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Description

ivsvar estimates the parameters of structural vector autoregressive (SVAR) models by instrumental
variables. Instrumental-variables SVAR models are an alternative to the short-run SVAR models fit by
svar, requiring fewer constraints than would be necessary in those models to identify the structural
impulse–response functions (IRFs). They need fewer constraints because the shocks of interest, target
shocks, are modeled using instrumental variables. The structural IRFs are then estimated only for
the target shocks. Instrumental-variables SVAR models are also called proxy SVAR models. ivsvar
provides two estimators: a generalized method of moments (GMM) estimator for a single target shock
and a minimum distance estimator for multiple target shocks.

Quick start
Fit an instrumental-variables SVAR model for the variables y1, y2, and y3, with y3 instrumented by

z using the GMM estimator
ivsvar gmm y1 y2 (y3 = z)

As above, but run the reduced-form vector autoregressive (VAR) model with lags 1 through 4 instead
of the default 1 through 2

ivsvar gmm y1 y2 (y3 = z), lags(1/4)

Add exogenous variables x1 and x2

ivsvar gmm y1 y2 (y3 = z), lags(1/4) exog(x1 x2)

Instrumental-variables SVAR with the minimum distance estimator, using short-run constraints given
by predefined matrix P

ivsvar mdist y1 (y2 y3 = z1 z2), peq(P)

Menu
Statistics > Multivariate time series > Instrumental-variables SVAR
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Syntax

Generalized method of moments (GMM) estimator

ivsvar gmm depvarlist (varnametarget = varlistiv)
[

if
] [

in
] [

, options gmm options
]

Minimum distance estimator

ivsvar mdist depvarlist (varlisttarget = varlistiv)
[

if
] [

in
] [

, options mdist options
]

varnametarget is a dependent variable corresponding to the target shock.

varlistiv is a list of instruments.

varlisttarget is a list of dependent variables corresponding to the target shocks.

options Description

Model

noconstant suppress constant term
nozconstant suppress constant terms for the instruments z
lags(numlist) specify a list of lags for the VAR model; default is lags(1 2)

exog(varlistexog) specify exogenous variables
zlags(numlist) specify a list of lags for the instruments z; default is no lags for

the instruments

Reporting

level(#) set confidence level; default is level(95)

nocnsreport do not display constraints
display options control columns and column formats, row spacing, line width,

display of omitted variables and base and empty cells, and
factor-variable labeling

coeflegend display legend instead of statistics

gmm options Description

Model 2

scale(#) set scale for impact effect; default is scale(1)

showgmm display underlying GMM output
norescale do not rescale GMM output

SE/Robust

vce(vcetype) vcetype may be robust, cluster clustvar, or hac kernel #
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mdist options Description

Model 2

beq(matrixbeq) define and apply to B equality constraint matrix matrixbeq
peq(matrixpeq) define and apply to Pz equality constraint matrix matrixpeq
qmatrix(matrix) specify minimum distance weight matrix Q
showvar display underlying VAR output
showzvar display underlying VAR output for the instruments

Maximization

maximize options control the maximization process; seldom used

You must tsset your data before using ivsvar; see [TS] tsset.
collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.
See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

� � �
Model �

noconstant suppresses the constant term in the reduced-form VAR model.

nozconstant suppresses the constant terms in preliminary regressions on the instruments z.

lags(numlist) specifies the lags to be included in the reduced-form VAR model. The default is
lags(1 2). This option takes a numlist and not simply an integer for the maximum lag. For
instance, lags(2) would include only the second lag in the model, whereas lags(1/2) would
include both the first and second lags in the model. See [U] 11.1.8 numlist and [U] 11.4.4 Time-series
varlists for further discussion of numlists and lags.

exog(varlistexog) specifies a list of exogenous variables to be included in the reduced-form VAR
model.

zlags(numlist) specifies that the lags in numlist be partialed out when running preliminary regressions
on the instruments z. The residuals from these regressions are then used as the instruments. See
[U] 11.1.8 numlist and [U] 11.4.4 Time-series varlists for further discussion of numlists and lags.

� � �
Model 2 �

The following options are specific to the GMM estimator:

scale(#) specifies the scaling factor used in computing impact effects. For example, an impact effect
of 0.25 may be computed with scale(0.25). The default is scale(1).

showgmm specifies that the output from gmm also be displayed. By default, it is fit quietly.

norescale removes rescaling entirely. The coefficients estimated by GMM are reported.

The following options are specific to the minimum distance estimator:

beq(matrixbeq) and peq(matrixpeq) specify the short-run constraints in an instrumental-variables
SVAR model. Short-run constraints are required any time there is more than one target shock. The
beq() option specifies constraints on the parameters of the B matrix; the peq() option specifies
constraints on the parameters of the Pz matrix (see Multiple target shocks for more details on the B
and Pz matrices). An instrumental-variables SVAR model requires at least r(r− 1)/2 constraints,
where r is the number of target shocks.
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beq(matrixbeq) specifies a matrix that defines a set of equality constraints. The B matrix must
be of dimension k × r, where k is the number of variables in the VAR model and r is the
number of target shocks. The elements of this matrix must be missing or real numbers. A
missing value in the (i, j) element of this matrix specifies that the (i, j) element of B is a free
parameter. A real number in the (i, j) element of this matrix constrains the (i, j) element of
B to this real number. If beq(matrixbeq) is not specified, all elements in B are assumed to
be free parameters.

peq(matrixpeq) specifies a matrix that defines a set of equality constraints. The Pz matrix must
be of dimension r × r. It follows the same rules as described in beq(matrixbeq), except that
it applies to Pz rather than B. If peq(matrixpeq) is not specified, all elements in Pz are
assumed to be free parameters. For example, if there are two instruments for two target shocks,
the matrix

Pz =

[
. 0
0 .

]
specifies that the first instrument is correlated with the first target shock, the second instrument
is correlated with the second target shock, and the cross-correlations are constrained to be zero.
By contrast, the matrix

Pz =

[
. 0
. .

]
continues to impose that the first instrument is not affected by the second target shock, but
allows the second instrument to be correlated with both target shocks.

qmatrix(matrix) specifies the weighting matrix Q used in minimum distance estimation. By default,
the inverse variance matrix of the reduced-form parameters is used.

showvar specifies that the output from the underlying VAR model also be displayed.

showzvar specifies that the output from the underlying VAR model for the instruments z also be
displayed.

� � �
SE/Robust �

vce(vcetype) specifies the type of standard error reported, which includes types that are robust
to some kinds of misspecification (robust) and that allow for intragroup correlation (cluster
clustvar); see [R] vce option.

vce(hac kernel #) requests a heteroskedasticity- and autocorrelation-consistent (HAC) variance–
covariance matrix using the specified kernel (see below) with # lags. The bandwidth of a kernel
is equal to # + 1.

vce(hac kernel opt
[

#
]
) requests a HAC variance–covariance matrix using the specified kernel,

and the lag order is selected using Newey and West’s (1994) optimal lag-selection algorithm. #
is an optional tuning parameter that affects the lag order selected; see the discussion in Methods
and formulas in [R] ivregress.

vce(hac kernel) requests an HAC weighting matrix using the specified kernel and N − 2 lags,
where N is the sample size.

There are three kernels available for HAC variance–covariance matrices, and you may request each
one by using the name used by statisticians or the name perhaps more familiar to economists:

bartlett or nwest requests the Bartlett (Newey–West) kernel;

parzen or gallant requests the Parzen (Gallant 1987) kernel; and

quadraticspectral or andrews requests the quadratic spectral (Andrews 1991) kernel.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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� � �
Reporting �

level(#); see [R] Estimation options.

nocnsreport; see [R] Estimation options.

display options: noci, nopvalues, cformat(% fmt), pformat(% fmt), and sformat(% fmt); see
[R] Estimation options.

� � �
Maximization �

maximize options: difficult, technique(algorithm spec), iterate(#),
[
no
]
log, trace,

gradient, showstep, hessian, tolerance(#), ltolerance(#),
nrtolerance(#), nonrtolerance, and from(init specs); see [R] Maximize. These options are
seldom used.

The following option is available with ivsvar but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Introduction
Structural VAR models with external instruments
Multiple target shocks

Introduction

This entry assumes that you are familiar with VAR model and SVAR model estimation. If you are
not, please look at [TS] var intro, [TS] var, [TS] var svar, and the references therein. Here, we
illustrate how to fit SVAR models with instrumental variables, also known as proxies. This method is an
alternative to that described in [TS] var svar, which fits SVAR models subject to short-run and long-run
restrictions. For more detailed information on SVAR models, see Amisano and Giannini (1997) and
Hamilton (1994). For good introductions to VAR models, see Lütkepohl (2005), Hamilton (1994),
Stock and Watson (2001), and Becketti (2020).

Instrumental-variables SVAR models were introduced by Stock and Watson (2012), with early
applications by Mertens and Ravn (2013) and Gertler and Karadi (2015). Montiel Olea, Stock, and
Watson (2021) provide a treatment of the GMM estimator. The minimum distance estimator for
instrumental-variables SVAR models is due to Angelini and Fanelli (2019).

Structural VAR models with external instruments
A reduced-form VAR model without exogenous variables can be written as

yt = A1yt−1 + · · ·+Apyt−p + ut

where yt is a k× 1 vector of endogenous variables, (A1, . . . ,Ap) are k× k matrices of parameters,
and ut is a k× 1 vector of residuals. The residuals have k× k covariance matrix Σ. As in [TS] var
svar, we assume the reduced-form residuals ut can be written as linear combinations of underlying
independent shocks et by

ut = Bet
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where B is a k × k matrix and et is a k × 1 vector of shocks. The matrix B is related to the
reduced-form residual covariance matrix by

Σ = BB′ (1)

where E(ete
′
t) = I.

There are k2 entries in B, but the data provide only k(k − 1)/2 pieces of information in the
symmetric matrix Σ. An SVAR model places restrictions on some entries of B to estimate the remaining
entries. For example, a researcher might set B to be lower triangular, leaving the k(k−1)/2 diagonal
and lower-diagonal elements to be estimated.

Instrumental-variables SVAR models estimate the same parameters as traditional SVAR models; the
object of interest is one or more columns of B. Instrumental-variables SVAR models impose fewer
restrictions on B than would be required in an SVAR model. This is accomplished by incorporating
additional information that supplements the covariance restriction in (1). In an instrumental-variables
SVAR model, there exists a variable zt with the following properties:

E(zte1,t) = pz

E(ztej,t) = 0 ∀j 6= 1

We call e1,t the target shock. The variable zt is correlated with the shock e1,t and is uncorrelated
with all other shocks. We say zt is an instrument, and it can be used to recover the first column of
B.

One can write

E(utzt) = E(Betzt)

= B1E(zte1,t) +B2E(zte2,t) + · · ·+BkE(ztek,t)

= B1pz

so that the column of B associated with the target shock e1,t is identified, up to scale factor pz . The
instrumental-variables SVAR model does not attempt to identify the remaining columns of B, which
correspond to the nontarget shocks.

The instrumental-variables SVAR model identifies the first column of B up to a scale factor. The
final normalization is the unit effect normalization: for a specified target variable, the effect on impact
is normalized to 1.

Instrumental-variables SVAR models come with benefits and costs. The benefit is that the researcher
needs to impose fewer restrictions on the impact effect matrix B than would be necessary in an SVAR
model identified by short-run restrictions. The cost is that the instrumental-variables SVAR model
estimates only the columns of B related to the target shocks; it can say nothing about the columns
of B related to the nontarget shocks.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


var ivsvar — Instrumental-variables structural vector autoregressive models+ 7

Example 1: Instrumental-variables SVAR model

In this example, we use common U.S. macroeconomic data. We have data on U.S. industrial
production growth (ip growth), consumer price index inflation (inflation), and the interest rate
(fedfunds). These three variables are the outcome variables of interest. We also have two instruments.
The first is a proxy for monetary policy shocks (money inst), the surprise component of interest
rate movements used in Romer and Romer (2004) and Wieland and Yang (2020). The second is a
proxy variable for oil shocks (oil inst), the net oil price increase over the previous 12 months,
similar to a measure constructed in Hamilton (2003). These two proxies are used to instrument for
interest rate shocks and inflation shocks, respectively.

We first fit an instrumental-variables SVAR model on inflation, the interest rate, and industrial
production growth, using the oil price instrument as a proxy for the inflation shock.

. use https://www.stata-press.com/data/r18/usmacro3
(Federal Reserve Economic Data - St. Louis Fed, 2023-09-01)

. ivsvar gmm fedfunds ip_growth (inflation = oil_inst)

Step 1:
Iteration 0: GMM criterion = .74206787
Iteration 1: GMM criterion = 2.677e-31
Iteration 2: GMM criterion = 1.678e-31

Step 2:
Iteration 0: GMM criterion = 4.547e-31
Iteration 1: GMM criterion = 4.547e-31 (backed up)

note: model is exactly identified.

Instrumental-variables SVAR Number of obs = 783
VAR sample: 1954m10 thru 2019m12
GMM sample: 1954m10 thru 2019m12

( 1) [e.inflation]inflation = 1

Robust
Effect Coefficient std. err. z P>|z| [95% conf. interval]

e.inflation
fedfunds .0046142 .271441 0.02 0.986 -.5274004 .5366288

ip_growth -.31198 .4330713 -0.72 0.471 -1.160784 .5368241
inflation 1 (constrained)

Note: Underlying VAR fit with 2 lags.
Dependent variables: fedfunds ip_growth inflation
Instrumented shock: inflation
Instruments: oil_inst

The output displays only the impact coefficients; the reduced-form VAR lag coefficients are
suppressed. The impact effects are the elements of the column of B that correspond to the structural
inflation shock. The impact effects are shown only for the target shock, in this case, the inflation
shock (e.inflation). The first response is the impact effect of the inflation shock on the interest
rate (fedfunds), which is close to zero. The second response is the impact effect of the inflation
shock on the growth rate of industrial production (ip growth); the estimated impact effect is −0.31,
though the 95% confidence interval includes zero. The third response is the effect of an inflation
shock on inflation itself (inflation), which is scaled to 1.

In a short-run SVAR model fit by the svar command, all elements of the impact matrix B are
displayed, arranged by column. In the present ivsvar output, only columns of B associated with the
target shock are estimated and displayed. Hence, the output above contains only the impact effects
of the inflation shock.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow


8 var ivsvar — Instrumental-variables structural vector autoregressive models+

To trace out the dynamic effects of the inflation shock, we create and graph the structural IRFs
with the irf suite of commands:

. irf set ivsvarirf.irf, replace

. irf create model1, step(36)

. irf graph sirf, impulse(inflation)

sirf requests that structural IRFs be displayed.

-1
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1

-1
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.5

1

0 12 24 36

0 12 24 36

model1, inflation, fedfunds model1, inflation, inflation

model1, inflation, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

Each panel displays the dynamic response of one variable to the shock. The x axis measures
time in the units of the data, in this case months. The y axis has the same units as the variables,
in this case, percentage points. The interest rate (top left) shows little response to the shock at any
time horizon. Inflation (top right) rises by 1% on impact by construction, falling back to its long-run
average within 6 steps (6 months). Industrial production falls on impact but returns to its long-run
average quickly.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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Example 2: Including additional lags in the VAR model

We continue with the above example and now include 12 lags in the reduced-form VAR model
instead of the default 2 lags. These additional lags can detect more complicated short-run dynamics
in the periods after a shock. We can then graph the dynamic responses from both models on the same
set of IRF graphs:

. ivsvar gmm fedfunds ip_growth (inflation = oil_inst), lags(1/12)

(output omitted )

. irf create model2, step(36)
irfname model2 not found in ivsvarirf.irf
(file ivsvarirf.irf updated)

. irf graph sirf, impulse(inflation)

-1
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2
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0

1

2

0 12 24 36 0 12 24 36 0 12 24 36

model1, inflation, fedfunds model1, inflation, inflation model1, inflation, ip_growth

model2, inflation, fedfunds model2, inflation, inflation model2, inflation, ip_growth

95% CI Structural IRF

Step

Graphs by irfname, impulse variable, and response variable

Each row contains the dynamic responses from one model. The top row reproduces the IRF graphs
for the 2-lag model. The bottom row produces the IRF graphs for the 12-lag model. With these
additional lags, the interest rate response is positive one year after the shock and does not return to
steady state even 36 months after the shock. In the two-lag model shown on the top row, the inflation
response quickly returns to zero, whereas in the many-lag model, there is additional persistence in the
inflation response. Industrial production declines on impact as in the two-lag model, with additional
declines in the months following the shock.

Multiple target shocks

So far we have considered a VAR model with a single instrument and a single target shock. The
ivsvar mdist estimator is available for models with multiple instruments and multiple target shocks.
As before, there is a VAR model:

yt = A1yt−1 + · · ·+Apyt−p + ut

As before, we assume the reduced-form residuals ut can be written as linear combinations of underlying
independent shocks et by

ut = Bet

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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For convenience, we split the k shocks into two groups: r target shocks and (k−r) nontarget shocks.

ut = B1e1t +B2e2t

There is an r × 1 vector of instruments zt that is related to the target shocks e1t (the relevance
assumption) and is unrelated to the nontarget shocks e2t (the exclusion assumption), satisfying

zt = Pze1t + ωt

where Pz is a r × r matrix describing the relationship of the instruments to the target shocks and
ωt is noise.

Example 3: Multiple target shocks

We fit an instrumental-variables SVAR model with two instruments for two target shocks. The
instruments are the monetary instrument and the oil price instrument; the target shocks are the interest
rate and inflation shocks. Because we have two instruments and two shocks, one restriction is required
to estimate the remaining parameters. This could be a restriction on the impact coefficients B1 or a
restriction on how the instruments are related to the target shocks. If each instrument is correlated
only with one target shock, then the Pz matrix will be diagonal, giving us two restrictions. We can
relax this assumption, allowing one of the two instruments to additionally be related to a second
target shock. Setting up the matrix

. matrix P = (., 0 \ ., .)

specifies that the first instrument is related only to the first target shock and the second instrument
is potentially related to both target shocks. Thus, order matters when specifying the instruments and
target shocks.

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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. ivsvar mdist ip_growth (fedfunds inflation = money_inst oil_inst),
> lags(1/12) peq(P)

Estimating short-run parameters:
Iteration 0: Distance criterion = 6.333e-32
Iteration 1: Distance criterion = 5.009e-32

Refining estimates:
Iteration 0: Distance criterion = 1.919e-33
Iteration 1: Distance criterion = 1.906e-33

Instrumental-variables SVAR Number of obs = 468
Endogenous sample: 1955m8 thru 2019m12
Instrument sample: 1969m1 thru 2007m12

( 1) [e.inflation]money_inst = 0

Effect Coefficient Std. err. z P>|z| [95% conf. interval]

e.fedfunds
ip_growth .162055 .0627292 2.58 0.010 .0391079 .285002
fedfunds .4161643 .014041 29.64 0.000 .3886445 .4436841

inflation .0319081 .0179481 1.78 0.075 -.0032696 .0670858

e.inflation
ip_growth -.0980082 .1484195 -0.66 0.509 -.3889051 .1928888
fedfunds -.0313886 .0297882 -1.05 0.292 -.0897724 .0269952

inflation .2118086 .0084356 25.11 0.000 .1952751 .2283421

e.fedfunds
money_inst .1626293 .0126147 12.89 0.000 .1379049 .1873537

oil_inst .0470263 .2422618 0.19 0.846 -.4277982 .5218507

e.inflation
money_inst 0 (constrained)

oil_inst 1.138002 .2256836 5.04 0.000 .6956705 1.580334

Wald test of instrument relevance: chi2(6) = 218.1 Prob > chi2 = 0.000
Note: Underlying VAR fit with 12 lags.
Dependent variables: ip_growth fedfunds inflation
Instrumented shocks: fedfunds inflation
Instruments: money_inst oil_inst

Before we discuss the estimation output, notice from the header output that the endogenous variables
are measured from 1955m8 and the instruments are measured from 1969m1. The endogenous sample
and instrument sample may differ, which is useful when the instrument is measured on a shorter
sample than the endogenous variables (or vice versa).

The estimation output is separated into blocks. Each block is the impact effect of one shock either
on the endogenous variables or on the instruments. In the above output, the first two blocks are
columns of the B1 matrix; the coefficients are the impact effects of the shocks on the endogenous
variables. The last two blocks are the columns of the Pz matrix; the coefficients are the impact effects
of the shocks on the instruments.

From the first block, we see that on impact, an interest rate shock raises the interest rate, inflation,
and industrial production growth. From the second block, we find that an inflation shock increases
inflation, reduces the interest rate, and reduces industrial production growth on impact. Importantly,
no elements of B1 needed to be constrained, unlike in a short-run SVAR model.

The third block displays the effect of an interest rate shock on the two instruments. The interest
rate shock is positively related to the monetary instrument. In addition, we have allowed the interest
rate shock to be correlated with the oil price instrument. This coefficient of 0.047 indicates that
when there is an interest rate shock, the oil price instrument rises by 0.047. Allowing for these

https://www.stata.com/manuals/u5.pdf#u5.1StataNow
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cross-effects—nonzero response of some instruments to the “wrong” shock—is a useful feature of
the multiple-shock approach. The final block displays the effect of an inflation shock on the two
instruments. In the final block, we have assumed no influence of the inflation shock on the monetary
instrument and allowed the inflation shock to influence the oil price instrument.

We can compute impulse–response functions for each instrumented shock.

. irf create model3, step(36)

Responses to an interest rate shock are

. irf graph sirf, irf(model3) impulse(fedfunds) response(inflation ip_growth)
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Graphs by irfname, impulse variable, and response variable

The inflation response is slightly positive for all 36 periods. Industrial production growth rises
slightly initially but then falls within six months of the shock.

Responses to an inflation shock are

. irf graph sirf, irf(model3) impulse(inflation) response(inflation ip_growth)
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Graphs by irfname, impulse variable, and response variable

Responses here are similar to what was estimated in the ivsvar gmm case.
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Stored results
ivsvar stores the following in e():
Scalars

e(N) number of observations
e(neqs) number of equations
e(k eq) number of equations in e(b)
e(k dv) number of dependent variables
e(k exo) number of exogenous variables
e(k eq var) number of equations in underlying VAR models
e(dist) distance
e(tmin var) minimum time for VAR equations
e(tmax var) maximum time for VAR equations
e(tmin inst) minimum time for instrument equations
e(tmax inst) maximum time for instrument equations
e(mlag var) highest lag in VAR
e(N clust) number of clusters
e(rank) rank of e(V)
e(converged) 1 if converged, 0 otherwise

Macros
e(cmd) ivsvar
e(cmdline) command as typed
e(estimator) gmm or mdist
e(tmins var) formatted minimum time for VAR equations
e(tmaxs var) formatted maximum time for VAR equations
e(tmins inst) formatted minimum time for instrument equations
e(tmaxs inst) formatted maximum time for instrument equations
e(clustvar) name of cluster variable
e(vce) vcetype specified in vce()
e(vcetype) title used to label Std. err.
e(lags var) lags in model
e(endog var) names of endogenous variables
e(exog var) names of exogenous variables, if specified
e(instruments) names of instruments
e(nocons var) nocons, if noconstant specified
e(eqnames var) names of equations
e(tsfmt) format for the current time variable
e(timevar) name of time variable
e(title) title in estimation output
e(properties) b V
e(predict) program used to implement predict
e(marginsnotok) predictions disallowed by margins

Matrices
e(b) coefficient vector
e(Cns) constraints matrix
e(Sigma) Σ̂ matrix
e(V) variance–covariance matrix of the estimators
e(Cholesky) Cholesky factor of Sigma matrix
e(B1) estimated B1 matrix
e(P) estimated P matrix, if the minimum distance estimator was used

Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():
Matrices

r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.
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Methods and formulas
Methods and formulas are presented under the following headings:

GMM
Minimum distance

GMM

A VAR(p) model without exogenous variables can be written

yt = A1yt−1 + · · ·+Apyt−p + ut

where yt is a k × 1 vector of endogenous variables, each of (A1, . . . ,Ap) is a k × k matrix of
coefficients, and ut is a k × 1 vector of disturbances. These are referred to as the VAR equations.
The VAR disturbances are related to the underlying shocks via

ut = Bet

where B is a k × k matrix of impact effects and et is a k × 1 vector of shocks. There is one target
shock whose effects we are interested in, and we wish to identify the column of B associated with
the target shock. Without loss of generality, let the target shock be e1,t.

There is an instrument zt with the relevance and exclusion restrictions

E(zte1t) = pz

E(ztejt) = 0 ∀j 6= 1

These conditions together imply the moment condition

E(utzt) = B1pz

that is, it identifies the column of B associated with the target shock e1,t up to scale pz .

It is possible to partial out a constant term and lags of the instrument, leading to the instrument
equation,

zt = γ0 + γ1zt−1 + · · ·+ γlzt−l + vt

where the γi are coefficients. In this case, the moment condition relating the instruments and the VAR
residuals is stated in terms of the instrument residuals,

E(utvt) = B1pz

ivsvar gmm estimates the VAR equations, any instrument equations, and the instrument moment
conditions jointly. The moment condition is then rescaled so that the impact effect of the target shock
is 1 for a prespecified variable.
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Minimum distance
As above, let yt be a k × 1 collection of endogenous variables with the VAR(p) representation

yt = A1yt−1 + · · ·+Apyt−p + ut

The VAR residuals continue to be related to the underlying shocks via

ut = Bet

where B is a k×k matrix and et is a k×1 vector of shocks. We partition the shocks into (e1,t, e2,t),

ut = B1e1,t +B2e2,t

where e1,t is a g × 1 collection of target shocks and e2,t is a (k − g) × 1 collection of nontarget
shocks. Hence, B1 is k × g and B2 is k × (k − g). The parameters of interest are B1, which are
the columns of B corresponding to the target shocks.

We have an r×1 collection of instruments zt associated with the target shocks e1,t. The instruments
are related to the target shocks by an r × g matrix Pz and are not related to nontarget shocks. This
relationship is parameterized by

zt = Pze1t + ωt

where ωt is an r×1 vector of white-noise disturbance terms. Lags of zt can be added to the right-hand
side of this equation if desired. This equation is the analogue of the relevance and exclusion restrictions
in the GMM case. The matrix Pz measures the strength of association between the instruments and
the target shocks and is estimated.

The minimum distance estimator estimates the structural parameters (B1,Pz). The estimator
minimizes the distance between reduced-form covariances and covariances implied by the model.

A B-type SVAR model implies a relationship between the covariance matrix of the VAR residuals,
Σu, and the impact matrix B,

Σu = BB′

This equation provides a mapping between the k2 structural parameters in B and the k(k + 1)/2
unique elements of Σu. With k(k− 1)/2 additional restrictions in place, the parameters in B can be
estimated so that the mapping holds as closely as possible.

The instrumental-variables SVAR model implies an analogous set of mappings. Let Σzu = Z′U/T
and let Σuz = Σ′zu. Then the relationships are

Σzu = PzB
′
1 (2)

and
ΣzuΣ

−1
u Σuz = PzPz

′ (3)

The left-hand side of each expression (2) and (3) consists of reduced-form parameters that can be
computed from the instruments zt and the VAR residuals ut. The right-hand side of each expression
(2) and (3) consists of structural parameters to be estimated. Σzu is an r × k matrix; ΣzuΣ

−1
u Σuz

is an r × r symmetric matrix.
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Let

θ =

[
vec(B1)
vec(Pz)

]
collect all structural parameters to be estimated. θ is a kg+rg×1 column vector, so let nθ = kg+rg
denote the number of structural parameters. Analogously, let

π =

[
vec(Σzu)

vech(ΣzuΣ
−1
u Σuz)

]
collect all the reduced-form parameters. π has kr+r(r+1)/2 elements, so let nπ = kr+r(r+1)/2.
Finally, let Vπ be the variance–covariance matrix of π.

For any candidate θ, define the function f(θ) as

f(θ) =

[
vec(PzB

′
1)

vech(PzPz
′)

]
which maps θ into π. Then the distance function d(θ) is defined as

d(θ) = {π− f(θ)}′V−1π {π− f(θ)}

and θ̂ minimizes the distance function.

Standard errors for θ̂ are computed via

V
θ̂
=
(
F′θV

−1
π Fθ

)−1
where

Fθ =

[
0r(r+1)/2×kg 2D+

r (Pz ⊗ Ir)
(Ik ⊗Pz)Kkg B1 ⊗ Ir

]
is the nπ × nθ derivative matrix of f(θ) with respect to θ. In this expression, D+

r is the Moore–
Penrose inverse of the duplication matrix, and K is the commutation matrix as defined in Magnus
and Neudecker (2019, 54–55).

If qmatrix() is specified, then the nπ×nπ symmetric weight matrix Q is used in place of Vπ in
the distance function and in the variance calculation. The variance formula for θ̂ takes the expression

V
θ̂
= (F′θQFθ)

−1F′θQVπQFθ(F
′
θQFθ)

−1

There must be at least as many reduced-form parameters as there are structural parameters to be
estimated; nπ ≥ nθ. With more than one target shock, nθ exceeds nπ , and constraints must be placed
on the elements of B1 or Pz. There must be g(g − 1)/2 such constraints.
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