationary error term. The DF ¢ and the unadjusted DF ¢
test whether the coefficient p is 1. By contrast, the modified DF ¢ and the unadjusted modified DF ¢
test whether p — 1 = 0. Nonstationarity under the null hypothesis causes a test of whether p =1 to
differ from a test of whether p — 1 = 0; see Dickey and Fuller (1979) and Kao (1999).

The variants of the PP ¢ test statistics are also constructed by fitting the model in (1) using ordinary
least squares and obtaining the predicted residuals (€;;). For the PP ¢ tests, we then fit the DF regression
model

€it = Pi€it—1 + Vit (3)

In this case, we have a panel-specific AR parameter p;. The PP ¢ tests whether the p;s are 1, whereas
the modified PP ¢ tests whether p; — 1 = 0. The PP ¢ test statistic is nonparametrically adjusted
for serial correlation in the residuals using the Newey and West (1987) heteroskedasticity- and
autocorrelation-consistent (HAC) covariance matrix estimator.

The DF ¢, the modified DF ¢, the PP ¢, the modified PP ¢, and the modified VR tests are derived by
specifying a data-generating process for the dependent variable and the regressors. This specification
allows the regressors to be endogenous as well as serially correlated. Therefore, constructing the test
statistics requires estimating the contemporaneous and dynamic covariances between the regressors
and the dependent variable. The unadjusted DF ¢ and the unadjusted modified DF ¢ assume absence of
serial correlation and strictly exogenous covariates and do not require any adjustments in the residuals.

Like the DF and PP tests, the ADF ¢ tests that p = 1. However, the ADF test uses additional lags of
the residuals to control for serial correlation instead of the Newey—West nonparametric adjustments.
The ADF regression is

P
Cit = pifin—1+ Y pij G + v},
j=1
where A€; ;_; is the jth lag of the first difference of €;; and j = 1,...,p is where p is the number
of lag differences.

The VR tests are based on Phillips and Ouliaris (1990) and Breitung (2002), where the test statistic
is constructed as a ratio of variances. These tests do not require modeling or accommodating serial
correlation; see Westerlund (2005). VR tests also test for no cointegration by testing for the presence
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of a unit root in the residuals. However, they do so using the ratio of variances of the predicted
residuals. The modified VR test removes estimated conditional variances prior to computing the VR.
For further details, see Methods and formulas.

These tests get good coverage and power properties by combining panel-level statistics computed
from a time-series regression using only the observations in that panel. Kao (1999) finds that his tests
have nearly nominal size when 7" = 100 and N = 300. Pedroni (2004) finds that his tests have nearly
nominal size when 1" = 250 and N = 60. Westerlund (2005) limited his simulations to datasets with
T = 150, and he did not find a combination of 7" and /V in which his tests had nearly nominal size.
He said that 7" > 150 should produce better coverage. Each author used a different data-generating
process; see Kao (1999), Pedroni (2004), and Westerlund (2005) for details.

Q Technical note

The asymptotic distribution of all the test statistics are obtained using sequential limit theory,
denoted as (T, N) —goq 00, in which the time dimension goes to infinity followed by the number
of panels going to infinity. See Phillips and Moon (2000) for an introduction to asymptotic theory
that depend on both N and 7' and their relation to nonstationary panels. Phillips and Moon (1999)
contains a more technical discussion of “multi-indexed” asymptotic theory.

a

Kao tests

The tests derived in Kao (1999) assume a cointegrating vector that is the same across all panels,
which restricts 3; = 3 in (1). Kao tests estimate panel-specific means and do not allow a time trend,
so z from (1) is always a vector of 1s for Kao tests. This yields the cointegrating relationship

Vit = Vi + X8+ i

where 7y; denotes panel-specific means (fixed effects). The null hypothesis of the Kao test is that
there is no cointegration among the series. The alternative hypothesis is that the series in all panels
are cointegrated with the same cointegrating vector.

xtcointtest kao reports the modified DF ¢, DF ¢, ADF ¢, unadjusted modified DF ¢, and unadjusted
DF t statistics. They are constructed using the estimated p from DF and ADF regressions; see Test
details. The test statistics differ in how they formulate the hypothesis and in how they control for
serial correlation in e;;. See Test details for an overview of the differences in the test statistics and
see Kao tests in Methods and formulas for further discussion.

> Example 1: Kao tests assuming a constant cointegrating vector

We are interested in the long-run effect of domestic research and development (R&D) and foreign
R&D on an economy’s productivity. The fictitious dataset, xtcoint.dta, is a balanced panel on
100 countries observed from 197393 to 2010qg4. It contains quarterly data on the log of produc-
tivity (productivity), log of domestic R&D capital stock (rddomestic), and log of foreign R&D
(rdforeign).

The cointegrating relationship is specified as
productivity,, = y; + Sirddomestic;; + Bordforeign,, + e;

where ~y; is the panel-specific mean and the cointegrating parameters, 51 and (2, are the same across
panels. We assume that each series is I(1). A formal test for the presence of a unit root in panel
data may be performed using xtunitroot. We perform the Kao test of cointegration by typing
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. use https://www.stata-press.com/data/r18/xtcoint
(Fictitious cointegration data)

. xtcointtest kao productivity rddomestic rdforeign

Kao test for cointegration

HO: No cointegration Number of panels = 100
Ha: All panels are cointegrated Number of periods = 148
Cointegrating vector: Same
Panel means: Included Kernel: Bartlett
Time trend: Not included Lags: 3.60 (Newey-West)
AR parameter: Same Augmented lags: 1

Statistic p-value
Modified Dickey-Fuller t -23.6733 0.0000
Dickey-Fuller t -15.1293 0.0000
Augmented Dickey-Fuller t -3.6909 0.0001
Unadjusted modified Dickey-Fuller t -46.7561 0.0000
Unadjusted Dickey-Fuller t -20.2521 0.0000

We used a model with panel-specific means and no time trend, as reported in the header. The AR
parameter that determines the presence or lack of cointegration is assumed to be the same for all
panels and is thus labeled as Same in the header.

By default, xtcointtest kao uses a Bartlett kernel with Newey and West (1994) automatic lag
selection algorithm. In this example, the algorithm chose an average of 3.6 lags across all panels to
correct for serial correlation. To choose different kernels and the number of lags, specify the kernel ()
option. The ADF ¢ statistic also includes lagged differences of the dependent variable to control for
serial correlation. The number of lags is reported in Augmented lags. By default, xtcointtest
kao uses the first lag. To include more lags, specify the lags() option.

The output reports the values of all test statistics with their respective p-values. All test statistics
reject the null hypothesis of no cointegration in favor of the alternative hypothesis of the existence
of a cointegrating relation among productivity, rddomestic, and rdforeign. The modified DF
t, the DF ¢, and the ADF ¢ test statistics are adjusted for serial correlation using the HAC estimator;
see Methods and formulas.

N

Pedroni tests

The tests derived by Pedroni (1999, 2004) allow for panel-specific cointegrating vectors. This
heterogeneity distinguishes Pedroni tests from those derived by Kao. Another difference is that the
Pedroni tests allow the AR coefficient (p;) to vary over panels as in (3), while the Kao tests assumed
the same AR coefficient. These panel-specific AR coefficients are the default in the Pedroni tests, but
the ar (same) option restricts the AR coefficients (p; = p) to be the same over panels.

Pedroni (1999, 2004) refers to the tests based on panel-specific AR parameters as “between-
dimension tests” and refers to the tests based on the same AR parameters as “within-dimension
tests”.

See Test details and Methods and formulas for further discussion of the specific tests.
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> Example 2: Pedroni cointegration test with panel-specific AR parameter

Continuing with example 1, we perform the Pedroni test of cointegration between productivity,
rddomestic, and rdforeign, assuming panel-specific cointegrating vectors and autoregressive
parameters. The cointegrating relationship is specified as

productivity,;, = v; + f1;rddomestic,; + fBo;rdforeign;, + et

where [31; and (2; represent panel-specific cointegration parameters.

. xtcointtest pedroni productivity rddomestic rdforeign
Pedroni test for cointegration

HO: No cointegration Number of panels = 100
Ha: All panels are cointegrated Number of periods = 149
Cointegrating vector: Panel specific
Panel means: Included Kernel: Bartlett
Time trend: Not included Lags: 4.00 (Newey—-West)
AR parameter: Panel specific Augmented lags: 1

Statistic p-value
Modified Phillips—Perron t -26.1145 0.0000
Phillips-Perron t -21.2436 0.0000
Augmented Dickey-Fuller t -25.3701 0.0000

All the test statistics reject the null hypothesis of no cointegration in favor of the alternative
hypothesis that productivity, rddomestic, and rdforeign are cointegrated in all panels with a
panel-specific cointegrating vector.

The model underlying the reported statistics includes panel-specific means and panel-specific AR
parameters and does not include a time trend. All three statistics used a Bartlett kernel with four
lags, as selected by the Newey—West methods, to adjust for serial correlation. The ADF test used a
regression with only one additional lag.

d

» Example 3: Pedroni cointegration test with a common AR parameter

The alternative hypothesis in example 2 allows for panel-specific AR parameters. In this example,
we use the ar (same) option to specify an alternative hypothesis that assumes the same AR parameter
across all panels.

. xtcointtest pedroni productivity rddomestic rdforeign, ar(same)

Pedroni test for cointegration

HO: No cointegration Number of panels = 100
Ha: All panels are cointegrated Number of periods = 149
Cointegrating vector: Panel specific
Panel means: Included Kernel: Bartlett
Time trend: Not included Lags: 4.00 (Newey-West)
AR parameter: Same Augmented lags: 1

Statistic p-value
Modified variance ratio 14.8852 0.0000
Modified Phillips—Perron t -23.0042 0.0000
Phillips-Perron t -17.6735 0.0000

Augmented Dickey-Fuller t -21.1119 0.0000
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All test statistics reject the null hypothesis of no cointegration in favor of the alternative hypothesis
of cointegration between productivity, rddomestic, and rdforeign.

The header reports Same for the AR parameter, reminding us that we are now using an alternative
hypothesis that assumes a constant p for all panels.

N

Westerlund tests

Westerlund (2005) derived a pair of VR test statistics for the null hypothesis of no cointegration.
The default test uses a model in which the AR parameter is panel specific and for which the alternative
hypothesis is that the series in some of the panels are cointegrated. Specifying the allpanels option
produces the results for a test in which the alternative hypothesis is that the series in all the panels
are cointegrated, and this test uses a model in which the AR parameter is the same over the panels.
More specifically, the alternative hypothesis using the allpanels option restricts p; = p in (3).

See Test details and Methods and formulas for further discussion of the specific tests.

> Example 4: Westerlund test with some panels cointegrated under the alternative
Continuing with example 1, we perform the Westerlund test of cointegration between produc-
tivity, rddomestic, and rdforeign. The cointegrating relationship is specified as

productivity,, = v; + f1;rddomestic,; + fBo;rdforeign;, + et

where 31; and f5; are panel-specific cointegration parameters. We now test the null hypothesis of no
cointegration under the alternative that some of the 31; and B2; produce cointegrated series:

. xtcointtest westerlund productivity rddomestic rdforeign

Westerlund test for cointegration

HO: No cointegration Number of panels = 100
Ha: Some panels are cointegrated Number of periods = 150
Cointegrating vector: Panel specific
Panel means: Included
Time trend: Not included
AR parameter: Panel specific

Statistic p-value
Variance ratio -8.0237 0.0000

The VR test statistic rejects the null hypothesis of no cointegration between productivity,
rddomestic, and rdforeign in favor of the alternative that at least some panels are cointegrated.

The header tells us that the cointegrating vectors vary by panel, that panel-specific means were
included in the model, that no time trend was included in the model, and that the AR parameter varies
by panel.

d
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> Example 5: Westerlund test with all panels cointegrated under the alternative

In this example, we use the allpanels option to test the null hypothesis of no cointegration under
the alternative hypothesis that all panels are cointegrated. This test is based on a model in which the
AR parameter is the same over the panels.

. xtcointtest westerlund productivity rddomestic rdforeign, allpanels

Westerlund test for cointegration

HO: No cointegration Number of panels = 100
Ha: All panels are cointegrated Number of periods = 150
Cointegrating vector: Panel specific
Panel means: Included
Time trend: Not included
AR parameter: Same

Statistic p-value
Variance ratio -5.9709 0.0000

The VR statistic rejects the null hypothesis of no cointegration. This implies all panels are
cointegrated.

4

Stored results

xtcointtest kao stores the following in r():

Scalars
r(N) number of observations
r(N_g) number of groups
r(N_t) number of time periods
r(hac_lagm) average lags used in HAC variance estimator
r(adf_lags) lags used in ADF regressions

Macros
r(test) kao
r (hac_kernel) kernel used in HAC variance estimator
r (hac_method) HAC lag-selection algorithm
r(adf_method) ADF regression lag-selection criterion
r (demean) demean, if the data were demeaned
r(deterministics) constant

Matrices
r(stats) Kao test statistics
r(p) p-values

xtcointtest pedroni stores the following in r():

Scalars
r(N) number of observations
r(N_g) number of groups
r(N_t) number of time periods
r(hac_lagm) average lags used in HAC variance estimator
r(adf_lags) lags used in ADF regressions
Macros
r(test) pedroni
r(hac_kernel) kernel used in HAC variance estimator

r (hac_method) HAC lag-selection algorithm



xtcointtest — Panel-data cointegration tests 81

r (adf_method) ADF regression lag-selection criterion

r (demean) demean, if the data were demeaned

r(deterministics) noconstant, constant, or trend
Matrices

r(stats) Pedroni test statistics

r(p) p-values

xtcointtest westerlund stores the following in r():

Scalars
r(N) number of observations
r(N_g) number of groups
r(N_t) number of time periods
r(stat) Westerlund test statistic
r(p) p-value
Macros
r(test) westerlund
r (demean) demean, if the data were demeaned
r(deterministics) constant or trend

Methods and formulas

Methods and formulas are presented under the following headings:

Overview

Kao tests

Pedroni tests
Westerlund tests
Long-run variance

Overview

Consider the panel-data model
Yir = Xz B + 23y + e (4)

wherei = 1,..., N denotes the panel and ¢t = 1, ..., 7T} denotes time. For each i, y;; is a nonstationary
dependent variable for which the first difference is stationary, which is to say that y;; is integrated of
order 1—denoted I(1)—for each panel. Similarly, x;; is a k X 1 vector of I(1) variables. 3, denotes
the cointegrating vector that may vary across panels. z;; contains terms to control for panel-specific
effects and or panel-specific time trends. «y; denotes the coefficients on the deterministic terms such
as panel-specific means and panel-specific linear time trends. e;; is an error term.

The vector z;; allows for panel-specific means, panel-specific means and panel-specific time trends,
or nothing, depending on the options specified to xtcointtest. By default, z;; = 1, so the term
z;,, represents panel-specific means (fixed effects). If trend is specified, then z}, = (1,t), so z},~;
represents panel-specific means and panel-specific linear time trends. For tests that allow it, specifying
noconstant omits the z},7; term.

The data-generating process for y;; and x;; is given by

Yit = Yit—1 + Uit
Xit = Xjt—1 + €¢
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Let wi; = (ut, €;¢)" denote a (k+ 1) X 1 vector process with zero mean and long-run covariance
matrix 2;. (A long-run covariance matrix is a covariance matrix that accounts for the serial correlation
in the process; see Hall (2005, sec. 3.5) for an introduction.) The long-run matrix can be decomposed
as O, = X, + I‘g + I';, where X; and T'; denote the contemporaneous and autocovariance matrices
for a given panel ¢. The elements of long-run and contemporaneous matrices {2; and 3, are given by

We obtain consistent estimators ﬁl and f]z using Newey and West (1987).

Kao tests

Kao (1999) assumes the same cointegrating vector 3, = 3 in (4) so that all panels share a common
slope coefficient. This implies a common long-run covariance matrix given by @ = X +T' +T. The
regression model is

Yit = Yi + X8 + eir
where ~y; denotes panel-specific fixed effects and 3 is the same cointegrating vector.
Kao (1999) proposes five test statistics. The DF ¢, the modified DF ¢, the unadjusted DF ¢, and the
unadjusted modified DF ¢ are based on the DF regression
€t = Pei1—1 + Vit
where p is the common AR parameter of the estimated residuals.

The test statistics based on DF regressions are

t 4 VoN o,
o Al
DF t = —— 2””A
w2 302
202 | 1002
~
VNT(p—1) + 222
Modified DF t = — L
3602
3 5wk

where p is the estimated value of p. 52 and &2 are scalar terms that are consistent estimates of
02 =023 ZeTye and w2 = w2 — D, DeQye. t, is the ¢ statistic for testing the null hypothesis
Hy:p=1.

The DF test statistics that assume strict exogeneity and absence of serial correlation are given by

5t /15N
Unadjusted DF t = 4" +\ 5

VNT(p—1)+3VN
51/5

Unadjusted modified DF t =
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The ADF regression is given by
P
€it = pei—1+ Z PiA€; +—j + V5 (5)
j=1
where p is the number of lagged difference terms.

The test statistic based on ADF regression is

V6No,
tADF + T”
ADF t = — =
w2 302
202 - 10002
where R
" 14
ADF = ==
SE(p)

is computed from the ADF regression.

The asymptotic distribution of all test statistics converge to N (0, 1).

Pedroni tests
Pedroni (1999) assumes a panel-specific cointegrating vector as in (4), where all panels have
individual slope coefficients. The panel cointegration tests are obtained by testing for a unit root in
the estimated residuals using the ADF regression in (5) but allowing panel-specific p; instead of p or
using the PP regressions given in Pedroni (1999).

Pedroni (1999, 2004) derives test statistics based on a model in which the AR parameter either is
panel-specific or is the same over the panels. Pedroni (1999, 2004) calls the panel-specific-AR test
statistics “group-mean statistics” and the same-AR test statistics “panel cointegration statistics”.

The panel-specific-AR test statistics are

N /T -1 7
Modified PP t = TN~1/23 " (N7e2, ) Y (@148, —\)
=1 t=1 t=1
N T -1/2 7
ppt=N"2N" (52> E, (@108 — \y)
=1 t=1 t=1
—-1/2

i1 €it—10e;

N
ADF t = N~ 1/2 Z
=1

o
£
)
M*ﬂ

t

Il
_

where €;; are the residuals from the panel-data regression model in (4). We calculate

~ 1
_ 12 _ 22
Ai = 5(0 i 5)
where 52 and 57 are the individual contemporaneous and long-run variances of the residuals from
the DF regression in (3). /8\;2 is the individual contemporaneous variance of the residuals from the
ADF regression in (5) but with panel-specific p; instead of p.
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The same-AR test statistics are

=1 t=1 =1 t=1
N -2 N 7
B g ~_y
PPt=|0ONT E E Liyiei E E Liyi(€ii-148: — \i)
i=1 t=1 i=1 t=1
N T -2 N
~%2 T—2-2
ADF t = | sy 7 E E Liyieii E E Lijiei—10€
i1 t=1 i=1 t=1

and

1N
= e 2

The asymptotic distribution of all test statistics, after appropriate standardization, converges to
N(0,1). The adjustment is given by
X — VN

N4
where x is any of the test statistics given above, and the parameters p and v are the mean and

variance of the test statistic obtained through simulation. Refer to Pedroni (1999) for details and an
algorithm to obtain the predicted residuals. The adjusted statistics are reported in the output.

Westerlund tests

Westerlund (2005) assumes panel-specific cointegrating vectors as in (4), where all panels have
individual slope coefficients. The VR test statistics are obtained by testing for a unit root in the
predicted residuals using the DF regression in (3).

Westerlund (2005) derives test statistics based on a model in which the AR parameter either is
panel-specific or is the same over the panels.

The panel-specific-AR test statistic is used to test the null hypothesis of no cointegration against
the alternative hypothesis that some panels are cointegrated. The same-AR test statistic is used to
test the null hypothesis of no cointegration against the alternative hypothesis that all the panels are
cointegrated.
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The panel-specific-AR test statistic is given by

N T
VR:ZZE%ﬁ;l

i=1 t=1
The same-AR test statistic is given by
N T N -1
~ —~
w-y3 (Y )
i=1 t=1 i=1

= t o~ B T ~ . .
where By = > =1 €ijs Ry = > ,—1 €%, and €, are the residuals from the panel-data regression model

in (4). The asymptotic distribution of all test statistics, after appropriate standardization, converges to
N(0,1).

Long-run variance

We use the Newey and West (1987) estimator to consistently estimate the long-run variance matrix
Q;, given by

PO A RN o
= T ;Wi Wi + T jz_:l K(j,m) t_zj;rl (Wi Wiy + Wiytfngt)

where m is the maximum number of lags and K(j,m) is the kernel weight function. Define
z=j/(m+1). If kernel is bartlett, then

. 1—2 0<2z2<1
K(j,m) = { = 2=
(7, m) 0 otherwise

If kspec is parzen, then

K(j,m) =1 2(1 - z2)® 05<z<1

{1—6z2+6z3 0<2<0.5
0 otherwise
If kernel is quadraticspectral, then

' 1 z=0
K(j,m) = { 3{sin(0)/0 — cos(6)}/6? otherwise

where § = 67z /5. If we request automatic bandwidth (lag) selection using the Newey—West algorithm,
then the method documented in Methods and formulas of [R] ivregress with z; = h = 1 is used.
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xtdata — Faster specification searches with xt data

Description Quick start Menu Syntax
Options Remarks and examples Methods and formulas Also see
Description

xtdata produces a transformed dataset of the variables specified in varlist or of all the variables
in the data. Once the data are transformed, Stata’s regress command may be used to perform
specification searches more quickly than xtreg; see [R] regress and [XT] xtreg. Using xtdata,
re also creates a variable named constant. When using regress after xtdata, re, specify
noconstant and include constant in the regression. After xtdata, be and xtdata, fe, you need
not include constant or specify regress’s noconstant option.

Quick start

Convert data to a form suitable for random-effects estimation using xtset data
xtdata, re

Same as above, but convert only variables v1, v2 and v3
xtdata vl v2 v3, re

Convert all variables beginning with prefix to a form suitable for fixed-effects estimation
xtdata prefix*, fe

Convert data for between estimation if the dataset has changed since last save
xtdata, be clear

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Faster specification searches with xt data

87
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Syntax
xtdata [varlist] [zf] [m] [ , options]
options Description
Main
re convert data to a form suitable for random-effects estimation
ratio(#) ratio of random effect to pure residual (standard deviations)
be convert data to a form suitable for between estimation
fe convert data to a form suitable for fixed-effects (within) estimation
nodouble keep original variable type; default is to recast type as double
clear overwrite current data in memory

A panel variable must be specified; use xtset; see [XT] xtset.

Options
Main

re specifies that the data be converted into a form suitable for random-effects estimation. re is the
default if be, fe, or re is not specified. ratio() must also be specified.

ratio(#) (use with xtdata, re only) specifies the ratio o, /o, which is the ratio of the random
effect to the pure residual. This is the ratio of the standard deviations, not the variances.

be specifies that the data be converted into a form suitable for between estimation.
fe specifies that the data be converted into a form suitable for fixed-effects (within) estimation.

nodouble specifies that transformed variables keep their original types, if possible. The default is to
recast variables to double.

Remember that xtdata transforms variables to be differences from group means, pseudodifferences
from group means, or group means. Specifying nodouble will decrease the size of the resulting
dataset but may introduce roundoff errors in these calculations.

clear specifies that the data may be converted even though the dataset has changed since it was last
saved on disk.

Remarks and examples

If you have not read [XT] xt and [XT] xtreg, please do so.

The formal estimation commands of xtreg—see [XT] xtreg—do not produce results instanta-
neously, especially with large datasets. Equations (2), (3), and (4) of [XT] xtreg describe the data
necessary to fit each of the models with OLS. The idea here is to transform the data once to the
appropriate form and then use regress to fit such models more quickly.

> Example 1

We will use the example in [XT] xtreg demonstrating between-effects regression. Another way to
estimate the between equation is to convert the data in memory to the between data:
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. use https://www.stata-press.com/data/r18/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. generate age2=age”2
(24 missing values generated)

. generate ttl_exp2 = ttl_exp~2

. generate tenure2=tenure~2
(433 missing values generated)

. generate byte black = race==2
. xtdata 1ln_w grade age* ttl_exp* tenure* black not_smsa south, be clear

. regress ln_w grade age* ttl_exp* tenurex black not_smsa south

Source SS df MS Number of obs = 4,697

F(10, 4686) = 450.23

Model 415.021613 10 41.5021613 Prob > F = 0.0000

Residual 431.954995 4,686 .092179896 R-squared = 0.4900

Adj R-squared = 0.4889

Total 846.976608 4,696 .180361288 Root MSE = .30361

1n_wage | Coefficient Std. err. t P>|t] [95% conf. intervall

grade .0607602 .0020006 30.37 0.000 .05668382 .0646822

age .0323158 .0087251 3.70 0.000 .0152105 .0494211

age2 -.0005997 .0001429 -4.20 0.000 -.0008799 -.0003194
(output omitted )

south -.0993378 .010136 -9.80 0.000 -.1192091 -.0794665

_cons .3339113 .1210434 2.76 0.006 .0966093 .5712133

The output is the same as that produced by xtreg, be; the reported R2 is the R? between. Using
xtdata followed by just one regress does not save time. Using xtdata is justified when you intend
to explore the specification of the model by running many alternative regressions.

N

Q Technical note

When using xtdata, you must eliminate any variables that you do not intend to use and that
have missing values. xtdata follows a casewise-deletion rule, which means that an observation is
excluded from the conversion if it is missing on any of the variables. In the example above, we
specified that the variables be converted on the command line. We could also drop the variables first,
and it might even be useful to preserve our estimation sample:

. use https://www.stata-press.com/data/r18/nlswork, clear

(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
. generate age2=age”2

(24 missing values generated)

. generate ttl_exp2 = ttl_exp”2

. generate tenure2=tenure”2
(433 missing values generated)

. generate byte black = race==
. keep id year 1ln_w grade age* ttl_exp* tenure* black not_smsa south

. save xtdatasmpl
file xtdatasmpl.dta saved
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> Example 2

xtdata with the fe option converts the data so that results are equivalent to those from estimating
by using xtreg with the fe option.

. xtdata, fe

. regress 1ln_w grade age* ttl_exp* tenure* black not_smsa south
note: grade omitted because of collinearity.
note: black omitted because of collinearity.

Source SS daf MS Number of obs = 28,091
F(8, 28082) = 732.64
Model 412.443881 8 51.5554852 Prob > F = 0.0000
Residual 1976.12232 28,082 .070369714 R-squared = 0.1727
Adj R-squared = 0.1724
Total 2388.5662 28,090 .085032617 Root MSE = .26527
1n_wage | Coefficient Std. err. t P>|t] [95% conf. intervall
grade 0 (omitted)
age .0359987 .0030903 11.65 0.000 .0299415 .0420558
age2 -.000723 .0000486 -14.88 0.000 -.0008183 -.0006277
ttl_exp .0334668 .0027061 12.37 0.000 .0281627 .0387708
ttl_exp2 .0002163 .0001166 1.86 0.064 -.0000122 .0004447
tenure .0357539 .0016871 21.19 0.000 .0324472 .0390606
tenure2 -.0019701 .0001141 -17.27 0.000 -.0021937 -.0017465
black 0 (omitted)
not_smsa -.0890108 .0086982 -10.23 0.000 -.1060597 -.0719619
south -.0606309 .0099761 -6.08 0.000 -.0801845 -.0410772
_cons 1.03732 .0443093 23.41 0.000 .9504716 1.124168

The coefficients reported by regress after xtdata, fe are the same as those reported by xtreg,
fe, but the standard errors are slightly smaller. This is because no adjustment has been made to the
estimated covariance matrix for the estimation of the person means. The difference is small, however,
and results are adequate for a specification search. q

> Example 3

To use xtdata, re, you must specify the ratio ¢, /o., which is the ratio of the standard deviations
of the random effect and pure residual. Merely to show the relationship of regress after xtdata,
re to xtreg, re, we will specify this ratio as 0.25790526/0.29068923 = 0.88721987, which is
the number xtreg reports when the model is fit from the outset; see the random-effects example in
[XT] xtreg. For specification searches, however, it is adequate to specify this number more crudely,
and, when performing the specification search for this manual entry, we used ratio(1).

. use https://www.stata-press.com/data/r18/xtdatasmpl, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtdata, clear re ratio(.88721987)

theta
min 5% median 95% max
0.2520 0.2520 0.5499 0.7016 0.7206

xtdata reports the distribution of 6 based on the specified ratio. If these were balanced data, & would
have been constant.
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When running regressions with these data, you must specify the noconstant option and include

the variable constant:

. regress ln_w grade age* ttl_exp* tenurex black not_smsa south constant,
> noconstant

Source SS df MS Number of obs = 28,091

F(11, 28080) = 14302.56

Model 13271.7208 11 1206.52007 Prob > F = 0.0000

Residual 2368.74223 28,080 .084356917 R-squared = 0.8486

Adj R-squared = 0.8485

Total 15640.463 28,091 .556778435 Root MSE = .29044

1n_wage | Coefficient Std. err. t P>|t] [95% conf. intervall

grade .0646499 .0017812 36.30 0.000 .0611587 .0681411

age .0368059 .0031195 11.80 0.000 .0306915 .0429203

age2 -.0007133 .00005 -14.27 0.000 -.0008113 -.0006153
(output omitted )

south -.0868922 .0073032 -11.90 0.000 -.1012068 -.0725775

constant .2387206 . 049469 4.83 0.000 .141759 .3356822

Results are the same coefficients and standard errors that xtreg, re estimated in example 4 of
[XT] xtreg. The summaries at the top, however, should be ignored, as they are expressed in terms of
(4) of [XT] xtreg, and, moreover, for a model without a constant.

N

Q Technical note

Using xtdata requires some caution. The following guidelines may help:

. xtdata is intended for use only during the specification search phase of analysis. Results should
be estimated with xtreg on unconverted data.

. After converting the data, you may use regress to obtain estimates of the coefficients and their
standard errors. For regress after xtdata, fe, the standard errors are too small, but only slightly.

. You may loosely interpret the coefficient’s significance tests and confidence intervals. However,
for results after xtdata, fe and re, an incorrect (but close to correct) distribution is assumed.

. You should ignore the summary statistics reported at the top of regress’s output.

. After converting the data, you may form linear, but not nonlinear, combinations of regressors;
that is, if your data contained age, it would not be correct to convert the data and then form age
squared. All nonlinear transformations should be done before conversion. (For xtdata, be, you
can get away with forming nonlinear combinations ex post, but the results will not be exact.)
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O Technical note
The xtdata command can be used to help you examine data, especially with scatter.

. use https://www.stata-press.com/data/r18/xtdatasmpl, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)
xtdata, be

scatter ln_wage age, title(Between data) msymbol(o) msize(tiny)

Between data

In(wage/GNP deflator)
e

10 20 30 40 50
Age in current year

. use https://www.stata-press.com/data/r18/xtdatasmpl, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

xtdata, fe
scatter ln_wage age, title(Within data) msymbol(o) msize(tiny)

Within data
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. use https://www.stata-press.com/data/r18/xtdatasmpl, clear
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. scatter 1ln_wage age, title(Overall data) msymbol(o) msize(tiny)

Overall data
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Methods and formulas
(This section is a continuation of the Methods and formulas of [XT] xtreg.)

xtdata, be, fe, and re transform the data according to (2), (3), and (4), respectively, of [XT] xtreg,
except that xtdata, fe adds back in the overall mean, thus forming the transformation

Xit —T; +T
xtdata, re requires the user to specify 7 as an estimate of o, /0. 0; is calculated from

1

=1 ———
VTir? +1

Also see

[XT] xtsum — Summarize xt data



Title

xtdescribe — Describe pattern of xt data

Description Quick start Menu Syntax
Options Remarks and examples Reference Also see

Description

xtdescribe describes the participation pattern of cross-sectional time-series (xt) data.

Quick start

Describe the 9 most common participation patterns of xtset data
xtdescribe

Describe up to 15 of the most common participation patterns
xtdescribe, patterns(15)

Same as above, but list all participation patterns
xtdescribe, patterns(1000)

Describe patterns only for study subjects, denoted by binary variable insample = 1
xtdescribe if insample

Menu

Statistics > Longitudinal/panel data > Setup and utilities > Describe pattern of xt data
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Syntax
xtdescribe [lf] [in} [ s options]
options Description
Main
patterns (#) maximum participation patterns; default is patterns(9)
width(#) display # width of participation patterns; default is width(100)

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.
by is allowed; see [D] by.

Options
Main

patterns (#) specifies the maximum number of participation patterns to be reported; patterns(9) is
the default. Specifying patterns(50) would list up to 50 patterns. Specifying patterns(1000)
is taken to mean patterns(oo): all the patterns will be listed.

width(#) specifies the desired width of the participation patterns to be displayed; width(100) is
the default. If the number of times is greater than width(), then each column in the participation
pattern represents multiple periods as indicated in a footnote at the bottom of the table. The actual
width may differ slightly from the requested width depending on the span of the time variable and
the number of periods.

Remarks and examples

If you have not read [XT] xt, please do so.

xtdescribe describes the cross-sectional and time-series aspects of the data in memory.
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> Example 1
In [XT] xt, we introduced data based on a subsample of the NLSY data on young women aged
14-24 years in 1968. Here is a description of the data used in many of the [XT] xt examples:

. use https://www.stata-press.com/data/r18/nlswork
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtdescribe
idcode: 1, 2, ..., 5159 n = 4711
year: 68, 69, ..., 88 T = 15
Delta(year) = 1 unit
Span(year) = 21 periods
(idcode*year uniquely identifies each observation)
Distribution of T_i: min 5% 25% 507% 5% 95% max
1 1 3 5 9 13 15
Freq. Percent Cum. Pattern
136 2.89 2.89 1o,
114 2.42 5.31 [ o 1
89 1.89 7.20 [ oo 1.11
87 1.85 9.04 [ ...l 11
86 1.83 10.87 111111.1.11.1.11.1.11
61 1.29 12,16 | ... 11.1.11
56 1.19 13.35 1o
54 1,16 14.50 | ....... ... 1.1.11
54 1.16 15.64 [ ....... 1.11.1.11.1.11
3974 84.36 100.00 | (other patterns)
4711 100.00 XXXXXX.X.XX.X.XX.X.XX

xtdescribe tells us that we have 4,711 women in our data and that the idcode that identifies each
ranges from 1 to 5,159. We are also told that the maximum number of individual years over which
we observe any woman is 15, though the year variable spans 21 years. The delta or periodicity of
year is one unit, meaning that in principle we could observe each woman yearly. We are reassured
that idcode and year, taken together, uniquely identify each observation in our data. We are also
shown the distribution of 77; 50% of our women are observed 5 years or less. Only 5% of our women
are observed for 13 years or more.

Finally, we are shown the participation pattern. A 1 in the pattern means one observation that
year; a dot means no observation. The largest fraction of our women (still only 2.89%) was observed
in the single year 1968 and not thereafter; the next largest fraction was observed in 1988 but not
before; and the next largest fraction was observed in 1985, 1987, and 1988.

At the bottom is the sum of the participation patterns, including the patterns that were not shown.
We can see that none of the women were observed in six of the years (there are six dots). (The
survey was not administered in those six years.)

We could see more of the patterns by specifying the patterns() option, or we could see all the
patterns by specifying patterns(1000).
d

> Example 2

The strange participation patterns shown above have to do with our subsampling of the data, not
with the administrators of the survey. Here are the data from which we drew the sample used in
[XT] xt:
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. xtdescribe
idcode: 1, 2, ..., 5159 n = 5159
year: 68, 69, ..., 88 T = 15

Delta(year) = 1; (88-68)+1 = 21
(idcode*year does not uniquely identify observations)

Distribution of T_i: min 5% 25% 50% 75% 95% max
1 2 11 15 16 19 30
Freq. Percent Cum. Pattern
1034 20.04 20.04 111111.1.11.1.11.1.11
1563 2.97 23.01 1o
147 2.85 25.86 112111.1.11.1.11.1.11
130 2.52 28.38 111112.1.11.1.11.1.11
122 2.36 30.74 111211.1.11.1.11.1.11
113 2.19 32.93 e
84 1.63 34.56 111111.1.11.1.11.1.12
79 1.53 36.09 111111.1.12.1.11.1.11
67 1.30 37.39 111111.1.11.1.11.1.1.
3230 62.61 100.00 | (other patterns)
5159 100.00 XXXXXX.X.XX.X.XX.X.XX

We have multiple observations per year. In the pattern, 2 indicates that a woman appears twice in
the year, 3 indicates 3 times, and so on—X indicates 10 or more, should that be necessary.

In fact, this is a dataset that was itself extracted from the NLSY, in which ¢ is not time but job
number. To simplify exposition, we made a simpler dataset by selecting the last job in each year.

4

> Example 3

When the number of periods is greater than the width of the participation pattern, each column
will represent more than one period.

. use https://www.stata-press.com/data/r18/xtdesxmpl
. xtdescribe, width(16)

patient: 1, 2, ..., 30 n = 30
time: 09mar2007 16:00:00, 09mar2007 17:00:00, ..., T = 32
10mar2007 23:00:00
Delta(time) = 1 hour
Span(time) = 32 periods
(patient*time uniquely identifies each observation)

Distribution of T_i: min 5% 25% 50% 75% 95% max
30 30 31 32 32 32 32
Freq. Percent Cum. Pattern*

21 70.00 70.00 2222222222222222

4 13.33 83.33 1222222222222222

3 10.00 93.33 222222222222222.

2 6.67 100.00 .222222222222222

30 100.00 XXXXXXXXXXXXXXXX

*Each column represents 2 periods.

We have data for 30 patients who were observed hourly between 4:00 PM on March 9, 2007, and
11:00 PM on March 10, a span of 32 hours. We have complete records for 21 of the patients. The
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footnote indicates that each column in the pattern represents two periods, so for four patients we
have an observation taken at either 4:00 PM or 5:00 PM on March 9, but we do not have observations
for both times. There are three patients for whom we are missing both the 10:00 PM and 11:00 PM
observations on March 10, and there are two patients for whom we are missing the 4:00 PM and
5:00 PM observations for March 9.

d

Reference
Cox, N. J. 2007. Speaking Stata: Counting groups, especially panels. Stata Journal 7: 571-581.

Also see
[XT] xtsum — Summarize xt data

[xT] xttab — Tabulate xt data
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Title

xtdidregress — Fixed-effects difference-in-differences estimation

Description Quick start Menu Syntax Reference

Description

xtdidregress estimates the average treatment effect on the treated (ATET) from observational
data by difference in differences (DID) or difference in difference in differences (DDD) for panel data.
The ATET of a binary or continuous treatment on a continuous outcome is estimated by fitting a linear
model with time and individual (panel) fixed effects.

Quick start

DID estimate of the ATET of treatl on outcome y1 using xtset data; y1 modeled using covariates
x1 and x2, and individual (panel) and tvar fixed effects, with the treatment occurring at the
grpvarl and tvar levels

xtdidregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar)

Same as above, but compute wild cluster—bootstrap p-values and confidence intervals with grpvari
as the clustering variable

xtdidregress (yl1 x1 x2) (treatl), group(grpvarl) time(tvar) ///
wildbootstrap

Same as above, but aggregate data at the grpvar1 and tvar levels to use the Donald and Lang (2007)
method to compute the ATET and standard errors

xtdidregress (y1 x1 x2) (treatl), group(grpvarl) time(tvar) ///
aggregate(dlang)

Aggregate data at the grpvarl and tvarl levels to estimate the ATET

xtdidregress 1(y x1 x2) (grpvarl), group(state) time(tvarl) ///
aggregate (standard)

Menu

Statistics > Longitudinal/panel data > Difference in differences (DID) > DID (FE)

Syntax

For syntax, methods, and all other information on xtdidregress, see [CAUSAL] didregress.

Reference

Donald, S. G., and K. Lang. 2007. Inference with difference-in-differences and other panel data. Review of Economics
and Statistics 89: 221-233. https://doi.org/10.1162/rest.89.2.221.
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Title

xtdpd — Linear dynamic panel-data estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

xtdpd fits a linear dynamic panel-data model where the unobserved panel-level effects are
correlated with the lags of the dependent variable. The command can fit Arellano—Bond and Arellano—
Bover/Blundell-Bond models like those fit by xtabond and xtdpdsys. However, it also allows models
with low-order moving-average correlation in the idiosyncratic errors or predetermined variables with
a more complicated structure than allowed for xtabond or xtdpdsys.

Quick start

Arellano—Bond model of y on L.y and x with the first difference of x as an instrument for the
difference equation using xtset data

xtdpd y L.y x, div(x) dgmmiv(y)

Add the first difference of the lag of x as an instrument for the level equation
xtdpd y L.y x, div(x) dgmmiv(y) lgmmiv(x)

Use lags 3 to 5 of x as instruments for the difference equation
xtdpd y L.y x, div(x) dgmmiv(y, lagrange(3 5))

Menu

Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Linear DPD estimation
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Syntax
xtdpd depvar [indepvars} [zf] [in], dgmmiv (varlist []) [options]
options Description
Model

*dgmmiv (varlist[ .. .]) GMM-type instruments for the difference equation;
can be specified more than once

ligmmiv(varlist[ .. .]) GMM-type instruments for the level equation;
can be specified more than once

iv(varlist[. .. ]) standard instruments for the difference and level equations;
can be specified more than once
div(varlist[. .. ]) standard instruments for the difference equation only;
can be specified more than once
liv(varlist) standard instruments for the level equation only;
can be specified more than once
noconstant suppress constant term
twostep compute the two-step estimator instead of the one-step estimator
hascons check for collinearity only among levels of independent variables;
by default checks occur among levels and differences
fodeviation use forward-orthogonal deviations instead of first differences
SE/Robust
vce (veetype) vcetype may be gmm or robust
Reporting
level (#) set confidence level; default is 1level (95)
artests(#) use # as maximum order for AR tests; default is artests(2)
display_options control spacing and line width
coeflegend display legend instead of statistics

*dgmmiv () is required.

A panel variable and a time variable must be specified; use xtset; see [XT] xtset.

depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

dgmmiv (varlist [, lagrange (flag [llag}) ]) specifies GMM-type instruments for the difference
equation. Levels of the variables are used to form GMM-type instruments for the difference
equation. All possible lags are used, unless lagrange (flag llag) restricts the lags to begin with
flag and end with llag. You may specify as many sets of GMM-type instruments for the difference
equation as you need within the standard Stata limits on matrix size. Each set may have its own
flag and llag. dgmmiv () is required.

lgmmiv (varlist [ , lag(#) ]) specifies GMM-type instruments for the level equation. Differences of
the variables are used to form GMM-type instruments for the level equation. The first lag of the
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differences is used unless lag(#) is specified, indicating that #th lag of the differences be used.
You may specify as many sets of GMM-type instruments for the level equation as you need within
the standard Stata limits on matrix size. Each set may have its own lag.

iv (varlist [, nodifference]) specifies standard instruments for both the differenced and level
equations. Differences of the variables are used as instruments for the differenced equations, unless
nodifference is specified, which requests that levels be used. Levels of the variables are used
as instruments for the level equations. You may specify as many sets of standard instruments for
both the differenced and level equations as you need within the standard Stata limits on matrix
size.

div (varlist [ , nodifference ] ) specifies additional standard instruments for the difference equation.
Specified variables may not be included in iv() or in 1iv(). Differences of the variables are
used, unless nodifference is specified, which requests that levels of the variables be used as
instruments for the difference equation. You may specify as many additional sets of standard
instruments for the difference equation as you need within the standard Stata limits on matrix size.

liv(varlist) specifies additional standard instruments for the level equation. Specified variables may
not be included in iv() or in div(). Levels of the variables are used as instruments for the level
equation. You may specify as many additional sets of standard instruments for the level equation
as you need within the standard Stata limits on matrix size.

noconstant; see [R] Estimation options.
twostep specifies that the two-step estimator be calculated.

hascons specifies that xtdpd check for collinearity only among levels of independent variables; by
default checks occur among levels and differences.

fodeviation specifies that forward-orthogonal deviations be used instead of first differences. fode-
viation is not allowed when there are gaps in the data or when 1gmmiv () is specified.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas.

vce (gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano—Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] Estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpd postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
to the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] Estimation options.

The following option is available with xtdpd but is not shown in the dialog box:

coeflegend; see [R] Estimation options.
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Remarks and examples

If you have not read [XT] xtabond and [XT] xtdpdsys, you should do so before continuing.

Linear dynamic panel-data models include p lags of the dependent variable as covariates and contain
unobserved panel-level effects, fixed or random. By construction, the unobserved panel-level effects are
correlated with the lagged dependent variables, making standard estimators inconsistent. xtdpd fits a
dynamic panel-data model by using the Arellano—Bond (1991) or the Arellano—Bover/Blundell-Bond
(1995, 1998) estimator.

Consider the dynamic panel-data model

P
Yit :Zajyi,t—j + X871 + Wit By + v; + €5 i={1,...,N}; t={1,...,T;} (1)
j=1

where
the aq,...,qp, are p parameters to be estimated,
X;¢ is a 1 X kq vector of strictly exogenous covariates,
By is a k1 x 1 vector of parameters to be estimated,
w;; is a 1 X ko vector of predetermined covariates,
B is a ko X 1 vector of parameters to be estimated,

v; are the panel-level effects (which may be correlated with x;; or w;;), and
2

o

Building on the work of Anderson and Hsiao (1981, 1982) and Holtz-Eakin, Newey, and
Rosen (1988), Arellano and Bond (1991) derived one-step and two-step GMM estimators using
moment conditions in which lagged levels of the dependent and predetermined variables were instru-
ments for the difference equation. Blundell and Bond (1998) show that the lagged-level instruments
in the Arellano—Bond estimator become weak as the autoregressive process becomes too persistent
or the ratio of the variance of the panel-level effect v; to the variance of the idiosyncratic error €;;
becomes too large. Building on the work of Arellano and Bover (1995), Blundell and Bond (1998)
proposed a system estimator that uses moment conditions in which lagged differences are used as
instruments for the level equation in addition to the moment conditions of lagged levels as instru-
ments for the difference equation. The additional moment conditions are valid only if the initial
condition E[v;Ay;2] = 0 holds for all 4; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

xtdpd fits dynamic panel-data models by using the Arellano—Bond or the Arellano—Bover/Blundell—
Bond system estimator. The parameters of many standard models can be more easily estimated using
the Arellano—Bond estimator implemented in xtabond or using the Arellano—Bover/Blundell-Bond
system estimator implemented in xtdpdsys; see [XT] xtabond and [XT] xtdpdsys. xtdpd can fit
more complex models at the cost of a more complicated syntax. That the idiosyncratic errors follow
a low-order MA process and that the predetermined variables have a more complicated structure than
accommodated by xtabond and xtdpdsys are two common reasons for using xtdpd instead of
xtabond or xtdpdsys.

and €;; are i.i.d. or come from a low-order moving-average process, with variance o

The standard GMM robust two-step estimator of the VCE is known to be seriously biased. Windmei-
jer (2005) derived a bias-corrected robust estimator for two-step VCEs from GMM estimators known
as the WC-robust estimator, which is implemented in xtdpd.

The Arellano—Bond test of autocorrelation of order m and the Sargan test of overidentifying
restrictions derived by Arellano and Bond (1991) are computed by xtdpd but reported by estat
abond and estat sargan, respectively; see [XT] xtdpd postestimation.
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Because xtdpd extends xtabond and xtdpdsys, [XT] xtabond and [XT] xtdpdsys provide useful
background.

> Example 1: An Arellano—Bond estimator

Arellano and Bond (1991) apply their new estimators and test statistics to a model of dynamic
labor demand that had previously been considered by Layard and Nickell (1986), using data from an
unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm ¢ and
time . In this dataset, n;; is the log of employment in firm ¢ inside the United Kingdom at time ¢,
w;; is the natural log of the real product wage, k;; is the natural log of the gross capital stock, and
ys;; is the natural log of industry output. The model also includes time dummies yr1980, yr1981,
yr1982, yr1983, and yr1984. To gain some insight into the syntax for xtdpd, we reproduce the
first example from [XT] xtabond using xtdpd:

. use https://www.stata-press.com/data/r18/abdata

. xtdpd L(0/2).n L(0/1).w L(0/2).(k ys) yri1980-yr1984 year, noconstant

> div(L(0/1).w L(0/2).(k ys) yr1980-yr1984 year) dgmmiv(n)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4
avg = 4.364286
max = 6
Number of instruments = 41 Wald chi2(16) = 1757.07
Prob > chi2 = 0.0000
One-step results

n | Coefficient Std. err. z P>zl [95% conf. intervall]

n
L1. .6862261 .1486163 4.62 0.000 .3949435 .9775088
L2. -.0853582 .0444365 -1.92 0.055 -.1724523 .0017358

W
- -.6078208 .0657694 -9.24 0.000 -.7367265 -.4789151
L1. .3926237 .1092374 3.59 0.000 .1785222 .6067251

k
- .3568456 .0370314 9.64 0.000 .2842653 .4294259
L1. -.0580012 .0583051 -0.99 0.320 -.172277 .06562747
L2. -.0199475 .0416274 -0.48 0.632 -.1015357 .0616408

ys
--. .6085073 .1345412 4.52 0.000 .3448115 .8722031
L1. -.7111651 .1844599 -3.86 0.000 -1.0727 -.3496304
L2. .1057969 .1428568 0.74 0.459 -.1741974 .3857912
yr1980 .0029062 .0212705 0.14 0.891 -.0387832 .0445957
yri1981 -.0404378 .0354707 -1.14 0.254 -.1099591 .0290836
yr1982 -.0652767 .048209 -1.35 0.176 -.1597646 .0292111
yr1983 -.0690928 .0627354 -1.10 0.271 -.1920521 .05638664
yr1984 -.0650302 .0781322 -0.83 0.405 -.2181665 .0881061
year .0095545 .0142073 0.67 0.501 -.0182912 .0374002

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w D.k LD.k L2D.k D.ys LD.ys L2D.ys D.yr1980
D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
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Unlike most instrumental-variables estimation commands, the independent variables in the varlist
are not automatically used as instruments. In this example, all the independent variables are strictly
exogenous, so we include them in div (), a list of variables whose first differences will be instruments
for the difference equation. We include the dependent variable in dgmmiv (), a list of variables whose
lagged levels will be used to create GMM-type instruments for the difference equation. (GMM-type
instruments are discussed in a technical note below.)

The footer in the output reports the instruments used. The first line indicates that xtdpd used
lags from 2 on back to create the GMM-type instruments described in Arellano and Bond (1991)
and Holtz-Eakin, Newey, and Rosen (1988). The second line says that the first difference of all the
variables included in the div () varlist were used as standard instruments for the difference equation.

N

Q Technical note

GMM-type instruments are built from lags of one variable. Ignoring the strictly exogenous variables
for simplicity, our model is

Nit = 0Mit—1 + Q2Nit—2 + Vi + €it (2)
After differencing we have

Any = Aonng—1 + Aaong—o + Aeyy (3)

Equation (3) implies that we need instruments that are not correlated with either €;; or €;;_1. Equation
(2) shows that L2.n is the first lag of n that is not correlated with €;; or €;;—1, so it is the first lag
of n that can be used to instrument the difference equation.

Consider the following data from one of the complete panels in the previous example:

. list id year n L2.n dl12.n if id==140

L2. L2D.
id year n n n

1023. 140 1976 .4324315

1024. 140 1977 . 3694925 .

1025. 140 1978 .3541718 .4324315 .
.0629391

1026. 140 1979 .3632532 .3694925 -

1027. 140 1980 .3371863 .3541718  -.0153207
1028. 140 1981 .285179 .3632532 .0090815
1029. 140 1982 .1756326 .3371863 -.026067
1030. 140 1983 .1275133 .285179  -.0520073
1031. 140 1984 .0889263 .1756326  -.1095464

The missing values in L2D.n show that we lose 3 observations because of lags and the difference that
removes the panel-level effects. The first nonmissing observation occurs in 1979 and observations
on n from 1976 and 1977 are available to instrument the 1979 difference equation. The table below
gives the observations available to instrument the differenced equation for the data above.
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Year of
difference errors
1979
1980
1981
1982
1983
1984

Years of
instruments
1976-1977
1976-1978
1976-1979
1976-1980
1976-1981
1976-1982

Number of
instruments

NNk W

The table shows that there are a total of 27 GMM-type instruments.

The output in the example above informs us that there were a total of 41 instruments applied to the
difference equation. Because there are 14 standard instruments, there must have been 27 GMM-type

instruments, which matches our above calculation.

> Example 2: An Arellano—Bond estimator with predetermined variables

Sometimes we cannot assume strict exogeneity. Recall that a variable x;; is said to be strictly
exogenous if E[x;t€;5] = 0 for all ¢ and s. If E[x;€;5] # 0 for s < t but E[z;€;5] = 0 for all s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of x;;, x;; is a predetermined variable. In the output below, we use

xtdpd to reproduce example 6 in [XT] xtabond.
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. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,
> div(L(0/1).(ys) yr1980-yr1984 year) dgmmiv(n) dgmmiv(L.w L2.k, lag(l
> twostep noconstant vce(robust)

)

Dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups = 140
Time variable: year
Obs per group:
min = 4
avg = 4.364286
max = 6
Number of instruments = 83 Wald chi2(15) = 958.30
Prob > chi2 = 0.0000
Two-step results
(Std. err. adjusted for clustering on id)
WC-robust
n | Coefficient std. err. z P>|z| [95% conf. intervall
n
L1. .8580958 .1265515 6.78 0.000 .6100594 1.106132
L2. -.081207 .0760703 -1.07 0.286 -.2303022 .0678881
w
-- -.6910855 .1387684 -4.98 0.000 -.9630666 -.4191044
L1. .5961712 .1497338 3.98 0.000 .3026982 .8896441
ys
-= .6936392 .1728623 4.01 0.000 .3548354 1.032443
L1. -.8773678 .2183085 -4.02 0.000 -1.305245 -.449491
k
-- .4140654 .1382788 2.99 0.003 .1430439 .6850868
L1. -.1537048 .1220244 -1.26 0.208 -.3928681 .0854586
L2. -.1025833 .0710886 -1.44 0.149 -.2419143 .0367477
yr1980 -.0072451 .017163 -0.42 0.673 -.0408839 .0263938
yr1981 -.0609608 .030207 -2.02 0.044 -.1201655  -.0017561
yr1982 -.1130369 .0454826 -2.49 0.013 -.2021812  -.0238926
yr1983 -.1335249 .0600213 -2.22 0.026 -.2511645 -.0158853
yri1984 -.1623177 .0725434 -2.24 0.025 -.3045001  -.0201352
year .0264501 .0119329 2.22  0.027 .003062 .0498381

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).L.w L(1/.).L2.k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984

D.year

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back.

> Example 3: A weaker definition of predetermined variables

N

As discussed in [XT] xtabond and [XT] xtdpdsys, xtabond and xtdpdsys both use a strict definition
of predetermined variables with lags. In the strict definition, the most recent lag of the variable in
pre() is considered predetermined. (Here specifying pre(w, lag(1l, .)) to xtabond means that
.)) means that L2.k is a predetermined
variable.) In a weaker definition, the current observation is considered predetermined, but subsequent

L.w is a predetermined variable and pre(k, lag(2,
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lags are included in the model. Here w and k would be predetermined instead of L.w and L2.w. The
output below implements this weaker definition for the previous example.

. xtdpd L(0/2).n L(0/1).(w ys) L(0/2).k yr1980-yr1984 year,

> div(L(0/1).(ys) yr1980-yri1984 year) dgmmiv(n) dgmmiv(w k, lag(l .))

> twostep noconstant vce(robust)

Dynamic panel-data estimation Number of obs = 611

Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg = 4.364286

max = 6

Number of instruments = 101 Wald chi2(15) = 879.53
Prob > chi2 = 0.0000

Two-step results
(Std. err. adjusted for clustering on id)

WC-robust

n | Coefficient std. err. z P>zl [95% conf. intervall

n
L1. .6343155 .1221058 5.19 0.000 .3949925 .8736384
L2. -.0871247 .0704816 -1.24 0.216 -.2252661 .0510168

W
- -.720063 .1133359 -6.35 0.000 -.9421973 -.4979287
L1. .238069 .1223186 1.95 0.052 -.0016712 4778091

ys
- .5999718 .1653036 3.63 0.000 .2759827 .923961
L1. -.5674808 .1656411 -3.43 0.001 -.8921314 -.2428303

k
- .3931997 .0986673 3.99 0.000 .1998153 .5865842
L1. -.0019641 .0772814 -0.03 0.980 -.1534329 .1495047
L2. -.0231165 .0487317 -0.47 0.635 -.1186288 .0723958
yr1980 -.006209 .0162138 -0.38 0.702 -.0379875 .0255694
yri1981 -.0398491 .0313794 -1.27 0.204 -.1013516 .0216535
yr1982 -.0525715 .0397346 -1.32 0.186 -.1304498 .0253068
yr1983 -.0451175 .051418 -0.88 0.380 -.145895 .05566
yri1984 -.0437772 .0614391 -0.71 0.476 -.1641955 .0766412
year .0173374 .0108665 1.60 0.111 -.0039605 .0386352

Instruments for differenced equation
GMM-type: L(2/.).n L(1/.).w L(1/.) .k
Standard: D.ys LD.ys D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984
D.year

As expected, the output shows that the additional 18 instruments available under the weaker definition
can affect the magnitudes of the estimates. Applying the stricter definition when the true model was
generated by the weaker definition yielded consistent but inefficient results; there were some additional
moment conditions that could have been included but were not. In contrast, applying the weaker
definition when the true model was generated by the stricter definition yields inconsistent estimates.

N
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> Example 4: A system estimator of a dynamic panel-data model

Here we use xtdpd to reproduce example 2 from [XT] xtdpdsys in which we used the system
estimator to fit a model with predetermined variables.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year, div(yr1980-yr1984 year)

> dgmmiv(n) dgmmiv(L2.(w k), lag(l .)) lgmmiv(n L1.(w k)) vce(robust) hascons
Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 5

avg = 5.364286

max = 7

Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 = 0.0000

One-step results
(Std. err. adjusted for clustering on id)

Robust

n | Coefficient std. err. z P>zl [95% conf. intervall]

n
L1. .913278 .0460602 19.83 0.000 .8230017 1.003554

W
—-—. -.728159 .1019044 -7.15 0.000 -.927888 -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438774 .2392718

k
- .4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944 .0831902 -3.42 0.001 -.4477442 -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356 -.0599006
yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yr1981 -.0726116 .0346482 -2.10 0.036 -.1405207 -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264 .0558734 -0.71 0.478 -.1491362 .0698835
yri1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342
year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972 28.77747 -1.30 0.194 -93.75252 19.05308

Instruments for differenced equation

GMM-type: L(2/.).n L(1/.).L2.w L(1/.).12.k

Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
Instruments for level equation

GMM-type: LD.n L2D.w L2D.k

Standard: _cons

The first lags of the variables included in 1gmmiv() are used to create GMM-type instruments for
the level equation. Only the first lags of the variables in 1gmmiv() are used because the moment
conditions using higher lags are redundant; see Blundell and Bond (1998) and Blundell, Bond, and
Windmeijer (2000).

d
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> Example 5: Allowing for MA(1) errors

All the previous examples have used moment conditions that are valid only if the idiosyncratic errors
are i.i.d. This example shows how to use xtdpd to estimate the parameters of a model with first-order
moving-average [MA(1)] errors using the Arellano—Bond estimator, the Arellano—Bover/Blundell—-
Bond system estimator, or any other consistent GMM estimator you want to specify. For simplicity,
we assume that the independent variables are strictly exogenous. Also, to highlight the fact that we
can specify the instrument list flexibly, we only include the levels and first lags of the exogenous
variables in the instrument list. An Arellano—Bond estimator, for instance, would have included levels
and first and second lags of the exogenous variables.

We begin by noting that the Sargan test rejects the null hypothesis that the overidentifying restrictions
are valid in the model with i.i.d. errors.

. xtdpd L(0/1).n L(0/2).(w k) yri1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) hascons
(output omitted )

. estat sargan
Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid

chi2(24) = 49.70094
Prob > chi2 = 0.0015
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Assuming that the idiosyncratic errors are MA(1) implies that only lags three or higher are valid
instruments for the difference equation. (See the technical note below.)

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) hascons

Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 5
avg = 5.364286
max = 7
Number of instruments = 32 Wald chi2(13) = 1195.04
Prob > chi?2 = 0.0000
One-step results

n | Coefficient Std. err. z P>z [95% conf. intervall

n
L1. .8696303 .2014473 4.32 0.000 .4748008 1.26446

W
- -.5802971 .0762659 -7.61 0.000 -.7297756 -.4308187
L1. .2918658 .1543883 1.89 0.059 -.0107296 .5944613
L2. -.5903459 .2995123 -1.97 0.049 -1.177379 -.0033126

k
—-—. .3428139 .0447916 7.65 0.000 .2550239 .4306039
L1. -.1383918 .0825823 -1.68 0.094 -.3002502 .0234665
L2. -.0260956 .1535855 -0.17 0.865 -.3271177 .2749265
yr1980 -.0036873 .0301587 -0.12 0.903 -.0627973 .0554226
yri1981 .00218 .0592014 0.04 0.971 -.1138526 .1182125
yr1982 .0782939 .0897622 0.87 0.383 -.0976367 .2542246
yr1983 .1734231 .1308914 1.32 0.185 -.0831193 .4299655
yr1984 .2400685 .1734456 1.38 0.166 -.0998787 .5800157
year -.0354681 .0309963 -1.14 0.253 -.0962198 .0252836
_cons 73.13706 62.61443 1.17 0.243 -49.58496 195.8591

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983
D.yr1984 D.year
Instruments for level equation
Standard: _cons

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.

. estat sargan
Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid

chi2(18) = 20.80081
Prob > chi2 = 0.2896

Moving on to the system estimator, we note that the Sargan test rejects the null hypothesis after
fitting the model with i.i.d. errors.
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. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n) lgmmiv(n) hascons
(output omitted )
. estat sargan
Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid
chi2(31) = 59.22907
Prob > chi2 = 0.0017

Now we fit the model using the additional moment conditions constructed from the second lag of
n as an instrument for the level equation.

. xtdpd L(0/1).n L(0/2).(w k) yr1980-yr1984 year,
> div(L(0/1).(w k) yr1980-yr1984 year) dgmmiv(n, lag(3 .)) lgmmiv(n, lag(2))

> hascons
Dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group:
min = 5
avg = 5.364286
max = 7
Number of instruments = 38 Wald chi2(13) = 3680.01
Prob > chi2 = 0.0000
One-step results
n | Coefficient Std. err. z P>|z| [95% conf. intervall
n
L1. .9603675 .095608 10.04 0.000 L7729794 1.147756
W
-- -.5433987 .068835 -7.89  0.000 -.6783128  -.4084845
L1. .4356183 .0881727 4.94 0.000 .262803 .6084336
L2. -.2785721 .1115061 -2.50 0.012 -.4971201 -.0600241
k
--. .3139331 .0419054 7.49 0.000 .2317999 .3960662
L1. -.160103 .0546915 -2.93 0.003 -.2672963 -.0529096
L2. -.1295766 .0507752 -2.55 0.011 -.2290943 -.030059
yr1980 -.0200704 .0248954 -0.81 0.420 -.0688644 .0287236
yr1981 -.0425838 .0422155 -1.01 0.313 -.1253246 .040157
yr1982 .0048723 .0600938 0.08 0.935 -.1129093 .122654
yr1983 .0458978 .0785687 0.58 0.559 -.1080941 .1998897
yr1984 .0633219 .1026188 0.62 0.537 -.1378074 .2644511
year -.0075599 .019059 -0.40 0.692 -.0449148 .029795
_cons 16.20856  38.00619 0.43 0.670 -58.28221 90.69932

Instruments for differenced equation
GMM-type: L(3/.).n
Standard: D.w LD.w D.k LD.k D.yr1980 D.yr1981 D.yr1982 D.yr1983
D.yr1984 D.year
Instruments for level equation
GMM-type: L2D.n
Standard: _cons

The estimate of the coefficient on L.n is now 0.96. Blundell, Bond, and Windmeijer (2000, 63-65)
show that the moment conditions in the system estimator remain informative as the true coefficient
on L.n approaches unity. Holtz-Eakin, Newey, and Rosen (1988) show that because the large-sample
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distribution of the estimator is derived for fixed number of periods and a growing number of individuals
there is no “unit-root” problem.

The results from estat sargan no longer reject the null hypothesis that the overidentifying
restrictions are valid.
. estat sargan

Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid

chi2(24) = 27.22585
Prob > chi2 = 0.2940

Q Technical note

To find the valid moment conditions for the model with MA(1) errors, we begin by writing the
model

N = a1 + By + v + €5 + Y€1

where the €;; are assumed to be i.i.d.

Because the composite error, €;; + Yeit—1, is MA(1), only lags two or higher are valid instruments
for the level equation, assuming the initial condition that E[v;An,s] = 0. The key to this point is that
lagging the above equation two periods shows that €;;_o and €;;_3 appear in the equation for n;;_o.
Because the €;; are i.i.d., n;¢_2 is a valid instrument for the level equation with errors v; +€;+ +y€it—1.
(n;¢—o will be correlated with n;;_1 but uncorrelated with the errors v; + €;; +v€;:—1.) An analogous
argument works for higher lags.

First-differencing the above equation yields
Angy = alAng—1 + BAZy + Aei + YA€ 1

Because €;;_o is the farthest lag of €;; that appears in the difference equation, lags three or higher
are valid instruments for the differenced composite errors. (Lagging the level equation three periods
shows that only €;;—3 and €;;_4 appear in the equation for n;;_3, which implies that n;;_3 is a valid
instrument for the current difference equation. An analogous argument works for higher lags.)

a
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Stored results

xtdpd stores the following in e():

Scalars
e(N)
e(N_g)
e(df_m)
e(g_min)
e(g_avg)
e(g_max)
e(t_min)
e(t_max)
e(chi2)
e (arm#)
e(artests)
e(sig2)
e(rss)
e(sargan)
e(rank)
e(zrank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(twostep)
e(ivar)
e(tvar)
e(vce)
e(vcetype)
e(system)
e(transform)
e(diffvars)
e(datasignature)
e(datasignaturevars)
e(properties)
e(estat_cmd)
e(predict)
e(marginsok)

Matrices
e(b)
e(V)

Functions
e(sample)

number of observations

number of groups

model degrees of freedom
smallest group size

average group size

largest group size

minimum time in sample
maximum time in sample

X2

test for autocorrelation of order #
number of AR tests computed
estimate of o2

sum of squared differenced residuals
Sargan test statistic

rank of e(V)

rank of instrument matrix

xtdpd

command as typed

name of dependent variable

twostep, if specified

variable denoting groups

variable denoting time within groups
veetype specified in vce ()

title used to label Std. err.

system, if system estimator

specified transform

already-differenced exogenous variables
checksum from datasignature
variables used in calculation of checksum
bV

program used to implement estat
program used to implement predict
predictions allowed by margins

coefficient vector
variance—covariance matrix of the estimators

marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table)

matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas

Consider dynamic panel-data models of the form

p
Yit = Z a;Yit—j + X + Wit By + Vi + €5
j=1
where the variables are as defined as in (1).
x and w may contain lagged independent variables and time dummies.

Let XL = (yi 1, Yit—2s - Yit—ps Xit, Wiz ) be the 1 x K vector of covariates for ¢ at time ¢,
where K = p + k1 + ko, p is the number of included lags, k; is the number of strictly exogenous
variables in x;;, and ko is the number of predetermined variables in w;¢. (The superscript L stands
for levels.)

Now rewrite this relationship as a set of T; equations for each individual,

yZL :XZL(s—f—MLLZ-l-GZ
where T; is the number of observations available for individual i; y;, ¢;, and €; are T; X 1, whereas
Xi is T’z x K.

The estimators use both the levels and a transform of the variables in the above equation. Denote
the transformed variables by an *, so that y is the transformed yiL and X7 is the transformed XZ-L.
The transform may be either the first difference or the forward-orthogonal deviations (FOD) transform.
The (7,t)th observation of the FOD transform of a variable x is given by

1
Th =ct {l’it - ﬁ(zit+1 + Tipga + -+ Iﬂ,)}

where ¢ = (T —t)/(T —t+ 1) and T is the number of observations on x; see Arellano and
Bover (1995) and Arellano (2003).

Here we present the formulas for the Arellano—Bover/Blundell-Bond system estimator. The for-
mulas for the Arellano—Bond estimator are obtained by setting the additional level matrices in the
system estimator to null matrices.

Stacking the transformed and untransformed vectors of the dependent variable for a given ¢ yields

_ (Y
Vi <yiL)

Similarly, stacking the transformed and untransformed matrices of the covariates for a given ¢
yields
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Z; is a matrix of instruments,

z, — (zdi 0 D, 0 Ij)
0 Z,; 0 L; I

where Zg4; is the matrix of GMM-type instruments created from the dgmmiv() options, Zy,; is the
matrix of GMM-type instruments created from the 1gmmiv() options, D; is the matrix of standard
instruments created from the div() options, L; is the matrix of standard instruments created from
the 1iv() options, If is the matrix of standard instruments created from the iv() options for the
differenced errors, and I{“ is the matrix of standard instruments created from the iv() options for
the level errors.

div(), 1iv(), and iv() simply add columns to instrument matrix. The GMM-type instruments
are more involved. Begin by considering a simple balanced-panel example in which our model is

Yit = 1Yit—1 T Q2Yit—2 + Vi + €

We do not need to consider covariates because strictly exogenous variables are handled using div(),
iv(), or 1iv(), and predetermined or endogenous variables are handled analogous to the dependent
variable.

Assume that the data come from a balanced panel in which there are no missing values. After
first-differencing the equation, we have

Ay = a1 Ay, -1 + Ay, 1o + A€y

The first 3 observations are lost to lags and differencing. If we assume that the €;; are not autocorrelated,
for each ¢ at t = 4, y;1 and y;o are valid instruments for the differenced equation. Similarly, at ¢ = 5,
Yi1, Yi2, and y;3 are valid instruments. We specify dgmmiv(y) to obtain an instrument matrix with
one row for each period that we are instrumenting:

Yyi1 Yi2 O 0 o ... 0 0 0
0 0 wya w2 %z -.. 0 0 0
Zai=| . . . . . :
0 0 0 0 . 0 Yix - YiT-2
Because p = 2, Zg; has T'— p — 1 rows and Z:;ZP m columns.

Specifying 1gmmiv(y) creates the instrument matrix

A.yio 0 0o ... 0
0 Az 0 ... 0
VATES . . . .

0 0 0o ... A'yi(Tifl)
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This extends to other lag structures with complete data. Unbalanced data and missing observations
are handled by dropping the rows for which there are no data and filling in zeros in columns where
missing data are required. Suppose that, for some %, the { = 1 observation was missing but was not
missing for some other panels. dgmmiv(y) would then create the instrument matrix

0 0 0 Yi2 Y3 0 0 0 0 . 0 0 0
0 0 0 0 0 0 Yi2  Yi3 0 PN 0 0 0
Zo=1|. . . . . . . . ) .
00 0 O 0 0 O 0 ... 0 w2 ... ¥Yir—2
Zg4; has T; — p — 1 rows and Z:n_jpm columns, where 7 = max;7; and 7; is the number of

nonmissing observations in panel <.
After defining

7
sz = Z ZgYi
Wl = szAlQ;-z

-1
A= (Z Z;Huzi>

and

_(Hgs O
H17, - ( 0 HLz)

the one-step estimates are given by

Bl = Wl_lezAlq,zy

When using the first-difference transform Hg;, is given by

1 -5 0 0 0
—-.5 1 D) 0 0
Hy = :
0 0 0 1 —-.5
0 0 0 -5 1

and Hy; is given by 0.5 times the identity matrix. When using the FOD transform, both Hg; and
H;,; are equal to the identity matrix.
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The transformed one-step residuals are given by

~k * 2 *
€ =Y; — 31 X;
which are used to compute

N
o1 ={1/(N - K)} ) e,

The GMM one-step VCE is then given by
% 21— ~2yw—1
Vanm[Bi] = 51 W
The one-step level residuals are given by
~L L A ~L
€ =Yi — B X

Stacking the residual vectors yields

which is used to compute Hy; = €;,€1;, which is used in

—1
A, = (Z z;Hmzi)

and the robust one-step VCE is given by

~ o~

‘/}obust [ﬂ } = WilezAlAglAlQ;:szl

‘Zobust [/@1] is robust to heteroskedasticity in the errors.
After defining

W2 = QaczAZQ;z

the two-step estimates are given by

BQ - ngszAZsz

The GMM two-step VCE is then given by

Vo [Bo) = W3
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The GMM two-step VCE is known to be severely biased. Windmeijer (2005) derived the Windmeijer
bias-corrected (WC) estimator for the robust VCE of two-step GMM estimators. xtdpd implements this
WC-robust estimator of the VCE. The formulas for this method are involved; see Windmeijer (2005).
The WC-robust estimator of the VCE is robust to heteroskedasticity in the errors.
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xtdpd postestimation — Postestimation tools for xtdpd

Postestimation commands predict margins estat
Remarks and examples Methods and formulas Reference Also see

Postestimation commands

The following postestimation commands are of special interest after xtdpd:

Command Description
estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions and their SEs, residual errors

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

121
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, xb e stdp foerence]

Options for predict
Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.
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margins

Description for margins

margins estimates margins of responses for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()m']

margins [marginlist} , predict (statistic ...) [opzions]
statistic Description
xb linear prediction; the default
e not allowed with margins
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

estat

Description for estat

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Menu for estat
Statistics > Postestimation
Syntax for estat

Test for autocorrelation

estat abond [, gtests(#)}

Sargan test of overidentifying restrictions

estat sargan
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Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can only be refit if the data have
not changed.

Remarks and examples

Remarks are presented under the following headings:

estat abond
estat sargan

estat abond

The moment conditions used by xtdpd are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because one
needs to apply a transform to remove the panel-level effects, but the transformed errors have a more
complicated error structure than the idiosyncratic errors. The Arellano—Bond test for serial correlation
reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independent and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for an alternative
estimator that allows for idiosyncratic errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpd can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic x2 distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce(robust) model, xtdpd does not compute it when vce (robust) is specified.

Methods and formulas

The notation for €};, €13, Hy;, Ha Xy, Zi, W1, Wa, V,[B,], A1, Ay, Q... and 52 has been
defined in Methods and formulas of [XT] xtdpd.

The Arellano—Bond test for zero mth-order autocorrelation in the first-differenced errors is given
by

S0
Alm) = —0
(m) vV S1 +82 +83

where the definitions of sg, S1, S2, and s3 vary over the estimators and transforms.
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We begin by defining uj; = Lm.€];, with the missing values filled in with zeros. Letting j = 1
for the one-step estimator, j = 2 for the two-step estimator, ¢ = GMM for the GMM VCE estimator,
and ¢ = robust for the robust VCE estimator, we can now define sg, S1, So, and s3:

/\*//\*

S0 = U;i€ji

51 = Z uj;Hyiuj,
- 72qjin_1szAjQzu

83 = qjz Ve [ﬁj} iy

where
Qjo = Z ﬁ*/X

and Q.. varies over estimator and transform.

For the Arellano—Bond estimator with the first-differenced transform,

Z Z/H;;u,

For the Arellano—Bond estimator with the FOD transform,

> ZiQoa
i

Jt

where
_ T;+1
T 0 0
T,—1 T, 0
T; T,—1 ~x
Qfod = u,

0 . . :
1 2
0 . i - \E
and * implies the first-differenced transform instead of the FOD transform.

For the Arellano—Bover/Blundell-Bond system estimator with the first-differenced transform,

I~ kS~
E Z' eﬂe* x
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After a one-step estimator, the Sargan test is

1 "
1~
Sl = ) €1izi Al E Zieli
01 - -
7 %

The transformed two-step residuals are given by

~ % A *
€ =y; — B2X;

and the level two-step residuals are given by

~L _ L A~L
€; =Y, — B:X;

/6\*

~ 2i

€2; = <AL >
€9

After a two-step estimator, the Sargan test is

Stacking the residual vectors yields

~ 1~
So = Ezizi A, g €24

% 7
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xtdpdsys — Arellano-Bover/Blundell-Bond linear dynamic panel-data estimation

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
Acknowledgment References Also see

Description

xtdpdsys fits a linear dynamic panel-data model where the unobserved panel-level effects are
correlated with the lags of the dependent variable. This model is an extension of the Arellano—Bond
estimator that accommodates large autoregressive parameters and a large ratio of the variance of the
panel-level effect to the variance of idiosyncratic error. This is known as the Arellano—Bover/Blundell—
Bond system estimator. This estimator is designed for datasets with many panels and few periods.
This method assumes that there is no autocorrelation in the idiosyncratic errors and requires that the
panel-level effects be uncorrelated with the first difference of the first observation of the dependent
variable.

Quick start

Dynamic panel-data regression of y on x with default Arellano—Bond instruments and lagged difference
of y

xtdpdsys y x

Add the lagged difference of x as an instrument
xtdpdsys y x, pre(x)

Set the maximum number of lags of the dependent variable used as instruments to 2
xtdpdsys y x, maxldep(2)

Menu

Statistics > Longitudinal/panel data > Dynamic panel data (DPD) > Arellano—Bover/Blundell-Bond estimation

127
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Syntax

xtdpdsys depvar [indepvars] [lf] [zn] [, options}

options Description

Model
noconstant suppress constant term
lags(#) use # lags of dependent variable as covariates; default is lags (1)
maxldep (#) maximum lags of dependent variable for use as instruments
maxlags (#) maximum lags of predetermined and endogenous variables for use

as instruments

twostep compute the two-step estimator instead of the one-step estimator

Predetermined

pre(varlist[. .. ])

Endogenous
endogenous (varlist[. .. ] )

predetermined variables; can be specified more than once

endogenous variables; can be specified more than once

SE/Robust
vce (veetype) vcetype may be gmm or robust
Reporting
level (#) set confidence level; default is 1level (95)
artests(#) use # as maximum order for AR tests; default is artests(2)

display_options

coeflegend

control spacing and line width

display legend instead of statistics

A panel variable and a time variable must be specified; use [XT] xtset.

indepvars and all varlists, except pre (varlist[ . ]) and endogenous (varlisl[. .. ]), may contain time-series
operators; see [U] 11.4.4 Time-series varlists. The specification of depvar may not contain time-series operators.

by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
_ [Model

noconstant; see [R] Estimation options.

lags(#) sets p, the number of lags of the dependent variable to be included in the model. The
default is p = 1.

maxldep(#) sets the maximum number of lags of the dependent variable that can be used as
instruments. The default is to use all T; — p — 2 lags.

maxlags (#) sets the maximum number of lags of the predetermined and endogenous variables that
can be used as instruments. For predetermined variables, the default is to use all T; — p — 1 lags.
For endogenous variables, the default is to use all 7; — p — 2 lags.

twostep specifies that the two-step estimator be calculated.
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Predetermined

pre (varlist [ , lagstruct (prelags, premaxlags) ]) specifies that a set of predetermined variables
be included in the model. Optionally, you may specify that prelags lags of the specified variables
also be included. The default for prelags is 0. Specifying premaxlags sets the maximum number
of further lags of the predetermined variables that can be used as instruments. The default is to
include T; — p — 1 lagged levels as instruments for predetermined variables. You may specify as
many sets of predetermined variables as you need within the standard Stata limits on matrix size.
Each set of predetermined variables may have its own number of prelags and premaxlags.

Endogenous

endogenous (varlist [, lagstruct (endlags, endmaxlags) ]) specifies that a set of endogenous
variables be included in the model. Optionally, you may specify that endlags lags of the specified
variables also be included. The default for endlags is 0. Specifying endmaxlags sets the maximum
number of further lags of the endogenous variables that can be used as instruments. The default
is to include T; — p — 2 lagged levels as instruments for endogenous variables. You may specify
as many sets of endogenous variables as you need within the standard Stata limits on matrix size.
Each set of endogenous variables may have its own number of endlags and endmaxlags.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived
from asymptotic theory and that are robust to some kinds of misspecification; see Methods and
formulas in [XT] xtdpd.

vce (gmm), the default, uses the conventionally derived variance estimator for generalized method
of moments estimation.

vce(robust) uses the robust estimator. For the one-step estimator, this is the Arellano—Bond
robust VCE estimator. For the two-step estimator, this is the Windmeijer (2005) WC-robust estimator.

Reporting

level (#); see [R] Estimation options.

artests(#) specifies the maximum order of the autocorrelation test to be calculated. The tests are
reported by estat abond; see [XT] xtdpdsys postestimation. Specifying the order of the highest
test at estimation time is more efficient than specifying it to estat abond, because estat abond
must refit the model to obtain the test statistics. The maximum order must be less than or equal
the number of periods in the longest panel. The default is artests(2).

display_options: vsquish and nolstretch; see [R] Estimation options.

The following option is available with xtdpdsys but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

If you have not read [XT] xtabond, you may want to do so before continuing.

Linear dynamic panel-data models include p lags of the dependent variable as covariates and
contain unobserved panel-level effects, fixed or random



130 xtdpdsys — Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation

Consider the dynamic panel-data model

P
Yit :Zajyi,t7j+xitﬁ1 +wiuBy+vit+e i=1,...,N t=1,...,T; (1)
j=1

where
the «; are p parameters to be estimated,
X;¢ is a 1 X kq vector of strictly exogenous covariates,
By is a k1 x 1 vector of parameters to be estimated,
wit is a 1 X ko vector of predetermined or endogenous covariates,
By is a ko x 1 vector of parameters to be estimated,
v; are the panel-level effects (which may be correlated with the covariates), and
€;¢ are i.i.d. over the whole sample with variance 052.

The v; and the €;; are assumed to be independent for each ¢ over all ¢.

By construction, the lagged dependent variables are correlated with the unobserved panel-level
effects, making standard estimators inconsistent. Arellano and Bond (1991) derived a consistent
generalized method of moments (GMM) estimator for this model. With many panels and few periods,
the Arellano—Bond estimator is constructed by first-differencing to remove the panel-level effects and
using instruments to form moment conditions.

Blundell and Bond (1998) show that the lagged-level instruments in the Arellano—Bond estimator
become weak as the autoregressive process becomes too persistent or the ratio of the variance of the
panel-level effects v; to the variance of the idiosyncratic error €;; becomes too large. Building on
the work of Arellano and Bover (1995), Blundell and Bond (1998) proposed a system estimator that
uses moment conditions in which lagged differences are used as instruments for the level equation in
addition to the moment conditions of lagged levels as instruments for the difference equation. The
additional moment conditions are valid only if the initial condition E[v;Ay;2] = 0 holds for all i;
see Blundell and Bond (1998) and Blundell, Bond, and Windmeijer (2000).

xtdpdsys fits dynamic panel-data estimators with the Arellano—Bover/Blundell-Bond system
estimator. This estimator is designed for datasets with many panels and few periods. This method
assumes that there is no autocorrelation in the idiosyncratic errors and requires the initial condition
that the panel-level effects be uncorrelated with the first difference of the first observation of the
dependent variable. Because xtdpdsys extends xtabond, [XT] xtabond provides useful background.

> Example 1: A dynamic panel model

In their article, Arellano and Bond (1991) apply their estimators and test statistics to a model of
dynamic labor demand that had previously been considered by Layard and Nickell (1986), using data
from an unbalanced panel of firms from the United Kingdom. All variables are indexed over the firm
¢ and time ¢. In this dataset, n;; is the log of employment in firm % at time ¢, w;; is the natural log
of the real product wage, k;; is the natural log of the gross capital stock, and ys,, is the natural log
of industry output. The model also includes time dummies yr1980, yr1981, yr1982, yr1983, and
yr1984.
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For comparison, we begin by using xtabond to fit a model to these data.

. use https://wuw.stata-press.com/data/r18/abdata
. xtabond n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

Arellano-Bond dynamic panel-data estimation Number of obs = 611
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 4

avg = 4.364286

max = 6

Number of instruments = 40 Wald chi2(13) = 1318.68
Prob > chi2 = 0.0000

One-step results
(Std. err. adjusted for clustering on id)

Robust

n | Coefficient std. err. z P>|z| [95% conf. intervall]

n
L1. .6286618 .1161942 5.41 0.000 .4009254 .8563983

W
- -.5104249 .1904292 -2.68 0.007 -.8836592 -.1371906
L1. .2891446 .140946 2.05 0.040 .0128954 .5653937
L2. -.0443653 .0768135 -0.58 0.564 -.194917 .1061865

k
- .3556923 .0603274 5.90 0.000 .2374528 .4739318
L1. -.0457102 .0699732 -0.65 0.514 -.1828552 .0914348
L2. -.0619721 .0328589 -1.89 0.059 -.1263743 .0024301
yr1980 -.0282422 .0166363 -1.70 0.090 -.0608488 .0043643
yri1981 -.0694052 .028961 -2.40 0.017 -.1261677 -.0126426
yr1982 -.0523678 .0423433 -1.24 0.216 -.1353591 .0306235
yr1983 -.0256599 .0633747 -0.48 0.631 -.1302723 .0789525
yri1984 -.0093229 .0696241 -0.13 0.893 -.1457837 .1271379
year .0019575 .0119481 0.16 0.870 -.0214604 .0253754
_cons -2.543221 23.97919 -0.11 0.916 -49.54158 44 ,45514

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.yr1980 D.yr1981 D.yr1982
D.yr1983 D.yr1984 D.year
Instruments for level equation
Standard: _cons
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Now we fit the same model by using xtdpdsys:

. xtdpdsys n L(0/2).(w k) yr1980-yr1984 year, vce(robust)

System dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups 140
Time variable: year

Obs per group:

min = 5
avg = 5.364286
max = 7
Number of instruments = a7 Wald chi2(13) = 2579.96
Prob > chi?2 = 0.0000
One-step results
Robust

n | Coefficient std. err. z P>|z| [95% conf. intervall

n
L1. .8221535 .093387 8.80 0.000 .6391184 1.005189

W
- -.5427935 .1881721 -2.88 0.004 -.911604 -.1739831
L1. .3703602 .1656364 2.24 0.025 .0457189 .6950015
L2. -.0726314 .0907148 -0.80 0.423 -.2504292 .1051664

k
--. .3638069 .0657524 5.53 0.000 .2349346 .4926792
L1. -.1222996 .0701521 -1.74 0.081 -.2597951 .015196
L2. -.0901355 .0344142 -2.62 0.009 -.1575862 -.0226849
yr1980 -.0308622 .016946 -1.82 0.069 -.0640757 .0023512
yri1981 -.0718417 .0293223 -2.45 0.014 -.1293123 -.014371
yr1982 -.0384806 .0373631 -1.03 0.303 -.1117111 .0347498
yr1983 -.0121768 .0498519 -0.24 0.807 -.1098847 .0855311
yr1984 -.0050903 .0655011 -0.08 0.938 -.1334701 .1232895
year .0058631 .0119867 0.49 0.625 -.0176304 .0293566
_cons -10.59198 23.92087 -0.44 0.658 -57.47602 36.29207

Instruments for differenced equation
GMM-type: L(2/.).n
Standard: D.w LD.w L2D.w D.k LD.k L2D.k D.yr1980 D.yr1981 D.yr1982
D.yr1983 D.yr1984 D.year
Instruments for level equation
GMM-type: LD.n
Standard: _cons

If you are unfamiliar with the L() . () notation, see [U] 13.10 Time-series operators. That the system
estimator produces a much higher estimate of the coefficient on lagged employment agrees with the
results in Blundell and Bond (1998), who show that the system estimator does not have the downward
bias that the Arellano—Bond estimator has when the true value is high.

Comparing the footers illustrates the difference between the two estimators; xtdpdsys includes
lagged differences of n as instruments for the level equation, whereas xtabond does not. Comparing
the headers shows that xtdpdsys has seven more instruments than xtabond. (As it should; there are
7 observations on LD.n available in the complete panels that run from 1976—1984, after accounting
for the first two years that are lost because the model has two lags.) Only the first lags of the
variables are used because the moment conditions using higher lags are redundant; see Blundell and
Bond (1998) and Blundell, Bond, and Windmeijer (2000).

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced errors.
The moment conditions are valid only if there is no serial correlation in the idiosyncratic errors.
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Because the first difference of independent and identically distributed idiosyncratic errors will be
autocorrelated, rejecting the null hypothesis of no serial correlation at order one in the first-differenced
errors does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See [XT] xtdpd for an alternative estimator in this
case.

. estat abond

Arellano-Bond test for zero autocorrelation in first-differenced errors
HO: No autocorrelation

Order z Prob > z
1 -4.6414 0.0000
2 -1.0572 0.2904

The above output does not present evidence that the model is misspecified.

2 Example 2: Including predetermined covariates

Sometimes we cannot assume strict exogeneity. Recall that a variable x;; is said to be strictly
exogenous if E[z;ie;5] = 0 for all ¢ and s. If Elx;€;5] # 0 for s < ¢ but E[z;:€;5] = 0 forall s > ¢,
the variable is said to be predetermined. Intuitively, if the error term at time ¢ has some feedback
on the subsequent realizations of z;¢, x;; is a predetermined variable. Because unforecastable errors
today might affect future changes in the real wage and in the capital stock, we might suspect that
the log of the real product wage and the log of the gross capital stock are predetermined instead of
strictly exogenous.
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. xtdpdsys n yr1980-yr1984 year, pre(w k, lag(2, .)) vce(robust)
System dynamic panel-data estimation Number of obs = 751
Group variable: id Number of groups = 140
Time variable: year
Obs per group:
min = 5
avg = 5.364286
max = 7
Number of instruments = 95 Wald chi2(13) = 7562.80
Prob > chi2 0.0000
One-step results
Robust
n | Coefficient std. err. z P>|z| [95% conf. intervall
n
L1. .913278 .0460602 19.83  0.000 .8230017 1.003554
w
-- -.728159 .1019044 -7.15  0.000 -.927888  -.5284301
L1. .5602737 .1939617 2.89 0.004 .1801156 .9404317
L2. -.0523028 .1487653 -0.35 0.725 -.3438774 .2392718
k
--. 4820097 .0760787 6.34 0.000 .3328983 .6311212
L1. -.2846944  .0831902 -3.42 0.001 -.4477442  -.1216446
L2. -.1394181 .0405709 -3.44 0.001 -.2189356  -.0599006
yr1980 -.0325146 .0216371 -1.50 0.133 -.0749226 .0098935
yri1981 -.0726116 .0346482 -2.10 0.036 -.1405207 -.0047024
yr1982 -.0477038 .0451914 -1.06 0.291 -.1362772 .0408696
yr1983 -.0396264  .0558734 -0.71  0.478 -.1491362 .0698835
yri1984 -.0810383 .0736648 -1.10 0.271 -.2254186 .063342
year .0192741 .0145326 1.33 0.185 -.0092092 .0477574
_cons -37.34972  28.77747 -1.30 0.194 -93.75252 19.05308

Instruments for

GMM-type: L(2/.).n L(1/.).L2.w L(1/.).L2.k

differenced equation

Standard: D.yr1980 D.yr1981 D.yr1982 D.yr1983 D.yr1984 D.year
Instruments for level equation
GMM-type: LD.n L2D.w L2D.k

Standar

d: _cons

The footer informs us that we are now including GMM-type instruments from the first lag of L.w on
back and from the first lag of L2.k on back for the differenced errors and the second lags of the

differences of w and k as instruments for the level errors.

Q Technical note

N

The above example illustrates that xtdpdsys understands pre(w k, lag(2, .)) to mean that
L2.w and L2.k are predetermined variables. This is a stricter definition than the alternative that pre (w
k, lag(2, .)) means only that w k are predetermined but to include two lags of w and two lags of
k in the model. If you prefer the weaker definition, xtdpdsys still gives you consistent estimates,
but it is not using all possible instruments; see [XT]| xtdpd for an example of how to include all

possible instruments.

a
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Stored results
xtdpdsys stores the following in e ():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(g_min) smallest group size
e(g-avg) average group size
e(g_max) largest group size
e(t_min) minimum time in sample
e(t_max) maximum time in sample
e(chi2) x2
e(arm#) test for autocorrelation of order #
e(artests) number of AR tests computed
e(sig2) estimate of o2
e(rss) sum of squared differenced residuals
e(sargan) Sargan test statistic
e(rank) rank of e(V)
e(zrank) rank of instrument matrix
Macros
e(cmd) xtdpdsys
e(cmdline) command as typed
e(depvar) name of dependent variable
e(twostep) twostep, if specified
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(system) system, if system estimator
e(transform) specified transform
e(diffvars) already-differenced exogenous variables
e(datasignature) checksum from datasignature
e(datasignaturevars) variables used in calculation of checksum
e(properties) bV
e(estat_cmd) program used to implement estat
e(predict) program used to implement predict
e(marginsok) predictions allowed by margins
Matrices
e(b) coefficient vector
e (V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

xtdpdsys uses xtdpd to perform its computations, so the formulas are given in Methods and
formulas of [XT] xtdpd.
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Also see
[XT] xtdpdsys postestimation — Postestimation tools for xtdpdsys
[XT] xtabond — Arellano—Bond linear dynamic panel-data estimation
[XT] xtdpd — Linear dynamic panel-data estimation
[XT] xtivreg — Instrumental variables and two-stage least squares for panel-data models
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models™
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance
[XT] xtset — Declare data to be panel data

[U] 20 Estimation and postestimation commands



Title

xtdpdsys postestimation — Postestimation tools for xtdpdsys

Postestimation commands predict margins estat
Remarks and examples Methods and formulas Reference Also see

Postestimation commands

The following postestimation commands are of special interest after xtdpdsys:

Command Description
estat abond test for autocorrelation
estat sargan Sargan test of overidentifying restrictions

The following standard postestimation commands are also available:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions and their SEs, residual errors

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, xb e stdp foerence]

Options for predict
Main

xb, the default, calculates the linear prediction.
e calculates the residual error.

stdp calculates the standard error of the prediction, which can be thought of as the standard error of
the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value. stdp may not be
combined with difference.

difference specifies that the statistic be calculated for the first differences instead of the levels, the
default.
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margins

Description for margins

margins estimates margins of responses for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()m']

margins [marginlist} , predict (statistic ...) [opzions]
statistic Description
xb linear prediction; the default
e not allowed with margins
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

estat

Description for estat

estat abond reports the Arellano—Bond test for serial correlation in the first-differenced residuals.

estat sargan reports the Sargan test of the overidentifying restrictions.

Menu for estat
Statistics > Postestimation
Syntax for estat

Test for autocorrelation

estat abond [, gtests(#)}

Sargan test of overidentifying restrictions

estat sargan
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Option for estat abond

artests (#) specifies the highest order of serial correlation to be tested. By default, the tests computed
during estimation are reported. The model will be refit when artests (#) specifies a higher order
than that computed during the original estimation. The model can only be refit if the data have
not changed.

Remarks and examples

Remarks are presented under the following headings:

estat abond
estat sargan

estat abond

The moment conditions used by xtdpdsys are valid only if there is no serial correlation in the
idiosyncratic errors. Testing for serial correlation in dynamic panel-data models is tricky because one
needs to apply a transform to remove the panel-level effects, but the transformed errors have a more
complicated error structure than the idiosyncratic errors. The Arellano—Bond test for serial correlation
reported by estat abond tests for serial correlation in the first-differenced errors.

Because the first difference of independent and identically distributed idiosyncratic errors will be
serially correlated, rejecting the null hypothesis of no serial correlation in the first-differenced errors at
order one does not imply that the model is misspecified. Rejecting the null hypothesis at higher orders
implies that the moment conditions are not valid. See example 5 in [XT] xtdpd for an alternative
estimator that allows for idiosyncratic errors that follow a first-order moving average process.

After the one-step system estimator, the test can be computed only when vce (robust) has been
specified.

estat sargan

Like all GMM estimators, the estimator in xtdpdsys can produce consistent estimates only if the
moment conditions used are valid. Although there is no method to test if the moment conditions from
an exactly identified model are valid, one can test whether the overidentifying moment conditions are
valid. estat sargan implements the Sargan test of overidentifying conditions discussed in Arellano
and Bond (1991).

Only for a homoskedastic error term does the Sargan test have an asymptotic x2 distribution.
In fact, Arellano and Bond (1991) show that the one-step Sargan test overrejects in the presence
of heteroskedasticity. Because its asymptotic distribution is not known under the assumptions of the
vce (robust) model, xtdpdsys does not compute it when vce (robust) is specified. See [XT] xtdpd
for an example in which the null hypothesis of the Sargan test is not rejected.

. use https://www.stata-press.com/data/r18/abdata

. xtdpdsys n L(0/2).(w k) yr1980-yr1984 year
(output omitted )

. estat sargan
Sargan test of overidentifying restrictions
HO: Overidentifying restrictions are valid

chi2(33) 63.63911
Prob > chi2 0.0011
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The output above presents strong evidence against the null hypothesis that the overidentifying
restrictions are valid. Rejecting this null hypothesis implies that we need to reconsider our model or
our instruments, unless we attribute the rejection to heteroskedasticity in the data-generating process.
Although performing the Sargan test after the two-step estimator is an alternative, Arellano and
Bond (1991) found a tendency for this test to underreject in the presence of heteroskedasticity.

Methods and formulas

The formulas are given in Methods and formulas of [XT] xtdpd postestimation.

Reference

Arellano, M., and S. Bond. 1991. Some tests of specification for panel data: Monte Carlo evidence and an application
to employment equations. Review of Economic Studies 58: 277-297. https://doi.org/10.2307/2297968.

Also see
[XT] xtdpdsys — Arellano—Bover/Blundell-Bond linear dynamic panel-data estimation

[U] 20 Estimation and postestimation commands
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Title

xteintreg — Extended random-effects interval regression

Description Quick start Menu Syntax

Description

xteintreg fits a random-effects interval-data regression model that accommodates any combination
of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection and
also accounts for correlation of observations within panels or within groups.

The dependent variable may be measured as point data, interval data, left-censored data, or
right-censored data. Continuous, binary, and ordinal endogenous covariates are allowed. Treatment
assignment may be endogenous or exogenous. A probit or tobit model may be used to account for
endogenous sample selection.

xteintreg fits extended regression models for panel data in the same way that eintreg does
for cross-sectional data. See [ERM] eintreg to learn about these models and how to fit them using
xteintreg.

Quick start
All Quick start examples use an interval-measured dependent variable with the interval’s lower bound
recorded in variable y_1 and its upper bound recorded in y_u.

Random-effects regression of [y_1,y_u] on x with continuous endogenous covariate y2 modeled by
x and z using xtset data

xteintreg y_1 y_u x, endogenous(y2 = x z)

Same as above, but with binary endogenous covariate d modeled by x and z
xteintreg y_1 y_u x, endogenous(d = x z, probit)

Random-effects regression of [y—1, y—u] on x with endogenous treatment trtvar modeled by x and z
xteintreg y_1 y_u x, entreat(trtvar = x z)

Same as above, but only the equation for [y—1,y_u] has a random effect
xteintreg y_1 y_u x, entreat(trtvar = x z, nore)

Random-effects regression of [y_1,y—u] on x with endogenous sample-selection indicator selvar
modeled by x and z

xteintreg y_1 y_u x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
xteintreg y_1 y_u x, select(selvar = x z) endogenous(y2 = x z2)
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Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Interval
regression (RE)

Syntax

For syntax, methods, and all other information on xteintreg, see [ERM] eintreg.
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xteoprobit — Extended random-effects ordered probit regression

Description Quick start Menu Syntax

Description

xteoprobit fits a random-effects ordered probit regression model that accommodates any combi-
nation of endogenous covariates, nonrandom treatment assignment, and endogenous sample selection
and also accounts for correlation of observations within panels or within groups.

Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be
endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample
selection.

xteoprobit fits ordered probit extended regression models for panel data in the same way that
eoprobit does for cross-sectional data. See [ERM] eoprobit to learn about these models and how to
fit them using xteoprobit.

Quick start
Random-effects ordered probit regression of y on x with continuous endogenous covariate y2 modeled
by x and z using xtset data
Xteoprobit y x, endogenous(y2 = x z)

Same as above, but with binary endogenous covariate d modeled by x and z
xteoprobit y x, endogenous(d = x z, probit)
Random-effects ordered probit regression of y on x with endogenous treatment trtvar modeled by
x and z

xteoprobit y x, entreat(trtvar = x z)

Same as above, but only the equation for y has a random effect
xteoprobit y x, entreat(trtvar = x z, nore)

Random-effects ordered probit regression of y on x with endogenous sample-selection indicator
selvar modeled by x and z

xteoprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
xteoprobit y x, select(selvar = x z) endogenous(y2 = x z2)
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Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Ordered
probit regression (RE)

Syntax

For syntax, methods, and all other information on xteoprobit, see [ERM] eoprobit.
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xteprobit — Extended random-effects probit regression

Description Quick start Menu Syntax

Description

xteprobit fits a random-effects probit model that accommodates any combination of endogenous
covariates, nonrandom treatment assignment, and endogenous sample selection and also accounts for
correlation of observations within panels or within groups.

Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be
endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample
selection.

xteprobit fits probit extended regression models for panel data in the same way that eprobit
does for cross-sectional data. See [ERM] eprobit to learn about these models and how to fit them
using xteprobit.

Quick start

Random-effects probit regression of y on x with continuous endogenous covariate y2 modeled by x
and z using xtset data

xteprobit y x, endogenous(y2 = x z)

Same as above, but with binary endogenous covariate d modeled by x and z
xteprobit y x, endogenous(d = x z, probit)

Random-effects probit regression of y on x with endogenous treatment trtvar modeled by x and z
Xteprobit y x, entreat(trtvar = x z)

Same as above, but only the equation for y has a random effect

Xteprobit x, entreat(trtvar = x z, nore)

Random-effects probit regression of y on x with endogenous sample-selection indicator selvar
modeled by x and z

xteprobit y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
xteprobit y x, select(selvar = x z) endogenous(y2 = x 2z2)
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Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Probit
regression (RE)

Syntax

For syntax, methods, and all other information on xteprobit, see [ERM] eprobit.



Title

xteregress — Extended random-effects linear regression

Description Quick start Menu Syntax

Description

xteregress fits a random-effects linear regression model that accommodates any combination of
endogenous covariates, nonrandom treatment assignment, and endogenous sample selection and also
accounts for correlation of observations within panels or within groups.

Continuous, binary, and ordinal endogenous covariates are allowed. Treatment assignment may be
endogenous or exogenous. A probit or tobit model may be used to account for endogenous sample
selection.

xteregress fits linear extended regression models for panel data in the same way that eregress
does for cross-sectional data. See [ERM] eregress to learn about these models and how to fit them
using xteregress.

Quick start

Random-effects linear regression of y on x with continuous endogenous covariate y2 modeled by x
and z using xtset data

Xteregress y x, endogenous(y2 = x z)

Same as above, but with binary endogenous covariate d modeled by x and z
xteregress y x, endogenous(d = x z, probit)

Random-effects regression of y on x with endogenous treatment trtvar modeled by x and z
Xteregress y x, entreat(trtvar = x z)

Same as above, but only the equation for y has a random effect

Xteregress y x, entreat(trtvar = x z, nore)

Random-effects regression of y on x with endogenous sample-selection indicator selvar modeled
by x and z

xteregress y x, select(selvar = x z)

Same as above, but adding endogenous covariate y2 modeled by x and z2
Xteregress y x, select(selvar = x z) endogenous(y2 = x z2)
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Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Models adding selection and treatment > Linear
regression (RE)

Syntax

For syntax, methods, and all other information on xteregress, see [ERM] eregress.



Title

xtfrontier — Stochastic frontier models for panel data

Description Quick start
Menu Syntax
Options for time-invariant model Options for time-varying decay model
Remarks and examples Stored results
Methods and formulas References
Also see
Description

xtfrontier fits stochastic production or cost frontier models for panel data where the disturbance
term is a mixture of an inefficiency term and the idiosyncratic error. xtfrontier can fit a time-
invariant model, in which the inefficiency term is assumed to have a truncated-normal distribution, or
a time-varying decay model, in which the inefficiency term is modeled as a truncated-normal random
variable multiplied by a function of time.

xtfrontier expects that the dependent variable and independent variables are on the natural
logarithm scale; this transformation must be performed before estimation takes place.

Quick start

Stochastic production frontier regression of 1ny on 1lnx1 and 1nx2 with time-invariant inefficiency
using xtset data

xtfrontier lny 1lnxl 1nx2, ti

Stochastic cost frontier regression of 1ny on 1nx1 and 1nx2 with time-invariant inefficiency
xtfrontier lny lnxl 1nx2, ti cost

Time-varying decay model for production
xtfrontier lny 1nxl 1nx2, tvd

Menu

Statistics > Longitudinal/panel data > Frontier models
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Syntax
Time-invariant model

xtfrontier depvar [indepvars} [sz] [m} [weight} , ti [ti_opti()ns}

Time-varying decay model

xtfrontier depvar [indepvars} [lf] [zn} [weight} , tvd [rvd_opzions]

ti_options Description
Model
noconstant suppress constant term
ti use time-invariant model
cost fit cost frontier model
constraints (constraints) apply specified linear constraints
SE
vce (veetype) vcetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
collinear keep collinear variables

coeflegend display legend instead of statistics
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tvd_options Description
Model
noconstant suppress constant term
tvd use time-varying decay model
cost fit cost frontier model
constraints (constraints) apply specified linear constraints
SE
vce (veetype) vecetype may be oim, bootstrap, or jackknife
Reporting
level (#) set confidence level; default is 1level (95)
nocnsreport do not display constraints
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Maximization
maximize_options control the maximization process; seldom used
collinear keep collinear variables
coeflegend display legend instead of statistics

A panel variable must be specified. For xtfrontier, tvd, a time variable must also be specified. Use xtset; see
[XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, fp, and statsby are allowed; see [U] 11.1.10 Prefix commands.

fweights and iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for time-invariant model
Model

noconstant; see [R] Estimation options.
ti specifies that the parameters of the time-invariant technical inefficiency model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints (constraints) ; see [R] Estimation options.

[sE]

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife);
see [XT] vce_options.
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Reporting

level (#); see [R] Estimation options.
nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fint), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec) iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),

nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

The following options are available with xtfrontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Options for time-varying decay model
Model

noconstant; see [R] Estimation options.

tvd specifies that the parameters of the time-varying decay model be estimated.

cost specifies that the frontier model be fit in terms of a cost function instead of a production
function. By default, xtfrontier fits a production frontier model.

constraints (constraints) ; see [R] Estimation options.

[sE]

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife);
see [XT] vce_options.

Reporting

level (#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,

allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate(#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance (#),

nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.




xtfrontier — Stochastic frontier models for panel data 155

The following options are available with xtfrontier but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction
Time-invariant model
Time-varying decay model

Introduction

Stochastic production frontier models were introduced by Aigner, Lovell, and Schmidt (1977) and
Meeusen and van den Broeck (1977). Since then, stochastic frontier models have become a popular
subfield in econometrics; see Kumbhakar and Lovell (2000) for an introduction. xtfrontier fits
two stochastic frontier models with distinct specifications of the inefficiency term and can fit both
production- and cost-frontier models.

Let’s review the nature of the stochastic frontier problem. Suppose that a producer has a production
function f(z;,3). In a world without error or inefficiency, in time ¢, the ith firm would produce

¢it = f(zit, B)

A fundamental element of stochastic frontier analysis is that each firm potentially produces less
than it might because of a degree of inefficiency. Specifically,

qit = f(Zit, 5)&1&

where &;; is the level of efficiency for firm ¢ at time ¢; & must be in the interval (0,1]. If &; =1,
the firm is achieving the optimal output with the technology embodied in the production function
f(zi,8). When &;; < 1, the firm is not making the most of the inputs z;; given the technology
embodied in the production function f(z;,(3). Because the output is assumed to be strictly positive
(that is, g;+ > 0), the degree of technical efficiency is assumed to be strictly positive (that is, & > 0).

Output is also assumed to be subject to random shocks, implying that
Git = f(2it, B)Sirexp(vit)
Taking the natural log of both sides yields

In(gi¢) = In{ f(zir, B) }+1n(&r) + vie

Assuming that there are k& inputs and that the production function is linear in logs, defining
uir = —In(&;) yields

k
In(git) = Bo + Z B In(zjit) + vie — st (1)

j=1

Because w;; is subtracted from In(g;;), restricting u;; > 0 implies that 0 < &; < 1, as specified
above.
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Kumbhakar and Lovell (2000) provide a detailed version of this derivation, and they show that
performing an analogous derivation in the dual cost function problem allows us to specify the problem

as
k

In(ci) = Bo+ By In(gi) + > B n(pjir) + vir — sus (2)
j=1

where g;; is output, the z;;; are input quantities, c;; is cost, the p;;; are input prices, and

_ 1, for production functions
" | =1, for cost functions

Intuitively, the inefficiency effect is required to lower output or raise expenditure, depending on the
specification.

Q Technical note

The model that xtfrontier actually fits has the form

k
Yir = Bo+ Y, Bijit + vit — sty

j=1

so in the context of the discussion above, y;; = In(g;;) and Tjit = ln(zjit) for a production function;
for a cost function, y;; = In(c;¢), the x ;4 are the In(pj;¢), and In(g;¢). You must perform the natural
logarithm transformation of the data before estimation to interpret the estimation results correctly for
a stochastic frontier production or cost model. xtfrontier does not perform any transformations on
the data.

a

As shown above, the disturbance term in a stochastic frontier model is assumed to have two
components. One component is assumed to have a strictly nonnegative distribution, and the other
component is assumed to have a symmetric distribution. In the econometrics literature, the nonnegative
component is often referred to as the inefficiency term, and the component with the symmetric
distribution as the idiosyncratic error.

Equation (2) is a variant of a panel-data model in which v;; is the idiosyncratic error and w4
is a time-varying panel-level effect. Much of the literature on this model has focused on deriving
estimators for different specifications of the u;; term. Kumbhakar and Lovell (2000) provide a survey
of this literature.

xtfrontier provides estimators for two different specifications of u;;. To facilitate the discussion,
let N*(p,0?) denote the truncated-normal distribution, which is truncated at zero with mean g and

variance 2, and let ~ stand for independent and identically distributed.
Consider the simplest specification in which the inefficiency term w;; is a time-invariant truncated-

. . . . iid iid
normal random variable. In the time-invariant model, w;; = u;, u; NNt (,02), vy ~ N (0,02),
and u; and v;; are distributed independently of each other and the covariates in the model. Specifying

the ti option causes xtfrontier to estimate the parameters of this model.

In the Battese—Coelli (1992) parameterization of time effects, the inefficiency term is modeled
as a truncated-normal random variable multiplied by a specific function of time. In the time-varying
decay specification,

Ui = exp{fn(t — Tl)}ui
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. .. . . iid iid
where T is the last period in the ith panel, 7) is the decay parameter, u; ~ N (u,02), vt ~ N (0,02),
and u; and v;; are distributed independently of each other and the covariates in the model. Specifying
the tvd option causes xtfrontier to estimate the parameters of this model.

Time-invariant model

> Example 1
xtfrontier, ti provides maximum likelihood estimates for the parameters of the time-invariant
. . . iid
decay model. In this model, the inefficiency effects are modeled as w;; = u;, u; XN +(u,05),

Vit iid N (0,03), and w; and v are distributed independently of each other and the covariates in
the model. In this example, firms produce a product called a widget, using a constant-returns-to-
scale technology. We have 948 observations—91 firms, with 6—14 observations per firm. Our dataset
contains variables representing the quantity of widgets produced, the number of machine hours used
in production, the number of labor hours used in production, and three additional variables that are
the natural logarithm transformations of the three aforementioned variables.

We fit a time-invariant model using the transformed variables:

. use https://www.stata-press.com/data/r18/xtfrontierl
. xtfrontier lnwidgets lnmachines lnworkers, ti

Iteration 0: Log likelihood = -1473.8703
Iteration 1: Log likelihood = -1473.0565
Iteration 2: Log likelihood = -1472.6155

Iteration 3: Log likelihood = -1472.607
Iteration 4: Log likelihood = -1472.6069
Time-invariant inefficiency model Number of obs = 948
Group variable: id Number of groups = 91
Obs per group:
min = 6
avg = 10.4
max = 14
Wald chi2(2) = 661.76
Log likelihood = -1472.6069 Prob > chi2 = 0.0000
lnwidgets | Coefficient Std. err. z P>|z| [95% conf. intervall]
lnmachines .2904551 .0164219 17.69  0.000 .2582688 .3226415
lnworkers .2943333 .0154352 19.07  0.000 .2640808 .3245858
_cons 3.030983 .1441022 21.03 0.000 2.748548 3.313418
/mu 1.125667 .6479217 1.74 0.082 -.144236 2.39557
/lnsigma2 1.421979 .2672745 5.32 0.000 .898131 1.945828
/lgtgamma 1.138685 .3562642 3.20 0.001 .4404204 1.83695
sigma2 4.145318 1.107938 2.455011 6.999424
gamma . 7574382 .0654548 .6083592 .8625876
sigma_u2 3.139822  1.107235 .9696821 5.309962
sigma_v2 1.005496 .0484143 .9106055 1.100386

In addition to the coefficients, the output reports estimates for the parameters sigma_v2, sigma_u2,
gamma, sigma2, lgtgamma, lnsigma2, and mu. sigma_v2 is the estimate of o2, sigma_u2 is the
estimate of 02. gamma is the estimate of v = 02 /0%. sigma2 is the estimate of 0% = 02 + 02.

Because v must be between 0 and 1, the optimization is parameterized in terms of the logit of -y, and
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this estimate is reported as 1gtgamma. Because O’% must be positive, the optimization is parameterized
in terms of ln(a%), and this estimate is reported as lnsigma2. Finally, mu is the estimate of pu.

Q Technical note

Our simulation results indicate that this estimator requires relatively large samples to achieve any

reasonable degree of precision in the estimates of y and o?2.
a

Time-varying decay model

xtfrontier, tvd provides maximum likelihood estimates for the parameters of the time-varying
decay model. In this model, the inefficiency effects are modeled as

Uit = exp{—n(t - Ti)}ui

where u; 9 N*t(u,02).

When 7 > 0, the degree of inefficiency decreases over time; when 1 < 0, the degree of inefficiency
increases over time. Because ¢ = T in the last period, the last period for firm ¢ contains the base
level of inefficiency for that firm. If 77 > 0, the level of inefficiency decays toward the base level. If
1 < 0, the level of inefficiency increases to the base level.

> Example 2

When 1 = 0, the time-varying decay model reduces to the time-invariant model. The following
example illustrates this property and demonstrates how to specify constraints and starting values in
these models.

Let’s begin by fitting the time-varying decay model on the same data that were used in the previous
example for the time-invariant model.
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. xtfrontier lnwidgets lnmachines lnworkers, tvd

Iteration 0: Log likelihood = -1551.3798 (not concave)
Iteration 1: Log likelihood = -1502.2637
Iteration 2: Log likelihood = -1476.3093 (not concave)
Iteration 3: Log likelihood = -1472.9845
Iteration 4: Log likelihood = -1472.5365
Iteration 5: Log likelihood = -1472.529
Iteration 6: Log likelihood = -1472.5289
Time-varying decay inefficiency model Number of obs = 948
Group variable: id Number of groups = 91
Time variable: t Obs per group:
min = 6
avg = 10.4
max = 14
Wald chi2(2) = 661.93
Log likelihood = -1472.5289 Prob > chi2 = 0.0000
lnwidgets | Coefficient Std. err. z P>|z| [95% conf. intervall
lnmachines .2907555 .0164376 17.69  0.000 .2585384 .3229725
1nworkers .2942412 .0154373 19.06  0.000 .2639846 .3244978
_cons 3.028939 .1436046 21.09 0.000 2.74748 3.310399
/mu 1.110831 .6452809 1.72  0.085 -.1538967 2.375558
/eta .0016764 .00425 0.39 0.693 -.0066535 .0100064
/1lnsigma2 1.410723 .2679485 5.26  0.000 .885554 1.935893
/lgtgamma 1.123982 .3584243 3.14 0.002 .4214828 1.82648
sigma2 4.098919  1.098299 2.424327 6.930228
gamma . 7547265 .0663495 .603838 .8613419
sigma_u2 3.093563  1.097606 .9422943 5.244832
sigma_v2 1.005356 .0484079 .9104785 1.100234

The estimate of 7 is close to zero, and the other estimates are not too far from those of the
time-invariant model.

We can use constraint to constrain 7 = 0 and obtain the same results produced by the time-
invariant model. Although there is only one statistical equation to be estimated in this model, the
model fits five of Stata’s [R] ml equations; see [R] ml or Pitblado, Poi, and Gould (2024). The
equation names can be seen by listing the matrix of estimated coefficients.

. matrix list e(b)

e(b) [1,7]
Inwidgets: 1lnwidgets: Ilnwidgets: Insigma2: lgtgamma: mu:
lnmachines lnworkers _cons _cons _cons _cons
yi .29075546 .2942412 3.0289395 1.4107233 1.1239816 1.1108307
eta:
_cons
yi .00167642

To constrain a parameter to a particular value in any equation, except the first equation, you must
specify both the equation name and the parameter name by using the syntax

constraint # [eqname] _b[varname] value or

constraint # [eqname]coefficient = value

where egname is the equation name, varname is the name of the variable in a linear equation,
and coefficient refers to any parameter that has been estimated. More elaborate specifications with
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expressions are possible; see the example with constant returns to scale below, and see [R] constraint
for general reference.

Suppose that we impose the constraint 77 = 0; we get the same results as those reported above for
the time-invariant model, except for some minute differences attributable to an alternate convergence
path in the optimization.

. constraint 1 [etal_cons = 0

. xtfrontier lnwidgets lnmachines lnworkers, tvd constraints(1)

Iteration 0: Log likelihood = -1540.7124 (not concave)
Iteration 1: Log likelihood = -1515.7726
Iteration 2: Log likelihood = -1473.0162
Iteration 3: Log likelihood = -1472.9223
Iteration 4: Log likelihood = -1472.6254
Iteration 5: Log likelihood = -1472.607
Iteration 6: Log likelihood = -1472.6069
Time-varying decay inefficiency model Number of obs = 948
Group variable: id Number of groups = 91
Time variable: t Obs per group:
min = 6
avg = 10.4
max = 14
Wald chi2(2) = 661.76
Log likelihood = -1472.6069 Prob > chi2 = 0.0000
(1) [etal_cons =0
lnwidgets | Coefficient Std. err. z P>|z| [95% conf. intervall
lnmachines .2904551 .0164219 17.69  0.000 .2582688 .3226414
lnworkers .2943332 .0154352 19.07  0.000 .2640807 .3245857
_cons 3.030963 .1440995 21.03 0.000 2.748534 3.313393
/mu 1.125507 .6480444 1.74 0.082 -.1446369 2.39565
/eta 0 (omitted)
/1lnsigma2 1.422039 .2673128 5.32  0.000 .8981155 1.945962
/lgtgamma 1.138764  .3563076 3.20 0.001 .4404135 1.837114
sigma2 4.145565  1.108162 2.454972 7.000366
gamma . 7574526 .0654602 .6083575 .862607
sigma_u2 3.140068  1.107459 .9694878 5.310649
sigma_v2 1.005496 .0484143 .9106057 1.100386
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Stored results

xtfrontier stores the following in e():

e (asbalanced)
e (asobserved)

Scalars
e(N) number of observations
e(N_g) number of groups
e(k) number of parameters
e(k_eq) number of equations in e(b)
e(k_eq-_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(g_min) minimum number of observations per group
e(g_avg) average number of observations per group
e(g_max) maximum number of observations per group
e(sigma2) sigma2
e(gamma) gamma
e(Tcon) 1 if panels balanced, O otherwise
e(sigma_u) standard deviation of technical inefficiency
e(sigma_v) standard deviation of random error
e(chi2) X2
e(p) p-value for model test
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) xtfrontier
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups
e(function) production or cost
e(model) ti, after time-invariant model; tvd, after time-varying decay model
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
Functions

e(sample)

marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

xtfrontier fits stochastic frontier models for panel data that can be expressed as

k

Yit = Bo + Z Bjjse 4 vig — Sty
j=1

where y;; is the natural logarithm of output, the x;;; are the natural logarithm of the input quantities
for the production efficiency problem, y;; is the natural logarithm of costs, the z;; are the natural
logarithm of input prices for the cost efficiency problem, and

5= 1, for production functions
" | =1, for cost functions

For the time-varying decay model, the log-likelihood function is derived as

N

N
InL = —% (ZTZ) {In(27) + In(c?)} — %Z (Ti = 1) In(1 — )
=1

=1

N T;
—;Zln{1+ <an'2t_1> 7} —Nln{l—<I>(—§)}_%N§2
=1 t=1

N N T

N 1 1 62
DL e R D D) DY e
i=1

i=1 i=1 t=1 7) Is

~ 1/2
where 0g = (034—05)1/2, Y= 03/0?9, €it = Yit —XitB3, Nie = exp{—n(t—T3)}, 2 = p/ (’VU%) / >
®() is the cumulative distribution function of the standard normal distribution, and

S (=) — 57 S0ty maccin
L , 12
a-mez {1+ (S -1)}]

Maximizing the above log likelihood estimates the coefficients 1, u, o, and o,.
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Title

xtfrontier postestimation — Postestimation tools for xtfrontier

Postestimation commands predict margins Remarks and examples
Methods and formulas Also see

Postestimation commands

The following postestimation commands are available after xtfrontier:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions and their SEs, technical efficiency

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors,
and technical efficiencies.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [zf] [in] [, statistic]

statistic Description
Main
xb linear prediction; the default
stdp standard error of the linear prediction
u minus the natural log of the technical efficiency via E (u;z | €;t)
m minus the natural log of the technical efficiency via M (u;; | €;t)
te the technical efficiency via E {exp(—su;t) | €1}
where

s — 1, for production functions
~ | =1, for cost functions

Options for predict
Main

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.

u produces estimates of minus the natural log of the technical efficiency via E (u; | €;1)-

m produces estimates of minus the natural log of the technical efficiency via the mode, M (u;t | €;¢).

te produces estimates of the technical efficiency via E {exp(—su;:) | €t}
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margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()ns]

margins [marginlist} , predict (statistic ...) [()pti()ns]
statistic Description
xb linear prediction; the default
stdp not allowed with margins
u not allowed with margins
m not allowed with margins
te not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

> Example 1

A production function exhibits constant returns to scale if doubling the amount of each input results
in a doubling in the quantity produced. When the production function is linear in logs, constant returns
to scale implies that the sum of the coefficients on the inputs is one. In example 2 of [XT] xtfrontier,
we fit a time-varying decay model. Here we test whether the estimated production function exhibits
constant returns:

. use https://www.stata-press.com/data/r18/xtfrontierl

. xtfrontier lnwidgets lnmachines lnworkers, tvd
(output omitted )

. test lnmachines + lnworkers = 1
(1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 1

chi2( 1) = 331.55
Prob > chi2 = 0.0000

The test statistic is highly significant, so we reject the null hypothesis and conclude that this production
function does not exhibit constant returns to scale.

The previous Wald 2 test indicated that the sum of the coefficients does not equal one. An
alternative is to use lincom to compute the sum explicitly:
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. lincom lnmachines + lnworkers

( 1) [lnwidgets]lnmachines + [lnwidgets]lnworkers = 0
lnwidgets | Coefficient Std. err. z P>|z| [95% conf. intervall
(1) .5849967 .0227918 25.67 0.000 .5403256 .6296677

The sum of the coefficients is significantly less than one, so this production function exhibits decreasing
returns to scale. If we doubled the number of machines and workers, we would obtain less than twice

as much output.
d

Methods and formulas

Continuing from the Methods and formulas section of [XT] xtfrontier, estimates for u;; can be
obtained from the mean or the mode of the conditional distribution f(ule).

— L~ P(—mi)dy) }
E (us | €¢) = i+0'i{~~
(uit | €)= o 1—®(—p/0;)
e =0
M (uit | €) = {07 otherwise
where

2 T; 2
~ _ Moy — S Zt:l Nit€it Ty,

2 Ty 2 2
Uv + Zt:l nitUu

2 2
0,0y

~2
2 Ty 2 2
Uv + Zt:l nitou

These estimates can be obtained from predict newvar, u and predict newvar, m, respectively,

and are calculated by plugging in the estimated parameters.
predict newvar, te produces estimates of the technical-efficiency term. These estimates are

obtained from

_ (1= {smieoi — (1i/ 04)} ~ 1o
E{exp(fsuzt) | Elt} - 1_® (_,Ez/ 51> EXP | —STithi + 5771'#77:

Replacing 7;; = 1 and 1 = 0 in these formulas produces the formulas for the time-invariant models

Also see

[XT] xtfrontier — Stochastic frontier models for panel data

[U] 20 Estimation and postestimation commands



Title

xtgee — GEE population-averaged panel-data models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtgee fits population-averaged panel-data models. In particular, xtgee fits generalized linear
models and allows you to specify the within-group correlation structure for the panels.

Quick start

Population-averaged linear regression of y on x1 and x2
xtgee y x1 x2

Same as above, but estimate time-varying intragroup correlations
xtgee y x1 x2, corr(unstructured)

Same as above, but estimate a common second-order autoregression structure for the within-panel
correlation

xtgee y x1 x2, corr(ar 2)

Population-averaged negative binomial regression of y2 on x3 and x4 equivalent to xtnbreg, pa
xtgee y2 x3 x4, family(nbinomial 1)

Population-averaged logistic regression of y3 on x5 and x6 when y3 is the number of events out of
10 trials

xtgee y3 x5 x6, family(binomial 10)

Menu

Statistics > Longitudinal/panel data > Generalized estimating equations (GEE) > Generalized estimating equations
(GEE)
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Syntax
xtgee depvar [indepvars] [zf] [in] [Weight] [ , options}
options Description
Model
family (family) distribution of depvar
link (/ink) link function
Model 2
exposure (varname) include In(varname) in model with coefficient constrained to 1
offset (varname) include varname in model with coefficient constrained to 1
noconstant suppress constant term
asis retain perfect predictor variables
force estimate even if observations unequally spaced in time
Correlation
corr (correlation) within-group correlation structure
SE/Robust
vce (veetype) vecetype may be conventional, robust, bootstrap, or jackknife
nmp use divisor NV — P instead of the default NV
rgf multiply the robust variance estimate by (N — 1)/(N — P)
scale(parm) overrides the default scale parameter; parm may be x2, dev, phi, or #
Reporting
level (#) set confidence level; default is 1level (95)
eform report exponentiated coefficients
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization
optimize_options control the optimization process; seldom used
nodisplay suppress display of header and coefficients
coeflegend display legend instead of statistics

A panel variable must be specified. Correlation structures other than exchangeable and independent require that a
time variable also be specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4 varname and varlists.

by, collect, mfp, mi estimate, and statsby are allowed; see [U] 11.1.10 Prefix commands.
vce(bootstrap) and vce(jackknife) are not allowed with the mi estimate prefix; see [MI] mi estimate.
iweights, fweights, and pweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.
nodisplay and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Sfamily Description

gaussian Gaussian (normal); family (normal) is a synonym
@us sian inverse Gaussian

Enomial [# | Vamame} Bernoulli/binomial

poisson Poisson

nbinomial [#} negative binomial

gamma gamma

link Link function/definition

identity identity; y =y

log log; In(y)

logit logit; In{y/(1 — y)}, natural log of the odds

probit probit; ®~1(y), where ®() is the normal cumulative distribution
cloglog cloglog; In{—In(1 — )}

power [#] power; y* with k = #; # = 1 if not specified

opovwer [#] odds power; [{y/(1 —y)}* — 1]/k with k = #; # = 1 if not specified
nbinomial negative binomial; In{y/(y + o)}

reciprocal reciprocal; 1/y

correlation Description

exchangeable exchangeable

independent independent

unstructured unstructured

fixed matname
ar #
stationary #

user-specified
autoregressive of order #
stationary of order #

nonstationary # nonstationary of order #

Options
_ (Wogel

family (family) specifies the distribution of depvar; family (gaussian) is the default.

link(/ink) specifies the link function; the default is the canonical link for the family () specified
(except for family (nbinomial)).

_ [Mogel 2]

exposure (varname) and offset(varname) are different ways of specifying the same thing.
exposure() specifies a variable that reflects the amount of exposure over which the depvar
events were observed for each observation; In(varname) with coefficient constrained to be 1 is
entered into the regression equation. offset () specifies a variable that is to be entered directly
into the log-link function with its coefficient constrained to be 1; thus, exposure is assumed to
be e¥¥mame If you were fitting a Poisson regression model, family (poisson) link(log), for
instance, you would account for exposure time by specifying offset () containing the log of
exposure time.
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noconstant specifies that the linear predictor has no intercept term, thus forcing it through the origin
on the scale defined by the link function.

asis forces retention of perfect predictor variables and their associated, perfectly predicted observations
and may produce instabilities in maximization; see [R] probit. This option is only allowed with
option family(binomial) with a denominator of 1.

force specifies that estimation be forced even though the time variable is not equally spaced.
This is relevant only for correlation structures that require knowledge of the time variable. These
correlation structures require that observations be equally spaced so that calculations based on lags
correspond to a constant time change. If you specify a time variable indicating that observations
are not equally spaced, the (time dependent) model will not be fit. If you also specify force,
the model will be fit, and it will be assumed that the lags based on the data ordered by the time
variable are appropriate.

. [correlation |

corr (correlation) specifies the within-group correlation structure; the default corresponds to the
equal-correlation model, corr (exchangeable).

When you specify a correlation structure that requires a lag, you indicate the lag after the structure’s
name with or without a blank; for example, corr(ar 1) or corr(arl).

If you specify the fixed correlation structure, you specify the name of the matrix containing the
assumed correlations following the word fixed, for example, corr(fixed myr).

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
and that use bootstrap or jackknife methods (bootstrap, jackknife); see [XT] vce_options.

vce (conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

vce (robust) specifies that the Huber/White/sandwich estimator of variance is to be used in place
of the default conventional variance estimator (see Methods and formulas below). Use of this
option causes xtgee to produce valid standard errors even if the correlations within group are not
as hypothesized by the specified correlation structure. Under a noncanonical link, it does, however,
require that the model correctly specifies the mean. The resulting standard errors are thus labeled
“semirobust” instead of “robust” in this case. Although there is no vce (cluster clustvar) option,
results are as if this option were included and you specified clustering on the panel variable.

nmp; see [XT] vce_options.

rgf specifies that the robust variance estimate is multiplied by (N — 1)/(N — P), where N is the
total number of observations and P is the number of coefficients estimated. This option can be
used only with family (gaussian) when vce(robust) is either specified or implied by the use
of pweights. Using this option implies that the robust variance estimate is not invariant to the
scale of any weights used.

scale(x2|dev |phi|#); see [XT] vce_options.

Reporting

level (#); see [R] Estimation options.
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eform displays the exponentiated coefficients and corresponding standard errors and confidence
intervals as described in [R] Maximize. For family(binomial) link(logit) (that is, logistic
regression), exponentiation results in odds ratios; for family(poisson) link(log) (that is,
Poisson regression), exponentiated coefficients are incidence-rate ratios.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Optimization

optimize_options control the iterative optimization process. These options are seldom used.

iterate(#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1le-6) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] set ifer.

trace specifies that the current estimates be printed at each iteration.

The following options are available with xtgee but are not shown in the dialog box:
nodisplay is for programmers. It suppresses display of the header and coefficients.

coeflegend; see [R] Estimation options.

Remarks and examples

For a thorough introduction to GEE in the estimation of GLM, see Hardin and Hilbe (2013). More
information on linear models is presented in Nelder and Wedderburn (1972). Finally, there have
been several illuminating articles on various applications of GEE in Zeger, Liang, and Albert (1988);
Zeger and Liang (1986), and Liang (1987). Pendergast et al. (1996) surveys the current methods for
analyzing clustered data in regard to binary response data. Our implementation follows that of Liang
and Zeger (1986).

xtgee fits generalized linear models of y;; with covariates X;;
Q{E (yzt)} = xit03, y ~ F with parameters 6;;

fori=1,...,mand t=1,...,n;, where there are n; observations for each group identifier 7. g()
is called the link function, and F is the distributional family. Substituting various definitions for g()
and F' results in a wide array of models. For instance, if y;; is distributed Gaussian (normal) and
g() is the identity function, we have

E(yit) = xitf3, y~ N()

yielding linear regression, random-effects regression, or other regression-related models, depending
on what we assume for the correlation structure.

If g() is the logit function and y;; is distributed Bernoulli (binomial), we have

logit{E(yit)} = xi[3, y ~ Bernoulli
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or logistic regression. If g(-) is the natural log function and y;; is distributed Poisson, we have

In{E(yi)} = xi3, y ~ Poisson

or Poisson regression, also known as the log-linear model. Other combinations are possible.

You specify the link function with the 1ink() option, the distributional family with family(),
and the assumed within-group correlation structure with corr ().

The binomial distribution can be specified as case 1 family (binomial), case 2 family(binomial
#), or case 3 family (binomial varname). In case 2, # is the value of the binomial denominator N,
the number of trials. Specifying family (binomial 1) is the same as specifying family (binomial);
both mean that y has the Bernoulli distribution with values 0 and 1 only. In case 3, varname is
the variable containing the binomial denominator, thus allowing the number of trials to vary across
observations.

The negative binomial distribution must be specified as family(nbinomial #), where # denotes
the value of the parameter « in the negative binomial distribution. The results will be conditional on
this value.

You do not have to specify both family () and 1ink(); the default 1ink () is the canonical link
for the specified family () (excluding family(nbinomial)):

Family Default link
family (binomial) link(logit)
family (gamma) link(reciprocal)
family(gaussian) link(identity)
family(igaussian) link(power -2)
family(nbinomial) link(log)
family(poisson) link(log)

The canonical link for the negative binomial family is obtained by specifying 1ink (nbinomial). If
you specify both family () and 1ink(), not all combinations make sense. You may choose among
the following combinations:

Gaussian  Inverse  Binomial Poisson Negative Gamma

Gaussian Binomial

Identity X X X X X X
Log X X X X X X
Logit X

Probit X

C. log-log X

Power X X X X X X
Odds Power X

Neg. binom. X
Reciprocal X X X X

You specify the assumed within-group correlation structure with the corr() option.

For example, call R the working correlation matrix for modeling the within-group correlation, a
square max{n;} X max{n;} matrix. corr() specifies the structure of R. Let R; s denote the ¢, s
element.

The independent structure is defined as

Rt9:

58

{ 1 ift=s
0 otherwise
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The corr(exchangeable) structure (corresponding to equal-correlation models) is defined as

1 ift=s
Ris = { p otherwise

The corr(ar g) structure is defined as the usual correlation matrix for an AR(g) model. This is
sometimes called multiplicative correlation. For example, an AR(1) model is given by

1 ift=s
R¢s = {pt—s otherwise

The corr(stationary g) structure is a stationary(g) model. For example, a stationary(1) model
is given by
1 ift=s
Ris=4qp ifft—s/=1
0 otherwise

The corr(nonstationary g) structure is a nonstationary(g) model that imposes only the con-
straints that the elements of the working correlation matrix along the diagonal be 1 and the elements
outside the gth band be zero,

1 ift=s
Rt,s - Pts if 0 < |t — S| S g, Pts = Pst
0 otherwise

corr (unstructured) imposes only the constraint that the diagonal elements of the working
correlation matrix be 1.
1 ift=s
R, = {

’ pis otherwise, pis = pst
The corr(fixed matname) specification is taken from the user-supplied matrix, such that

R = matname

Here the correlations are not estimated from the data. The user-supplied matrix must be a valid
correlation matrix with 1s on the diagonal.

Full formulas for all the correlation structures are provided in the Methods and formulas below.

Q Technical note

Some family(), 1ink(), and corr () combinations result in models already fit by Stata:

family () link() corr() Other Stata estimation command
gaussian identity independent regress

gaussian identity exchangeable xtreg, re

gaussian identity exchangeable xtreg, pa

binomial cloglog independent cloglog (see note 1)
binomial cloglog exchangeable xtcloglog, pa

binomial logit independent logit or logistic

binomial logit exchangeable xtlogit, pa

binomial probit independent probit (see note 2)

binomial probit exchangeable xtprobit, pa

nbinomial log independent nbreg (see note 3)

poisson log independent poisson

poisson log exchangeable xtpoisson, pa

gamma log independent streg, dist(exp) nohr (see note 4)
family link independent glm, irls (see note 5)
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Notes:

1. For cloglog estimation, xtgee with corr(independent) and cloglog (see [R] cloglog) will
produce the same coefficients, but the standard errors will be only asymptotically equivalent because
cloglog is not the canonical link for the binomial family.

2. For probit estimation, xtgee with corr(independent) and probit will produce the same
coefficients, but the standard errors will be only asymptotically equivalent because probit is not
the canonical link for the binomial family. If the binomial denominator is not 1, the equivalent
maximum-likelihood command is glm with options family (binomial #) or family(binomial
varname) and link(probit); see [R] probit and [R] glm.

3. Fitting a negative binomial model by using xtgee (or using glm) will yield results conditional on
the specified value of a. The nbreg command, however, estimates that parameter and provides
unconditional estimates; see [R] nbreg.

4. xtgee with corr(independent) can be used to fit exponential regressions, but this requires
specifying scale(1). As with probit, the xtgee-reported standard errors will be only asymptotically
equivalent to those produced by streg, dist(exp) nohr (see [ST] streg) because log is not
the canonical link for the gamma family. xtgee cannot be used to fit exponential regressions on
censored data.

Using the independent correlation structure, the xtgee command will fit the same model fit
with the glm, irls command if the family—link combination is the same.

5. If the xtgee command is equivalent to another command, using corr (independent) and the
vce(robust) option with xtgee corresponds to using the vce (cluster clustvar) option in the

equivalent command, where clustvar corresponds to the panel variable. a

xtgee is a generalization of the glm, irls command and gives the same output when the same
family and link are specified together with an independent correlation structure. What makes xtgee
useful is

o the number of statistical models that it generalizes for use with panel data, many of which are not
otherwise available in Stata;

e the richer correlation structure xtgee allows, even when models are available through other xt
commands; and

e the availability of robust standard errors (see [U] 20.22 Obtaining robust variance estimates),
even when the model and correlation structure are available through other xt commands.

In the following examples, we illustrate the relationships of xtgee with other Stata estimation
commands. Remember that, although xtgee generalizes many other commands, the computational
algorithm is different; therefore, the answers you obtain will not be identical. The dataset we are
using is a subset of the nlswork data (see [XT] xt); we are looking at observations before 1980.
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> Example 1

We can use xtgee to perform ordinary least squares by regress:

. use https://www.stata-press.com/data/r18/nlswork2
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. regress ln_w grade age c.age#c.age

Source SS df MS Number of obs = 16,085
F(3, 16081) = 1413.68
Model 597 .54468 3 199.181566 Prob > F = 0.0000
Residual 2265.74584 16,081 .14089583  R-squared = 0.2087
Adj R-squared = 0.2085
Total 2863.29052 16,084 .178021047 Root MSE .37536
ln_wage | Coefficient Std. err. t P>t [95% conf. intervall
grade .0724483 .0014229 50.91  0.000 .0696592 .0752374
age .1064874 .0083644 12.73  0.000 .0900922 .1228825
c.age#c.age -.0016931 .0001655 -10.23  0.000 -.0020174 -.0013688
_cons -.8681487 .1024896 -8.47  0.000 -1.06904 -.6672577
. xtgee ln_w grade age c.age#ic.age, corr(indep) nmp
Iteration 1: Tolerance = 8.684e-13
GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: independent avg = 4.1
max = 9
Wald chi2(3) = 4241.04
Scale parameter = .1408958 Prob > chi2 = 0.0000
Pearson chi2(16081) = 2265.75 Deviance = 2265.75
Dispersion (Pearson) = .1408958 Dispersion = .1408958
1n_wage | Coefficient Std. err. z P>|z| [95% conf. intervall
grade .0724483 .0014229 50.91  0.000 .0696594 .0752372
age .1064874 .0083644 12.73  0.000 .0900935 .1228812
c.age#c.age -.0016931 .0001655 -10.23  0.000 -.0020174 -.0013688
_cons -.8681487 .1024896 -8.47  0.000 -1.069025 -.6672728

When nmp is specified, the coefficients and the standard errors produced by the estimators are the
same. Moreover, the scale parameter estimate from the xtgee command equals the MSE calculation
from regress; both are estimates of the variance of the residuals.

d
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> Example 2

The identity link and Gaussian family produce regression-type models. With the independent
correlation structure, we reproduce ordinary least squares. With the exchangeable correlation structure,
we produce an equal-correlation linear regression estimator.

xtgee, fam(gauss) link(ident) corr(exch) is asymptotically equivalent to the weighted-GLS
estimator provided by xtreg, re and to the full maximum-likelihood estimator provided by xtreg,
mle. In balanced data, xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle produce
the same results. With unbalanced data, the results are close but differ because the two estimators
handle unbalanced data differently. For both balanced and unbalanced data, the results produced by
xtgee, fam(gauss) link(ident) corr(exch) and xtreg, mle differ from those produced by
xtreg, re. Below we demonstrate the use of the three estimators with unbalanced data. We begin
with xtgee; show the maximum likelihood estimator xtreg, mle; show the GLS estimator xtreg,
re; and finally show xtgee with the vce(robust) option.

. xtgee ln_w grade age c.age#c.age, nolog

GEE population-averaged model Number of obs = 16,085

Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:

Link: Identity min = 1

Correlation: exchangeable avg = 4.1

max = 9

Wald chi2(3) = 2918.26

Scale parameter = .1416586 Prob > chi2 = 0.0000

In_wage | Coefficient Std. err. z P>|z| [95% conf. intervall

grade .0717731 .00211 34.02 0.000 .0676377 .0759086

age .1077645 .006885 15.65  0.000 .0942701 .1212589

c.age#c.age -.0016381 .0001362 -12.03  0.000 -.001905  -.0013712

_cons -.9480449 .0869277 -10.91  0.000 -1.11842  -.7776698
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. xtreg ln_w grade age c.age#c.age, mle

Fitting constant-only model:

Iteration 0: Log likelihood = -5868.3483
Iteration 1: Log likelihood = -5858.8833
Iteration 2: Log likelihood = -5858.8244
Fitting full model:
Iteration 0: Log likelihood = -4591.9241
Iteration 1: Log likelihood = -4562.4406
Iteration 2: Log likelihood = -4562.3526
Iteration 3: Log likelihood = -4562.3525
Random-effects ML regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 4.1
max = 9
LR chi2(3) = 25692.94
Log likelihood = -4562.3525 Prob > chi2 = 0.0000
1n_wage Coefficient Std. err. z P>|z]| [95% conf. intervall
grade .0717747 .002142 33.51 0.000 .0675765 .075973
age .1077899 .0068266 15.79  0.000 .0944101 .1211697
c.age#c.age -.0016364 .000135 -12.12  0.000 -.0019011  -.0013718
_cons -.9500833 .086384 -11.00 0.000 -1.119393  -.7807737
/sigma_u .2689639 .0040854 .2610748 .2770915
/sigma_e .2669944 .0017113 .2636613 .2703696
rho .5036748 .0086449 .4867329 .52061

LR test of sigma_u=0: chibar2(01) = 4996.22

Prob >= chibar2 = 0.000
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. xtreg ln_w grade age c.age#c.age, re

Random-effects GLS regression Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
R-squared: Obs per group:
Within = 0.0983 min = 1
Between = 0.2946 avg = 4.1
Overall = 0.2076 max = 9
Wald chi2(3) = 2875.02
corr(u_i, X) = 0 (assumed) Prob > chi2 = 0.0000
1n_wage | Coefficient Std. err. z P>|z| [95% conf. intervall
grade .0717757 .0021666 33.13  0.000 .0675294 .0760221
age .1078042 .0068125 15.82  0.000 .0944519 .1211566
c.age#c.age -.0016355 .0001347 -12.14  0.000 -.0018996 -.0013714
_cons -.9512118 .0863139 -11.02  0.000 -1.120384  -.7820397
sigma_u .27383747
sigma_e .26624266
rho .51405959  (fraction of variance due to u_i)
. xtgee ln_w grade age c.age#c.age, vce(robust) nolog
GEE population-averaged model Number of obs = 16,085
Group variable: idcode Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: exchangeable avg = 4.1
max = 9
Wald chi2(3) = 2031.28
Scale parameter = .1416586 Prob > chi2 = 0.0000
(Std. err. adjusted for clustering on idcode)
Robust
ln_wage | Coefficient std. err. z P>|z| [95% conf. intervall
grade .0717731 .0023341 30.75 0.000 .0671983 .0763479
age .1077645 .0098097 10.99  0.000 .0885379 .1269911
c.age#c.age -.0016381 .0001964 -8.34 0.000 -.002023 -.0012532
_cons -.9480449 .1195009 -7.93 0.000 -1.182262 -.7138274

In [R] regress, regress, vce(cluster clustvar) may produce inefficient coefficient estimates
with valid standard errors for random-effects models. These standard errors are robust to model
misspecification. The vce(robust) option of xtgee, on the other hand, requires that the model
correctly specify the mean and the link function when the noncanonical link is used.

N



180 xtgee — GEE population-averaged panel-data models

Stored results

xtgee stores the following in e():

Scalars
e(N)
e(N_g)
e(df_m)
e(chi2)
e(p)
e(df_pear)
e(chi2_dev)
e(chi2_dis)
e(deviance)
e(dispers)
e(phi)
e(g-_min)
e(g_avg)
e(g_max)
e(tol)
e(dif)
e(rank)
e(rc)
Macros
e(cmd)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e (model)
e(family)
e(link)
e(corr)
e(scale)
e(wtype)
e (wexp)
e(offset)
e(chi2type)
e(vce)
e(vcetype)
e (nmp)
e(properties)
e(estat_cmd)
e(predict)
e(marginsnotok)
e(asbalanced)
e (asobserved)
Matrices
e(b)
e(R)
e (V)
e(V_modelbased)
Functions
e(sample)

number of observations
number of groups

model degrees of freedom

X2

p-value for model test
degrees of freedom for Pearson x?2
x2 test of deviance

x? test of deviance dispersion
deviance

deviance dispersion

scale parameter

smallest group size

average group size

largest group size

target tolerance

achieved tolerance

rank of e (V)

return code

xtgee

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
pa

distribution family

link function

correlation structure

x2, dev, phi, or #; scale parameter
weight type

weight expression

linear offset variable

Wald; type of model x? test

veetype specified in vce()

title used to label Std. err.

nmp, if specified

bV

program used to implement estat
program used to implement predict
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector

estimated working correlation matrix
variance—covariance matrix of the estimators
model-based variance

marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table)

matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas

Methods and formulas are presented under the following headings:

Introduction

Calculating GEE for GLM
Correlation structures
Nonstationary and unstructured

Introduction

xtgee fits generalized linear models for panel data with the GEE approach described in Liang
and Zeger (1986). A related method, referred to as GEE2, is described in Zhao and Prentice (1990)
and Prentice and Zhao (1991). The GEE2 method attempts to gain efficiency in the estimation of
3 by specifying a parametric model for « and then assumes that the models for both the mean
and dependency parameters are correct. Thus there is a tradeoff in robustness for efficiency. The
preliminary work of Liang, Zeger, and Qaqish (1992), however, indicates that there is little efficiency
gained with this alternative approach.

In the GLM approach (see McCullagh and Nelder [1989]), we assume that

h(mi ;)
Var(yz ) = (um)
E(yi) = (b7 (x10), ... h7 (@, )}
A; = diag{g(pi); - - ag(ui,m)}
Cov(y;) = ¢A; for independent observations.

In the absence of a convenient likelihood function with which to work, we can rely on a multivariate
analog of the quasiscore function introduced by Wedderburn (1974):

m

T
Sg(B, @) = Z (%’g) Var(y:) ™' (yi — p;) =0

We can solve for correlation parameters o by simultaneously solving

Sattie) = 30 (20) a1 (W, ) =0

i=1

In the GEE approach to GLM, we let R; () be a “working” correlation matrix depending on the
parameters in o (see the Correlation structures section for the number of parameters), and we estimate
3 by solving the GEE,

m T
v =Y (%) Vit~ uo =0

where V;(a) = A1/2RZ(Q)A;/2
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To solve this equation, we need only a crude approximation of the variance matrix, which we can
obtain from a Taylor series expansion, where

Cov(y:) = LiZD,ZIL; + ¢A; =V,
L; = diag{oh™*(u)/Ou,u = m%,&j =1,...,n;}

which allows that

Di~ (212:) 2L {(vi — ) (vi — )" - A} L' 2T (2Z) !

o s iy — iy)® — (Liy)?Z28DiZ
¢ = Z Z 9(fiis)
i=1 j=1 i
Calculating GEE for GLM
Using the notation from Liang and Zeger (1986), let y; = (vi.1, - - - ,yimi)T be the n; X 1 vector
of outcome values, and let X; = (2,1, ... 7xi,ni)T be the n; X p matrix of covariate values for the
tth subject ¢ = 1, ..., m. We assume that the marginal density for y; ; may be written in exponential

family notation as

f(yi5) = exp[{yi,;0:,; — al0i ) + b(yi,;)} 4]

where 6, ; = h(n;,;),7:,; = ®; ;0. Under this formulation, the first two moments are given by
B(yig) = a'(0i),  Var(yi;) = a”(6:;)/¢

In what follows, we let n; = n without loss of generality. We define the quantities, assuming that
we have an n X n working correlation matrix R(a),

A; = diag(df; j/dn; ;) n x n matrix
A; = diag{a”(0; )} n X n matrix

Si=y;—ad(6,) n x 1 matrix
D, = A A X, n X p matrix
V,; = Ag/QR(oz)A%/2 n X n matrix
such that the GEE becomes .
> DIv;'s; =
i=1

We then have that
m -1 m
R NI AL YCA B PO HE R CEAY

where the term
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is what we call the conventional variance estimate. It is used to calculate the standard errors if
the vce(robust) option is not specified. This command supports the clustered version of the
Huber/White/sandwich estimator of the variance with panels treated as clusters when vce (robust)
is specified. See [P] _robust, particularly Maximum likelihood estimators and Methods and formulas.
Liang and Zeger (1986) also discuss the calculation of the robust variance estimator.

Define the following:

D= (Df,...,D})
S=(s],...,sHT

V = nm X nm block diagonal matrix with \Z
Z=Dp-S

At a given iteration, the correlation parameters c and scale parameter ¢ can be estimated from the
current Pearson residuals, defined by

Pig = {yig — d' (01} {a" (0;,;)}/>

where 0; ; depends on the current value for 3. We can then estimate ¢ by

1= 3 72N - p)

i=1 j=1

As this general derivation is complicated, let’s follow the derivation of the Gaussian family with
the identity link (regression) to illustrate the generalization. After making appropriate substitutions,
we will see a familiar updating equation. First, we rewrite the updating equation for 3 as

~ ~

/6j+1 = /8]' - Z1_1Z2

and then derive Z; and Zs.

m

Z, =Y DI@)V'(B)Di(B;) = > XTATAT{A*R()A}*} 1 AAX;
=1

i=1
= i XT diag {
i=1

00, ;
diag {a” (0; ;) } diag { 8(Xg) } X

= > XTI IX; = Y XX =XTX

i=1 i=1

8072.,]' . 1" . " 1/2 . " 1/2 1
a(Xﬁ)}dmg {a"(6;;)} [dmg{a (0:,)} " R(e) diag {a” (6, ;)} }
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Z,=> DI (B)V;'(B)SiB) = > XIATAT{A*R(a)A}*} (vi - XiB) )
=1 i=1

1

= Z X! diag { 8??&;3) } diag {a"(0; )} [diag ~{(1”(91-J-)]~1/2 R(a) diag {a”(@iﬁj)}l/ﬂ -
i1

(v x5)
m m
=Y XTI "y - XiB)) = Y X[ (yi — X8)) = X",
=1 i=1
So, we may write the update formula as
Bin =B — (XTX)7IXT5;

which is the same formula for GLS in regression.

Correlation structures

The working correlation matrix R is a function of a and is more accurately written as R(c).
Depending on the assumed correlation structure, c¢ might be

Independent no parameters to estimate
Exchangeable « is a scalar
Autoregressive o is a vector
Stationary o is a vector
Nonstationary « is a matrix
Unstructured o 1S a matrix

Also, throughout the estimation of a general unbalanced panel, it is more proper to discuss R;, which
is the upper left n; x n; submatrix of the ultimately stored matrix in e (R), max{n;} X max{n;}.

The only panels that enter into the estimation for a lag-dependent correlation structure are those
with n; > g (assuming a lag of g). xtgee drops panels with too few observations (and mentions
when it does so).

Independent

The working correlation matrix R is an identity matrix.

Exchangeable

o =

doimy Ani(ni — 1)} o ng

and the working correlation matrix is given by

1 s=t
R, — { .
8t o otherwise

S (5 SR P — 5, 7)) /2?11 (Zye72)
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Autoregressive and stationary

These two structures require g parameters to be estimated so that « is a vector of length g + 1
(the first element of « is 1).

m ni 2 ni—l~ ~ ni—g =~ m L))
o — Z 23:1 Tij Zj:l 74,574,541 Zj:l T4,574,549 Z Zj:l T
- b b AR b

g g % i

i=1 i=1
The working correlation matrix for the AR model is calculated as a function of Toeplitz matrices
formed from the o vector; see Newton (1988). The working correlation matrix for the stationary
model is given by
R,, — {041,\54\ if |s —.t| <g
’ 0 otherwise

Nonstationary and unstructured

These two correlation structures require a matrix of parameters. « is estimated (where we replace
7i,; = 0 whenever ¢ > n; or j > n;) as

—1~2 —1a —1a
N1,17"i,1 N1,2 Tiiri2 o Nl,nTz.,lTw
m —la 2 —122 —1x = m n; 2
Ny Tiorin Ny Ty Ny nTi2Tin Z_j:l Tij
a:E m E —_—
. : : - : ‘ n;
i=1 . . . . =1
71/\ A, 71/\ A. ... _1/\2
Nn,lrhnirhl N’rL,er,nirl,2 Nn,nri,n

where N, , = >.7", I(i,p,q) and

7=

I(i,p,q) = { 1 if panel ¢ has valid observations at times p and q
e 0 otherwise

where N;; = min(N;,N;), N; = number of panels observed at time 4, and n =
max(ny,ng, ..., Ny).

The working correlation matrix for the nonstationary model is given by

1 if s=t
Riit=1 a,; ifO<|s—t/<g
0 otherwise

The working correlation matrix for the unstructured model is given by

1 ifs=t
Rt = {as}t otherwise

such that the unstructured model is equal to the nonstationary model at lag g = n — 1, where the
panels are balanced with n; = n for all 3.
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Also see
[XT] xtgee postestimation — Postestimation tools for xtgee
[XT] xtcloglog — Random-effects and population-averaged cloglog models
[XT] xtlogit — Fixed-effects, random-effects, and population-averaged logit models
[XT] xtnbreg — Fixed-effects, random-effects, & population-averaged negative binomial models
[XT] xtpoisson — Fixed-effects, random-effects, and population-averaged Poisson models
[XT] xtprobit — Random-effects and population-averaged probit models
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models™
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance
[XT] xtset — Declare data to be panel data
[MI] Estimation — Estimation commands for use with mi estimate
[R] glm — Generalized linear models
[R] logistic — Logistic regression, reporting odds ratios
[R] regress — Linear regression

[U] 20 Estimation and postestimation commands



Title

xtgee postestimation — Postestimation tools for xtgee

Postestimation commands predict margins estat
Remarks and examples Also see

Postestimation commands

The following postestimation command is of special interest after xtgee:

Command Description

estat wcorrelation estimated matrix of the within-group correlations

The following standard postestimation commands are also available:

Command Description

contrast contrasts and ANOVA-style joint tests of estimates

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

*forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict means, rates, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

*forecast is not appropriate with mi estimation results.

188
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predict

Description for predict

predict creates a new variable containing predictions such as predicted values, probabilities,
linear predictions, standard errors, and the equation-level score.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, statistic nooffset]

statistic Description
Main
mu predicted value of depvar; considers the offset () or exposure(); the default
rate predicted value of depvar
pr(n) probability Pr(y;; = n) for family(poisson) link(log)
pr(a,b) probability Pr(a < y;; < b) for family(poisson) link(log)
xb linear prediction
stdp standard error of the linear prediction
score first derivative of the log likelihood with respect to x;:3
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.

Options for predict
Main

mu, the default, and rate calculate the predicted value of depvar. mu takes into account the offset ()
or exposure() together with the denominator if the family is binomial; rate ignores those
adjustments. mu and rate are equivalent if you did not specify offset () or exposure() when
you fit the xtgee model and you did not specify family(binomial #) or family(binomial
varname), meaning the binomial family and a denominator not equal to one.

Thus mu and rate are the same for family (gaussian) link(identity).

mu and rate are not equivalent for family(binomial pop) link(logit). Then mu would
predict the number of positive outcomes and rate would predict the probability of a positive
outcome.

mu and rate are not equivalent for family (poisson) link(log) exposure(time). Then mu
would predict the number of events given exposure time and rate would calculate the incidence
rate—the number of events given an exposure time of 1.

pr(n) calculates the probability Pr(y;; = n) for family(poisson) link(log), where n is a
nonnegative integer that may be specified as a number or a variable.
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pr(a,b) calculates the probability Pr(a < y;; < b) for family(poisson) link(log), where a
and b are nonnegative integers that may be specified as numbers or variables;

b missing (b > .) means +00;

pr(20,.) calculates Pr(y;; > 20);

pr(20,b) calculates Pr(y;; > 20) in observations for which b > . and calculates
Pr(20 < y;; < b) elsewhere.

pr(.,b) produces a syntax error. A missing value in an observation of the variable a causes a
missing value in that observation for pr(a,b).

xb calculates the linear prediction.
stdp calculates the standard error of the linear prediction.
score calculates the equation-level score, u;; = Oln L(x;:3)/0(x::3).

nooffset is relevant only if you specified offset(varname), exposure(varname), fam-
ily(binomial #), or family(binomial varname) when you fit the model. It modifies the
calculations made by predict so that they ignore the offset or exposure variable and the binomial
denominator. Thus predict ..., munooffset produces the same results as predict ..., rate.

margins

Description for margins

margins estimates margins of response for predicted values, probabilities, and linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
mu predicted value of depvar; considers the offset () or exposure(); the default
rate predicted value of depvar
pr(n) probability Pr(y;; = n) for family(poisson) link(log)
pr(a,b) probability Pr(a < y;; < b) for family(poisson) link(log)
xb linear prediction
stdp not allowed with margins
score not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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estat

Description for estat

estat wcorrelation displays the estimated matrix of the within-group correlations.

Menu for estat

Statistics > Postestimation

Syntax for estat

estat wcorrelation [, compact format (%ﬁm)]

collect is allowed with estat wcorrelation; see [U] 11.1.10 Prefix commands.

Options for estat
compact specifies that only the parameters (alpha) of the estimated matrix of within-group correlations
be displayed rather than the entire matrix.

format (% fimt) overrides the display format; see [D] format.

Remarks and examples

> Example 1

xtgee can estimate rich correlation structures. In example 2 of [XT] xtgee, we fit the model

. use https://www.stata-press.com/data/r18/nlswork2
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtgee ln_w grade age c.age#c.age
(output omitted )

After estimation, estat wcorrelation reports the working correlation matrix R:

. estat wcorrelation

Estimated within-idcode correlation matrix R:

cl c2 c3 c4 cb c6
rl 1
r2 .4851356 1
r3 .4851356 .4851356 1
rd .4851356 .4851356 .4851356 1
r5 .4851356 .4851356 .4851356 .4851356 1
ré .4851356 .4851356 .4851356 .4851356 .4851356 1
r7 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r8 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
r9 .4851356 .4851356 .4851356 .4851356 .4851356 .4851356
c7 c8 c9
r7 1
r8 .4851356 1
r9 .4851356 .4851356 1
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The equal-correlation model corresponds to an exchangeable correlation structure, meaning that the
correlation of observations within person is a constant. The working correlation estimated by xtgee
is 0.4851. (xtreg, re, by comparison, reports 0.5141; see the xtreg command in example 2 of
[XT] xtgee.) We constrained the model to have this simple correlation structure. What if we relaxed
the constraint? To go to the other extreme, let’s place no constraints on the matrix (other than its being
symmetric). We do this by specifying correlation(unstructured), although we can abbreviate

the option.

. xtgee 1ln_w grade age c.age#c.age, corr(unstructured) nolog

GEE population-averaged model Number of obs = 16,085
Group and time vars: idcode year Number of groups = 3,913
Family: Gaussian Obs per group:
Link: Identity min = 1
Correlation: unstructured avg = 4.1
max = 9
Wald chi2(3) = 2405.20
Scale parameter = .1418513 Prob > chi2 = 0.0000
ln_wage | Coefficient Std. err. z P>|z| [95% conf. intervall
grade .0720684 .002151 33.50 0.000 .0678525 .0762843
age .1008095 .0081471 12.37  0.000 .0848416 .1167775
c.age#c.age -.0015104 .0001617 -9.34 0.000 -.0018272  -.0011936
_cons -.8645484 .1009488 -8.56  0.000 -1.062404 -.6666923
. estat wcorrelation
Estimated within-idcode correlation matrix R:
cl c2 c3 c4 cb c6
rl 1
r2 .4354838 1
r3 .4280248 .5597329 1
r4 .3772342 .5012129 .5475113 1
r5 .4031433 .5301403 .502668 .6216227 1
ré . 3663686 .4519138 .4783186 .5685009 .7306005 1
r7 .2819915 .3605743 .3918118 .4012104 .4642561 .50219
r8 .3162028 .3445668 .4285424 .4389241 .4696792 .5222537
r9 .2148737 .3078491 .3337292 .3584013 .4865802 .4613128
c7 c8 c9
r7 1
r8 .6475654 1
r9 .5791417 . 7386595 1

This correlation matrix looks different from the previously constrained one and shows, in particular,
that the serial correlation of the residuals diminishes as the lag increases, although residuals separated

by small lags are more correlated than, say, AR(1) would imply.

> Example 2

In example 1 of [XT] xtprobit, we showed a random-effects model of unionization using the union
data described in [XT] xt. We performed the estimation using xtprobit but said that we could have
used xtgee as well. Here we fit a population-averaged (equal correlation) model for comparison:

4
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. use https://www.stata-press.com/data/r18/union
(NLS Women 14-24 in 1968)

. xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)

Iteration 1: Tolerance = .12544249
Iteration 2: Tolerance = .0034686
Iteration 3: Tolerance = .00017448
Iteration 4: Tolerance = 8.382e-06
Iteration 5: Tolerance = 3.997e-07

GEE population-averaged model Number of obs = 26,200
Group variable: idcode Number of groups = 4,434
Family: Binomial Obs per group:
Link: Probit min = 1
Correlation: exchangeable avg = 5.9
max = 12
Wald chi2(6) = 242.57
Scale parameter = 1 Prob > chi2 = 0.0000
union | Coefficient Std. err. z P>|z| [95% conf. intervall
age .0089699 .0053208 1.69 0.092 -.0014586 .0193985
grade .0333174 .0062352 5.34 0.000 .0210966 .0455382
1.not_smsa -.0715717 .027543 -2.60 0.009 -.1255551 -.0175884
1.south -1.017368 .207931 -4.89 0.000 -1.424905 -.6098308
year -.0062708 .0055314 -1.13  0.257 -.0171122 .0045706
south#c.year
1 .0086294 .00258 3.34 0.001 .0035727 .013686
_cons -.8670997 .294771 -2.94 0.003 -1.44484  -.2893592
Let’s look at the correlation structure and then relax it:
. estat wcorrelation, format(%8.4f)
Estimated within-idcode correlation matrix R:
cl c2 c3 c4 chb c6 c7
rl 1.0000
r2 0.4615 1.0000
r3 0.4615 0.4615 1.0000
r4 0.4615 0.4615 0.4615 1.0000
r5 0.4615 0.4615 0.4615 0.4615 1.0000
r6 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r7 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 1.0000
r8 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
r9 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
rl0 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
ri1 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
ri2 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615 0.4615
c8 c9 c10 cl1 cl2
r8 1.0000
r9 0.4615 1.0000
r10 0.4615 0.4615 1.0000
ri1 0.4615 0.4615 0.4615 1.0000
ri2 0.4615 0.4615 0.4615 0.4615 1.0000

We estimate the fixed correlation between observations within person to be 0.4615. We have many
data (an average of 5.9 observations on 4,434 women), so estimating the full correlation matrix is
feasible. Let’s do that and then examine the results:
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. Xtgee union age grade i.not_smsa south##c.year, family(binomial) link(probit)
> corr(unstructured) nolog

GEE population-averaged model Number of obs = 26,200
Group and time vars: idcode year Number of groups = 4,434
Family: Binomial Obs per group:
Link: Probit min = 1
Correlation: unstructured avg = 5.9
max = 12
Wald chi2(6) = 198.45
Scale parameter = 1 Prob > chi2 = 0.0000
union | Coefficient Std. err. z P>|z| [95% conf. intervall
age .0096612 .0053366 1.81 0.070 -.0007984 .0201208
grade .0352762 .0065621 5.38 0.000 .0224148 .0481377
1.not_smsa -.093073 .0291971 -3.19 0.001 -.1502983  -.0358478
1.south -1.028526 .278802 -3.69 0.000 -1.574968  -.4820839
year -.0088187 .005719 -1.54 0.123 -.0200278 .0023904
south#c.year
1 .0089824 .0034865 2.58 0.010 .002149 .0158158
_cons -.7306192 .316757 -2.31 0.021 -1.351451 -.109787
. estat wcorrelation, format(%8.4f)
Estimated within-idcode correlation matrix R:
cl c2 c3 c4 cb cé c7
rl 1.0000
r2 0.6667 1.0000
r3 0.6151 0.6523 1.0000
rd 0.5268 0.5717 0.6101 1.0000
r5 0.3309 0.3669 0.4005 0.4783 1.0000
ré 0.3000 0.3706 0.4237 0.4562 0.6426 1.0000
r7 0.2995 0.3568 0.3851 0.4279 0.4931 0.6384 1.0000
r8 0.2759 0.3021 0.3225 0.3751 0.4682 0.5597 0.7009
r9 0.2989 0.2981 0.3021 0.3806 0.4605 0.5068 0.6090
r10 0.2285 0.2597 0.2748 0.3637 0.3981 0.4909 0.5889
ri1 0.2325 0.2289 0.2696 0.3246 0.3551 0.4426 0.5103
ri2 0.2359 0.2351 0.2544 0.3134 0.3474 0.3822 0.4788
c8 c9 c10 clil cl2
r8 1.0000
r9 0.6714 1.0000
r10 0.5973 0.6325 1.0000
ri1 0.5625 0.5756 0.5738 1.0000
ri2 0.4999 0.5412 0.5329 0.6428 1.0000

As before, we find that the correlation of residuals decreases as the lag increases, but more slowly
than an AR(1) process. q
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> Example 3

In this example, we examine injury incidents among 20 airlines in each of 4 years. The data are
fictional, and, as a matter of fact, are really from a random-effects model.

. use https://www.stata-press.com/data/r18/airacc
. generate lnpm = 1n(pmiles)

. Xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 80
Group variable: airline Number of groups = 20

Family: Poisson Obs per group:
Link: Log min = 4
Correlation: exchangeable avg = 4.0
max = 4
Wald chi2(1) = 5.27
Scale parameter = 1 Prob > chi2 = 0.0217
i_cnt IRR  Std. err. z P>|z| [95% conf. intervall
inprog .9059936 .0389528 -2.30 0.022 .8327758 .9856487
_cons .0080065 .0002912 -132.71  0.000 .0074555 .0085981

1npm 1 (offset)

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .4606406 1
r3 .4606406 .4606406 1
rd .4606406 .4606406 .4606406 1

Now there are not really enough data here to reliably estimate the correlation without any constraints
of structure, but here is what happens if we try:

. xXtgee i_cnt inprog, family(poisson) eform offset(lnpm) corr(unstructured) nolog

GEE population-averaged model Number of obs = 80
Group and time vars: airline time Number of groups = 20

Family: Poisson Obs per group:
Link: Log min = 4
Correlation: unstructured avg = 4.0
max = 4
Wald chi2(1) = 0.36
Scale parameter = 1 Prob > chi2 = 0.5496
i_cnt IRR  Std. err. z P>|z| [95% conf. intervall
inprog .9791082 .0345486 -0.60 0.550 .9136826 1.049219
_cons .0078716 .0002787 -136.82  0.000 .0073439 .0084373

1npm 1  (offset)

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).
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. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .5700298 1
r3 .716356 .4192126 1
rd .2383264 .3839863 .3521287 1

There is no sensible pattern to the correlations.

We created this dataset from a random-effects Poisson model. We reran our data-creation program
and this time had it create 400 airlines rather than 20, still with 4 years of data each. Here are the
equal-correlation model and estimated correlation structure:

. use https://www.stata-press.com/data/ri8/airacc2, clear

. Xtgee i_cnt inprog, family(poisson) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1,600
Group variable: airline Number of groups = 400

Family: Poisson Obs per group:
Link: Log min = 4
Correlation: exchangeable avg = 4.0
max = 4
Wald chi2(1) = 111.80
Scale parameter = 1 Prob > chi2 = 0.0000
i_cnt IRR  Std. err. z P>|z| [95% conf. intervall
inprog .8915304 .0096807 -10.57  0.000 .8727571 .9107076
_cons .0071357 .0000629 -560.57 0.000 .0070134 .0072601

1npm 1 (offset)

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .5291707 1
r3 .5291707 .5291707 1

r4 .5291707 .5291707 .5291707 1
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The following estimation results assume unstructured correlation:

. Xtgee i_cnt inprog, family(poisson) corr(unstructured) eform offset(lnpm) nolog

GEE population-averaged model Number of obs = 1,600
Group and time vars: airline time Number of groups = 400

Family: Poisson Obs per group:
Link: Log min = 4
Correlation: unstructured avg = 4.0
max = 4
Wald chi2(1) = 113.43
Scale parameter = 1 Prob > chi2 = 0.0000
i_cnt IRR  Std. err. z P>|z| [95% conf. intervall
inprog .8914155 .0096208 -10.65 0.000 .8727572 .9104728
_cons .0071402 .0000628 -561.50 0.000 .0070181 .0072645

1npm 1  (offset)

Note: _cons estimates baseline incidence rate (conditional on zero random
effects).

. estat wcorrelation

Estimated within-airline correlation matrix R:

cl c2 c3 c4
rl 1
r2 .4733189 1
r3 .5240576 .5748868 1
r4 .5139748 .5048895 .5840707 1

The equal-correlation model estimated a fixed correlation of 0.5292, and above we have correlations
ranging between 0.4733 and 0.5841 with little pattern in their structure.
d

Also see
[XT] xtgee — GEE population-averaged panel-data models

[U] 20 Estimation and postestimation commands



Title

xtgls — GLS linear model with heteroskedastic and correlated errors

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtgls fits panel-data linear models by using feasible generalized least squares. This command
allows estimation in the presence of AR(1) autocorrelation within panels and cross-sectional correlation
and heteroskedasticity across panels.

Quick start

GLS regression of y on x1, x2, and indicators for levels of categorical variable a using xtset data
xtgls y x1 x2 i.a

With heteroskedastic but uncorrelated errors across panels
xtgls y x1 x2 i.a, panels(heteroskedastic)

With heteroskedastic and correlated errors across panels
xtgls y x1 x2 i.a, panels(correlated)

Three-stage GLS with a common first-order autocorrelation within panels
xtgls y x1 x2 i.a, panels(correlated) corr(arl)

Same as above, but let autocorrelation structure be panel-specific
xtgls y x1 x2 i.a, panels(correlated) corr(psarl)

Same as above, but estimate by iterated GLS
xtgls y x1 x2 i.a, panels(correlated) corr(psarl) igls

Menu

Statistics > Longitudinal/panel data > Contemporaneous correlation > GLS regression with correlated errors

198
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Syntax

xtgls depvar [indepvars} [lf] [m] [weight] [, options]

options Description
Model
noconstant suppress constant term
panels(iid) use i.i.d. error structure
;;anels (heteroskedastic) use heteroskedastic but uncorrelated error structure
panels(correlated) use heteroskedastic and correlated error structure
corr(independent) use independent autocorrelation structure
corr(arl) use ARI autocorrelation structure
corr(psarl) use panel-specific AR1 autocorrelation structure
rhotype (calc) specify method to compute autocorrelation parameter;
see Options for details; seldom used
igls use iterated GLS estimator instead of two-step GLS estimator
force estimate even if observations unequally spaced in time
SE
nmk normalize standard error by N — k instead of N
Reporting
level (#) set confidence level; default is 1level (95)
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

Optimization
optimize_options control the optimization process; seldom used
coeflegend display legend instead of statistics

A panel variable must be specified. For correlation structures other than independent, a time variable must be
specified. A time variable must also be specified if panels(correlated) is specified. Use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvar and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.
by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

aweights are allowed; see [U] 11.1.6 weight.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options
Model

noconstant; see [R] Estimation options.
panels (pdist) specifies the error structure across panels.

panels(iid) specifies a homoskedastic error structure with no cross-sectional correlation. This
is the default.
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panels(heteroskedastic) specifies a heteroskedastic error structure with no cross-sectional
correlation.

panels(correlated) specifies a heteroskedastic error structure with cross-sectional correlation.
If p(c) is specified, you must also specify a time variable (use xtset). The results will be based
on a generalized inverse of a singular matrix unless 7' > m (the number of periods is greater than
or equal to the number of panels).

corr(corr) specifies the assumed autocorrelation within panels.
corr(independent) specifies that there is no autocorrelation. This is the default.

corr(arl) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient of
the AR(1) process is common to all the panels. If c(ar1l) is specified, you must also specify a
time variable (use xtset).

corr(psarl) specifies that, within panels, there is AR(1) autocorrelation and that the coefficient
of the AR(1) process is specific to each panel. psar1 stands for panel-specific AR(1). If c(psarl)
is specified, a time variable must also be specified; use xtset.

rhotype (calc) specifies the method to be used to calculate the autocorrelation parameter:

regress regression using lags; the default

dw Durbin—Watson calculation

freg regression using leads

nagar Nagar calculation

theil Theil calculation

tscorr time-series autocorrelation calculation

All the calculations are asymptotically equivalent and consistent; this is a rarely used option.

igls requests an iterated GLS estimator instead of the two-step GLS estimator for a nonautocorrelated
model or instead of the three-step GLS estimator for an autocorrelated model. The iterated GLS
estimator converges to the MLE for the corr(independent) models but does not for the other
corr () models.

force specifies that estimation be forced even though the time variable is not equally spaced.
This is relevant only for correlation structures that require knowledge of the time variable. These
correlation structures require that observations be equally spaced so that calculations based on lags
correspond to a constant time change. If you specify a time variable indicating that observations
are not equally spaced, the (time dependent) model will not be fit. If you also specify force,
the model will be fit, and it will be assumed that the lags based on the data ordered by the time
variable are appropriate.

[sE]

nmk specifies that standard errors be normalized by N — k, where k is the number of parameters
estimated, rather than IV, the number of observations. Different authors have used one or the other
normalization. Greene (2018, 313) remarks that whether a degree-of-freedom correction improves
the small-sample properties is an open question.

Reporting
level (#); see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,

allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fimt), and nolstretch; see [R] Estimation options.
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. [Optimization |

optimize_options control the iterative optimization process. These options are seldom used.

iterate (#) specifies the maximum number of iterations. When the number of iterations equals #,
the optimization stops and presents the current results, even if convergence has not been reached.
The default is iterate(100).

tolerance (#) specifies the tolerance for the coefficient vector. When the relative change in the
coefficient vector from one iteration to the next is less than or equal to #, the optimization process
is stopped. tolerance(1le-7) is the default.

log and nolog specify whether to display the iteration log. The iteration log is displayed by
default unless you used set iterlog off to suppress it; see set iterlog in [R] sef ifer.

The following option is available with xtgls but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

Remarks are presented under the following headings:

Introduction

Heteroskedasticity across panels

Correlation across panels (cross-sectional correlation)
Autocorrelation within panels

Introduction

Information on GLS can be found in Greene (2018), Maddala and Lahiri (2006), Davidson and
MacKinnon (1993), and Judge et al. (1985).

If you have many panels relative to periods, see [XT] xtreg and [XT] xtgee. xtgee, in particular,
provides capabilities similar to those of xtgls but does not allow cross-sectional correlation. On the
other hand, xtgee allows a richer description of the correlation within panels as long as the same
correlations apply to all panels. xtgls provides two unique features:

1. Cross-sectional correlation may be modeled (panels(correlated)).
2. Within panels, the AR(1) correlation coefficient may be unique (corr(psari)).

xtgls allows models with heteroskedasticity and no cross-sectional correlation, but, strictly
speaking, xtgee does not. xtgee with the vce(robust) option relaxes the assumption of equal
variances, at least as far as the standard error calculation is concerned.

Also, xtgls, panels(iid) corr(independent) nmk is equivalent to regress.
The nmk option uses n — k rather than n to normalize the variance calculation.

To fit a model with autocorrelated errors (corr(arl) or corr(psarl)), the data must be equally
spaced in time. To fit a model with cross-sectional correlation (panels(correlated)), panels must
have the same number of observations (be balanced).

The equation from which the models are developed is given by

Yit = X3+ €5



202 xtgls — GLS linear model with heteroskedastic and correlated errors

where ¢ = 1,...,m is the number of units (or panels) and ¢t = 1, ..., T; is the number of observations
for panel 7. This model can equally be written as
yi X1 €1
Y2 X2 €9
=18+
Ym Xm em

The variance matrix of the disturbance terms can be written as

01,1Q1,1 012012

Jl,mnl,m
, 02,1221 0228029
Ele€'] = Q . )

J2,m92,m
Um,lﬂm,l 0m,2ﬂm,2 Um,,m”m,m

For the §2; ; matrices to be parameterized to model cross-sectional correlation, they must be square
(balanced panels).

In these models, we assume that the coefficient vector 3 is the same for all panels and consider a
variety of models by changing the assumptions on the structure of (2.

For the classic OLS regression model, we have

E[Giﬂg] =0
Var[e; ;] = o2
=0

Covle;t, €55 ift#£sori#j

This amounts to assuming that 2 has the structure given by

oI 0 0

0 o2 0
Q= : ) :

0 0 --- o

whether or not the panels are balanced (the O matrices may be rectangular). The classic OLS assumptions
are the default panels(iid) and corr(independent) options for this command.

Heteroskedasticity across panels

In many cross-sectional datasets, the variance for each of the panels differs. It is common to have

data on countries, states, or other units that have variation of scale. The heteroskedastic model is
specified by including the panels(heteroskedastic) option, which assumes that

o2 0 --- 0

0 o -~ 0
Q=1 . .

0 0 - o021

m
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> Example 1

Greene (2012, 1112) reprints data in a classic study of investment demand by Grunfeld and
Griliches (1960). Below we allow the variances to differ for each of the five companies.

. use https://www.stata-press.com/data/r18/invest2
. xtgls invest market stock, panels(hetero)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic

Correlation: no autocorrelation
Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 865.38
Prob > chi2 = 0.0000
invest | Coefficient Std. err. z P>zl [95% conf. intervall]
market .0949905 .007409 12.82 0.000 .0804692 .1095118
stock .3378129 .0302254 11.18 0.000 .2785722 .3970535
_cons -36.2537 6.124363 -5.92 0.000 -48.25723 -24.25017

Correlation across panels (cross-sectional correlation)

We may wish to assume that the error terms of panels are correlated, in addition to having different
scale variances. The variance structure is specified by including the panels(correlated) option
and is given by

2
OlI 0121 R UlﬂnI
2
0'271]: 0'21 A 0'277,,,]:
Q =
I 0,00 -+ 021
Om,1 m,2 m

Because we must estimate cross-sectional correlation in this model, the panels must be balanced
(and T' > m for valid results). A time variable must also be specified so that xtgls knows how the
observations within panels are ordered. xtset shows us that this is true.
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> Example 2

. Xtset

Panel variable:
Time variable:

Delta:

company (strongly balanced)

time, 1 to 20

1 unit

. xtgls invest market stock, panels(correlated)

Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation
Estimated covariances 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 1285.19
Prob > chi2 = 0.0000
invest | Coefficient Std. err. z P>|z| [95% conf. interval]
market .0961894 .0054752 17.57  0.000 .0854583 .1069206
stock .3095321 .0179851 17.21  0.000 .2742819 .3447822
_cons -38.36128  5.344871 -7.18 0.000 -48.83703  -27.88552
The estimated cross-sectional covariances are stored in e (Sigma).
. matrix list e(Sigma)
symmetric e(Sigma) [5,5]
_ee _ee2 _ee3d _eed _eeb
_ee  9410.9061
_ee2 -168.04631  755.85077
_ee3 -1915.9538 -4163.3434 34288.49
_ee4 -1129.2896 -80.381742 2259.3242  633.42367
eeb  258.50132 4035.872 -27898.235 -1170.6801  33455.511



xtgls — GLS linear model with heteroskedastic and correlated errors 205

> Example 3

We can obtain the MLE results by specifying the igls option, which iterates the GLS estimation
technique to convergence:

. xtgls invest market stock, panels(correlated) igls

Iteration 1: Tolerance = .2127384
Iteration 2: Tolerance = .22817

(output omitted )
Iteration 1046: Tolerance = 1.000e-07
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: heteroskedastic with cross-sectional correlation
Correlation: no autocorrelation

Estimated covariances = 15 Number of obs = 100
Estimated autocorrelations = 0 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 558.51
Log likelihood = -515.4222 Prob > chi2 = 0.0000
invest | Coefficient Std. err. z P>zl [95% conf. intervall]
market .023631 .004291 5.51 0.000 .0152207 .0320413
stock .1709472 .0152526 11.21 0.000 .1410526 .2008417
_cons -2.216508 1.958845 -1.13 0.258 -6.055774 1.622759

Here the log likelihood is reported in the header of the output.

Autocorrelation within panels

The individual identity matrices along the diagonal of 2 may be replaced with more general
structures to allow for serial correlation. xtgls allows three options so that you may assume a
structure with corr(independent) (no autocorrelation); corr(aril) (serial correlation where the
correlation parameter is common for all panels); or corr(psarl) (serial correlation where the
correlation parameter is unique for each panel).

The restriction of a common autocorrelation parameter is reasonable when the individual correlations
are nearly equal and the time series are short.

If the restriction of a common autocorrelation parameter is reasonable, this allows us to use more
information in estimating the autocorrelation parameter to produce a more reasonable estimate of the
regression coefficients.

When you specify corr(arl) or corr(psarl), the iterated GLS estimator does not converge to
the MLE.
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> Example 4

If corr(arl) is specified, each group is assumed to have errors that follow the same AR(1)
process; that is, the autocorrelation parameter is the same for all groups.

. xtgls invest market stock, panels(hetero) corr(arl)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares
Panels: heteroskedastic
Correlation:  common AR(1) coefficient for all panels (0.8651)

Estimated covariances = 5 Number of obs = 100
Estimated autocorrelations = 1 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 119.69
Prob > chi2 = 0.0000
invest | Coefficient Std. err. z P>|z| [95% conf. interval]
market .0744315 .0097937 7.60 0.000 .0552362 .0936268
stock .2874294 .0475391 6.05 0.000 .1942545 .3806043
_cons -18.96238  17.64943 -1.07 0.283 -53.55464 15.62987

d

> Example 5

If corr(psarl) is specified, each group is assumed to have errors that follow a different AR(1)
process.

. xtgls invest market stock, panels(iid) corr(psari)
Cross-sectional time-series FGLS regression

Coefficients: generalized least squares

Panels: homoskedastic

Correlation: panel-specific AR(1)
Estimated covariances 1 Number of obs = 100
Estimated autocorrelations = 5 Number of groups = 5
Estimated coefficients = 3 Time periods = 20
Wald chi2(2) = 252.93
Prob > chi2 = 0.0000
invest | Coefficient Std. err. z P>|z| [95% conf. intervall
market .0934343 .0097783 9.56  0.000 .0742693 .1125993
stock .3838814 .0416775 9.21 0.000 .302195 .4655677
_cons -10.1246  34.06675 -0.30 0.766 -76.8942 56.64499
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Stored results

xtgls stores the following in e():

Scalars
e(N)
e(N_ic)
e(N_g)
e(N_t)
e(N_miss)
e(n_cf)
e(n_cv)
e(n_cr)
e(df)
e(df_pear)
e(df_ic)
e(11)
e(chi2)
e(g_min)
e(g_avg)
e(g_max)
e(rank)
e(rc)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(ivar)
e(tvar)
e(coefftype)
e(corr)
e(vt)
e(rhotype)
e (wtype)
e (wexp)
e(title)
e(chi2type)
e(rho)
e(properties)
e(predict)
e(asbalanced)
e(asobserved)

Matrices
e(b)
e(Sigma)
e(V)

Functions
e(sample)

number of observations

number of observations used to compute information criteria
number of groups

number of periods

number of missing observations

number of estimated coefficients

number of estimated covariances

number of estimated correlations

degrees of freedom

degrees of freedom for Pearson x?2
degrees of freedom for information criteria
log likelihood

X2

smallest group size

average group size

largest group size

rank of e(V)

return code

xtgls

command as typed

name of dependent variable

variable denoting groups

variable denoting time within groups
estimation scheme

correlation structure

panel option

type of estimated correlation

weight type

weight expression

title in estimation output

Wald; type of model x? test

P

bV

program used to implement predict
factor variables fvset as asbalanced
factor variables fvset as asobserved

coefficient vector
> matrix

variance—covariance matrix of the estimators

marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table)

matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
The GLS results are given by

For all our models, the 2 matrix may be written in terms of the Kronecker product:
0= Eme ® IT,iXTi

The estimated variance matrix is obtained by substituting the estimator X for ¥, where

o« @'y

Yij= T

The residuals used in estimating % are first obtained from OLS regression. If the estimation is iterated,
residuals are obtained from the last fitted model.

Maximum likelihood estimates may be obtained by iterating the FGLS estimates to convergence
for models with no autocorrelation, corr (independent).

The GLS estimates and their associated standard errors are calculated using 5 1. As Beck and
Katz (1995) point out, the ¥ matrix is of rank at most min(7,m) when you use the pan-
els(correlated) option. For the GLS results to be valid (not based on a generalized inverse), T’
must be at least as large as m, as you need at least as many period observations as there are panels.

Beck and Katz (1995) suggest using OLS parameter estimates with asymptotic standard errors that
are corrected for correlation between the panels. This estimation can be performed with the xtpcse
command; see [XT] xtpcse.
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Also see
[XT] xtgls postestimation — Postestimation tools for xtgls
[XT] xtpcse — Linear regression with panel-corrected standard errors
[XT] xtreg — Fixed-, between-, and random-effects and population-averaged linear models™
[XT] xtregar — Fixed- and random-effects linear models with an AR(1) disturbance
[XT] xtset — Declare data to be panel data
[R] regress — Linear regression
[TS] newey — Regression with Newey—West standard errors
[TS] prais — Prais—Winsten and Cochrane—Orcutt regression

[U] 20 Estimation and postestimation commands



Title

xtgls postestimation — Postestimation tools for xtgls

Postestimation commands predict margins Also see

Postestimation commands

The following postestimation commands are available after xtgls:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
*estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

*1lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

*estat ic and lrtest are available only if igls and corr(independent) were specified at estimation.
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions and standard
errors.

Menu for predict

Statistics > Postestimation

Syntax for predict
predict [lype] newvar [lf] [in] [ , Xb stdp}
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for
the estimation sample.
Options for predict
[Main |

xb, the default, calculates the linear prediction.

stdp calculates the standard error of the linear prediction.
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margins

Description for margins

margins estimates margins of response for linear predictions.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, options]

margins [marginlist} , predict (statistic ...) [options]
statistic Description
xb linear prediction; the default
stdp not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Also see

[XT] xtgls — GLS linear model with heteroskedastic and correlated errors

[U] 20 Estimation and postestimation commands



Title

xthdidregress — Heterogeneous difference in differences for panel data

Description Quick start Menu Syntax

Description

xthdidregress estimates average treatment effect on the treated (ATETS) that may vary over time
and over treatment cohorts. Treatment cohorts are groups subject to treatment at different points in
time. xthdidregress provides four estimators: extended two-way fixed effects (TWFE), regression
adjustment (RA), inverse-probability weighting (IPW), and augmented inverse-probability weighting

(ATPW). See [CAUSAL] teffects intro for a discussion of RA, IPW, and AIPW estimators.

Quick start

Estimate ATETs of treatment treat on outcome y with group grpvar; use the RA estimator and

model y with covariate x on xtset data
xthdidregress ra (y x) (treat), group(grpvar)

Same as above, but use the TWFE estimator
xthdidregress twfe (y x) (treat), group(grpvar)

Use the IPW estimator and model treat using covariate z
xthdidregress ipw (y) (treat z), group(grpvar)

Use the AIPW estimator, model y using covariate x, and model treat using covariate z
xthdidregress aipw (y x) (treat z), group(grpvar)

Same as above, but use the not-yet-treated group as the control group

xthdidregress aipw (y x) (treat z), group(grpvar) ///
controlgroup(notyet)

Same as above, but cluster at the county level

xthdidregress aipw (y x) (treat z), group(grpvar) ///
controlgroup(notyet) vce(cluster county)

Menu
Statistics > Longitudinal/panel data > Difference in differences (DID) > Heterogeneous DID (TWFE)
Statistics > Longitudinal/panel data > Difference in differences (DID) > Heterogeneous DID (RA)
Statistics > Longitudinal/panel data > Difference in differences (DID) > Heterogeneous DID (IPW)
Statistics > Longitudinal/panel data > Difference in differences (DID) > Heterogeneous DID (AIPW)

Syntax

For syntax, methods, and all other information on xthdidregress, see [CAUSAL] xthdidregress.
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xtheckman — Random-effects regression with sample selection

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtheckman fits a random-effects linear regression model with endogenous sample selection.

Quick start

Random-effects model of y on x1 using xtset data, with selection indicated by binary variable
selected and predicted by v1 and x1

xtheckman y x1, select(selected = vl x1)

Same as above, but constraining random effects to be independent
xtheckman y x1, select(selected = vl x1) norecorrelation

Same as above, but omit random effects from selection model
xtheckman y x1, select(selected = vl x1, nore)

Menu

Statistics > Longitudinal/panel data > Sample-selection models > Linear regression with sample selection (RE)
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Syntax

xtheckman depvar [indepvars] [l_'f] [in},

select (depvarg

varlist s [, sel_()pti(ms}) [opti(ms}

options Description
Model
*select() specify selection equation: dependent and independent
variables; whether to have constant term and offset variable
or include random effect
noconstant suppress constant term
norecorrelation constrain the random effects to be independent
offset (varname,) include varname, in model with coefficient constrained to 1

constraints (numlist)

SE/Robust
vce (veetype)

Reporting
level (#)
nocnsreport
display_options

Integration
intmethod (intmethod)

intpoints (#)

Maximization
maximize_options

collinear
coeflegend

apply specified linear constraints

vcetype may be oim, robust, cluster clustvar, opg, bootstrap,
or jackknife

set confidence level; default is 1level (95)
do not display constraints

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

integration method for random effects; intmethod may be
mvaghermite (the default) or ghermite

set the number of integration (quadrature) points for
random-effects integration; default is intpoints(7)

control the maximization process; seldom used

keep collinear variables
display legend instead of statistics

sel_options

Description

Model

noconstant

nore

offset (varname,)

suppress constant term
do not include random effects in selection model
include varname, in model with coefficient constrained to 1

*select () is required.

indepvars and varlists may contain factor variables; see [U] 11.4.3 Factor variables.

depvar, indepvars, depvarg, and varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

bootstrap, by, collect, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options
Model

select (depvars = varlistg [, sel_opzions]) specifies a random-effects probit model for sample
selection with varlists as the covariates for the selection model. When depvars = 1, the model’s
dependent variable is treated as observed (selected); when depvars = 0, it is treated as unobserved
(not selected). select () is required.

sel_options are the following:
noconstant suppresses the constant term (intercept) in the selection model.
nore specifies that a random effect not be included in the selection equation.

offset (varname,) specifies that varname, be included in the selection model with the
coefficient constrained to 1.

noconstant; see [R] Estimation options.

norecorrelation constrains the random effects in the outcome and selection equations to be
independent.

offset (varname,), constraints (numlist); see [R] Estimation options.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim, opg), that are robust to some kinds of misspecification (robust), that
allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

Reporting
level(#), nocnsreport; see [R] Estimation options.
display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod) and intpoints(#) control how the integration of random effects is numer-
ically calculated.

intmethod () specifies the integration method. The default method is mean-variance adap-
tive Gauss—Hermite quadrature, intmethod(mvaghermite). We recommend this method.
intmethod (ghermite) specifies that nonadaptive Gauss—Hermite quadrature be used. This
method is less computationally intensive and less accurate. It is sometimes useful to try
intmethod(ghermite) to get the model to converge and then perhaps use the results as
initial values specified in option from when fitting the model using the more accurate int-
method (mvaghermite). See Methods and formulas for more details.

intpoints() sets the number of integration (quadrature) points used for integration of the
random effects. The default is intpoints(7). Increasing the number increases accuracy but
also increases computational time. Computational time is roughly proportional to the number
specified. See Methods and formulas for more details.
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Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no] log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

The default technique is technique (bhhh 10 nr 2).
Setting the optimization type to technique (bhhh) resets the default vcetrype to vce (opg).

The following options are available with xtheckman but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

xtheckman fits a panel-data model with endogenous sample selection. Endogenous sample selection
is sometimes called nonignorability of selection, missing not at random, or selection bias. Within-panel
correlation is accounted for by using panel-level random effects.

The outcome of interest y;; is modeled as
Yit = Xt + v1i + €14t
where x;; are the covariates modeling the outcome, v/1; is the panel-level random effect, and €y, is

the observation-level error.

We model the selection process for the outcome by
St =1 (ZitCX + vo; + €244 > 0)
where s;; = 1 if we observe y;; and O otherwise, z;; are the covariates modeling selection, vg; is

the panel-level random effect for selection, and ey;; is the observation-level selection error.

The random effects v;; and v5; are bivariate normal with mean O and variance

2
Uly PrO01,02y
2
PrO1v02p g5,

The observation-level errors €1;; and €9;; are bivariate normal, with mean O and variance
2
01  po1
pPo1 1

These observation-level errors are independent of the random effects.

Using the Heckman estimator (heckman) for this model will provide inefficient estimates because it
ignores the within-panel correlation. Instead, we use maximum likelihood to model both the selection
and outcome equations and account for the panel structure of the data. This random-effects estimator
is used by xteregress and was discussed in Rabe-Hesketh, Skrondal, and Pickles (2002). There is no
parametric fixed-effects estimator for panel data from an endogenously selected sample. See Honoré,
Kyriazidou, and Powell (2000) and Kyriazidou (1997) for semiparametric fixed-effects estimators of
panel-data endogenous sample-selection models.
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> Example 1

Suppose that we wish to study the relationship between wage, job tenure, and age for college-
educated adults. We have fictional data on 600 adults observed from 2013 to 2016. We use these data
to model hourly wage as a function of age, age squared, and job tenure. However, an individual’s
wage is observed only if he or she works, and not everyone was employed on the dates the data
were collected. We are not interested in modeling only the subpopulation of individuals who were
employed at the time. We are also interested in the relationship of job tenure and age with the wage
an individual would have received if he or she had been employed.

We suspect that the unobserved factors that affect an individual’s wage are related to the unob-
served factors that affect employment status. These unobserved factors could include person-level
characteristics like ability and time-varying factors like an individual’s family situation. We suspect
that we have an endogenously selected sample. We have data on the local job market conditions
(market). This variable is used with age and tenure to model the employment status of an individual.

Before we can fit a random-effects model to our data, we need to specify the panel structure of
the data using xtset. Our panel variable is personid, the identification code for the individual. The
time variable is year, and it ranges from 2013 to 2016.

. use https://www.stata-press.com/data/r18/wagework
(Wages for 20 to 77 year olds, 2013-2016)
. xtset personid year

Panel variable: personid (strongly balanced)
Time variable: year, 2013 to 2016
Delta: 1 unit
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We are now ready to fit our model.

. xtheckman wage c.age##c.age tenure, select(working = c.age##fc.age market)

(setting technique to bhhh)
Iteration 0: Log likelihood = -5384.5076

Iteration 1: Log likelihood = -5377.4625
Iteration 2: Log likelihood = -5376.4805
Iteration 3: Log likelihood = -5376.4505
Iteration 4: Log likelihood = -5376.4464
Iteration 5: Log likelihood = -5376.4454
Iteration 6: Log likelihood = -5376.4451
Iteration 7: Log likelihood = -5376.4451
Iteration 8: Log likelihood = -5376.445
Iteration 9: Log likelihood = -5376.445
(switching technique to nr)
Iteration 10: Log likelihood = -5376.445
Random-effects regression with selection Number of obs = 2,400
Selected = 1,928
Nonselected = 472
Group variable: personid Number of groups = 600
Obs per group:
min = 4
avg = 4.0
max = 4
Integration method: mvaghermite Integration pts. = 7
Wald chi2(3) = 2827.78
Log likelihood = -5376.445 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. intervall
wage
age .5722234 .0477613 11.98  0.000 .4786129 .6658339
c.age#c.age -.0042448 .0005329 =7.97  0.000 -.0052893  -.0032003
tenure .5927719 .0169866 34.90 0.000 .5594787 .626065
_cons 5.651812  1.038011 5.44  0.000 3.617347 7.686277
working
age .2305309 .0207988 11.08  0.000 .1897661 .2712958
c.age#c.age -.0026832 .0002241  -11.97  0.000 -.0031225  -.0022439
market .1894934 .019038 9.95 0.000 .1521796 .2268072
_cons -3.276904 .4352836 -7.53  0.000 -4.130045  -2.423764
var (e.wage) 4.458219 .2235342 4.040939 4.918588
corr(e.wor~g,
e.wage) .4091115 .1391856 2.94 0.003 .1065022 .642359
var (
wage [pers~d]) 2.493737 .2547628 2.041226 3.046564
var (
wor~g[per~d]) .3831411 .0830963 .250466 .5860961
corr (
wor~g[per~d],
wage [pers~d]) .6021096 .0845675 7.12  0.000 .4106863 . 7426953
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The first two sections of the output provide the estimated coefficients for the wage equation and
the selection (working) equation. We can interpret the coefficients in the wage equation using the
standard linear regression interpretation. For example, we expect an increase of $0.59 per hour for
an additional year of job tenure.

Next we see var (e.wage), an estimate of the variance of the observation-level error for wage; this
is followed by corr(e.working,e.wage), an estimate of its correlation with the observation-level
error for the selection model. The next section of the output reports estimates of the variances of the
random effects, var (wage [personid]) and var (working[personid]). The last section reports
an estimate of the correlation of these random effects. If at least one of the correlations is significantly
different from zero, we can conclude that we have endogenous sample selection. In our case, the
correlation between the observation-level errors is 0.41, and the correlation between the random effects
is 0.60. Because both are positive and significantly different from zero, we conclude that we have
endogenous selection and that unobserved individual-level factors that increase the chance of being
employed tend to increase wage. Additionally, unobserved observation-level (time-varying) factors
that increase the chance of being employed tend to increase wage.

We estimated coefficients for age and age squared. We can use margins and marginsplot to
gain a clearer understanding of the effect of the individuals’ age on hourly wage. We use margins
with at () to profile the expected wages for individuals between ages 30 and 70 and with O and
5 years of job tenure. Then, we use marginsplot to graph the estimates.

. margins, at(age=(30(5)70) tenure =(0 5))
. marginsplot

Predictive margins with 95% Cls

28
26

24
—e— tenure=0

—e— tenure=5

22+

Linear prediction

20

184

Age in years

Based on this model, and assuming the data are from a random or otherwise representative sample,
the plotted points represent the expected wage for individuals with the specified job tenure and age.
We see that age has an increasing effect on expected wage until the mid-60s and then attenuates.
Having 5 years of job tenure instead of none shifts the curve up by about $3.00 per hour.

d



xtheckman — Random-effects regression with sample selection 221

Stored results

xtheckman stores the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups

e(N_selected)
e(N_nonselected)
e(k)

e(properties)
e(estat_cmd)
e(predict)
e(marginsok)
e(marginsnotok)
e(asbalanced)
e(asobserved)

number of selected observations
number of nonselected observations
number of parameters

e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_aux) number of auxiliary parameters
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(N_clust) number of clusters
e(chi2) X2
e(p) p-value for model test
e(n_requad) number of integration points for random effects
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(rank) rank of e(V)
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) xtheckman
e(cmdline) command as typed
e(depvar) names of dependent variables
e(ivar) variable denoting groups
e(title) title in estimation output
e(clustvar) name of cluster variable
e(offset#) offset for the #th depvar, where # is determined by equation order in output
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce ()
e(vcetype) title used to label Std. err.
e(reintmethod) integration method for random effects
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique

bV

program used to implement estat
program used to implement predict
predictions allowed by margins
predictions disallowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(ilog) iteration log (up to 20 iterations)
e(gradient) gradient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance

Functions

e(sample)

marks estimation sample
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In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

xtheckman fits a random-effects linear regression model with endogenous sample selection via
maximum likelihood estimation. For details on maximum likelihood estimators, see the results in
Wooldridge (2010, chap. 13) and White (1996).

The log-likelihood function maximized by xtheckman is implied by the triangular structure of
the model. Specifically, the joint distribution of the outcome and selection variables is a product
of conditional and marginal distributions because the model is triangular. For a few of the many
relevant applications of this result in literature, see Amemiya (1985, chap. 10); Heckman (1976,
1979); Maddala (1983, chap. 5); Maddala and Lee (1976); Wooldridge (2010, sec. 15.7.2, 15.7.3,
16.3.3, 17.5.2, and 19.7.1; 2014). Roodman (2011) and Bartus and Roodman (2014) used this result
to derive the formulas discussed below.

We have panels ¢ = 1,..., N and observations ¢t = 1,..., N;. We model y;; as
Yit = XitB + V1 + €1t

where x;; are the outcome covariates, v/1; is the panel-level random effect, and €;;; is the observation-
level error.

The selection process for the outcome is modeled by
Sit =1 (zita + Vo + €244 > 0)
where s;; = 1 if we observe y;; and 0 otherwise, z;; are the selection covariates, 9; is the panel-level
random effect for selection, and €s;; is the observation-level selection error.
The random effects v1; and 15; are bivariate normal with mean O and variance

2
3N = 01y PrO1v020
v — 2
PrO01v020 U2y

The observation-level errors €1;; and €2;; are independent of the random effects and are also
bivariate normal, with mean O and variance

> = O—% poO1
PO1 1

When we condition on the random effects v1; and v5;, we can write the joint density of the ¥;;
and s;; using the conditional density of the selection error €3;; on the outcome error €j;;.

For the selection indicator s;, we have lower limit /;; and upper limit w;,
—o0 54 =0 —Zipo — Vo;  Sip = 0
lig = Uit =

—zitoe — Vo — L (yir — Xt —v1;) s =1 00 sip =1
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Then, the joint density of ¥;; and s;; conditional on the random effects is

() ro(=3) sum

f(ymsit\l/li,VQi) =

Note that each panel has the same random effects for each observation. So the likelihood for panel
1 is

t=

N;
L; = /2 [ f(yita3it|V1i7V2i)¢2{(V1i7V2i)7Eu} dl/udl/zil (1)
R 1

This multivariate integral is generally not tractable. We can use a change-of-variables technique
to transform it into a set of nested univariate integrals. Let L be the Cholesky decomposition of X,;
that is, 33, = LL/. It follows that (v, v9;)" = Lap,, where 1), is a vector of independent standard
normal random variables.

We can rewrite (1) as
0o 0o N;
L, = / / {H I Wit sie| (Va4 v2:)" = L%)} A (1) P(V2q)dipridapa;
o0V Too (=1

Now the univariate integral can be approximated using Gauss—Hermite quadrature (GHQ). For
g-point GHQ, let the abscissa and weight pairs be denoted by (aj,w;), where k = 1,...,¢. The
GHQ approximation is then

| @ en-at s Y wisa)
- k=1

Consider a 2-dimensional quadrature grid containing ¢ quadrature points in both dimensions. Let
the vector of abscissas a; = (ak,,ak,) be a point in this grid, and let wj, = (wg,, w,)’ be the
vector of corresponding weights.

The GHQ approximation to the likelihood for a given panel is

q q N; 9
e £ [t - ]

t=1

Rather than using regular GHQ, we can use mean—variance adaptive GHQ. Fixing the observed
variables and model parameters in the integrand of (1), we see the posterior density for 1, is
proportional to

N;
{H F (it siel (vi, v2:) = L%)} o(v)

t=1
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It is reasonable to assume that this posterior density can be approximated by a multivariate normal
density with mean vector p,; and variance matrix T,;. Instead of using the prior density of v, as
the weighting distribution in the integral, we can use our approximation for the posterior density,

{Hfﬁl T Wity sitl(v1i, vi) = Ll!%:)} o(v;)
Li = /§R2 ¢(¢17 Hois Tvi) d"/)z

¢(¢za Hoyis Tvi)
The likelihood is then approximated by

q q N;
1=

2
Li=> .. Y | ] fwits sitl (i, v2i)' = Low) li[lwks

k1i=1  ko=1 L Lt=1

where o, and wy, are the adaptive versions of the abscissas and weights after an orthogonalizing
transformation, which eliminates posterior covariances between elements of 1p,. The posterior means
W,; and posterior variances T,,; are computed iteratively by updating the posterior moments by using
the mean—variance adaptive GHQ approximation, starting with a 0 mean vector and identity variance
matrix.

The log likelihood for all panels is then

N q q N; 2
InL = Z In Z Z H F(yie, 8i¢|(v14, v2;)" = L) H Wi,
i=1 Ei=1  ko=1 L Lt=1 s=1

The conditional mean of y;; is
E(yit|xit) = xit3

xtheckman results are obtained using xteregress; see Methods and formulas of [ERM] eregress.
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Title

xtheckman postestimation — Postestimation tools for xtheckman

Postestimation commands predict margins Remarks and examples
Also see

Postestimation commands

The following postestimation commands are available after xtheckman:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict linear predictions, probabilities, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

226



xtheckman postestimation — Postestimation tools for xtheckman 227

predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, probabilities,
and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [lf] [in] [, statistic nooffset]

predict [type] Stub* [zf] [in], scores

statistic Description
Main
xb linear prediction; the default
xbsel linear prediction for selection equation
prla,b) Pr(yic | a <y <b)
e(a,b) E(yit | a <yu <b)
ystar(a,b) E(y},), v, = max{a, min(y;, b)}
ycond E(y;t|yi observed)
psel Pr(y;: observed)
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only for

the estimation sample.

where @ and b may be numbers or variables; a missing (¢ > .) means —oo, and b missing (b > .)
means +00; see [U] 12.2.1 Missing values.

Options for predict
Main

Is

xb, the default, calculates the linear prediction x;;b.
xbsel calculates the linear prediction for the selection equation.

pr(a,b) calculates Pr(a < x;:b + v1; + €1+ < b), the probability that y;:|x;; would be observed
in the interval (a,b).

a and b may be specified as numbers or variable names; /b and ub are variable names;
pr(20,30) calculates Pr(20 < x;:b + v1; + €15+ < 30); pr(lb,ub) calculates Pr(lb < x;b +
v1; + €154 < ub); and pr(20,ub) calculates Pr(20 < x;:b + v1; + €151 < ub).

a missing (a > .) means —oo; pr(.,30) calculates Pr(—oco < x;b + vy; + €15+ < 30);
pr(lh,30) calculates Pr(—oo < x;:b + v1; + €15t < 30) in observations for which /b > .
and calculates Pr(lb < x;;b + v1; + €14+ < 30) elsewhere.
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b missing (b > .) means +00; pr(20,.) calculates Pr(+o0o > x;:b + v1; + €154 > 20);
pr(20,ub) calculates Pr(4+o00 > x;:b + v1; + €1;¢ > 20) in observations for which ub > .
and calculates Pr(20 < x;:b + v1; + €144+ < ub) elsewhere.

e(a,b) calculates F(x;b + v1; + €15¢ | a < Xitb + v1; + €154+ < b), the expected value of y;¢|x;;
conditional on y;¢|x;; being in the interval (a,b), meaning that y;¢|X;; is truncated.
a and b are specified as they are for pr().

ystar(a,b) calculates E(yZ,), where yf, = aif x;:b4v1;+€15: < a, yl, = bif xitb+v1,+€154 > b,
and vy}, = x;+b + v1; + €14+ otherwise, meaning that g, is not selected. a and b are specified as
they are for pr().

ycond calculates the expected value of the dependent variable conditional on the dependent variable
being observed, that is, selected; E(y;; | yir observed).

psel calculates the probability of selection (or being observed):
Pr(y;; observed) = Pr(z;scx + vo; + €241 > 0).

nooffset is relevant when you specify of fset (varname) for xtheckman. It modifies the calculations
made by predict so that they ignore the offset variable; the linear prediction is treated as x;:b
rather than as x;;b + offset;;.

scores calculates parameter-level score variables.
margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()nx]

margins [murginlist} , predict (statistic ...) [Eedict (statistic ...) ... ] [()ptions]
statistic Description
xb linear prediction; the default
xbsel linear prediction for selection equation
pra,b) Pr(yic | a <yt <b)
ela,b) E(yit | a <yir <b)
ystar(a,b) E(y%), yi = max{a, min(y;, b)}
ycond E(yit|yir observed)
psel Pr(y;; observed)

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.
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Remarks and examples

The default statistic produced by predict after xtheckman is the expected value of the dependent
variable from the underlying distribution of the regression model. See example 1 of [XT] xtheckman
for an example where margins is used to predict the conditional mean.

Also see

[XT] xtheckman — Random-effects regression with sample selection

[U] 20 Estimation and postestimation commands
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xthtaylor — Hausman-Taylor estimator for error-components models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xthtaylor fits a random-effects model for panel data in which some of the covariates are correlated
with the unobserved individual-level random effects. The command implements the Hausman—Taylor
estimator by default, but the Amemiya—MaCurdy estimator is available for balanced panels.

Quick start

Hausman—Taylor model of y as a function of time-varying exogenous variable x1, time-invariant
binary variable a, and time-varying endogenous variable x2 using xtset data

xthtaylor y x1 x2 a, endog(x2)

Same as above, and verify that a is the only time-invariant variable in the model
xthtaylor y x1 x2 a, endog(x2) constant(a)

Add time-invariant x3 as an endogenous covariate, but do not verify that a and x3 are the only
time-invariant variables

xthtaylor y x1 x2 a x3, endog(x2 x3)

Same as above, but use Amemiya—MaCurdy estimator for balanced panels
xthtaylor y x1 x2 a x3, endog(x2 x3) am

Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Hausman-Taylor regression (RE)
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Syntax
xthtaylor depvar indepvars [lf] [m] [weighl] , endog (varlist) [options]
options Description
Model
noconstant suppress constant term
* endog (varlist) explanatory variables in indepvars to be treated as endogenous

constant (varlisty;)  independent variables that are constant within panel
varying(varlist,,)  independent variables that are time varying within panel

amacurdy fit model based on Amemiya and MaCurdy estimator
SE/Robust
vce (veetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or
jackknife
Reporting
level (#) set confidence level; default is 1evel (95)
small report small-sample statistics

*endog (varlist) is required.

A panel variable must be specified. For xthtaylor, amacurdy, a time variable must also be specified. Use xtset;
see [XT] xtset.

depvar, indepvars, and all varlists may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

iweights and fweights are allowed unless the amacurdy option is specified. Weights must be constant within panel;
see [U] 11.1.6 weight.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

noconstant; see [R] Estimation options.

endog (varlist) specifies that a subset of explanatory variables in indepvars be treated as endogenous
variables, that is, the explanatory variables that are assumed to be correlated with the unobserved
random effect. endog() is required.

constant (varlisty;) specifies the subset of variables in indepvars that are time invariant, that is,
constant within panel. By using this option, you assert not only that the variables specified in
varlisty; are time invariant but also that all other variables in indepvars are time varying. If this
assertion is false, xthtaylor does not perform the estimation and will issue an error message.
xthtaylor automatically detects which variables are time invariant and which are not. However,
users may want to check their understanding of the data and specify which variables are time
invariant and which are not.

varying(varlisty,) specifies the subset of variables in indepvars that are time varying. By using
this option, you assert not only that the variables specified in varlisty, are time varying but also
that all other variables in indepvars are time invariant. If this assertion is false, xthtaylor does
not perform the estimation and will issue an error message. xthtaylor automatically detects
which variables are time varying and which are not. However, users may want to check their
understanding of the data and specify which variables are time varying and which are not.
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amacurdy specifies that the Amemiya—MaCurdy estimator be used. This estimator uses extra instru-
ments to gain efficiency at the cost of additional assumptions on the data-generating process. This
option may be specified only for samples containing balanced panels, and weights may not be
specified. The panels must also have a common initial period.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for this
Hausman-Taylor model.

Specifying vce (robust) is equivalent to specifying vce (cluster panelvar); see xtpoisson, re
and the robust VCE estimator in Methods and formulas of [XT] xtpoisson.

Reporting

level (#); see [R] Estimation options.

small specifies that the p-values from the Wald tests in the output and all subsequent Wald tests
obtained via test use t and F distributions instead of the large-sample normal and y? distributions.
By default, the p-values are obtained using the normal and 2 distributions.

Remarks and examples

If you have not read [XT] xt, please do so.

Consider a random-effects model of the form
Yit = X141 + X244 B + 21301 + Zin; 02 + s + €5

where

X4t is a 1 X ky vector of observations on exogenous, time-varying variables assumed to be
uncorrelated with p; and €;4;

X+ is a 1 X ko vector of observations on endogenous, time-varying variables assumed to be
(possibly) correlated with p; but orthogonal to €;4;

Zq; is a 1 x g vector of observations on exogenous, time-invariant variables assumed to be
uncorrelated with p; and €;;

Zs; is a 1 x go vector of observations on endogenous, time-invariant variables assumed to be
(possibly) correlated pu; but orthogonal to €;;

w1 is the unobserved, panel-level random effect that is assumed to have zero mean and finite
variance O'i and to be independent and identically distributed (i.i.d.) over the panels;

€;¢ 18 the idiosyncratic error that is assumed to have zero mean and finite variance 062 and to be
1.1.d. over all the observations in the data;

B1,085,01, and b are k1 X 1, ko X 1, g1 X 1, and g2 X 1 coefficient vectors, respectively; and

i =1,...,n, where n is the number of panels in the sample and, for each 7, t = 1,...,T;.
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Because Xo;; and Zy; may be correlated with p;, the simple random-effects estimators—xtreg,
re and xtreg, mle—are generally not consistent for the parameters in this model. Because the within
estimator, xtreg, fe, removes the ;; by mean-differencing the data before estimating 3; and 3,, it
is consistent for these parameters. However, in the process of removing the p;, the within estimator
also eliminates the Zi; and the Zs;. Thus it cannot estimate §; nor d2. The Hausman—Taylor and
Amemiya—MaCurdy estimators implemented in xthtaylor are designed to resolve this problem.

The within estimator con51stently estimates 3; and (3,. Using these estimates, we can obtain the
/vylthm residuals, called d Intermediate, albeit consistent, estimates of d; and d5—called 611\/ and
dor1v, respectively—are obtained by regressing the within residuals on Zq; and Zo;, using X1;; and
Z1; as instruments. The order condition for identification requires that the number of variables in
X14t, k1, be at least as large as the number of elements in Zs;, go and that there be sufficient
correlation between the instruments and Zs; to avoid a weak-instrument problem.

The within estimates of 3; and 35 and the intermediate estimates d1ry and dory can be used to
obtain sets of within and overall residuals. These two sets of residuals can be used to estimate the
variance components (see Methods and formulas for details).

The estimated variance components can then be used to perform a GLS transform on each of the
variables. For what follows, define the general notation w;; to represent the GLS transform of the
variable w;;, W; to represent the within-panel mean of w;;, and w;; to represent the within transform
of w;¢. With this notational convention, the Hausman—Taylor (1981) estimator of the coefficients of
interest can be obtained by the instrumental-variables regression

Yit = Xut,@l + X2itﬂ2 + Z1i01 + Zgiy + fii + Eit (1)

using Xy;;, Xoi, X4, Xoj, and Zy; as instruments.

For the instruments to be valid, this estimator requires that X ;. and Z1; be uncorrelated with the
random-effect y;. More precisely, the instruments are valid when

. I
phmn_moﬁ Z X1ip; =0

i=1

and

phmn—)oo Z le,u’l =0

i=1

Amemiya and MaCurdy (1986) place stricter requirements on the instruments that vary within panels
to obtain a more efficient estimator. Specifically, Amemiya and MaCurdy (1986) assume that X,
is orthogonal to y; in every period; that is, plim,,_, 1/n Z;L:l Xyipi =0fort =1,...,7T. With
this restriction, they derive the Amemiya—MaCurdy estimator as the instrumental-variables regression
of (1) using instruments X, Xo;¢, X7;;, and Zy;. The order condition for the Amemiya—MaCurdy
estimator is now T'k; > go. xthtaylor uses the Amemiya—MaCurdy estimator when the amacurdy
option is specified.

Although the estimators implemented in xthtaylor and xtivreg (see [XT] xtivreg) use the
method of instrumental variables, each command is designed for different problems. The estimators
implemented in xtivreg assume that a subset of the explanatory variables in the model are correlated
with the idiosyncratic error €;¢. In contrast, the Hausman—Taylor and Amemiya—MaCurdy estimators
that are implemented in xthtaylor assume that some of the explanatory variables are correlated
with the individual-level random effects, u;, but that none of the explanatory variables are correlated
with the idiosyncratic error, €;;.
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> Example 1

This example replicates the results of Baltagi and Khanti-Akom (1990, table II, column HT) using
595 observations on individuals over 1976—1982 that were extracted from the Panel Study of Income
Dynamics (PSID). In the model, the log-transformed wage lwage is assumed to be a function of how
long the person has worked for a firm, wks; binary variables indicating whether a person lives in a
large metropolitan area or in the south, smsa and south; marital status is ms; years of education,
ed; a quadratic of work experience, exp and exp2; occupation, occ; a binary variable indicating
employment in a manufacture industry, ind; a binary variable indicating that wages are set by a union
contract, union; a binary variable indicating gender, fem; and a binary variable indicating whether

the individual is African American, blk.

We suspect that the time-varying variables exp, exp2, wks, ms, and union are all correlated
with the unobserved individual random effect. We can inspect these variables to see if they exhibit

sufficient within-panel variation to serve as their own instruments.

. use https://www.stata-press.com/data/r18/psidextract

. Xtsum exp exp2 wks ms union

Variable Mean Std. dev. Min Max Observations
exp overall 19.85378 10.96637 1 51 N 4165
between 10.79018 4 48 n 595
within 2.00024 16.85378 22.85378 T 7
exp2 overall 514.405  496.9962 1 2601 N 4165
between 489.0495 20 2308 n 595
within 90.44581 231.405 807.405 T 7
wks overall 46.81152 5.129098 5 52 N 4165
between 3.284016 31.57143 51.57143 n 595
within 3.941881 12.2401 63.66867 T 7
ms overall .8144058 .3888256 0 1 N 4165
between .3686109 0 1 n 595
within .1245274 -.0427371 1.671549 T 7
union overall .3639856 .4812023 0 1 N 4165
between .4543848 0 1 n 595
within .1593351 -.4931573 1.221128 T = 7

We are also going to assume that the exogenous variables occ, south, smsa, ind, fem, and blk are
instruments for the endogenous, time-invariant variable ed. The output below indicates that although
fem appears to be a weak instrument, the remaining instruments are probably sufficiently correlated
to identify the coefficient on ed. (See Baltagi and Khanti-Akom [1990] for more discussion.)

. correlate fem blk occ south smsa ind ed

(obs=4,165)
fem blk occ south smsa ind ed
fem 1.0000
blk 0.2086 1.0000
occ -0.0847 0.0837 1.0000
south 0.0516 0.1218 0.0413 1.0000
smsa 0.1044 0.1154 -0.2018 -0.1350 1.0000
ind -0.1778 -0.0475 0.2260 -0.0769 -0.0689 1.0000
ed -0.0012 -0.1196 -0.6194 -0.1216 0.1843 -0.2365 1.0000

We will assume

output below gives the Hausman—Taylor estimates for this model.

that the correlations are strong enough and proceed with the estimation. The
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. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed)

Hausman-Taylor estimation Number of obs = 4,165
Group variable: id Number of groups = 595
Obs per group:

min = 7

avg = 7

max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6891.87

Prob > chi2 = 0.0000

lwage | Coefficient Std. err. z P>|z| [95% conf. intervall
TVexogenous

occ -.0207047 .0137809 -1.50 0.133 -.0477149 .0063055

south .0074398 .031955 0.23 0.816 -.0551908 .0700705

smsa -.0418334 .0189581 -2.21  0.027 -.0789906  -.0046761

ind .0136039 .0152374 0.89 0.372 -.0162608 .0434686
TVendogenous

exp .1131328 .002471 45.79  0.000 .1082898 .1179758

exp2 -.0004189 .0000546 -7.67 0.000 -.0005259 -.0003119

wks .0008374 .0005997 1.40 0.163 -.0003381 .0020129

ms -.0298508 .01898 -1.57 0.116 -.0670508 .0073493

union .0327714 .0149084 2.20 0.028 .0035514 .0619914
TIexogenous

fem -.1309236 .126659 -1.03 0.301 -.3791707 .1173234

blk -.2857479 .1557019 -1.84 0.066 -.5909179 .0194221
TIendogenous

ed .137944 .0212485 6.49 0.000 .0962977 .1795902

_cons 2.912726 .2836522 10.27  0.000 2.356778 3.468674

sigma_u .94180304
sigma_e .15180273
rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

The estimated o, and o, are 0.9418 and 0.1518, respectively, indicating that a large fraction of the
total error variance is attributed to p;. The z statistics indicate that several the coefficients may not
be significantly different from zero. Whereas the coefficients on the time-invariant variables fem and
blk have relatively large standard errors, the standard error for the coefficient on ed is relatively
small.

Baltagi and Khanti-Akom (1990) also present evidence that the efficiency gains of the Amemiya—
MaCurdy estimator over the Hausman—Taylor estimator are small for these data. This point is especially
important given the additional restrictions that the estimator places on the data-generating process.
The output below replicates the Baltagi and Khanti-Akom (1990) results from column AM of table II.
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. xthtaylor lwage occ south smsa ind exp exp2 wks ms union fem blk ed,
> endog(exp exp2 wks ms union ed) amacurdy

Amemiya—-MaCurdy estimation Number of obs = 4,165
Group variable: id Number of groups = 595
Time variable: t Obs per group:

min = 7

avg = 7

max = 7

Random effects u_i ~ i.i.d. Wald chi2(12) = 6879.20

Prob > chi2 = 0.0000

lwage | Coefficient Std. err. z P>|z| [95% conf. intervall
TVexogenous

occ -.0208498 .0137653 -1.51 0.130 -.0478292 .0061297

south .0072818 .0319365 0.23 0.820 -.0553126 .0698761

smsa -.0419507 .0189471 -2.21  0.027 -.0790864  -.0048149

ind .0136289 .015229 0.89 0.371 -.0162194 .0434771
TVendogenous

exp .1129704 .0024688 45.76  0.000 .1081316 .1178093

exp2 -.0004214 .0000546 -7.72 0.000 -.0005283 -.0003145

wks .0008381 .0005995 1.40 0.162 -.0003368 .002013

ms -.0300894 .0189674 -1.59 0.113 -.0672649 .0070861

union .0324752 .0148939 2.18 0.029 .0032837 .0616667
TIexogenous

fem -.132008 .1266039 -1.04 0.297 -.380147 .1161311

blk -.2859004 .1554857 -1.84 0.066 -.5906468 .0188459
TIendogenous

ed .1372049 .0205695 6.67 0.000 .0968894 .1775205

_cons 2.927338 .2751274 10.64  0.000 2.388098 3.466578

sigma_u .94180304
sigma_e .15180273
rho .97467788 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Q Technical note

We mentioned earlier that insufficient correlation between an endogenous variable and the instru-
ments can give rise to a weak-instrument problem. Suppose that we simulate data for a model of the
form

Yy=3+3v1,+3x1p + 322+ 321 + 322 +u; + e

and purposely construct the instruments so that they exhibit little correlation with the endogenous
variable zs.
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. use https://www.stata-press.com/data/r18/xthtaylorl

. correlate ui zl z2 xla x1b x2 eit
(obs=10,000)

ui zl z2 xla x1b x2 eit
ui 1.0000
z1 0.0268 1.0000
z2 0.8777 0.0286 1.0000
xla -0.0145 0.0065 -0.0034 1.0000
x1b 0.0026 0.0079 0.0038 -0.0030 1.0000
x2 0.8765 0.0191 0.7671 -0.0192 0.0037 1.0000
eit 0.0060 -0.0198 0.0123 -0.0100 -0.0138 0.0092 1.0000

In the output below, weak instruments have serious consequences on the estimates produced by
xthtaylor. The estimate of the coefficient on z2 is three times larger than its true value, and its
standard error is rather large. Without sufficient correlation between the endogenous variable and
its instruments in a given sample, there is insufficient information for identifying the parameter.
Also, given the results of Stock, Wright, and Yogo (2002), weak instruments will cause serious size
distortions in any tests performed.

. xthtaylor yit xla x1b x2 zl1 z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10,000
Group variable: id Number of groups = 1,000
Obs per group:

min = 10

avg = 10

max = 10

Random effects u_i ~ i.i.d. Wald chi2(5) = 24172.91

Prob > chi2 = 0.0000

yit | Coefficient Std. err. z P>|z| [95% conf. interval]
TVexogenous

xla 2.959736 .0330233 89.63 0.000 2.895011 3.02446

x1b 2.953891 .0333051 88.69  0.000 2.888614 3.019168
TVendogenous

x2 3.022685 .033085 91.36 0.000 2.957839 3.08753
TIexogenous

z1 2.709179 .587031 4.62 0.000 1.55862 3.859739
TIendogenous

z2 9.525973  8.572966 1.11  0.266 -7.276732 26.32868

_cons 2.837072 .4276595 6.63 0.000 1.998875 3.675269

sigma_u 8.729479
sigma_e 3.1657492
rho .88377062 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.
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> Example 2

Now let’s consider why we might want to specify the constant (varlisty;) option. For this example,
we will use simulated data. In the output below, we fit a model over the full sample. Note the placement
in the output of the coefficient on the exogenous variable x1c.

. use https://www.stata-press.com/data/r18/xthtaylor2
. xthtaylor yit xla x1b xlc x2 zl z2, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 10,000
Group variable: id Number of groups = 1,000
Obs per group:

min = 10

avg = 10

max = 10

Random effects u_i ~ i.i.d. Wald chi2(6) = 10341.63

Prob > chi2 = 0.0000

yit | Coefficient Std. err. z P>|z| [95% conf. intervall
TVexogenous

xla 3.023647 .0570274 53.02 0.000 2.911875 3.135418

x1b 2.966666 .0572659 51.81 0.000 2.854427 3.078905

xlc .2355318 .123502 1.91 0.057 -.0065276 .4775912
TVendogenous

x2 14.17476  3.128385 4.53 0.000 8.043234 20.30628
TIexogenous

z1 1.741709 .4280022 4.07 0.000 .9028398 2.580578
TIendogenous

z2 7.983849 .6970903 11.45  0.000 6.617577 9.350121

_cons 2.146038 .3794179 5.66 0.000 1.402393 2.889684

sigma_u 5.6787791
sigma_e 3.1806188
rho .76120931 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

Now suppose that we want to fit the model using only the first eight periods. Below, x1c now
appears under the TIexogenous heading rather than the TVexogenous heading because x1c is time
invariant in the subsample defined by t<9.
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. xthtaylor yit xla x1b xlc x2 zl1 z2 if t<9, endog(x2 z2)

Hausman-Taylor estimation Number of obs = 8,000
Group variable: id Number of groups = 1,000
Obs per group:

min = 8

avg = 8

max = 8

Random effects u_i ~ i.i.d. Wald chi2(6) = 15354.87

Prob > chi2 = 0.0000

yit | Coefficient Std. err. z P>|z| [95% conf. intervall
TVexogenous

xla 3.051966 .0367026 83.15  0.000 2.98003 3.123901

x1b 2.967822 .0368144 80.62  0.000 2.895667 3.039977
TVendogenous

x2 .7361217  3.199764 0.23 0.818 -5.5353 7.007543
TIexogenous

x1lc 3.215907 .56657191 5.68 0.000 2.107118 4.324696

z1 3.347644 .5819756 5.75  0.000 2.206992 4.488295
TIendogenous

z2 2.010578  1.143982 1.76  0.079 -.231586 4.252742

_cons 3.257004 .5295828 6.15 0.000 2.219041 4.294967

sigma_u 15.445594
sigma_e 3.175083
rho .95945606 (fraction of variance due to u_i)

Note: TV refers to time varying; TI refers to time invariant.

To prevent a variable from becoming time invariant, you can use either constant (varlist;)
or varying(varlisty,). constant (varlist;;) specifies the subset of variables in varlist that are
time invariant and requires the remaining variables in varlist to be time varying. If you specify
constant (varlist;) and any of the variables contained in varlisty; are time varying, or if any of the
variables not contained in varlist; are time invariant, xthtaylor will not perform the estimation and
will issue an error message.

. xthtaylor yit xla x1b xlc x2 zl z2 if t<9, endog(x2 z2) constant(zl z2)
x1lc not included in constant().
r(198);

The same thing happens when you use the varying (varlist;,) option.
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Stored results

xthtaylor stores the following in e():

Scalars
e(N) number of observations
e(N_g) number of groups
e(df_m) model degrees of freedom
e(df_r) residual degrees of freedom (small only)
e(g_min) smallest group size
e(g_avg) average group size
e(g_max) largest group size
e(Tcon) 1 if panels balanced, O otherwise
e(N_clust) number of clusters
e(sigma_u) panel-level standard deviation
e(sigma_e) standard deviation of €;¢
e(chi2) x2
e(rho) p
e(F) model F (small only)
e(Tbar) harmonic mean of group sizes
e(rank) rank of e (V)
Macros
e(cmd) xthtaylor
e(cmdline) command as typed
e(depvar) name of dependent variable
e(ivar) variable denoting groups
e(tvar) variable denoting time within groups, amacurdy only
e(TVexogenous) exogenous time-varying variables
e(TIexogenous) exogenous time-invariant variables
e(TVendogenous) endogenous time-varying variables
e(TIendogenous) endogenous time-invariant variables
e(wtype) weight type
e (wexp) weight expression
e(title) Hausman-Taylor or Amemiya-MaCurdy
e(clustvar) name of cluster variable
e(chi2type) Wald; type of model x? test
e(vce) veetype specified in vce()
e(vcetype) title used to label Std. err.
e(properties) bV
e(predict) program used to implement predict
Matrices
e(b) coefficient vector
e(V) variance—covariance matrix of the estimators
e(V_modelbased) model-based variance
Functions
e(sample) marks estimation sample

Methods and formulas

Consider an error-components model of the form

Vit = X1ty + XoitBy + Z13i01 + Zoido + s + €4 (2)

for i =1,...,n and, for each 7, t = 1,...,T;, of which T; periods are observed; n is the number
of panels in the sample. The covariates in X are time varying, and the covariates in Z are time
invariant. Both X and Z are decomposed into two parts. The covariates in X; and Z; are assumed
to be uncorrelated with p; and e;;, whereas the covariates in X9 and Zs are allowed to be correlated
with p; but not with €;;. Hausman and Taylor (1981) suggest an instrumental-variable estimator for
this model.
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For some variable w, the within transformation of w is defined as

Wit = Wit — W, w;, = T Zwit
t=1
Because the within estimator removes Z, the within transformation reduces the model to
Uit = X1ty + XaitBy + €t

The within estimators (31, and B,, are consistent for 3; and 3,, but they may not be efficient. Also,
note that the within estimator cannot estimate d; and ds.

From the within estimator, we can obtain an estimate of the idiosyncratic error component, 062, as

A RSS
0'2 =

¢ N-n

where RSS is the residual sum of squares from the within regression and N is the total number of
observations in the sample.

Using the results of the within estimation, we can define

dit = Yy — X16tBrw — X2itfow
where v, X144, and Xo;; contain the panel level means of these variables in all observations.

Regressing d;; on Zq and Zo, using X4 and VA as_ instruments, provides intermediate, consistent
estimates of 41 and 85, which we will call 611\/ and (521\/

Using the within estimates, 611\/, and 621\;, we can obtain an estimate of the variance of the
random effect, 03. First, let

e = (yit — X1itB1 — X2itBoy, — L1t d11v — ZQit62IV>

Then define
1 n T; 1 T; 2
— 2> (X w)
i=1t=1 V" " t=1
Hausman and Taylor (1981) showed that, for balanced panels,

2

plim s? = Toi + o,

n— oo

For unbalanced panels, .
plimnﬁoos2 = Toi + 052

where
n

YT

After we plug in 52, our consistent estimate for o2, a little algebra suggests the estimate

T =

52 = (s —52)(T) !

14
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Define @ as

R ~2 3
b=1- (5 7m
o; + Tio,

With 6#; in hand, we can perform the standard random-effects GLS transform on each of the
variables. The transform is given by

* o
wyy = wit — 0;w;,

where w; is the within-panel mean.

We can then obtain the Hausman—Taylor estimates of the coefficients in (2) and the conventional
VCE by fitting an instrumental-variables regression of the GLS-transformed ¥;, on X7, and Zj,, with
instruments X;;, X1;., and Zy;.

We can obtain Amemiya—MaCurdy estimates of the coefficients in (2) and the conventional VCE
by fitting an instrumental-variables regression of the GLS-transformed ¥, on X7, and Z};, using X,

Xlit, and Zq; as instruments, where Xlit = X1, X142, . .., Xq147;. The order condition for the
Amemiya—MaCurdy estimator is T'k; > g9, and this estimator is available only for balanced panels.
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Postestimation commands predict margins Remarks and examples
References Also see

Postestimation commands

The following postestimation commands are available after xthtaylor:

Command Description

estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

forecast dynamic forecasts and simulations

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions and their SEs, residuals, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

243
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predict

Description for predict

predict creates a new variable containing predictions such as fitted values, standard errors,
combined residuals, predictions, random-error components, and idiosyncratic error components.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [zf] [in] [, statistic]

statistic Description
Main
xb X3+ Z;6, fitted values; the default
stdp standard error of the fitted values
ue 1i; + €, the combined residual
*xbu X8 + Z;6 + 1i;, prediction including effect
*u [ti, the random-error component
*e €;¢, prediction of the idiosyncratic error component
Unstarred statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted

only for the estimation sample. Starred statistics are calculated only for the estimation sample, even when
if e(sample) is not specified.

Options for predict
. Main

xb, the default, calculates the linear prediction, that is, XitB + Zitg.

stdp calculates the standard error of the linear prediction.

ue calculates the prediction of [i; + €.

xbu calculates the prediction of Xit,@ + Zitg + U;, the prediction including the random effect.
u calculates the prediction of ji;, the estimated random effect.

e calculates the prediction of €;;.



xthtaylor postestimation — Postestimation tools for xthtaylor 245

margins

Description for margins

margins estimates margins of response for fitted values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlisz} [, options]

margins [marginlist} , predict (statistic ...) [options]

statistic Description

xb Xit@ + Zig, fitted values; the default

stdp not allowed with margins

ue not allowed with margins

xbu not allowed with margins

u not allowed with margins

e not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e (b).

For the full syntax, see [R] margins.

Remarks and examples

> Example 1

Continuing with example 1 of [XT] xthtaylor, we use hausman to test whether we should use the
Hausman-Taylor estimator instead of the fixed-effects estimator. We follow the empirical illustration
in Baltagi (2013, sec. 7.5), but we fit the model without including the exp2 and wks variables.

We first fit the model with xthtaylor and then with xtreg, fe:

. use https://www.stata-press.com/data/r18/psidextract

. xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
> endog(exp ms union ed)
(output omitted )

. estimates store eq_ht

. Xtreg lwage occ south smsa ind exp ms union fem blk ed, fe
(output omitted )

. estimates store eq_fe

We can now use hausman to compare the two estimators, but we need to specify the df () to
indicate the degrees of freedom for the x? statistic, which would be determined by the overidentifying
restrictions in the Hausman-Taylor estimation. In this case, there are three degrees of freedom
because there are four time-varying exogenous variables (occ, south, smsa, ind) that can be used
as instruments for only one time-invariant endogenous variable (ed).
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. hausman eq_fe eq_ht, df(3)

Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
eq_fe eq_ht Difference Std. err.
occ -.0239323 -.0231694 -.0007629 .0002395
south -.0037282 .0062699 -.0099982 .0124188
smsa -.0436251 -.0433518 -.0002733 .0042296
ind .021184 .0156376 .0055465 .0025159
exp .0965738 .0964748 .0000991 .000063
ms -.0299908 -.0300703 .0000795 .000321
union .0349156 .0348494 .0000662 .0006336

b = Consistent under HO and Ha; obtained from xtreg.
B = Inconsistent under Ha, efficient under HO; obtained from xthtaylor.

Test of HO: Difference in coefficients not systematic

chi2(3) = (b-B)’ [(V_b-V_B)~(-1)] (b-B)
= 5.22
Prob > chi2 = 0.1567
(V_b-V_B is not positive definite)

The p-value for the test provides evidence favoring the null hypothesis; therefore, in this case, the
Hausman-Taylor estimation is adequate.

Notice that the variance—covariance matrix for the difference (b-B) is not positive definite. As
Greene (2012, 237) points out, this kind of result is due to finite-sample conditions. He also states
that Hausman considers it preferable to take the test statistic as zero and, therefore, not to reject the

null hypothesis.
d

> Example 2

We now want to determine whether the Amemiya—MaCurdy estimator produces significant efficiency
gains with respect to the Hausman-Taylor estimator. We refit the two models, and we use the Hausman
test again:

. use https://www.stata-press.com/data/r18/psidextract

. xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
> endog(exp ms union ed)

(output omitted )
. estimates store eq_ht

. xthtaylor lwage occ south smsa ind exp ms union fem blk ed,
> endog(exp ms union ed) amacurdy
(output omitted )

. estimates store eq_am
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. hausman eq_ht eq_am

Coefficients

(b) (B) (b-B) sqrt(diag(V_b-V_B))
eq_ht eq_am Difference Std. err.
occ -.0231694 -.023354 .0001846 .0006485
south .0062699 .0060857 .0001842 .0010641
smsa -.0433518 -.0434638 .0001121 .0006297
ind .0156376 .0156602 -.0000226 .000492
exp .0964748 .0962147 .00026 .0000694
ms -.0300703 -.0303139 .0002436 .0006735
union .0348494 .0345742 .0002752 .0006471
fem -.1277756 -.1287857 .0010101 .0036717
blk -.2911574 -.291645 .0004876 .0082831
ed .1390257 .1380699 .0009558 .005436

b = Consistent under HO and Ha; obtained from xthtaylor.
B = Inconsistent under Ha, efficient under HO; obtained from xthtaylor.

Test of HO: Difference in coefficients not systematic
chi2(10) (b-B)’ [(V_b-V_B) " (-1)]1 (b-B)

14.42

Prob > chi2 = 0.1548

The result indicates that we should use the more efficient estimation produced by the Amemiya—
MaCurdy estimator.

N
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xtintreg — Random-effects interval-data regression models

Description Quick start Menu Syntax
Options Remarks and examples Stored results Methods and formulas
References Also see

Description

xtintreg fits a random-effects regression model in which the dependent variable may be measured
as point data, interval data, left-censored data, or right-censored data. The dependent variable must
be specified using two depvars that indicate how the dependent variable was measured. The user
can request that a likelihood-ratio test comparing the panel interval regression model with the pooled
model be conducted at estimation time.

Quick start

Regression on x of an interval-measured dependent variable with lower endpoint y_lower and upper
endpoint y_upper using xtset data

xtintreg y_lower y_upper x

Add indicators for levels of categorical variable a as covariates
xtintreg y_lower y_upper x i.a

Perform likelihood-ratio test against pooled model
xtintreg y_lower y_upper x i.a, intreg

Menu

Statistics > Longitudinal/panel data > Censored outcomes > Interval regression (RE)

248
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Syntax

xtintreg depvariower depvarypper [indepvars] [zf] [m] [weight] [, options}

The values in depvarigwer and depvar,pper should have the following form:

Type of data depvarigwer depvarpper
point data =[a,a]
interval data [a,b]
left-censored data (—00,b]
right-censored data  [a,+00) a
missing

options Description

Model
noconstant suppress constant term

offset (varname)

include varname in model with coefficient constrained to 1

constraints (constraints) apply specified linear constraints

SE
vce (veetype)

Reporting
level (#)
lrmodel
intreg
nocnsreport
display_options

vcetype may be oim, bootstrap, or jackknife

set confidence level; default is 1level (95)

perform the likelihood-ratio model test instead of the default Wald test
perform likelihood-ratio test against pooled model

do not display constraints

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

Integration
intmethod (intmethod) integration method; intmethod may be mvaghermite (the default) or
Qermite
intpoints (#) use # quadrature points; default is intpoints(12)
Maximization

maximize_options

collinear
coeflegend

control the maximization process; see [R] Maximize

keep collinear variables
display legend instead of statistics

A panel variable must be specified; use xtset; see [XT] xtset.

indepvars may contain factor variables; see [U] 11.4.3 Factor variables.

depvariower, depvarypper, and indepvars may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, and st

atsby are allowed; see [U] 11.1.10 Prefix commands.

iweights are allowed; see [U] 11.1.6 weight. Weights must be constant within panel.

collinear and coeflegend do not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.
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Options

Model

noconstant, offset (varname), constraints (constraints); see [R] Estimation options.

[sE |

r

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (oim) and that use bootstrap or jackknife methods (bootstrap, jackknife);
see [XT] vce_options.

Reporting

level(#), lrmodel; see [R] Estimation options.

intreg specifies that a likelihood-ratio test comparing the random-effects model with the pooled
(intreg) model be included in the output.

nocnsreport; see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

Integration

intmethod (intmethod), intpoints (#); see [R] Estimation options.

Maximization

maximize_options: difficult, technique (algorithm_spec), iterate (#), [no]log, trace,
gradient, showstep, hessian, showtolerance, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init_specs); see [R] Maximize. These options are
seldom used.

The following options are available with xtintreg but are not shown in the dialog box:

collinear, coeflegend; see [R] Estimation options.

Remarks and examples

xtintreg may be used to fit a random-effects interval regression model. Consider the linear
regression model with panel-level random effects

Yir = X3+ Vs + €54

for i = 1,...,n panels, where ¢t = 1,...,n;. The random effects, v;, are i.i.d., N(0, 012,), and €;;
are i.i.d., N(0,0?) independently of v;. The observed data consist of the couples, (y1i¢,y2it), such
that all that is known is that y1;+ < yi: < y24¢, Where yy4; is possibly —oo and ya;; is possibly +oo.

> Example 1: Randome-effects interval regression

We begin with the nlswork dataset described in [XT] xt and create two fictional dependent
variables, where the wages are instead reported sometimes as ranges. The wages have been adjusted
to 1988 dollars and have further been recoded such that some of the observations are known exactly,
some are left-censored, some are right-censored, and some are known only in an interval.
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We wish to fit a random-effects interval regression model of adjusted (log) wages. We specify the
intreg option to test our random-effects model against our pooled estimator.

. use https://www.stata-press.com/data/r18/nlswork5
(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtintreg 1ln_wagel 1ln_wage2 i.union age grade not_smsa south##c.year, intreg

(output omitted )

Random-effects interval regression Number of obs = 19,224
Uncensored = 4,810
Left-censored = 4,781
Right-censored = 4,848
Interval-cens. = 4,785
Group variable: idcode Number of groups = 4,148

Random effects u_i ~ Gaussian Obs per group:
min = 1
avg = 4.6
max = 12
Integration method: mvaghermite Integration pts. = 12
Wald chi2(7) = 2461.69
Log likelihood = -23260.672 Prob > chi2 = 0.0000
Coefficient Std. err. z P>|z| [95% conf. intervall
1.union .1229681 .0092943 13.23  0.000 .1047516 .1411846
age .0096333 .0019 5.07 0.000 .0059094 .0133572
grade .0756045 .0023828 31.73 0.000 .0709343 .0802747
not_smsa -.1481304 .011433 -12.96  0.000 -.1705387  -.1257221
1.south -.3586443 .0977512 -3.67 0.000 -.5502331  -.1670555
year .0029219 .0020353 1.44 0.151 -.0010671 .0069109

south#c.year

1 .0032699 .0012076 2.71  0.007 .000903 .0056368
_cons .2747391 .1141328 2.41 0.016 .0510429 .4984352
/sigma_u .3044775 .0052644 57.84 0.000 .2941594 .3147956
/sigma_e .3516248 .00307 114.54  0.000 .3456078 .3576418
rho .4285095 .0101261 .4087613 .4484385
LR test of sigma_u=0: chibar2(01) = 2683.77 Prob >= chibar2 = 0.000

The results from an interval regression can be interpreted as we would those from a linear regression.
Because the dependent variable is log transformed, the coefficients can be interpreted in terms of a
percentage change. We see, for example, that on average, union members make 12.3% more than
nonunion members.



252 xtintreg — Random-effects interval-data regression models

The output also includes the overall and panel-level variance components (labeled sigma_e and
sigma_u, respectively) together with p (labeled rho),

2
v

o
P="3 2
o+ o7

which is the proportion of the total variance contributed by the panel-level variance component.

When rho is zero, the panel-level variance component is unimportant, and the panel estimator
is not different from the pooled estimator. A likelihood-ratio test of this is included at the bottom
of the output. This test formally compares the pooled estimator (interval regression) with the panel
estimator. In this case, we reject the null hypothesis that there are no panel-level effects.

d

Q Technical note

The random-effects model is calculated using quadrature, which is an approximation whose accuracy
depends partially on the number of integration points used. We can use the quadchk command to see
if changing the number of integration points affects the results. If the results change, the quadrature
approximation is not accurate given the number of integration points. Try increasing the number
of integration points using the intpoints() option and run quadchk again. Do not attempt to
interpret the results of estimates when the coefficients reported by quadchk differ substantially. See
[XT] quadchk for details and [XT] xtprobit for an example.

Because the xtintreg likelihood function is calculated by Gauss—Hermite quadrature, on large
problems the computations can be slow. Computation time is roughly proportional to the number of

points used for the quadrature. 0

Stored results

xtintreg stores the following in e ():

Scalars
e(N) number of observations
e(N_g) number of groups
e(N_unc) number of uncensored observations
e(N_1lc) number of left-censored observations
e(N_rc) number of right-censored observations
e(N_int) number of interval observations
e(k) number of parameters
e(k_aux) number of auxiliary parameters
e(k_eq) number of equations in e (b)
e(k_eq_model) number of equations in overall model test
e(k_dv) number of dependent variables
e(df_m) model degrees of freedom
e(11) log likelihood
e(11-0) log likelihood, constant-only model
e(ll_c) log likelihood, comparison model
e(chi2)
e(chi2_c) x? for comparison test
e(rho) p
e(sigma_u) panel-level standard deviation
e(sigma_e) standard deviation of €;+
e(n_quad) number of quadrature points

e(g-_min) smallest group size
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e(marginsok)
e (asbalanced)
e (asobserved)

Matrices

r(table)

e(g_avg) average group size
e(g_max) largest group size
e(p) p-value for model test
e(rank) rank of e(V)
e (rank0) rank of e(V) for constant-only model
e(ic) number of iterations
e(rc) return code
e(converged) 1 if converged, O otherwise
Macros
e(cmd) xtintreg
e(cmdline) command as typed
e(depvar) names of dependent variables
e(ivar) variable denoting groups
e(wtype) weight type
e (wexp) weight expression
e(title) title in estimation output
e(offset) offset
e(chi2type) Wald or LR; type of model x? test
e(chi2_ct) Wald or LR; type of model x? test corresponding to e(chi2_c)
e(vce) veetype specified in vce ()
e(intmethod) integration method
e(distrib) Gaussian; the distribution of the random effect
e(opt) type of optimization
e(which) max or min; whether optimizer is to perform maximization or minimization
e(ml_method) type of m1 method
e(user) name of likelihood-evaluator program
e(technique) maximization technique
e(properties) bV
e(predict) program used to implement predict

predictions allowed by margins
factor variables fvset as asbalanced
factor variables fvset as asobserved

Matrices

e(b) coefficient vector

e(Cns) constraints matrix

e(ilog) iteration log

e(gradient) gradient vector

e(V) variance—covariance matrix of the estimators
Functions

e(sample) marks estimation sample

In addition to the above, the following is stored in r():

matrix containing the coefficients with their standard errors, test statistics, p-values,

and confidence intervals

Note that results stored in r () are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

Assuming a normal distribution, N (0, 03), for the random effects v;, we have the joint (unconditional
of ;) density of the observed data for the ith panel

. 7Xini} =
0 671/7;2/2012’ i
— F(y1it, Yoir, xit B+ v4) ¢ dy;
. \/%O’,, tl:[l (ylzt Y2it, Xit3 1) i

f {(ym, ym)’ sy (ylinwaini”Xliv .-
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where )
— 2 2
(V2moe) e~ Wu=2a)™ /(200 if (y1, y0i) € C

) (%i) if (Y1ie,Y2it) € L
F(y1it, Yoir, Dit) = A
1—-® (M) if (Y1, y2it) € R

Oe

€

o (yzita:Ait) - @ (ym;Ait) if (y1it, yoir) € 1

where C' is the set of noncensored observations (y1;: = y2;+ and both nonmissing), L is the set
of left-censored observations (yi;; missing and ys;; nonmissing), R is the set of right-censored
observations (y1;; nonmissing and yo;; missing ), I is the set of interval observations (y1;: < Y2t
and both nonmissing), and ®() is the cumulative normal distribution.

The panel-level likelihood I; is given by

2 /5 2
o eV /203,

I, = _—
—0o V21O,

ni
{H F(y1it, Y2it, X B + Z/z)} dv;
t=1

oo
= / 9(Y1it, Y2t Tie, Vi) dv;

— 00

This integral can be approximated with M -point Gauss—Hermite quadrature

0o M
2
/ e~ h(x)dx ~ E wy h(ar,)
> m=1

This is equivalent to

o M
/_ fa)de~ S whexp {(a%)?} Flas)

., denote the quadrature weights and the a), denote the quadrature abscissas. The log
likelihood, L, is the sum of the logs of the panel-level likelihoods ;.

where the w*

The default approximation of the log likelihood is by adaptive Gauss—Hermite quadrature, which
approximates the panel-level likelihood with

M
l; = V26, Z wi, exp {(ag,)} 9(yrit, yair, Tie, V20ia5, + 1ii)
m=1

where 0; and [i; are the adaptive parameters for panel i. Therefore, using the definition of
9(Y1it, Yait, Tit, V4 ), the total log likelihood is approximated by
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n M _ ~ ~1\2 2
L~ ;wz log {\/ﬁﬁimz_:lw; exp{(ak)g} eXp{ (\/ﬁ‘:;‘;%mat i) /2%}

ng
11 F i, yoir, 2B+ V25,05, + i) (1)
t=1
where w; is the user-specified weight for panel 7; if no weights are specified, w; = 1.
The default method of adaptive Gauss—Hermite quadrature is to calculate the posterior mean and
variance and use those parameters for [i; and &; by following the method of Naylor and Smith (1982),
further discussed in Skrondal and Rabe-Hesketh (2004). We start with 62’,0 =1 and ﬁi,O =0, and

the posterior means and variances are updated in the kth iteration. That is, at the kth iteration of the
optimization for [; we use

M
Lig =~ Z V26, k1w, exp{a},)* g (Wi, yait, i, V26 k1ak, + k1)

m=1
Letting
Timbo1 = V26, p_ 105, + Hig_1
M ~
~ Z(T )\/ia'i,k—lw;;@ exp{(a,)? } 9 (writ, Y2it, Tits Timok—1)
Hi K i,m,k—1 lin
m=1 s
and
~ Jk—1W,, €XP (a ) g(yl ty Y2it, Lit, Ti, ,k71) ~
Tik = Z(Tam,k—l)Q : o0 e l‘}k e — (B k)’
m=1 %

and this is repeated until [i; 5, and 0; 5, have converged for this iteration of the maximization algorithm.
This adaptation is applied on every iteration until the log-likelihood change from the preceding iteration
is less than a relative difference of 1e—6; after this, the quadrature parameters are fixed.

The log likelihood can also be calculated by nonadaptive Gauss—Hermite quadrature if the
intmethod(ghermite) option is specified. For nonadaptive Gauss—Hermite quadrature, the following
formula for the log likelihood is used in place of (1).

n
L= wilogf {(y1i1,y201): - - » Wrin,» Y2in)|X1ir - -, Xin, }
i=1

n M n;
~ Zwl log{\/lE Z wy, H F (ylitay%hxitﬁ + \/iaya:»}
i=1

m=1 t=1
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Both quadrature formulas require that the integrated function be well approximated by a polynomial
of degree equal to the number of quadrature points. Panel size can affect whether

n;
H F(y1it, y2its XitB + v4)

t=1

is well approximated by a polynomial. As panel size and p increase, the quadrature approximation can
become less accurate. For large p, the random-effects model can also become unidentified. Adaptive
quadrature gives better results for correlated data and large panels than nonadaptive quadrature;
however, we recommend that you use the quadchk command (see [XT] quadchk) to verify the
quadrature approximation used in this command, whichever approximation you choose.
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Postestimation commands

The following postestimation commands are available after xtintreg:

Command Description
contrast contrasts and ANOVA-style joint tests of estimates
estat ic Akaike’s, consistent Akaike’s, corrected Akaike’s, and Schwarz’s Bayesian in-

formation criteria (AIC, CAIC, AICc, and BIC)
estat summarize summary statistics for the estimation sample

estat vce variance—covariance matrix of the estimators (VCE)

estimates cataloging estimation results

etable table of estimation results

hausman Hausman’s specification test

lincom point estimates, standard errors, testing, and inference for linear combinations of
coefficients

lrtest likelihood-ratio test

margins marginal means, predictive margins, marginal effects, and average marginal effects

marginsplot graph the results from margins (profile plots, interaction plots, etc.)

nlcom point estimates, standard errors, testing, and inference for nonlinear combinations
of coefficients

predict predictions and their SEs, etc.

predictnl point estimates, standard errors, testing, and inference for generalized predictions

pwcompare pairwise comparisons of estimates

test Wald tests of simple and composite linear hypotheses

testnl Wald tests of nonlinear hypotheses

257
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predict

Description for predict

predict creates a new variable containing predictions such as linear predictions, standard errors,
probabilities, and expected values.

Menu for predict

Statistics > Postestimation

Syntax for predict

predict [type] newvar [zf] [in] [, statistic nooffset]

statistic Description
Main
xb linear prediction; the default
stdp standard error of the linear prediction
stdf standard error of the linear forecast
pr(a,b) Pr(a < y < b), marginal with respect to the random effect
e(a,b) E(y | a <y < b), marginal with respect to the random effect
ystar(a,b) E(y*), y* = max{a, min(y, b) }, marginal with respect to the random effect
These statistics are available both in and out of sample; type predict ... if e(sample) ... if wanted only

for the estimation sample.

where @ and b may be numbers or variables; a missing (¢ > .) means —oo, and b missing (b > .)
means +00; see [U] 12.2.1 Missing values.

Options for predict
Main

xb, the default, calculates the linear prediction x;;3 using the estimated fixed effects (coefficients) in
the model. This is equivalent to fixing all random effects in the model to their theoretical (prior)
mean value of zero.

stdp calculates the standard error of the linear prediction. It can be thought of as the standard error
of the predicted expected value or mean for the observation’s covariate pattern. The standard error
of the prediction is also referred to as the standard error of the fitted value.

stdf calculates the standard error of the linear forecast. This is the standard error of the point
prediction for 1 observation. It is commonly referred to as the standard error of the future or
forecast value. By construction, the standard errors produced by stdf are always larger than those
produced by stdp; see Methods and formulas in [R] regress.
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pr(a,b) calculates estimates of Pr(a < y < b|x = X;;), which is the probability that y would be
observed in the interval (a, b), given the current values of the predictors, x;;. The predictions are
calculated marginally with respect to the random effect. That is, the random effect is integrated
out of the prediction function. In the discussion that follows, these two conditions are implied.

a and b may be specified as numbers or variable names; /b and ub are variable names;
pr(20,30) calculates Pr(20 < y < 30);

pr(b,ub) calculates Pr(lb < y < ub); and

pr(20,ub) calculates Pr(20 < y < ub).

a missing (a > .) means —o0; pr(.,30) calculates Pr(—oo < y < 30);
pr(lb,30) calculates Pr(—oo < y < 30) in observations for which Ib > .
(and calculates Pr(lb < y < 30) elsewhere).

b missing (b > .) means +o00; pr(20,.) calculates Pr(4+oco > y > 20);
pr(20,ub) calculates Pr(4+o0o > y > 20) in observations for which ub > .
(and calculates Pr(20 < y < ub) elsewhere).

e(a,b) calculates estimates of E(y|a < y < b,x = X;;), which is the expected value of y conditional
on y being in the interval (a,b), meaning that y is truncated. a and b are specified as they are
for pr (). The predictions are calculated marginally with respect to the random effect. That is, the
random effect is integrated out of the prediction function.

ystar(a,b) calculates estimates of E(y*|x = x;;), where y* = a if y < a, y* =bif y > b, and
y* = y otherwise, meaning that y* is the censored version of y. a and b are specified as they are
for pr (). The predictions are calculated marginally with respect to the random effect. That is, the
random effect is integrated out of the prediction function.

nooffset is relevant only if you specified offset (varname) for xtintreg. It modifies the calcu-
lations made by predict so that they ignore the offset variable; the linear prediction is treated as
X3 rather than x;;3 + offset;;.
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margins

Description for margins

margins estimates margins of response for linear predictions, probabilities, and expected values.

Menu for margins

Statistics > Postestimation

Syntax for margins

margins [marginlist} [, ()pti()nx]

margins [marginlisz} , predict (statistic ...) [Eedict (statistic ...) ... ] [opzions]
statistic Description
xb linear prediction; the default
pr(a,b) Pr(a < y < b), marginal with respect to the random effect
e(a,b) E(y | a < y < b), marginal with respect to the random effect
ystar(a,b) E(y*), y* = max{a, min(y, b)}, marginal with respect to the random effect
stdp not allowed with margins
stdf not allowed with margins

Statistics not allowed with margins are functions of stochastic quantities other than e(b).

For the full syntax, see [R] margins.

Remarks and examples

> Example 1: Average marginal probabilities at specified covariate values

In example 1 of [XT] xtintreg, we fit a random-effects model of wages. Say that we want to know
how union membership status affects the probability that a worker’s wage will be “low”, where low
means a log wage that is less than the 20th percentile of all observations in our dataset. First, we
use centile to find the 20th percentile of 1n_wage:

. use https://www.stata-press.com/data/r18/nlswork5

(National Longitudinal Survey of Young Women, 14-24 years old in 1968)

. xtintreg 1ln_wagel 1n_wage2 i.union age grade not_smsa south##c.year, intreg
(output omitted )

. centile ln_wage, centile(20)

Binom. interp.
Variable | Obs Percentile Centile [95% conf. intervall

1n_wage | 28,534 20 1.301507 1.297063 1.308635
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Now we use margins to obtain the effect of union status on the probability that the log of wages is
in the bottom 20% of women. Given the results from centile that corresponds to the log of wages
being below 1.30. We evaluate the effect for two groups: 1) women age 30 living in the south in
1988 who graduated high school, but had no more schooling, and 2) the same group of women, but
who are instead college graduates (grade=16).

. margins, dydx(union) predict(pr(.,1.30))

> at(age=30 south=1 year=88 grade=12 union=0)

> at(age=30 south=1 year=88 grade=16 union=0)

Average marginal effects Number of obs = 19,224

Model VCE: OIM

Expression: Pr(ln_wagel<1.30), predict(pr(.,1.30))
dy/dx wrt: 1.union

1._at: union = O
age = 30
grade = 12
south = 1
year = 88
2._at: union = O
age = 30
grade = 16
south = 1
year = 88
Delta-method
dy/dx  std. err. z P>|z| [95% conf. interval]
0.union (base outcome)
1.union
_at
1 -.0755536 .0058942 -12.82  0.000 -.0871059 -.0640012
2 -.0368238 .0034632 -10.63  0.000 -.0436114 -.0300361

Note: dy/dx for factor levels is the discrete change from the base level.

For the first group of women, according to our fitted model, being in a union lowers the probability
of being classified as a low-wage worker by almost 7.6 percentage points. Being a college graduate
attenuates this effect to just under 3.7 percentage points.

N

Methods and formulas

Methods and formulas for calculating the available predictions are given in Methods and formulas
of [XT] xttobit postestimation.

Also see

[XT] xtintreg — Random-effects interval-data regression models

[U] 20 Estimation and postestimation commands
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Description

xtivreg offers five different estimators for fitting panel-data models in which some of the right-
hand-side covariates are endogenous. These estimators are two-stage least-squares generalizations of
simple panel-data estimators for exogenous variables. xtivreg with the be option uses the two-
stage least-squares between estimator. xtivreg with the fe option uses the two-stage least-squares
within estimator. xtivreg with the re option uses a two-stage least-squares random-effects estimator.
There are two implementations: G2SLS from Balestra and Varadharajan-Krishnakumar (1987) and
EC2SLS from Baltagi. The Balestra and Varadharajan-Krishnakumar G2SLS is the default because it is
computationally less expensive. Baltagi’s EC2SLS can be obtained by specifying the ec2sls option.
xtivreg with the £d option requests the two-stage least-squares first-differenced estimator.

See Baltagi (2013) for an introduction to panel-data models with endogenous covariates. For the
derivation and application of the first-differenced estimator, see Anderson and Hsiao (1981).

Quick start

Random-effects linear panel-data model with outcome y, exogenous x1, and x2 instrumented by x3
using xtset data

xtivreg y x1 (x2 = x3)

Use fixed-effects estimator and include indicators for each level of categorical variable a
xtivreg y x1 i.a (x2 = x3), fe

Use between-effects estimator and include indicators for levels of b as instruments
xtivreg y x1 i.a (x2 = x3 i.b), be

First-differenced model of y as a function of x1 and x2 and the lag of y instrumented by its third lag
xtivreg y x1 x2 (L.y = L3.y), fd

Menu

Statistics > Longitudinal/panel data > Endogenous covariates > Instrumental-variables regression (FE, RE, BE, FD)
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Syntax
GLS random-effects (RE) model

xtivreg depvar [varlistl] (varlisty = varlistiy) [zf] [in] [, re RE_()pti()ns}

Between-effects (BE) model

xtivreg depvar [varlisll] (varlisty = varlistiy,) [lf] [ln] , be [BE_Oplions]

Fixed-effects (FE) model

xtivreg depvar [varlistl] (varlisty = varlisti,) [lf] [ln] , fe [FE_opzions]

First-differenced (FD) estimator

xtivreg depvar [varlistl] (varlisty = varlistiy) [zf] [in] , fd [FD_()ptions]

RE _options Description
Model
re use random-effects estimator; the default
ec2sls use Baltagi’s EC2SLS random-effects estimator
nosa use the Baltagi—Chang estimators of the variance components
regress treat covariates as exogenous and ignore instrumental variables
SE/Robust
vce (veetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or
jackknife
Reporting
level (#) set confidence level; default is 1level (95)
first report first-stage estimates
small report ¢ and F statistics instead of Z and ? statistics
theta report 6
display_options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics
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BE_options Description
Model

be use between-effects estimator

regress treat covariates as exogenous and ignore instrumental variables
SE/Robust

vce (veetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or

jackknife

Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

display_options

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

FE_options Description
Model

fe use fixed-effects estimator

regress treat covariates as exogenous and ignore instrumental variables
SE/Robust

vce (veetype) veetype may be conventional, robust, cluster clustvar, bootstrap, or

jackknife

Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

display_options

coeflegend

control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling

display legend instead of statistics
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FD_options Description
Model

noconstant suppress constant term

fd use first-differenced estimator

regress treat covariates as exogenous and ignore instrumental variables
SE/Robust

vce (veetype) vcetype may be conventional, robust, cluster clustvar, bootstrap, or

jackknife

Reporting

level (#) set confidence level; default is 1level (95)

first report first-stage estimates

small report ¢ and F statistics instead of Z and x? statistics

display_options

coeflegend

control columns and column formats, row spacing, line width, and display
of omitted variables

display legend instead of statistics

A panel variable must be specified. For xtivreg, fd, a time variable must also be specified. Use xtset;

see [XT] xtset.

varlisty and varlist;y may contain factor variables, except for the fd estimator; see [U] 11.4.3 Factor variables.

depvar, varlisty, varlisto, and varlist;y may contain time-series operators; see [U] 11.4.4 Time-series varlists.

by, collect, and statsby are allowed; see [U] 11.1.10 Prefix commands.

coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options for RE model

_ (Wogel

re requests the G2SLS random-effects estimator. re is the default.

ec2sls requests Baltagi’s EC2SLS random-effects estimator instead of the default Balestra and
Varadharajan-Krishnakumar estimator.

nosa specifies that the Baltagi—Chang estimators of the variance components be used instead of the
default adapted Swamy—Arora estimators.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist; and varlist, ignoring varlist;,,.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.
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Specifying vce (robust) is equivalent to specifying vce(cluster panelvar); see xtreg, re in
Methods and formulas of [XT] xtreg.

Reporting

level (#); see [R] Estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of 7 statistics and that F' statistics be reported
instead of x? statistics.

theta specifies that the output include the estimated value of 6 used in combining the between and
fixed estimators. For balanced data, this is a constant, and for unbalanced data, a summary of the
values is presented in the header of the output.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon (style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for BE model
_ [odel)

be requests the between regression estimator.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist; and varlisty, ignoring varlist;,.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Specifying vce (robust) is equivalent to specifying vce(cluster panelvar); see xtreg, fe in
Methods and formulas of [XT] xtreg.

Reporting

level (#); see [R] Estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of 7 statistics and that F' statistics be reported
instead of x? statistics.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fint),
sformat (% fimt), and nolstretch; see [R] Estimation options.
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The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for FE model
Model

fe requests the fixed-effects (within) regression estimator.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist; and varlisty, ignoring varlist;,.

SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

vce(conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Specifying vce (robust) is equivalent to specifying vce(cluster panelvar); see xtreg, fe in
Methods and formulas of [XT] xtreg.

Reporting

level (#); see [R] Estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of Z statistics and that F' statistics be reported
instead of 2 statistics.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fimt), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Options for FD model
_ [odel|

noconstant; see [R] Estimation options.
fd requests the first-differenced regression estimator.

regress specifies that all the covariates be treated as exogenous and that the instrument list be
ignored. Specifying regress causes xtivreg to fit the requested panel-data regression model of
depvar on varlist; and varlisty, ignoring varlist;,.
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SE/Robust

vce (veetype) specifies the type of standard error reported, which includes types that are derived from
asymptotic theory (conventional), that are robust to some kinds of misspecification (robust),
that allow for intragroup correlation (cluster clustvar), and that use bootstrap or jackknife methods
(bootstrap, jackknife); see [XT] vce_options.

vce (conventional), the default, uses the conventionally derived variance estimator for generalized
least-squares regression.

Specifying vce (robust) is equivalent to specifying vce(cluster panelvar); see xtreg, fe in
Methods and formulas of [XT] xtreg.

Reporting

level (#); see [R] Estimation options.
first specifies that the first-stage regressions be displayed.

small specifies that ¢ statistics be reported instead of Z statistics and that F’ statistics be reported
instead of x? statistics.

display_options: noci, nopvalues, noomitted, vsquish, cformat (% fint), pformat (% fint),
sformat (% fmt), and nolstretch; see [R] Estimation options.

The following option is available with xtivreg but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples

If you have not read [XT] xt, please do so.

Consider an equation of the form
Yit = Yy + XaaB + pi + Vit = L + i + Vit (1)

where

y;¢ 1S the dependent variable;

Y,: is an 1 X go vector of observations on g endogenous variables included as covariates, and
these variables are allowed to be correlated with the v;;;

Xt is an 1 X k1 vector of observations on the exogenous variables included as covariates;
Z; = [Yit Xz‘t};

~ is a g2 x 1 vector of coefficients;

B is a k1 x 1 vector of coefficients; and

d is a K x 1 vector of coefficients, where K = go + k1.

Assume that there is a 1 X ko vector of observations on the ks instruments in Xog;;. The order
condition is satisfied if ko > go. Let Xz = [Xy4+ Xo;¢]. xtivreg handles exogenously unbalanced
panel data. Thus define 7; to be the number of observations on panel %, n to be the number of panels
and NN to be the total number of observations; that is, N = Z?zl T;.
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xtivreg offers five different estimators, which may be applied to models having the form of
(1). The first-differenced estimator (FD2SLS) removes the p; by fitting the model in first differences.
The within estimator (FE2SLS) fits the model after sweeping out the p; by removing the panel-level
means from each variable. The between estimator (BE2SLS) models the panel averages. The two
random-effects estimators, G2SLS and EC2SLS, treat the p; as random variables that are independent
and identically distributed (i.i.d.) over the panels. Except for (FD2SLS), all of these estimators are
generalizations of estimators in xtreg. See [XT] xtreg for a discussion of these estimators for
exogenous covariates.

Although the estimators allow for different assumptions about the p;, all the estimators assume
that the idiosyncratic error term v;; has zero mean and is uncorrelated with the variables in X;;. Just
as when there are no endogenous covariates, as discussed in [XT] xtreg, there are various perspectives
on what assumptions should be placed on the p;. If they are assumed to be fixed, the p; may be
correlated with the variables in X,;;, and the within estimator is efficient within a class of limited
information estimators. Alternatively, if the p; are assumed to be random, they are also assumed to
be i.i.d. over the panels. If the p; are assumed to be uncorrelated with the variables in X4, the
GLS random-effects estimators are more efficient than the within estimator. However, if the pu; are
correlated with the variables in X;;, the random-effects estimators are inconsistent but the within
estimator is consistent. The price of using the within estimator is that it is not possible to estimate
coefficients on time-invariant variables, and all inference is conditional on the y; in the sample. See
Mundlak (1978) and Hsiao (2014) for discussions of this interpretation of the within estimator