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Description

ivqregress fits a linear instrumental-variables quantile regression (IVQR) model that accounts for
endogenous covariates using two estimators: the inverse quantile regression (IQR) estimator proposed
in Chernozhukov and Hansen (2006) and the smoothed estimating equations (SEE) estimator outlined
in Kaplan and Sun (2017).

Quick start

Use the IQR estimator to fit the median IVQR model of y1 on exogenous x1 and endogenous y2 with
instruments z1 and z2
ivgregress iqr y1 x1 (y2 = zl1 z2)

Same as above, but estimate the 0.75 quantile
ivgregress iqr y1 x1 (y2 = z1 z2), quantile(0.75)

Same as above, but estimate the 0.1, 0.2, ..., 0.9 quantiles
ivgregress iqr y1 x1 (y2 = z1 z2), quantile(10(10)90)

Use the SEE estimator to estimate the 0.6 quantile regression of y1 on exogenous x1 and endogenous
y2 and y3 with instruments z1 and z2
ivgregress smooth y1 x1 (y2 y3 = z1 z2), quantile(0.6)

Same as above, but estimate the 0.1, 0.2, ..., 0.9 quantiles
ivgregress smooth y1 x1 (y2 y3 = zl z2), quantile(10(10)90)

IQR options to control optimization

Use 50 grid points in the IQR estimator to fit the 0.5 and 0.75 IVQR model
ivgregress iqr y1 x1 (y2 = z1 z2), ngrid(50) quantile(50 75)

Same as above, but construct grid points between 1 and 5 for all the quantiles
ivqregress iqr y1 x1 (y2 = zl1 z2), ngrid(50) quantile(50 75) bound(1l 5)

Same as above, but construct grid points using different bounds for different quantiles
ivgregress iqr y1 x1 (y2 = z1 2z2), ngrid(50) quantile(50 75) ///
bound(1 5, at(50)) bound(2 6, at(75))

SEE options to control optimization

Use 2 as the initial bandwidth in the SEE estimator to fit the 0.5 and 0.75 IVQR model

ivgregress smooth y x1 (dl d2 = zl1 z2), quantile(50 75) ///
initbwidth(2)
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Same as above, but use different initial bandwidths for different quantiles

ivgregress smooth y x1 (d1 d2 = z1 z2), quantile(50 75) ///
initbwidth(2, at(50)) initbwidth(1, at(75))

Menu

Statistics > Endogenous covariates > Quantile regression with endogenous covariates

Syntax
Inverse quantile regression (IQR) estimator
ivqregress iqr depvar [varlistl} (varname = varlist;y,) [lf} [in] [, options

IOR _options ]

Smoothed estimating equations (SEE) estimator
ivqregress smooth depvar [varlistl] (varlisty = varlisty,) [zj] [in] [, options

SEE_options ]

varlist; is the list of exogenous variables.
varname is an endogenous variable.
varlisto is the list of endogenous variables.

varlist;, is the list of exogenous variables used with varlist; as instruments for varlists and varname.

options Description
Model
quantile (numlist) estimate quantiles specified in numlist; default is

quantile(0.5)

SE/Robust
vee( [vcetype] [ , vceopts]) technique used to estimate standard errors; vcetype may be
robust (the default) or bootstrap
Reporting
level (#) set confidence level; default is 1evel (95)
display_options control columns and column formats, row spacing, line width,
display of omitted variables and base and empty cells, and
factor-variable labeling
Optimization
[no } log suppress or display the iteration log
verbose display a verbose iteration log

coeflegend display legend instead of statistics
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IQR_options

Description

Options
bound (#min #max[ » at(#g) })

ngrid(#,)

specify the lower and upper bounds for the grid
in the #,th quantile estimation; may be repeated
use #, grid points; default is ngrid(30)

SEE_options

Description

Options
initbwidth(#, [, at(#,) )
iterate(#)
nosearchbwidth
tolerance (#)

ztolerance (#)

specify initial bandwidth #;, to smooth the estimating equations
for the #,th quantile estimation; default is the theoretical
optimal bandwidth; may be repeated

perform maximum of # iterations when solving the estimating
equation; default is iterate(100)

do not search for feasible bandwidth if the initial bandwidth is
not feasible; default is to search for feasible bandwidth

specify the tolerance for the coefficient vector; default is
tolerance(le-9)

specify the tolerance to determine whether the proposed solution
for a zero-finding problem is sufficiently close to 0; default is
ztolerance(1e-9)

veeopts

Description

kernel (kernel)

bwidth (#| bwrule)

use a nonparametric kernel density estimator;
default is epanechnikov

specify the bandwidth to be used by the kernel density estimator;
default is silverman, which is Silverman’s rule of thumb

kernel Description

epanechnikov Epanechnikov kernel function; the default
epan2 alternative Epanechnikov kernel function
biweight biweight kernel function

cosine cosine trace kernel function

gaussian Gaussian kernel function

parzen Parzen kernel function

rectangle rectangle kernel function

triangle triangle kernel function

bwrule Description

silverman Silverman’s rule of thumb; the default
hsheather Hall-Sheather’s bandwidth

bofinger

Bofinger’s bandwidth
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varlist1, varname, varlistg, and varlist;y may contain factor variables; see [U] 11.4.3 Factor variables.
bootstrap, by, collect, rolling, and statsby are allowed; see [U] 11.1.10 Prefix commands.
coeflegend does not appear in the dialog box.

See [U] 20 Estimation and postestimation commands for more capabilities of estimation commands.

Options

Model

quantile (numlist) specifies the quantiles to be estimated and should contain numbers between 0 and
1, exclusive. Numbers larger than 1 are interpreted as percentages. The default is quantile(0.5),
which corresponds to the median.

The following options apply only to the IQR estimator.

bound (#min #max[ , at(#y) ]) specifies the lower bound (#,i,) and the upper bound (#y,ax) for
the grid in the #,th quantile estimation. By default, the bounds are determined by the two-stage
quantile regression, extending the two-stage median regression in Amemiya (1982). This option
is repeatable as long as different quantiles #, are given in each specification.

The specified bound is required to be wider than the #ee) confidence interval (CI) that is robust
to the weak instruments, which is also known as dual CI. The value of #ee can be specified
in the level () option; the default is 95% CI.

The grid points are #; equally spaced points between #,;, and #,., Where #, is specified
by the ngrid () option.
ngrid(#,) specifies the number of grid points in the IQR estimator. The default is ngrid(30);
that is, 30 grid points are used.
The following options apply only to the SEE estimator.

initbwidth(#b[ , at(#,) ]) specifies initial bandwidth #, to smooth the estimating equations
for the #,th quantile estimation. The default is the theoretical optimal bandwidth that minimizes
the mean squared errors of the estimating equations; see Kaplan and Sun (2017). This option
is repeatable as long as different quantiles #; are given in each specification.

iterate(#) specifies the maximum number of iterations to perform when solving the estimating
equation; the default is iterate(100).

nosearchbwidth specifies to not search for a feasible bandwidth if the initial bandwidth is not
estimable; the default is to search for a feasible bandwidth.

tolerance (#) specifies the tolerance used to determine whether successive estimates of the
solution have converged. The default is tolerance(1e-9).

ztolerance (#) specifies the tolerance used to determine whether the proposed solution to a
zero-finding problem is sufficiently close to 0; the default is ztolerance(1e-9).

SE/Robust

vece( [ vcetype] [ , vceopts} ) specifies the type of VCE to compute and the density estimation method
to use in computing the VCE.

veetype specifies the type of standard error reported, which includes types that are robust to
some kinds of misspecification (robust) and that use bootstrap methods (bootstrap); see
[R] vce_option.
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veeopts available with vcetype robust are the following:

kernel (kernel) specifies the kernel method to be used by the nonparametric density estimator.
The available kernel functions are epanechnikov, epan2, biweight, cosine, gaussian,

parzen, rectangle, and triangle. The default is epanechnikov. See [R] kdensity for
the kernel function forms.

bwidth (# | bwrule) specifies the bandwidth to be used by the nonparametric density estimator.
If specified as a number, it is used as the bandwidth for the nonparametric density estimator.
Otherwise, bwrule specifies the method used to compute the bandwidth. Available methods
are silverman for Silverman’s rule of thumb, hsheather for the Hall-Sheather bandwidth,
and bofinger for the Bofinger bandwidth.

See [R] kdensity for Silverman’s rule of thumb. See Koenker (2005, sec. 4.10) for a
description of the Hall-Sheather and Bofinger bandwidth formulas.

Reporting

level (#); see [R] Estimation options.

display_options: noci, nopvalues, noomitted, vsquish, noemptycells, baselevels,
allbaselevels, nofvlabel, fvwrap(#), fvwrapon(style), cformat (% fint), pformat (% fimt),
sformat (% fmt), and nolstretch; see [R] Estimation options.

log and nolog specify whether to display the log showing the progress of the estimation. By default,
for the IQR estimator, one dot is shown for each grid point; for the SEE estimator, one line is shown

for each bandwidth. The iteration log is displayed by default unless you used set iterlog off
to suppress it; see set iterlog in [R] set ifer.

verbose displays a verbose log showing the iterations of each computation step. For the IQR estimator,
each line is shown for each grid point. For the SEE estimator, iteration logs are shown when solving
the estimating equations.

The following option is available with ivqregress but is not shown in the dialog box:

coeflegend; see [R] Estimation options.

Remarks and examples stata.com

Remarks are presented under the following headings:

Overview
When quantile regression matters
Examples

Overview

ivqregress fits a linear IVQR model when some covariates are endogenous. The general IVQR
model was first proposed by Chernozhukov and Hansen (2005). ivqregress is based on the linear
IVQR model described in Chernozhukov and Hansen (2006, 2008). For an introduction to the IVQR
model, see Chernozhukov, Hansen, and Wiithrich (2018). ivqregress implements two estimators:
the IQR estimator proposed in Chernozhukov and Hansen (2006) and the SEE estimator outlined in
Kaplan and Sun (2017).
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In empirical applications, we are usually interested in the effects of some covariate on the outcome
variable. The traditional linear regression model is an excellent way to model how the covariate
affects the outcome’s conditional mean. However, sometimes we would like to study features of the
outcome distribution other than the mean to have a complete picture of the effects of covariates. For
example, a policymaker may want to learn how participation in a 401(k) would affect the lower-level,
median, and upper-level conditional quantiles of net wealth.

Quantile regression in Koenker and Bassett (1978) can help us grasp a better picture than regular
linear regression by estimating the effects on different quantiles of the outcome’s conditional distribution.
For a general discussion, see [R] qreg. For an illustration of when quantile regression matters, see
When quantile regression matters below.

In practice, some covariates of interest are often endogenous for reasons such as self-selection,
omission of some relevant variable, and measurement error. For example, participation in a voluntary
savings plan for retirement, such as participation in a 401(k) program, may be endogenous because
the people who do and do not participate may have different saving preferences, which will affect
net wealth growth.

Endogenous covariates make quantile regression estimates inconsistent, as is the case for the
linear regression model. Analogous to the instrumental-variable least-squares estimator, there are
IVQR model estimators to consistently estimate the effects at different quantiles. For a discussion of
instrumental-variables estimation, see [R] ivregress.

ivqregress fits a quantile regression model that accounts for endogenous covariates using two
estimators: the IQR estimator proposed in Chernozhukov and Hansen (2006) and the SEE estimator
outlined in Kaplan and Sun (2017). Intuitively, ivqregress can be thought of as the ivregress
version of qreg.

Here we outline the Stata commands to fit, visualize, infer, and diagnose the IVQR model. In
particular, these Stata commands can be grouped into the following categories.

Estimation: ivqregress iqr fits the IVQR model by the IQR estimator proposed in
Chernozhukov and Hansen (2006, 2008).

ivqregress smooth fits the IVQR model by the SEE estimator proposed in
Kaplan and Sun (2017).

Visualization: estat coefplot allows us to visualize how one covariate’s effects vary at
different quantiles of the outcome.

Inference: estat endogeffects tests if
1. the endogenous variable does not affect the outcome variable,
2. the effects of the endogenous variable do not vary across estimated quantiles,
3. the effects of the endogenous variable are greater than zero across estimated
quantiles, and
4. the variable is exogenous instead of endogenous.

estat dualci provides CIs that are robust to weak instruments for the
effects of the endogenous variable. It is allowed only after ivqregress iqr.


https://www.stata.com/manuals/rqreg.pdf#rqreg
https://www.stata.com/manuals/rivregress.pdf#rivregress
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https://www.stata.com/manuals/rivqregresspostestimation.pdf#rivqregresspostestimationestat
https://www.stata.com/manuals/rivqregresspostestimation.pdf#rivqregresspostestimationestat
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Diagnosis:  estat waldplot helps diagnose the convergence of the IQR estimator
(ivgregress iqr). In particular, estat waldplot allows us to visualize the
optimization process during the computation in ivqregress iqr and shows
if the searching domain contains the true value of the parameter with a
predefined probability level.

In addition, some other classical postestimation tools are also available; see [R] ivqregress postesti-
mation.

When quantile regression matters

Here is an example illustrating the advantages of quantile regressions. Suppose we have a simple
model E(y|xz) = By + xf1, where y is the outcome variable and x is a covariate. For simplicity,
we assume z can only take values in {0, 1,2, 3,4,5, 6}. By definition, 81 fully characterizes the
effects of increasing one unit of = on the conditional mean of outcome y; that is, 1 = E(y|lx =
a+ 1) — E(y|lx = a). Now we consider two scenarios of the data-generating process.

1. The probability density function of the outcome conditional on z = a+ 1, f(ylz = a+ 1),
is only location shifted relative to f(y|z = a). In this case, 8 summarizes the effect of z
not only on the conditional mean but also on each conditional quantile of y. This case is
illustrated in the left panel of figure 1.

2. The probability density function of the outcome conditional on x = a+ 1, f(ylz = a+1),
is both location shifted and rescaled relative to f(y|z = a). In this case, §; summarizes the
effect of x only on the conditional mean but not on conditional quantiles of y. This case is
illustrated in the right panel of figure 1.

Location shifted Location shifted and rescaled

=6 fybe
(X=5) Tybx=5}
ix=4) fiyb=a}
Tyb=8) fiyb=8}
1ox=2) A < fybe2)

N
oix=1) * fivbe1)
Hyx=0) Tybe=0}
; ; ; : T ; ; : : . . T
5 0 5 10 15 20 5 0 5 10 15 20
Outcome Outcome
Figure 1.

In the left panel, we see that each conditional density is parallel relative to each other, and
only the location has been shifted. In this case, 31 captures the shift in both conditional mean and
any conditional quantiles of the outcome. As a result, running a linear regression provides as much
information on (31 as quantile regression.

In contrast, in the right panel, conditional density for each level of = has different locations and
different shapes. Thus, 31 can only summarize the shifts in conditional mean, which are generally
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different from the shifts in conditional quantiles. Quantile regression becomes necessary to learn about
the effects of = on the conditional quantiles of the outcome.

Examples

> Example 1: IVQR with the IQR estimator

Suppose that we want to estimate the effect of 401(k) participation (p401k) on different conditional
quantiles of net financial assets (assets). We use data reported by Chernozhukov and Hansen (2004).
These data are from a sample of households in the 1990 Survey of Income and Program Participation
(s1pP). For the head of household, we have data on income (income), age (age), number of people in
the family (familysize), years of education (educ), marital status (married), whether participated in
an IRA (ira), whether received a pension benefit (pension), and whether owned a home (ownhome).

We suspect 401(k) participation is endogenous because it may depend on unobserved factors
such as saving preference that also impact financial assets. Using 401(k) eligibility (e401k) as an
instrument for 401(k) participation, we use ivqregress to estimate how p401k affects the entire
range of assets’ conditional distribution. One concern about using e401k as an instrument is that
choosing to work for a company that offers a 401(k) program is not randomly assigned. Poterba,
Venti, and Wise (1995) suggest that after conditioning on income, we can take working for a company
that offers a 401(k) plan as exogenous.

The TVQR model we want to fit is
assets; = p401k;a(U) + covariates,3(U)

where the distribution of U conditional on the instrument e401k and the covariates is assumed to be
uniform between O and 1. The covariates income, age, familysize, and educ are included in the
model as continuous variables. The covariates i.married, i.ira, i.pension, and i.ownhome are
included as categorical (factor) variables. As discussed above, e401k is the instrument for p401k.
The coefficients «(U) and B(U) are random because they depend on the unobserved random variable
U. In practice, U can be considered a ranking variable for the asset. When U is set to a fixed level
7, we fit an IVQR model at a specific quantile index 7. For example, when 7 = 0.5, we estimate how
401(k) participation affects the median of net financial assets conditional on other covariates.

The objective of the analysis is to estimate the quantile treatment effects of 401k participation on
net financial assets. By definition, the 7th conditional quantile of the asset when everyone participates
in a 401(k) plan is

assetsyi(x) = a(7) + covariates; 3(7)

In contrast, the 7th conditional quantile of the asset when everyone does not participate in a 401(k)
plan is
0 !/
assets,, 401(k) = covariates; 3(7)

Thus, the coefficient a(7) can fully summarize the quantile treatment effect of p401k on assets.
That is
a(T) = assetsyo1(k) — assetsy, 401(k)

In this example, we use the IQR estimator (ivqregress iqr) to estimate the effect of 401(k)
participation on the conditional median of the net financial assets. The dependent variable is assets.
The endogenous variable i.p401k and the instrument i.e401k are specified in parentheses; the
other covariates follow as a regular variable list. ivqregress fits the IV median regression model
by default. The estimation result is stored as est_iqr for later use.
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. use https://www.stata-press.com/data/r18/assets2
(Excerpt from Chernozhukov and Hansen (2004))

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ

Initial grid:

Quantile = 0.50: ......... 10......... 20......... 30 done
Adaptive grid:
Quantile = 0.50: ......... 10......... 20......... 30 done
IV median regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(9) = 1289.75
Prob > chi2 = 0.0000
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
p401k
Yes 5313.397 573.2818 9.27  0.000 4189.786 6437.009
income .1577512 .0124889 12.63  0.000 .1332735 .1822289
age 99.96526  8.561923 11.68 0.000 83.1842 116.7463
familysize -197.8251  54.36773 -3.64 0.000 -304.3838 -91.26627
married
Married -1359.124  227.3366 -5.98 0.000 -1804.696  -913.5528
ira
Yes 22629.61 1022.706 22.13  0.000 20625.15 24634.08
pension
Receives .. -693.8347 210.6176 -3.29 0.001 -1106.638  -281.0317
ownhome
Yes -30.29657  154.7265 -0.20 0.845 -333.555 272.9618
educ -96.43983  32.09465 -3.00 0.003 -159.3442  -33.53547
_cons -4998.673  570.1315 -8.77  0.000 -6116.11  -3881.236

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira
1.e401k

. estimates store est_iqr

1.pension 1.ownhome educ

The coefficient for p401k is 5,313. It means participation in a 401(k) would increase the median
net financial assets by $5,313, conditional on other covariates, relative to a scenario where no one
participates. We store the estimation result as est_iqr for later use.

After ivqregress iqr, we can use estat dualci to obtain the dual CI, which is robust to weak
instruments, for the coefficient on the endogenous variable.


https://www.stata.com/manuals/rivqregresspostestimation.pdf#rivqregresspostestimationestat
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. estat dualci

Dual confidence interval Number of obs = 9,913
Robust Dual
assets Coefficient std. err. z P>zl [95% conf. intervall]
p401k
Yes 5313.397 573.2818 9.27  0.000 3683.916 7304.986

The dual CI is usually wider than the regular CI, but it provides a more robust inference if the
instruments are weak. In this example, we see that the dual 95% CI is [3684, 7305], which is wider
than the regular 95% CI [4190, 6437]. q

> Example 2: IVQR with the smooth estimator

In this example, we use ivqregress to fit the IVQR model as in example 1 but using the SEE
estimator (ivqregress smooth). The model specification is the same as in example 1. The estimation
result is stored as est_smooth for later use.

. ivqregress smooth assets (i.p40lk = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ

Fitting smoothed IV quantile regression:

Quantile = .5:

Step 1: Bandwidth = 1302.9736 GMM criterion Q(b) = 2.617e-08
Step 2: Bandwidth 6079.6881 GMM criterion Q(b) = 2.391e-12

Step 3: Bandwidth = 1438.3068 GMM criterion Q(b) = 8.068e-13

IV median regression Number of obs = 9,913
Estimator: Smoothed estimating equations Wald chi2(9) = 1243.05
Prob > chi2 = 0.0000
Robust
assets Coefficient std. err. z P>z [95% conf. intervall]
p401k
Yes 5364.468 573.3728 9.36 0.000 4240.678 6488.258
income .1679934 .013419 12.52  0.000 .1416925 .1942942
age 113.6318  9.352867 12.15  0.000 95.30052 131.9631
familysize -228.7766  57.61072 -3.97 0.000 -341.6916 -115.8617
married
Married -1362.56  238.5988 -5.71  0.000 -1830.205 -894.9153
ira
Yes 22402.04  1043.504 21.47 0.000 20356.81 24447 .27
pension
Receives .. -713.996 220.476 -3.24 0.001 -1146.121 -281.8709
ownhome
Yes -12.71396 161.3703 -0.08 0.937 -328.994 303.5661
educ -102.2889  34.18527 -2.99 0.003 -169.2908 -35.28701
_cons -5672.645 619.7049 -9.15  0.000 -6887.244  -4458.045

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ
1.e401k

. estimates store est_smooth
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The interpretation of the coefficient estimates is the same as in example 1. For example, the coefficient
for p401k is 5,364. So participation in a 401(k) would increase the median of net financial assets by
$5,364, conditional on other covariates, relative to a scenario where no one participates.

Now we can compare the coefficient on p401k between the SEE estimator and the IQR estimator.

. estimates table est_iqr est_smooth, keep(i.p401k) se

Variable est_iqr est_smooth
p401k
Yes 5313.3974 5364 .468

573.28183 573.37279

Legend: b/se

We see that the point estimates from these two estimators are similar but not the same. It is normal
to see different results from the IQR and SEE estimators because these two estimators approximate the
original exact estimating equation differently. On one hand, the IQR estimator tries to find the solution
by an exhaustive grid search. The estimation result critically depends on the range and finesse of grid
points. On the other hand, the SEE estimator uses a kernel method to smooth the original estimating
equation. Its result depends on how well the SEE approximates the original, mainly controlled by the
bandwidth.

Both the IQR and SEE estimators have their advantages and weaknesses. The IQR estimator is
numerically stable, and it allows computing the dual CI, which is robust to weak instruments (use
estat dualci). However, the IQR becomes computationally intensive when there is more than
one endogenous variable. Thus, ivqregress iqr allows only one endogenous variable. In contrast,
the SEE estimator can handle multiple endogenous variables within a reasonable computation time.
However, it does not allow estat dualci for inference that is robust to weak instruments. Suppose
there is only one endogenous variable in the model. We recommend using both estimators, comparing
the results, and using the IQR estimator as a benchmark because it can provide valid inference even
if the instrument is weak. If there is more than one endogenous variable, only ivqregress smooth
is available.

N

> Example 3: IVQR at different quantiles

In the first two examples, we estimated the 401(k) participation (p401k) treatment effect on the
conditional median of net financial assets (assets). From a policy designer’s point of view, we
may be more interested in estimating the treatment effect of p401k on other conditional quantiles
of assets. For example, we can ask questions like 1) how 401(k) participation affects the lower
quantile of assets and 2) whether 401(k) participation is unambiguously beneficial for the asset’s
lower and upper conditional quantiles. In addition, we might also want to know whether the 401(k)
participation is endogenous in our model. In this example, we will show how to use ivqregress to
fit the IVQR model at different quantiles and how to use the postestimation tools to answer the above
questions.
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First, we use the IQR estimator to fit the model at different quantiles. In particular, we specify the
quantile(10(10)90) option to fit the IVQR model at the 10th, 20th, ..., 90th quantiles.

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, quantile(10(10)90)

Initial grid:

Quantile = 0.10: .........10.........20......... 30 done
Quantile = 0.20: .........10.........20......... 30 done
Quantile = 0.30: .........10.........20......... 30 done
Quantile = 0.40: .........10.........20......... 30 done
Quantile = 0.50: .........10.........20......... 30 done
Quantile = 0.60: .........10.........20......... 30 done
Quantile = 0.70: .........10.........20......... 30 done
Quantile = 0.80: .........10.........20......... 30 done
Quantile = 0.90: .........10.........20......... 30 done
Adaptive grid:
Quantile = 0.10: .........10.........20......... 30 done
Quantile = 0.20: .........10.........20......... 30 done
Quantile = 0.30: .........10.........20......... 30 done
Quantile = 0.40: .........10.........20......... 30 done
Quantile = 0.50: .........10.........20......... 30 done
Quantile = 0.60: .........10.........20......... 30 done
Quantile = 0.70: .........10.........20......... 30 done
Quantile = 0.80: .........10.........20......... 30 done
Quantile = 0.90: .........10.........20......... 30 done
IV quantile regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(81) = 5121.46
Prob > chi2 = 0.0000
Robust
assets | Coefficient std. err. z P>zl [95% conf. intervall]
ql0
p401k
Yes 3240.08 475.6184 6.81 0.000 2307.885 4172.275
income .0303072 .0123138 2.46 0.014 .0061725 .0544419
age 131.5908 15.13725 8.69 0.000 101.9223 161.2592
familysize -329.2838 123.4665 -2.67 0.008 -571.2737 -87.29385
married
Married -1504.648 380.0373 -3.96 0.000 -2249.508 -759.7886
ira
Yes 7864.15 344.2198 22.85 0.000 7189.492 8538.809
pension
Receives .. 63.88643 326.6017 0.20 0.845 -576.2412 704.0141
ownhome
Yes 969.6861 300.4319 3.23 0.001 380.8503 1558.522
educ -301.1635 52.02897 -5.79 0.000 -403.1384 -199.1885
_cons -7455.806 1192.112 -6.25 0.000 -9792.302 -5119.311

(output omitted )
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q90

p40ik

Yes 15983.42  3046.028 5.25  0.000 10013.32 21953.53

income .8247356  .0570029 14.47  0.000 .713012 .9364593

age 485.8734  48.99224 9.92  0.000 389.8504 581.8965

familysize -646.4962 185.913 -3.48 0.001 -1010.879 -282.1134
married

Married -3265.007  753.4701 -4.33  0.000 -4741.782  -1788.233
ira

Yes 68543.44  4952.261 13.84  0.000 58837.18 78249.69
pension

Receives .. -4656.177  869.4887 -5.36  0.000 -6360.343 -2952.01
ownhome

Yes 400.1957  680.2776 0.59 0.556 -933.124 1733.515

educ 48.4205 106.2844 0.46  0.649 -159.8931 256.7341

_cons -20594.85  2260.983 -9.11  0.000 -25026.3 -16163.41

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira 1.pension 1.ownhome educ
1.e401k

The results show the estimates for the effect of 401(k) participation on each conditional quantile
of the asset. The interpretation of the coefficient is similar to example 1, except we are looking at
different conditional quantiles. For example, for quantile 90, the estimate for the coefficient on p401k
is 15,983. Thus, 401(k) participation would increase the 90% conditional quantile of net financial
assets by $15,983.

In addition to looking at the numerical estimates from the coefficient table, we can use estat
coefplot to visualize the trend of p401k’s treatment effect from the lower to the upper quantile. By
default, estat coefplot shows the first endogenous variable, which is 1.p401k in our example.
We specify the name () option for later reference of this graph and add a subtitle indicating which
estimator we used.

. estat coefplot, name(cp_iqr) subtitle(IQR estimator)

Coefficient plot for 1.p401k

IQR estimator

20000

15000
o — e~ ivgregress
o . .
= 95% pointwise CI
@ 10000
8 2SLS
5000+

0 2 4 .6 .8 1
Quantile
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The dots in the plot show the point estimates of p401k’s treatment effect on different conditional
quantiles of assets, and the gray bound shows the 95% pointwise CI. We see that there is an upward
trend of p401k’s treatment effect. At lower-level quantiles such as the 10th, 20th, ..., 40th quantiles,
the treatment effect is relatively flat. However, we see the treatment effect increases significantly in
the upper-level quantiles. The red line shows the two-stage least-squares estimates, which can be used
as a benchmark.

estat coefplot is a good way to visualize the treatment effect’s trend. If we want to test some
hypotheses regarding the trend and the model statistically, we can use estat endogeffects. For
example, we are interested in testing the following hypotheses:

No effect: 401(k) participation does not affect net financial assets for all
the estimated quantiles.

Constant effect: 401(k) participation’s treatment effect is constant for all
the estimated quantiles.

Dominance: 401(k) participation is unambiguously positive for all the estimated
quantiles; that is, the coefficient values are strictly positive.

Exogeneity: 401(k) participation is exogenous.

We will use estat endogeffects to show the Kolmogorov—Smirnov statistic and the 95% critical
value for each hypothesis. We can reject the null hypothesis if the test statistic is greater than the
critical value; otherwise, we cannot reject the null hypothesis. We specify the rseed() option to
make the results reproducible because the critical values are generated from a bootstrap sample.

. estat endogeffects, rseed(12345671)

Tests for endogenous effects Replications = 100
Null hypothesis KS statistic 95% critical value
No effect 11.271 2.554
Constant effect 5.395 2.446
Dominance 0.000 2.467
Exogeneity 4.145 2.478

Note: If the KS statistic < critical value, there is
insufficient evidence to reject the null
hypothesis. (KS = Kolmogorov—Smirnov)

In particular, we see that the test statistics are greater than the critical values in testing the hypotheses
of no effect, constant effect, and exogeneity. Thus, with a 95% confidence level, we can reject these
three hypotheses. In other words, we find that 401(k) participation has some effect, treatment is not
constant across different quantiles, and 401(k) participation is endogenous. In contrast, we cannot
reject the dominance hypothesis. Thus, we find that 401(k) participation is unambiguously beneficial
for all the estimated quantiles of assets.

The test results are consistent with the result of the coefficient plot produced by estat coefplot,
where we saw that the treatment effects are positive (dominance and no effect hypotheses) and upward
trended (constant effect hypothesis).
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For comparison, we can also use the SEE estimator to fit the model.

ivqregress smooth assets (i.p401k = i.e401k) income age familysize

> i.married i.ira i.
Fitting smoothed IV

Quantile = .1:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .2:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .3:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .4:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .5:

Step 1: Bandwidth =
Step 2: Bandwidth =
Step 3: Bandwidth =

Quantile = .6:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .7:
Step 1: Bandwidth =
Step 2: Bandwidth =

Quantile = .8:
Step 1: Bandwidth =
Step 2: Bandwidth =
Quantile = .9:
Step 1: Bandwidth =
Step 2: Bandwidth =

pension i.ownhome educ, quantile(10(10)90)

quantile regression:
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IV quantile regression Number of obs = 9,913
Estimator: Smoothed estimating equations Wald chi2(81) = 4932.84
Prob > chi2 = 0.0000
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
ql0
p401k
Yes 3191.667  486.2193 6.56  0.000 2238.695 4144.639
income .0318585 .0123707 2.68 0.010 .0076124 .0561046
age 128.9268  15.42632 8.36 0.000 98.69178 159.1618
familysize -329.8374  125.4774 -2.63 0.009 -575.7687  -83.90615
married
Married -1480.013  386.4611 -3.83 0.000 -2237.463 -722.5635
ira
Yes 7914.049  342.9506 23.08 0.000 7241.878 8586.22
pension
Receives .. -5.356704  334.9869 -0.02 0.987 -661.919 651.2056
ownhome
Yes 1043.279 308.722 3.38 0.001 438.1945 1648.363
educ -289.8807 53.06713 -5.46  0.000 -393.8904 -185.8711
_cons -7631.313  1214.725 -6.28 0.000 -10012.13  -5250.496
(output omitted
q90
p401k
Yes 16525.23  3035.965 5.11  0.000 9574.848 21475.61
income .8311508 .0574108 14.48 0.000 . 7186277 .9436738
age 486.9876 51.61654 9.43 0.000 385.821 588.1541
familysize -586.2617  193.5936 -3.03 0.002 -965.6983  -206.8252
married
Married -3877.165  781.2296 -4.96 0.000 -5408.347  -2345.983
ira
Yes 67888.86  4902.106 13.85  0.000 58280.91 77496.81
pension
Receives .. -4829.506  898.9147 -5.37 0.000 -6591.346  -3067.665
ownhome
Yes 715.6272  722.8727 0.99 0.322 -701.1773 2132.432
educ 14.5293 110.8781 0.13 0.896 -202.7878 231.8464
_cons -19953.21  2326.698 -8.58  0.000 -24513.45  -15392.96

Endogenous: 1.p401k

Exogenous:

1.e401k

income age familysize 1.married 1.ira

1.pension 1.ownhome educ

After ivqregress smooth, we can also use estat coefplot to visualize the treatment effect
and estat endogeffects to test some hypotheses of particular interest in the context of the IVQR
model.

First, we use estat coefplot to plot the coefficients and then use graph combine so that we
can visually compare this plot with the coefficients plot for the IQR estimates.
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. estat coefplot, name(cp_smooth) subtitle(SEE estimator)

. graph combine cp_iqr cp_smooth, xcommon ycommon altshrink

Coefficient plot for 1.p401k Coefficient plot for 1.p401k
IQR estimator SEE estimator
20000+ 20000
15000 15000
E —e- ivgregress E —e- ivgregress
§ 95% pointwise CI E 95% pointwise CI
80000 — 2sLS 80000 — 2sLs
(8] (8]
5000 5000
04 04
0 2 4 6 8 1 0 2 4 6 8 1
Quantile Quantile

The left and right panels of the figure show the coefficient plots for the IQR and SEE estimates,
respectively. We see that both estimators produce similar trends for the coefficients on 1.p401k at
different quantiles.

Next, we can use estat endogeffects to see if we draw the same conclusion regarding the four
hypotheses of interest as we did with the IQR estimator.

. estat endogeffects, rseed(12345671)

Tests for endogenous effects Replications = 100
Null hypothesis KS statistic 95% critical value
No effect 11.507 2.593
Constant effect 5.351 2.391
Dominance 0.000 2.556
Exogeneity 4.195 2.526

Note: If the KS statistic < critical value, there is
insufficient evidence to reject the null
hypothesis. (KS = Kolmogorov—Smirnov)

The results align with those produced after ivqregress iqr. That is, the treatment effects are
positive (dominance and no effect hypotheses), upward trended (constant effect hypothesis), and
endogenous (exogeneity hypothesis).

4

> Example 4: Robustness checks and diagnostics for the IQR estimator

In this example, we will take a closer look at the IQR estimator and show how to use estat
waldplot to inspect the convergence visually. Nevertheless, let’s first briefly discuss the intuition
and algorithm behind the IQR estimator.

The IVQR model satisfies the following conditional probability:

Pr(y < da(7) + X'B(7)|x,2) = 7
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where y is the outcome variable, d is an endogenous variable, X is a vector of exogenous covariates,
and z is a vector of instruments. The coefficients «(7) and B3(7) are indexed with the quantile level
7 to indicate that they are for the model of the 7 conditional quantile of the outcome y. We cannot
fit the above model using the regular quantile regression because the conditional set is on x and z
but the covariates contain x and d. Now suppose we know the value of (7). We can then rewrite
this conditional probability as

Pr(y — da(r) < x'B(7) + Z'0/x,2) = 7

By the definition of quantile regression, we can fit this model by running a quantile regression of
the transformed outcome variable, y — da(7), on the covariates x and instruments z. Notice that if
a(T) is the true value, the coefficient on the instruments, which we denote as (7), should be 0. In
other words, to solve the original moment conditional for the IVQR model, we need to find a a(T)
such that the auxiliary quantile regression of y — da(7) on x and z produces Os for the coefficients
on the instrument z. In practice, we want v(7) as close to 0 as possible, where the closeness to 0
can be measured by the Wald statistic on (7).

Based on the above intuition, here is an outline of the IQR estimator’s algorithm.

1. Define a grid of A = {a1,...,a;} (see IQR default grid algorithm in Methods and
formulas).

2. For each «; in A, run an auxiliary quantile regression of y — doy; on covariates x and
instruments z.

3. IQR finds a € A as a solution such that the coefficient on z is as close to 0 as possible
in the corresponding auxiliary quantile regression, where the Wald statistic measures the
closeness to 0.

4. The grid points boundary must be wider than the dual CI, which is robust to weak instruments;
otherwise, ivqregress iqr will error out. Dual CI means it covers the true value of «(7)
with 95% probability (see Chernozhukov and Hansen [2008] and estat dualci).
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We can use estat waldplot to visualize the above procedure. Using the estimation result in
example 1, we first restore the result est_iqr and then use estat waldplot to plot the Wald
statistics corresponding to each grid point.

. estimates restore est_iqr
(results est_iqr are active now)

. estat waldplot

Convergence diagnostic plot
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The horizontal axis shows the grid points for ¢, and the vertical axis shows the values of the Wald
statistics. The dots in the plot show the Wald statistics corresponding to each grid point. The red
line is the 95% critical value of the Wald test. Thus, only the Wald statistics below the red line will
not reject the hypothesis that «; equals 0. Respectively, the 95% dual CI corresponds to the a’s for
which the Wald statistics are below the critical value. See example 1 for the use of estat dualci
to show the numerical values of the dual CI

By default, ivqregress iqr uses the dual CI to generate the lower and upper bounds for the
grid points to make sure that the grid covers the true value of parameter o with a large probability.
Sometimes, we may want to customize the bounds. For example, suppose we want to search grid
points between 3,000 and 6,000. We can use the bound () option for this purpose.

. ivgregress iqr assets (i.p401k = i.e401k) income age familysize

> i.married i.ira i.pension i.ownhome educ, bound(3000 6000)

Initial grid:

Quantile = 0.50: ......... 10.......0 20, ...t 30

convergence not achieved
The grid interval should be wider than the 95% dual confidence interval.
Try to set a wider bound using option bound(). Use estat waldplot for
diagnosis.

r(430);

We see that ivqregress iqr stops with a “convergence not achieved” error message. The reason is
that the specified bound is too narrow to cover the true value of the parameter with a 95% probability.
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We can now use estat waldplot to further visualize the issue.

. estat waldplot

Convergence diagnostic plot
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The graph shows that the upper bound of 6,000 is too small because we need the Wald statistics to
intersect with the 95% critical value at the lower and upper bounds.
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We can increase the upper bound and see if the IQR estimator converges. For example, below we
increase the upper bound to 8,000.

. ivqregress iqr assets (i.p401k = i.e401k) income age familysize
> i.married i.ira i.pension i.ownhome educ, bound(3000 8000)

Initial grid

quantile = 0.50: ......... 100 ... 20, ...t 30
Adaptive grid
quantile = 0.50: ......... 10........ 20, ...t 30
IV median regression Number of obs = 9,913
Estimator: Inverse quantile regression Wald chi2(9) = 1290.41
Prob > chi2 0.0000
Robust
assets | Coefficient std. err. z P>|z| [95% conf. intervall
p401k
Yes 5332.937 574.5175 9.28 0.000 4206.903 6458.971
income .157381 .012478 12.61  0.000 .1329246 .1818374
age 99.78981  8.553978 11.67  0.000 83.02432 116.5553
familysize -199.6165 54.3519 -3.67 0.000 -306.1442  -93.08872
married
Married -1351.309  227.0824 -5.95 0.000 -1796.382  -906.2357
ira
Yes 22631.85  1022.023 22.14  0.000 20628.72 24634.98
pension
Receives .. -694.1447 210.533 -3.30 0.001 -1106.782  -281.5077
ownhome
Yes -30.67158  154.6947 -0.20 0.843 -333.8676 272.5244
educ -96.30363 32.0715 -3.00 0.003 -159.1626  -33.44465
_cons -4983.758  569.4043 -8.75 0.000 -6099.77  -3867.746

Endogenous: 1.p401k
Exogenous: income age familysize 1.married 1.ira

1.e401k

1.pension 1.ownhome educ
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Now that the IQR estimator converges, we can redraw the Wald plot to confirm that the proposed

grid points interval is indeed

. estat waldplot

wider than the dual CI.

Convergence diagnostic plot
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Stored results

ivgregress iqr and ivqregress smooth store the following in e ():

Scalars
e()
e(g#)
e(n_q)
e (bwidth_qg#)
e(sm_init_bwidth_qg#)

e(sm_bwidth_qg#)

e(convcode)
e(p)
e(df_m)
e(chi2)
e(rank)

Macros
e(cmd)
e(cmdline)
e(depvar)
e(inst)
e (bwrule)
e(kernel)
e(title)
e(vce)
e(vcetype)
e(estimator)
e (exogr)
e(endog)
e(properties)
e(estat_cmd)
e(predict)

number of observations

the quantiles requested

number of quantiles requested

bandwidth used in standard errors for g—#th quantile

initial bandwidth used in smoothing the indicator function in g#th quantile
estimation (smooth only)

bandwidth used in smoothing the indicator function in g#th quantile estimation
(smooth only)

0 if converged; otherwise, return code for why nonconvergence

p-value for model test

model degrees of freedom

2

X
rank of e(V)

ivqregress

command as typed

name of dependent variable

names of instrumental variables
method to compute the bandwidth in standard errors
kernel function

title in estimation output

veetype specified in vce ()

title used to label Std. err.

igr or smooth

€X0genous regressors

endogenous regressors

bV

program used to implement estat
program used to implement predict



ivgregress — Instrumental-variables quantile regression 23

e(marginsok) predictions allowed by margins
e(marginsnotok) predictions disallowed by margins
Matrices
e(b) coefficient vector
e (V) variance—covariance matrix of the estimators
Functions
e(sample) marks estimation sample

In addition to the above, the following is stored in r():

Matrices
r(table) matrix containing the coefficients with their standard errors, test statistics, p-values,
and confidence intervals

Note that results stored in r() are updated when the command is replayed and will be replaced when
any r-class command is run after the estimation command.

Methods and formulas

Methods and formulas are presented under the following headings:

The model
The IQR estimator

The IQR algorithm

The IQR default grid algorithm
The SEE estimator

The bandwidth selection algorithm
The robust standard errors

The model

The general IVQR model was first proposed by Chernozhukov and Hansen (2005). ivqregress fits
a linear IVQR model described in Chernozhukov and Hansen (2006, 2008). For notational simplicity,
we drop the observational subscript ¢ to refer to a random variable and add the subscript ¢ to refer
to a realization of a random variable.

We can write the linear IVQR model in the form of a “random coefficients” model as
y = d'a(u) + x'B(u)

where

1. y is a scalar outcome variable, d is a vector of endogenous variables, x is a vector of
exogenous variables, and wu is the unobserved error term;

2. d depends on the exogenous covariates X, and the instrumental variables z and unobserved
error term are correlated with wu;

3. w is a scalar random variable that characterizes the heterogeneity of the outcome and
captures all the unobservables in the outcome from item 1 above. Conditional on z and x,
u is uniformly distributed between O and 1;

4. a(-) and B(-) are random coefficient vectors that depend on u;
5. the function 7 — d’a(7) + x’3(7) is strictly increasing in 7; and

6. the observable variables are {y;,%;,d;,z;}X ; with a sample of size N.
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Under some regularity conditions (see Chernozhukov and Hansen [2005]), the IVQR model satisfies
the conditional probability

Pr{y < d'a(r) + X'B(1)|x,2} =T (1)

By the definition of probability and the law of iterated expectation, (1) implies the following
unconditional moment condition:

E([r—Hy <da(r) +xX'B(1)}]¥) =0 (2)

where I(-) is the indicator function, ¥ = (d’,x’)’, and d is some function of x and z and can be
treated as instruments for d. In practice, d is the linear prediction of d using x and z.

Equation (2) can be used as the estimating equation for the IVQR model. However, the objective
function based on (2) is nonconvex and nonsmooth because of the indicator function. Thus, it is
computationally challenging to fit the IVQR model by directly using (2).

ivqregress implements two estimators that approximately solve the original moment condition
in (2). In particular, ivqregress iqr implements the IQR estimator proposed in Chernozhukov and
Hansen (2006), and ivqregress smooth implements the SEE estimator outlined in Kaplan and
Sun (2017). Here are the main ideas behind these two estimators.

The IQR estimator reduces the original p-dimensional (where p is the dimension of x and d)
nonconvex problem into a low-dimensional nonconvex problem. Then, it solves the problem by doing
an exhaustive grid search over a high-quality grid. The grid is high quality in the sense that it covers
the true value of the parameter for (7) with a high probability (Chernozhukov and Hansen 2008).
As a byproduct, the IQR estimator can also provide the CI that is robust to the weak instruments, which
is also known as dual CI (see estat dualci). However, the IQR estimator becomes computationally
intensive if there is more than one endogenous variable. As a result, ivqregress iqr allows only
one endogenous variable.

The SEE estimator smooths the original moment condition in (2) using a kernel method to
approximate the indicator function. Thus, the optimization problem reduces to solving a system of
smooth nonlinear equations. One advantage of the SEE estimator compared with the IQR estimator is
that it can handle more than one endogenous variable. However, it cannot provide the dual CI, which
is robust to weak instruments like the IQR estimator.

While the IQR and SEE estimators are consistent for the IVQR model, their results are generally
different. The reason is that the two estimators approximate the original moment condition in different
ways. On one hand, the IQR estimator tries to find the solution by an exhaustive grid search. The
estimation result critically depends on the range and finesse of grid points. On the other hand, the
SEE estimator uses a kernel method to smooth the original estimating equation. Its result depends on
how well the SEE estimator approximates the original, mainly controlled by the bandwidth.

In practice, suppose there is only one endogenous variable in the model. We recommend using
both estimators, comparing the results, and using the IQR estimator as a benchmark because it can
provide valid inference even if the instruments are weak.

The IQR estimator

Before diving into the details, we discuss the intuition of the IQR estimator. The IVQR model
satisfies the conditional probability

Pr{y < da(r) +X'B(7)[x, 2} = 7
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We cannot fit the above model using regular quantile regression because the conditional set is on x
and z, but the covariates contain x and d. Now suppose we know the value of «(7). We can then
rewrite this conditional probability as

Pr{y — da(t) < xX'B(1) + 2’ % 0|x,2} = 7

By the definition of quantile regression, we can fit this model by running a quantile regression of the
transformed outcome variable, y — da(7), on the covariates X and instruments z. Notice that if a/(7)
is the actual value, the coefficient on the instruments, which we denote as ’}/(T), should be 0. In other
words, to solve the original moment conditional for the IVQR model, we need to find a a('r) such
that the auxiliary quantile regression of y — da(7) on x and z produces zeros for the coefficients on
the instruments z. In practice, we want ¥(7) as close to 0 as possible, where the closeness to 0 can
be measured by the Wald statistic on (7).

Based on the above intuition, here is an outline of the IQR estimator’s algorithm.

The IQR algorithm

1. Compute d, which is the linear projection of d on x and z. d can be treated as instruments

for d.

2. Define a grid of A = {aq,...,a;}. For the algorithm of the default grid generation, see
The IQR default grid algorithm.

3. For each «; in A, run an auxiliary quantile regression of y — da; on covariates x and

instruments d.

4. IQR finds o, € A as a solution such that the coefficient on d is as close to 0 as possible
in the corresponding auxiliary quantile regression, where the Wald statistic measures the
closeness to 0.

5. The grid points boundary must be wider than the dual CI, which is robust to weak instruments;
otherwise, ivqregress iqr will error out. Dual CI means it covers the true value of (1)
with #,, probability (see Chernozhukov and Hansen [2008] and estat dualci). The
level () option specifies the confidence level #.,.;; the default is level(95).

The IQR default grid algorithm

The default grid algorithm can be divided into two stages: 1) the initial grid generation based on the
two-stage quantile regression, which extends the two-stage median regression in Amemiya (1982); and
2) the adaptive grid that depends on the dual CI, which is robust to weak instruments (Chernozhukov
and Hansen 2008).

1. Initial grid based on two-stage quantile regression

a. Run a quantile regression of ¥ on x and d. Denote & as the point estimate for the

coefficient on d and s as its standard errors. § is computed by assuming the error
term is normally distributed.

b. Compute the lower and upper bounds of the grid. The lower bound is Ib = & — 45,
and the upper bound is ub = & + 45.

c. By default, the grid points are #, equally spaced points between Ib and ub, where

the ngrid () option specifies the number of grid points # .
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2. Adaptive grid based on the dual CI
a. Given the initial grid, go through the steps 3-5 in The IQR algorithm.
b. Obtain the dual CI based on the initial grid.

c. Use the dual CT as the bound for the adaptive grid points and generate #, equally
spaced points.

The SEE estimator

The basic idea of the SEE estimator is to replace the indicator function in (2) with a smooth
function. To be precise, we replace the moment condition in (2) with

E ([T Iy —dal(r) - x'B(r) < o}} \p) —0 (3)

where I(v/h) = max[0, min{1, (1 —v/h)/2}] and h is the bandwidth. By default, the bandwidth
is computed using the theoretical optimal bandwidth that minimizes the mean squared errors of the
estimating equations. See proposition 2 in Kaplan and Sun (2017) for the optimal bandwidth.

Because I(-) is a smooth function, the SEE estimator reduces to solve a system of smooth nonlinear
equations. Let F'(f) denote the left-hand side of (3), where § = {a(7),8(7)}. Let (i) denote the
proposed solution at iteration 4, and let #(¢ — 1) denote the proposed solution at the previous iteration.
The convergence is declared if mreldif(6(:),0(i — 1)) < itol or F(0)'F(0) < ztol, where itol
and ztol can be specified by using the tolerance() and ztolerance() options, respectively. The
maximum number of iterations can be specified by using the iterate() option.

By default, the SEE estimator searches for the bandwidth as follows.

The bandwidth selection algorithm

Denote 0 as the initial values for the parameters a(7) and (7). Denote h/o;(é\o) as the optimal

bandwidths based on the initial values 6. hopt(fo) is a vector with elements (hq, he, h3), where
hy is a nonparametrically estimated bandwidth, ho assumes Gaussian distribution, and hg uses the

Silverman rule of thumb. Regardless of the assumption used, each element in li,\pt(é\o) requires initial
estimates of the error term € = y — d'a(7) — x’8(7). Thus, the optimal bandwidth is a function of
the initial estimates for «a(7) and B(7). For details, see section 5.4 in Kaplan (2022).

1. Let §0 be the estimates of a quantile regression of  on d and x.

2. Based on (/9\0, compute the optimal bandwidths h /0;(50).

3. Define the initial bandwidth set as hg = {hopt(eo) Rinit }» where hipit is the bandwidth in
the initbwidth() option if specified. hy = Opt(90) if initbwidth() is not specified.

4. Find the smallest element in hg such that it solves (3). The estimates for «(7) are within
the dual CI with #jcye probability (see Chernozhukov and Hansen [2008]).

a. If a valid bandwidth is found, go to step 5.

b. Otherwise, do a bisection search of the bandwidth with the upper bound as 100 X
min(hg) and the lower bound as min(hg)/100.

If a valid bandwidth is found, denote it as h*.
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5. Update 50 as the solution for the SEE estimator based on bandwidth h*. Repeat steps 2—4
based on the updated 6.

By default, steps 1-5 are used to select the bandwidth. If the nosearchbwidth and initbwidth()
options are both specified, steps 2, 4b, and 5 are omitted. Thus, in this case, ivqregress smooth
will try to solve (3) with the specified initial bandwidth without searching for the optimal or feasible
bandwidths. If only the nosearchbwidth option is specified, step 4b is omitted.

The robust standard errors

The robust asymptotic variance—covariance estimator for the IQR and SEE estimators can be estimated
as follows (see Chernozhukov and Hansen [2006] and de Castro et al. [2019]). Let 6 = {a(7),8(7)}

be the true values of parameters and 6 = {a( ), B(r )} be the IQR or the SEE estimator. For any
finite collection of quantile indices 7;,j € T

[Vr{8(r) — 8(r) jer — N(O,[I () "' S(r5, ) {I (1) " |k jer)

where
J(T) =F {fe(T) (O|X7 dv Z)‘I/[d/7 X/}}
S(7j,7) = {min(7;, 7) — 77} E(V V)
and fc(;)(0|x,d, z) is the conditional density of ¢(7) evaluated at 0, with ¢;(7) = y; — dja(7) —
x;8(7).
The components in the variance can be obtained by their sample counterparts. In particular, S(-)
can be estimated as

N

~ . 1

S(7,7j) = {min(7y, 7;) — Tij}N E v,
i=1

J(-) can be estimated as

3(r) = N%ZK{‘Z? } o[, x]

where ez/(;) =y — dga/(?) - X;,@'/(;), K(-) is a kernel function, and h,, is the bandwidth.

vce (veetype, kernel()) specifies the kernel function form K (-). See [R] kdensity for the
function forms of the eight kernels.

vce (veetype, bwidth()) specifies which bandwidth to use: silverman specifies to use hg,
hsheather specifies to use hy with h; replaced by hyg, and bofinger specifies to use hy with hy
replaced by hy,.

Silverman’s rule of thumb bandwidth is

1

— M
hS = 0.9 min {U(E), 1349} N™53

where o(¢) is the standard deviation of € and M is the interquartile range of €.
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The bandwidth in Koenker (2005, 81) is

hix = min {J/(\e) 1.3]\{19} {774+ h) —d T — hy)}

where ®1() is the inverse cumulative standard normal distribution and h; can be one of the
bandwidths in Hall and Sheather (1988) (hyps) or Bofinger (1975) (hpo). In particular,

91/3
ar2/3[3  ¢{o-(r)}

5) 27 20-1(r)2 + 1
o ofei@y 17

2" el 1)

hyy = N~1/3¢1 (1 _

hpo = N71/°

where ¢(-) is the standard normal probability density function.
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